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Abstract 23 

Single- and multifrequency bioelectrical impedance analysis (BIA) have gained 24 

popularity as tools to assess body composition and health status of children and adolescents, 25 

but many questions and misconceptions remain. This review addresses pressing issues 26 

researchers and health care providers may encounter when using BIA in the young 27 

population. The importance of choosing population-specific and device-specific equations to 28 

estimate body composition as well as the use of BIA in longitudinal analysis are discussed. 29 

When specific equations are not available, raw bioimpedance values (i.e., resistance, 30 

reactance, and impedance) can be used to compute bioimpedance parameters, such as phase 31 

angle, impedance ratio, and bioelectrical impedance vector analysis. As interpreting these 32 

parameters is challenging, suggestions are provided on the use of reference data, cut-off 33 

points, and adjustment factors. Furthermore, unsolved technical and analytical issues are 34 

listed. Based on existing issues and potential for future development, a greater interaction 35 

between industry and academic researchers to improve the validity of BIA measurements 36 

among children and adolescents across their developmental stages is encouraged.  37 

  38 
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Introduction 39 

 Bioimpedance techniques are widely used to estimate body composition given their 40 

low cost, portability, ease of use, and lack of radiation exposure 1,2. To briefly illustrate the 41 

physical principle involved, bioimpedance techniques measure the opposition (or impedance) 42 

of body tissues to the flow of an alternating electrical current (at one or more frequencies) 43 

applied to the skin surface through the contact with electrodes 3. There are three main 44 

categories of bioimpedance techniques based on the range of frequencies available, including: 45 

single-frequency bioelectrical impedance analysis (SF-BIA; commonly at 50 kHz); 46 

multifrequency BIA (MF-BIA; with at least one low frequency [e.g., 5, 7.5 kHz] and one 47 

high frequency [e.g., 50, 100, 200, 500, 1000 kHz]); and bioimpedance spectroscopy (BIS; 48 

over the entire spectrum of frequencies from 5 to ~1,000 kHz) 4. Due to differences in 49 

frequencies, the ability to estimate water compartments (i.e., intracellular water [ICW], extra-50 

cellular water [ECW], and total body water [TBW]) varies across bioimpedance categories as 51 

reviewed elsewhere 2,4,5. Furthermore, SF-BIA and MF-BIA use population-derived 52 

equations to predict body composition; on the other hand, BIS applies biophysical modelling 53 

to estimate body compartments.  54 

The most commonly used bioimpedance techniques in the pediatric population are the 55 

SF-BIA and MF-BIA6–9. Despite being feasible and safe techniques, the absence of 56 

standardized protocols as well as incorrect interpretations of results may affect the validity of 57 

BIA measurements in children and adolescents 9,10. In our experience, questions posed by 58 

researchers, medical industry, and health care providers working in pediatrics include choice 59 

of optimal BIA device and equations, longitudinal assessment, data interpretation approaches, 60 

and protocol standardization (Figure 1) 4,11,12. Here, we aim to clarify these questions and 61 

raise awareness of issues one may encounter when employing BIA techniques (i.e., SF-BIA 62 



4 

and MF-BIA) in children and adolescents. We briefly discuss limitations of BIS devices in 63 

the pediatric population. 64 

 65 

Choosing adequate bioimpedance devices and body composition predictive equations 66 

Considered as a two-compartment method, SF-BIA indirectly estimates the content of 67 

fat mass (FM) and fat-free mass (FFM) using equations based on bioimpedance variables 68 

(e.g., reactance and resistance), demographics (e.g., age and sex), and anthropometric 69 

characteristics (e.g., weight and height) that are regressed against a reference indirect 70 

technique 13. Two important assumptions underlying the SF-BIA method are that chemical 71 

composition of FFM, ICW to ECW ratio, and body shape are maintained constant; these 72 

assumptions must be met to produce accurate results 1,2. However, these assumptions are 73 

violated during growth and maturation when rapid and substantial changes in water, protein, 74 

and mineral content, as well as in the length of limbs and trunk occur 1,14,15. Changes in the 75 

content of ICW and ECW are also observed16, influencing bioimpedance measurements as 76 

the SF-BIA technique is unable to distinguish between water compartments; it is therefore 77 

suggested to include a hydration factor that is specific to age and sex when developing FM 78 

and FFM predictive equations 1. Moreover, equations should be chosen carefully as 79 

modifications in body composition and shape during growth differ between sexes, pubertal 80 

stages, ethnicity, degree of obesity, malnutrition, and illness 17,18. As such, predictive 81 

equations must be constructed and validated in a population with similar characteristics to the 82 

one under investigation 1. Although MF-BIA devices estimate both ICW and ECW content, 83 

body composition is also predicted using regression-derived, population-specific equations. 84 

In fact, not all researchers recognize the specificity of BIA equations. In a previous 85 

systematic review from our group, we observed that most equations applied to the pediatric 86 

population with obesity were constructed using data from adults or children with diverse 87 
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weight status 8. Furthermore, only those studies cross-validating their newly developed 88 

equations in an external group of children and adolescents with very similar characteristics to 89 

the study group (e.g., age, pubertal stage, body mass index [BMI], and body composition) 90 

reported satisfactory agreement between measurements obtained by BIA and reference 91 

techniques 8,19,20.  92 

Another particularity of equations to estimate body composition using BIA is the high 93 

device specificity. Resistance and reactance measures are not interchangeable between 94 

devices or approaches, such as segmental vs. whole-body or SF-BIA vs. MF-BIA21,22. In fact, 95 

the ability of an electrical current to penetrate cell membranes is determined by its frequency; 96 

higher frequencies are required for full penetration, as cell membranes act as capacitors 22,23. 97 

Given that bioimpedance parameters are used as independent variables in these regression 98 

equations, and a specific coefficient is given to each variable, raw BIA values obtained with a 99 

particular device cannot and should not be inputted into equations developed using a different 100 

device 24. Indeed, validation studies have shown poor agreement between different BIA 101 

equations and reference methods to estimate body composition 7,25. Considering the 102 

proprietary nature of regression models, some BIA devices are built with equations that are 103 

not fully disclosed by manufacturers (Table S1). Although it may pose a challenge when 104 

comparing the validity of body composition estimates across devices 24, this approach can 105 

prevent incorrect application of equations since they are not interchangeable between devices. 106 

Having said that, a greater issue is the lack of transparency about characteristics of the 107 

population used to build and validate these equations. Information on age alone is insufficient 108 

for researchers and health care providers to determine whether body composition outputs 109 

from BIA devices can be used appropriately in their studies, as discussed earlier.  110 

Caution should therefore be taken when estimating body composition using BIA in 111 

children and adolescents as equations must be both population-specific and device-specific. 112 
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Cross-validation studies may be performed to evaluate the accuracy of equations if such 113 

criteria are not met; a more established method to assess body composition should be chosen 114 

as the reference standard 4. In pediatric studies, a four-compartment (4-C) model may have a 115 

greater precision and accuracy to estimate body composition as the technique does not 116 

assume constant values for density and hydration 26. However, even when cross-validation 117 

studies are conducted, a poor performance is still expected, especially at the individual level. 118 

A source of bias could be the use of reference techniques that do not match the ones 119 

employed when building predictive equations. Consequently, researchers often opt for 120 

developing a new equation that is therefore specific for their population and device. The 121 

bootstrapping method is a feasible option for external validation of predictive models in both 122 

pediatric and adult populations 27,28.  123 

Although bioimpedance spectroscopy (BIS) is not the focus of our discussion, it is 124 

noteworthy that this different bioimpedance technique has also been employed in pediatric 125 

studies. Different from SF-BIA and MF-BIA, the BIS technique first uses impedance data 126 

using the Cole model to determine R0 and R∞ values that are then applied to equations based 127 

on the Hanai’s mixture theory to estimate total body water volume and its sub-compartments 128 

(i.e., ECW and ICW) 5. Because these models do not rely on predictive equations that are 129 

specific to a studied population, one could argue that the BIS technique can be used 130 

interchangeably across individuals with different age, health status, and body composition. 131 

However, resistivity coefficients used in the BIS modeling are constants related to the 132 

specific resistivity of body fluids that may differ between populations and cannot be 133 

universally applied. Previous studies have derived specific coefficients in preterm infants 29 134 

and children aged 3-18 years of multi-ethnic origin 30,31. Importantly, these resistivity 135 

coefficients are considered specific to the methods (i.e., algorithms) and protocols (i.e., right 136 

or left side of the body) used to generated them 32. It is therefore recommended that 137 
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researchers conduct validation studies testing the accuracy of resistivity coefficients and 138 

estimated water volumes against a reference technique (e.g., 2H2O dilution). Despite these 139 

limitations, reference values for BIS measurements have been published recently from a 140 

sample of Belgian children and adolescents 33. However, data obtained by other devices and 141 

in different populations still cannot be compared to this reference data. 142 

 143 

Longitudinal body composition assessment with bioimpedance 144 

Another common question is whether BIA can be used for longitudinal assessment of 145 

body composition in children and adolescents. Previous studies have shown small differences 146 

between changes in body composition estimated by SF-BIA devices at 50 kHz and dual-147 

energy x-ray absorptiometry (DXA), suggesting that they are as accurate as DXA is to track 148 

12-month changes in FM and FFM when using the BC-418 device (Tanita Corp., Tokyo, 149 

Japan) with the manufacturer’s undisclosed equation in one study 34 as well as RJL devices 150 

(i.e., 101Q, 106, and Quantum II; RJL Systems, Detroit, United States) with the Lewy et al. 35 151 

equation for African American children or the Suprasongsin et al. 36 equation for Caucasian 152 

children in another study 37. However, it remains unclear how much variation in the hydration 153 

of FFM, ICW and ECW content, and body shape would be necessary to affect longitudinal 154 

measurements of body composition by BIA. When appropriate equations are employed, it 155 

should be noted that changes in BIA measurements must be greater than the minimal 156 

detectable change (which can be estimated from precision values) to be considered significant 157 

4. For example, one systematic review described coefficients of variation for repeated 158 

measures of body fat percentage by different BIA devices ranging from 1.7% to 22.2% in 159 

healthy subjects aged <18 years 7. Thus, awareness of potential measurement errors as well as 160 

standardization of pre-test and test procedures are required. Additionally, future studies will 161 
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confirm the accuracy of SF-BIA and MF-BIA equations to estimate body composition 162 

longitudinally, particularly for longer follow-up periods. 163 

 164 

The utility of raw bioimpedance values in pediatric populations 165 

Given the concerns presented above, raw bioimpedance values (i.e., resistance, 166 

reactance, and impedance) obtained by SF-BIA, MF-BIA, and BIS can be used as an 167 

alternative to estimating body composition, if published equations do not meet the population 168 

and device-specific criteria. These raw variables can be used to calculate parameters, such as 169 

phase angle, impedance ratio at 200/5 kHz (by MF-BIA and BIS only), and bioelectrical 170 

impedance vector analysis (BIVA) 4. Several studies have evaluated the associations of these 171 

parameters to prognostic factors and clinical outcomes in pediatrics 38–40. For instance, the 172 

risk of developing sepsis in a pediatric intensive care unit increased as phase angle (measured 173 

at 50 kHz by a SF-BIA) and height-adjusted reactance (Xc/H) decreased in children aged one 174 

month to 6 years 40. Another study showed that a low phase angle at 50 kHz using a BIS 175 

device was associated with longer stay in the pediatric intensive care unit after cardiac 176 

surgery in children with congenital heart diseases 41. Using the classical BIVA model in 177 

severe acute malnutrition with raw impedance values obtained by a MF-BIA at 50 kHz, 178 

studies have shown that children with oedema and non-oedema plot differently in BIVA 179 

graphs, and changes in hydration status towards loss of water content can be observed during 180 

treatment in children with oedema 42,43. Hydration status was also evaluated by the BIVA 181 

model in adolescents with cystic fibrosis using a SF-BIA at 50 kHz 44 and children with 182 

neurologic impairments using a MF-BIA at 50 kHz 45. Thus, bioimpedance parameters appear 183 

to be clinically meaningful given their associations with adverse outcomes and disturbances 184 

of hydration. 185 

 186 
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Interpretation of bioimpedance parameters in clinical and research settings 187 

While the determination of both BIA and BIS parameters (i.e., phase angle, 188 

impedance ratio, and BIVA) is free of inherent errors related to predictive equations and 189 

assumptions as they use raw bioimpedance data, interpretation of these parameters is 190 

challenging in clinical and research settings. The first reason is that isolated measurements of 191 

phase angle or BIVA are meaningless when reference data stratified by age, sex, and body 192 

mass index are unavailable 4. Furthermore, cut-off points to identify abnormalities in these 193 

parameters are population- and device-specific and should not be used in conditions differing 194 

from the ones when they were generated. For example, one study has shown that phase angle 195 

measured at 50 kHz with two different MF-BIA devices from the same manufacturer differed 196 

between supine and standing positions as well as sex in children and adolescents 46. A recent 197 

study further evaluated the influence of body positions on BIS measures using the same 198 

device in young children; it was found that all raw bioimpedance values (R0 and R∞, 199 

impedance at the characteristic frequency, and resistance, reactance and impedance at 50 200 

kHz) were greater in supine than standing positions 47.  Although converting impedance 201 

parameters to standardized scores (i.e., Z-scores) may be a superior approach in adults 48,49, 202 

there is still limited evidence of its prognostic significance and clinically meaningful values 203 

in the pediatric population 50. Also, not all BIA devices generate these raw measurements and 204 

parameters as outputs (Table S1) 4; thus, the choice of device has a role in determining the 205 

applicability of the technique in research and clinical settings. Moreover, although some 206 

manufacturers claim their devices are not intended for use in pediatrics because validation 207 

studies in this population have not yet been performed, assessment of raw BIA measurements 208 

in children and adolescents is still possible with these devices as long as the internal quality 209 

check has been disabled.  210 

 211 
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Unsolved technical and analytical issues 212 

Despite the growing body of studies applying BIA methods, some technical issues 213 

remain unsolved. These include optimal location for electrodes placement in infants and 214 

young children to minimize electrical interference at the measuring site, impact of food intake 215 

prior to examination, and effects of a full bladder during examination on BIA results 11,12. 216 

Standing BIA devices may also require some modifications to their existing structure to allow 217 

assessment of children of varied age and body shape (Figure 2). For instance, a BIS device 218 

called SOZO® Digital Health Platform (ImpediMed Inc, Carlsbad, United States) allows 219 

measurements to be obtained in a seated position as per manufacturer's instructions 51. 220 

Although research is needed to support the use of bioimpedance techniques in the seated 221 

position, it may be a simple and helpful adaptation for use in pediatric assessment. 222 

Additionally, it is not clear whether phase angle measured at 50 kHz best depicts cell mass 223 

and cellular health in the pediatric population 52. Using a BIS device, Brantlov et al. tested 224 

whether raw bioimpedance values as well as bioimpedance parameters measured at the 225 

characteristic frequency (i.e., frequency at which reactance reaches its maximum) were 226 

superior to measures obtained at the commonly used frequency of 50 kHz to distinguish a 227 

small sample of children with nephrotic syndrome from healthy controls 39. The authors 228 

observed differences between groups for most values/parameters independent of the 229 

frequency used; future larger studies are needed to confirm or expand upon these findings in 230 

different clinical populations and using other devices. Uncertainties also exist regarding the 231 

use of whole-body and segmental BIA approaches, mainly due to the great diversity of 232 

technical specifications of available devices and adjustments for body shape. For example, 233 

one study reported that height-adjusted resistance (H2/R) of the whole-body, measured by a 234 

segmental MF-BIA at 500 kHz, predicted FFM with a greater accuracy than H2/R assessed by 235 

a whole-body SF-BIA at 50 kHz 53. Other studies found that segmental impedance obtained 236 
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at a frequency of 50 kHz with a MF-BIA best predicted both whole-body FFM (obtained by a 237 

4-C model) and segmental FFM (using DXA) when adjusted for segment length 54,55. 238 

However, associations of segmental impedance values to whole-body and segmental body fat 239 

were significant only after correcting segmental impedance for both segment length and 240 

cross-sectional area (i.e., “specific resistivity”) 54,55. In an attempt to also improve the BIVA 241 

model among the pediatric population using a MF-BIA device, Wells et al. reported that 242 

variations in FM and FFM were best predicted when BIVA parameters at 50 kHz adjusted for 243 

body surface (known as the “BIVA specific”) were combined with conventional BIA and 244 

body weight 56. The proposed equation, however, should not be applied to other populations 245 

and are also device specific as any other BIA parameter. 246 

Interpretating raw bioimpedance values obtained at different frequencies is not 247 

straight forward as several segments are available to choose from (e.g., right limbs, left limbs, 248 

trunk). One approach, already employed in pediatric studies, is to combine segmental 249 

measurements at the whole-body level by summing the resistance values for each segment 250 

either with SF-BIA or MF-BIA devices 53,55. It has also been suggested that averaging 251 

bioimpedance values from the left and right sides of the body would be appropriate in adults 252 

57. To test this method in a pediatric cohort with obesity, we calculated differences in 253 

resistance measured at 50 kHz between the left and right sides of the body using the seca 254 

mBCA 525 MF-BIA device (Seca GmbH & Co. Kg., Hamburg, Germany) in a small sample 255 

of children of an ongoing study in our lab (n = 10; age range = 10.0 to 16.8 year); we found 256 

differences ranging from 2.3 Ω to 28.6 Ω between sides. Despite test procedures being 257 

standardized, it is likely that small deviations in the placement of electrodes, with different 258 

distances between the current and voltage electrodes, have led to asymmetrical resistance 259 

measurements. In clinical populations, lateral variations in resistance may occur in conditions 260 

associated with unilateral oedema (e.g., lymphedema) and significant body asymmetry (e.g., 261 
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unilateral hemiparesis, amputations, and neuromuscular conditions) 58. Future studies are 262 

therefore required to test whether summing of individual segments or averaging sides best 263 

correct for variations in electrode placement and body shape 57. 264 

 265 

Conclusion 266 

In view of our discussion, we extend the call for additional research made by experts 267 

in the field of pediatric body composition assessment 59 and encourage a greater interaction 268 

between industry and academic researchers to solve above-mentioned issues (Figure 3). The 269 

ultimate goal is to enhance accuracy and promote BIA measurements in children and 270 

adolescents beyond research settings. 271 
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FIGURE LEGENDS 479 

 480 

Figure 1. Selected frequently asked questions about the use of bioelectrical impedance 481 

analysis in pediatrics. Abbreviations: BIA, bioelectrical impedance analysis; BIVA, 482 

bioelectrical impedance vector analysis; DXA, dual energy x-ray absorptiometry; FFM, fat-483 

free mass; FM, fat mass; MF-BIA, multifrequency bioelectrical impedance analysis; SF-BIA, 484 

single-frequency bioelectrical impedance analysis; TBW, total body water. 485 

 486 

Figure 2. Assessment of bioimpedance parameters using standing devices is challenging in 487 

children across their developmental stages. A) As depicted above, younger children would be 488 

unable to place their hands in the proper location to complete a bioimpedance test. B) 489 

Modifications to the device’ structure would be necessary to accommodate children of varied 490 

age and body shape. 491 

 492 

Figure 3. A SWOT analysis for the use of bioelectrical impedance analysis (BIA) in children 493 

and adolescents. Strengths, weakness, opportunities, and threats are described to guide 494 

researchers and industry in their decision-making processes with the ultimate goal of 495 

improving the utility of BIA in pediatrics. Abbreviations: BIA, bioelectrical impedance 496 

analysis; BIVA, bioelectrical impedance vector analysis. 497 



•BIA measures the electrical response of the body to an 

electric current applied by single- or multifrequency devices

•It estimates TBW, FFM, and FM or other parameters using 

SF-BIA and MF-BIA predictive equations

What does BIA measure? 

And what does it estimate?

•Choose a device that also provides raw bioimpedance 

measurements as outputs (e.g., resistance, reactance, and 

impedance) in addition to the body composition parameters

How to choose the right 

device?

•Ideally, equations should match:

- the characteristics of the population being evaluated (e.g., 

age, sex, sexual maturation, ethnicity, health status, obesity 

degree)

- the device being used (e.g., brand, model/version, 

frequency, whole-body or segmental, supine/standing)

How do you select an 

equation to estimate 

body composition?

•Perform a cross-validation study

•Choose a reference standard measuring body composition 

at the same level (e.g., multicompartment, DXA, dilution 

method)

•Use agreement analysis to evaluate the validity of the 

selected equations. A guide is provided in Earthman (4)

•If agreement analysis is not satisfactory, develop a new 

equation and test its external validity using an external 

sample or the bootstrapping method

If available equations are 

not population-specific 

or device-specific, how 

to proceed?  

•Raw BIA measurements can be used, such as resistance, 

reactance, and impedance

•These measurements can be adjusted by height or used to 

compute BIA parameters, including phase angle, impedance 

ratio, and BIVA

What alternatives to body 

composition assessment 

exist when using BIA?

•We advise following the guidance provided by Lyons-Reid 

et al (11) and Brantlov et al. (12) until a standard protocol for 

the pediatric population is established; or, if available, the 

study protocol by the device's manufacturer

•Use the same protocol for all subjects and during all follow-

up visits

•When deviations from the recommendations are necessary, 

record modifications and report them in future publications

What protocol to follow?

Figure 1



Figure 2

A) B)



Figure 3

STRENGTHS

• Low cost 

• Portable 

• Ease of use

• Non-invasive

• No radiation exposure 

WEAKNESS

• Doubly indirect method 

• Assumptions may be violated by rapid changes in hydration 

and body shape

• Equations must be population-specific and device-specific

• Manufacturers may not provide details on how equations 

have been constructed (e.g., population, reference standard)

• Devices may not generate raw BIA outputs

• Inability to compare bioimpedance data across devices, 

especially between those that used different reference 

methods

• Lack of protocol standardization

OPPORTUNITIES

• Solve technical issues 

• Investigate the validity of longitudinal BIA measurements and 

the specific BIVA

• Examine the predictive ability of phase angle measured at 

different frequencies

• Compute reference data for BIA estimates that are device-

specific and population-specific

• Establish a standard protocol

• Improve reporting of procedures

• Develop partnerships between industry and academic 

researchers

THREATS

• Conflict of interests

• Costs

• Standard reference methods are not free of error

• Interindividual variability between testing subjects

Helpful 

to improve the utility of BIA in pediatrics

Harmful 

to improve the utility of BIA in pediatrics
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