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Consider the random ordinary differential equation in R¢
X”(r):F(X‘(r), T/€) subject to  X°(0) = x,, (1)

where ¢ >0 and {F(x, 1, ®), t 20} is a stochastic process indexed by x in R< which
is regular to ensure that there is a unique solution X*(-, ) on the interval 0 <1 <1
for almost all w. In a classical paper Khas’minskii (Theory Probab. Appl. 11
(1966), 211-228) shows, under broad regularity conditions covering many physical
problems of interest, that one can associate with the above equation a certain non-
random “averaged” ordinary differential equation

()= F(x%z)) subjectto x%0)=x, (2)

such that (i) lim, .o suppe.<; E[JX*(1) — x°(1)]1=0 and (ii) if Y°(r) &
e~ 2(X*(1) —x°(t)), then the family of processes {¥*(t), 0<t<1} converges
weakly to a certain limiting Gauss-Markov process { Y%(t), 0<t<1} ase—0. In
this paper we establish a rate of convergence for the central limit theorem in (ii)
under conditions only slightly more restrictive than those required by Khas’minskii;
in particular, {F(x, t, »), 1 >0} is allowed to be strong mixing and non-stationary.
The rate of convergence is given by a polynomial bound of the form Q(&*), for some
constant 4 >0, on the Prohorov distance between the distribution measures (in the
space of continuous functions defined for 0 <1< 1), generated by the processes
{ Yir), 0<t< 1} and { YO(‘[), 0<r<l } 1992 Academic Press, Inc.

t. INTRODUCTION

Consider the following random ordinary differential equation in R
Z¥(ty=¢eF(Z(t),t)  subjectto Z*0)=x,, (1.1)
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where {F(x, t,w), t=0} is a R%valued “mixing” stochastic process for
each x in R which is regular enough to ensure that, for each ¢ >0, there
is a unique solution Z*(1, ®) on the interval 0 <t < 1/¢ for almost all w.
The limiting behaviour (if any) of the solution of (1.1) as e >0 is very
relevant to problems in diverse areas of physics and engineering, such
as celestial mechanics, theory of nonlinear oscillations, and recursive
stochastic algorithms which are much used in problems of control and data
communications (for an extensive treatment of the latter see Benveniste
et al. [1]). The basic intuitive idea is: when the limit

lim —f EF(x, 1) dt & F(x) (12)

T—x

exists for each x in R then it seems reasonable to expect that the function
t — x°(et) arising from the solution of the non-random ordinary differential
equation

x%t)=F(x°(t))  subjectto x°0)=x, (1.3)

(assumed for the moment to exist over the interval 0<7<1 and be
unique) approximates, in some appropriate sense, the solution Z%(-) of
(1.1) over the inverval 0 < ¢ < 1/¢ for small values of the parameter ¢ > 0. It
is usual to introduce the substitution X*(r) £ Z%t/e), 0 <t <1, in which
case (1.1) takes the form

X*(t)=F(X*(t), t/e)  subjectto X°*(0)=ux,, (1.4)

and the problem becomes one of comparing the solutions X*(-, w) and
x°(-) over the bounded interval [0, 1] as ¢ - 0. Khas’minskii [17] shows,
under broad regularity conditions covering many physical problems of
interest, that (i) lim,_ g supoc.<, E|X%(t)~x%1)|=0 and (ii)if
Y*(t, ) & &7 *(X(r, ) —x°(1)), then the family of processes {Y*(r)
0<t<1} converges weakly to a certain limiting Gauss—Markov proccss
{ VAl (t)} (whose complete characterisation is given by (3.6) in [17]—see
also (2.15) in Section 2 of this note) as ¢-»0. This latter result can be
regarded as an analogue of the classical functional central limit theorem of
Donsker.

Rates of convergence associated with Donsker’s functional central limit
theorem have been obtained by Prohorov [21, Chap.4], Borovkov
[4, Theorem 1], Gorodetskii [13, Theorem 1], Yurinskii [24, Section 2],
and Borovkov and Sakhanenko [5, Theorem 4], among others. These
rates of convergence all assume the form of some polynomial bound on the
Prohorov distance between the function space probability measures in
C[0, 1] (the space of continuous functions defined over the unit interval),
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generated by standard Brownian motion and the usual process with
continuous “polygonal” sample paths obtained from a normalised running
sum of independent random variables. In view of these rates of convergence
for Donsker’s theorem, it is reasonable to try to establish similar bounds
for the functional central limit theorem of Khas’minskii indicated above.
The purpose of this note is to show, under conditions only slightly more
restrictive than those assumed by Khas’minskii [17], that there is some
absolute constant A >0 such that

(Z(Y°), £(Y°)=0("), (1.5)

where #(Y*°) denotes the probability measure generated by the stochastic
process {Y°(tr), 0<t< 1} on the Borel sets of C[0, 1] (and similarly for
£(¥°)) and II(P, Q) is the Prohorov distance between two probability
measures P and Q on the Borel sets of C[0, 1].

Besides having intrinsic interest, this bound is also useful in applications.
Indeed, (1.5) can be used together with the Strassen theorem on marginals
of probability measures (see Dudley [10, Theorem 1]), an approximation
theorem of Berkes and Philipp [2, Theorem 1], and a functional law
of the iterated logarithm for Gaussian processes due to T.Lai [18,
Theorem 1], to relate as. the C[0,1] accumulation points of the set
{Y(-,w)(2logloge ')"'? £>0} to the unit ball of the reproducing
kernel Hilbert space generated by the limiting Gauss—Markov process
{f’o(r), 0<t<1}. We hope to show this development in a later note.

This note is organised as follows: In Section 2 we state the regularity
conditions which will be assumed throughout and compare these with the
regularity conditions used by Khas’minskii [17]. The bound (1.5) is
proved in Section 3. Following Section3 are seven appendices where
technical results which support the main result in Section 3 are developed.
The arrangement of these appendices is as follows: Appendix 1
demonstrates the range of applicability of the conditions in Section 2;
Appendix 2 summarizes various facts about the Prohorov metric;
Appendix 3 collects an assortment of necesary theorems from contem-
porary probability theory; Appendix 4 contains moment bounds for strong
mixing processes; in Appendix 6 an auxiliary multivariate central limit
theorem is developed; and Appendices 5 and 7 are a miscellany of various
technical lemmas. Because of the rather large number of supporting results
in these appendices we preface the statement of each with a brief indication
of the use to which that result is put in the proof of (1.5). The results in
the appendices can be referenced at will and are always stated in a manner
which is self-contained once the reader is familiar with the basic conditions
in Section 2.
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2. CONDITIONS

Suppose that (2, #, P) is a probability space on which is defined a
system of R“%valued processes {F(x,s, @), s>0} indexed by xe R? and
jointly measurable in (s, ) on [0, 00)x 2 for each x. The following
conditions will be assumed throughout this note:

(CO) There exists a P-null set A4, € % such that for each w¢ 4,,
t
[ 1F0,5, @)l ds<oo  forall 0O<t<oo
0

(henceforth, for any vector X=(X,---X,)eR? we write |X| £ max,
=141 Xi):

(C1) There exists a P-null set 4, and a constant N >0 such that
x— F(x, t) 18 twice continuously differentiable for each >0 and wé¢ 4,
and, moreover,

sup sup sup
wgAr xeRT 120

F .. t,w)‘<]\7 (2.1)

J
and

2
sup sup sup
wé¢dy xeR4 120

ol (x, z,w)(<1\7 (2.2)

0x; 0x,

for all integers 1<, j, k<d.
In view of condition (C0) and inequality (2.1) the random ordinary
differential equation

x(1)= F(x(t), t/¢) subject to  x(0)=x,, (2.3)

has a unique solution X*(t, w) defined on 0<t<1 for all ¢>0 and
w¢ A, 0 A, (see, for example, Theorem 3.5 in Chap. IT of Reid [22]). The
initial condition x, is held fixed throughout.

(C2) There exist o-algebras {F:, 0<s<t< o0} in Q such that for
each x and ¢ >0, F(x, t) is # -measurable with respect to «, where
(i) FlcF forallO<s<igw
(i) FicFlforal 0Su<s<r<vr<w

(iii) The # ! are strong mixing in the sense of Rosenblatt. That is,
if a(7) is defined for all >0 by

a(t) & sup sup |E¢n — ECEn|

t=0 ¢&n

683/43/1-5
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where sup,, is taken over all real-valued # -measurable functions ¢ and

real-valued # ° -measurable functions 5 such that [£,[n|<1) then

a(t)»0 as t—oo. Note that O0<a(r)<2 for all 120, and a(-) is
non-increasing.

(C3) There exists constant o >0 such that
M 2 sup [|[F(O, t)llg 145 < o0,
20

where, for any d-dimensional random vector X =(X,---X,)and 1 <r< 0,
we write | X||, & EV(1X|").

(C4) There are constants #>>4 and n >0 such that the Rosenblatt
mixing coefficient, a(-), defined in (C2) satisfies

—8(1+257Y)

a(t) <t forall t>1, (2.4)

where é is the constant of (C3).

Note that § in (C3) and (C4) allows a “trade-off” between weaker
moment bounds and “slower” mixing rates. Clearly, by the fact a(r) <2
and condition (C4), we have for all n=1,2, 3, 4,

B, & F o (1)1 dr < 0
0

and (2.5)
B, 2 [ v [a()]di< .
0

These constants will be used throughout later proofs.
(C5) For each x e R the limit

F(x) & lim —1,1; f " EF(x, t) dt (2.6)

T— o 0

exists. By (2.1) and (2.6), it follows that x — F(x) has a global Lipschitz
constant N & dN. Let x°(-) be the unique solution on 0<t<1 of the
equation

#(t)=F(x(r))  subjectto x(0)=x,. (2.7)
For convenience in later proofs, we define

D2 sup |x°()], (2.8)

[ ES X9

F(x, 1) & F(x, t)— EF(x, 1). (29)
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(C6) There exist constants 0 <y <1 and y >0, and some function
A(-) such that

lj'°+rj'°+TE{F( OE (x,5)) dsdi— A, ,(x)| <yT
su - i(x, (x, s sdt — A, (x)| <yT ™~
RERERT ’ S

forall T>0 (2.10)

for all 1<, j<d, D being defined in (2.8).

(C7) There is some constant ¢ >0 such that, for all ¢>0 and 1</,
Jj<d,

sup || " EF.(x%(s), s/e) — F.(x(s)) ds| < ce 2.11)
ogt<1 [¥0
and
sup er%(xO(s), s/e)— 5t (x9(s)) ds| < ce. (2.12)
o<e<1 %0 OX; 0x;

Remark 2.1. Comparing our basic conditions (CO) to (C7) with the
conditions in [17] which pertain to Khas’minskii’s functional central limit
theorem we see the following:

1. (CO0) and (C3) are essentially (1.2) and the first part of (3.1),
respectively, in [17], while (C1) is the second part of condition (3.1) in
[17]. (C2) and (C4) are similar to condition (3.3) of [17], the difference
being that our mixing rate is somewhat faster. Finally, (C5) is somewhat
weaker than the first part of condition (3.2) in [17].

2. (C6) is stronger than the second part of condition (3.2) of [17],
in that in [17] it is required only that the left-hand side of our (2.10) con-
verge to 0 as T — oo, whereas we postulate a polynomial rate for this con-
vergence. Actually, the stronger condition (C6) is satisfied by all examples
considered in Khas’minskii [17]. This follows from Appendix 1 where it is
shown that (C6) holds when {F(x,t), t>0} is weakly stationary (i, at
each x, EF(x, t)= EF(x,0) and E{F(x, t)F(x,s)}=E{F(x,0) F(x, t—s)}
for all 0 <s<t) and, more generally, when the functions ¢t - EF(x, t) and
(t,s) > E{F(x, t)F(x, s)} are periodic with period independent of x. As
noted in [17] there are several interesting applications where these
conditions on F(x, t) are valid.

3. Condition (C7) is the same as condition (3.4) in Khas’'minskii
[17]. Again, it is shown in Appendix 1 that (C7) holds when, for example,
{F(x, 1), 120} is weakly stationary or weakly periodic in the sense of (2)
above.
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In preparation for the statement and development of the central limit
theorem with rate of convergence in Section 3, we introduce the following
definitions. First, we deﬁne the process { Y*(z, w), 0 <t <1} on the original
probability space (2, #, P) by

Y1) & ¢ 2(X¥1)—x%1)) forall 0<t<1, O<e<l.  (213)

Now suppose (£, %, P) is a second probability space carrying some
standard R<-valued Brownian motion {B°(r, ®), 0 <1< 1}, and define the
Gauss-Markov processes {WO(1, @), 0<t<1} and {¥°(1, d), 0<t<1}
on (2, %, P) by

Wo(1) & A(x%(1)) dB%(1) subjectto W°(0)=0, (2.14)

=

dy’(z) & (°(r))f’°(r)dr+dW°(r) subjectto  ¥%(0)=0, (2.15)

Q)IQ)

where A(-)=(4"*(x))(4'?(x))7 is non-negative definite by (2.10) and F(-)
is given in (2.6).

3. FunctioNaL CLT witH ERROR

We let I1(Q,, Q,) be the Prohorov distance between two probability
measures O, and Q, defined on the Borel g-algebra in C[0, 1], the Banach
space of R%valued continuous functions defined over 0 <t <! with the
norm

lc & fnax [y, (o))

ey

An assortment of useful facts pertaining to the Prohorov metric is given in
Appendix 2. If {Q.,0<z<1} is a process defined on some probability
space whose sample paths are in C[0, 1] then #(Q) will always denote the
distribution probability measure in the Borel g-algebra of C[0,1]
generated by {Q.}.

The main result of this note is the following:

PROPOSITION 1. Under the conditions of Section 2, there exist constants
12¢,>0, C>0, and A >0 such that

I(L(Y?), L(Y°)<Ce*  forall 0<e<e,,

where for each &> 0, random processes Y*(-) and Y°(-) are defined in (2.13)
and (2.15).
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Remark 3.1. In the above statement A can be taken to be 3u/152, where
¢ is calculated in Lemma A6.2 to be u=min{1/33, y/16} (x being the
constant of condition (C6) Section 2).

Proof of Proposition 1.  Without loss of generality, we will assume that
the P-null sets A, and A4, in (C0) and (C1) are empty. Define the following
processes on (2, #, P) for each ¢>0:

wer) & g2 | F(x%s), s/e)ds  forall 0<t<l  (3.1)
! 0

(where F(-, -) is defined in Eq. (2.9)) and

Z:(t) & Wi +j [F (x(s), s/e)]Z‘ (s)ds forall 0<t<1l. (3.2)

Ft}rtl}errpore, we define a system of Gauss-Markov processes Z5(-) on
(2, #, P) for each ¢ >0 by

25(1) & Wo(1) + fOTE[Z—f (x(s), s/e)] 24(s) ds
forall 0<t<]1, (3.3)

where W?(-) is defined in Eq. (2.14). Now, by the triangle inequality,
I(L(Y5), LY ST(L(Y), L(Z5))+ I(L(Z2), £(Z3))
+I(L(25), L(Y°) forall £>0. (3.4)

In the remainder of the proof we bound each of the terms on the right of
(3.4):

(a) Bound on II(#(Y*), ¥(Z3)). Fix 0<e<1 (to remain fixed
throughout the proof of this bound), we 2, and te [0, 1]. Define -

Ui(r) & Y¥r)— Z5(z). (3.5)
By (3.5), (2.13), (3.2), (3.1), and (2.9) (as well as (2.3) and (2.7)),

Xi(t)—=x°t) v F(X%s), s/s)
\/-8' _J £

—J [— (x°(s s/s)] Zi(s)ds

Ui(t)=
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= [ ROres), e) FO2G0), ) ds
£vo
-[E [a—F (x°(s), s/s)] Z:(s) ds
0 6x
+ ﬁ {L (EF(x"(s), s/&) — F(x°(s))) ds}. (3.6)

Now from (2.13), X*(t) = x°(1) +\/; Y?(7) so substituting this into (3.6),

¥
Uﬁ(r):Jo a‘:( %s), s/e) Ut (s ds+f (s, ¢) ds

+I5(t) + { EF(x°(s), s/e) — F(x°(s))} ds,
=1,
where
P(s, &) & ﬁ[F(;:O(sH\/E Ye(s), “-Z)—F(x"(s), Z)
OF( o . s .
—a<x (5), g) JeY (s)] (37)
and

rwel [‘;—f ((s), /o) — E S (2°6), s/e)] Zi(s)ds.  (38)
Therefore by (3.7), (2.1), and (2.11) (recall N £ dN),
U3 <N [ 1056 ds+ 19, )l d+ U5+ cs'”
0

hence, by the Gronwall inequality (see, e.g., Lemma 1.1, Chap. 2 of Freidlin
and Wentzell [11]),

U (0)] < e { j (s, 2)| ds+ 151+ cs” } (39)
for all 0<t<1 and weQ, so by (3.9) and Hélder’s inequality,

EUtlc<e® { [ 16, o) ds + B30 )‘/“+cs‘/2}. (3.10)
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Now by condition (C1) and Taylor’s formula for each s [0, 1] and we £,
x°(s) + /& Y¥(s), s/e)
(\] aF V] £
= F(x(s), sfe) + = (x°(s), s/e )/ Y*(s)) (3.11)

‘3 szf(l-a

k=1

(x (8)+ (&' Y*(s), s/e) d Y 5(s) Y (s).

By (3.7), (3.11), and (2.2),

5 [a-04

jkl

02F

[¥(s, ¢)| =

(’C()

1/2

+e!2Y¥(s), s/e) dl Y5 (5) Yi(s)

[
<§e‘/2 dN | Y|2  forall 0<s<! and weQ. (3.12)
Now by Lemma AS5.1 of Appendix 5 there is some constant ¢, >0
(depending only on constants M, N, D, d, and B}, B; of Section 2) such
that

E[ max [Y(s)|?1<c, forall £>0. (3.13)

0<s<x1

In view of (3.12) and (3.13),

1
Ej |(s, )| ds <& dNc,. (3.14)
0

To bound E ||I§||{ in Eq. (3.10) define the d by d matrix-valued function
H*(t), 0<1t<1, to be the solution of the matrix differential equation

H‘(r)=E[gI£(x°(r),r/a)}H‘(z) subjectto  H*(0)=1 (3.15)

By the theory of linear ordinary matrix differential equations (see, e.g., the
background theory on pages 253-255 in Kallianpur [15]), H*(-) is unique,
H*(t) is nonsingular for all 0<t< 1, and

dLHA]

T (3.16)

_[H)] -*E[——” Li L 8’].
X
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Thus from (3.2), Egs. (10.2.2b) and (10.2.5) in Kallianpur [15, p. 255], and
integration by parts, we obtain

Zﬁ(t):Wﬁ(r)+L:K5('c,u)Wﬁ(u)du forall 0<t<1, we®, (3.17)

where

Ox
for 0t u<gl. (3.18)

Ke(e, u) & H(0)[H*(u)] ' E [a—F(x‘)(u), u/s)]

(For later use in Appendix 5 we note that with modest work one can
establish from (3.15), (2.1), and two applications of the Gronwall
inequality that

max |K% (T, u)| < Ne?V (3.19)

Isij<

forall e>0,0<1, u<1))
Now fix te[0,1] and we 2. By (3.8) and (3.17),

I5(1) = A%(1) + B(z), (3.20)
where for all ve [0, 1],

A¥v) 2 L: {a—F(xO(s), s/e)—E [Z—i (x°(s), s/s)]} We(s)ds (3.21)

Ox
and
zw & [ {2 0.5~ B[ 35 0005 |}
x jo Ke(s, ) W (u) du ds. (3.22)
Therefore,

[I5(7)]* < 8 |A%(z)|* + 8 |B*(z)|* forall 0<t<1 and weR, (323)
S0

E |I514 <8E{[4°1%} + 8E{| BY ). (3.24)
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By (3.24), Lemma A5.2, and Lemma AS5.3, there exists a constant ¢, >0,
depending only on constants M, N 2 dN, D, d, and B, ..., B, of Section 2,
such that

E|5[|%< e (3.25)

Thus by (3.5), (3.10), (3.14), and (3.25) there exists a constant ¢;>>0,
depending only on M, N, D, d, and B, .., B,, such that

E{|Y = Z: |} =E US| c<cqe' (3.26)
Thus releasing ¢, we have by Lemma A2.2(b) of Appendix 2
H(L(Y*), L(Z)<Jes et for 0<e<l. (3.27)

This establishes a bound on the first term on the right-hand side of (3.4).

(b) Bound on II(£(Z?), #(Z%)). In order to bound the second term
on the right-hand side of (3.4), we first consider (L (W), LW,
where W¢(-) and WO(-) are defined by (3.1) and (2.14), respectively. By
Lemma A6.1 of Appendix 6 there exist constants c¢,>0, p>0, and
0<egy< 1, such that

IH(L(W3), P(W®))<ce?  forall 0<e<e,. (3.28)

In view of (3.28) and the Strassen-Dudley theorem (see Lemma A2.1 of
Appendix 2), for each £€ (0, ¢,] there is some probability measure P* on
(@, Z)=(C[0,1]1x C[0, 1], #(C[0, 1]x C[0, 1])), where

P{(x, p): Ix—yle>cat?} Scoe’ (3.29)

and 2(C[0, 1]x C[0, 1])) denotes the Borel sets in the product topology
of C[0,1]xC[0,1]. Moreover, the marginals of P* on (C[0,1],
A(C[0, 1])) are L(W*) and L(W°).

Now fix an £€ (0, ¢,] and for each & & (&,, ®,) e put

We(r,®) & @,(r) and Wt, @) 2 @&,(r) forall 0<t<1. (3.30)
Then {Wi(z), 0<1<

<1
processes on (3, #, P
(3.29),

} and { Wot), 0<t<1} are R-value stochastic
5y, LW )= LW?), L(W°)= L(WY), and by

P\ e — WO > cqe”) < ey’ (3.31)
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Now fix @ e 2 and te [0, 1] and define (comparing with (3.2) and (3.3))

Z:(1) & Wg(r)+f; [a (x°(s), s/s)] (5) ds, (3.32)

Zi(1) & Wx +j [aF (xO(s),s/s)]Z;(s)ds. (3.33)

Thus by (2.1), (3.32), (3.33), and Gronwall, for each oel,
1Z5 = Z5) e <e™ | W5 — W . (3.34)
By (3.34) and (3.31),
PZ = Z5l o2 cae™e” + cue? ) S PN ZS — Z5) > cue™e? )
SP{IWE — WO o> cue”)
<8P < e™ef +c et (3.35)
Thus releasing ¢ we obtain by Lemma A2.2,
H(L(Z%), £(Z5))<ce(e¥+1)e?  forall O<e<e,  (3.36)

But from (3.32), (3.2), and the fact that E’(Wﬁ):E(W*j ), we see
$(Z§)=;$(Zﬁ) forall 0<e<1. Similarly from (3.33), (3.3), and the fact
that L(W°) = £ (W°), we obtain L(Z5)= L (Z3) for all 0 <e < 1. Thus by
(3.36),

I(L(Z5), L(25)<coleV+1)er forall O<e<e,. (3.37)

This establishes a bound on the second term on the right-hand side of (3.4).

(c) Bound on II(#(Z%), £(Y0)). Consider the third term on the
right-hand side of (3.4). We fix e (0, 1], we, and 1[0, 1], and put

Us(t) & Zi(1)— YOx). (3.38)

Then by (3.3), (2.15), and (2.1),

- g oF 5 oF B,
0300 = [ {E] F6tton 501 | 25060~ 5 (oo o0 s

[{eS (v0d)

<Nf |U£(s)| ds+ max

O0<t<1

_OF (xo(s))} YO(s) ds (3.39)

ox
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for all 0 <t < 1. Hence by Gronwall,

[ {E [a—F (x°(s), 5/s )] o (x°(s))} 7°(s) ds|.
0 0x Ox

We now adapt to a stochastic setting an argument for ordinary differen-
tial equations which is due to Gihman [12, pp. 216-217]. Fix a positive
integer » and define the process {¥2(1), 0<t< 1} by

1T5) - <e™ max

Ot

(3.40)

) ) I
¥o(r) & PO(i/n)  forall —<r<i
n

and i=0,1,2 .. (n—1). (341)

By (3.40) and (2.1),

” T
105 c<e” max {f
(1]

<7t

l<t<d

[ i (x°(s), s/s)]‘
0x,
x | YOs)— ¥(s)| ds

REELE! s/s)] -S| P30 b

+r max Z
0

1<x<d

+

°(s))] -

79(s) — 7(s)| ds}

<2Ne™ | 72— 70| -+ e max

0grgl

(342)

f r“(s)¥°(s) ds|,
0 .

res) & E|:6—F(x°(s), s/s)]—?f(xo(s)) forall 0<s<1.  (343)
Ox Ox

Now by (3.43) and (2.12) for any 0<1,, 7, <1 and integers i, je {1, .., d},

_[T s)as| < i () ds)+

71

“ re(s)ds| <2  (344)
0

Consider the second term on the far right of (3.42) and let |T]_ denote

max,; ¢ ;<q |7 when T is a d by d matrix. We have by (3.41) and (3.44)
that for any 0< 1< 1,
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[enl—1 L(ig1yn .
] e

in

Jt Fs(s)Y (s)ds| <
0

e[ rs s ds

[tnl/n

[tn] -1
<d ¥
i=0

i+ 1)/n
f I'“(s)ds

iln

(3
(i)

jt r(s) ds

[en]/n

oc

+d

J (s} ds
[tnl/n

oL

<d |17, {[m](zcw N

)

<70 ¢ 2 dnce, (3.45)

where the last inequality follows from (3.44) and the fact that [tn]<n—1
for 0<t < 1. Thus by (3.42) and (3.45),

1U51 c <2Ne™ | 70— PO+ eM2 dene | PO, forall def (3.46)

and, so for any a>0,

P05l ez a) < BP0 = P ez b+ LI 25—t (3
(103> a) < P{IT - Pz mosh+ Pliles 5 o

But, since

a
DI Yo=Y >
{CO l nllc = ANG” }

n—1
< {cb: max
i=0

in<s<({i+ 1)/n

Yo(s)—YO( )

a
2 INeV } (3.48)

we have by the Chebyshev inequality,
P(|U5)ic=a)

P{||Y°r|c>

a
4deVene

-

w1 ) , )
%s)— YOi/m)| = —
izo F <i/ns§22111x+1)/n 1T7s) (ifn)i /4NeN>

< E( max |Y°(1)?) a *(4decne)?

0t

+nf E( max  |Y%s)— YOi/m)|Ha *(4Ne):. (3.49)

in<s< i+ Lyn
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Also, by (2.6) and (2.1),

oF,
‘E’—.’c—,(x (7))

<N forall 0<t<1, ije{l, .., d} (3.50)

and, by Lemma A7.1 and the continuity of the function 7 — x°(t), there
exists a M’ > 0 such that

|42(x°) <M forall 0<t<1, ije{l,..,d}. (3.51)

Hence by (2.14), (2.15), and (5.3.18) of [ 16, p. 306] there exists some ¢, >0
such that

E1P%0) = YOt <cg lt—1 2= (h(r',1))* forall 0<t'<t<1, (3.52)
where
h(t',t) & ciH(r—1') forall 0<t'<7t<1. (3.53)

Thus by Theorem A3.1 of Appendix 3 (with v 2 4, y 22, 0, 2 ¥%))
there exists ¢, >0 such that

[N

E( max  |Y%s)— YOi/m)*)<ean”

im<s<{i+1yn

forall i=0,1,.. (n—1). (3.54)
Moreover, by (3.50), (3.51), and (5.3.17) of [16, p.306] there exists
constant c¢g >0 such that

E( max |¥Y°1)|?) < cs. (3.55)

0<rg]
Thus by (3.49), (3.54), and (3.55) there is some ¢y >0 such that
P05 c=a)<cofa P +a *n 1} (3.56)

for any a > 0 and positive integer n. Now by (3.56) there exists some ¢,,>0
such that if we define alg) 2 c,,¢", n(g) £ [¢7%] then

P 1 2
P10 = c10'®) < s {c—zﬁ”‘”;a—e”ﬁ <ce (357)
10 10

Now using Lemma A2.2 and releasing e,
II(ZL(Z5), Z(Y°))<cpoe®  forall 0<e<l. (3.58)

Proposition 1 follows from (3.4), (3.27), (3.37), and (3.58). |
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APPENDIX 1: APPLICABILITY OF CoNDITIONS (C5), (C6), (C7)

In this appendix we establish a lemma which illustrates the applicability
of conditions (C5), (C6) and (C7) in Section 2. A particular consequence
of this lemma is that these conditions are satisfied by all the examples
considered on pages 222 to 227 of Khas'minskii [17]. We shall call the
system of processes {F(x, t, w), t =0} wide-sense periodic with periodicity
6 >0 if: (a)EF(x,t) = EF(x,t + 0) and (b) E{F(x, t)(F(x,s5))"} =
E{F(x,t+0)(F(x,s+8))"} for all xe®R? s1>0. Without loss of
generality we shall assume that the function [I(x, 1 s), defined by
I(x, 1,5) & E{F(x, t)(F(x,5))7} for 5,1>0, has been uniquely extended
over all —oo <s, t<oo by the periodicity relation I'(x,t+ 80, s+8)=
I'(x, ¢t s)for all x, s, t.

LEMMA Al.1.  Suppose that {F(x, 1, »), t >0} satisfies conditions (CO) to
(C4) in Section?2 and is also wide-sense periodic with periodicity 8. Then
(C5), (C6), and (C7) of Section 2 hold with F(x) in (2.6) and A(x) in (2.10)
given by

]
F(x) & 1[ EF(x, ) d1, (AL.1)
8
A 1 8 proc
Ax) & 5j0 j, [(xns)dsd, (A1.2)

the integral on the right of (A1.2) is well defined, and y in (2.10) is given by
A
1 el

Remark Al.l. This lemma was motivated by Egs. (3.23) and (3.24) on
page 222 of Khas’minskii [[17]. In contrast to the treatment in [17], we do
not require Holder continuity of the function ¢ — EF(x°(1), 1) (x°(-) given
by (2.7)) or make use of Fourier analysis.

Remark A1.2. In the special case where {F(x, 1, w), 1 >0} is wide-sense
stationary for each x (ie., EF(x, s)= EF(x,0) and E{F(x, s)(F(x,t))"}=
E{F(x,0)(F(x,t—s))"} for all xeR? 0<s<1t) and satisfies conditions
(CO0) to (C4) of Section 2, it follows from Lemma Al.1 that (CS), (C6),
(C7) hold with F(x) 2 EF(x,0), A(x) & [ E{F(x, 0)(F(x, N)"+
F(x, 1)(F(x,0))7} dt, x & 1.

Proof of Lemma Al.l. (i) Fix some xe R’ By the #-periodicity of
t— EF(x,t), and (Al.1):
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17 — [T/6] 1\ ¢
‘TL EF(x,z)dz—F(x)‘sK - ~5> fo EF(x, 1) dt
1 T
+ ’?Lw EF(x, 1) dt. (A13)

(C5) follows upon taking 7 — oo in (A1.3) and noting that sup, ., |EF(x, t)|
< oo (see Lemma A7.2(i)).

(ii) We prove only (2.12) of (C7), since the proof of (2.11) is similar
but easier. From (Al.1) we obtain {§ (EF(x, s) — F(x)) ds =0 for all x and,
hence, by (2.1) and the dominated convergence theorem,

fﬂ (Ea—F(x,s)—a—F(x)> ds=0. (A1.4)
0 6.‘(’ 0x

Moreover, it follows from 6-periodicity of t - EF(x, t) and the dominated
convergence theorem that 1 — E((F/dx)x, 1)) — (0F/0x){x) is 6-periodic.
Defining G(x) & F(x) and Z(x, 1) & E((F/ox;)(x, t)) — (OF,;/éx,)(x), we
see that (2.12) is an immediate consequence of the following special case of
a lemma due to Besjes [3, Lemma 1, p. 362]:

LEMMA. Suppose that n(-) is some solution, defined everywhere over the
closed unit interval 0 <t < 1, of the differential equation in R*,

1)=G(n(z))  subjectto n(0)=n,,

where G(-) is continuous. If Z(x, t) is a real-valued function defined for all
120, xe R such that

(a) for some constant A, one has |Z(x, t}—Z(x', 1)} € A4 |(x = x| for
all x, x' e R¢ and t > 0;

(b) for each x, t - Z(x, t) is measurable and 0-periodic; and

(¢) [§Z(x,t)dt=0 for each x;
then there is an absolute constant ¢ such that supo.. <, {5 Z(n(s), s/e) ds|
< ce for all ¢>0.

(iii) It remains to prove (C6) with A(x) given by (A1.2). From (C2),
Lemma A3.2, and Lemma A7.2(i1),

[T (%, 1, $)| SA0(M + N |x|)? {af |t —s])} 7O+ (A15)
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for all xe R, 1<, j<d, and s, t=0. Thus, for all 1,0, T>0,

f,’]”fi | (x, 1, 5)| ds dt

i —

H+7T poo
<M+ N[ [ {ae= s ds d

1 —

—80(M+ N x| {aw)} "2 do
0

<80(M + N |x|)>TB,. (AL.6)

Clearly A(x) is well defined and from the 6-periodicity of (s, ¢) > I'(x, ¢, 5)
it follows that

H+ 0 oo
A(x):f)-*j f I(x,t,s)dsdt  forall 1,>0. (A1.7)

Thus, for all x, 1,20, T>0,
1 pto+ T poo
?JIO L‘x‘ I(x,t,5)ds dt
g | rto+T x
21 2 A(x) + = F(x, 1, s)dsdr. (AL
T[;] (x)+leo+g[m] fﬂx (x.1,s)dsdr.  (A18)
Now from (Al.5),
FJO I3 1,5)] ds di<A0(M 4+ N 121 [ ofa(0)}2+2) d
to —aC 0

<40(M + N |x])* B, (A1.9)

and, similarly,

e

— 0+

[, (x, t,5)| ds dt <4O(M + N |x])*B,,  (AL10)
T

for all x, ty, T>0. But obviously,

1 pto+ T pro+7

?fm LO [(x, t,5)ds di — A(x)

1 to+ T poo
=?J. J I'(x, t,s)ds dt — A(x)

_{JMTJ.IO I’(x,t,s)dsdt+'ru+r.fw F(x,t,S)de’} (AL11)

) — o to w+ T
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Putting together (Al.11), (A1.10), (AL.9), (AL.8), and (AL.6) gives, for all
T>0,

1 plo+T po+T |
—JO JO I j(x, b, s)dsdt — A, ;(x)

su
lxl<D T I )
=0
9 80 2 ’ ’
<01—=| = |} sup |4, ,(x)+= (M+ND)? (0B, + B)).  (AL12)
T 0]} wep T

Since sup |, < p |4, ;(x)| <o (by Lemma A7.1), condition (C6) follows. |}

APPENDIX 2: FACTS ABOUT THE PROHOROV METRIC

If M(S) denotes the set of all probability measures on the Borel
o-algebra of a metric space (S, p) then the Prohorov distance between two
P, Qe M(S) is given by

II5(P, Q) & inf{e>0; P(A)< Q(A°) +eforallclosed 4 = S}, (A1)

where A° £ {xeS; p(x, A)<e}. That (-, -) actually is a metric is
established by Strassen (see Dudley [9, Proposition 1] and Prohorov [21,
Section [.4]). Moreover, when (S, p) is separabie the Prohorov distance
metricizes the topology of weak convergence in M(S) (Dudley [9,
Section 2]). A very noteworthy property of the Prohorov distance is given
by Lemma A2.1 which is a special case of the Strassen-Dudley theorem
(Dudley [5, Theorem 1]). Lemma A2.1 is used after line (3.28) in the proof
of Proposition 1.

LEMMA A2.1. Let (S, p) be a separable metric space and P,, P, be two
probability measures defined on the Borel sets of (S, p). Suppose that there
is some a>0 such that II¢(P,, P,)<oa. Then there exists a probability
measure Q on the Borel sets of S x S with marginals P, and P, (on the Borel
sets of S such that Q{(x, y): p(x, y)>a}<a

The following lemma, used in Eqs. (3.27), (3.36), and (3.58) of Section 3,
is an almost inverse to Lemma A2.1. It is well known and easy to prove.

LEMMA A2.2. Let (S, p) be a separable metric space and suppose X, Y
are (S, p)-valued random elements on probability space (2, %, P). (a)If,
for some B >0, we have P{w : p(X, Y)= B} < B then the Prohorov distance
between the probability measures induced on the Borel sets of (S, p) by X
and Y satisfies I (LX), L(Y))<B. (b) If for some B>0 and real r= 1,
we have |p(X, Y)||, < B then II(L(X), L(Y)) g prior+D,

683/43/1-6
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The following lemma is introduced implicitly by Yurinskii {24] and can
be proved using simple real analysis. It is used in the proof of Lemma A6.1
(sce line (A6.2)).

LemMa A2.3. Suppose that k is some fixed positive integer and { W, (1),
0<t<1} and {Wk(r), 0<t<1} are R%valued processes on probability
spaces (2, F, P) and (3, #, P), respectively, having continuous “piecewise
linear” sample-paths

Wolo)= W, ([’:]) + (tk— [7k]) {Wk (——w‘}f ’) _w, ([‘:]>}

for 0<t<1 and, similarly, for W,.. Moreover, suppose W, (0)=0 and
W,.(0)=0. Then

L (W,), LW S ITAL(EL), L&)

where
W (1/k) W(1/k)
L W"(:Z/k) , £ 2 W"(Zz/k) (A2.2)
W,(1) We(1)

and (-, -), II**(., ) are the Prohorov metrics for probability measures on
the Borel sets of (C[0,1], ||-ll¢) and (R*% |.]), respectively (recall that
|x| & max, <i<ka X for x=(x,x5 - x;) in R*9).

LEMMA A24. Let X and X be k-dimensional random vectors on
probability spaces (2, #, P) and (2, #, P), respectively. Then

IT* (2(X), LX) <52 (X), (X)),

where IT* (-,-) and II%(-,-) are the Prohorov metrics for probability
measures on the Borel sets of (R*,)-|) and (R% |-|1,) (recall that
x|, & (Zfile)l/zfor x= (XX, Xpy) in R,

APPENDIX 3: UseruL RESULTS

In this appendix we collect for easy reference four crucial theorems on
which this note is based. The following maximal inequality is used many
times in this note. It is a simple consequence of a maximal inequality of
Longnecker and Serfling [19, Theorem 1] along with discretization and
passage to a continuous limit (see Proposition Al in [14]).
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THEOREM A3.1. Let 0<T<U< oo be constants and suppose that
{Q,, T<t< U} is a process assuming values in R* (with norm |-| specified
in (CO), Section 2) such that

(i) t— Q,(w) is continuous on [T, U] for almost all w, and

(11) there exist constants y > 1, v>0 such that
E|Q,— Q) <[h(t,u)] forall T<t<u<U,

where h(t, u) is a non-negative function satisfying
(iii) A(t, u)+h(u, v) < h(t,0) for all T<t<u<v< U

Then there exists a constant A .. depending only on v and y such that

E[  max UIQrQ,Iv]SZV‘v[h(T, UyJ.

T<t<su<

The following result is used frequently throughout this paper and, in
particular, for the development of the bounds of Appendix 4.

LemMma A3.2 (Davydov [6, Lemma 7]; Deo [8, Lemma 1]). Let ¢ and
n be 4-measurable and #'-measurable real-valued random variables respec-
tively. Let r, s, 1> 1 be constants such that r ' +s7'+t" ' =1 and ||&|, < ©
and \|nl|, < oo. Then

|EZn — ECEn| < 10(a(%, )7 1EN, linl .
where

®(%, #) & sup |P(4 B)— P(4)P(B)|.
e

The following proposition is the key tool for establishing a bound on the
second term on the right-hand side of (A6.31) in the proof of Lemma A6.2.

PROPOSITION 533. Let X,,..,X, be zero mean, R™-valued random
vectors with M 2 sup, ., E|X|3<c0. Let #° denote the o-field
generated by X, ..., X, and define

B2 sup sup |[P(AnB)—P(4)P(B)|.
O<k<n Aevl{‘f
BGJ’?H
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Then there exists an absolute constant ¢ >0 such that

17';<$(n~1/2()(1 b F XN <O,n“' Y cov X,-))

i=1
< E(ﬁ2/3n1/2C71m~1/2M1/3 + m3/2ﬁl/3M2/3£~—2 + n—»l/ZMC—Bmfl/Z)

1 1/2
+4C+4C<logz> m'? +4lm'?

for all {e(0,1), where IT5(-,-) is the Prohorov metric for probability
measures on the Borel sets of (R, |-|,).

Proof. This result is Eq. (6.2) on page418 of Dehling [7] It is
developed in Lemma 2.3, Lemma 2.4, and Proposition 6.1 of [7].

The following theorem is used for establishing a bound on the third term
on the right-hand side of (A6.31) in Lemma A6.2.

THEOREM A34. Let T, S be k by k symmetric, positive semi-definite
matrices. Then there exists an absolute constant ¢ >0 such that

AN (0, T), #(0, $))<EIT— S| kYo(1 + llog(I T— S k) '),
where ||A|l, denotes the trace class norm of matrix A.

Proof. This theorem is due to Dehling [7, Theorem 7]. The statement
of the theorem is on page 400 and the proof is on page 406 of [7].

Remark A3.1. For a k by k matrix A4, ||A|l, is defined to be the sum
of the singular values of A (see pp. 170-173 of Weidmann [23] for a
general treatment). When A4 is symmetric, clearly [|A|l, £ Y%_, |4,], where
A, are the eigenvalues of 4. If | 4|, & (X},_, a;)"? denotes the Frobenius
norm of a symmetric matrix A with eigenvalues A; then clearly
k2 1412=Kk*3%_ 144> = {ll4]],}> This will be used in the proof of
Lemma A6.2 (see line (A6.55).

APPENDIX 4: MOoMENT BOUNDS

In this appendix we give three moment bounds for zero-mean strong
mixing processes, stated as parts (A), (B), and (C) of Lemma A4. The first
two bounds are essentially due to Khas’minskii [17] while the third is
developed here; unfortunately its proof, although simple in concept, is
rather long and tedious. Lemma A4(A) is used on numerous occasions,
Lemma A4(B) is needed for line (A7.2), and Lemma A4(C) is used for line
(A5.23).
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LEMMA A4. For some positive integer k, let @, (t), D,(t), ..., Dy (1),
t 20, be zero mean stochastic processes on some probability space (2, #, P).
Suppose each @ (1) is F |-measurable, where {F',0<s<t< w0} satisfies
condition (C2) of Section 2 with some function o(-).
(A) Suppose for some 5 >0 that

(1)) M & sup,.oizio.,u PO asse< o

(i) R, &[5 '[a(r)]¥**Vdr<oo,n=1,2, ..,k
Then there exists a constant ¢, depending only on k, M, R, .., R, such
that for all 0<t<u,

[ [ @ (50 Do)} dsy - dsy < canlu—1 )

(B) Suppose there is some number L such that
(i) 1D:(t,w)| <L forall t>0,i=1,2,..,2k aa we®,
(i) R, & [§v '[a(x)]di<oo,n=1,2,., k.

Then there exists a constant ¢y, depending only on k, R, ..., R, such that
for all 0< 1<,

J J |{E¢1(51)“'¢2k(52k)}| ds, "'dSZkSCZkLZk(u— f)k-
H I

(C) Suppose for some 3 >0 that

(i) M Lsup,,oiy 5 |Pilt)gyas<©
(i) R, &[5 '[a(r))**Pdr<oo,n=1,2,3,4

Then there exists a constant cg, depending only on M, R}, .., R}, such that
for al 0Kt <y,

[ L 8@ 04050 @0) - @uto)} do v}

t

xds,---ds, < gt} (u—1)2

Remark A4.1. Comparing cases (A) and (B), one sees that the strong
absolute bound in (B)(i) results in a more structured bound on the right
of the 2k-fold iterated integral. This structure will be used in the proof of
Lemma A7.1.

Remark A42. Lemma A4(A) is a minor extension of Lemma 2.1 of
Khas’'minskii [17] and is proved in Lemma A2.1 of Heunis and Kouritzin
[14]. (Khas’minskii postulates a somewhat stronger moment bound than
that in (A)(i) to obtain the conclusion of Lemma A4(A)). Lemma A4(B)



82 KOURITZIN AND HEUNIS
follows inter alia from the proof of Lemma 2.1 in Khas'minskii (see the line

following Eq. (2.10) on page 215 of {171]).

Proof of Lemma A4(C). (For ease of notation we write &, for @, ,,
k=1, ..4.) The proof is divided into two steps.

(I) We first show that there exists some ¢’ depending only on M, R},
R5, Rj such that

j"-~-j"f0' jo' E{®,(s,) - ®uls4) B, (0,) B (v:)}| do, dv, disy -~ ds,
<c'(u— 1)t (A4.1)

Fix numbers {s,,s,,s3, 5, € [ u] and {v,,v,} € [0,7] and let
{j-k=1,2,3,4} and {i,,k=1,2} denote the subscripts of {s,,..,s,}
respectively {v,, v,} such that:

0<v,<v, <1<s5, <5, <5, <5, <u (A4.2)

Then, by the Davydov bound (Lemma A32 with r & (§+2)/5, s &
(6 +36)/4, and r & (6+ 35)/2), repeated use of Holder’s inequality and
hypothesis C(i):
lE{d)jl(sjl)"'d)ﬂ(sjg)&i,(vi,)aiz(l’f:)}
—E{®,(s5;) - Dy, (5;) } E{ B, (0,) B, (v,)}]
< 10{a(s;, — v, )} 2Dy (s5) - (sl 6+ 304
X Hiil(vil)éiz(viz)”(6+3(5)/2
<10{a(s;, =0, }" 211D, (556436 - 1P (5316 4 35
1B 0 M s 35 1B (05) 6 4 35
<20M%{a(s; —v,)}°C* 2. (A4.3)

Also, by (A4.2), Lemma A3.2, the zero mean property of @,

.» repeated use
of Holder’s inequality, and hypothesis C(i):

|E{®D,,(s;,) - D, (s;,) D, (v,) B, (v,)}
—E{®,(s;) - B,,(5,)} E{ B, (v, ) D ,(v,,)}|
SIE{@(s;) - @,,(5;,) B, (v,) B, (v,,)}
HIE{D;(5;,) -+ D (s;) H E{ B, (v,) D ,(v,,)}]
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<10{a(s;, —5;,)} 72 {1, (s, )M 6 4 3
X [|®,(5,)D,,(5,) D, (5, D, (0:,) By (0] 6 + 365
+ 1D a 25 195,050 @8, B (5l o v 203 - |EDB, (07) By (0,)]}

<10[afs;, —s,)1%+ 2 (M- M5+ M-M*- M?)

=20M°® - {a(s,,—s;,)} 70+, (Ad4)
Similarly, by (A4.2), Lemma A3.2, the zero mean property of (D,z, Holder’s
inequality, and hypothesis C(i):
|E{®;,(s;) -+ @,,(5,,) B, (v -)‘75-( i)}
—E{®;(5,) - D,,(5,) } E{B,, (v;) B,,(v.,) }1
<20M°{a(v;, — v,-z)}‘”“s”’. (A4.5)

Since (A4.3), (A4.4), and (A4.5) must hold simultaneously and we can
remove { and j from the subscripts in the quantities on the left of (A4.3),
(A44), and (A4.5) without changing their values, we have by the
monotonicity of a(-):

|E{¢x(sx)"'¢4(S4)51(Ul)(p2(02)}
—E{®,(5,) -+ Dyls) } E{B,(v,);(v,) }|

<20M°[a(max{(s, —s,), (s, —v;), (v; —v,,)})]¥E+2
8/(3+2
<20M6 [a <(Sj4_sj3)+ (sjl 3 )+(U‘1_Ui2)>:l 2 )
é ﬂ(sls 83,83, 54, Uy, Ug). (A46)

Now the indices j,, i, defined by (A4.2) are functions of {s,, .., s,} and
{vy, vy} such that B(s,, s,, 53, 4, Uy, U,) is unchanged by any of the 4! per-
mutations of {s,, .., s,} and 2! permutations of {v,, v,}. Thus, by part (A)
of Lemma A4 there exist constants ¢, >0, depending only on M, R}, R,
and ¢, >0, depending only on M, R}, such that

f“ - f fo L |E{®(s,) - P(54) P(01) B(v2) }| dvs dvy dsy -~ dis,
< J.ru J.lu J.tu -[‘u f(: J.()’ |E{¢l(sl) o ¢“(S“)(ﬁl(01)52(02)}
— E{®,(5,) - Pa(s4) } E{®\(v)) B,(v,)}| dv, dv, ds, - - ds,

[T T 1B ) 05 BB, o) Baw)}
X dv, dvds,---ds,
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<TT LT Bsr s s savvn,02) dog oy sy
[ [ T 1E@ 60 050}
xdsyods, [ [ 1E(B1(0)85(02)}] do do,

<4v2j“jurﬂ " 206

$1 5827353

[ ((54—S3)+ (si—v)+ (v _Uz))]é/unm
Xl a

3
Xdv,dv, dsy-ds, +cqc(u—1)1. (A4.7)
We now bound the first term on the far right-hand side of (A4.7). Define
X1 _—A—_UI—UZ, .Xz-_A—_Sl—Ul, X3éS4—S3, x4és3——s2, xséSZ—sl’
X¢ £ v,, and note that the corresponding Jacobian is 1. Also, we note that
0<x;, x6<t, 0<x;, x4, xs<u—t, and 0<x,<u Substituting these

variables into (A4.7) we have by a change of variables and the non-
negativity of a(-):

r : "Jw jol J; fE{(bl(Sl) "'¢4(S4)51(01)‘52(U2)}1 dv, dv, ds, ds; ds, ds,

a7 [o(25)]

Xdx;-dxg+cyca(u—1)°t

© pOO pOC +x,+x 3/(6+2)
< 60, 1\2 X3 T XpT Xy
<960MS(u— 1) zfo fo fo [a<———3 )]

X dx; dxy dxy+cyc(u—t)*t

8/(8+ 1)

27
<960M6(u—t)2t7 S+ cacq(u—1)%t, (A4.8)
where we have used the easily verified fact that
J, ol Tttt )T

=% [ T+ du (A49)
+ Y0
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for r=0, 1, 2, 3, which foliows from condition (C)(ii) of the lemma; (A4.9)
gives (I).

(II) We now show assertion (C) of the lemma using part (I) just
established. Fix numbers {s,, 5,, 53, 54} € [£, u] and {v,, v,, v3, v,} € [0, ¢]
and let {j.,k=1,2,3,4} and {i,,k=1,2,3,4} denote the subscripts of
{$,, .., 54 respectively {v,, .., vy} such that

O0<v, <v,<v,<v, KIS, <5, <5, <55, < (A4.10)

Now~as in part (I) (A4.6), using Lemma A3.2, the zero mean property of

®D,,, d,,, repeated use of Holder’s inequality, and hypothesis C(i), we find:
|E{¢l(sl)"'¢4(S4)51(U1)"'64(1}4)}
- E{¢jl(sfl) T ¢14(S14)} E{éil(vil) e @ia(vi4)}|
<20 ME[a(max{ (s, —s,), (s;, — v;), (v;,— ;) } 17+ (A4.11)
and

|E{¢1(31) e ‘154(54)51(”1) s 54(04)}
- E{(pjl(sjl) e (Dj,,(sj,g)51‘1(01‘1)5(2(1):'2)} E{éig(vi3)6i4(vi4)}|
<20- MP[a(max{(s;, —s;,), (v;,—v,), (v;,—v;,)})]7C* 2. (A4.12)

Now put
44 E{¢1(51)"'¢4(54)51(1)1)"'54(U4)}
B2 E{¢j1(sj1) "'¢j4(sj4)}E{dsi,(Ui1)"'ém(vm)}
C é E{éh(ij) "‘(Dﬁ(sﬂ)éfl(vil)5iz(viz)}E{éig(vi;)@u(va)}

Then from (A4.11), (A4.12), and the fact that «(-) is non-increasing, we
obtain
|4] <min{|4 - B|, |4—-C|} +|B| +|C|
< 20M8[a(max{(s_/4 - sjg)’ (sjl - Ui] )) (viz - Ui3)’ (Ui3 - Ui4)} )]6/(5+2)

+1B +|C]|

<20M3 [a <(sf4 _ sjs) + (85, — V) : vy —vi) + (v, — U,-4)>]'S/(5+ 2

+ (Bl +|C|. (A4.13)
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Now as in (A4.7), we have by (A4.13), Lemma A4(A), and part (I) that

there exists constant K( = 4! 4! 20M®)> 0 such that
W u et 11
[T T 1B @50 @u5) By (0)) - Bafe)}]
t t Y0 0
X dv4 dv3 dUZ dvl dS4 dS3 ds2 dsl

k[ [LLLLLL

51 Vs Vs3

S4—S3+ 85— v+, —0,\ |70
[a(“ SIS N L “)J dvg---dv, ds, -

4

+f[ E{®,(5,) - ®a(s4)}]

ds,

X ds, dss ds, ds, L fo \E{®,(0,) -~ Bu(vs)}| dvg dvs dv, do,

om LT

i, i, i3, 146{1 i
i, 02,13, 14 dxslmct

|E{®,(s,) - Pal54)D,,(v,) D, {0:) }|
X |E{<5,»3(v3)¢,»4(v4)}| dvy dvs dv, dv, ds, ds; ds, ds,

ENNNANN

51 ¥s52vs3

Sa—S3+8, — v+, —0,\]7VCFY
[a<4 2 ‘4 L2 “)] dvg - -dv, ds, -

+c2(u—1)? 2+ 41 cy(ur)

where ¢’ is the constant in (A4.1). Now let x, & v;—uv,, X,
X388 —Uy, X4 8 5-55, XsL 53-8, X L5, X

-ds,
(A4.14)

L v, —0,,

é v[ - 027

xgz £ v, and note that the corresponding Jacobian is 1 and that 0 < x,, x,,
Xy, X3 <t 0< x4, x5, xg<u—1, and 0< x;<u. Then from (A4.14), the

monotonicity of «(-), and (A4.9) we have

[T [ @10 @uls)B1(01) - Balwo)}] - doydsy -,

<K(u—1)*t 2J ’f“f’f’li ( )Jé/wn)

X dx, dxy dx; dx, + (c2+41c'c,)(u—1)*r?
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<#Ku—1e [ "‘f: [“ (Z ’)]

xdt, dty dtydiy+ (c2+41c'c,)(u—1) 1

8/(6+2)

K
<<—6—44R;+c3+4rc'c2> (u—1ye § (A4.15)

APPENDIX 5: MaxiMAL BOUNDS

This appendix contains maximal moment bounds used in the proof of
Proposition 1. Lemma AS.1 is used in Eq. (3.13) of Section 3.

LEMMA AS5.1. Under conditions (CO)-(C5) and (C7) of Section2 there
exists some c4>0 depending only on M, N, D, d, and B}, B} such that

E[ max |Y(1)|*1<c¢; forall 0<e<],
0<t<1

<1<

where Y*(-) is defined in Eq. (2.13).

Proof. Fix an ¢e(0,1] and an we Q. By (2.3), (2.7), (2.1), (2.11), and
(2.9}):

) =5 <N [ 15 =) ds

+ max
O<eg1

+ce (A5.1)

JT F(x°(s), s/e) ds
0

for all 0 < <1 and so by Gronwall, (2.13), and a change of variabies,

max |Y%(7)] <&"%"- max
0t Ostege!

I
j F(x%es), s) ds| + eMes? (AS2)

0

for all we Q. Therefore,

E[ max |Y*(1)]%]

0gt<1

< 2e {EE[ max

Ogrse!

[ " F(x%es), 5) ds

0

2] + 62}. (A5.3)

Now by Lemma A7.2(ii) for all 0<s<e™ !, i=1, .., d:

IF,(x°(es), $) 4 4 26 <2M + 2ND. (AS4)
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Moreover, EF,(x%es),s)=0 for all 0<s<e ' and i=1,..,d, so by
(2.5) and Lemma A4(A) of Appendix4 (applying it for each of the
d-components and taking k £ 4) there exists some ¢, >0 (depending only
on M, N, D, d, B, B, of Section 2) such that

u 4 d 4
E“ F(x%(es), 5) ds <E([§] )gc,(u—z)2 (A5.5)

J“ F (x%es), s) ds

for all 0<t<u<e ' Defining h(t, u) & c*(u—1t), by Theorem A3.1
(withv 24,9 22,0, 2 [, F(x%es),s)ds, T £ 0, and U & ¢ ') there is
some constant ¢, >0 (depending only on M, N, D, d, and B}, B5) such that

E[ max

O<ige!

4
]Sczs‘z. (A5.6)

f[ F(x(es), s) ds
4]

The lemma follows with ¢;=2¢*"(c}?+¢?) from (AS.3), (AS5.6), and
Hoélder’s inequality. |

The bounds developed in Lemmas AS5.2 and AS.3 are used in Eq. (3.25),
Section 3.

LeMMA AS5.2. Let A%(v) be defined as in (3.21) for 0 <v < 1. Then under
conditions (CO)}{C5) of Section 2 there exists a constant c,> 0, depending
only on constants M, N, D, d, and B, .., B, of Section 2 such that for all
e>0,

E A9t <e,- &%
Proof. Fix &>0 and put &%(s) & F(xes),s) and &%(s) 2

[(0F/8x)(x°((es), s) — E((0F/9x)(x°(es), 5))] for 0<s<¢~'. By a change of
variables, (3.1), and then a further change of variables,

v 0
a0)= 1| Z 06 901 E( 5 (0 90 ) | w1

v/e ~ s

= [ B%s) | Fxe(u), we) du ds
0 0
vie 5

Y j gpa(s)J ®(u)duds forall O<p<l. (A5.7)
o 0

Now define

S*;(u)éj:ée(s)j:dvm)dwds forall O<u<e . (AS8)
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Then for all 0<r<u<e ™!,

E|Si(u) - Si(1)|*

u 1 4 u s 4

<8\ | q‘bs(s)ds[ ®*(w) dw| +8E| [ B(s) [ @%(w)dw ds
! 4

<8d" Z E s)dsJ. & (w) dw

=1j=1 o

s 4
+8d° Z Ef & ,(5)ds | @i(w) dw) | (AS9)
i=1,4=1 '

where we have used the fact that [Y9_,4,*<d*Y9_, |a|* for real
numbers a, ---a,. We consider the first term on the right-hand side of
(A5.9). By Cauchy-Schwarz and Fubini,

4

E|[ &, (5) ds fo @ (w) dw

g[r.._f'E{f’i;(so-'-@f.;(sg)}ldsgA-Ads,
! ! 12
[ |E{d§]‘.(w1)...d5j.(w8)}|dwg...dwl:l (AS.10)
0 1]

for all 1<i, j<d. Now by (2.1), |$: (s)| <2N for 0<s<e™ !, 1<i, j<d,
and by Lemma A7.2(ii) of Appendix 7, ||®;(s)lls,a4s<2M+2ND for
0<s<e™!, j=1,..,d Therefore, by (A5.10) and Lemma A4(A) there
exists some constant ¢; >0 (depending only on M, N, D, and B}, B, B;,
B, of Sections 2) such that

j & (s) dsf @ (v)dv <c5(u~t)2 for 0<r<u<e ' (AS5.11)

and I <i, j<d Now, for the second term of (A5.9), we have by Fubini,
u R 4
E(f igj(s)j qb;(w)dwds)
St ;52 pS3 AS4 .
—EU - f {j [ {717 gt @50ma) dwy---aw, |
xd) (51) 54 ) ds, -- J
P

< o [ B )0 (W) B2 (5) - B (50}
Xdwy---dwyds,---ds, (A5.11)
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for all 0<r<u<e 'and i j=1,..,d Therefore, by Lemma A4(A) there
exists some ¢, > 0 (depending only on M, N, D, d, and B), B5, B;, B}) such
that

4

E Scglu—1)?

4

f &: (s) f B* (w) dw ds

forall O0<r<u<e™, i j=1,..,4d, (AS5.13)

and by (A5.9), (AS5.11), and (AS5.13) there exists some constant ¢, > 0 such
that for all 0<t<u<e /|

E|S5(u)— S < cqi[(u—t)* 2+ (u—1)*]
<L =2V + (=1 (u+0)7]
= [h(r, w) 1, (AS5.14)

where A(t, u) 2 /8¢, -I;‘ s ds. By (AS5.14), (A5.7), and Theorem A3.1 (with
v2d4 522 Q,L2 S(t)), there exists an absolute constant a>0 such
that

E | 4°)¢ = ¢"E[ max_|S5(1)— S5(0)I*]

g1Ke”

<e%a[h(O0, e ") =ae® - 2¢,e7 4, (AS.15)

The lemma follows by choosing ¢, =2ac;. ||

LemMa AS5.3.  Let B(v) be defined as in (3.22) for 0 <v < 1. Then under
conditions (C0)—(CS5) of Section 2 there exists a constant cg>0, depending
only on constants M, N, D, d, and B, ..., B} of Section 2 such that for all
£>0,

EIB%< e
Proof. Fix ¢>0 and put @&%s) 2 F(x%es), s) and &(s) 2

[(OF/dx)(x°(es),s) — E(OF/0x)(x"(es), s)] for 0<s<e '. By a change of
variables, (3.1), and then two more changes of variables,

v [OF oF :
)= [5; (<%(s), s/e) — E 2 (x°(s), s/e)] [, Kets. 1y W) d s
= o [ Be(5) [ Ke(os, ) [ (), wie) hw dc s
0 0 Y

ue
0

=2 Jw/c d*(s) r K*(es, eu) f F(x%w), w/e) dw du ds
0 0
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v/e 5 u
=g J- d%(s) f K:(es, eu) j @*(w) dw du ds
0 0 1]
v/e s
=% | qbe(s)j We(s, w) D5 (w) dw ds (A5.16)
0 0
for all 0 < v <1, where
e(s, w) & j " K*(es, &) dy (A5.17)
for 0<w<s<e !, Define
Ss(u) & | qﬁe(s)jwe(s,w)dse(w)dw ds (A5.18)
0 0

for 0Su<e¢ ' and we Q. Fixing 0<r<u<e ', we have by (A5.18),

EIS5 ()~ S5(1)1*]
<8E ’

B (s) fol Ye(s, w)@(w) dw ds

4

+8E

j" B(s) j We(s, w) D (w) dw ds

4

LLE U B ,5) [ X PhwIl(s, w) dw ds

4

J f Z (W)Y (s, w)dwds| . (AS5.19)

+8d* Z Z

i=1 j=1

But, by Fubini, (A5.17), and (3.19) there exists constant co( = N*e%") such
that

E(j j Z DLW (s, w) dwds>4

=5 {f‘ L

d d
Yo X B (sy) o B (s B (W) - DL, (W)

XY (S0 W) 5 1 (84, Wa) dwy dws dw, dwl} ds, ds, ds, dsl}
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<[l

L ok=1

|E{& ,(s,)--- & (54)¢k, Wl) D (Wa) )
X ‘//;;kl(sn Wl)""l’j,/q(sm wa)l dwy - -dw, dsy---ds,

d d

< colu—1)* L
ot kél kél J; J;
IE{CD (51 '55,_;(54)¢21(W1)"'¢24(W4)}|
xdwy---dw, ds,---ds,. (A5.20)

Therefore, by (A5.20) and Lemma A4(A) there exists constant c,,>0
(depending only on constants M, N, D, d, and B!, B, B}, B} of Section 2)
such that
v _ s d 4
E<j q)z,(s)j T B (W)Y (s, w) dw ds) <cplu—1)®  (A521)

L k=1

Similarly to (A5.20), there is some ¢,,( =N%%") such that

u ¢ 4 4
E(J ¢f‘j(s)J' Z D5 (wW)YS (s, w)dwds)

<cut 3 zJ IR

k=1 kg=1"1

|E{®; (5,) - B ;(54) D, (w)) -+ D (wy) }]
xdw,---dw, ds,---ds,. (AS5.22)

Therefore, by (A5.22) and Lemma A4(C), there exists constant ¢, >0,
depending only on M, N, D, d, and B}, B,, B}, B, such that

u ¢ 4 4
E(j qs;j(s)f T @5 (w) Yt (s, w) dw ds) Scput(u—1)2r.  (A5.23)
t 0 k=1
By (AS5.19), (AS5.21), and (AS5.23) there exists a constant ¢,; > 0 (depending
only on M, N, D, d, and B}, B, B,, B}, B}) such that
E[|S5(u) = S5(0)1* )< e [(u—1)* +uitP(u—1)*]
Senl[((u—nw+ )+ @t —u’r?)’]

Sep[((P—12)u? + 2)) + (' —14)?]
= [h(z, u)]? (A5.24)
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for all 0<t<u<e™ !, where
h(t, u) & ,/32c,3r s'ds  forall O<r<u<e ' (A525)

By (A5.24), (A5.25), and Theorem A3.1 (with v 24,y 2 2, 0, & S5(1))
there exists c,, > 0 depending only on M, N, D, d, and B, B3, B}, B, such
that

E[ max |S5(1)]*]<cyye™" (A5.26)

O<r<se”

Therefore by (A5.16), (A5.18), and (AS5.26),

E | B = () E[ max [S5(1* ] < e

forall ¢>0. |} (AS5.27)

APPENDIX 6: A FunctioNaL CLT ForR W}

In this appendix a functional central limit theorem with error term is
developed for the process Wi(-) defined in (3.1). The main result of this
appendix, Lemma A6.1, is used in Eq. (3.28). Lemmas A6.2 and A6.3 are
subsidiary technical results; Lemma A6.2 is used to establish Lemma A6.1,
while Lemma A6.3 supports the proof of Lemma A6.2.

LeMMA A6.1. Under the conditions (CO)-(C6) of Section?2, there are
constants ¢, >0, p>0, and e, € (0, 1] such that

H(LW3), L(W0)<ce?  forall 0<e<e,
where Wi(-) and WO(-) are defined in Egs. (3.1) and (2.14), respectively.

Remark A6.1. In the above formulation, p can be taken to be 3u/152,
where u i1s a constant defined in Lemma A6.2 which follows.

Proof. For each k=1,2,3,.. and ¢>0 define the process {Wﬁ,k(r),
0<t<1}on (Q,%,P)by

Wi (1) & Wi(r) for t=ik, i=0,..,k, (A6.1)
and W, (r) is given by linear interpolation over the intervals

[i/k, (i+1)/k] for i=0, 1, .., k — 1. Define the process {(Wo(r), 0<t< 1}
on (2, #, P) in terms of {W°z), 0<t<1} in a similar manner.

683/43/1-7
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By Lemma A2.3 and Lemma A6.2 there exist constants ¢, >0, u >0, and
positive integer K, such that

LW ), LIWD)<c k% forall k=K, O0<e<k '
(A6.2)
Now find the gy € (0, 1] such that
g " = K,, (A6.3)

fix 0 <e<eg, (to remain fixed throughout the remainder of this proof), and
define

k(g) & [e 3], (A6.4)
Now, by the triangle inequality,
L (W), 3’(W°)) SI(ZL(W3), LW ko) +IH(L (W o) LA ng))

+I(L(WY,,), L(WO)). (A6.5)

Consider the second term on the right-hand side of (A6.5) first. By (A6.4)
and (A6.3), ¢ " > k(e) > K, and so by (A6.2),
I(LWE o) LWL N < ca[e W0 0e0 L a6 (A6.6)

Now consider the first term on the right of (A6.5). By the definition of
{W’ ior(7)} and (3.1),

max [Wi(t)— Wj‘k(e,(r)l

itk(g) St < (i+ LVk(g)

i
< max Weir)—- WS —
S ki<t i+ k() {) i "\ k(e)

o e (LD e (1
+(k(8)f_l) Wl (k(e)) Wl <k(£)>‘}
o L
<z i/k(e)srrga(t)'(+1)/k(£) Wi - Wi (k(ﬁ))l

< 2el? max
itk(e) <t < (i + )/k(e)

j .t/s F(x"(es), 5) ds (A6.7)

ilek(e)

for all we 2 and i=0, ..., k(¢) — . By Lemma A7.2(ii),

sup || F,(x%es), $)llay 26 <2M+2ND  forall m=1,..d (A68)

Oss<e!
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and, so by Lemma A4(A) there exists ¢; >0 (depending only on constants,
M, N, D, d, and B}, B, of Section 2) such that for any 0<t<u<e ',

u 4
E|§u—§,|4=EU F(x%es), s)ds| <cy(u—1t)?>=[h(t,u)]?>, (A6.9)

f

where h(z, u) & \/:3]'7 ds and

5.2 * F(x%es), 5) ds. (A6.10)

0

By (A6.7), a substitution ¢ =1/e, (A6.10), (A6.9), and Theorem A3.1 (with
y 24 v 22 and Q, 2 §,) there exists absolute constant ¢, >0,

E{ max [W5 (1) = WS 4oy (0)IF]
ik(e) <t < (i + 1)/k(e)
< 1682E[ max ’gr_gi/sk(£)|4]
ifek(e) < t € (i + 1)/ek(e)

2 ALY -2
< 16e°c, [h (ek(s)’ ek(s))] = 16¢,4¢5k(¢) (A6.11)

for i=0,1, .., k(¢)— 1. Thus, letting ¢’ =32c,c;, we have by Chebyshev
and (A6.11),

PUIWS = Wyl e 22152+ 6%

kiey—1
< P( max | W5 (1) = Wi i) () = ™57
i=0 ifk(e) <t < (i + 1)k(e) !
16¢,c4
<k(e) S c'e8 4 3152 (A6.12)

& K2 (e) e S €

Finally, by Lemma A2.2(a) and (A6.12) there exists ¢5> 0 such that

(LW, LW ,,)) < ese*52, (A6.13)

Now, we consider the third term on the right of (A6.5). As in (A6.7),

max |Wo(x)— WO, (7))

i/k(e) < T < (i + 1)/k(s)

<2 max
ik(e) < t<(i+ 1)/k(e)

" - i
Wo(1)— WP <W>l (A6.14)
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for all G€Q and i=0,.,k(s)—1. Moreover, by (2.14), W°(-) has
continuous sample paths on [0,1] and for 0t <1 <1,

WOty — Wo(t)~ N (0, f i A(x%(s)) ds>. (A6.15)

T

By Lemma A7.1, 4,,,(x) is bounded for |x| < D so there exists constant
¢6>0 such that

d
E\Wo(0)~ WS ¥ EIW () - Wy ()*<Scsli—7'1>  (A6.16)

m=1

for all 0< 7, " < 1. If we define

h(z, 7)) é\/c:fz ds  forall 0<r<t <], (A6.17)

then by (A6.14), (A6.16), and Theorem A3.1 (with v £4, y & 2,
Q. & WO(1)) there exists constant ¢, > 0 such that

E[ max |Wo (1) — Wi, (1)1°]

ilk(e) <t < (i+ 1)/k(e)
<16E ma Wo(r)y— w° ;>
[ X ) (k(e)

itk(e) < t< i+ 1)/k(e)

|

(A6.18)

Thus, as in (A6.12),
PLIWO(2) — W2, (D)l ¢ = e3/152 4+ 20,6338 ] < 20,63/ 4 63152 (A6.19)
Thus by Lemma A2.2 there exists cg > 0 such that
H(L(W°), L(W,) <ce™'2  for 0<e<e,  (A6.20)

The lemma follows from (A6.5), (A6.6), (A6.13), and (A6.20). |

The next lemma A6.2 is a central limit theorem with an error term for
vectors of evenly displaced samples of the processes W4(-) and W+ °(.)
defined in (3.1) and (2.14), respectively. It is used in conjunction with



RATES OF CONVERGENCE IN A CLT 97

Lemma A2.3 at line (A6.2) of Lemma A6.1. For ease of formulation and
development of Lemma A6.2, we define the kd-variate random vectors,

wi(1/k) Wo(1/k)
£ i/0

e L W‘(:z/k) d 2924 W(:z/k) . (A621)
wi(1) o)

where k=1,2,3, ... and ¢>0.

LemMMa A6.2. Under conditions (C0)-(C6) of Section 2 and with the
notation of (A6.21), there exist constants ¢'>0 and p £ min{1/33, y/16}
and a positive integer K, such that

L (ES), LEO)) k" forall 0<e<k P k>K,.

Here 0 <y <1 is the constant of condition (C6) in Section 2.

Proof. The following definitions are used (in all three parts of the
proof) to help capture the mixing properties of process W’(-). For any
e>0,k=1,2, . let

ple, k) & k—te ¥4 qle, k) & ke V4 (A6.22)
and
k—lsfl
Al _* &
te.k) £ (e,k)+q(s,k)]' (A023)

Clearly by (A6.22) and (A6.23),
e e, k) M? forall O<e<i, k=1,2,.. (A6.24)

Henceforth, for ease of notation, we will drop the explicit indication that
D, q, and [ depend on ¢ and k. Now in preparation for more definitions, fix
an £¢>0 and a positive integer k and for all integers i, j such that 1 <i</
and 1 <j<k; let H;} (long block) and I3% (short block) be the intervals
of length p and g respectively given by
Hiyf 2 [(j—De k™' +(i—1)(p+q),
(J=1e % +(i—-1)p+q)+p] (A6.25)
and
YA [U-De %k +(i—=1)p+q)+p,
(J-1Ve 'k 'q+i(p+9)]. (A6.26)

683/43/1-8
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Furthermore, for each integer j such that 1 <j<k, let I}f,  (leftover error

block) be the interval of length k ‘e ™'~ l(p+q)<p+gq:

5, A TG—-De %k "+ Up+q) je k'] (A.27)

I+1.; =

Clearly, the adjacent intervals H{%, I35, HSK, I5%, . HiX, 155, 155, fill

up the interval [(j—1)e k% je %k ~*Jforj=1,.,k Nowforj=1, ., k,
we define the random d-vectors,

yek éj F(xes).s)ds,  for i=1,..1, (A6.28)

LA

(Y]

and

zek & [ Faes)s)ds  for i=1..l+1 (A629)

i

Finally, for i=1, .., /, we define on (2, #, P) the random kd-vectors:

k
1
Pid 20 0(Ys)" (Vi) - (YehN"
5L (0--00--0(YE) T (Yi)T)T (A6.30)
)‘ff_:,f Pay (0...()()...0...0...0(y5~vlf:)T)T,
By the triangle inequality, for any 0 <e<1, k=1,2, ..,

4L (z3), 2(EY)

k
<IT5(P(52), £ (81/2 5

P~

+ 1% <g’ <s‘/2 cov( ?5;;3))
1
!
+ 1% (W (0, g Y cov(¥:- > y(é‘;)), (A6.31)

where A47(0, Q) is the zero mean, covariance Q normal distribution on R*,
We consider the first term on the right-hand side of (A6.31). Fix an
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e€(0, 1z], a positive integer k, and define for each i=1,2,..,/+1 the
random kd-vectors,

zZ:y

Zf;{‘+Zf;§‘

Zot+ Zeh+ 75 : (A632)

e
x
>

. ek e,k &,k
ZHN+Z5 A+ -+ 20

By (A6.28), (A6.29), (A6.25), (A6.26), (A6.27), and (3.1) for each integer
j=1,2, .., k,

1] 1+1
8]/2{2 R Z?:f}=Wi(jk—*)—Wi(<j—1)k’) (A6.33)
i=1

i=1

and, therefore, by (A6.30), {A6.32), (A6.33}, and {A6.21),

k { I+1
ey Y Vekte? Y Zok=g. (A6.34)
j=1 i=1 i=1
By (A6.34) and Minkowski’s inequality,
k { - {+1 -
-2y Y Yf"f <e Y NZ54,. (A6.35)
j=1 i=1 2 i=1

Moreover, for i=1,2, ...,/ +1,

m 2

Y Zf;)’j .

j=1

n

2z

J=1

(A6.36)

l<msk

E|Z%2 = E[ max

2 k
]< > E
m=1

Now for nonnegative constants {a,}7., and O<p<1, we have
(X7_1a) <X _,al (see, eg, Lemma 3.l of Longnecker and Serfling
[20]). Thus, by (A6.36) and Minkowski,

k
1234, < 3.

m=1

m

2 Zij

j=1

k
<k 3 1Zghl (A6.37)
2 m=1

Now, by Lemma A4(A) there exists cg > 0, depending only on constants N,
M, D, d, and Bj of Section 2 such that for j=1, 2, ..., k,

qu;;f|12={E[ [ 2}}”*

ceq'? for i=1,..,1
<
cg(p+q)?  for i=I+1.

. F(x%(es), s) ds

(A6.38)
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Thus by (A6.35), (A6.37), (A6.38), (A6.22), and (A6.24),

<81/21kzcgql/2+Sl/2kzcg(p+q)l/2

<cg{e"k2 4 /26 (A639)

and, therefore, by Lemma A2.2(b) (with § 2 R*/ p & |.|, and r 2 2)
there exists ¢y > 0 such that

/
me (e (2 3 1)) corh ot

j=1 i=1

forall 0<e<kand k=1,2,3, ...
Now consider the second term of (A6.31). Fix an integer k=2, any
ee (0, k~*], and define

Xok & (kle)' Y2k forall i=1,.,1 j=1,.,k (A641)

Then, since EY % =0,

k I

k
ey Ycov(¥ehy=¢ Y
j=1

j=1 i=1

I
Y ELY:NY:HT]

i=1

i,

k
=)'y ﬁ cov(Xek) (A6.42)

i=1 i=1
and by (A6.30) for any integers /, j such that | <i</and 1 <j<k,
E| X543 = (kle)? - (k—j+ 1) E|YS43< (Kle)2 - E| Y243, (A643)

where |-|, is the Euclidean norm in R% Now |x|3<d*Y?_, x| for xe R%
Thus by Holder’s inequality, (A6.28), Lemma A4(A), (A6.25), and (A6.22)
there exists constant ¢, >0 (depending only on constants M, N, D, d, and
B, B; of Section 2) such that for any integers i=1, ... j=1,.,k,

4

3/4
E|Y?,’f|g<{EUHMF(xO(SS),S)dS } Sepo{k~% 32y
i

2

=0k %8, (A6.44)

By (A6.43), (A6.44), and (A6.24),

E|X¥)<ciok®  forall i=1,..,1 j=1,..k (A645)
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and by Fubini and (A6.25), the components of X* Tie

12 0 (G=De U=V (i=1)p+g)+
(elk)"/ '[H”'k F(x(es), s)ds are {7 )0 T i 019  7-measurable

v

(A6.46)

foralli=1,..,/ and j=1,2, .., k Thus by Lemma A24, (A6.41), (A6.42),
and Proposition A3.3 (with n 2 Ik, m 2 kd, B 2 a(q), and M =c,,k*?),
there exists ¢,, >0, depending only on constants M, N, D, d, and B, B,
of Section 2 such that for every 0<{ <1,

mi( (05, 3 7it) v (00 L 3 eonhin)

Jj=1 i=1

sH’;”(E( i Z[: ”>,/V<0, (k1)~ ‘Z Zconek>>

ji=1 i=1 Jj=1 i=1

<oy {oc”(q)(kl)”2 Ckd) =12k
+ (kd) gV kL 2 + (k1) 2k 3 (kd )~ 12

+4+ 4 (log %)1/2 (kd )" + 4{(kd )”2}. (A6.47)

Now g=k~'¢e " >1 by the choice of k and ¢, so by condition (C4) of
Section 2,

a(g)<ng*=nk’'"”, (A6.48)

where >0 is the constant of condition (C4). Substituting (A6.48),
(A6.22), and (A6.24) into (A6.47) and taking { £ &'/,

mi(e (v 5, 3, 7it) o (00 3, L))

Jj=1 i=1
< Cll {”2/3k11/6817/96d—1/2 + ﬂ1/3k19/685/48d3/2 + 2kl/281/32d71/2
1/32 1/2
+4e37 4 2 217 [log ] (kd)”2+4k‘/2s”32d”2}. (A6.49)
Now, concentrating on the fifth term on the right of (A6.49), we use the

fact that for any x > 0 there exists some x,(x) such that

x~*(log x)'*< 1 forall x= x,(x). (A6.50)
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Letting x=¢ ", &,(x) = 1/xo(x), and k = 35— 75 in (A6.50), we obtain
e [loge~ 112 <! forall O<e<e,. (A6.51)

Thus, if we choose K, =max{e; "% 2}, from (A6.49) and (A6.51) there
exists ¢, >0 depending only on M, N, D, d, n, and B}, B, of Section 2
such that

k ! k !
me(o(enf 3 mhor(oe s § o)) ek
Jj=1 i=1 Jj=1 i=1
(A6.52)

for all O<£<kA4, k=K1, Kl + 1, e
Now consider the third term on the right-hand side of (A6.31) and fix a
positive integer k> 1 and a 0 <& < . Define

k I
T* L&) Y cov(Y:h) (A6.53)
j=1 i=1

and

5% & cov(&9) = E{(E0)(EY)T). (A6.54)

Then by the inequality in Remark A3.1,

k
I To*— 8%, <kd | Y |T5k —S% |2

n,m=1

<kd max |Te5—S%,1,, (A6.55)

Isnsm<k

where T:% and S%, represent the d by d submatrices of elements
{(n—=1)d+1,.,nd}x {(m—1)d+1,..,md} of T>* and 3*, respectively.
Fix 1<n<m<k. By (2.14) {W°(1), 0<t<1} is a zero mean Gaussian
process with independent increments and covariance (§ A(x°(s))ds such
that W°(0)=0, so from (A6.54), (A6.21), (A6.25), (A6.26), and (A6.27),

S .= E(W°(njk) — W(0))({ WO(n/k) — W°(0)}
+ {WOo(m/k) — WO(nk)})T

= E{W (k) (W k)" } = | " A((s)) ds

=s[= <Zj A au))du+lfj A(xo(su))du)] (A6.56)
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Now by Lemma A7.1 there exists constant B such that |A(x)}|, < B for
|x} <D and so by (A6.56), (A6.26), (A6.27), (A6.24), and (A6.22),

n ! n I+1

Sta—e Y Y[ A Das| < % ZJ | A(x(5))], ds
==l Hif j=1i=1
Z (lg+p+q)< B (2 + 6" +£¥%) < 3Bs, (A6.57)

k

Now by (A6.30) and the fact that 1<n<m<k, for any i=1, ..,/ and
j=1, ..k, we obtain

if n<j,

yek =
[eov(Y 7)) ]nm {cov(ijf) if nzj

(A6.58)

where [cov(?e")] denotes the d by d matrix of elements
{(n—l)d+1 nd} {(m—l)d+1 md} of cov(Y%%). Thus, letting
1; & (j—1)e 'k~ '+ (i—1)(p+ gq) we have by (A6.53), (A6.§8), (A6.28),
(A6.25), Lemma A6.3 (to follow), and (A6.24) that there exist constants
c;3>0and B £ /3 (since 1;,+ k" 'e"¥* <& ") such that

le;" —¢ Z }: .[ x°(es)) ds

j]llH

Z Z [eoV (754 Tm— 3 zj es)) ds

i=1 Jj=1i=1

Ti}+k 1.—3/4 - .[,,j+k—1£—3/4 - T
E < j F(x%(es), ) ds>< f Fxet), 1) dt)

Tij Ty

2

!

Y e e ke (A6.59)
Therefore, since (A6.57) and (A6.59) hold for all 1 <n<m<k we obtain
from (A6.55) a constant ¢,, >0 such that

N 7e* — 8|1, <k*{3BeY* + )3 ke?*} < ¢, ke, (A6.60)

where 6 £ min{1/4, 3/4}. Now, by (A6.50), there exists some x,> 1 such
that

x Plog x)"2<x " forall x> x,. (A6.61)
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Moreover, by (A6.60) there exists positive integer K, such that

k 1

inf ——— klg/3 2> A6.62
o< s T, %o (A6.62)

for all k> K,. Thus by (A6.53), (A6.54), Theorem A3.4, (A6.62), (A6.61),
and (A6.60), there exist constants ¢,s and ¢, depending only on # and 6
of condition (C4) in Section 2 and c,, such that

H’;;‘(W( i ZCOV(Y“‘)) (ﬁ))

j=1 i=1

<H§d< ( 2 Zcov(Y”‘)f(’E'g))‘

Jj=1 i=1
k 1/2
l°g(n|7‘”—8"|nl) }

<eys NTo*— 8412 kYo + ¢ sk 2= VA T = 8*11,
<c, k% forall 0<e<k Y7, k2K, (A6.63)

<o T =S {1 +

The lemma follows from (A6.31), (A6.40), (A6.52), and (A6.63) by taking
Ko—max{Kl, K,} and p=min(1/33, 6/4} =min{1/33, 3/16}, noting that
B=7y/3 in (A6. 59) and the fact that k' <min{k "% k= '%°7} for k = K,),
Ko+ 1, Kg+2,... 1

The following lemma is a technical result used in line (A6.59) of
Lemma A6.2.

LEMMA A6.3. Under conditions (CO)-(C6) of Section?2, there exist
constants ¢;,>0 and B & y/3 such that for any integers 1 <n, m<d,

o+ e~ arptte

L] o

—34

F, (x°(es), s)F,(x%(et), t) dt ds)

1o+ te 34
—-J. Am,n(xo(es)) dS <617£_3(1_ﬂ)/4
{0

for all t,>0,0<1<1, and 0 <e< 1 such that e(t,+1c~¥*)< 1. Here A(-)
and x are defined by condition (C6) of Section 2.

Proof. Fix integers m, n such that 1 <m, n<dand fix £,>0,0<7<1,
and 0<e<1 such that ety +te~**)< 1. The following definitions are
made without emphasizing the dependence on ¢ and T when convenient:
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T8_3/4

n. & [e7],  Ae1) £

<2t (A6.64)
",

6o 21, 0, 2o;+4d(g) for i=0,1,.,n,—1,(A6.65)

44 A where A4, 2 (0,,0,,,]1% (06,0, ,]
i=0
for i=0,1,..,5n.—1, (A6.66)
B & ([ty, to+16 ] x [to, to+16]) ~ A (A6.67)

Also, for ease of notation, define (without emphasizing the dependence on
(m, n)):

¥ (s, 1) & E{F, (xes),s) F,(x°(et), )}  for 0<s,1<e™!.  (A6.68)
Then, by (A6.68), (A6.67), Fubini’s theorem, and (A6.66),

<J-r0+ g4 J~to+ g3
! !

0 0

F(x%(es), s)F, (x°(et), 1) dt ds) — f J W, (s, t) dt ds

ne— 1

2 ,«; jf W (s, 1) dr ds

ag “ai

= ILJ Y.(s, t)dtds

. (A6.69)
However, since EF, (x°(es), s)= EF(x®(et), t)=0 we obtain from Lemma
A3.2 of Appendix 3 and Lemma A7.2(ii) of Appendix 7,
|P.(s, )] <10{a(|s — 1))}/ + 2| F(xO(es), )24 5 1ER(xe1), Oll2 5
< 10(2M +2ND)? {a(|s—t])}°+2 (A6.70)

for all t,<s, 1 <ty+ 16>, where 6 >0 is the constant of condition (C3)
in Section 2. By (A6.69), (A6.70), and (2.5) there exists ¢;3 > 0 such that

1+ g3/ tq+re‘3/" ~ -~ 2
]E ( j j F(x°es), 5) E,(x%er), 1) dt ds)

] 0

—L j W (s, 1) dt ds

ne—1

Scm z jxaijﬂhwl [a(s_t)]a/(é+2)ds dt

i=1 Y00 Yo

ne—1 g

<ew Y [ jm [o(s — 1)]%C+2) ds i
i=1

— Yoy

=M, L t{a(t) ]+ D dr < c\ye V8B, (A6.71)
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Moreover, by (2.10), the fact that x » F, (x,s) has a global Lipschitz
bound of 2N, (A6.64), and Lemma A7.2(i1), (iii),

ne -~ 1
“ J'Pe(s, tydtds— Y A(s,r)Am.n(XO(w,-))’
4 i=0

n,— 1

<y

i=0

f f " E(F(x%e0,), ), (x%e0,), 1)} dt ds

g g,

- A(B’ T)Am.n(xo(go—i)))

8 [ B e 9 F, (), 1))

i=0Q "0Ti Gy

— E{F,(x°(¢0,), s) F(x%ea,), t)}| dt ds

ne—1 Gitl
<yn Ae, 1) TF+ Y f f

i=0 o ai

Oit+1

{E |F,,(x"(es), )| - 2N |x%(et) — x°(ea,)
+ 2N |x%(es) — x°(ea))| - E |F,(x%(eq,), 1)| } dt ds
Lye Y82~ =0 4 Bey. A3(e, 1) N(M + ND)?
S epge AN -1 4 g = 112) (A6.72)
for some constant ¢, >0 depending only on N, M, D, d, and y of Section 2.

Moreover, by Lemma A7.1 (with R £ D), there exists constant c¢,,>0
such that

| A (X)) — Ay (X} S0 IX'—x|  forall |x'|, |x| <D (A6.73)

and so by (A6.73), (A6.65), Lemma A7.2(ii1), and (A6.64),

-3i4 ne— 1

[ A ds— Y A6 ) A (x%e0,)
! =0

(4]

=1l agiyy
<) | A . (x%(65) = A, (x°(e0,))] ds

i=0 "0

A4(g, 1)
<n. [ cx(M+ ND)es ds
0

=2y A%(e, 7)(M + ND)e < cs(M+ ND)e~ 5. (A6.74)
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Finally, by (A6.71), (A6.72), and (A6.74) there exists constant ¢,, >0 such
that

e e et ¥ -
'E j j F,(x(es), s)F, (x%(et), 1) dt ds

i ]
-3

(x%es)) ds| <oy (67 P+~ I -22)  (A6,75)

mn

and the lemma follows with B £ y/3, since max {4, 2(1 —¥/2)} <3(1 —¥/3)
for0<y<l1. |

APPENDIX 7: MISCELLANEOUS TECHNICAL RESULTS

This appendix contains two useful technical results. The first lemma
establishes a Lipschitz bound, on any compact domain of R¢ for the
function A(-) defined in Eq. (2.10). It is used to obtain lines (3.51) and
{A6.73).

LEMMA A7.1. Under the conditions (CO)-(C6) of Section 2, for any fixed
R >0 there exists constant ¢, >0 depending only on R and the constants M,
N, d, and B\, B, of Section 2 such that

max |4, ;(x)—A, (XY <ec,|x—x'| forallx, x', where |x|, |x'| <R,
1<ij<d ’

Proof. Fix two points x and x' as in the problem statement and
integers 4, j such that 1<, j<d. By (2.10) and Fubini,

|Ai,j(x)_Ai AxD

lim —f f EF,(x,s)F (x,t)—EF(x s)F(x t)dsdt‘

T—x

<hmsup—) U f Fox, s)(Fy(x, 1) — Fo(x, t))dsdz}

T—x

+ lim sup — ) {J J. (x,8)— F(x', s))F(x t)dsdt}

T

(A7.1)

Now for all 0<s<T, lF(x 5)— F(x s)| € 2N |x—x'| and
1F(x, )5, 5<2M+2NR by Lemma A7.2(i), so by the Cauchy-Schwarz
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inequality, Fubini’s theorem, and Lemma A4{(A) and (B), there exists
constant ¢, >0 depending only on R, M, N, d, and B}, B, such that

cr _ T -
EU Fx,s)ds [ (F(x,0)— F(x, t))a’t}
° 0 J .

T »T ~ -
< f j EF.(x, $)E.(x, 1) ds dt
1] 0

1/2

T T

x [ [ B x,5)~ By, s)Ey(x 0) = Fy(x', 1)) ds dt)
0“0

e, JT |x—x*T=c,T|[x—Xx|. (A7.2)

The lemma follows from (A7.1) and (A7.2). ||

The following technical lemma extends the uniform moment bound on
{F(0,#), t>0} (given in condition (C3) of Section2) to a uniform
moment bound on {F;(x°(s¢), s), 0<s<e~!} using the Lipschitz condition
(2.1) and (for (i), (ii)) the Minikowski inequality.

LEMMA A7.2. Assume conditions (C0), (C1), (C3), and (CS5) in Section 2
and suppose that 1 <1< (8 +45). Then

(i) supy<i<aSUP, <o IF:(x, 1), <2M + 2N |x] for all xe R?,
(i) SUPj<;<aSUPT>0SUPo<, <7 1 Fi(x%(1/T), 1)}l ; <2M + 2ND,
(iti) |x%1)—x°(t")| S (M +ND) |t—1'| for all 0< 1, ' <1,

where F(x, t) is given by (2.9) and the constants 8, M, N, d, and D are from
Section 2.
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