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Dedication
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Abstract

An experimental apparatus was developed capable of measuring changes in fluid viscosity occurring
due to acoustic stimulation. Controls allowed measurements at simulated oil sand reservoir
pressures and temperatures with near real-time data visualization. Calibration was performed using
NIST-traceable viscosity standards. Parametric acoustic excitation experiments were performed on
bitumen, bentonite slurries, and viscosity standards at 500psi static pressure, 20-80°C

temperatures, £100-400psi acoustic pressures, and 5-20Hz sinusoidal frequencies.

The viscosities of bitumen and NIST standards were unaffected by excitation at any of these
amplitudes/frequencies. Bentonite showed viscosity reductions as large as 75% with a positive
correlation observed between acoustic excitation amplitude and magnitude of reduction.
Frequency variation had minimal to no effect on viscosity. Bentonite viscosities quickly approached
minimum values after the start of stimulation but took hours to plateau. Once stimulation ceased,
slurries recovered to their pre-stimulated viscosities. Viscometer damage that occurred during

testing prevented collection of results for oil sand.
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Chapter1  Introduction

The natural resource industry is an integral part of Canada’s economy. Of the country’s resources,
perhaps the most discussed in recent years and arguably one of the most important for the country
are the oil sands found in Northern Alberta. Vast reserves of a heavy oil known as bitumen sit
largely untapped because of the unique challenges associated with recovery and processing of the
resource. Increased oil prices paired with advances in technology made over the past five decades
however, have turned unconventional oil production from oil sands into a very profitable industry
and a major source of employment. A recent publication by the government of Alberta showed
that one in six Albertans was directly or indirectly employed by the energy industry (Department of
Energy, 2008). This change to profitability has attracted significant investment in recent years from
many domestic and international oil companies seeking to establish new operations and expand

existing operations in the oil sands.

In the past decade, large amounts of research funding have gone into the development of this
industry. The two areas of research that have received the most funding are bitumen upgrading
and resource recovery (Heidrick, Bilodeau, & Godin, 2004). The thesis work falls under the latter
topic so this introduction is designed to give the reader an understanding of the industry and some

of the challenges associated with resource recovery.

1.1 0Oil Sand

Oil sand is a naturally occurring mixture of quartz sand (75-80%), silt, clay, water (3-5%), trace
minerals, and bitumen (10-12%). Deeply buried oil sands contain high concentrations of dissolved
hydrocarbon gases in the pore fluid as well (Agar, Morgenstern, & Scott, 1987). The target fraction,
bitumen, is a heavy petroleum (API gravity of 8° to 14°) of residuals and asphaltenes, which once
recovered, is refined into a range of lighter petroleum products in a process known as upgrading
(Hirsch, 2005). The term API gravity refers to the American Petroleum Institute’s measure of how
heavy a petroleum substance is relative to water. Oil with a specific gravity of 1 will measure 10° on

the API gravity scale, hence, the density of bitumen is comparable to that of water.



Alberta contains the largest concentration of oil sands in the world, the majority of which are found
in three main deposits in the Northern half of the province. These three deposits, shown in Figure

1, cover an area of 140,000 km” and contain an estimated 1.7 trillion barrels of oil (Allen, 2008).
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Figure 1 - Three main oil sand deposits in Alberta: Athabasca, Cold Lake, and Peace River. Image courtesy of (UBC
Department of Forestry)

Of these reserves, a fraction are deemed to be “proven” reserves, meaning that they are known to
be recoverable using existing technologies (Department of Energy, 2008). Estimates for proven
reserves have been reported as low as 173 billion barrels (Department of Energy, 2008) and as high
as 178 billion barrels (Hirsch, 2005). Similarly, other sources have put the quantity of unproven
reserves as low as 1.5 trillion barrels (Heidrick, Bilodeau, & Godin, 2004) and as high as 2.5 trillion
barrels (Hirsch, 2005). Approximately 1.5 trillion barrels of the oil sand are located underground in
what are known as “in-situ” reserves and the remaining 200 billion barrels are located close to the
surface at depths of less than 75 meters. Figure 2 compares Canada’s proven reserves to the

proven reserves in the world’s other major oil producing countries.
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Figure 2 - Comparison of proven oil reserves by country. Image from (Department of Energy, 2008)

1.2 Production Technologies

The fact that proven reserves make up only 10% of the total available resource in Alberta
emphasizes one of the major challenges in the industry, developing effective methods for bitumen
production. Bitumen is rigidly attached to the other oil sand constituents so the challenge in
production is finding a technology capable of isolating the bitumen.

Three main production strategies are currently in use for producing bitumen from oil sand. A brief

introduction to each process is given below.

1.2.1 Mechanical Separation + Clark Hot Water Process

The most widely employed process at the moment involves open-pit truck and shovel mining of oil
sand at shallow depths. The oil sand is transported to extraction plants which recover the bitumen
using variants of the Clark hot water process (Clark, 1931). This production method accounts for
65% of current bitumen production and has received the most negative publicity in recent years
due to the large quantities of tailings that are produced during extraction. Approximately 1m? of oil

sand is required to produce 1 barrel of oil using this method (Allen, 2008).



1.2.2 In-Situ Thermal Separation

In-situ thermal production methods are the next most widely used in Alberta. These processes act
by injecting heat into underground reservoirs in order to reduce the viscosity of the bitumen
fraction. The mobile bitumen is then pumped to the surface through either the same well that
delivered the thermal stimulation or another nearby well. Thermal processes are highly subject to
geological conditions in the reservoir (e.g. ground porosity, availability of cap rock, etc.) as they can

have a large effect on the heating efficiency. Two proven processes of this type are:

i.  Steam Assisted Gravity Drainage (SAGD)
e Two parallel horizontal wells are drilled into a reservoir so that one is directly
above the other. Steam is delivered through the top well, heating the reservoir
and reducing the viscosity of the bitumen, which then flows down into the

production well under the force of gravity.

ii.  Cyclic Steam Stimulation (CSS)

e Avertical well is drilled into a deposit and over several weeks, steam is pumped
into the reservoir at high pressure and left to soak. The bitumen fraction
undergoes a decrease in viscosity due to the heat, and radial cracks are formed
as a result of the high pressure. The mobile bitumen is pumped back through

the cracks out the initial well.

1.2.3 In-Situ Chemical Separation

Similar to the thermal processes, the chemical processes rely on an in-situ reduction of bitumen
viscosity. The reduction results from the introduction of a chemical solvent through the well
allowing the bitumen fraction to be pumped to the surface. As in the thermal processes, specific
geological conditions are required for efficient delivery of the viscosity reduction stimulation

(Hirsch, 2005). One process of this type is:



i.  Vaporized Extraction (VAPEX)

e Two parallel horizontal wells are drilled into a reservoir so that one is directly

above the other. A vaporized hydrocarbon solvent is injected into the reservoir

through the upper well which reduces the viscosity of the surrounding bitumen

and allows it to flow into the production well under the force of gravity.

The following table summarizes the three main strategies for bitumen recovery and provides some

operational data for each. Summarized from (Hirsch, 2005), (Isaacs, 2005).

Table 1 - Overview of bitumen production strategies

Production Target Reservoir Operating Cost % Bitumen Extraction
Strategy Characteristics ($/barrel) Recovery Mechanism
Mechanical Depth: less than 30-75 m (After Mining)

Separation Thickness: greater than 3 m $6-10 >90% Clark Hot
P Proven Volume: 9.4B m? Water Process
Depth: han 75- . .
Thermal epth: greater than 75-80 m SAGD: 50-60% Viscosity
Separation Thickness: greater than 10 m »8-14 CSS: 20-25% Reduction
P Proven Volume: 69B m? ) °
Chemlc.al Not Available Not Available Not Available Vlscos!ty
Separation Reduction

1.3 Inaccessible Oil Sand Reserves

A review published in 2004 by the Alberta Energy Research Institute classified three major reservoir

types that required advances in production technology before they could be exploited. These

reservoir types are listed in Table 2 below. Reproduced from (Heidrick, Bilodeau, & Godin, 2004).



Table 2 - Characteristics of inaccessible oil sand reservoirs

Reservoir Type

Reservoir Thinner than Shallower Depth Bitumen in
Characteristic Current SAGD than Current SAGD Carbonates
and CSS and CSS
Depth >75-80m 40to 80 m . )
Bitumen in
Thickness 10to1.5m >10m Carbonate
) Reservoirs
Saturation > 8-10 % mass > 6 % mass
In Place Volume ~ 12 billion m? ~ 4.4 billion m* 71.1 billion m?
Current Recovery 0% 0% 0%
Obportunities New Exploitation New Exploitation New Exploitation
PP Methods Methods Methods

The “Shallower Depth than Current SAGD and CSS” reservoirs are of interest in this thesis. Using
the median reported value of proven deposits, this shallow oil sand, if exploited, would increase the

quantity of proven reserves by approximately 16%.

1.4 Motivation

As evidenced from Table 1, production methods that rely on the reduction of bitumen viscosity
have been the most widely adopted for in-situ recovery. With the long term aim of developing a
new production technology for exploiting the shallow reservoirs mentioned in Table 2, this work

investigates an alternative method for reducing the viscosity of bitumen.



Chapter 2 Relevant Theory and Review of the Literature

The following review is broken into three main sections. The first deals with the fundamentals of
viscosity and rheology theory and methods for viscosity measurement. This is followed by a
discussion of the effects of physical properties such as temperature, pressure, and acoustic
excitation on the viscosity of fluids. The chapter ends with a review of industry experiments and

anecdotal evidence pertaining to the stimulation of oil production reservoirs.

2.1 Viscosity and Rheology Theory and Terminology

This section introduces the theory behind some of the concepts of viscosity and rheology used in
later discussion. The main sources for this information were (Mezger, 2006), (Bair, 2007), and (Fox,

McDonald, & Pritchard, 2006).

2.1.1 Basic Viscosity Definitions

At a fundamental mathematical level, viscosity is defined as the relationship between the shear
stress applied to a fluid and the resulting deformation of the fluid (expressed as shear rate). This
definition encompasses two distinct classes of fluids, those that exhibit a proportional relationship
between shear stress and shear rate, called Newtonian fluids, and those that do not, called non-
Newtonian fluids. For one-dimensional flow, both categories of fluids may be described using the

power law model below.

-1
"l du

du
T &

yx:k@

Equation 1 - Power law relationship for fluid viscosity




Equation 1 is a modified form of Newton’s law of viscosity. In this expression n is the flow
. . . . . . du .
behaviour index, k is the consistency index, Tyx IS the shear stress and ﬁ is the shear rate

(commonly denoted y). For Newtonian fluids (where shear stress is proportional to shear rate), the

flow behaviour index is equal to 1 and the expression is reduced to that shown below.

Tyx = k— Equation 2 - Power law relationship for Newtonian fluids

In this case, “k” is the coefficient of proportionality between the shear stress and shear rate. It is
customary to then represent it by the symbol “u”, which is called the absolute (or dynamic)

viscosity of the fluid.

Equation 1 is commonly restructured for non-Newtonian fluids. By replacing the first terms by the

symbol “n”, Equation 1 takes on a similar form to Equation 2.

du
Tyx =r]d—y wheren = k|

n-1
du Equation 3 - Power law relationship for non-Newtonian

E fluids

In Equation 3, known as the Power Law or Ostwald de Waele Equation (Krishnan & Aghijit, 2010),
the coefficient “7/’ (called the apparent viscosity) relates the shear stress to the shear rate. The
study of this shear rate-dependent viscosity and the time effects surrounding it is known as

rheology.

The apparent viscosity of a non-Newtonian fluid may exhibit a positive or a negative correlation
with shear rate and as such defines two sub-classes of non-Newtonian fluids. The first type, known
as a shear thinning or pseudoplastic fluid, is one where the apparent viscosity decreases as shear

rate increases (i.e. where n <1). These types of fluids flow more easily when sheared. The second



type, known as a shear thickening or dilatant fluid, is one where the apparent viscosity increases as
shear rate increases (i.e. where n >1). These types of fluids show an increased resistance to flow

when sheared. These behaviours are summarized in Figure 3 below.

Pseudoplastic

Dilatant

Shear Stress

Newtonian

Shear Rate

Figure 3 — Relationship between shear stress and shear rate for Newtonian, pseudoplastic, and dilatant fluids. Figure
reproduced from (Fox, McDonald, & Pritchard, 2006)

2.1.2 Basic Rheology Definitions

Figure 4 provides a useful reference for describing a number of the rheology terms and behaviors
observed in pseudoplastic fluids. This graph shows the results of a typical rheological experiment

wherein a fluid at constant temperature and pressure is subjected to a gradually increasing shear

rate whilst measuring its apparent viscosity.



10

A Low-Shear Viscosity ng

|
/ ' g Yield Point or

Critical Shear Rate

Shear Thinning

Infinite-Shear Viscosity .

i

|
Zone 2 : Zone 3
|

Apparent Viscosity n

Zone 1

Shear Rate

Figure 4 - Viscous behaviour of a yielding pseudoplastic fluid under constant temperature and pressure subjected to a
varying shear rate

Three distinct zones are noted on the graph. The first, occurring at low shear rates, is known as the
low-shear viscosity (denoted 1,). When subjected to sufficiently low shear rates (when the fluid is
effectively undisturbed) many pseudoplastic fluids exhibit a constant viscosity value. As the shear
rate is increased past a critical value (sometimes described as the yield stress), the fluid enters the
second zone and begins to exhibit observable shear-thinning behavior. Finally, as shear rate is
increased further, the viscosity plateaus at a minimum value known as the infinite-shear viscosity
(denoted 14). In this third zone, shear is sufficiently high that any macro-scale particles in the fluid
do not have enough time to return to a state where they significantly interfere with each other.
Resistance to flow occurs solely from molecules rubbing against one another and intermolecular

forces.

Many dispersions exhibit this characteristic type of behavior. In the first zone, the degree of
interaction between particles in the fluid is sufficiently high as to provide a high resistance to flow.
As shear rate is increased beyond the vyield stress, particles begin to orient themselves in the

shearing direction resulting in less particle interactions and less resistance to flow. In the third
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zone, particles may be completely separated into bands of shear flow such that they undergo

minimal interaction and thus exhibit minimum resistance to flow.

In addition to varying with shear rate, the apparent viscosity of a pseudoplastic fluid can vary with
time. Figure 5 illustrates this behavior, which is known as thixotropy. When the shear stress is
removed from a thixotropic fluid, the apparent viscosity does not immediately return to the low-

shear value but rather undergoes a period of thixotropic recovery.

A

Low-Shear Viscosity no

/ Complete Thixotropy
T
2
S - /7
2 Pad
_.>_, , Incomplete or False
E y Thixotropy
®
Q
o)
<
Shear at Constant No Shear
——  Shear Rate <— (Thixotropic Recovery) >
P
Time

Figure 5 — Complete and incomplete thixotropic behaviour in a pseudoplastic fluid

A true thixotropic fluid will undergo a complete regeneration of its internal structure during
thixotropic recovery and will thus return it to its low-shear viscosity over time. Several factors may
disrupt this complete regeneration. Sufficiently high shear rates can cause particles in a
pseudoplastic fluid to change form, thereby preventing the fluid from ever returning to its low-
shear viscosity. This is known as an incomplete or false thixotropy. Further, high enough shear
rates may cause fluids to undergo molecular degradation which can cause pseudoplastic fluids to

exhibit Newtonian behavior.



12

Bentonite mixtures are known to display thixotropic behaviour and exhibit increased viscosity with
increasing bentonite concentration (Grim & Necip, 1978). Mixtures in excess of 5% concentration

by mass will exhibit thixotropy (Haydn, 2006).

Dilatant fluids do not exhibit the same zones of behavior described in Figure 4. The low-shear
viscosity is followed by a zone of shear thickening behavior until the point where there is sufficient
resistance to flow that the fluid begins to act as a solid. Sufficiently high shear rates will “tear” the
fluid and as such the concept of infinite shear viscosity does not apply to dilatant fluids. Figure 6

illustrates this behavior.

<
>
K7
8 Fluid begins acting
%’ like a solid and
— may tear
C
% Low-Shear Viscosity 1
o
o
<
P
Shear Rate

Figure 6 - Viscous behaviour of a dilatant fluid undergoing a significant increase in apparent viscosity

Dilatant fluids do however exhibit time-dependent viscosity behavior similar to thixotropy. This
time-dependent behavior is known as rheopexy and is characterized by a gradual decrease in
viscosity after a period of shearing. Similar to thixotropy, rheopexy is a completely reversible

process unless a permanent degradation occurs in the fluid due to excessive shear. Figure 7
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illustrates rheopexy in a dilatant fluid that experience a period of shear at a constant rate followed

by a period of no shear.

Apparent Viscosity

A

Low-Shear Viscosity

Shear at Constant
4— Shear Rate

_____ A

\ Incomplete or False
N Rheopexy

N

N \
~
\\_ _

Complete Rheopexy

No Shear

<4— (Rheopectic Recovery) >

o
Time

Figure 7 - Complete and incomplete rheopectic behaviour in a dilatant fluid

2.1.3 Viscosity Measurement

Viscosity is an indirect measurement, meaning that it is inferred from other directly measurable

properties such as torque or speed (Mezger, 2006). Two types of measurement devices exist in this

field:

1.

Rheometers, which relate stress to fluid deformation and are thus capable of measuring

apparent and absolute (shear rate dependent) viscosity, and

Viscometers, which operate at a single rate or speed and are thus only capable of

measuring the absolute viscosity in Newtonian fluids or the Newtonian viscosity plateaus

(infinite-shear or low-shear viscosity) of non-Newtonian fluids.

The more commonly used methods of obtaining viscosity measurements are:
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e Rotational Couette Rheometers

e Capillary Viscometers

e Dropping Ball and Rolling Ball Viscometers
e Vibrating Wire Viscometers

e Oscillating Viscometers

2.1.3.1 Rotational Couette Rheometers

Rotational Couette rheometers infer viscosity by measuring the torque or rotational speed of a
cylindrical spindle as it is rotated in a fluid sample. Figure 8 illustrates a typical setup for a conical
rheometer. By applying a defined torque and measuring the rotational speed of the spindle or vice-
versa, the viscosity (absolute or apparent) of the fluid can be calculated using Newton’s law of
viscosity. Since the surface areas in contact with the fluid are known, spindle torque can be
converted to shear stress. Similarly, since the gap between the spindle and the fluid reservoir is
known, the rotational speed of the spindle can be converted to shear rate as long as there is no slip
between the fluid and viscometer surfaces. Couette rheometers are commonly used for measuring
viscosity at low pressure and they are seldom used for high pressures measurements due to

difficulties in sealing the rotating components (Bair, 2007).



2.1.3.2

Test Data (to PC)

Test

Sample

Temperature-
Controlled Sample
Spindle Container

Figure 8 - Schematic of a coned-spindle Couette rheometer

Capillary Viscometers

Motor & Electronic Control Unit |_ _ _ _ _ _ _ __ ___ »
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Capillary viscometers infer the kinematic viscosity of fluids by measuring the time taken for a known

volume of fluid to pass through a narrow section of tube known as the capillary. The sample is

drawn up beyond the capillary section by vacuum then released and allowed to flow through the

tube.

Fluid resistance along the walls of the capillary slows the fluid by a factor related to the

viscosity of the fluid. Measuring the time taken for the meniscus to cross between the start and

stop line allows for a quick computation of viscosity. Typically made of glass, time measurements

can be made by eye using either a stopwatch or more accurately with a video camera or other

automatic means. Figure 9 shows the simplest form of capillary viscometer, known as an Ostwald

viscometer.



16

Known

Start Line —m» [
}Volume

Stop Line —p»

Reservoir

Figure 9 - Schematic of Ostwald capillary viscometer

2.133 Dropping Ball and Rolling Ball Viscometers

Dropping ball or rolling ball viscometers infer viscosity by measuring the time taken for a sphere to
fall or roll from one level in a tight-fitting liquid filled tube to another. The time taken to travel the
distance at a steady-state velocity is a function of the internal fluid resistance and therefore the
viscosity of the fluid. The simple design allows dropping/rolling ball viscometers to be used for
high-pressure viscosity measurements, upwards of 8 GPa (1.16x10° psi). Since it is important that
the sphere be traveling at a steady state velocity as it passes between the different levels,
dropping/rolling ball viscometers are often built of transparent materials to facilitate velocity
observation. Since high- pressure instruments cannot be built with such materials, inductance coils
are placed around the tube to provide a way of partially tracking the sphere’s position during the
traverse. The accuracy of such instruments is adversely affected by the inability to continuously

measure velocity.
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2.134 Vibrating Wire Viscometers

Vibrating wire viscometers function by vibrating a tensioned wire near its resonant frequency in a
test fluid. A magnetic field is introduced and the frequency dependent voltage induced across the
wire is measured. Simultaneous viscosity and density measurements are calculated using the
Navier-Stokes solution to the vibrating wire problem. This type of viscometer was only introduced
in 2004 and as such limited information is available on its full capabilities. (Bair, 2007) suggests that
it is one of the most accurate methods of viscosity measurement but is limited in the range of

viscosities that the device can measure.

2.135 Vibrational Viscometers

Vibrational viscometers operate on the principal that the motion of a rotationally oscillating bulb
within a fluid undergoes damping as a result of viscous forces. Such viscometers may operate in

several different manners to infer viscosity from the damping:

e Continuously vibrating the bulb and measuring the phase lag between the excitation and

response signals

e (Cutting off the excitation signal to the bulb and measuring the attenuation time (e.g. using

the method of logarithmic decrement)
e Measuring the input power needed to keep the bulb vibrating at a given amplitude

Minimal oscillatory motion is required for these measurements so such viscometers are easily
sealed for operation at pressure. In addition to this, since the above measurements can be taken in

near real-time, vibrational viscometers are often used as process viscometers.
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2.2 Physical Properties and their Effects on Viscosity

2.2.1 Viscosity vs. Temperature

Of the thermodynamic properties, temperature is known to have the greatest effect on viscosity.
As temperature of a fluid is increased, its viscosity decreases exponentially such that small changes
in temperature can result in significant changes in viscosity. This behavior is often described by the
Arrhenius relationship of Equation 4 where “A” and “B” are experimentally determined constants

of the liquid and “T” is the absolute temperature (Krishnan & Aghijit, 2010).

_B
T]:AT

Equation 4 - Arrhenius relationship between temperature and viscosity

High viscosity materials exhibit greater temperature dependence thus, as stated in Chapter 1,
elevating temperature is a well-suited method for liquefying the high viscosity bitumen in current

in-situ oil sand production technologies.

2.2.2 Viscosity vs. Pressure

In contrast with temperature, pressure has the opposite effect on the viscosity of liquids. As
pressure is increased, the intermolecular spacing in the fluid decreases causing increased
interaction and thus an increased fluid viscosity. This effect is most pronounced in high molecular
weight fluids and in polymers with a high degree of branching (Mezger, 2006). Contrary to
temperature, the relationship between viscosity and pressure is linear until high pressures (beyond
the glass transition of the fluid, >1.2 GPa (Mezger, 2006) or >2GPa (Bair, 2007)) where it begins to

exhibit solid-like behavior.

Figure 10 illustrates the temperature and pressure dependence of viscosity for a gas-free Athabasca
bitumen. It should be noted that review of similar graphs prepared by other academic and industry

sources, viscous behavior is similar in all cases but with slight variations depending on the location
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of the bitumen reservoir from which the test samples were collected. The sample used in the figure

below exhibit behavior typical of Peace River bitumen.
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Figure 10 - Graph of viscosity versus pressure and temperature for a gas-free Athabasca (ARC) bitumen. Reproduced
from (Mehrotra & Svrcek, 1986)

2.2.3 Viscosity vs. Particle Concentration

While temperature and pressure changes result in either an increase or a decrease in fluid viscosity,
a change in the particle properties may cause fluids to exhibit entirely different viscous behavior. If
for example, particle concentration is increased beyond a critical value in a Newtonian fluid, it will

exhibit non-Newtonian behavior, either shear-thickening or shear-thinning depending on the

concentration.
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As particle concentration is increased in a pseudoplastic fluid, the onset of shear thinning behaviour
will occur at a lower critical shear rate and at an increased rate (Chen, Chen, Wang, & Li, 2006). Still
other fluids such as aqueous suspensions of cornstarch may exhibit pseudoplastic behaviour (at low
shear rates) and dilatant behaviour (at high shear rates) depending on the particle concentration
(Merkt, Robert, & Deegan, 2004). These viscous changes cannot be accurately represented with the
power law so empirical models are typically used when dealing with such complex fluid behaviours.
Other factors such as particle size, density, and shape are known to have an effect and further

compound such modeling.

2.2.4 Viscosity vs. Acoustic Stimulation

Few experimental results are available on the effects of acoustic stimulation on fluid viscosity. Of
those found in the literature, the experiments of (Ariadji, 2005) yielded some of the most significant
findings. In the study, an oil (0.66-1.1 cP) was subjected to temperatures between 70 and 90°C and
static pressures between 1 and 3kpsi whilst measuring viscosity before and during a period of
vibration at frequencies between 5 and 40 Hz and unreported values of stimulation amplitude.
Viscosity reductions as large as 30% were observed in the test samples with vibration amplitude

having a greater effect on the viscosity change than frequency.

The result of the stimulation amplitude study just described, reproduced in Figure 11, indicate that
increasing the acoustic stimulation amplitude tended to decrease the viscosity of the oil towards
some asymptotic value. In addition, the result of their acoustic excitation frequency study, shown
in Figure 12, indicated the presence of an optimal vibration frequency for achieving viscosity
reduction. No mechanisms were mentioned or put forward for either result, however, it was
postulated that the optimum frequency may have been a local minima and that retesting at a larger
range of frequencies may have yielded a sinusoidal relationship. No explanation was offered for

this conjecture.
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Figure 11 — Graph illustrating increased viscosity reductions with increased stimulation amplitude. Figure from (Ariadji,

2005)
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2.3  The Stimulation of Oil Production Reservoirs

There exist a number of accounts in the literature where oil production in conventional reservoirs
seemed to have been affected by vibration, either man-made or naturally-occurring. A selection of

these anecdotal accounts is presented here.

2.3.1 Industry Observations and Experiments

It was noted in the extensive review by (Beresnev & Johnson, 1994) that conventional oil reservoirs
in Russia saw increased oil production following earthquakes in the nearby vicinity. Though likely
the result of large-scale ground movements, the effects were again observed when earthquakes
occurred far from the reservoir site such that ground disturbances were of low amplitude. The
review by (Huh, 2006) details some of the attempts designed to artificially stimulate other
conventional oil reservoirs. The main technologies included: ground-level mechanical (vibroseis)
(Kouznetsov, 1998) and electromagnetic (Simonov, 1996) vibration generators meant to deliver low
frequency acoustic energy from the surface down into the reservoirs and pressure pulse generating
equipment designed to deliver acoustic stresses to the reservoir from within the wellbore, both at
sonic (Kuznetsov, 2002), (Dusseault, 1993), (Zhu, Xutao, & Vajjha, 2005), (Bogolyubov & al., 2001)
and at ultrasonic frequencies (Duhon & Campbell, 1965). In most instances, production levels in
surrounding wells were reported to have increased both during and for a period after stimulation

although the physical mechanisms causing the improvements were never identified.

2.3.2 Physical Mechanisms behind the Industry Observations

Many suggestions were put forward to explain the observed production gains such as cavitation in
pore fluids (sonocapillary) (Malykh, Petrov, & Sankin, 2003), reduction of capillary forces arising
from the destruction of surface films, increased permeability (Roberts, 2005), and peristaltic
transport by mechanical vibration (Hamida & Babadaglia, 2005) but few experiments were
uncovered to support the ideas. In the review of proposed mechanisms by (Hamida & Babadaglia,

2005), citing the work by (Fairbanks & Chen, 1971), it was postulated that a reduction in fluid
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viscosity due to the application of acoustic energy, particularly in the case of thixotropic fluids,

could be the reason for the improvement.

Chapter 3  Experimental Methodology

3.1 Introduction

Fully understanding the effects of acoustic stimulation on oil sand viscosity in a reservoir is made
complicated by the number of variables that can affect the physics. Short of doing in-situ field
experiments in a reservoir, one way to approach such a problem is to reduce the complexity of the
reservoir scenario such that it is suitable for study in the laboratory. This chapter outlines the
assumptions made in defining the scope of the lab-scale problem, describes the equipment used to

simulate reservoir conditions, and details the experiments that were performed.

3.2 Defining the Experimental Variables

3.2.1 Identifying the Most Useful Data for Industry

In industry, a tailored in-situ production strategy is developed for each reservoir that is to be
recovered. This strategy is developed using an assortment of properties about the ore body and
surrounding ground conditions as well as a fundamental physical understanding of what effect the
production strategy will have on the reservoir (e.g. hot steam injection is known to reduce the
viscosity of bitumen). Given the amount of site-specific data that is required to develop such a
strategy, it was decided that this research would be most generally useful to industry if it was
restricted in scope to establishing the fundamental physical understanding of a production strategy

that employs acoustic stimulation.

3.2.2 The Model Reservoir

In order to experimentally obtain this fundamental physical understanding, some of the

complexities of pressure wave propagation that occur in real reservoirs needed to be removed from
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the research problem. By using a model reservoir devoid of these complexities, the resulting
experimental data would be most generally useful in describing the basic physical response of the
fluid. The first step in developing this general reservoir model was therefore to identify which

complexities of a real reservoir could be eliminated in a lab-scale experiment.

A basic understanding of the mechanics of wave propagation was used to identify which reservoir
complexities posed the biggest problem to the experimental investigation. Ore proximity to the
acoustic stimulation site, soil properties, and reservoir geometry were identified as major factors
affecting how a target ore body would be stimulated by an incident pressure wave. Attenuation and
superposition of reflected pressure waves were also identified as sources of additional difficulty in
understanding what stimulation actually occurs at the ore site. With these factors in mind, a
number of assumptions about a model reservoir were developed. These assumptions are listed

below and shown pictorially in Figure 13.

Assumption 1 The ore between the acoustic stimulation site and the target ore is homogenous
in temperature, density, water content, and chemical composition. This
eliminates the ground variations that would normally be encountered in field

reservoirs.

Assumption 2 The model reservoir is assumed to be infinite. When combined with Assumption
1, this implies that no pressure waves are reflected and therefore that no
superposition of pressure waves occurs in the target ore. This allows better

control of how the target ore in the experiment is stimulated.

Assumption 3 The target ore is far enough from the stimulation site that an incident pressure
wave is approximately planar. This allows further control of how the target ore

in the experiment is stimulated.

Assumption 4 The pressures and temperatures in the model reservoir will be of a similar
magnitude to those typically found in the intermediate depth reserves. This
ensures that experiments performed in the model reservoir are still subject to

the effects of pressure and temperature that are found in intermediate reserves.



25

Uniform
Medium

Volume of
Interest

N

S
N
¥ Y X
Temperature: 20-80°C

Hydrostatic Pressure:
3.45-6.89MPa
(500-1000psi)

Figure 13 - Pictorial representation of an acoustic stimulation source in a model reservoir at depth.

3.2.3 Experimental Variables

In identifying the variables of interest to the study and determining which were to be controlled
and which measured, four distinct groups were identified: those variables needed to quantify the
acoustic stimulation, those variables known to affect the viscosity of fluids, those variables needed
to validate the model reservoir assumptions, and those variables needed to quantify the viscous
response of the fluid. These are detailed below, and where applicable the appropriate variable

ranges are given along with a justification for the range.

Approximately
Planar Wave
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3231 Group 1 - Variables Needed to Describe the Acoustic Stimulation

In order to quantify the acoustic stimulation, the properties of the stimulation source needed to be
well characterized. Additionally, since the acoustic wave was the primary independent variable in
the research, the properties of this acoustic stimulation source needed to be both measurable and
controllable. The variables needed to describe the acoustic stimulation source were those needed

to characterize any wave, namely:

e Amplitude (Pressure)
e Frequency

e Wave Shape (e.g. Sinusoidal)

The controllable range for these variables was deemed unimportant at the onset of the research
since there was limited quantitative evidence of an effect of either dynamic pressure amplitude or
frequency on viscosity. The ranges (detailed in Chapter 4) were eventually selected based on the

capabilities of the pressure generating equipment.

3232 Group 2 - Variables Known to Affect the Viscosity of Fluids

From the review of the literature on viscosity theory, a number of different variables were
identified which were known to have an effect on the viscosity of fluids. In order to isolate an
observed effect on viscosity by any of the Group 1 variables, each of these Group 2 variables

needed to be measured and controlled in the experiments. These variables were:

e Temperature

e Pressure

e Properties of Particles Within the Fluid (Size Distribution, Porosity, Shape, Concentration)
e Stimulation Duration (Thixotropic/Rheopectic Effects)

e Shear Rate
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In accordance with model reservoir Assumption 4, the measurement ranges for temperature and
pressure were selected to encompass the range likely to be encountered in an actual intermediate
depth reservoir. For this reason, measurement and control in the range of 0-6.89 MPa (0-1000 psi)
for pressure and 0-80°C for temperature were selected. The measurement and control ranges for

the other variables in this group were again selected arbitrarily.

3233 Group 3 - Variables Needed to Validate the Model Reservoir Assumptions

Conveniently, the first, second, and fourth reservoir assumptions: a uniform medium, no
superposition of pressure waves, and realistic pressures and temperatures, could be validated by
accurate measurement of the first three Group 2 variables: temperature, pressure, and particle
properties. The third assumption, a planar incident pressure wave, could be validated by carefully
designing the shape of the experimental apparatus test chamber, specifically the distance between

the stimulation source and the viscosity measurement

Initially, the distance between the stimulation source and viscosity measurement was selected to
help minimize the 3-D curvature of the incident pressure wave (as depicted in Figure 13). As the
design of the measurement apparatus evolved, a method for generating planar pressure waves
right at the stimulation source was developed and so this model reservoir assumption was deemed

accounted for.

3234 Group 4 - Variables Needed to Quantify the Viscous Response of the Fluid

The fourth group of variables were those needed to quantify the physical response of the fluid to
the acoustic stimulation. Of principal interest here were variables used to describe the viscous

response. These were:

e Low Shear (or Low Shear) Viscosity

e Shear Rate Dependent Viscosity
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The measurement range for each of these variables was selected based on the fluids to be tested.
Both low viscosity fluids and oil sand would be tested in the study, each one representing an
extreme of the measurement spectrum. Due to the high cost of instruments capable of measuring
such a broad range, the measurement range was decreased. In this way, a significant portion of
the measurement range was covered and measurements on oil sand could still be performed at
high temperatures where the viscosity was at its lowest. Details of the measurement range are

available in Table 3.

3.2.3.5 Test Fluids

In addition to the aforementioned physical variables, an assortment of fluids was selected for
testing. These were selected to help validate the test equipment and to broaden the data so that
the results were not only applicable to oil sands but to fluid mechanics in general. These fluids,

along with the experimental results sought from each, are listed below.

e N2500 — A NIST traceable viscosity standard for calibrating the viscosity measurement

system

e Bitumen — An Athabasca bitumen for testing the effects of acoustic excitation on the target

phase within the reservoir

e Qil Sand — A mid grade (~12% bitumen) Athabasca oil sand for testing the effects of acoustic

excitation on the multi-phase reservoir ore

e Bentonite/Water — A drilling mud for testing the effects of acoustic excitation on a

pseudoplastic fluid (13% mass concentration)

e Cornstarch/Water — A mixture for testing the effects of acoustic excitation on a dilatant

fluid (55% mass concentration)
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3.3 Experimental Equipment

3.3.1 Design Requirements

With the scope of the experimentation and the key variables identified, the design requirements for
an experimental apparatus system concept were developed. At the highest level, each of the
system concepts needed to simulate the conditions of the model reservoir while performing
acoustic stimulation experiments at the lab scale. At the lower levels, the more specific design

requirements were identified using the variable groups listed in the previous section.

Table 3 summarizes the list of variables and the corresponding lower level design requirement that
each imposed on the experimental apparatus concepts. Each dependent variable necessitated
specific sensor equipment while each independent variable called for either control equipment or
consideration when designing the geometry of the test chamber. In addition to these variable
specific design requirements, a number of supplementary requirements were identified to ease the

operation of the device. These are outlined in Table 4.



Table 3 - Experimental apparatus design requirements identified using experimental variables
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Viscosity

X Independent/ . . Measurement/Control e s
Variabl Design Requiremen . . ification for Ran
ariable Dependent esignh Requirement Range (if applicable) Justification for Range
Acoustic Stimulation
Ampli In ndent Arbitrary Ran -
:1 plitude depende Amplitude Control bitrary Range
§ Acoustic Stimulati
G coustic Stimulation .
Frequenc Independent Arbitrary range -
quency P Frequency Control ltrary rang
Temperature Independent Feedback temperature control 0-380°C Model Reservoir Assumption 4
Pressure Independent Feedback pressure control 0-6.89 MPa (0— 1000 psi) Model Reservoir Assumption 4
~ Must be able to contain a . . .
o . . . . , Range from no particles to Oil sand contains coarse sand
3 Particle Properties Independent variety of multi-phase fluids . .
o . . coarse sand grains grains
G] and resist abrasion
Acoustic stimulation source
Stimulation Duration Independent with precisely controlled Arbitrary Range -
duration
Control of shear rate in the .
Shear Rate Independent fluid ! Arbitrary Range -
P .
o .Dlstan.ce between Minimize curvature of incident
3 | Stimulation Source and | Independent - -
b . . pressure wave
O | Viscosity Measurement
. . . Viscosity range from water to oil
< Low Shear Viscosity Dependent Viscometer 0-10,000 cP sand
3
5 Sh Rate D dent Vi it f ter to oil
iG] ear Rate Dependen Dependent Rheometer 0- 10,000 cP iscosity range from water to oi

sand
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Table 4 — Supplementary design requirements of the experimental apparatus concept

Design Requirement

Justification

Computer control of all control and data logging
operations

A transient heat transfer analysis of the
chamber geometry showed that thermal
experiments were likely to last for several hours
at a time so automation of the instruments
freed the researcher from being present for the
entire duration

Desired test chamber to be easily disassembled
and/or rotated

Facilitated chamber cleaning and material
handling operations

3.3.2 Test Chamber Concept

3321 Conceptual Design

By taking into account all of the design requirements, a number of experimental apparatus system

concepts were developed. Though several ideas were presented for satisfying each individual

requirement, ultimately, all of the devised system concepts followed a similar test chamber design,

illustrated in Figure 14.

Static r
Pressure
Control

Vent

I
| Experimental
| Sample Volume

Dynamic
Pressure
Control

Data
__—_-| Acquisition
and
Experiment
Control

Figure 14 - Experimental apparatus chamber concept
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The test chamber concept shown in Figure 14 involved a vertically oriented, flanged pressure vessel
perforated by sensors and control equipment as called for by the various instrumentation
requirements. This design was amenable to housing a variety of multi-phase test fluids and
subjecting them to the various temperature and pressure loads specified in the model reservoir
assumptions. Additionally, this design allowed for easy reconfiguration of sensor equipment owing

to the flanged ends and multiple mounting locations along the main axis of the chamber.

With the overall concept established, the next step was the selection/design of components for

each of the specific measurement and control requirements.

3.3.3 Instrument Selection and Integration

This section presents the engineering considerations for each of the major measurement, control,
and sample containment requirements. For each design requirement, a list of the different options
considered is followed by a detailed description of the final component selected in the initial build.
Where applicable, details about the implementation and installation into the test chamber are

given.

3331 Viscosity Measurement

One of the most critical design decisions was determining the method for measuring the viscosity of
the test sample during acoustic excitation. The review of viscosity measurement techniques (Bair,
2007) (briefly summarized in the last chapter) was useful in this matter as it dealt with some of the
difficulties of obtaining accurate measurements in devices requiring high-pressure seals. In addition
to high-pressure sealing considerations, the chosen device needed to be able to withstand typical
reservoir temperatures whilst measuring the wide range of shear rate dependent viscosities

encountered with water and oil sand.

Pressure sealing was of primary importance so a vibrational viscometer was chosen because it could
be easily mated to a flange and installed on the pressure vessel. Additionally, vibrational models

were readily available which could be interfaced with a PC and could measure the extremely wide
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viscosity ranges required for the study. A Hydramotion VJ1-100 viscometer was selected as the
best fit for the requirements. It was capable of viscosity measurements in the range of 1 to 10,000
cP, at temperatures from -20 to 130°C. As shown in Figure 15 below, sealing was accomplished by
means of an o-ring above the device threads. PC monitoring of the measurement was established

over an RS-485 connection using the MODBUS communication protocol.

The choice to use a vibrational viscometer was a compromise, as it meant that the device was only
able to measure the infinite-shear viscosity. The measurement of shear rate dependent viscosities
was therefore only possible at atmospheric pressure using a rate-controlled Brookfield Couette

rheometer available in the Oil Sands and Coal Interfacial Engineering Facility at the University of

Alberta.
O-ring Face Seal
Oscillating Bulb
RS485 Output /
Machined Thread
Region in Contact with
Test Sample
Figure 15 - CAD Rendering of Hydramotion VJ1-100 Viscometer

3332 Temperature Control

A variety of temperature control strategies were assessed including electrical resistance heating

outside the test chamber and a variety of plumbing designs for conductive and convective heating
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using a bath and circulating fluid. A combination heating/cooling temperature bath and welded
water jacket design was selected because this allowed for a self-contained temperature control
system and could easily accommodate the geometric constraints imposed by the sensors positioned

around the jacket of the test chamber.

In keeping with the automation design requirement, a bath was selected which could be interfaced
with a PC for both monitoring and control purposes. The Cole-Parmer 12101-41 digital

heating/cooling bath (see Figure 16) provided this functionality via RS-232 serial connection.

Figure 16 - Cole-Parmer 12101-41 digital heating/cooling circulating bath with onboard digital controller.
Note: Fluid inlet and outlet ports as well as serial connection are located at the rear of the device
Image Source: www.coleparmer.ca

A 50/50 mixture of ethylene glycol and water was used within the range of -40°C to 105°C and
controlled by temperature feedback electronics and heating/cooling elements in the circulating
bath. This fluid was pumped from the bath through the fluid jacket around the test sample,
transferring and removing heat from the test sample by means of conduction through the chamber

walls.

A few modifications were made to the thermal system during the work. The polyethylene tubing
initially used for all fluid connections on the water jacket was later replaced by Swagelok tubing
when leaking became an issue. Adhesive-backed 25.4mm (1lin) foam insulation was added to the

outside of the water jacket to improve the heating and cooling performance at the extremes of the
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temperature range; and an external RTD was later added to allow the temperature feedback signal

to come from the site of viscosity measurement within the fluid.

3.333 Data Acquisition System

A data acquisition system was required that could interface the control software with the pressure
and temperature transducers and allow data logging on an attached PC. A National Instruments
CompactDAQ system was selected for its ease of integration with the National Instruments
LabWindows/CVI programming environment. Specifically, the NI cDAQ-9172 chassis housed eight
signal conditioning modules which could be easily configured to allow a variety of wired sensors to
be connected to the PC via USB through the chassis. This hardware was also able to make use of
the wiring and sensor calibration utilities built into the National Instruments programming
environment as well as the DAQmx programming functions, all of which greatly facilitated system

commissioning. The chassis is shown below in Figure 17 beside several signal conditioning modules.

Figure 17 - NI cDAQ-9172 chassis with an assortment of signal conditioning modules
Image Source: www.zone.ni.com (Accessed December 2009)

3334 Temperature Measurement

There were four design considerations when selecting temperature sensors: (1) sensors had to be

able to measure temperature within the range of 0 to 80°C, (2) had to be able to withstand
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sustained contact with abrasive fluids such as oil sand, (3) had to be installed in a high pressure
environment, and (4) had to be interfaced with the NI DAQ system. Off-the-shelf resistance
temperature detectors were capable of achieving (1) and (2) and could be mounted in a high
pressure environment (3) when installed using Swagelok fittings so they were an ideal choice. The
sensors could be interfaced with the NI DAQ chassis through the use of NI 9217 analog RTD input

modules.

The sensors selected were 100 Q Platinum 3-wire RTDs housed in 316 stainless steel sheaths from
Aircom Industries (RT4-GP-B-S-3-36-4-T-2-MC-X-LT). The photograph in Figure 18 shows one of

these RTDs mounted in an NPT Swagelok fitting.

NPT Sealing
Thread

\

Steel Sheath
over RTD

Figure 18 - 3-wire RTD mounted in an NPT Swagelok fitting.

3335 Pressure Measurement

When selecting pressure transducers, a number of requirements needed to be considered. Sensors
had to be capable of measuring the simulated downhole pressures outlined in Table 3, had to be
mountable in the test chamber, had to be able to withstand contact with abrasive test materials

such as oil sand, and had to be interfaced with the NI DAQ system.

A series of flush-mounted pressure transducers made by American Sensor Technologies (model:
AST4700-A-02000-P-5-R-0-0233) satisfied all of these requirements. The transducers outputted a
voltage signal from 0-10 V proportional to pressures between 0 and 13.9MPa (0 and 2000psi) and

could be screwed directly into 1/2” NPT holes in the test chamber. Interfacing with the NI Compact
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DAQ chassis was accomplished using the 32 channel NI 9205 analog input module (¥10V, 16-bit, 250

kS/s) shown in Figure 19 right.

NPT Sealing
Thread

Flush-mount

> %
\ N

Figure 19 - Left: American Sensor Technologies flush mounted pressure transducer. Right: NI 9205 analog input
modules. Image Source: www.zone.ni.com

3.3.3.6 Static Pressure Control

As stated in the model reservoir requirements, a method for controlling static pressure in the test
chamber was required which could both apply and vent pressures within the range 0-6.89MPa (0-
1000psi). The components used for this task evolved several times throughout the project in order
to remain compatible with the changing needs of the acoustic stimulation control equipment. Early
design iterations employed cylinders of compressed inert gas and computer controlled pressure
regulators made by Bronkhorst (model: EL-PRESS P612CV-100A-AAD) and later General Electric
(model: GE Pace 5000) to accomplish this. Aside from using the GE Pace 5000 for pressure
calibration, the final design discarded these components in favour of the hydraulically actuated
piston described in section 3.3.3.7 below, which was capable of controlling both acoustic and static

pressure simultaneously.

3.3.3.7 Acoustic Stimulation Control

Several methods for supplying and controlling the dynamic pressure amplitude and frequency were
evaluated during the apparatus conceptualization. The various designs fell into two categories:

those which generated pressure using compressed gas and those which generated pressure by
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physically compressing the test fluids. The former were discarded owing to the fact that they would
require a very large supply of compressed gas since each pressure pulse would have involved the
chamber being pressurized and then vented. Designs utilizing physical compression of the fluid on
the other hand only required some form of oscillating piston to compress the test fluid by a
precisely controlled amount thus there were minimal material requirements after the initial

manufacturing cost.

Using physical compression of the fluid, pulse amplitude was controlled by piston displacement
(change in volume) and stimulation frequency by piston frequency. What remained was to
precisely control these two motions. Two designs were considered: (1) a slider crank attaching a
piston to a speed-controlled motor, and (2) a voltage-controlled linear actuator attached directly to
the piston. The linear actuator combination was selected since it allowed for easier control of
piston stroke (no need to change a linkage) and it did not require complex dynamic balancing as all

components were inline.

After the initial calculations of force and stroke requirements for the acoustic stimulation
experiments (provided in Appendix D), a linear piezoelectric actuator and signal generator
combination were selected. When passed through an amplifier, the output waveform from a signal
generator (Tektronix model AFG 3021B) controlled the position of the actuator, allowing precise
control of the acoustic excitation amplitude and frequency. The analysis done when sizing the
actuator assumed that the test chamber and test fluid were gas-free during experimentation;
however, in practice, removing residual gas proved more difficult to achieve than anticipated. This
meant that the test fluids were more compressible than predicted in the analysis. The result was
that the actuators sized for the task were unable to provide sufficient stroke to generate the

pressures specified in the design requirements.

A new system was then developed to compensate for the compressibility effects of the residual gas.
The new system used a larger diameter piston mounted in a hydraulic tensile testing machine which
allowed for increased stroke and piston force. The stroke and frequency of this new piston system
were again controlled by the Tektronics signal generator which was in turn controlled by an
attached PC via USB. Figure 20 below shows a schematic of the volume displaced by the piston as it

travels within the chamber. In addition, the new system had sufficient stroke capability to generate
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both the static and acoustic components of pressure. A schematic representation of this

relationship between piston position and chamber pressure is shown in Figure 21 for clarity.

Further information about this relationship between piston stroke and chamber pressure can be

found in section 4.4.3, which deals with the commissioning of the acoustic excitation system.

Sensors

Viscometer

Test Chamber

AVolume =
(n/4) (Piston Diameter)?*(Displacement)

- - -

II¢ Displacement

@ Piston

== —

Bolted Connection to
Tensile Testing Machine

Figure 20 - Hydraulic piston installation at base of test chamber. (O-ring seals not shown)
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Figure 21 - Plot showing the typical pressure response of a test fluid to compression by the tensile testing machine
piston.

3.3.3.8 Sample Containment

The specific geometry of the test chamber design was based largely on the mounting requirements
for the sensor and control equipment, as well as the design requirements arising from the model
reservoir assumptions. These numerous design considerations significantly narrowed down the
feasible chamber geometries such that in the end only one design was really considered. The
following CAD rendering of the chamber shows the overall shape and identifies some of the major

design features.
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Figure 22 - Sectioned CAD rendering of experimental apparatus chamber

Along with containing the sample in the central cylindrical chamber, this design allowed for:

e Pressure containment up to 17.2 MPa (2500psi)

e The viscometer to be flange mounted and easily removed from one end of the chamber

e The acoustic stimulation source to be flange mounted opposite the viscometer and the two
separated by a large enough distance to allow for acoustic pressure waves to be
approximately planar

e Modular arrangement of the temperature and pressure sensors in both the radial and axial
directions for monitoring temperature and pressure profiles

e Aninsulated water jacket for circulating the heating and cooling fluids around the sample

e Installation of: a pressure relief valve, vent for priming the chamber, and valve for draining
the chamber

e Easy rotation of the chamber in a supporting frame to facilitate cleaning
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3.3.3.9 Chamber Assembly

Figure 23 shows a sectioned CAD rendering of the final experimental apparatus chamber with all
sensor equipment installed. For the sake of highlighting the mechanical system integration, sensor
electrical connections have been left out. For details about the electrical system integration, refer
to section 3.3.5. Detailed Drawings of all components, subassemblies, and the completed

experimental apparatus assembly are available in Appendix F.

Tensile Testing Machine
Mounting Bracket

Fluid Bath Feedback RTD
Viscometer Bulb

Sample Containment

Resistance Temperature
Volume

Detectors \

)

P £
—

Water Jacket

Pressure Transducers Inlet/Outlet Ports

Hydraulic Piston Seals

Hydraulic Piston

Figure 23 - Sectioned CAD rendering of the final test chamber shown with all sensor equipment installed.
Note: Support frame, hydraulic connections, insulation, and electrical connections are not depicted.
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3.3.4 Mechanical Design and Analyses

Several important engineering analyses were performed during the design of the experimental
apparatus. These included the structural design of the pressure vessel, thermal modeling of
chamber’s heating performance, a modal analysis of the chamber structure, and analytical
development of the constitutive relationship between piston displacement and pressure within the
chamber. These analyses are respectively presented in Appendix A, Appendix B, Appendix C, and

Appendix D.

3.3.5 System Integration and Control

The following section presents details of how the sensor and control equipment was incorporated
into the overall measurement system. Emphasis is placed on the electrical system integration

though some minor aspects of the mechanical system integration are presented as well.

3351 System Process and Instrumentation (PI) Diagram

As specified in the design requirements for the experimental apparatus, it was necessary for the
entire system to be controlled by a PC and for all data to be logged electronically. The following
process and instrumentation diagram gives an overview of the instrumentation architecture and
data flow that enabled this. The process and instrumentation diagram presented in Figure 24
shows the communication pathways between all measurement instruments and where applicable
the communication protocol used. Control relationships between instruments are also marked,

illustrating how the PC has control of each element in the system.
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Figure 24 - Process and instrumentation diagram of the experimental equipment setup
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3352 Electronics Enclosure

In addition to simply wiring up the equipment as shown in the process and instrumentation
diagram, further circuitry was required to ensure that all sensors received their specified supply
voltages and that all sensitive instruments were protected by fuses in the event of a power surge. It
was also necessary to protect all exposed circuits from accidental spills since they needed to
operate in close proximity to the fluid-filled test chamber. Figure 25 illustrates the layout of the

enclosure and shows sample wiring for RTDs, pressure transducers, and the viscometer.
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Figure 25 - Schematic of the electronics enclosure showing both the wiring layout and the physical arrangement of components.
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A water-tight electronics enclosure was designed to house all sensitive electronic equipment. The
hinged enclosure allowed easy access to the data acquisition system as well as to the sensor supply
voltage circuitry. The installation of this enclosure relative to the test chamber is shown in Figure

26 alongside a view of the completed instrumentation wiring.

(a) (b)

Figure 26 — (a) Electronics enclosure (grey) mounted to the chamber support frame. (b) Inside view of the electronics
enclosure showing the wiring when using all available chamber sensors.

3353 Monitoring and Control Software

As shown in the Pl diagram, control and data logging operations for all instruments were performed
by the PC. In order to accomplish these tasks, custom software was developed using National
Instruments LabWindows/CVI, a C-based programming environment. The three main
requirements of this software were to interface with the equipment, run the experiments, and
provide the user with near real-time operational data. The following sections present how these
main requirements were met and introduce some of the key features of the program. The high-
level flow chart presented in Figure 27 is provided as a reference for the following sections. The

main source code has been included in Appendix A for additional reference.
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Figure 27 - High-level flow chart of monitoring and control software.
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3.3.5.3.1 Interfacing with and Logging from Equipment

As illustrated in the Pl diagram, several communication protocols were used to transfer data and
commands between the PC and the various instruments. When available, built-in LabWindows/CVI
library functions were used; however, function libraries and drivers for several instruments had to
be developed separately. Table 5 below summarizes the degree of software development required
to communicate with each instrument. The final program build included all data logging and

instrument control functions for these instruments.

Table 5 - Programming requirements for each instrument

Drivers

Communication ) Function Library
Instrument Name (Available or .
Protocol Used (Available or Developed)
Developed)
Fluid Bath RS-232 Available Developed
Data Acquisition USB Available Available
System
Function Generator USB Available Available
PACE P
CE 5000 Pressure RS-232 Available Developed
Controller
Viscometer RS-485 MODBUS Developed Developed

In addition to simply establishing communication, the program was responsible for logging data to a
file for later post processing. Since the devices had drastically different logging rates (e.g.
viscometer @ 0.5Hz vs. data acquisition system @ 1000Hz) multi-threading was incorporated into
the program to allow logging from all instruments without the risk of memory access faults. This
allowed the program to output a single tab-delimited log file with all sensor and instrument data

from experiments.

3.3.5.3.2 Programmatic Experiment Control
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The monitoring and control program allowed static and acoustic experiments to be performed
either manually or automatically. In manual mode, all equipment functions were directly
controllable from the GUI where as in the more commonly used automatic mode, the GUI was only
used to setup the test parameters and view operational data. After inputting the test parameters
and naming the log file, the user could initiate the automatic experiment procedure with an
onscreen control. Algorithms stepped through the parametric study according to the user’s initial
input, while separate feedback control algorithms ensured temperature and pressure setpoints
were correctly achieved. In the final build of the program, this automatic testing functionality was
successfully used to run stable multi-day experiments without the need for any user input besides

the initial configuration.

During automatic operation, safety was a primary concern since the user was not always present to
react to any risky situations that arose. Warning alarms and an emergency stop button were
incorporated into the program so that, in the unlikely event of a control algorithm failure, the
equipment and anyone nearby would be safe. In addition to these features, off-site monitoring and
control of all equipment was possible using the Windows remote desktop function complemented
by a webcam trained on the equipment. Thanks to these safety features, no accidents occurred

during software control of the experiments.

3.3.5.3.3 Operational Feedback

The third main function of the monitoring and control software was to provide the user with near
real-time information about the state of the experiment. This was accomplished through a GUI
interface. The on-screen data readouts and graphics provided the user with all operational data for
the experiment. This included current sensor data, historical sensor data, and information about
the equipment configuration. On-screen graphics depicting the equipment configuration and
relevant sensor readouts changed automatically according to the user’s selected experiment type.

Figure 28 below illustrates these and other operational data visible on the main GUI window.
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Figure 28 — Screenshot of the monitoring and control program GUI showing data readouts
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3.3.6 Post-Processing Software

All data post-processing operations were performed in MATLAB using a custom m-file. The

processing algorithms written into this script were used to:
e Apply calibration coefficients to raw sensor data
o Apply density and temperature correction coefficients to raw viscosity data
e Perform data averaging operations
e Plot and save all figures

The full source code of the MATLAB script is available in Appendix A for further reference. As the
post processing requirements for each data set were dependent on the observed trends in the data,

further discussion is reserved for Chapter 5.

3.4 Design of the Acoustic Excitation Experiment

This section outlines the test conditions and basic procedures used in performing the acoustic

excitation experiments. A detailed test matrix is also presented.

3.4.1 Parametric Study

The controlled elements of any parametric study are a set of independent variables to be tested
individually and a list of control variables that are kept constant in all tests throughout the study. In
the case of this investigation, the variables presented in section 3.2.3.1 (properties of an acoustic
stimulation source) defined the independent variables to be tested. The variables presented in
section 3.2.3.2 (variables previously known to have an effect on viscosity) defined the list of
variables to be kept constant through the entire parametric study. An experiment was developed

that considered each of these variables.
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The high level procedure for the parametric study is shown in Figure 29. As can be seen on this
flowchart, the basic premise behind the acoustic excitation experiments was to subject the test
fluids to a set of possible reservoir conditions and then step through a variety of acoustic
stimulation amplitudes and frequencies, all the while recording the resulting fluid viscosity. In this
way, the effect on viscosity of each of the control variables could be tested. The parametric
procedure was ordered such that the variables requiring the longest time to stabilize (i.e.
temperature, static pressure) were changed less frequently than those requiring little time to
stabilize (i.e. stimulation amplitude and frequency) thus minimizing the total time needed to run an
experiment. This structured approach allowed much of the experiment to be controlled

programmatically by the monitoring and control software and thus required limited supervision.
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Figure 29 - High level procedure for the acoustic excitation parametric study

Figure 30 is a simulated time trace from a typical acoustic excitation experiment. This snapshot of
the experiment illustrates how some of the time dependent elements are controlled in the
experiment procedure. In the specific cases of thixotropy and stimulation duration, the experiment

does not progress to the next setpoints until the viscosity has stabilized. For stimulation duration,
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stimulation is continued until viscosity reaches a stable value. For thixotropy, the experiment does

not progress to the next setpoint until the fluid returns to its original viscosity (i.e., that measured

prior to acoustic stimulation).

Acoustic Stimulation:
Amplitude 1

Static Frequency 1
Pressure
Setpoint N—‘—N

Chamber Pressure

Acoustic Stimulation:
Amplitude 1
Frequency 2

>

Thixotropic Thixotropic
Recovery Recovery
Time

Figure 30 - Simulated result of an acoustic excitation procedure showing two frequency setpoints.

3.4.2 Test Matrix

Viscosity

Table 6 is a test matrix detailing the acoustic excitation parametric study. Each row represents one

fluid to be tested and each column represents the variable range for a controlled variable. The user

may note this is the first mention of specific acoustic excitation amplitude and frequency setpoints.

Since the selection of these two ranges depended on the actual performance of the acoustic

excitation system, the explanation for these ranges is presented at the end of Chapter 4 which deals

with the commissioning of the apparatus.
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Test Fluid

Temperatures

Static Pressure

Acoustic Excitation
Amplitudes

Acoustic
Excitation
Frequencies

N2500

Bentonite/Water
[13% mass]

Cornstarch/Water
[55% mass] (*)

Bitumen

Athabasca Oil
Sand (*)

20°C

20°C

20°C

80°C

80°C

3.45 MPa (500
psi)

3.45 MPa (500
psi)

3.45 MPa (500
psi)

3.45 MPa (500
psi)

3.45 MPa (500

psi)

0.69, 1.38,2.76
MPa (100, 200, 400
psi)

0.69, 1.38, 2.76
MPa (100, 200, 400
psi)

0.69, 1.38,2.76
MPa (100, 200, 400
psi)

0.69, 1.38, 2.76
MPa (100, 200, 400
psi)

0.69, 1.38,2.76
MPa (100, 200, 400
psi)

5,10, 15, 20 Hz

5,10, 15, 20 Hz

5,10, 15, 20 Hz

5,10, 15, 20 Hz

5,10, 15, 20 Hz

(*) Ultimately, these fluids were not tested. See Section “5.5 Cornstarch and Qil Sand” for the

reasoning behind this.

3.5 Summary

This chapter outlined the development of the research methodology from experiment conception

to the design of the testing apparatus and experimental procedures. Commissioning and calibration

of the aforementioned equipment and test procedures is treated in Chapter 4.
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Chapter 4 System Commissioning and Calibration

4.1 Introduction

This chapter presents the results of experimentation performed during the commissioning and
calibration of the experimental apparatus as well as preliminary experimentation done to
characterize the rheological behavior of the test fluids. The end of this chapter summarizes the
actual capabilities of the measurement apparatus and presents the test matrix used in the

parametric acoustic experiments.

4.2 Fluid Characterization

The main purpose of the acoustic excitation experiments was to observe changes in viscosity caused
by an imposed acoustic field. Since non-Newtonian fluids exhibit changes in viscosity with imposed
shear fields, one point of interest for this study was to determine whether or not any observed
changes mimicked the non-Newtonian behavior of the test fluids under shear loading. As a

preliminary experiment, data was collected about the rheological behavior of the test fluids.

4.2.1 Rheology Experiments

One sample of each test fluid was placed into a Couette rheometer and programmatically stepped
through a range of rotational shear rates. The measured torque was analyzed by the device and
used to calculate the corresponding shear rate dependent viscosity. Since comparisons between
the non-Newtonian viscous behaviour and the acoustic excitation behaviour were intended to be
mainly qualitative, the rheology experiments were not exhaustive parametric studies. Rather, each
sample was tested over a large enough range of shear rates to observe the onset of any non-

Newtonian behaviour.

Figure 31 illustrates the test procedure that was followed during these experiments. Beginning at a

low rotational speed, the rheometer spindle was rotated in the test fluid for a sufficient amount of
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time to allow the sheared flow to develop. At this point, a series of torque measurements were
taken at evenly spaced intervals and converted to viscosity values by the rheometer software.
Upon collection of this data the spindle rotational speed was increased and the viscosity

measurement repeated until the infinite shear viscosity was detected.

A A

Torque
Measurements
(@ Infinite Shear)

Torque
Measurements

Shear Rate (« Spindle Speed)
Viscosity (x Torque)

Torque .
Measurements Terminate
Torque |_> Experiment
Torque Measurements Infinite Shear
Measurements . :
(@ Zero Shear) VISCOSIty
-

Time

Figure 31 - Time series plot of a Couette rheometer experiment procedure for an example pseudoplastic fluid.

4.2.2 Results

Figure 32 shows a sample of the data output from a Couette rheometer experiment performed on a
bentonite slurry. As evidenced by the decrease in viscosity with increased shear rate, this bentonite
slurry exhibits pseudoplastic behaviour. The constant viscosity data points at the highest shear
rates indicate that the infinite shear viscosity was reached. Table 7 summarizes the qualitative

findings of the characterization experiments for all other test fluids.
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Table 7 - Summarized results of the fluid characterization experiments.

S
=

, 2
>
S8
z3
On
Y s
3 C
® S
Z 3
Q
2
=]
=)
(T
=)
(7]
Q
[t

Pseudoplastic

N2500

Pseudoplastic

Bentonite

Dilatant

Cornstarch

Newtonian

Bitumen

n/a

Oil Sand




59

Bitumen was tested at approximately 80°C in order to bring the viscosity values within the
measurement range of the rheometer. A vane rheometer attachment was not available for
characterizing the coarse oil sand. As a result, the shear rate dependent viscous behaviour of oil

sand at atmospheric pressure could not be accurately characterized using the available equipment.

4.3 Sensor Calibration

4.3.1 Temperature Sensor Calibration

The RTDs were calibrated in the Cole-Parmer fluid bath using the onboard reservoir temperature
probe (factory calibrated) as the standard to compare against. Sensors were suspended in the
turbulent reservoir and monitored using National Instruments MAX calibration software. The
temperature in the reservoir was increased from 10°C to 90°C in 10°C increments and temperature
readings (actual temperature vs measured temperature) were monitored by the calibration

software.

Slope and offset calibration coefficients were computed by the MAX software. During
experimentation these calibration coefficients were read in by the MATLAB post processing

software and applied to all raw sensor data prior to plotting.

4.3.2 Pressure Sensor Calibration

Pressure sensors were calibrated by connecting them to the factory calibrated PACE 5000 pressure
controller. In a similar procedure to that performed for the RTDs, the PACE 5000 exposed the
sensors to Nitrogen pressures from 0 psi to 1400 psi in 200 psi increments while readings of
measured vs actual pressure were monitored by the National Instruments MAX calibration
software. Again, slope and offset calibration coefficients were computed by MAX for use in the

MATLAB post processing software.
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4.3.3 Viscometer Calibration

The viscometer arrived from the manufacturer factory calibrated, however, since its accuracy was
of prime importance to this research study it was decided that the factory calibration would be
verified in the lab. A NIST traceable viscosity calibration fluid (N2500) was ordered that was highly
sensitive to changes in temperature. Between 20°C and 80°C the viscosity of this fluid changed
enough to cover approximately 70% of the measurement range of the viscometer giving a wide

range of temperature versus viscosity points to calibrate the viscometer against.

The viscometer was installed in the test chamber and the chamber filled with N2500. Using the
monitoring and control software written for the apparatus, a test procedure was written that
simultaneously controlled the temperature setpoint of the calibration fluid within 20°C and 80°C
and took measurements from the calibrated RTDs and the viscometer. In addition, the static
pressure in the chamber was controlled to observe its effect on the viscosity of the calibration fluid

although no NIST data was available to verify the pressure dependence against.

The resulting viscosity versus temperature and pressure data was processed and plotted in custom
Matlab post processing software and is shown in Figure 33. The plot shows viscosity measurements
for four temperature series plotted against a range of test pressures. The stars indicate the NIST
traceable viscosity values for each temperature setpoint measured at zero gauge pressure. The
wide spacing between these points is indicative of the high sensitivity of viscosity to temperature
(changing 20 times in magnitude over a 60°C span). As can be seen in the plot, there was close
agreement between the actual and measured viscosities. The maximum measurement error of
7.9% occurred at 80°C while the minimum error of 2.7% occurred at 20°C. Considering the
sensitivity of N2500 viscosity to temperature, these relatively small errors give a high degree of
confidence in both the factory calibration of the viscometer and in the test chamber temperature
control system. It should be noted that although the commissioning of the temperature control
system is described later in this text, it was performed prior to the viscometer calibration

experiments.
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Figure 33 — Plot of NIST traceable viscosity values and viscosity calibration data for N2500.

4.4 System Commissioning

4.4.1 Temperature Control System Commissioning

The temperature control system was the first system in the experimental apparatus to be

commissioned. Each thermal commissioning trial involved filling the chamber up with a test fluid

and then stepping up the setpoint temperature from 20°C to 80°C in set increments allowing the

system to arrive at steady state after each setpoint change. RTDs were positioned at various radial

and axial positions in the chamber and data was logged continuously. Several thermal

performance metrics were deduced from this data including heating time between setpoints, radial
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and axial temperature gradients, and temperature stability. These are defined below followed by a

sample data set from a commissioning experiment.

4.4.1.1 Heating Time

During the equipment design, heating times were roughly estimated using a radial heat transfer
model so as to compare different possible chamber geometries against one another from a thermal
standpoint. This is briefly introduced in Appendix B. The thermal commissioning trials provided a
measurement of actual heating times. These more accurate values allowed more precise
calculation of the estimated duration of later multi-temperature setpoint experiments. When
analyzing the data from the thermal commissioning trials, rise time was used to describe the

approximate heating time between setpoints.

44.1.2 Temperature Gradient

The viscometer needed to be exposed to a fluid of homogeneous temperature in order to yield the
most accurate viscosity measurements. For this reason, it was important to understand whether
any axial or radial temperature gradients existed in the chamber region surrounding the viscometer
bulb. Logging from RTDs at a variety of known radial and axial positions during the commissioning
trials allowed the magnitude of both gradients to be observed during transient and steady state
operation of the device. When analyzing the commissioning trial data, four RTDs were used to

observe the radial temperature gradient and eight RTDs for the axial gradient.

4413 Temperature Stability

Two of the desired outcomes from the acoustic excitation experiments were the observance of any
thixotropic effects and the observance of whether sustained acoustic excitation had any effect on
fluid viscosity. Both observations were time dependent and thus required that viscosity

measurements be taken over prolonged periods of time. During these periods, temperature
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stability was critical since changes in viscosity due to temperature fluctuations could lead to a
misinterpretation of the time dependent data. Realizing that the test fluids were unlikely to reach
perfect steady-state temperatures in the amount of time available for each experiment, it was
important to understand the degree of temperature fluctuation that would occur at each setpoint.
Observing that the temperature control system was underdamped, maximum overshoot and speed

of attenuation were used to gauge the relative temperature stability at each setpoint.

44.14 Commissioning Data

Thermal commissioning trials were performed on a variety of test fluids under a wide range of
temperature setpoints and increments. Since this commissioning performance data was primarily
used for internal experiment planning purposes and for programmatic control of experiment
progression, the full set of plots is not presented here. The previous discussion is instead meant to
present some of the considerations that went into mitigating potential errors in viscosity

measurement that may have otherwise been introduced by uncertainty in test fluid temperature.

4.4.2 Pressure Vessel Commissioning

Since the test chamber had a total volume of less than 42.5 litres and was being used for
experiments conducted in a research facility, as per section 2(2)(n) of the Alberta Pressure
Equipment Exemption Order (Alberta Queen's Printer, 2006), it was exempt from the Alberta
Pressure Equipment Safety Regulation. As such, it was not tested by a provincial safety inspector
prior to use in the lab. In lieu of this inspection, commissioning tests were performed to assess the
safety of the chamber under pressure. Three types of tests were performed: static and dynamic

testing of the chamber under pressure and impulse testing of the pressure relief valve.

4.42.1 Quasi-Static Pressure Testing

The first commissioning tests assessed the chamber’s ability to both withstand and maintain

internal pressure. In order to avoid the risk of an explosion should the chamber undergo a
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structural failure, the volume was pressurized with liquid rather than gas. Tap water was used for

this purpose.

With all sensors and flanges installed in the chamber and the pressure relief valve removed, the
volume was filled with tap water at atmospheric pressure. Once filled, a small piston was manually
screwed into one of the end flanges, entering the chamber volume and thereby compressing the
internal fluid. The resulting internal pressure was carefully monitored using the data acquisition
program to avoid over-pressurization. Gauge pressure was gradually increased from atmospheric
pressure to 11.03 MPa (1600 psi) (slightly above the dynamic working pressure of the chamber)

stopping periodically to monitor for pressure leaks.

This testing was repeated when leaks were discovered around some of the peripheral sensors.
After re-sealing the sensors, the chamber was found to be able to withstand and maintain pressure

over the full range of static pressures.

4422 Pressure Relief Valve Testing

During the dynamic pressure commissioning in the tensile testing machine, it was easy to over-
pressurize the chamber. Only a small error in the displacement of the hydraulic piston was required
to generate excessive internal pressures. A pressure relief valve was installed to avoid a potential
accident. The relief valve was factory calibrated to vent at pressures above 10.3 MPa (1500psi);
however, no information was available on its dynamic performance or on its ability to vent high
viscosity fluids. To evaluate these and to verify the factory calibration, a short series of over-

pressurization tests was performed using bentonite slurry (17% mass concentration).

Each experiment involved priming the test chamber with bentonite slurry and then raising the
hydraulic piston into the chamber volume until the pressure relief valve was triggered. Three
experiments were performed. The first two involved raising the internal pressure very slowly to

verify that the relief valve triggered at approximately 10.3 MPa (1500 psi). The trigger events
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observed in both of these trials indicated that the factory calibration was accurate, and gave a basic
indication that the valve was not highly susceptible to fouling by high viscosity fluids. The third trial
involved a step increase in pressure from atmospheric pressure to 11.0 MPa (1600 psi). The
pressure relief triggered and oscilloscope measurements indicated that the internal pressure never
reached 11.03MPa (1600psi). With the success of these trials, it was deemed safe to continue with

the dynamic pressure commissioning.

4423 Dynamic Pressure Testing

A good deal of analysis was performed during the chamber design to determine resonant
frequencies (see Appendix C). The analysis indicated three resonant frequencies in the radial
direction (7, 13, and 22 GHz) and two in the longitudinal direction (23, 48 MHz). Although these
frequencies were many orders of magnitude higher than the desired acoustic stimulation
frequencies, basic resonance testing was carried out on the system to detect any possible resonant

behavior in the operational range.

A series of frequency sweeps were performed from 1-60Hz @ +0.69 MPa (+100 psi) and the
researcher was present to observe/hear any resulting resonant behavior. Over this frequency
range, there was no audible or visual indication of excessive vibration. The risk of a structural
failure due to resonance was deemed minimal and further tests using accelerometers were not

conducted.

4.4.3 Acoustic Excitation System Commissioning

It was important to have an accurate understanding of what dynamic pressure amplitudes and
frequencies could be generated within the test chamber. This final set of commissioning trials
characterized this dynamic performance of the acoustic excitation system and yielded the variable
limits used in the acoustic excitation parametric study. Two types of commissioning experiments
were required to gain this understanding of the system behaviour: (1) quasi-static compressibility

experiments for determining the precise relationship between hydraulic piston position and
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chamber pressure; and (2) dynamic compression experiments for determining the frequency

response of the tensile testing machine hydraulics.

443.1 Quasi-Static Compressibility Experiments

The quasi-static compressibility experiments provided the data needed to check the previously
derived constitutive relationship between hydraulic piston stroke and internal chamber pressure.
The procedure was similar to one performed in the pressure vessel commissioning. The chamber
was primed with a test fluid and the hydraulic piston was then slowly raised into the chamber
volume, compressing the test fluid and pressurizing the chamber up to 9.65MPa (1400psi). Using a
digital oscilloscope, the piston position data was logged from the tensile testing machine’s linearly
variable differential transformer (LVDT) alongside the pressure data from one of the chamber
pressure sensors. The resulting oscilloscope trace from one trial is shown in Figure 34. The orange
curve (upper) represents the internal chamber pressure while the blue curve (lower) represents the
piston displacement. As can be seen by the phase lag between the two curves, no appreciable

pressurization occurs until the piston has moved approximately 50% of its total displacement.
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Figure 34 - Oscilloscope trace illustrating non-linear pressurization due to residual gas in the test chamber

As seen in the figure, the relationship between internal pressure and piston position was highly

non-linear at the onset of pressurization and only became linear at higher internal pressures.
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Subsequent quasi-static compressibility experiments performed on other test fluids showed this
same non-linear behavior. This was contrary to the linear constitutive relationship developed in the
engineering analysis of fluid compressibility. Further reading on the topic of fluid compressibility
(McCain, 1990) revealed that this behavior was likely the result of small amounts of residual gas left
in the test chamber, gas that the engineering analysis had assumed was completely removed. The
cause is likely that during the initial piston compression (at low pressures), residual gas was
compressed and forced back into solution so it was not until after this occurred that compression of
the test fluid became linear with piston position. Figure 35 shows this graphically by overlaying an
ideal time trace of a piston compression and the resulting linear and non-linear pressurizations

within the test chamber.
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Figure 35 — Plot of piston position against chamber pressure showing linear and non-linear pressurization regions and
state of residual gas.

In all test fluids, the linear pressurization region began at pressures near 1.38MPa (200psi) but the

acoustic excitation experiments were designed to be performed at estimated reservoir pressures
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[i.e. 3.45 MPa (500 psi)] which meant that during experimentation, the test fluids were in the region
of linear compressibility. The data collected during these quasi-static compressibility experiments
was more accurate for predicting/controlling the pressure amplitude than the analytically derived

constitutive relationship and so the empirical relationships were used.

4432 Dynamic Compressibility Experiments

The constitutive relationships developed from the quasi-static compressibility data allowed precise
prediction of the internal chamber pressure; however, information on the frequency response of
the hydraulics was still needed to fully understand the dynamic performance of the acoustic
excitation system. Pressurization frequency was dependent on piston velocity. The tensile testing
machine hydraulics limited which amplitude/frequency pairs were possible since they governed the
maximum velocity of the piston at any given stroke length. The aim of the dynamic compressibility
experiments was thus to determine the maximum pressurization frequencies achievable at a given

set of acoustic pressure amplitudes.

Acoustic pressure amplitudes of +0.69, 1.38, 2.76 MPa (+100, 200, and 400 psi) were selected for
the dynamic testing. Each test consisted of priming the test chamber with N2500 (highly
compressible and thus the probable worst case), raising the internal pressure up to 3.45 MPa
(500psi) then cycling the piston in a sinusoidal motion to generate the target acoustic excitation
amplitude. Piston frequency was gradually increased using the function generator. The chamber

pressure and piston LVDT output were monitored with a digital oscilloscope.

The tensile testing machine was wired such that it would sacrifice piston stroke in favor of
maintaining the target pressurization frequency. In this configuration, failure of the hydraulic
system to produce a desired pressurization frequency/amplitude combination was easily
identifiable by a drop in pressure amplitude and piston stroke. Figure 36 illustrates such a scenario
for water pressurized at 3.45 MPa (500 psi) static pressure and cycled at +1.38 MPa (200 psi)
acoustic pressure. The oscilloscope trace shows the chamber pressure observed over an upward

and then downward frequency sweep. As evidenced by the degraded sine wave at high
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frequencies, the hydraulics were unable to accurately sustain this amplitude/frequency
combination. By performing the tests at each of the acoustic pressure setpoints and observing the
frequency which triggered the onset of a drop in amplitude, the frequency response of the acoustic

excitation system was characterized. The resulting amplitude/frequency data are summarized in

Table 8.
Acoustic pressure amplitude drop
observed at highest frequencies
i
K
/x.'
.-xz.'
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PR Approximately constant acoustic pressure
amplitude observed at lower frequencies

Figure 36 — Zoomed in oscilloscope trace of a dynamic pressurization experiment illustrating the pressure drop seen at
high pressurization frequencies

Table 8 - Maximum pressurization frequencies/amplitudes achievable with N2500

Acoustic Excitation
Amplitude +0.69 [100] +1.38 [200] +2.76 [400]
(MPa) [psi]

Drop-off Frequency
(Hz)

115 55 20
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As acoustic pressure amplitude increased, the maximum achievable pressurization frequency
decreased. This frequency response data was used to determine the frequency setpoints in the
acoustic excitation parametric study. In order to test each acoustic pressure amplitude at the same
frequencies, the frequency setpoints in the parametric study were capped at the lowest achievable
frequency: 20Hz. The amplitude and frequency ranges used in the test matrix were therefore set at

10.69, 1.38, 2.76 MPa (100, 200, 400 psi) and 5, 10, 15, 20 Hz respectively.

4.5 Summary

The experiments performed in the commissioning and calibration of the experimental equipment
were presented in this chapter. Calibration of the temperature, pressure, and viscosity sensors was
performed and analysis of the commissioning data showed that the vessel was capable of safely
controlling and maintaining the pressures and temperatures called for in the model reservoir
assumptions. In addition, commissioning trials of the acoustic excitation system indicated that the
apparatus was capable of subjecting fluid samples to sinusoidal pressure fluctuations of up to 2.76

MPa (400 psi) at frequencies of up to 20Hz.
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Chapter 5 Acoustic Excitation Experiments

5.1 Introduction

Chapter 5 presents the results of the acoustic excitation experiments along with a discussion of
potential industrial implications of the findings. The discussion is divided into sections for each test
fluid and, where applicable, subsections for each of the two types of data plots: time series plots
and amplitude frequency plots. The following discussion will aid the reader in the interpretation of

these data plots.

5.1.1 Time Series Plots

Time series plots are used in this chapter to illustrate the time-dependent viscous behavior of test
fluids. These include any changes in viscosity that occur during acoustic excitation as well as any
thixotropic or rheopectic behaviors that occur after excitation has ceased. All such time series plots
are similar to one another in that they each present viscosity on the vertical axis against time on the
horizontal axis. Figure 37 is an example of such a plot illustrating time dependent viscous behavior
of a fluid which undergoes a viscosity reduction during excitation. The labels on this figure indicate
the period where acoustic excitation takes place as well as identify the “baseline viscosity”,
“stimulated viscosity”, and “recovered viscosity”, terms used later on in the discussion of results to
describe the steady state viscosity readings taken at various points during an experiment. As is
evident from this figure, the speed of response to the onset of acoustic excitation and the speed of

viscous recovery can also be gauged from a time series plot.

While amplitude frequency plots are presented for each of the test fluids, time series plots are only
presented where measurably significant viscosity changes are detected so that a presentation of

the time dependent viscous behavior would complement the discussion.



72

Baseline 77777
Viscosity ~ Acoustic Recovered
7 . Viscosity

S N

Viscosity

Stimulated
Viscosity

Time

Figure 37 - Schematic representation of time dependent viscous behaviour illustrating the ‘baseline’, ‘stimulated’, and
‘recovered’ viscosities

5.1.2 Amplitude Frequency Plots

Much information can be obtained from time series plots however they are ineffective at
illustrating the dependence of viscosity on acoustic excitation parameters. In a potential reservoir
production strategy employing acoustic excitation over a large volume for long periods of time, the
asymptotic stimulated viscosity would be of more interest than the transient viscous behavior. A
different data plotting scheme is more effective for quantifying such data. ‘Amplitude frequency
plots’, as they are referred to in this document, use averaged data taken from time series plots to

illustrate the effects of acoustic excitation amplitude and frequency on the stimulated viscosity.

Figure 38 illustrates the amplitude frequency plotting strategy. Each colored data series represents
a given acoustic excitation amplitude and each point on the data series represents the steady state

viscosity of the fluid measured at a given acoustic excitation frequency. Contrary to time series
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plots where stimulated viscosity is shown more qualitatively, amplitude frequency plots show
calculated quantitative values for stimulated viscosity. Each point is the result of averaging the final
portion of viscosity data collected at the asymptotic stimulated value. These data averaging
operations (performed in MATLAB) serve the function of removing the slight viscosity oscillations
caused by minor temperature fluctuations centered about the setpoint temperature. By averaging
over several temperature fluctuation cycles, this allows for the calculation of single point stimulated

viscosity values at the setpoint temperatures.

The solid horizontal black line on the plot indicates the baseline viscosity of the fluid (i.e., under no
acoustic excitation) and error bars at £10% of the measured value have been calculated and plotted
for each data point. This 10% error is meant to encompass errors in viscosity measurement
(maximum of 9% as seen on Figure 33) and in temperature measurement (estimated at 1% since
sensors were calibrated). This plotting strategy reveals the significance of acoustic excitation
amplitude and frequency on the viscosity of the test fluids. A data point with error bars overlapping
the solid horizontal line indicates that at that particular amplitude and frequency, acoustic
excitation does not have a measurably significant effect on the viscosity of the fluid being tested
since any deviation from the baseline viscosity could be due to temperature or viscosity
measurement error. By the same logic, a data point with error bars lying outside the solid
horizontal line indicates a measurably significant effect of acoustic excitation on the stimulated
viscosity of the fluid. Examples of both such observations (green series — significant, blue series —

insignificant) are illustrated in Figure 38.
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Figure 38 — Sample amplitude frequency plot depicting measurably significant (green) and insignificant (blue) results of
an acoustic excitation experiment

In addition to providing insights as to the effect of acoustic excitation on viscosity, this plotting style
facilitates future economic analyses of viscosity dependent production technologies. If the
viscosity-temperature relationship is well characterized for a fluid, one could use an amplitude
frequency plot to estimate the acoustic excitation amplitude and frequency combination required
to generate the equivalent change in viscosity. Provided information is available on both the cost of
heating the fluid and on the cost of acoustically exciting the fluid to its stimulated viscosity, a cost
comparison between the two methods of viscosity modification could be made to determine which
viscosity modification technique is most cost effective. This analysis was outside of the scope of the

current study.
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5.2 N2500 Calibration Standard

5.2.1 Amplitude/Frequency Plot

The amplitude frequency plot for the N2500 viscosity calibration standard is shown in Figure 39. As
indicated by the close proximity of the horizontal dashed black lines to the solid black line, there is a
relatively small change in the viscosity of N2500 over a 0.25°C temperature range. Despite this
cramping of the threshold lines one can see that for all acoustic excitation amplitudes and
frequencies tested, the viscosity points overlapped or barely dipped below the lower threshold line.
This indicated that at the amplitudes and frequencies tested, acoustic excitation had a negligible

effect on the viscosity of N2500.
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Figure 39 - Amplitude frequency plot for N2500 calibration standard
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5.3 Bentonite

5.3.1 Amplitude/Frequency Plot

The amplitude frequency plot for a 13% mass concentration of bentonite is shown in Figure 40.
Similar to the plot for N2500, the +0.25°C threshold lines are in very close proximity to the solid
black line and in this case are barely distinguishable. Contrary to the case for N2500 however, the
data series show that acoustic excitation causes a significant change in the viscosity of this

bentonite mixture.
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Figure 40 - Amplitude frequency plot for bentonite (13% mass concentration)
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The three acoustic excitation amplitude series are well below the lower threshold line which
indicates measurably significant viscosity reductions at all acoustic excitation amplitudes. There is a
positive correlation between the acoustic excitation amplitude and the magnitude of the viscosity

reduction as indicated by the separation between the increasing amplitude series.

The lowest acoustic excitation amplitude series (£100psi - blue data points) showed the smallest
viscosity reductions, approximately 5% from ~1220cP down to ~1150cP. Similarly, the largest
amplitude series (+400psi — green data points) showed the largest viscosity reduction,
approximately 75% from ~1220cP down to ~300cP. The middle amplitude series (200 psi — red
data points) showed a viscosity reduction near in magnitude to the *400psi series indicating a
possible non-linear correlation between the magnitude of the acoustic excitation amplitude and the
magnitude of the viscosity reduction. This non-linearity also indicated the possibility that there may
be a maximum possible (i.e. asymptotic) reduction in viscosity with increasing acoustic excitation
amplitude. A broader range of acoustic excitation amplitude experiments would be required to

increase the resolution and make this determination for certain.

The fact that each amplitude series is approximately horizontal indicates that for the range of
frequencies tested there is minimal effect if any of acoustic excitation frequency on viscosity. There
is however very likely a minimum acoustic excitation frequency below which viscosity is unaffected
by excitation. The reasoning behind this rests on the fact that at some very low frequency, the
nature of stimulation ceases to be acoustic and is instead quasi-static pressurization. At this point,
it is expected that the stimulated viscosity would be the same as the baseline viscosity. The exact
frequency where this occurs could be determined by repeating the acoustic excitation experiment

at a number of frequencies approaching OHz.

5.3.2 Time Series Plots

Figure 41 is a snapshot of the acoustic excitation experiment performed at +400psi at 5 Hz using a

bentonite sample. The shape of this curve was common to all other experiments performed on
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bentonite at different stimulation amplitudes and frequencies, the only difference being the
magnitude of the viscosity reduction. The onset and termination of acoustic excitation are marked
on the figure alongside a number of other points of interest including the baseline, stimulated, and

recovered viscosities.
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Figure 41 - Time series plot of a bentonite sample stimulated at +400 psi at 5Hz exhibiting changes in viscosity

As can be seen by the steep negative slope of the viscosity curve following the onset of stimulation,
the initial viscosity reduction occurred rapidly. For the curve presented above this amounted to a
27% reduction in viscosity in 82 seconds. Further viscosity reduction occurred at a slower rate until
the stimulated viscosity was eventually reached just short of 2 hours into the stimulation cycle.

Viscosity curves at other stimulation amplitudes and frequencies showed this same behaviour with
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stimulation at +100psi exhibiting slightly slower initial rates of viscosity reduction (approximately

15% drops in 120 seconds) than the +200 and +400psi curves which were similar to one another.

Figure 42 is a time series plot for the +200 psi experiment (red curve) of Figure 40. As can be seen
on this graph, the viscosity of the test sample is reduced to the minimum value of stimulated
viscosity shortly after the onset of excitation at the different frequencies. The 10, 15, and 20 Hz
tests show almost complete agreement in their behavior whilst the 5Hz test follows a less steep
curve and plateaus at a slightly higher minimum viscosity. It is postulated that the discrepancy in
curve shapes might be caused by the rate of energy input to the system, which is a function of the
frequency. The lower left portion of the graph does indicate that the 20 Hz test reached the
stimulated viscosity slightly before the 15 Hz test which in turn reached its stimulated viscosity
slightly before the 10 Hz test. No theories are put forward as to why the 5 Hz test plateau was

higher than the others.
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Figure 42 - Time series plots of a bentonite sample stimulated at £200 psi at 5, 10, 15, and 20 Hz

The final viscosity drop identified on Figure 41 was present in all bentonite trials and occurred
immediately after excitation was ceased. It was suggested that this final drop might be caused by
the piston returning to its neutral position upon termination of the acoustic excitation cycle. Figure
44 shows an example of the viscosity, temperature, and pressure within the cylinder in the brief
period following an acoustic excitation cycle. As expected, there is a marked decrease in chamber
pressure as the piston is withdrawn to its neutral position which in turn results in a sharp drop in

viscosity.
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Figure 43 - Enlarged graph of a final viscosity drop illustrating how viscosity drop magnitude and drop time are

measured
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Figure 44 - Plot showing the magnitude and duration of a viscosity and pressure drop observed immediately following
the termination of stimulation in a bentonite slurry (+200 psi @ 15Hz).

Another test was performed on a bentonite sample, this time designed to ascertain whether the
primary viscosity drops were absolute or relative in magnitude (i.e. whether or not the viscosity at
the onset of stimulation affected the magnitude of the stimulated viscosity). A 10% mass
concentration bentonite sample was stimulated at £400 psi at 5 Hz until the stimulated viscosity
could be estimated. Stimulation was then stopped for a brief time allowing only a partial viscous
recovery to take place before stimulation was restarted. This process was repeated three times and

yielded the results shown in Figure 45.



83

900 T T T T T T T 22
800 \‘ | /\ 420
TRTRY ] \ TRURY

700 H 18
— . =)
S Acoustic —
= 600} Stimulation 16 &
g 2
L)

500 -1 ; 114

400 112

300 10

0 2 4 6 8 10 12 14 16 18 20

Time [hrs]

Figure 45 - Time series plot of a bentonite sample illustrating how viscosity drops to a minimum value irrespective of
whether recovery is allowed to complete

The blue line represents the viscosity logged over the duration of the experiment and the red line is
included to help illustrate the asymptotic approach to a final stimulated viscosity value. The start
and termination of each stimulation cycle are marked on the figure. The reader may also observe
how the shape of each stimulation cycle and the final viscosity drops observed upon termination of

stimulation are similar to those previously discussed in Figure 41.

As can be seen in Figure 45, stimulating the bentonite sample before viscous recovery could
complete had no effect on the magnitude of the stimulated viscosity. Each stimulation period

approached the same asymptotic stimulated viscosity value. It can therefore be concluded that
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there is a minimum stimulated viscosity magnitude that is reached over time regardless of the

stimulation history of the bentonite.

It was desired to better understand the mechanism by which changes in bentonite viscosity took
place. It had been observed that the consistency of freshly mixed bentonite samples changed
dramatically over the first 24 hours, becoming much more gelatinous over time, in a similar way to
how stimulated samples underwent thixotropic recovery. It was therefore postulated that the
observed changes in viscosity measured during the acoustic excitation experiments may have been
caused by a disintegration of the gel structure during stimulation. A thorough investigation of the
bentonite gel structure during and after stimulation was beyond the scope of this study however a
comparison of thixotropic recovery data and viscosity data from a newly mixed sample was done as

an initial test of this theory.

Figure 46 plots two viscosity series on the same time scale. One is the measured viscosity of a
bentonite sample immediately following the cessation of stimulation at +400 psi at 5 Hz. The other
is the viscosity of a bentonite sample of a slightly higher mass concentration (16% vs 13%) 10
minutes after it was first mixed. The temperature of both samples was maintained at 20°C. As the
figure shows, the viscosity of both samples is almost the same at the onset of the measurements.
The viscosity of both samples then gradually increased over time, eventually reaching their
respective asymptotic viscosity values. An ideal comparison would have used samples of exactly
the same mass concentration however only this data was available at the time of writing. Despite
this fact, it is obvious that the curves have a similar shape. If the newly mixed sample were of a
lower mass concentration (i.e. 13%), it is conceivable that its viscosity curve would be closer to
overlapping that of the recently stimulated sample since it would approach a lower asymptotic
viscosity value. Further experimentation observing such conditions is therefore warranted in a

thorough investigation of the mechanism of viscosity change in bentonite.
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Figure 46 - Graph showing the thixotropic recovery of a recently stimulated bentonite sample against the viscosity of a
newly mixed bentonite sample

It is worth noting that the unstimulated viscosity values measured for bentonite using the test
chamber were quite different from those quoted in industry at similar temperatures and
concentration. Perfect data comparisons were not available but in one rough comparison, a 10%
concentration sample at 20°C was estimated to be around 50cP in industry whilst a 13%
concentration measured 1200cP in the test chamber. As Figure 32 showed, measurements taken
over a wide range of shear rates yielded a viscosity range stretching several orders of magnitude so
it is hypothesized that this difference may be the result of measuring at different shear rates (lower
shear rate in the test chamber). More details of the industry experiments would be required to

confirm this.
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54 Bitumen

5.4.1 Amplitude/Frequency Plot

The amplitude frequency plot for bitumen is shown in Figure 47. There is a relatively large change
in the viscosity of bitumen over 0.25°C as indicated by the distance between the horizontal dashed
black line and the solid black line. Similar to the case for the N2500 calibration standard one can
see that for all acoustic excitation amplitudes and frequencies tested, the viscosity points were
located within the measurably insignificant region between the lower threshold line and the
baseline. This indicated that at the amplitudes and frequencies tested, acoustic excitation had a

negligible effect on the viscosity of bitumen.
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Figure 47 - Amplitude frequency plot for bitumen at 80°C
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This result is discouraging for potential in-situ production strategies since no significant change in
bitumen viscosity was detected. Further testing at a wide range of amplitudes and frequencies
would be required to make a concrete statement on the potential usefulness of acoustic excitation
as a production technology however judging from the data collected in this study, the chemical and
thermal production technologies discussed in the introduction remain the best in-situ methods for

reducing the viscosity of the bitumen fraction in oil sand reservaoirs.

5.5 Cornstarch and 0il Sand

In order to meet the deadlines of the industrial sponsor, acoustic excitation experiments on oil sand
were accelerated ahead of the cornstarch experiments. As a result of damage that occurred to the
viscometer and RTDs during the oil sand experiments and the time and cost involved in sending the
device out for repair, the cornstarch investigation was discontinued. It is instead left as point for
future study. Appendix E provides a more thorough explanation of how the granular nature of the

oil sand resulted in the damage to the viscometer and RTDs.
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Chapter 6 Conclusions and Recommendations for Future Work

6.1

Conclusions

6.1.1 Experimental Apparatus Development

A novel experimental apparatus was developed which was capable of studying the effects of

acoustic excitation on the viscosity of an enclosed fluid sample. The apparatus was capable of:

Simulating the temperature and static pressure conditions present in an intermediate depth
oil sand reservoir with temperatures ranging from -20 to 95°C and static pressures ranging

from 0 to 1500 psi.

Measuring the temperature and pressure at an array of locations in and around the test

sample.
Measuring the infinite shear viscosity at the centre of the test sample.

Subjecting the test sample to one-dimensional acoustic excitation at amplitudes ranging

from 0 to 400psi and frequencies from 5 to 20 Hz.

Running parametric experiments whilst logging sensor data in near real-time and

populating graphs on a custom design control program with a graphical user interface.

In addition to the physical apparatus and control software, a custom Matlab script was written for

post-processing the experimental data. This script was responsible for:

Applying calibration coefficients to raw experimental data and density correction factors to

viscosity data
Parsing and analyzing the experimental data to detect regions of interest

Plotting the processed experimental data on customized graphs to reveal trends
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Several calibration experiments were performed to ensure the integrity of the data being collected.

Sensors were calibrated as follows:

e RTDs were calibrated using a factory-calibrated temperature controlled water bath.
Sensors were suspended in the bath and incrementally subjected to prescribed
temperatures. Calibration coefficients were calculated using the National Instruments MAX

calibration utility.

e Pressure transducers were calibrated using a factory-calibrated air pressure controller.
Sensors were installed in the test chamber and incrementally subjected to prescribed static
pressures. Again, calibration coefficients were calculated using the National Instruments

MAX calibration utility.

e The viscometer was calibrated using a NIST traceable viscosity standard (N2500). The
viscometer was suspended in the fluid at atmospheric pressure and the temperature was
adjusted incrementally such that the viscosity of the fluid varied over the measurement

range of the viscometer.

6.1.2 Experimental Results

Acoustic excitation experiments were performed on a variety of test fluids. The following

observations were derived from the resulting data:

e Acoustic excitation at a magnitude of 0 to 400psi and at frequencies of 5 to 20 Hz did not
have a measurable effect on the viscosity of N2500 or bitumen

o Acoustic excitation under these conditions is therefore not suitable for reducing the

viscosity of the bitumen fraction in an intermediate depth oil sand production

reservoir

e Acoustic excitation under the same conditions had a measurable effect on the viscosity of

bentonite and water slurry (tested at a 13% bentonite mass concentration)



O

O

90

Increased acoustic excitation amplitude resulted in decreased bentonite slurry

viscosity (negative correlation).

The magnitude of this effect appeared to be asymptotic with the difference
in stimulated viscosity between 100 and 200psi being greater than the
difference in stimulated viscosity between 200 and 400psi. This echoes the

viscous behavior reported in (Ariadji, 2005)

In the range of 5 to 20Hz, acoustic excitation frequency did not have a measurable

effect on the viscosity of bentonite slurries tested (no correlation). This contrasts

the results reported in (Ariadji, 2005) where it was observed that excitation

frequency had a measurable impact on viscosity. This difference could be the result

of the testing being performed on different fluids.

Changes in bentonite slurry viscosity due to acoustic excitation were time

dependent

Large viscosity reductions occurred immediately after the onset of the
acoustic excitation. Initial viscosity reductions as high as 20% per minute
were observed.

Viscosity asymptotically approached a minimum value over time. Total
viscosity reductions as high as 75% were observed.

Immediately following the termination of acoustic excitation, bentonite
viscosity dropped sharply from the asymptotic value. The magnitude and
duration of this final viscosity reduction increased with increased acoustic
excitation amplitude (positive correlation)

Thixotropic behavior was observed once acoustic excitation was terminated

Subjecting bentonite samples to acoustic excitation before thixotropic recovery

could complete had no effect on the magnitude of the asymptotic viscosity.

Viscosity reductions due to acoustic excitation are therefore independent of the

initial viscosity of the bentonite slurry.
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6.2 Recommendations for Future Work

As a result of the damage that occurred to the viscometer during the oil sand experiments and time

constraints on the project, a number of experiments could not be performed. The following are left

as suggested future exercises for persons wishing to continue this work:

e Continue the study of the effects of acoustic excitation on the viscosity of bentonite

slurries. Specifically:

O

Performing acoustic excitation experiments at lower frequencies (0 to 5 Hz) may
yield a cutoff frequency where stimulation ceases to be acoustic and is instead
guasi-static in nature. In place of the large viscosity reductions observed during
acoustic excitation, relatively small changes in viscosity are expected under quasi-
static pressure loading so the behavior around this cutoff frequency is of interest.
Studying the final viscosity drop observed after termination of acoustic excitation
could yield insights as to the relationship between the magnitude of the acoustic
excitation and the magnitude and duration of this final viscosity reduction. A
greater resolution of acoustic excitation amplitudes and a more responsive
viscometer would be required for such an investigation.

Performing similar experiments using a larger number of acoustic excitation
amplitudes could provide insight into whether the negative correlation between
viscosity and acoustic excitation amplitude is non-linear, as was hinted at by the
current experiments.

Studying the effects of the acoustic excitation waveform on the viscous response of
bentonite slurries (i.e. square, sawtooth, etc. vs sinusoidal waveform) could result
in a different dynamic response due to the different stress patterns acting on the
particles as they try to settle.

Two of the experiments in the current study were discontinued when the viscosity
of the bentonite sample failed to undergo complete thixotropic recovery. This
permanent reduction in viscosity occurred after extended periods of excitation at
1+400psi. Understanding the mechanism behind this permanent viscosity reduction

and the conditions required to produce it may be of interest to members of the



drilling industry since they subject bentonite to cyclic pressurization during slurry

pumping operations.

Investigate the effects of acoustic excitation on the viscosity of other fluids. Specifically:
o Dilatant fluids such as cornstarch and water mixtures.
o QOilsand. A study using oil sand would require a vane rheometer or some better
method for measuring the viscosity of such a course substance. The study would
have limited applicability to an in-situ production technology since oil sand at

intermediate depths is effectively a solid.

92
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Appendices

Appendix A Pressure Vessel Design

To ensure safe operation when pressurized, a significant amount of time was spent designing the
experimental apparatus chamber to withstand the range of internal pressures needed to simulate
downhole reservoir conditions. As the first component of the engineering design, the Alberta
Boilers Safety Association (ABSA) documentation governing the design and operation of boilers and
pressure vessels was consulted extensively to ensure compliance with provincial legislation. The
design and operation of the apparatus chamber was exempted from provincial regulations since the
device was of a small volume and was to be used for research. With the legislative requirements

met, focus was then shifted to the mechanical design of the chamber.

The initial pressure vessel design was based on the thick-walled pressure vessel equations
commonly found in strength of materials textbooks such as (Popov, 1998). These gave insights into
the radial, axial, and longitudinal components of stress and thus the combined von Mises stress
present in the chamber walls. The analysis was then refined to include stress concentrations at the
sensor mounting locations as well as a fatigue analysis since the chamber was to be subjected to
cyclical pressure loading. After including a conservative factor of safety, the resulting wall thickness
was used in the Solidworks CAD model. As the chamber already needed to be a fairly complex
geometry with regards to areas of stress concentration, every attempt was made to avoid welding
on the pressure bearing walls. For this reason, the CAD model was designed such that the

structural component of the chamber would be machined as a single component.

Once the CAD model was fully developed, including the Class 1500 flanged ends of the chamber and
the sensor mounting locations, an FEA analysis was performed using Solidworks COSMOS to get a
more accurate picture of the stress distribution. The original calculations proved to be quite
accurate in this respect and no further modification of the CAD model was required. Regardless of

the close agreement between the two analyses, the chamber was still hydro-tested before being
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used in acoustic experiments. The figures below show the graphical result of an FEA analysis and

the manufacturing of the main chamber in the CNC mill.

Figure 48- Left: Stress distribution in the chamber structure (from a Solidworks COSMOS FEA internal pressure study).
Right: Main body of the chamber being manufactured on the CNC mill (water jacket was later welded on).
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Appendix B Thermal Design

It was anticipated that experiments using samples with low thermal diffusivities such as bitumen
and oil sand would take several hours to stabilize at the temperature setpoints. In order to gain a
better understanding of how long these tests would actually take, a transient heat transfer analysis
was performed to estimate the heating times required to bring room temperature samples up to

the maximum testing temperature of 80°C.

As a first approximation, heating times were calculated using a radial heat conduction simulation in
Solidworks COSMOS. Even distribution of the water jacket inlet and outlet ports around the
perimeter of the chamber allowed an assumption of radial symmetry. The analysis also assumed a
constant outer wall temperature of 100°C, the maximum temperature of the ethylene glycol

mixture in the water bath.

Using bitumen as the worst case scenario with regards to thermal diffusivity, the analysis yielded an
upper limit of approximately 8 hours for heating a test sample from 20°C to 80°C. Actual testing
using bitumen showed this analysis to be a somewhat conservative estimate since heating times
were on the order of 5-6 hours. Since the device outperformed the theoretical predictions, no
additional effort was made to explain the discrepancy in the heating times though it was thought
that convection within the chamber (which was not included in the simulation) would have

contributed to the error.
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Appendix C Modal Analysis

Since the test chamber was to be subjected to acoustic excitation, there was a risk that it might
inadvertently be stimulated at one of its natural frequencies with potentially dangerous
consequences. In order to determine whether or not this was a legitimate concern it was decided

to estimate these natural frequencies using a modal analysis.

The modal analysis was performed in a series of key steps for both the radial and longitudinal
directions of the test chamber. These consisted of developing material constitutive relationships,
generating lumped parameter models, solving the equations of motion, and solving the specific
solution based on the actual chamber geometry. The complete analysis was submitted for project
credit in the course ENG M 670 — Modeling and Simulation of Engineering Systems in the Spring of

2008. A summary is presented here.

In order to perform the modal analysis, constitutive relationships were needed to relate force to
displacement (i.e. Force = Stiffness X Displacement) for the various sections of the test chamber.
These relationships were derived from the material properties of the various components. For
most sections of the test chamber this involved converting stress-strain relationships to force-

displacement relationships while for the bolted connections, joint stiffnesses were used.

Using these stiffnesses, lumped parameter models were developed for both the radial and
longitudinal motions of the test chamber. Figure 49 and Figure 50 illustrate the position of the
lumped masses as well as the stiffnesses connecting them. Both figures show a radial slice of the
test chamber with both top and bottom flanges bolted in place. In the first case, radial motions
were assumed axisymmetric so the center vertical axis of the test chamber was treated as a fixed
boundary. Similarly, in the second case longitudinal motions were assumed symmetric about the

chamber trunnions so the center horizontal axis was treated as a fixed boundary.
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Figure 50 — Lumped parameter model of the longitudinal motion of the test chamber. Note: The water jacket was not
considered in the longitudinal model.

These lumped parameter models were converted to network diagrams and in turn to free-body
diagrams as shown in Figure 51 and Figure 52. The equations of motion for the lumped masses
were derived from these free-body diagrams and solved by assuming an unforced harmonic motion
of the masses. The natural frequencies and modes of vibration were extracted from the resulting

Eigen value problem using MATLAB.
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Owing to the relatively high stiffness of the test chamber, the calculated natural frequencies were
several orders of magnitude higher than the expected acoustic excitation frequencies (i.e. MHz vs
Hz) so it was concluded that resonance was unlikely to be a major concern during operation.

Despite this conclusion, the chamber was closely observed for resonant behavior the first time it

was subjected to a slow frequency sweep.
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Appendix D Acoustic Pressure Amplitude
One of the analyses associated with generating the acoustic pressure was determining the
constitutive relationship between volumetric compression and pressure generation in the test

fluids. This understanding was essential in sizing the linear actuator piston stroke required for the

acoustic excitation experiments.
It was known early on that this relationship would depend largely on the amount of residual gas in
the chamber however rather than try to account for this in the analysis, design features were

incorporated into the chamber to remove as much of it as possible. The constitutive analysis was

thus assumed to be that for a compressed liquid, i.e.:

=75,

Equation 5 - Isothermal Compressibility Equation for a Compressed Liquid

Where S is the isothermal compressibility, V is the volume of fluid, and p is the pressure.

By modifying this partial differential equation to treat finite changes in volume and pressure, a

relationship between piston displacement and pressure was developed. This is detailed below.

1 VOfluid - Vfluid
Br
T

Vo fruia Po—P
Where Voﬂuid is the initial volume of fluid in the chamber,

Vfiuia is the compressed fluid volume,
Br is the isothermal compressibility of the fluid,

and py — p is the gauge pressure of the fluid.

Incorporating the chamber geometry:
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2
T[Dchamber
Vofluid = Areachamper X Lengthcpamper = 4 Lechamper

Vewia = VOfluid — Piston Volume Displacement

2 2
_ D chamber nDpiston

4 Lchamber - 4 Lpiston stroke

Where Lopamper and Denamper are the axial length and diameter of the inner wall of the chamber,

and Lyiston stroke aNd Dpjston are the piston stroke and piston diameter respectively

Therefore by combining and rearranging the above equations and assuming the fluid is initially at

atmospheric pressure, the gauge pressure resulting from a given piston displacement is:

2
TDpiston L
1 — 4 X Lpiston stroke
p =

E 2

D chamber
4

X Lchamber

Equation 6 - Constitutive Relationship between Piston Stroke and Sample Pressure

When this analysis was initially performed it was decided to size the linear actuator by using the
isothermal compressibility data for water since it was readily available. For the experimental
pressures, this yielded a pairing of a 14mm diameter piston with a 37um piston stroke. As stated in
section 3.3.3.7 this pairing ultimately proved unsuccessful owing to difficulties in removing all of the
residual gas in the test chamber. The subsequent use of a much larger piston with a larger stroke

compensated for this shortcoming.



106

Appendix E Description of Damage to the Viscometer

During the chamber pressurization the viscometer began reporting erroneous viscosity data so the
equipment was dismantled for investigation. Close inspection revealed that the viscometer shaft

was bent during this initial pressurization.

Efforts were made to pack the granular oil sand test sample into the chamber as uniformly as
possible before commencing the first of the oil sand acoustic excitation experiments. Despite these
precautions however it is theorized that a slight inhomogeneous packing caused an internal lateral
flow as the oil sand was redistributed to a homogeneous density under pressure. This internal flow

could have applied the lateral force which bent the viscometer shaft.

The schematics in Figure 53 illustrate how inhomogeneous packing prior to pressurization could
have resulted in the bending of the viscometer shaft. In the left schematic, the left side of the
chamber is more densely packed with oil sand than the right side of the chamber. During
pressurization, the internal flow of oil sand would be from left to right so as to have a homogeneous
density distribution within the chamber. As the right schematic illustrates, this would cause a
lateral bending force on the viscometer bulb (from left to right) resulting in the bending of the

viscometer shaft.
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Figure 53 - Schematic diagrams showing inhomogeneous packing of oil sand in the test chamber (left) and material resettling which caused the viscometer to be bent
(right)
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Appendix F Solidworks Drawings
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Appendix G Monitoring and Control Software Source Code

The following code was written in the National Instruments LabWindows/CVI 9.0 programming
environment. It includes the main function, equipment initialization functions, automated
experiment procedure, student coded instrument functions, and all GUI setup. The text size has

been reduced to conserve space.



// A BASIC log and disply program to communicate with a
// NATIONAL INSTRUMENTS USB DAQ unit and up to 3 serial
// devices

// Written by: Marc D. Evans

// University of Alberta

// Last Updated: June 2010

// Based on a code framework written by Dr. David S. Nobes

11—

#include "Monitoring and Control Program.h"
clude <NIDAQmx.h>

#include <formatio.h>

<stdio.h>

<rs232.h>

<utility.h>

#include <ansi_c.h>

#include <analysis.h>

clude <cvirte.h>

clude <userint.h>

#include <ctype.h>

#include "Monitoring and Control Program_Declare.h"
include "Monitoring and Control Program.h"
include "NIDAQmx.h"

include ""DAQmxIOctrl.h"

clude "visatype.h™

#include "tkafg3k.h"

ViSession  tkafg3k;
#define DAQmxErrChk(functionCall) if( DAQmxFailed(DAQerror=(functionCall)) ) goto Error; else

// DAQ Globals
int32 DAQerror=0;
TaskHandle taskHandle=0;
char chan[256];
int32 DAQrate;
ulnt32 DAQsampsPerChan;
int32 DAQnumRead;
ulnt32 DAQnumChannels;
float64 *DAQdata=NULL;
float64 *DAQArray_Out=NULL;
int DAQlog;
char DAQerrBuff[2048]={"\0"};
double DAQoutMean=0;
int DAQ_Task_Started=0;
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// main : MCP main function

int main (int argc, char *argv[])

if (InitCVIRTE (0, argv, 0) ==
return -1; /* out of memory */

if ((panelHandle = LoadPanel (0, "Monitoring and Control Program.uir™, PANEL)) < 0)
return -1;
// Set the panel variables
g_Handle = LoadPanel (0, "Monitoring and Control Program.uir™, G_SETUP);
com_Handle = LoadPanel (0, "Monitoring and Control Program.uir™, COM);
a_Handle = LoadPanel (0, "Monitoring and Control Program.uir’, ABOUT);
s_Handle = LoadPanel (0, "Monitoring and Control Program.uir®, SAVE_Con);
DisplayPanel (panelHandle);
DSN_Init();
DSN_Init2();

SetSleepPolicy (VAL_SLEEP_MORE);

// Maximise the panel

//SetPanelAttribute (panelHandle, ATTR_WINDOW_ZOOM, VAL_MAXIMIZE);
RunUseriInterface ();

DSN_Update_Graphics();

DiscardPanel (panelHandle);
CloseCVIRTE ();

return 0;
}
//
// ExitCallback : Exit menu
//
void CVICALLBACK ExitCallback (int menuBar, int menultem, void *callbackData, int panel)
{ .

DisplayPanel (s_Handle);

}
//
// QuitCallback : Main panel quit
/

/

int CVICALLBACK QuitCallback (int panel, int control, int event,
void *callbackData, int eventDatal, int eventData2)

{

switch (event)
case EVENT_COMMIT:
DisplayPanel (s_Handle);
break;
case EVENT_RIGHT_CLICK:

break;



}
return 0;

//
// DSN_MainPanelQuit: Main panel quit function
/

/
void DSN_MainPanelQuit(void)
{int i;

QuitUserinterface (0);

return;

//
// Save_MCP_Config: Save the current configuration on exit

//

int CVICALLBACK Save_MCP_Config (int panel, int control, int event,
void *callbackData, int eventDatal, int eventData2)

{

switch (event)

case EVENT_COMMIT:
switch (control)

{

case SAVE_Con_SAVE_YES:
DSN_Save_Vars();
DSN_Save_Config(0);
HidePanel (s_Handle);
DSN_MainPanelQuit();
break;

case SAVE_Con_SAVE_NO:
HidePanel (s_Handle);
DSN_MainPanelQuit();
break;

case SAVE_Con_SAVE_CANCEL:
HidePanel (s_Handle);
break;

break;
case EVENT_RIGHT_CLICK:

break;

return 0;

}

//
// SHOW AND CLOSE CALLBACKS FOR OTHER PANELS
//

//
// GRAPH SETUP

//
int CVICALLBACK SHOW_Graphs (int panel, int control, int event,
void *callbackData, int eventDatal, int eventData2)

switch (event)
{
case EVENT_COMMIT:
break;
case EVENT_RIGHT_CLICK:
DisplayPanel (g_Handle);
break;
return 0;
int CVICALLBACK CLOSE_Graphs (int panel, int control, int event,
void *callbackData, int eventDatal, int eventData2)
switch (event)
case EVENT_COMMIT:
HidePanel (g_Handle);
break;
case EVENT_RIGHT_CLICK:
break;

return 0;

//
// ABOUT
//

void CVICALLBACK SHOW_About (int menuBar, int menultem, void *callbackData,
int panel)

DisplayPanel (a_Handle);
int CVICALLBACK CLOSE_About (int panel, int control, int event,
void *callbackData, int eventDatal, int eventData2)
switch (event)
case EVENT_COMMIT:
HidePanel (a_Handle);
break;
case EVENT_RIGHT_CLICK:
break;

return 0;

//
// COMMUNICATIONS SETUP

//
void CVICALLBACK SHOW_Com (int menuBar, int menultem, void *callbackData,
int panel)

DisplayPanel (com_Handle);

int CVICALLBACK CLOSE_Com (int panel, int control, int event,
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void *callbackData, int eventDatal, int eventData2)
switch (event)

case EVENT_COMMIT:
HidePanel (com_Handle);

break;
case EVENT_RIGHT_CLICK:
break;

return 0;
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//
// DSN_SHIFT_DAQ : Will step data along an array
// : For all data that can be plotted
//
void DSN_SHIFT_DAQ(void)
{

Shift (step, NUM, 1, step)

Shift (S1A, NUM, 1, S1,

Shift (S2A, NUM, 1

Shift (S3A, NUM, 1

shift (S4A, NUM, 1

Shift (S5A, NUM, 1

Shift (S6A, NUM, 1

//shift (S7A, NUM 1, S7A) //*** Omit while S7A is External Bath Probe

Current_Radial Temps[l] S8A[0];

shift (S8A, NUM, 1, S8A);

Shift (S9A, NUM, 1, S9A);

shift (S1B, NUM, 1, ;

shift (S2B, NUM, 1,

Shift (S3B, NUM, 1, S3B);
1 H
1,

T S4p):

Shift (S4B, NuM,
Shift (S5B, NUM,
shift (S6B, NUM, 1, S6B);

Current_Radial Temps[z] = S7B[0];

shift (S7B, NUM, 1, S7B);

Current_Radial Temps[O] = S8B[0];

shift (S8B, NUM, 1, S8B);

Shift (S9B, NUM, 1, S9B);

Shift (Piezo_Temp, NUM, 1, Piezo_Temp);

Shift (Logging_Trig_Array, NUM, 1, Logging_Trig_Array);

return;

//
// DSN_SHIFT_Slow : Will step data along an array
// : For all data that can be plotted

//
void DSN_SHIFT_Slow(int instrument)
switch(instrument)

case 0: // Bath Temperature Array
shift (Bath_Temp, NUM, 1, Bath_Temp);
break;

case 1: // Bath Setpoint Array
Shift (Bath_Setpoint, NUM, 1, Bath_Setpoint);
break;

case 2: // Average Live Viscosity Array
shift (Ave_L Visc, NUM, 1, Ave_L Visc);
break;

case 3: // Average Temperature Corrected Viscosity Array
shift (Ave_TC Visc, NUM, 1, Ave_TC Visc);
break;

case 4: // Bulb Temperature Array
Shift (Bulb_Temp, NUM, 1, Bulb_Temp);
break;

case 5: // Pressure Controller Setpoint
Shift (Stat_P_Setpoint, NUM, 1, Stat P_Setpoint);
break;

case 6: // External Bath Probe
Current_Radial_Temps[3] = S7A[0];
shift (S7A, NUM, 1, S7A); // Only while S7A is External Bath
break;

case 7: // PACE5000 Pressure
Shift (PACE_Pressure, NUM, 1, PACE_Pressure);
break;

}

return;

/
/* Slow_ThreadFunction (): - Separate Thread for Slow Components */

/
int CVICALLBACK Slow_ThreadFunction (void *functionData)
double T1,T2,Hz;

int i, j, k=0;
int count = 0;

/* Start a loop that will process events for this thread */
while (Slow_quitflag == 1)
{

ProcessSystemEvents ();

if(1s_COM1) // Cole Parmer Fluid Bath

Probe
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FlushInQ (SP_comport);
FlushOutQ(SP_comport);

DSN_Poll_Bath_Temp(); 136
DSN_Poll_Bath_Setpoint();
DSN_Poll_Bath_Probe();

GetCtrival(panelHandle, PANEL_S7A, &Probe_Temp_Trigger);
Temperature_Error = Probe_Temp_Trigger - wb_setpoint; // Error

if(1s_COM2) // Viscojet Viscometer
{
FlushInQ (SP2_comport);
FlushOutQ(SP2_comport);

DSN_Poll_Viscosity();
DSN_Poll_Bulb_Temperature();

if(1s_COM3) // GE PACE5000 Pressure Controller
{

DSN_Poll_Pressure_Setpoint();
DSN_Poll_Current_Pressure();

Pressure_Error = (PACE_Pressure_Global - sp_setpoint)/sp_setpoint; // Error

/)=
return 0;
/ /
/* DAQThreadFunction (): - Separate Thread for DAQ */
/* - Logs to file/graphs */
/ /
int CVICALLBACK DAQThreadFunction (void *functionData)
{ double T1,T2,Hz;
double TEMP[10];
int i, j, k=0;
int count = 0;
/* Start a loop that will process events for this thread */
while (DAQquitflag == 1)
{ ++SAMPLES;
T1 = Timer Q; // Start TIME
ProcessSystemEvents ();
/)= -
step[0] = Timer Q; // Get Time
if(1s_DAQ)
DSN_Run_DAQQ);
Logging_Trig_Array[0] = Logging_Trigger;
/)=
ProcessSystemEvents ();
SetCtrival(panelHandle, PANEL_SAMPLES, SAMPLES);
/)= -
if(Is_Log)
DSN_LogFile(); // Log to File
ProcessSystemevents ();
CmtGetLock (DAQ_lockHandle);
if(ls_Graph)
DSN_Graph(Q); // Do Graphing
CmtReleaseLock (DAQ_lockHandle);
DSN_SHIFT_DAQQ); // SHIFT all DAQ arrays
/)=
return 0;
//
// LOG_ON_OFF : Check what ports to run and whether to log to a file
// : Check current experiment configuration
//
int CVICALLBACK LOG_ON_OFF (int panel, int control, int event,
void *callbackData, int eventDatal, int eventData2)
switch (event)
case EVENT_COMMIT:
GetCtrlVal (panelHandle, PANEL_LOG_COM3, &1s_COM3); // Check Devices to Log
GetCtriVval (panelHandle, PANEL_LOG_COM1, &Is_COM1);
GetCtrlval(panelHandle, PANEL_LOG_COM2, &Is_COM2);
GetCtrival (panelHandle, PANEL_LOG_DAQ, &1s_DAQ);
GetCtrlVval (panelHandle, PANEL_LOG_FUNCTION_GEN, &ls_Function_Gen);
GetCtriVval (panelHandle, PANEL_LOG_Graph, &ls_Graph);

GetCtrival (panelHandle, PANEL_LOG_LOGtoFile, &lIs_Log);



GetCtriVal (panelHandle,
GetCtrival (panelHandle,

GetCtrlVval (panelHandle,
GetCtrlVval (panelHandle,
GetCtrival (panelHandle,
GetCtrlval (panelHandle,
GetCtrlVval (panelHandle,
GetCtrlVval (panelHandle,
GetCtrlval (panelHandle,
GetCtrlval (panelHandle,
GetCtrlVval (panelHandle,
GetCtrlval (panelHandle,
GetCtrival (panelHandle,
GetCtrlval (panelHandle,
GetCtrlval (panelHandle,
GetCtrlVval (panelHandle,
GetCtrival (panelHandle,
GetCtrlval (panelHandle,
GetCtrlVval (panelHandle,
GetCtrlval (panelHandle,

GetCtrlval (panelHandle,
GetCtrlVval (panelHandle,
GetCtrlVval (panelHandle,
GetCtrival (panelHandle,
GetCtrlval (panelHandle,

DSN_Get_Sensor_Positions

PANEL_EXP_TYPE,
PANEL_RUN_MODE,

PANEL_SENSOR_SELECT_1A,
PANEL_SENSOR_SELECT 1B,
PANEL_SENSOR_SELECT _2A,
PANEL_SENSOR_SELECT 2B,
PANEL_SENSOR_SELECT 3A,
PANEL_SENSOR_SELECT 38,
PANEL_SENSOR_SELECT 4A,
PANEL_SENSOR_SELECT 4B,
PANEL_SENSOR_SELECT 5A,
PANEL_SENSOR_SELECT 58,
PANEL_SENSOR_SELECT_6A,
PANEL_SENSOR_SELECT 6B,
PANEL_SENSOR_SELECT 7A,
PANEL_SENSOR_SELECT 7B,
PANEL_SENSOR_SELECT_8A,
PANEL_SENSOR_SELECT 8B,
PANEL_SENSOR_SELECT 0A,
PANEL_SENSOR_SELECT 9B,

PANEL_Amp_On_1,
PANEL_Amp_On_2,
PANEL_Amp_On_3,

&Amp_0n
&Amp_0n
&Amp_0n,

PANEL_Amp_On_5, &Amp_On

&Exp_Type);
&Run_Mode) ;

&ls_S1A);
&ls_S1B);
&ls_S2A);
&ls_S2B);
&1s_S3A);
&1s_S3B);
&ls_S4A);
&ls_S4B);
&ls_S5A);
&ls_S5B);
&ls_S6A);
&ls_S6B);
&ls_S7A);
&1s_S7B);
&ls_S8A);
&ls_S8B);
&1s_S9A);
&1s_S9B);

_1);
_2);

_3);
PANEL_Amp_On_4, &Amp_On_.

4);

_5);
Q; // Retrieve Sensor Radial

DSN_Update_Graphics(); // Update On-screen Graphics
break;
case EVENT_RIGHT_CLICK:
break;
return O;
//
// START_STOP : Start/Stop control of Timer Loop
: Use a separate thread
//
int CVICALLBACK START_STOP (int panel, int control, int event,

{

void *callbackData,
int test, test2;
int i,j,delay;

switch (event)

int eventDatal,

case EVENT_COMMIT:

int eventData2)

DSN_Save_Vars();

GetCtrival (panelHandle, PANEL_START STOP, &test2);

SAMPLES = 0;
SetCtrIVaI(panelHandle,

if(1test2) // Stop Inst
{

DSN_Update_Graphics();

if(1s_DAQ)

DAQquitflag = 0;
Delay(1);

// Turn off the Logg
Logging_Trigger =

PANEL_SAMPLES, SAMPLES);

ruments

ing Trigger

SetCtrIVaI(panelHandle PANEL_LOGGING_TRIGGER_LED,0);

DAQmxStopTask(taskHandle);

DAQmxClearTask(taskH

andle);

DAQ_Task_Started = 0;

if( DAQdata )
free(DAQdata);
DAQArray_Out )
free(DAQArray_Out);

if

~

CmtReleaseThreadPoolFunctionlD (DEFAULT_THREAD_POOL_HANDLE,

// Check Experiment Type
// Check Control Type

// Check Sensors to Log
// "On" means Pressure Transducer

/7 “OFf" means RTD 137

Positions from Screen

DAQthreadID);

CmtReleaseThreadPoolFunctionlD (DEFAULT_THREAD_POOL_HANDLE, Slow_threadlD);

Delay(1);
}

i1f(1s_COM1)

FlushInQ (SP_comport);
FlushOutQ(SP_comport);

DSN_Bath_Power_Off();

if(1s_COM3)
{

FlushInQ (SP2_comport);
FlushOutQ(SP2_comport);

DSN_Shut_Down_P_

Delay(1);

}
Delay(1);

Controller();

CmtDiscardLock (DAQ_lockHandle);



}

else // Start Instruments

Y7/ EE—— 138

/* Start a new thread function in the Default Thread Pool */
Slow_cmtStatus = CmtScheduleThreadPoolFunction (DEFAULT_THREAD_POOL_HANDLE,

Slow_ThreadFunction, NULL, &Slow_threadlID);
Slow_quitflag = 1;

// Create a thread lock
CmtNewLock (NULL, 0, &Slow_lockHandle);

if(1s_CoM1)
{

FlushInQ (SP_comport);
FlushOutQ(SP_comport);

DSN_Bath_Power_On();
bytes_read = ComRdTerm (SP_comport, read_check, 1, 13); // Read ! from COM Port

if (bytes_read < 0)
{

MessagePopup (“Warning", "Fluid Bath did not Communicate™);
DAQquitflag = 0;
break;

}

Delay(2);
DSN_Poll_Bath_Setpoint();
// Updates bath setpoint readout once
SetCtriVal (panelHandle, PANEL_WB_SETPOINT, wb_setpoint);
) DSN_Set_Bath_External(); // Set to External Probe

if(1s_COM2)
{

FlushInQ (SP2_comport);
FlushOutQ(SP2_comport);

bytes_read = -1;

DSN_Poll_Viscosity();

if (bytes_read < 0)
MessagePopup (“Warning", "Viscometer did not Communicate");
DAQquitflag = 0;
break;

}
}

FlushInQ (SP3_comport);
FlushOutQ(SP3_comport);

DSN_Initialize_P_Controller();
}

if(Is_Function_Gen)

DSN_Init_FuncGen();

iT(1s_DAQ)

DSN_Setup_DAQQ);

/* Start a new thread function in the Default Thread Pool */
DAQcmtStatus = CmtScheduleThreadPoolFunction (DEFAULT_THREAD_POOL_HANDLE,
DAQThreadFunction, NULL,
&DAQthreadlID);
DAQquitflag = 1;

// Create a thread lock
CmtNewLock (NULL, O, &DAQ_lockHandle);

// Undim Monitored Readouts and Adjust Control Types
//

// Jump Into Control Loop (if Auto Run Mode)
//

if(1Run_Mode)
{

if(Exp_Type) // Static Experiment

// Read in Test Parameters
GetCtriVal (panelHandle, PANEL_P_MAX_T, &P_Max_T);



GetCtrival (panelHandle, PANEL_P_MIN_T, &P_Min_T);

GetCtrival(panelHandle, PANEL_P_T_INCREMENTS, &P_T_Increments);

GetCtriVal (panelHandle, PANEL_P_MAX_SP, &P_Max_SP);

GetCtrlVal (panelHandle, PANEL_P_MIN_SP, &P_Min_SP);

GetCtriVal (panelHandle, PANEL_P_SP_INCREMENTS, &P_SP_Increments); 139
// Determine Total Number of Experiment Steps

Experiment_Steps = (P_T_Increments + 1)*(P_SP_Increments + 1);

// Repeat the Up-Down Step Program "Num_Cycles™ Times
for(Num_Cycles=0 ; Num_Cycles < 1 ; Num_Cycles++)
{

for(Current_Step=0 ; Current_Step <= P_T_Increments ; Current_Step++)

ProcessSystemevents();

//---
// Step 1 - Set Next Temperature Point

// "+ Current..." for Upward Loop
wh_setpoint = P_Min_T + Current_Step*((P_Max_T - P_Min_T)/P_T_Increments);
DSN_Set_Bath_Setpoint();

//--—-
// Step 2 - Let Temperature Stabilize

while(Temperature_Error > 1 || Temperature_Error < -1)

ProcessSystemEvents();

if(wb_setpoint == 0) // Error is undefined at 0
{ // Defined as close enough to “zero"
if(Probe_Temp_Trigger < 0.1 && Probe_Temp_Trigger > -0.1)

Temperature_Error = 0;

}
}

// Underdamped system so exits the above loop at first overshoot
// System is stable once a peak temperature is within the error bounds

// Initialize Errors so that we enter the loop
Upwards_Temp_Error = 99999;
Downwards_Temp_Error = -99999;

// Collect NUM PANEL_S7A readings
for(meas_count = 0 ; meas_count < NUM ; meas_count++ )

GetCtrlval(panelHandle, PANEL_S7A, &S7A_Damping_Array[meas_count]);
Delay(2);

// Average the NUM readings
Mean (S7A_Damping_Array, NUM, &Last_Temperature);
Delay(2);

while(Upwards_Temp_Error > 0.01 && Downwards_Temp_Error < -0.01)
{
/* Damp out high frequency responses */

// Clear Damping Array

ClearlD (S7A_Damping_Array, NUM);

// Collect NUM PANEL_S7A readings

for(meas_count = 0 ; meas_count < NUM ; meas_count++ )

GetCtrlval(panelHandle, PANEL_S7A, &S7A_Damping_Array[meas_count]);
Delay(2);

// Average the NUM readings
Mean (S7A_Damping_Array, NUM, &Latest_Temperature);

// Compare against the last set of NUM readings to determine increasing or decreasing

// Temperature is Increasing
if(Latest_Temperature > Last_Temperature)

Upwards_Temp_Error = (Latest_Temperature - wb_setpoint)/wb_setpoint;

// Temperature is Decreasing
if(Latest_Temperature < Last_Temperature)

Downwards_Temp_Error = (Latest_Temperature - wb_setpoint)/wb_setpoint;

// Error is undefined at 0 setpoint
if(wb_setpoint == 0)
{

// Temperature is Increasing
if(Latest_Temperature > Last_Temperature)
{ // Not a percent
Upwards_Temp_Error = Latest_Temperature - wbh_setpoint;

// Temperature is Decreasing
if(Latest_Temperature < Last_Temperature)
{ // Not a percent
Downwards_Temp_Error = Latest_Temperature - wb_setpoint;

// Define as close enough to "zero"
if(Upwards_Temp_Error < 0.1 && Downwards_Temp_Error > -0.1)

Upwards_Temp_Error = 0;
Downwards_Temp_Error = 0;

}

Last_Temperature = Latest_Temperature;
ProcessSystemevents();

//---
// Step 3 - Vary Pressure over the Range




if(1s_CoM3)
for(Pressure_Step=0 ; Pressure_Step <= P_SP_Increments ; Pressure_Step++)
{

// Calculate Next Pressure Setpoint
sp_setpoint = P_Min_SP + Pressure_Step*((P_Max_SP- P_Min_SP)/P_SP_Increments);

// Send and Adjust to New Setpoint
DSN_Change_P_Setpoint(sp_setpoint);

// Initialize Errors so that we enter the loop
Upwards_Press_Error = 99999;

Downwards_Press_Error = -99999;

DSN_Poll_Current_Pressure();

GefCtEI¥al(panelHandle PANEL_REGULATOR_PRESSURE, &Last_Pressure);
Delay(2

// Let Pressure Stabilize
while(Upwards_Press_Error > 0.01 && Downwards_Press_Error < -0.01)
{

DSN_Poll_Current_Pressure();
GetCtrival (panelHandle, PANEL_REGULATOR_PRESSURE, &Latest Pressure);

// Pressure is Increasing
if(Latest_Pressure > Last_Pressure)

Upwards_Press_Error = (Latest_Pressure - sp_setpoint)/sp_setpoint;

// Pressure is Decreasing
if(Latest_Pressure < Last_Pressure)

Downwards_Press_Error = (Latest_Pressure - sp_setpoint)/sp_setpoint;

}

// Error is undefined at 0 setpoint
if(sp_setpoint == 0)

{

// Pressure is Increasing
if(Latest_Pressure > Last_Pressure)
{ // Not a percent
Upwards_Press_Error = Latest_Pressure - sp_setpoint;

}
// Pressure is Decreasing
if(Latest_Pressure < Last_Pressure)
{ // Not a percent
Downwards_Press_Error = Latest_Pressure - sp_setpoint;

}
// Defined as close enough to “zero"
if(Upwards_Press_Error < 0.1 && Downwards_Press_Error > -0.1)

Upwards_Press_Error = 0;
Downwards_Press_Error = 0;

}

Last Pressure = Latest Pressure;
ProcessSystemEvents();

// Turn on Logging Trigger
Logging_Trigger = 1;
SetCtrlVal (panelHandle, PANEL_LOGGING_TRIGGER_LED,1);

// Delay for a time at Setpoint
for(delay=1 ; delay <= 600 ; delay++)

Delay(1);
ProcessSystemEvents ();

// Turn off the Logging Trigger
Logging_Trigger = O;
SetCtrlVal (panelHandle, PANEL_LOGGING_TRIGGER_LED,0Q);
}
}

// Vent the System Pressure
iT(1s_COM3)

DSN_Vent_Pressure();

//Percent ~_Complete = 50*(Current_Step+1)/Experiment_Steps;
//SetCtrivVal (panelHandle, PANEL_EXP_PROGRESS, Percent_Complete);

for(Current_Step 0 ; Current_Step <= P_T_Increments ; Current_Step++)
{

ProcessSystemevents ();

// "- Current..." for Downward Loop
wh_setpoint = P_Max_T - Current_Step*((P_Max_T - P_Min_T)/P_T Increments)
DSN_Set_Bath_Setpoint();

while(Temperature_Error > 1 || Temperature_Error < -1)

ProcessSystemevents();

if(wb_setpoint == 0) // Error is undefined at 0

{ /7 Defined as close enough to “zero"
if(Probe_Temp_Trigger < 1 && Probe_Temp_Trigger > -1)

Temperature_Error = 0;
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}
}
}

// Underdamped system so exits the above loop at first overshoot
// Systenm is stable once a peak temperature is within the error bounds

// Initialize Errors so that we enter the loop
Upwards_Temp_Error = 99999;
Downwards_Temp_Error = -99999;

// Collect NUM PANEL_S7A readings
for(meas_count = 0 ; meas_count < NUM ; meas_count++ )

GetCtriVal (panelHandle, PANEL_S7A, &S7A Damping_Array[meas_count]);
Delay(2);

// Average the NUM readings
Mean (S7A_Damping_Array, NUM, &Last_Temperature);

Delay(2);
while(Upwards_Temp_Error > 0.01 && Downwards_Temp_Error < -0.01)
{

/* Damp out high frequency responses */

// Clear Damping Array

Clear1D (S7A_Damping_Array, NUM);

// Collect NUM PANEL_S7A readings

for(meas_count = 0 ; meas_count < NUM ; meas_count++ )

GetCtrlVal (panelHandle, PANEL_S7A, &S7A Damping_Array[meas_count]);
Delay(2);

// Average the NUM readings
Mean (S7A_Damping_Array, NUM, &Latest_Temperature);

// Compare against the last set of NUM readings to determine increasing or decreasing

// Temperature is Increasing
if(Latest_Temperature > Last_Temperature)

Upwards_Temp_Error = (Latest_Temperature - wb_setpoint)/wb_setpoint;

// Temperature is Decreasing
if(Latest_Temperature < Last_Temperature)

Downwards_Temp_Error = (Latest_Temperature - wb_setpoint)/wb_setpoint;

// Error is undefined at 0 setpoint
if(wb_setpoint == 0)
{

// Temperature is Increasing
if(Latest_Temperature > Last_Temperature)

Upwards_Temp_Error = Latest_Temperature - wb_setpoint; // Not a percent

// Temperature is Decreasing
if(Latest_Temperature < Last_Temperature)

Downwards_Temp_Error = Latest_Temperature - wb_setpoint;// Not a percent

// Defined as close enough to "zero"
if(Upwards_Temp_Error < 0.1 && Downwards_Temp_Error > -0.1)

Upwards_Temp_Error = 0;
Downwards_Temp_Error = 0;

}
}

Last_Temperature = Latest_Temperature;
ProcessSystemevents();

if(1s_COM3)

for(Pressure_Step=0 ; Pressure_Step <= P_SP_Increments ; Pressure_Step++)

// Calculate Next Pressure Setpoint

sp_setpoint = P_Min_SP + Pressure_Step*((P_Max_SP- P_Min_SP)/P_SP_Increments);

// Send and Adjust to New Setpoint
DSN_Change_P_Setpoint(sp_setpoint);

// Initialize Errors so that we enter the loop
Upwards_Press_Error = 99999;

Downwards_Press_Error = -99999;

DSN_Poll_Current_Pressure();

GetCtrlVal(panelHandle, PANEL_REGULATOR_PRESSURE, &lLast_Pressure);
Delay(2);

// Let Pressure Stabilize
while(Upwards_Press_Error > 0.01 && Downwards_Press_Error < -0.01)
{

DSN_Poll_Current_Pressure();

GetCtrlVal (panelHandle, PANEL_REGULATOR_PRESSURE, &Latest_Pressure);

// Pressure is Increasing
if(Latest_Pressure > Last_Pressure)

Upwards_Press_Error = (Latest_Pressure - sp_setpoint)/sp_setpoint;

// Pressure is Decreasing
if(Latest_Pressure < Last_Pressure)

Downwards_Press_Error = (Latest_Pressure - sp_setpoint)/sp_setpoint;

// Error is undefined at 0 setpoint
if(sp_setpoint == 0)

// Pressure is Increasing
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}
1/

else

if(Latest_Pressure > Last_Pressure)

// P

Upwards_Press_Error = Latest Pressure - sp_setpoint; // Not a percent

ressure is Decreasing

if(Latest_Pressure < Last_Pressure)

}
7/ D
if(U

}

Downwards_Press_Error = Latest_Pressure - sp_setpoint; // Not a percent

efined as close enough to "zero"
pwards_Press_Error < 0.1 && Downwards_Press_Error > -0.1)

Upwards_Press_Error = 0;
Downwards_Press_Error = 0;

Last_Pressure = Latest_Pressure;
ProcessSystemEvents();

// Turn on Logging Trigger
Logging_Trigger = 1;
SetCtrlVal (panelHandle, PANEL_LOGGING_TRIGGER_LED,1);

// Delay for a time at Setpoint

for(delay=1 ;

delay <= 600 ; delay++)

Delay(1);
ProcessSystemEvents ();

}
// Turn off

the Logging Trigger

Logging_Trigger = 0;
SetCtrIVal(panelHandle PANEL_LOGGING_TRIGGER_LED,0);

}
}

// Vent the System P
if(1s_COM3)

ressure

DSN_Vent_Pressure();

//Percent_Complete =

100*(Current_Step+1)/Experiment_Steps;

//SetCtrival (panelHandle, PANEL_EXP_PROGRESS, Percent_Complete);

}
}

wh_setpoint = 20; // Setpoi
printf(*'Successfully Exited
DSN_Set_Bath_Setpoint();

DAQquitflag = 0; // Shut dow
DSN_Bath_Power_Off();

nt to 20 once experiment is completed (in case it doesn"t shut down)

the Loop™);

n experiment

// Dynamic Experiment

// Read in Test Parameters

//

GetCtrlval (panelHandle,
GetCtrlVval (panelHandle,
GetCtrival (panelHandle,
GetCtrilval (panelHandle,
GetCtrlval (panelHandle,
GetCtrlVval (panelHandle,
GetCtriVval (panelHandle,

PANEL_P_MAX_T, &P_Max_T);
PANEL_P_MIN_T, &P_Min_T);

PANEL_P_T INCREMENTS &P_T_Increments);

PANEL_DP_STIM_| DURATION &DP_Stim_Duration);

PANEL_MTS_SPAN, &MTS Span)
PANEL_P_MAX_F, &P_Max_F);
PANEL_P_MIN_F, &P_Min_F);

GetCtrival (panelHandle, PANE

GetCtrlVal (panelHandle, PANE
GetCtrlval(panelHandle, PANE

Num_Amp_Cycles = 0; /7S

// Read in Dynamic Pressure
if (Amp_On_1)

GetCtrlVval (panelHandle,
GetCtrlval (panelHandle,
Num_Amp_Cycles++;

}

if (Amp_On_2)
GetCtrlval (panelHandle,
GetCtrlVval (panelHandle,
Num_Amp_Cycles++;

1

if (Amp_On_3)

{
GetCtrlVval (panelHandle,
GetCtrilval (panelHandle,
Num_Amp_Cycles++;

if (Amp_On_4)
GetCtrlval (panelHandle,
GetCtrlval (panelHandle,
Num_Amp_Cycles++;

1

if (Amp_On_5)

{
GetCtrlVval (panelHandle,

GetCtrlval (panelHandle,
Num_Amp_Cycles++;

// Experiment Loop:
// Notes:  For safety, loop

L_P_F_INCREMENTS, &P F_Increments);

L_DWELL_TIME, &StimDwellTime);
L_Waveform_1, &FuncGen_Waveform);

et default number of amplitude cycles to zero

Amplitude Parameters

PANEL_P_DP_AMP_1, &DP_Amp_Array[Num_Amp_Cycles]);
PANEL_FUNC_GEN VOLT 1, &FuncGenVolt_Array[Num_Amp_Cycles]);

PANEL_P_DP_AMP_2, &DP_Amp_Array[Num_Amp_Cycles]);
PANEL_FUNC_GEN VOLT 2, &FuncGenVolt_Array[Num_Amp_Cycles]);

PANEL_P_DP_AMP_3, &DP_Amp_Array[Num_Amp_Cycles]);
PANEL_FUNC_GEN VOLT 3, &FuncGenVolt_Array[Num_Amp_Cycles]);

PANEL_P_DP_AMP_4, &DP_Amp_Array[Num_Amp_Cycles]);
PANEL_FUNC_GEN_VOLT_4, &FuncGenVolt_Array[Num_Amp_Cycles]);

PANEL_P_DP_AMP_5, &DP_Amp_Array[Num_Amp_Cycles]);
PANEL_FUNC_GEN VOLT 5, &FuncGenVolt_Array[Num_Amp_Cycles]);

only works for a single temperature setpoint
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Reconfigure MTS Machine before changing temperature setpoints

. Set the Amplitude Setpoint

. Set the Temperature Setpoint

. Wait till setpoint is reached

. Run the stimulation cycle at one frequency setpoint
. Update Progress Bar

Dwell Period

. Update Progress Bar
. Repeat for all frequencies
. Repeat for all amplitudes with a dwell between amplitudes

// Dynamic Experiment Loop:

for(Amplitude_Cycle = 0 ; Amplitude_Cycle <= Num_Amp_Cycles - 1 ; Amplitude_Cycle++) // Amplitude Loop
{

// Set Percentage Complete to Zero on First Run
it (Amplitude_Cycle == 0)
{

Percent_Complete = 0;
SetCtriVal (panelHandle, PANEL_EXP_PROGRESS, Percent_Complete);

else // Changing to next amplitude -> Dwell for 30 minutes to recover viscosity

}

Logging_Trigger=3;
for(Current_Step=0 ; Current_Step<=1800 ; Current_Step++)

Delay(1);

Total_Exp_Time = Num_Amp_Cycles * (P_F_Increments+l) * (DP_Stim_Duration + StimDwellTime);

for(Current_Step=0 ; Current_Step <= P_F_Increments ; Current_Step++)

ProcessSystemEvents();

// Switch the Logging Trigger
Logging_Trigger = O;

|f(ls Ccom1)
{

wh_setpoint = P_Min_T;
DSN_Set_Bath_Setpoint();

|f(ls Ccom1)
{

// Indicate setpoint not reached
SetCtriVal (panelHandle, PANEL_WAITING_TEMP_LED, 1);

while(Temperature_Error > 0.1 || Temperature_Error < -0.1)
ProcessSystemevents();

if(wb_setpoint == 0) // Error is undefined at 0
{ // Defined as close enough to “zero"

if(Probe_Temp_Trigger < 1 && Probe_Temp_Trigger > 1)

Temperature_Error = 0;

}

}
// Indicate setpoint reached
SetCtrlval (panelHandle, PANEL_WAITING_TEMP_LED, 0);

// Determine Amplitude Setpoint and Voltage

DP_Amplitude = DP_Amp_Array[Amplitude_Cycle];
FuncGenVoltage = FuncGenVolt_Array[Amplitude_Cycle];
SetCtriVal (panelHandle, PANEL_CURR_AMP_STEP, DP_Amplitude);

// Determine Frequency Setpoint

// Frequency Loop

freq_setpoint = P_Min_F + Current_Step*((P_Max_F - P_Min_F)/P_F_Increments);

SetCtrival (panelHandle, PANEL_CURR_FREQ_STEP, freq_setpoint);

// Decide Whether to Run the Function Generator Output
if (freg_setpoint == 0 || DP_Amplitude == 0)

FuncGenVoltage = 0;
No_FuncOutput = 1;

}
else

No_FuncOutput = 0;
// Update GUI with Function Generator Outputs
SetCtrlval (panelHandle, PANEL_VOLTAGE, FuncGenVoltage);
SetCtrival (panelHandle, PANEL_ FREQUENCY freq_setpoint);
// Switch the Logging Trigger
Logging_Trigger = 1;
SetCteral(panelHandle PANEL_LOGGING_TRIGGER_LED, 1);
if (No_FuncOutput == 1)

// Do not run function generator output

else

// Configure and Turn On Function Generator Channel 1
DSN_Toggle_FuncGen_On();
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// Run Frequency Stimulation for Specified Duration
for(delay=1 ; delay <= DP_Stim_Duration ; delay++)

Delay(1);
) ProcessSystemEvents (); 144

// Turn Off the Function Generator Output
DSN_Toggle_FuncGen_0ff();

//--
// Step 4 - Update Progress Bar

Percent_Complete = 100*(DP_Stim_Duration + (Current_Step)*(DP_Stim_Duration + StimDwellTime)
+ Amplitude_Cycle*(P_F_Tncrements+1)*(DP_Stim Duration + StimDwellTime))/Total_Exp_Time;
SetCtrival (panelHandle, PANEL_EXP_PROGRESS, Percent_Complete);

//--
// Step 5 - Dwell Period

// Switch the Logging Trigger

Logging_Trigger = 2;

SetCtriVal (panelHandle, PANEL_LOGGING_TRIGGER_LED,0);
SetCtriVal (panelHandle, PANEL_THIXOTROPY_LED, 1);

FuncGenVoltage = 0;

freq_setpoint = 0;

SetCtrival (paneIHandIe PANEL_VOLTAGE, FuncGenVoltage);
SetCtrival (panelHandle, PANEL_FREQUENCY,freq_setpoint);

// Delay for Dwell Period
for(delay=1 ; delay <= StimDwellTime ; delay++)

Delay(1);
ProcessSystemEvents ();

SetCtrlVal (panelHandle, PANEL_THIXOTROPY_LED, 0);

/7/--
// Step 6 - Update Progress Bar
//

Percent_Complete = 100*(((Current_Step+1)*(DP_Stim_Duration + StimDwellTime)
+ Amplitude_Cycle*(P_F_Increments+1)*(DP_Stim_Duration + StimDwellTime))/Total_Exp_Time);
SetCtriVal (panelHandle, PANEL_EXP_PROGRESS, Percent_Complete);

}
}

DAQquitflag = 0; // Shut down experiment
DSN_Bath_Power. Off()

SetCtrival (panelHandle, PANEL_START_STOP, 0);
DSN_Update_Graphics();

//-

// Update On-screen Graphics
/

DSN_Update_Graphics();
MessagePopup (“"Monitoring and Control Program", “The experiment was completed successfully.");

case EVENT_RIGHT_CLICK:

break;

}
return 0;
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// 8838 888 Y88h888 "Y88b. 888 8888888P"" 888 888 888 Y888P 888 888 888 Y88b888 888
// 8838 888 Y88888 888 888 888 T88b 888 888 888 Y8P 888 888 888 Y88888 888
// 883 888 Y8888 Y88b d88P 888 888 T88b Y88b. .d88P 888 " 888 888 888 Y8888 888
;; 8888888 888 Y888 ''Y8888P" 888 888 T88b "'Y88888P" 888 888 8888888888 888 Y888 888
//

//

// 8888888888 888 888 888b 888 .d8888h. 88888888888 8888888 .d88888b. 888b 888 .d8888b.

// 888 888 888 8888b 888 d88P Y88b 888 888 d88P" "Y88b 8888b 888 d88P Y88b

// 888 888 888 88888h 888 888 888 888 888 888 888 88888b 888 Y88b.

// 8888888 888 888 888Y88b 888 888 888 888 888 888 888Y88b 888 "'Y888b.

// 888 888 888 888 YB88b888 888 888 888 888 888 888 Y88b888 "Y88b.

// 888 888 888 888 Y88888 888 888 888 888 888 888 888 Y88888 888

// 888 Y88b. .d88P 888 Y8888 Y88b d88P 888 888 Y88b. .d88P 888 Y8888 Y88b d88P

// 888 "'Y88888P" 888 Y888 "Y8888P" 888 8888888 "'Y88888P" 888 Y888 ''Y8888P"

/ /
// /

// National Instruments Compact DAQ /

// /

//

;; DSN_Setup_DAQ : Sets up the DAQ Task and RTD Channels

void DSN_Setup_DAQ(void)
{

int i,count=0;
// Retrieve Averaging Number and Sampling Rate from Panel

GetCtrlVal (panelHandle,PANEL_DAQ_AVERAGING_NUMBER,&DAQsampsPerChan);
GetCtrival (panelHandle,PANEL_DAQ_RATE,&DAQrate) ;

// /



// Create the DAQ task /
// /

DAQmxErrChk (DAQmxCreateTask(''",&taskHandle));

//
// Create all the Necessary Channels
//

NNN

|f(ls S1A)

// Sensor is a Pressure Transducer

DAQmXErrChk (DAQmxCreateAlVoltageChan(taskHandle, "cDAQ1Mod6/ai0",

"Voltage_1A", DAQmx_Val_RSE, 0, 10, DAQmx_Val_Volts, '"));
else

// Sensor is an RTD

DAQmxErrChk(DAQmxCreateAIRTDChan (taskHandle, 'cDAQ1Mod1/ai0",
"Temperature_1A", 0, 150, DAQmx_Val_DegC, DAQmx_Val_Pt3851,
DAQmx_Val_3Wire, DAme Val Internal, 0.001, 100));

|f(|s S1B)

// Sensor is a Pressure Transducer

DAQmxErrChk(DAQmxCreateAlVoltageChan(taskHandle, "'cDAQ1Mod6/ail",

"Voltage_1B", DAQmx_Val_RSE, 0, 10, DAQmx_Val_Volts, "));
else

// Sensor is an RTD

DAQmMXErrChk (DAQmxCreateAIRTDChan (taskHandle, "cDAQ1Modl/ail",
"Temperature_1B", 0, 150, DAQmx_Val_DegC, DAQmx_Val_Pt3851,
DAQmx_Val_3Wire, DAme Val Internal, 0.001, 100));

|f(ls S2A)

// Sensor is a Pressure Transducer

DAQmXErrChk(DAQmxCreateAlVoltageChan(taskHandle, "cDAQ1Mod6/ai2",

"Voltage_2A", DAQmx_Val_RSE, 0, 10, DAQmx_Val_Volts, '"));
else

// Sensor is an RTD

DAQmXErrChk(DAQmxCreateAIRTDChan (taskHandle, 'cDAQ1Modl/ai2",
"Temperature_2A", 0, 150, DAQmx_Val_DegC, DAQmx_Val_Pt3851,
DAQmx_Val_3Wire, DAme Val Internal, 0.001, 100));

}
Y A ——
if(1s_S2B)
// Sensor is a Pressure Transducer
DAQmxErrChk(DAQmxCreateAlVoltageChan(taskHandle, "'cDAQ1Mod6/ai3",
"Voltage_2B", DAQmx_Val_RSE, 0, 10, DAQmx_Val_Volts, "));
else
// Sensor is an RTD
DAQmMXErrChk (DAQmxCreateAIRTDChan (taskHandle, "cDAQ1Modl/ai3",
"Temperature_2B", 0, 150, DAQmx_Val_DegC, DAQmx_Val_Pt3851,
DAQmx_Val_3Wire, DAQmx_Val_Internal, 0.001, 100));
3
/-
if(1s_S3A)
// Sensor is a Pressure Transducer
DAQmXErrChk (DAQmxCreateAlVoltageChan(taskHandle, "cDAQ1Mod6/ai4",
"Voltage_ 3A"™, DAQmx_Val_RSE, 0, 10, DAQmx_Val_Volts, "));
else
// Sensor is an RTD
DAQmxErrChk(DAQmxCreateAIRTDChan (taskHandle, 'cDAQ1Mod2/ai0",
"Temperature_3A"™, 0, 150, DAQmx_Val_DegC, DAQmx_Val_Pt3851,
DAQmx_Val_3Wire, DAQmx_Val_Internal, 0.001, 100));
}
/)=
if(1s_S3B)
// Sensor is a Pressure Transducer
DAQmxErrChk(DAQmxCreateAlVoltageChan(taskHandle, "'cDAQ1Mod6/ai5",
"Voltage_3B", DAQmx_Val_RSE, 0, 10, DAQmx_Val_Volts, ""));
else
// Sensor is an RTD
DAQmMXErrChk (DAQmxCreateAIRTDChan (taskHandle, "cDAQ1Mod2/ail",
"Temperature_3B", 0, 150, DAQmx_Val_DegC, DAQmx_Val_Pt3851,
DAQmx_Val_3Wire, DAQmx_Val_Internal, 0.001, 100));
|f(ls S4A)
// Sensor is a Pressure Transducer
DAQmMXErrChk (DAQmxCreateAlVoltageChan(taskHandle, "cDAQ1Mod6/ai6",
"Voltage_ 4A"™, DAQmx_Val_RSE, 0, 10, DAQmx_Val_Volts, "));
else
// Sensor is an RTD
DAQmXErrChk(DAQmxCreateAIRTDChan (taskHandle, 'cDAQ1Mod2/ai2",
"Temperature_4A", 0, 150, DAQmx_Val_DegC, DAQmx_Val_Pt3851,
DAQmx_Val_3Wire, DAme Val Internal, 0.001, 100));
|f(|s S4B)

// Sensor is a Pressure Transducer

DAQmxErrChk(DAQmxCreateAlVoltageChan(taskHandle, "'cDAQ1Mod6/ai7",

"Voltage_4B", DAQmx_Val_RSE, 0, 10, DAQmx_Val_Volts, "™"));

else
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// Sensor is an RTD

DAQmxErrChk(DAQmxCreateAIRTDChan (taskHandle, 'cDAQ1Mod2/ai3",
"Temperature_4B", 0, 150, DAQmx_Val_DegC, DAQmx_Val_Pt3851,
DAQmx_Val_3Wire, DAme Val Internal, 0.001, 100));
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|f(|s S5A)

// Sensor is a Pressure Transducer
DAQmxErrChk(DAQmxCreateAlVoltageChan(taskHandle, "'cDAQ1Mod6/ai8",
"Voltage 5A"™, DAQmx_Val_RSE, 0, 10, DAQmx_Val_Volts, ""));

else

// Sensor is an RTD

DAQmXErrChk(DAQmxCreateAIRTDChan (taskHandle, *cDAQ1Mod3/ai0",
"Temperature_5A", 0, 150, DAQmx_Val_DegC, DAQmx_Val_Pt3851,
DAQmx_Val_3Wire, DAQmx_Val_Internal, 0.001, 100));

|f(ls S58)

// Sensor is a Pressure Transducer
DAQmxErrChk(DAQmxCreateAlVoltageChan(taskHandle, "'cDAQIMod6/ai9",
"Voltage_5B", DAQmx_Val_RSE, 0, 10, DAQmx_Val_Volts, ""));

else

// Sensor is an RTD

DAQmxErrChk(DAQmxCreateAIRTDChan (taskHandle, 'cDAQ1Mod3/ail",
"Temperature_5B", 0, 150, DAQmx_Val_DegC, DAQmx_Val_Pt3851,
DAQmx_Val_3Wire, DAme Val Internal, 0.001, 100));

}
/)=
if(1s_S6A)
// Sensor is a Pressure Transducer
DAQmxErrChk(DAQmxCreateAlVoltageChan(taskHandle, *'cDAQ1Mod6/ail0",
"Voltage 6A", DAQmx_Val_RSE, 0, 10, DAQmx_Val_Volts, ""));
}
else
// Sensor is an RTD
DAQmXErrChk(DAQmxCreateAIRTDChan (taskHandle, "cDAQ1Mod3/ai2",
"Temperature_6A", 0, 150, DAQmx_Val_DegC, DAQmx_Val_Pt3851,
DAQmx_Val_3Wire, DAQmx_Val_lInternal, 0.001, 100));
}
|f(ls S6B)
// Sensor is a Pressure Transducer
DAQmxErrChk(DAQmxCreateAlVoltageChan(taskHandle, *"'cDAQlMod6/aill™,
"Voltage_6B", DAQmx_Val_RSE, 0, 10, DAQmx_Val_Volts, ""));
else

// Sensor is an RTD

DAmeErrChk(DAmeCreateAIRTDChan (taskHandle, "cDAQ1Mod3/ai3",
"Temperature_6B", 0, 150, DAQmx_Val_DegC, DAQmx_Val_Pt3851,
DAQmx_Val_3Wire, DAme Val Internal, 0.001, 100));

if(1s_S7A) // Create channel but do not use its data while external probe is in position S7A!!

// Sensor is a Pressure Transducer
DAQmxErrChk(DAQmxCreateAlVoltageChan(taskHandle, *'cDAQ1Mod6/ail2",
"Voltage_7A"™, DAQmx_Val_RSE, 0, 10, DAQmx_Val_Volts, ""));

else

// Sensor is an RTD

DAQmXErrChk(DAQmxCreateAIRTDChan (taskHandle, *cDAQ1Mod4/ai0",
"Temperature_7A™, 0, 150, DAQmx_Val_DegC, DAQmx_Val_Pt3851,
DAQmx_Val_3Wire, DAmefValflnternal, 0.001, 100));

|f(ls S7B)

// Sensor is a Pressure Transducer
DAQmxErrChk(DAQmxCreateAlVoltageChan(taskHandle, *"'cDAQ1Mod6/ail3",
"Voltage_7B", DAQmx_Val_RSE, 0, 10, DAQmx_Val_Volts, ""));

else

// Sensor is an RTD

DAQmxErrChk(DAQmxCreateAIRTDChan (taskHandle, 'cDAQ1Mod4/ail",
"Temperature_7B", 0, 150, DAQmx_Val_DegC, DAQmx_Val_Pt3851,
DAQmx_Val_3Wire, DAme Val Internal, 0.001, 100));

|f(|s S8A)

// Sensor is a Pressure Transducer
DAQmxErrChk(DAQmxCreateAlVoltageChan(taskHandle, *"'cDAQ1Mod6/aild™,
"Voltage_ 8A"™, DAQmx_Val_RSE, 0, 10, DAQmx_Val_Volts, ""));

else

// Sensor is an RTD

DAQmXErrChk(DAQmxCreateAIRTDChan (taskHandle, *cDAQ1Mod4/ai2",
"Temperature_8A™, 0, 150, DAQmx_Val_DegC, DAQmx_Val_Pt3851,
DAQmx_Val_3Wire, DAQmx_Val_Internal, 0.001, 100));

|f(ls $8B)

// Sensor is a Pressure Transducer
DAQmxErrChk(DAQmxCreateAlVoltageChan(taskHandle, *"'cDAQ1Mod6/ail5",
"Voltage_8B", DAQmx_Val_RSE, 0, 10, DAQmx_Val_Volts, ""));

else

// Sensor is an RTD
DAQmxErrChk(DAQmxCreateAIRTDChan (taskHandle, *cDAQ1Mod4/ai3",



"Temperature_8B", 0, 150, DAQmx_Val_DegC, DAQmx_Val_Pt3851,
DAQmx_Val_3Wire, DAQmx_Val_Internal, 0.001, 100));

}
Y A ——
if(1s_S9A)
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// Sensor is a Pressure Transducer
DAQmxErrChk(DAQmxCreateAlVoltageChan(taskHandle, *"'cDAQ1Mod6/ail6",
"Voltage_9A™, DAQmx_Val_RSE, 0, 10, DAQmx_Val_Volts, "));
else
// Sensor is an RTD
DAQmMXErrChk(DAQmxCreateAIRTDChan (taskHandle, "cDAQ1Mod5/ai0",
"Temperature_9A", 0, 150, DAQmx_Val_DegC, DAQmx_Val_Pt3851,
DAQmx_Val_3Wire, DAQmx_Val_Internal, 0.001, 100));
3
/-
if(1s_S9B)
// Sensor is a Pressure Transducer
DAQmXErrChk(DAQmxCreateAlVoltageChan(taskHandle, "cDAQ1Mod6/ail7",
"Voltage_ 9B", DAQmx_Val_RSE, 0, 10, DAQmx_Val_Volts, ""));
else
// Sensor is an RTD
DAQmxErrChk(DAQmxCreateAIRTDChan (taskHandle, 'cDAQ1Mod5/ail",
"Temperature_9B", 0, 150, DAQmx_Val_DegC, DAQmx_Val_Pt3851,
DAQmx_Val_3Wire, DAQmx_Val_Internal, 0.001, 100));
}
/)=

if(Exp_Type)
// Static Experiment

else
// Dynamic Experiment - Create Piezo RTD Channel
DAmeErrChk(DAmeCreateAIRTDChan (taskHandle, "cDAQ1Mod5/ai3",

"Piezo_Temp™, 0, 150, DAQmx_Val_DegC, DAQmx_Val_Pt3851,
DAQmx_Val 3W|re DAme Val_Tnternal, 0.001, 100));

//
// Setup the DAQ Timing and Number of Channels /
// /

// Set the clock timing
DAQmMXErrChk (DAQmxCfgSampCIkTiming (taskHandle,™", DAQrate
DAQmx_Val_Rising, DAQmx_Val_ContSamps, DAQsampsPerChan))

// Set the number of channels to scan
DAQmXErrChk (DAQmxGetTaskAttribute(taskHandle,DAQmx_Task_NumChans,&DAQnumChannels));

// Make space for the data

if( (DAQdata=mal loc(DAQsampsPerChan*DAQnumChannels*sizeof(float64)))==NULL ) {
MessagePopup(“'Error™,"Not enough memory');
goto Error;

// Make space for the averaging aray

if( (DAQArray._ Out-malIoc(DAQsampsPerChan*s|zeof(float64))) =NULL ) {
MessagePopup("'Error™,"Not enough memory');
goto Error;

//Exit
Error:
if( DAQmxFailed(DAQerror) )

DAQmxGetExtendedError Info(DAQerrBuff,2048);
DAQquitflag =0;

if( DAQmxFailed(DAQerror) )
MessagePopup(*'DAQmx Error',DAQerrBuff);

// DSN_Run_DAQ : Run the DAQ Task and RTD Channels

void DSN_Run_DAQ(void)
{

int i;
double pressure_scaling_factor = 200; // psi per Volt

/
// DAQmx Start DAQ Task
/

NNN

if(DAQ_Task_Started)
// Do not attempt to start task
else
DAQmXErrChk (DAQmxStartTask(taskHandle));

DAQ_Task_Started = 1;
ProcessDrawEvents();

/ /
// DAQmx Read Code /
/ /

ClearlD (DAQdata, DAQsampsPerChan*DAQnumChannels);
DAQmxReadAnalogF64 (taskHandle,DAQsampsPerChan,10.0,DAQmx_Val_GroupByChannel,
DAQdata,DAQsampsPerChan*DAQnumChannels,&DAQnumRead,NULL) ;

if( DAQnumRead>0 )
for(i=0; i<DAQnumChannels; i++)

// Extract Data for one Channel



SubsetlD (DAQdata, DAQnumChannels*DAQnumRead, i*DAQnumRead, DAQnumRead, DAQArray_Out);

// Average the Data Points
Mean (DAQArray_Out,DAQnumRead, &DAQoutMean);

switch(i)

case 0:
if(Is_S1A) // Pressure

DAQoutMean = DAQoutMean * pressure_scaling_factor;

}
SetCtriVal (panelHandle,PANEL_S1A,DAQoutMean);
S1A[0] = DAQoutMean;
break;
case 1:
if(1s_S1B) // Pressure

DAQoutMean = DAQoutMean * pressure_scaling_factor;

SetCtrlVal (panelHandle, PANEL_S1B,DAQoutMean);
S1B[0] = DAQoutMean;
break;

ase 2:
if(Is_S2A) // Pressure
DAQoutMean = DAQoutMean * pressure_scaling_factor;

SetCtrlVal (panelHandle, PANEL_S2A,DAQoutMean) ;
S2A[0] = DAQoutMean;
break;
case 3:
if(1s_S2B) // Pressure

DAQoutMean = DAQoutMean * pressure_scaling_factor;

}
SetCtrlVal (panelHandle, PANEL_S2B,DAQoutMean) ;
S2B[0] = DAQoutMean;
break;
case 4:
if(Is_S3A) // Pressure

DAQoutMean = DAQoutMean * pressure_scaling_factor;

SetCtrlVal (panelHandle,PANEL_S3A,DAQoutMean) ;
S3A[0] = DAQoutMean;
break;

ase 5:
if(1s_S3B) // Pressure
DAQoutMean = DAQoutMean * pressure_scaling_factor;

SetCtrlVal (panelHandle, PANEL_S3B,DAQoutMean) ;
S3B[0] = DAQoutMean;
break;
case 6:
if(Is_S4A) // Pressure

DAQoutMean = DAQoutMean * pressure_scaling_factor;

}
SetCtrlVal (panelHandle,PANEL_S4A,DAQoutMean) ;
S4A[0] = DAQoutMean;
break;
case 7:
if(1s_S4B) // Pressure

DAQoutMean = DAQoutMean * pressure_scaling_factor;

SetCtrlVal (panelHandle, PANEL_S4B,DAQoutMean);
S4B[0] = DAQoutMean;
break;

ase 8:
if(Is_S5A) // Pressure
DAQoutMean = DAQoutMean * pressure_scaling_factor;

SetCtrlVal (panelHandle,PANEL_S5A,DAQoutMean) ;
S5A[0] = DAQoutMean;
break;
case 9:
if(1s_S5B) // Pressure

DAQoutMean = DAQoutMean * pressure_scaling_factor;

}
SetCtriVal (panelHandle, PANEL_S5B,DAQoutMean) ;
S5B[0] = DAQoutMean;
break;
case 10:
if(Is_S6A) // Pressure

DAQoutMean = DAQoutMean * pressure_scaling_factor;

SetCtriVal (panelHandle,PANEL_S6A,DAQoutMean) ;
S6A[0] = DAQoutMean;
break;

case 11:

if(1s_S6B) // Pressure

DAQoutMean = DAQoutMean * pressure_scaling_factor;

SetCtrlVal (panelHandle,PANEL_S6B,DAQoutMean);
S6B[0] = DAQoutMean;
break;

case 12:
/* Since external bath probe is in position S7A, we do not use
the data from this channel. The channel was created to make sure
all other channels still fit this "switch" statement. Temperature
for S7A is obtained using the DSN_Poll_Bath_Probe function in the
slow equipment loop. Uncomment this section if the probe is moved
to another position. */

if(Is_S7A) // Pressure

DAQoutMean = DAQoutMean * pressure_scaling_factor;
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// SetCtriVval (panelHandle,PANEL_S7A,DAQoutMean);
// S7A[0] = DAQoutMean;
break;
case 13:
if(1s_S7B) // Pressure

DAQoutMean = DAQoutMean * pressure_scaling_factor;

SetCtrlVal (panelHandle,PANEL_S7B,DAQoutMean) ;
S7B[0] = DAQoutMean;
break;

case 14:
if(Is_S8A) // Pressure

DAQoutMean = DAQoutMean * pressure_scaling_factor;

SetCtrlVal (panelHandle, PANEL_S8A,DAQoutMean) ;
SBA[0] = DAQoutMean;
break;
case 15:
if(1s_S8B) // Pressure

DAQoutMean = DAQoutMean * pressure_scaling_factor;

}
SetCtrlVal (panelHandle, PANEL_S8B,DAQoutMean) ;
S8B[0] = DAQoutMean;
break;
case 16:
if(Is_S9A) // Pressure

DAQoutMean = DAQoutMean * pressure_scaling_factor;

SetCtrlVal (panelHandle,PANEL_S9A,DAQoutMean) ;
SOA[0] = DAQoutMean;
break;

case 17:

if(1s_S9B) // Pressure

DAQoutMean = DAQoutMean * pressure_scaling_factor;

SetCtrlVal (panelHandle, PANEL_S9B,DAQoutMean) ;
S9B[0] = DAQoutMean;
break;
case 18:
SetCtriVal(panelHandle,PANEL_PIEZO_TEMP,DAQoutMean);
EiezE_Temp[O] = DAQoutMean;
reak;

//Exit
Error:
if( DAQmxFailed(DAQerror) )

DAQmxGetExtendedError Info(DAQerrBuff,2048);
DAQquitflag =0;

}

//
// Cole Parmer Fluid Bath
//

// DSN_Bath_Power_On : Powers ON the fluid bath

void DSN_Bath_Power_On(void)
{
char* power_on = "SO1\r"; // Define Command to Power On

FlushInQ(SP_comport); // Flush the Input and Output Queue
FlushOutQ(SP_comport);

stringsize = StringLength (power_on);
ComWrt (SP_comport, power_on, stringsize); // Powers On

Is_Bath = 1; // Define Bath Power Global as "On"

// DSN_Bath_Power_Off : Powers OFF the fluid bath

void DSN_Bath_Power_Off(void)
{
char* power_off = "SO00\r"; // Define Command to Power On

FlushInQ(SP_comport); // Flush the Input and Output Queue
FlushOutQ(SP_comport);

stringsize = StringLength (power_off);
ComWrt (SP_comport, power_off, stringsize); // Powers Off

Is_Bath = 0; // Define Bath Power Global as "Off"

// DSN_Poll_Bath_Temp : Polls Internal Bath Temperature
//

void DSN_Poll_Bath_Temp(void)
{

char* ask_temp = "RT\r", // Command to Request Internal Temperature
ascii_temp[20]; // ASCII response to the temperature query

double bath_temp; // Decimal Value

FlushInQ(SP_comport); // Flush the Input and Output Queue

FlushOutQ(SP_comport);

stringsize = StringLength (ask_temp);

ComWrt (SP_comport, ask_temp, stringsize); // Send temperature request to COM Port

ascii_temp[0] = "\0";

bytes_read = ComRdTerm (SP_comport, ascii_temp, 9, 13); // Read incoming temperature from COM Port
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bath_temp = atof(ascii_temp);

SetCtriVal (panelHandle, PANEL_WB_TEMP, bath_temp);
CmtGetLock (Slow_lockHandle);

DSN_SHIFT SIow(O)

Bath_Temp[0] = bath_temp;
CmtReleaseLock (Slow_lockHandle);

// DSN_Poll_Bath_Setpoint : Polls Fluid Bath Setpoint

void DSN_Poll_Bath_Setpoint(void)

// Convert ASCII to Double Format

// Updates bath temperature on screen

// Log value in Bath Temperature Array

char* ask_setpoint = "RS\r",
ascii_setpoint[20];

FlushInQ(SP_comport);

// Command to Request Setpoint Temperature
// ASCII response to the setpoint query

// Flush the Input and Output Queue

FlushOutQ(SP_comport);

stringsize = StringLength (ask_setpoint);
ComWrt (SP_comport, ask_setpoint, stringsize);

ascii setp0|nt[0] = "\0";

// Send setpoint request to COM Port

bytes_read = ComRdTerm (SP comport, ascii_setpoint, 9, 13); // Read incoming setpoint from COM Port

wh_setpoint = atof(ascii_setpoint);

// Convert ASCII1 to Double Format

SetCtriVval (panelHandle, PANEL_WB_SETPOINT, wb_setpoint); // Updates bath setpoint on screen

CmtGetLock (Slow_lockHandle);
DSN_SHIFT_Slow(1);
Bath_Setpoint[0] = wh_setpoint;
CmtReleaseLock (Slow_lockHandle);

// Log value in Setpoint Array

// (Callback) Get_New_Setpoint : Gets Fluid Bath Setpoint from Screen
//

int CVICALLBACK Get_New_Setpoint (int panel,
void *callbackData, int eventDatal,

switch (event)

case EVENT_COMMIT:

int control, int event,
int eventData2)

GetCtriVal (panelHandle, PANEL_WB_SETPOINT, &wb_setpoint);

DSN_Set_Bath_Setpoint();

break;
case EVENT_RIGHT_CLICK:

break;

return O;

// DSN_Set_Bath_Setpoint : Sets Fluid Bath Setpoint

//---

void DSN_Set_Bath_Setpoint(void)

char ascii_setpoint[15],
wholeNum_string[4],
decNum_string[4];

char* setpointcode = *'SS"
char* decPoint_string = ".";

int wholeNum,
decNum;

wholeNum = wb_setpoint;
decNum = (wb_setpoint- wholeNum)*lOO

sprintf(wholeNum_string, "%i", wholeNum);

sprintf(decNum_string, "%i", decNum);

strcpy(ascii_setpoint, setpointcode);
strcat(ascii_setpoint, wholeNum_string);
strcat(ascii_setpoint, decPoint_string);
strcat(ascii_setpoint, decNum_string);
strcat(ascii_setpoint, "\r');

FlushInQ(SP_comport);
FlushOutQ(SP_comport);

// Captures the whole number portion of the setpoint
// Captures the 2 decimal places of the setpoint

// Assembles the command as shown below
// SS

// SSXXX

// SSXXX.

// SSXXX.XX

7/ SSXXX.XX\r

// Flush the Input and Output Queue

stringsize = StringlLength (ascii_setpoint);
ComWrt (SP_comport, ascii_setpoint, stringsize); // Sends new setpoint to COM Port

// (Callback) Select_Bath_Fluid : Sets Fluid Bath Temperature Alarms
//

int CVICALLBACK Select_Bath_Fluid (int panel,
int eventData2)

c void *callbackData, int eventDatal,
char ascii_highalarm[15],
ascii_lowalarm[15],
wholeNum_string[4],
decNum_string[3];
char* highalarmcode = "SH";
char*  lowalarmcode = "SL"'
char* decPoint_string = ".";

double setpoint,
highalarm_value,
lowalarm_value,

int control, int event,

ethglyc_maxtemp = 105, // Max safe operating temperature for ethylene glycol°C
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ethglyc_mintemp
distH20_maxtemp
distH20_mintemp

-30, // Min safe operating temperature for ethylene glycol°C
100, // Max safe operating temperature for distilled water °C
0; // Min safe operating temperature for distilled water °C

int selected_fluid,
wholeNum; 151

switch (event)
case EVENT_COMMIT:
GetCtrlVal (panelHandle,PANEL_BATHFLUID, &selected_fluid); // Find which fluid is selected

GetCtriVval (panelHandle,PANEL_WB_SETPOINT, &setpoint); // Find current setpoint
//-———--

// 1st - Set the Setpoint Limits within the Program

//-———--

switch (selected_fluid)
case 0: // Ethylene Glycol
// Change Valid Setpoint Range
SetCtrlAttribute(panelHandle,PANEL_WB_SETPOINT,ATTR_MAX_VALUE,ethglyc_maxtemp);
SetCtrlAttribute(panelHandle,PANEL_WB_SETPOINT,ATTR_MIN_VALUE, ethglyc_mintemp);

highalarm_value = ethglyc_maxtemp;
lowalarm_value = ethglyc_mintemp;

break;

case 1: // Distilled Water
// Change Valid Setpoint Range
SetCtrlAttribute(panelHandle,PANEL_WB_SETPOINT,ATTR_MAX_VALUE,distH20_maxtemp);
SetCtrlAttribute(panelHandle,PANEL_WB_SETPOINT,ATTR_MIN_VALUE,distH20_mintemp);

highalarm_value = distH20_maxtemp;
lowalarm_value = distH20_mintemp;

break;

3

//
// 2nd - Send the High and Low Alarm Values to the Bath
//

// High Alarm //

wholeNum = highalarm_value; // Captures the whole number portion of the high alarm
sprintf(wholeNum_string, "%i", wholeNum);
// Assembles the command as shown below

strcpy(ascii_highalarm, highalarmcode); // SH
strcat(ascii_highalarm, wholeNum_string); // SHXXX
strcat(ascii_highalarm, "\r"); // SHXXX\r

FlushInQ(SP_comport); // Flush the Input and Output Queue
FlushOutQ(SP_comport);

stringsize = StringLength (ascii_highalarm);

ComWrt (SP_comport, ascii_highalarm, stringsize); // Sends new high alarm to COM Port

// Low Alarm //

wholeNum = lowalarm_value; // Captures the whole number portion of the low alarm

sprintf(wholeNum_string, "%i", wholeNum);
// Assembles the command as shown below

strcpy(ascii_lowalarm, lowalarmcode); // SL
strcat(ascii_lowalarm, wholeNum_string); // SLXXX
strcat(ascii_lowalarm, "\r'); // SLXXX\r

FlushInQ(SP_comport); // Flush the Input and Output Queue
FlushOutQ(SP_comport);

stringsize = StringLength (ascii_lowalarm);
ComWrt (SP_comport, ascii_lowalarm, stringsize); // Sends new high alarm to COM Port

break;
case EVENT_RIGHT_CLICK:
break;
}
return 0;

//
// DSN_Set_Bath_External : Sets Bath to use Remote Probe

void DSN_Set_Bath_External (void)
{
char* power_on = "Sri\r"; // Define Command to Power On

FlushInQ(SP_comport); // Flush the Input and Output Queue
FlushOutQ(SP_comport);

stringsize = StringLength (power_on);
ComWrt (SP_comport, power_on, stringsize); // Powers On

// DSN_Poll_Bath_Probe : Polls External Probe Temperature

void DSN_Poll_Bath_Probe(void)
{

char* ask_temp = "RR\r", // Command to Request External Temperature
ascii_temp[20]; // ASCII response to the temperature query
double probe_temp; // Decimal Value

FlushInQ(SP_comport); // Flush the Input and Output Queue



}

FlushOutQ(SP_comport);
stringsize = StringLength (ask_temp);

// Send temperature request to COM Port
ComWrt (SP_comport, ask_temp, stringsize);

ascii_temp[0] = "\0";

// Read incoming temperature from COM Port
bytes_read = ComRdTerm (SP_comport, ascii_temp, 9, 13);

// Convert ASCII1 to Double Format
probe_temp = atof(ascii_temp);

// Updates probe temperature on screen (S7A)
SetCtriVval (panelHandle, PANEL_S7A, probe_temp);

CmtGetLock (Slow_lockHandle);

DSN_SHIFT_Slow(6);

S7A[0] = probe_temp; // Log value in S7A Array
CmtReleaseLock (Slow_lockHandle);

//
//

Viscojet Viscometer

//

//
//
//

Vo

Vo

do

DSN_Poll_Viscosity : Request Viscosity

id DSN_Poll_Viscosity(void)
double viscosity_response;

char response[200]="\0",
hex_ave_live_visc[9]="\0",
hex_ave_corr_visc[9]="\0",
hex_live_visc[9]="\0";

FlushInQ(SP2_comport); // Flush the Input and Output Queue
FlushOutQ(SP2_comport);

ComWrt (SP2_comport, ':010410000004E7\n", 17); // Poll Viscosities
Delay (1.5); // Allow Time for Instrument to Respond
inglen = GetInQLen (SP2_comport); // Check Response Length

bytes_read = ComRdTerm (SP2_comport, response, inglen, 10); // Read Hex Response

//printf (“bytes_read = %i\n", bytes_read);
//printf ("The complete hex response is %s\n'", response);

CopyBytes (hex_ave_live_visc, 0, response, 7, 8); // Parse Response
CopyBytes (hex_ave_corr_visc, 0, response, 15, 8);
CopyBytes (hex_live_visc, 0, response, 23, 8);

// Converts to Decimal and Updates Readouts
viscosity_response = DSN_Hex_to_Float(hex_ave_live_visc, PANEL_AVE_LIVE_VISCOSITY);

CmtGetLock (Slow_lockHandle);

DSN_SHIFT_Slow(2);

Ave_L_Visc[0] = viscosity_response; // Updates Array
CmtReleaseLock (Slow_lockHandle);

viscosity_response = DSN_Hex_to_Float(hex_ave_corr_visc, PANEL_AVE_CORR_VISC);

CmtGetLock (Slow_lockHandle);
DSN_SHIFT_Slow(3);

Ave_TC_Visc[0] = viscosity_response;
CmtReleaseLock (Slow_lockHandle);

DSN_Poll_Bulb_Temperature : Requests viscometer bulb temperature

id DSN_Poll_Bulb_Temperature(void)
double bulb_temp_response;

char response[200]="\0",
hex_visc_bulb_temp[9]="\0";

FlushInQ(SP2_comport); // Flush the Input and Output Queue
FlushOutQ(SP2_comport);

ComWrt (SP2_comport, *:010410100003D8\n", 17); // Poll Bulb Temperature

Delay (1.75); // Allow Time for Instrument to Respond
inglen = GetlInQLen (SP2_comport); // Check Response Length

ComRdTerm (SP2_comport, response, inglen, 10); // Read Hex Response

CopyBytes (hex_visc_bulb_temp, 0, response, 7, 8); // Parse Response

// Converts to Decimal and Updates Readouts
bulb_temp_response = DSN_Hex_to_Float(hex_visc_bulb_temp, PANEL_BULB_TEMPERATURE);

CmtGetLock (Slow_lockHandle);

DSN_SHIFT_Slow(4);

Bulb_Temp[0] = bulb_temp_response; // Updates Array
CmtReleaseLock (Slow_lockHandle);

DSN_Hex_to_Float : Converts 8 bit ASCII Hex Float to Decimal Number

uble DSN_Hex_to_Float(char* ascii_hex_in, int output_indicator)
double float_out; // Float Output from Hex-to-Float Function

int binary_out,
I,
integer_exponent,
whole_num_array_size = 0,
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char

char
char

float

dec_num_array_size = 0;

//ascii_hex_in[9],

binary from_hex[36] = "\0",
ascii_hex_chunk[5],
sign_array[2] = "\0",
exponent_array[9] = "\ \0",
mantissa_array[25] = "1",
whole_num_array[200] = "\0"
dec_num_array[200] = "\0",

complete_binary_num[200] = "\0";

*end_pointer;
*decimal_point = ".";
float_whole,
float_decimal = 0.0;

// Define blnary dlglt arrays

char
char
char
char
char
char
char
char
char
char
char
char
char
char
char
char

*zero =
*one = "0001"'
*two = "0010";
*three = "0011";
*four = "0100";
*five = "0101";
*six = "0110";
*seven = "0111";
*eight = "1000";
*nine = "1001";
*ten = "1010";

*eleven = "1011";
*twelve = "1100";
*thirteen = "1101";
*fourteen =

*fifteen = "1111";

//
//

//
//
//
//
/7

Step 1 Array
Step 2 Arrays

Step 3 Arrays

Leading 1 Normalizes Mantissa
Step 5 Arrays

Step 6 Array

/

/* Step 1: Obtain Hex Input String

/
*/

/

//printf ("The hex number is %s\n",

/

ascii_hex_in);

/

/
/* Step 2: Convert Hex String to Binary */

/

for(i=0;ascii_hex_in[i]!=NULL;i++)

?witch(asciifhexfin[i])

/

case "0":
strcat (binary_from_hex, zero);
break;
case "1":
strcat (binary_from_hex, one);
break;
case "2°:
strcat (binary_from_hex, two);
break;
case "3":
strcat (binary_from_hex, three);
break;
case "4°:
strcat (binary_from_hex, four);
break;
case "5":
strcat (binary_from_hex, five);
break;
case "6":
strcat (binary_from_hex, six);
break;
case "7°:
strcat (binary_from_hex, seven);
break;
case "8":
strcat (binary_from_hex, eight);
break;
case "9":
strcat (binary_from_hex, nine);
break;
case "a":
case "A":
strcat (binary_from_hex, ten);
break;
case "b":
case "B":
strcat (binary_from_hex, eleven);
break;
case "c":
case "C":
strcat (binary_from_hex, twelve);
break;
case "d":
case "D":
strcat (binary_from_hex, thirteen);
break;
case "e":
case "E"
strcat (binary_from_hex, fourteen);
break;
case "f"
case "F":
strcat (binary_from_hex, fifteen);
break;
default:
//printf("Entered number is not Hexadecimal. Printed value is not correct.");
break;
}
//printf (“"The hex number in binary is %s\n", binary_from_hex);
/ /
/* Step 3: Break Binary String into Sign, Exponent, and Mantissa Arrays */
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/ /

sign_array[0] = binary_from_hex[0]; // Copy Sign (Bit 31)

for (1=0; i<8; i++) // Copy Exponent (Bits 30-23) 154
exponent_array[i] = binary_from_hex[i+1];

for (i=0; i<23; i++) // Copy Mantissa (Bits 22-0)

{
mantissa_array[i+1] = binary_from_hex[i+9];

//printf ("The binary sign bit is %s\n", sign_array);

//printf (“"The binary exponent is %s\n", exponent_array);
//printf ("The binary mantissa is %s\n", mantissa_array);

/ /
/* Step 4: Compute Integer Value of Exponent */
/ /

// -127 is there because exponent is biased
integer_exponent = strtol (exponent_array, &end_pointer, 2) - 127;

//printf ("The integer exponent is %i\n", integer_exponent);

/ /
/* Step 5: Shift Decimal Position According to Exponent and Create New Binary */
/* Number Arrays for the Whole and Decimal Portions of the Float */
/ /

if (integer_exponent > 0) // Whole and Decimal Portions Both Exist
for (i=0; i < (integer_exponent + 1); i++) // Fill Whole Number Binary Array
whole_num_array[i] = mantissa_array[i];
//printf ("The binary whole number array is %s\n", whole_num_array);
for (i=0; i < (23 - integer_exponent); i++) // Fill Decimal Number Binary Array
dec_num_array[i] = mantissa_array[(integer_exponent + 1 + i)];
}
else // Only Decimal Portion Exists
for (i=0; i < (-1 - integer_exponent); i++) // Add Leading Zeros
dec_num_array[i] = "0";

// Fill Decimal Number Binary Array (Shifted by Leading Zeros)
strcat(dec_num_array, mantissa_array);

}

//printf ("The binary decimal number array is %s\n", dec_num_array);

/ /
/* Step 6: Compute Base 10 Values for Whole and Decimal Portions */
/* and Assemble Complete Floating Point Number */
/ /

// Assemble the Complete Binary String as a Check
strcat(complete_binary_num, whole_num_array);
strcat(complete_binary_num, decimal_point);
strcat(complete_binary_num, dec_num_array);

//printf("The complete binary number is %s\n", complete_binary_num);

// Compute Whole Number Portion of Float
float_whole = strtol(whole_num_array, &end_pointer, 2);

// Compute Decimal Number Portion of Float
for(i=0;dec_num_array[i]!=NULL;i++)
{

switch(dec_num_array[i])

case "0":
break;
case "1":
float_decimal = float_decimal + pow(2, -i-1);
break;
}
}
float_out = float_whole + float_decimal;
switch(sign_array[0]) // Determine Sign of Floating Point Number
case "0":
break;
case "1":
float_out = - float_out;
break;
}

//printf("The floating point decimal is %f\n", float_decimal);
//printf("The final floating point number is %f\n\n", float_out);

// Sends Decimal Result out to the Panel
SetCtrival (panelHandle, output_indicator, float_out);

return float_out;

//

// GE Pressure Controller
//

Y7 —

// DSN_Initialize_P_Controller : Sets to Remote Operation

//
//
/7

: Sets Units to PSI
: Set to Overdamped Control
: Set Notation Code to N1



// : Set Interrupt to End of Conversion

// : Vents the System
// : Zero"s the Instrument
/)-———————-

void DSN_Initialize_P_Controller(void)

char* remote_mode = "R1\r"; /* Command to Set to Remote Mode */
char* set_units = "SI\r"; /* Command to Set Units to psi */
char* set_control_rate = "JI1\r"; /* Command to Set Overdamped Control */
/* Vents Instrument */
char* zero = "01\r"; /* Command to Zero Instrument */
char* notation_code = "NI\r"; /* Command to Set Notation Code to N1 */
char* interrupt_code = "14\r"; /* Command to Set Interrupt on End of Conversion */

FlushInQ(SP3_comport);

FlushOutQ(SP3_comport);

stringsize = StringlLength (remote_mode);

ComWrt (SP3_comport, remote_mode, stringsize); // Sets control mode at COM Port

FlushInQ(SP3_comport);

FlushOutQ(SP3_comport);

stringsize = StringlLength (set_units);

ComWrt (SP3_comport, set_units, stringsize); // Send Units Command

FlushInQ(SP3_comport);

FlushOutQ(SP3_comport);

stringsize = StringLength (set_control_rate);

ComWrt (SP3_comport, set_control_rate, stringsize); // Send Control Rate Command

DSN_Vent_Pressure(); // Vents the System Pressure

FlushInQ(SP3_comport); // Clears the In and Out Q
FlushOutQ(SP3_comport);

stringsize = StringLength (zero);

ComWrt (SP3_comport, zero, stringsize); // Send Zero Command

FlushInQ(SP3_comport);

FlushOutQ(SP3_comport);

stringsize = StringLength (notation_code);

ComWrt (SP3_comport, notation_code, stringsize); // Send Notation Code Command

FlushInQ(SP3_comport);

FlushOutQ(SP3_comport);

stringsize = StringLength (interrupt_code);

ComWrt (SP3_comport, interrupt_code, stringsize); // Send Interrupt Code Command

}

// DSN_Change_P_Setpoint : Changes the Setpoint

// : Controls to New Setpoint
/)=

double DSN_Change_P_Setpoint(double new_p_setpoint)

char ascii_setpoint[20],
wholeNum_string[5],
decNum_string[4];

char* setpointcode = "P=";
char* decPoint_string = ".";
char* start_control = "CI1\r";

double max_pressure = 1450.38; // Maximum pressure allowed by controller

int wholeNum,

decNum;
if(new_p_setpoint <= max_pressure) // Safe Setpoint Pressure
{
wholeNum = new_p_setpoint; /* Captures the whole number portion of the setpoint */

decNum = (new_p_setpoint-wholeNum)*100; /* Captures the 2 decimal places of the setpoint */

sprintf(wholeNum_string, "%i", wholeNum);
sprintf(decNum_string, "%i", decNum);
/* Assembles the Command */

strcpy(ascii_setpoint, setpointcode); /* P= */
strcat(ascii_setpoint, wholeNum_string); /* P=XXX */
strcat(ascii_setpoint, decPoint_string); /* P=XXX. */
strcat(ascii_setpoint, decNum_string); /* P=XXX.XX */
strcat(ascii_setpoint, "\r"); /* P=XXX XX\r */
FlushInQ(SP3_comport); /* Clears the In and Out Q */

FlushOutQ(SP3_comport);

stringsize = StringlLength (ascii_setpoint);
ComWrt (SP3_comport, ascii_setpoint, stringsize); // Sends new setpoint to COM Port

stringsize = StringLength (start_control);
ComWrt (SP3_comport, start_control, stringsize); // Controls to New Setpoint

SetCtrival(panelHandle, PANEL_REGULATOR_SETPOINT, new_p_setpoint);
else
MessagePopup (“Warning", "Desired Setpoint is Outside Safe Working Pressure of the Controller™);

return 0;

// Change_P_Setpoint (Callback) : For manual mode
: Calls DSN_Change_P_Setpoint

int CVICALLBACK REGULATOR_SETPOINT_CALLBACK (int panel, int control, int event,
void *callbackData, int eventDatal, int eventData2)

switch (event)

case EVENT_COMMIT:
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GetCtrival (panelHandle, PANEL_REGULATOR_SETPOINT,

&p_setpoint_for_callback); // Retrieve New Value
DSN_Change_P_Setpoint(p_setpoint_for_callback); // Adjust to New Setpoint
break;

case EVENT_RIGHT_CLICK:
break;
return 0;
;;_5éﬁ10é;tfPressure : Slowly vent the system pressure
//-——————-

void DSN_Vent_Pressure(void)
double step_down_pressure, current_pressure;
char* stop_control = "CO\r";
int delay,
vent_steps,
current_vent_step,
pressure_per_vent_step = 5; // Vent ??psi per vent step

DSN_Poll_Current_Pressure();
current_pressure = PACE_Pressure_Global;

vent_steps = current_pressure/pressure_per_vent_step;
for(current_vent_step = 1; current_vent_step <= vent_steps; current_vent_step++)
step_down_pressure = current_pressure - current_vent_step*pressure_per_vent_step;
if(step_down_pressure < 0)
step_down_pressure = 0;
// Vent pressure in small steps
DSN_Change_P_Setpoint(step_down_pressure);
// Change Setpoint Readout
SetCtriVal (panelHandle, PANEL_REGULATOR_SETPOINT, step_down_pressure);
for(delay=1 ; delay <= 10 ; delay++)
Delay(1);

DSN_Poll_Current_Pressure();
ProcessSystemEvents ();

}
step_down_pressure = 0;
DSN_Change_P_Setpoint(step_down_pressure); // Final vent to zero psi

for(delay=1 ; delay <= 30 ; delay++)

Delay(1); // Final Vent
ProcessSystemEvents ();

// Change Setpoint Readout to Zero
SetCtrlVal (panelHandle, PANEL_REGULATOR_SETPOINT, 0.00);
DSN_Poll_Current_Pressure();

stringsize = StringlLength (stop_control);
ComWrt (SP3_comport, stop_control, stringsize); // Turns off Control Module

}

//--
// DSN_Shut_Down_P_Controller  : Vent the System
// : Set PACE5000 to Local Mode

//--
void DSN_Shut_Down_P_Controller(void)
{
char* local_mode = "RO\r"; /* Command to Set to Local Mode */
DSN_Vent_Pressure();
FlushInQ(SP3_comport); // Clears the In and Out Q
FlushOutQ(SP3_comport);
stringsize = StringLength (local_mode);
ComWrt (SP3_comport, local_mode, stringsize); // Sets control mode at COM Port

}

//--
// DSN_Poll_Pressure_Setpoint : Polls Pressure Setpoint
//

void DSN_Poll_Pressure_Setpoint(void)
{

char* data_select = "DI\r"; // Command to set reading to Setpoint

char*  req_reading = "\r", // Command to Request a Reading
ascii_response[20], // ASCII response to query
ascii_p_setpoint[20]; // ASCII setpoint

double pressure_setpoint; // Decimal Value

FlushInQ(SP3_comport); // Flush the Input and Output Queue

FlushOutQ(SP3_comport);

stringsize = StringlLength (data_select);
ComWrt (SP3_comport, data_select, stringsize); // Set Reading to Setpoint

Delay(0.5); // Delay to allow for end of conversion

FlushInQ(SP3_comport); // Flush the Input and Output Queue
FlushOutQ(SP3_comport);

stringsize = StringlLength (req_reading);
ComWrt (SP3_comport, req_reading, stringsize); // Send Read request to COM Port
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ascii_response[0] = "\0";
bytes_read = ComRdTerm (SP3 comport,

ascii_response, 7, 13); // Read data from COM Port (7 digits including ".")

pressure_setpoint = atof(ascii_response); // Convert ASCII to Double Format

SetCtriVval (panelHandle, PANEL_REGULATOR_SETPOINT,

pressure_setpoint); // Updates pressure setpoint on screen

CmtGetLock (Slow_lockHandle);

DSN_SHIFT_Slow(5);

Stat_P_Setpoint[0] = pressure_setpoint; // Log value in Setpoint Array
CmtReleaseLock (Slow_lockHandle);

// DSN_Poll_Current_Pressure : Polls Current Pressure

void DSN_Poll_Current_Pressure(void)

char* data_select = "DO\r"; // Command to set reading to Current Pressure
char* req_readlng ="\r", // Command to Request a Reading
ascii_response[20], // ASCII response to query
ascii_current_p[20]; // ASCII setpoint
double current_pressure; // Decimal Value
FlushInQ(SP3_comport); // Flush the Input and Output Queue

FlushOutQ(SP3_comport);

stringsize = StringlLength (data_select);

ComWrt (SP3_comport, data_select, stringsize); // Set Reading to Current Pressure

Delay(0.5); // Delay to allow for end of conversion

FlushInQ(SP3_comport); // Flush the Input and Output Queue

FlushOutQ(SP3_comport);

stringsize = StringLength (reg_reading);

ComWrt (SP3_comport, req_reading, stringsize); // Send Read request to COM Port

Delay(0.5);

ascii_response[0] = "\0";
bytes_read = ComRdTerm (SP3 comport,

ascii_response, 7, 13); // Read data from COM Port (7 digits including ".")
current_pressure = atof(ascii_response); // Convert ASCII1 to Double Format
PACE_Pressure_Global = current_pressure; // Send current pressure to a global variable
SetCtriVval (panelHandle, PANEL_REGULATOR_PRESSURE,

current_pressure); // Updates pressure setpoint on screen

CmtGetLock (Slow_lockHandle);
DSN_SHIFT_Slow(7);

PACE_Pressure[0] = current_pressure; // Log value in PACE_Pressure Array
CmtReleaseLock (Slow_lockHandle);

}

//

// Tektronics Function Generator

//

//-————-

// DSN_Init_FuncGen : Initializes Function Generator

void DSN_Init_FuncGen(void)

tkafg3k_InitWithOptions ("USBO :0x0699: :0x0346::C030622: : INSTR", TRUE, VI
"Simulate=0,RangeCheck=1, QuerylnstrStatus 1, Cache= 1",
&tkafg3k)
}
// DSN_Set_FuncGen_Out : Sets Function Generator Output
void DSN_Set_FuncGen_Out(void)
{ .
ViReal64 Amplitude_1;
ViReal64 Frequency_1;
int wavel; //wavetype
Vilnt32 WaveTypel;
int model; //run mode
Vilnt32 ModeTypel;
double phasel; //phase modulation frequency
Vilnt32 PhaseTypel;
ViReal64 phaseanglel; //phase angle

int mwave_1;

ViBoolean enablephasemod_1;

GetCtrlval (panelHandle, PANEL_VOLTAGE, &Amplitude_1); //get info from gui
GetCtrlval (panelHandle, PANEL_| FREQUENCY &Frequency_1);

GetCtrlval (panelHandle, PANEL_Waveform_ 1,&wavel);

ModeTypel = TKAFG3K_VAL_OPERATE_CONTINUOUS; //set to continuous operation

phaseanglel = 0; //set phase angle in degrees

phasel = 25000; //set phase modulation frequency in Hz
PhaseTypel = TKAFG3K_VAL_PM_INTERNAL_SINE; //for the phase modulation waveform
enablephasemod_1 = VI_FALSE; //disable phase modulation

switch (wavel) //select desired waveform for channel 1

case 0:
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WaveTypel
break;
case 1:
WaveTypel
break;
case 2:
WaveTypel
break;
case 3:
WaveTypel
break;
case 4:
WaveTypel
break;
case 5:
WaveTypel
break;
case 6:
WaveTypel
break;
case 7:
WaveTypel
break;
case 8:
WaveTypel
break;
case 9:
WaveTypel
break;
case 10:
WaveTypel
break;
case 11:
WaveTypel
break;

TKAFG3K_VAL_WFM_SINE;

TKAFG3K_VAL_WFM_SQUARE;

TKAFG3K_VAL_WFM_RAMP; 158
TKAFG3K_VAL_WFM_PULS;

TKAFG3K_VAL_WFM_PRN;

TKAFG3K_VAL_WFM_DC;

TKAFG3K_VAL_WFM_SINC;

TKAFG3K_VAL_WFNM_GAUS;

TKAFG3K_VAL_WFM_LOR;

TKAFG3K_VAL_WFM_ERIS;

TKAFG3K_VAL_WFM_EDEC;

TKAFG3K_VAL_WFM_HAV;

//tkafg3k_ConfigureOutputMode (tkafg3k, TKAFG3K_VAL_OUTPUT_FUNC);

tkafg3k_ConfigurePMEnabled (tkafg3k,
tkafg3k_ConfigurePMSource (tkafg3k, 1",

enablephasemod_1);
TKAFG3K_VAL_PM_INTERNAL) ;

tkafg3k_ConfigurePMInternalByChannel (tkafg3k, "1", 90, PhaseTypel, phasel);
tkafg3k_ConfigureOperationMode (tkafg3k, "1", (Vilnt32)ModeTypel);
tkafg3k_ConfigureStandardWaveform (tkafg3k, "1", WaveTypel, Amplitude_1, 0.0, Frequency_l, phaseanglel);

: Configures the Output
: Sets Function Generator Output On

void DSN_Toggle_FuncGen_On(void)

DSN_Set_FuncGen_0ut();
tkafg3k_ConfigureOutputEnabled (tkafg3k, "1, VI_TRUE);
SetCtriVal (panelHandle, PANEL_FUNCGEN_ONOFF, 1);

//
// DSN_Toggle_FuncGen_Off : Sets Function Generator Output Off
//

void DSN_Toggle_FuncGen_Off(void)

tkafg3k_ConfigureOutputEnabled (tkafg3k, "1", VI_FALSE);
SetCtriIVal (panelHandle, PANEL_FUNCGEN_ONOFF, 0);

int CVICALLBACK Read_FuncGen_UI_Output (int panel, int control, int event,
void *callbackData, int eventDatal, int eventData2)

int OutputState;

switch (event)

case EVENT_COMMIT:

GetCtrlVval (panelHandle,PANEL_FUNCGEN_ONOFF, &OutputState);

switch (OutputState) // Set desired output state

case 0: // Channel 1 Off
tkafg3k_ConfigureOutputEnabled (tkafg3k, "'1", VI_FALSE);
break;

case 1: // Channel 1 On
tkafg3k_ConfigureOutputEnabled (tkafg3k, 1", VI_TRUE);
break;

break;

return 0;

: Reads function generator setpoints on Ul
: Sends values to the function generator

int CVICALLBACK Read_FuncGen_Ul (int panel, int control, int event,
void *callbackData, int eventDatal, int eventData2)

switch (event)

case EVENT_COMMIT:

DSN_Set_FuncGen_Out(); //call the function to read the Ul values and set the output



break;
case EVENT_RIGHT_CLICK:

break;
return 0;
}
/
//  .d8888b. 8888888h. d8888 8888888h. 888 888 8888888 888b 888 .d8888h.
// d88P YB88b 888  Y88b d88888 888  Y88b 888 888 888 8888b 888 d88P Y88b
// 888 888 888 888 d88P888 888 888 888 888 883 888388b 888 888 888
// 888 888  d88P d88P 888 888 (B8P 8883388888 888  888Y38b 888 888
// 888 38888 8388888P" d88P 888 8888888P" 888 888 888 888 Y88b888 888 88888
// 888 888 888 T88b d88P 888 888 888 888 888 888 YB88888 888 888
// Y88b d88P 888 T88b 8888888888 888 888 888 888 888 Y8888 Y88b d88P
//  "'Y8B888P88 888  T88b d88P 888 888 888 888 8888888 888 Y888 ''Y8888P88
/
//
// OnOff_Graphs : For Turning Graphs ON and OFF (Dimming)
//
int CVICALLBACK OnOff_Graphs (int panel, int control, int event,
void *callbackData, int eventDatal, int eventData2)
{ int test;
switch (event)
case EVENT_COMMIT:
switch(control)
case G_SETUP_OnOff _G_1:
GetCtrival (g_Handle, G_SETUP_OnOff G_1, &test);
if(test)
{
SetCtrlAttribute (panelHandle, PANEL_G_1, ATTR_DIMMED, 0);
OnOff_G1 = 1;
else
{
SetCtrlAttribute (panelHandle, PANEL_G_1, ATTR_DIMMED, 1);
OnOff_G1 = 0;
break;
case G_SETUP_OnOff_G_2:
GetCtrival (g_Handle, G_SETUP_OnOff G 2, &test);
if(test)
SetCtrIAttrlbute (panelHandle, PANEL_G_2, ATTR_DIMMED, 0);
Onoff_G2 = 1;
}
else
SetCtrIAttrlbute (panelHandle, PANEL_G_2, ATTR_DIMMED, 1);
OnOff_G2 = 0;
}
break;
case G_SETUP_OnOff G_3:
GetCtrlval (g_Handle, G_SETUP_OnOff_G_3, &test);
if(test)
{
SetCtrlAttribute (panelHandle, PANEL_G_3, ATTR_DIMMED, 0);
OnOff_G3 = 1;
else
{
SetCtrlAttribute (panelHandle, PANEL_G_3, ATTR_DIMMED, 1);
OnOff_G3 = 0;
break;
case G_SETUP_OnOff G_4
GetCtrival (g_ Handle G_SETUP_OnOff_G_4, &test);
if(test)
SetCtrlAttribute (panelHandle, PANEL_G_4, ATTR_DIMMED, 0);
OnOff_G4 = 1;
}
else
SetCtrlAttrlbute (panelHandle, PANEL_G_4, ATTR_DIMMED, 1);
OnOff_G:
break;
break;
case EVENT_RIGHT_CLICK:
break;
return O;
//
// DSN_Graph : Calls Graphing Function and Scales X Axes
//
void DSN_Graph(void)
{
// GRAPH #1

iF(OnOFF_G1)

DSN_Graph_Select(plotvar_G_1, PANEL_G_1);

}
//

if(plotvar_G_1>=0)

SetAxisScalingMode (panelHandle, PANEL_G_1, VAL_XAXIS,
VAL_MANUAL, step[0]-X Range G 1, step[O])
if(Y_Mode_G_1)

SetAxisScalingMode (panelHandle, PANEL_G_1, VAL _LEFT_YAXIS,
VAL_AUTOSCALE,O ,0);

else
SetAxisScalingMode (panelHandle, PANELfG 1, VAL LEFT_YAXIS,
VAL_MANUAL, Y_Min_G_1, Y_Max_G_1);
}
GRAPH #2
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i F(ONOFF_G2)

{
DSN_Graph_Select(plotvar_G_2, PANEL_G_2);
if(plotvar_G_2>=0)

{
SetAxisScalingMode (panelHandle, PANEL_G_ 2, VAL_XAXIS, VAL_MANUAL,

step[0]-X_Range_G_2, step[0]);
if(Y_Mode_G_2)
SetAxisScalingMode (panelHandle, PANEL_G_2, VAL _LEFT_YAXIS,
VAL_AUTOSCALE,O ,0 )3
else
SetAxisScalingMode (panelHandle, PANEL_G 2, VAL_LEFT_YAXIS,
VAL_MANUAL, Y_Min G_2, Y_Max_G_2);
}

}
// GRAPH #3
iT(OnOFF_G3)

DSN_Graph_Select(plotVvar_G_3, PANEL_G_3);
if(plotvar_G_3>=0)

{
SetAxisScalingMode (panelHandle, PANEL_G_3, VAL_XAXIS, VAL_MANUAL,

step[0]-X_Range_G_3, step[0]);
if(Y_Mode_G_3)
SetAxisScalingMode (panelHandle, PANEL_G_3, VAL _LEFT_YAXIS,
VAL_AUTOSCALE,O0 ,0);
else
SetAxisScalingMode (panelHandle, PANEL_G_3, VAL_LEFT_YAXIS,
VAL_MANUAL, Y_Min G 3, Y Max_G_3);
¥

}
7/ GRAPH #4
i F(ONOFF_G4)

DSN_Graph_Select(plotVar_G_4, PANEL_G_4);
if(plotvar_G_4>=0)

{
SetAxisScalingMode (panelHandle, PANEL_G 4, VAL_XAXIS,
VAL_AUTOSCALE, step[0]-X_Range_G_4, step[0]);
if(Y_Mode_G_4)
SetAxisScalingMode (panelHandle, PANEL_G_4, VAL _LEFT_YAXIS,
VAL_AUTOSCALE,O0 ,0);
else
SetAxisScalingMode (panelHandle, PANEL_G 4, VAL_LEFT_YAXIS,
) VAL_MANUAL, Y_Min_G_4, Y_Max_G_4);
}

return;

//
// DSN_Graph_Select : Plots the Selected Variable

//
void DSN_Graph_Select(int plotvar, int Panel_Graph)

{
switch(plotvar)
{ case -1:

DeleteGraphPlot (panelHandle, Panel_Graph, -1,VAL_IMMEDIATE_DRAW);

break;
case 0: // Fluid Bath Temperature & Setpoint

DeleteGraphPlot (panelHandle, Panel_Graph, -1,VAL_IMMEDIATE_DRAW);

PlotXY (panelHandle, Panel_Graph, step, Bath_Temp, NUM, VAL_DOUBLE,
VAL_DOUBLE, VAL_SCATTER, VAL_SOLID_CIRCLE, VAL_SOLID, 1, VAL _RED);

PlotXY (paneIHandIe Panel Graph step, Bath_Setpoint, NUM, VAL DOUBLE,
VAL_DOUBLE, VAL_FAT_LINE, VAL_EMPTY_SQUARE, VAL_ soLID, 1, VALﬁWHITE);

break;
case 1: // Viscosity

DeleteGraphPlot (panelHandle, Panel_Graph, -1,VAL_IMMEDIATE_DRAW);
PlotXY (panelHandle, Panel_Graph, step, Ave_L_Visc, NUM, VAL DOUBLE, VAL_DOUBLE,

VAL_SCATTER, VAL_SOLID_CIRCLE, VAL SOLID 1, VAL RED)
break;
case 2: // Experiment Stage

DeleteGraphPlot (panelHandle, Panel_Graph, -1,VAL_IMMEDIATE_DRAW);
PlotXY (panelHandle, Panel_Graph, step, Logging_Trig_Array, NUM, VAL_DOUBLE,
VAL_DOUBLE, VAL_FAT_LINE, VAL_EMPTY_SQUARE, VAL_SOLID, 1, VAL _RED);

break;
case 3: // Radial Temperature Profile

DeleteGraphPlot (panelHandle, Panel_Graph, -1,VAL_IMMEDIATE_DRAW);
PlotXY (panelHandle, Panel_Graph, Key Radial_| P05|t|ons Current_Radial_Temps, 4,
VAL_DOUBLE, VAL_DOUBLE, VAL_CONNECTED_POINTS, VAL_! SOLID CIRCLE, VAL_DASH, 1, VAL_RED);

// Not Working

break;
case 4: //
DeleteGraphPlot (panelHandle, Panel_Graph, -1,VAL_IMMEDIATE_DRAW);
break;
return;
//
// GRAPHS - Call to Setup Graphs Anytime a Value on Graph Panel is Changed

//
int CVICALLBACK DSN_SETUP_G (int panel, int control, int event,
void *callbackData, int eventDatal, int eventData2)

switch (event)
case EVENT_COMMIT:
DSN_GraphSetup();
break;
case EVENT_RIGHT_CLICK:
break;

return O;

}
//

// DSN_GraphSetup : Setup Graph Scaling to Match the Graph Panel Values
/

/
void DSN_GraphSetup(void)

{
// Update the variables from the panels
DSN_Save_Vars(Q);
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//Read Graph #1
if(Y_Mode_G_1)

SetCtrlAttribute (g_Handle, G_SETUP_Y_Mode_G_1,
SetCtrlAttribute (g_Handle, G_SETUP_Y Min_ G 1,
SetCtrlAttribute (g_Handle, G_SETUP_Y Max G 1,

else

{

SetCtrlAttribute (g_Handle, G_SETUP_Y_Mode G_1,
SetCtrlAttribute (g_Handle, G_SETUP_Y Min_G_1,
SetCtrlAttribute (g_Handle, G_SETUP_Y Max G_1,

}
DSN_GraphName(plotvar_G_1, PANEL_G_1,G_SETUP_G1_|
G_SETUP_G1_|
G_SETUP_G1_|
G_SETUP_G1_|
//Read Graph #2
if(}fModefoz)

SetCtrlAttribute (g_Handle, G_SETUP_Y_Mode_G_2,
SetCtrlAttribute (g_Handle, G_SETUP_Y Min G 2,
SetCtrlAttribute (g_Handle, G_SETUP_Y Max_G_2,

else

{

SetCtrlAttribute (g_Handle, G_SETUP_Y_Mode_G_2,
SetCtrlAttribute (g_Handle, G_SETUP_Y Min_G_2,
SetCtrlAttribute (g_Handle, G_SETUP_Y Max _G_2,

}
DSN_GraphName(plotvar_G_2, PANEL_G_2,G_SETUP_G2
G_SETUP_G2_|
G_SETUP_G2_|
G_SETUP_G2_]|
//Read Graph #3
if(Y_Mode_G_3)

SetCtrlAttribute (g_Handle, G_SETUP_Y_Mode_G_3,
SetCtrlAttribute (g_Handle, G_SETUP_Y_Min_G_3,
SetCtrlAttribute (g_Handle, G_SETUP_Y_Max_G_3,

else

{

SetCtrlAttribute (g_Handle, G_SETUP_Y_Mode_G_3,
SetCtrlAttribute (g_Handle, G_SETUP_Y Min_G_3,
SetCtrlAttribute (g_Handle, G_SETUP_Y Max_G_3,

}
DSN_GraphName(plotvar_G_3, PANEL_G_3,G_SETUP_G3
G_SETUP_G3_|
G_SETUP_G3_|
G_SETUP_G3_|
//Read Graph #4
if(Y_Mode_G_4)

SetCtrlAttribute (g_Handle, G_SETUP_Y_Mode_G_4,
SetCtrlAttribute (g_Handle, G_SETUP_Y_Min_G_4,
SetCtrlAttribute (g_Handle, G_SETUP_Y_Max_G_4,

else
{
SetCtrlAttribute (g_Handle, G_SETUP_Y_Mode_G_4,

SetCtrlAttribute (g_Handle, G_SETUP_Y_Min_G_4,
SetCtrlAttribute (g_Handle, G_SETUP_Y_Max_G_4,

}
DSN_GraphName(plotvar_G_4, PANEL_G_4,G_SETUP_G4_|

G_SETUP G

v\
G_SETUP G4_|
G_SETUP G4_|

return;

ATTR_LABEL_TEXT,
ATTR_DIMMED, 1):
ATTR_DIMMED, 1):

ATTR_LABEL_TEXT,
ATTR_DIMMED, 0);
ATTR_DIMMED, 0);

L 1,G_SETUP_G1
L_2,G_SETUP_G1
L_3,G_SETUP_G1_
L_4,6_ 1

T

-
61T
JG_SETUP G1T

ATTR_LABEL_TEXT,
ATTR_DIMMED, 1);
ATTR_DIMMED, 1);

ATTR_LABEL_TEXT,
ATTR_DIMMED, 0);
ATTR_DIMMED, 0);

L 1,6_SETUP_G2
L 2.,G_SETUP G2
1_3,G_SETUP_ G2
L_4,6_SETUP_G2_

ATTR_LABEL TEXT,
ATTR_DIMMED, 1);
ATTR_DIMMED, 1),

ATTR_LABEL_TEXT,
ATTR_DIMMED, 0);
ATTR_DIMMED, 0);

L_1,G_SETUP_G3
L_2,G_SETUP_G3_
L_3,G_SETUP_G3
L 4,6 3

T
T
T

,G_SETUP_G3_T

ATTR_LABEL_TEXT,
ATTR_DIMMED, 1);
ATTR_DIMMED, 1):

ATTR_LABEL_TEXT,
ATTR_DIMMED, 0);
ATTR_DIMMED, 0);

L_2,G_SETUP_G4_
L_3,G_SETUP_G4_
L_4,G_SETUP_G4_

4

//
// DSN_GraphName : Setup Graph Appearance

//
void DSN_GraphName(int Val, int GRAPH, int L1,

int L3,

int T1,
int T3,

switch(val)

case -1:
SetCtrlAttribute
SetCtrlAttribute
SetCtrlAttribute
SetCtrlAttribute
SetCtrlAttribute
SetCtrival
SetCtrlAttribute
SetCtrlval
SetCtrlAttribute
SetCtrival
SetCtrlAttribute
SetCtrlval
break;
0: // Fluid Bath
SetCtrlAttribute
SetCtrlAttribute
SetCtrlAttribute
SetCtrival
SetCtrlAttribute
SetCtrlval
SetCtrlAttribute
SetCtrival
SetCtrlAttribute
SetCtrlval
break;
1: // Viscosity
SetCtrlAttribute
SetCtrlAttribute
SetCtrlAttribute
SetCtrival
SetCtrlAttribute
SetCtrlval
SetCtrlAttribute
SetCtrival
SetCtrlAttribute

(panelHandle, GRAPH, ATTR
(panelHandle, GRAPH, ATTR
(panelHandle, GRAPH, ATTR
(paneIHandIe GRAPH, ATTR
(g_Handle, L1,
(g_Handle, T1,
(g_Handle, L2,
(g_Handle, T2,
(g_Handle, L3,
(g_Handle, T3,
(g_Handle, L4,
(g_Handle, T4, "™");

ATTR_FRAVE

case Temperature & Setpoint

(paneIHandIe GRAPH, ATTR
(g_Handle, L1, ATTR_FRAME
(g_HandIe, T1,
(g_Handle, L2,
(g_Handle, T2,
(g_Handle, L3,
(g_Handle, T3,
(g_Handle, L4,
(g_Handle, T4, "™);

ATTR_FRAME

case

(paneIHandIe GRAPH, ATTR
(g_Handle, L1, ATTR_FRAWE |
(g_HandIe, T1, “Viscosit

(g_Handle, L2,
(g_Handle, T2,
(g_Handle, L3,
(g_Handle, T3,
(g_Handle, L4,

int L2,
int L4,

ATTR FRAME
AITﬁfFRAMEi
_COLOR,
ATTR_FRAME_(

“Internal Bath T

int T2,
int T4)

_ACTIVE
_YNAME,
_ACTIVE
_YNAME,
_COLOR,

COLOR,

COLOR,

_YNAME,
COLOR VAL_RED);

emp");
COLOR, VAL_WHITE);

“Bath Setp0|nt")'
ATTR_FRAME_COLOR, VAL_LT_GRAY);

_YNAME,
COLOR, VAL_RED);

L 1,6_SETUP_G4_T_

1,
2,
3,
s

“"Auto™);
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“Fixed");
1,
2,
3,
_4);

"Auto™);

“Fixed");

"Auto™);

“Fixed");
1,
2,
3,
_4);

“"Auto™);

"Fixed");

_YAXIS, VAL_LEFT_YAXIS);
“Not Plotting™);

_YAXIS, VAL_RIGHT_YAXIS);
VAL LT _GRAY);
VAL_LT_GRAY);
VAL_LT_GRAY);

VAL_LT GRAY);

(panelHandle, GRAPH, ATTR_ACTIVE_YAXIS, VAL_LEFT_YAXIS);
“"Bath Temperature [°C]™);

ATTR_FRAME_COLOR, VAL_LT_GRAY);

(panelHandle, GRAPH, ATTR_ACTIVE_YAXIS, VAL_LEFT_YAXIS);

“Viscosity [cP]™);
ty™M);

ATTR_FRAME_COLOR, VAL_LT_GRAY);

ATTR_FRAME_COLOR, VAL_LT GRAY);

ATTﬁfFRAMEﬁCOLOR. VAL_LT_GRAY);



case

SetCtrival (g_Handle, T4,
break;
2: // Experiment Stage

s

SetCtrlAttribute (panelHandle, GRAPH, ATTR_ACTIVE_ YAXIS VAL_LEFT_YAXIS);

SetCtrlAttribute (panelHandle, GRAPH, ATTR_YNAME,
SetCtrlAttribute (g_Handle, L1, ATTR_FRAME _COLOR, VAL_LT_GRAY);
SetCtrlval (g_Handle, T1,

SetCtrlAttribute (g_Handle, L2,

| "0 (Temp), 1 (Actlve) 2 (Thixo.)™);
SetCtrlAttribute (paneIHandIe, GRAPH, ATTR_YDIVISIONS, 3);

SetCtrlval (g_Handle, T2, ™)
SetCtrlAttribute (g_Handle, L3,
SetCtrlval (g_Handle, T3,
SetCtrlAttribute (g_Handle, L4,
SetCtrlval (g_Handle, T4, "™);
break;
case 3: // Radial Temperature Profile

ATTR_FRAME_COLOR, VAL_RED);

ATTR_FRAME_COLOR, VAL_LT_GRAY);
ATTR_FRAME_COLOR, VAL_LT_GRAY);

Experlment Stage™);

SetCtrlAttribute (panelHandle, GRAPH, ATTR_ACTIVE_YAXIS, VAL_LEFT_YAXIS);

SetCtriAttribute (panelHandle, GRAPH, ATTR_YNAME,

“"Temperature [

SetCtrlAttribute (panelHandle, GRAPH, ATTR_ACTIVE_ XAXIS, VAL_BOTTOM XAXIS)

SetCtrlAttribute (panelHandle, GRAPH, ATTR_XNAME,

SetCtrlval (g_Handle, T1,
SetCtrlAttribute (g_Handle, L2,
SetCtrlval (g_Handle, T2,
SetCtrlAttribute (g_Handle, L3,
SetCtrlval (g_Handle, T3,
SetCtrlAttribute (g_Handle, L4,
SetCtrlval (g_Handle, T4, "™");
break;
case 4:

"Temperature");

ATTR_FRAME_COLOR, VAL_LT GRAY);
ATTR_FRAME_COLOR, VAL_LT_GRAY);
ATTR_FRAME_COLOR, VAL_LT_GRAY);

““Radial Position [mm]*);
SetCtrlAttribute (panelHandle, GRAPH, ATTR XDIVISIONS 3);
SetCtrlAttribute (g_Handle, L1, ATTR_FRAME_COLOR, VAL_RED);

SetCtrlAttribute (panelHandle, GRAPH, ATTR_ACTIVE_YAXIS, VAL_LEFT_YAXIS);

SetCtrlAttribute (panelHandle, GRAPH, ATTR_YNAME,
SetCtrlAttribute (g_Handle,
SetCtrlval (g_Handle, T1, "");
SetCtrlAttribute (g_Handle, L2,
SetCtrlval (g_Handle, T2,
SetCtrlAttribute (g_Handle, L3,
SetCtrlval (g_Handle, T3,
SetCtrlAttribute (g_Handle, L4,
SetCtrlval (g_Handle, T4, "™);

-
[

ATTR_FRAME_COLOR. VAL LT_GRAY);
ATTR_FRAME_COLOR, VAL_LT_GRAY);
ﬁITé_FRAME_COLOR, VAL_LT_GRAY);
ATTR_FRAME_COLOR, VAL_LT_GRAY);
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break;

return;
/ /
//  .d8888b.  .d88888bh. 888b dsss .d8888h. 8833888888 88888338888 888 888 8888888h.
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/ /
// //

// COM #1 - Cole Parmer Fluid Bath //

// //

//

// SP_OPEN : Call to Open the Com Port

/

int CVICALLBACK SP_OPEN (int panel, int control, int event,

/7 DSN_SP_OPEN

void *callbackData, int eventDatal, int eventData2)

switch (event)

case EVENT_COMMIT:
DSN_SP_OPENQ);
break;

case EVENT_RIGHT_CLICK:
break;

return O;

: Opens the com port

int test;

//
void DSN_SP_OPEN(void)
{

SetCtrlval (com_Handle, COM_SP_STRING_1, "\O*
SetCtrival (com_Handle, COM_SP_STRING_2, *\O"
SetCtrlval (com_Handle, COM_SP_STRING_3, "\O"
SetCtrlval (com Handle, COM_SP_STRING_4, *\0*
rmd2[0]="\0"

DSN GetSPConflg()

NN

SP_port_open = 0; /* initialize flag to 0 - unopened */
DisableBreakOnLibraryErrors ();
RS232Error = OpenComConfig (SP_comport,

SetCtrlval (com_Handle, COM_NUM,
EnableBreakOnLibraryErrors ();

RS232Error);

if (RS232Error)
DisplayRS232Error ();
else

{

SP_port_open = 1;

SetCtrlval (com_Handle, COM_NUM,  SP_port_open);
GetCtrlval (com_Handle, COM_SP_XMODE, &SP_xmode);
SetXMode (SP_comport, SP_xmode);

GetCtrlval (com_Handle, COM_SP_CTS, &SP_ctsmode);
SetCTSMode (SP_comport, SP_ctsmode);

GetCtrlval (com_Handle, COM_SP_TIMEOUT, &SP_timeout);
?etComTime (SP_comport, SP_timeout);

//SetCtrlval (com_Handle, COM_SP_STRING_2, rmd2);

if (SP_port_open)
{

""", SP_baudrate, SP_parity,
SP_databits, SP_stopbits, SP_inputq, SP_outputq);



SetCtrlAttribute (com Handle, COM_SP_LED, ATTR_DIMMED, 0);
SetCtrlAttribute (paneIHandIe PANEL_SP_| LED ATTR_DIMMED, 0);

test=1;
if(test) 163

SetCtrlval (com_Handle, COM_SP_LED, 1);
SetCtrlval (paneIHandIe PANEL_SP_| LED 1);

else

{
SetCtrlval (com_Handle, COM_SP_LED, 0);
SetCtrlval (paneIHandIe PANEL_SP_| LED 0);
}

return;

// DSN_GetSPConfig : Gets COM Configuration from Panel
/7

void DSN_GetSPConfig (void)
{

DSN_Save_Vars(Q);

#ifdef _NI_unix_
SP _devicename[0]=0
#els
GetLabeIFromlndex (com_Handle, COM_SP_COM, SP_portindex,
SP_devicename);

#endif
}
// //
// COM #2 - Viscojet Viscometer //
// //
// SP2_OPEN : Call to Open the Com Port
/)~

int CVICALLBACK SP2_OPEN (int panel, int control, int event,
void *callbackData, int eventDatal, int eventData2)

switch (event)

case EVENT_COMMIT:
DSN_SP2_OPENQ);

break;
case EVENT_RIGHT_CLICK:
break;

+
return O;

// DSN_SP2_OPEN : Opens the com port
void DSN_SP2_OPEN(void)
{ int test;
SetCtrlval (com_Handle, COM_SP_STRING_1, "\0%);
SetCtrival (com_Handle, COM_SP_STRING 2, *\0%);
SetCtrival (com_Handle, COM_SP_STRING_3, *\0");
SetCtrlval (com_Handle, COM_SP_STRING_4, *\0");
rmd2[0]="\0";
DSN_GetSP2Config();

SP2_port_open = 0; /* initialize flag to 0 - unopened */

DisableBreakOnLibraryErrors ();

RS232Error = OpenComConfig (SP2_comport, "™, SP2_baudrate, SP2_parity,
SP2_databits, Sp2 _stopbits, SP2 _inputq, P2 _outputq);

SetCtrlval (com Handle, COM_NUM, R8232Error)

EnabIeBreakOnLlbraryErrors O;

if (RS232Error)
DisplayRS232Error ();
}
else
SP2_port_open = 1;
SetCtrlval (com Handle COM_NUM,  SP2_port_open);
GetCtrlval (com_Handle, COM_SP XMODE 2, &SP2_xmode);
SetXMode (SP2_comport, SP2_xmode);
GetCtrlval (com_Handle, COM_SP_CTS_2, &SP2_ctsmode);
SetCTSMode (SP2_comport, SP2_ctsmode )
GetCtrlval (com_Handle, COM_SP_TIMEOUT 2, &SP2_timeout);
SetComTime (SP2_comp0rt SP2_timeout);
//SetCtrival (com_Handle, COM_SP2_STRING_2, rmd2);
if (SP2_port_open)
SetCtrlAttribute (com_Handle, COM_SP_LED 2, ATTR_DIMMED, 0);
SetCtrlAttribute (paneIHandIe PANEL_SP_LED 2, ATTR_DIMMED, 0);
test=1;
if(test)

SetCtrlval (com_Handle, COM_SP_LED 2, 1);
SetCtrlval (paneIHandle PANEL_SP_LED_2, 1);

else

SetCtrlval (com_Handle, COM_SP_LED 2, 0);
SetCtrlval (paneIHandIe PANEL_SP_LED 2, 0);
}

return;




// DSN_GetSP2Config : Gets COM Configuration from Panel

void DSN_GetSP2Config (void)
{

DSN_Save_Vars(); 164

#ifdef _NI_unix_
SP2_devicename[0]=0;
#else
GetLabelFromIndex (com_Handle, COM_SP_COM_2, SP2_portindex,
SP2_devicename);

#endif
// //
// COM #3 - GE Pressure Controller //
// //
// SP3_OPEN : Call to Open the Com Port

int CVICALLBACK SP3_OPEN (int panel, int control, int event,
void *callbackData, int eventDatal, int eventData2)

switch (event)

{
case EVENT_COMMIT:
DSN_SP3_OPENQ);

break;
case EVENT_RIGHT_CLICK:
break;
}
return 0;
3
//-——-
// DSN_SP3_OPEN : Opens the com port
Y7 A—

void DSN_SP3_OPEN(void)
{ int test;
SetCtrlval (com_Handle, COM_SP_STRING_1, *\O"
SetCtrival (com_Handle, COM_SP_STRING_2, *\O"
SetCtrlval (com_Handle, COM_SP_STRING_3, "\0*°
SetCtrlval (com_Handle, COM_SP_STRING_4, *\O"
rmd2[0]="\0";
DSN_GetSP3Config();

N\ NN

SP3_port_open = 0; /* initialize flag to 0 - unopened */

DisableBreakOnLibraryErrors ();

RS232Error = OpenComConfig (SP3_comport, ", SP3_baudrate, SP3_parity,
SP3_databits, SP3_stopbits, SP3_inputq, SP3_outputq);

SetCtrlval (com_Handle, COM_NUM,  RS232Error);

EnableBreakOnLibraryErrors ();

if (RS232Error)
DisplayRS232Error ();
}

else
SP3_port_open = 1;
SetCtrival (com_Handle, COM_NUM,  SP3_port_open);
GetCtrlval (com_Handle, COM_SP_XMODE_3, &SP3_xmode);
SetXMode (SP3_comport, SP3_xmode);
GetCtrlval (com_Handle, COM_SP_CTS_3, &SP3_ctsmode);
SetCTSMode (SP3_comport, SP3_ctsmode);

GetCtrlval (com_Handle, COM_SP_TIMEOUT_3, &SP3_timeout);
SetComTime (SP3_comport, SP3_timeout);
}

//SetCtrival (com_Handle, COM_SP3_STRING_3, rmd3);

if (SP3_port_open)
SetCtrlAttribute (com_Handle, COM_SP_LED 3, ATTR_DIMMED, 0);
SetCtrlAttribute (panelHandle, PANEL_SP_LED 3, ATTR_DIMMED, 0);
test=1;
if(test)

SetCtrlval (com_Handle, COM_SP_LED_3, 1);
SetCtrlval (panelHandle, PANEL_SP_LED_3, 1);
}

else

SetCtrlval (com_Handle, COM_SP_LED 3, 0);
SetCtrival (panelHandle, PANEL_SP_LED_3, 0);
}

return;

3
//--
// DSN_GetSP3Config : Gets COM Configuration from Panel

/
void DSN_GetSP3Config (void)
{

DSN_Save_Vars();

#ifdef _NI_unix_
SP3_devicename[0]=0;
#else
GetLabelFromIndex (com_Handle, COM_SP_COM_3, SP3_portindex,
SP3_devicename);
#endif

}

// //
// DisplayRS232Error : Display error information to the user. //
// //

void DisplayRS232Error (void)

char ErrorMessage[200];



switch (RS232Error)

default :
if (RS232Error < 0)

Fmt (ErrorMessage, "%s<RS232 error number %i", RS232Error);
MessagePopup ('RS232 Message", ErrorMessage);

break;
case 0 :
MessagePopup ('RS232 Message", "No errors.");
break;
case -2 :
Fmt (ErrorMessage, "%s', "Connection failed. \n"
"Check port settings.");
MessagePopup (*'RS232 M ge", ErrorM ge);
break;
case -3 :
Fmt (ErrorMessage, "%s", "No port is open.\n"
"Check port settings.");
MessagePopup ("'RS232 M ge", ErrorM
break;
case -99 :
Fmt (ErrorMessage, "%s", "Timeout error.\n"
"Check port settings.");
MessagePopup (“'RS232 Message', ErrorMessage);

ge);
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break;
}
/
//  .d8888b.  .d88888b. 888b 888 8888888888 8888888 .d8888h. 8888888888 8888888 888 8888888888
// d88P YB88b d88P" "Y88b 8888b 888 888 888 d88P Y88b 888 888 888 888
// 888 888 888 888 88888hb 888 888 888 888 888 888 888 888 888
// 888 888 888 888Y88h 888 8888888 888 888 8888888 888 888 8888888
// 888 888 888 888 Y88h888 888 888 888 88888 888 888 888 888
// 888 888 888 888 888 YB88888 888 888 888 888 888 888 888 888
// Y88b d88P Y88b. .d88P 883 Y8888 888 888 Y88b d88P 888 888 888 888
// "Y8888P"  "Y883888P" 888 Y888 888 8888888 ''Y8888P88 888 8888888 88888888 8888888888
/
//
// Load_Config : Load variables from config file
// : Update screen from variables

//
void CVICALLBACK Load_Config (int menuBar, int menultem, void *callbackData,
int panel)

DSN_Load_Config(Q);
DSN_Load Vars();
DSN_Update_Graphics();

//
// Save_Config : Save screen to variables
// : Save variables to config file

//
void CVICALLBACK Save_Config (int menuBar, int menultem, void *callbackData,
int panel)

DSN_Save_Vars();
DSN_Save_Config(0);

3

//

// Save_Config_As : Save screen to variables

// : Save variables to config file

// : Allow the config file to be selected

//
void CVICALLBACK Save_Config_As (int menuBar, int menultem, void *callbackData,

int panel)

DSN_Save_Vars();
DSN_Save_Config(1);

//
// DSN_Save Vars
//
void DSN_Save_Vars(void)
{ inti;

double J_temp,ALPHA_temp;

: Save screen to variables

// MAIN PANEL
// COM Ports

GetCtrlVval (panelHandle, PANEL_LOG_COM3, &1s_COM3);
GetCtrlVval (panelHandle, PANEL_LOG_COM2, &ls_COM2);
GetCtrlval(panelHandle, PANEL_LOG_COM1, &Is_COM1);
GetCtrlval (panelHandle, PANEL_LOG_DAQ, &1s_DAQ);

GetCtrival (panelHandle, PANEL_LOG_FUNCTION_GEN, &ls_Function_Gen);

GetCtriVval (panelHandle, PANEL_LOG_Graph, &ls_Graph);
GetCtrival(panelHandle, PANEL_LOG_LOGtoFile, &lIs_Log);

// A Sensors

GetCtriVval (panelHandle, PANEL_SENSOR_SELECT_1A, &1s_S1A);
GetCtriVval (panelHandle, PANEL_SENSOR_SELECT_2A, &Is_S2A);
GetCtrlVal(panelHandle, PANEL_SENSOR_SELECT_3A, &ls_S3A);
GetCtrlVal(panelHandle, PANEL_SENSOR_SELECT_4A, &ls_S4A);
GetCtrlVal (panelHandle, PANEL_SENSOR_SELECT_5A, &ls_S5A);
GetCtriVval (panelHandle, PANEL_SENSOR_SELECT_6A, &Is_S6A);
GetCtrlVal(panelHandle, PANEL_SENSOR_SELECT_7A, &ls_S7A);
GetCtrlVal(panelHandle, PANEL_SENSOR_SELECT_8A, &ls_S8A);
GetCtrlVval (panelHandle, PANEL_SENSOR_SELECT_O9A, &1s_S9A);
// B Sensors

GetCtrlVal(panelHandle, PANEL_SENSOR_SELECT_1B, &ls_S1B);
GetCtrlVval(panelHandle, PANEL_SENSOR_SELECT_2B, &ls_S2B);
GetCtrlVval (panelHandle, PANEL_SENSOR_SELECT_3B, &1s_S3B);
GetCtrival (panelHandle, PANEL_SENSOR_SELECT 4B, &1s_S4B);
GetCtrlVal(panelHandle, PANEL_SENSOR_SELECT_5B, &ls_S5B);
GetCtrlVval(panelHandle, PANEL_SENSOR_SELECT_6B, &ls_S6B);
GetCtrlVval (panelHandle, PANEL_SENSOR_SELECT_7B, &1s_S7B);
GetCtriVval (panelHandle, PANEL_SENSOR_SELECT_8B, &ls_S8B);
GetCtrlVval(panelHandle, PANEL_SENSOR_SELECT_9B, &1s_S9B);

// Sensor Positions
DSN_Get_Sensor_Positions();

// Equipment Setup
GetCtrlVal(panelHandle, PANEL_EXP_TYPE,
GetCtrlval (panelHandle, PANEL_RUN_MODE,

&Exp_Type);
&Run_Mode);



// GRAPH PANEL

//Read Graph #1

GetCtrlval ( g_Handle,
GetCtrlval( g_Handle,
GetCtrlval( g_Handle,
GetCtrival ( g_Handle,
GetCtrlval ( g_Handle,

G_SETUP_Var_G_1,
G_SETUP_X_Range_( G 1,
G_SETUP_Y Mode_G_1,
G_SETUP_Y Min_G_1,
G_SETUP_Y Max G_1,

if (Y_Min_G_1 >= Y _Max_G_1)
Y_Min_G_1 = Y_Max_G_1-0.5;

SetCtriVal ( g_Handle,

//Read Graph #2

GetCtrlval( g_Handle,
GetCtrlval( g_Handle,
GetCtrival ( g_Handle,
GetCtrlval ( g_Handle,
GetCtrlval( g_Handle,

G_SETUP_Var_G_2,
G_SETUP_X_Range_( G

if (Y_Min_G_2 >= Y _Max_G_ 2)
Y_Min_G_2 = Y_Max_G_2-0.5;

SetCtriVal ( g_Handle,

//Read Graph #3

GetCtrlval( g_Handle,
GetCtrival ( g_Handle,
GetCtrlval ( g_Handle,
GetCtrlval( g_Handle,
GetCtrlval( g_Handle,

G_SETUP_Y Mode G_2, &Y_Mode_G_2);

G_SETUP_Y Min_G_2, &Y_Min_G_2);

G_SETUP_Y _Max_G_2, &Y _Max_G_2);
G_SETUP_Y Min G 2, Y_Min_G_2);

G_SETUP_Var_G_3,
G_SETUP_X_Range_( G

if (Y_Min_G_3 >= Y_Max_G_3)
Y_Min_G_3 = Y_Max_G_3-0.5;

SetCtriVal ( g_Handle,

//Read Graph #4

GetCtrival ( g_Handle,
GetCtrlval ( g_Handle,
GetCtrlval( g_Handle,
GetCtrlval( g_Handle,

G_SETUP_Y Mode_G_3, &Y_Mode_G_3);

G_SETUP_Y_Min_G_3, &Y_Min_G_3);

G_SETUP_Y_Max_G_3, &Y_Max_G_3);
G_SETUP_Y_Min_G_3, Y_Min_G_3);

G_SETUP_Var_G_4,
G_SETUP_X_Range_G_4,
G_SETUP_Y Mode_G_4,
G_SETUP_Y_Min_G_4,

G_SETUP_Y Min_G_

&plotvar_G_1);
&X_Range_G_1);
&Y_Mode_G_1);
&Y_Min_G_1);
&Y Max_G_1);

&plotvar_G_2);
&X_Range_G_2);

&plotvar_G_3);
&X_Range_G_3);

&plotvar_G_4);
&X_Range_G_4);
&Y_Mode_G_4);
&Y_Min_G_4);

1, Y_Min_G_1);

GetCtrival( g_Handle, G_SETUP_Y Max_G_4,
if (Y_Min_G_4 >= Y_Max_G 4)
Y_Min_G_4 = Y_Max_G_4-0.5;

SetCtriVal ( g_Handle, G_SETUP_Y_|
// COM PANEL

GetCtrival ( com_Handle, COM_SP_COM,
GetCtrlval( com_Handle, COM_SP_BR,
GetCtrlval ( com_Handle, COM_SP_P,
GetCtrlval ( com_Handle, COM_SP_DB,
GetCtrival ( com_Handle, COM_SP_SB,
GetCtrival ( com_Handle, COM_SP_ INPUTQ
GetCtrlval ( com_Handle, COM_SP_OUTPUTQ,
GetCtrlIndex(com Handle COM_SP_COM,

GetCtrlval( com_Handle, COM_SP_COM_2,
GetCtrlval ( com_Handle, COM_SP_BR_2,
GetCtrival ( com_Handle, COM_SP_P 2,
GetCtrival ( com_Handle, COM_SP_DB_. 2
GetCtrival ( com_Handle, COM_SP_SB_2,
GetCtrlval ( com_Handle, COM_SP_ INPUTQ 2,
GetCtrlval ( com_Handle, COM_SP_OUTPUTQ_Z
GetCtrlIndex(com_Handle, COM_SP_COM_2,

GetCtrlval ( com_Handle, COM_SP_COM_3,
GetCtrival ( com_Handle, COM_SP_BR_3,
GetCtrival ( com_Handle, COM_SP_P 3,
GetCtrival ( com_Handle, COM_SP_DB_: 3
GetCtrlval ( com_Handle, COM_SP_SB_3,
GetCtrival ( com_Handle, COM_SP_ INPUTQ 3,
GetCtrival ( com_Handle, COM_SP_OUTPUTQ 3
GetCtrIIndex(com_Handle COM_SP_COM_3,

// TEST PARAMETERS

&Y_Max_G_4);

Min_G_4, Y_Min_G_4);

&SP_comport);
&SP_baudrate);
&SP_parity);
&SP_databits);
&SP_stopbits);
&SP_inputq);
&SP_outputq);
&SP_portindex);

&SP2_comport);
&SP2_baudrate);
&SP2_parity);
&SP2_databits);
&SP2_stopbits);
&SP2_inputq);
&SP2_outputq);
&SP2_portindex);

&SP3_comport);
&SP3_baudrate);
&SP3_parity);
&SP3_databits);
&SP3_stopbits);
&SP3_inputq);
&SP3_outputq);
&SP3_portindex);

GetCtrlVval (panelHandle, PANEL_P_MIN_SP, &P_Min_SP);
GetCtrival (panelHandle, PANEL_P_MAX_SP, &P_Max_SP);
GetCtrlval (panelHandle, PANEL_P_SP_ INCREMENTS &P_SP_Increments);

GetCtriVval (panelHandle, PANEL_P_MAX_T, &P_|
GetCtrival (panelHandle, PANEL_P_MIN_T, &P_|

Max_T);
Min_T);

GetCtrlval (panelHandle, PANEL_P_T_INCREMENTS, &P_T_Increments);

GetCtriVal (panelHandle, PANEL_DP_STIM_DURATION, &DP_Stim_Duration);
GetCtrival (panelHandle, PANEL_MTS_SPAN, &MTS_Span);

GetCtriVal (panelHandle, PANEL_P_F_INCREMENTS, &P_F_Increments);

GetCtriVval (panelHandle, PANEL_P_MAX_F, &P_|
GetCtrival (panelHandle, PANEL_P_MIN_F, &P_|
GetCtrlval (panelHandle, PANEL_DWELL TIME

GetCtriVal (panelHandle, PANEL_P_DP_AMP_1,
GetCtrival (panelHandle, PANEL_P_DP_AMP_2,
GetCtriVval (panelHandle, PANEL_P_DP_AMP_3,
GetCtrival (panelHandle, PANEL_P_DP_AMP_4,
GetCtrival (panelHandle, PANEL_P_DP_AMP_5S,

Max _F);
Min_F);
“&StimDwel ITime);

&DP_Amp_Array_Save[0]);
&DP_Amp_Array_Save[l]);
&DP_Amp_Array_Save[2]);
&DP_Amp_Array_Save[3]);
&DP_Amp_Array_Save[4]);

GetCtrival (panelHandle, PANEL_FUNC_GEN VOLT 1, &FuncGenVolt_Array_Save[0]);
GetCtrival (panelHandle, PANEL_FUNC_GEN_VOLT 2, &FuncGenVolt_Array_Save[1]);

GetCtrival (panelHandle, PANEL_FUNC_GEN_VOLT 4, &FuncGenVolt_ Array_Save[3]);

GetCtrlVval (panelHandle, PANEL_FUNC_GEN_VOLT_3, &FuncGenVolt Array_Save[Z]):

GetCtrival (panelHandle, PANEL_FUNC_GEN_VOLT 5, &FuncGenVolt_Array_Save[4]);

GetCtrlVval (panelHandle, PANEL_Amp_On_1, &Amp_On_1);
GetCtrilVval (panelHandle, PANEL_Amp_On_2, &Amp_On_2);
GetCtrlval (panelHandle, PANEL_Amp_On_3, &Amp_On_3);
GetCtriVval (panelHandle, PANEL_Amp_On_4, &Amp_On_4);
GetCtrlVval (panelHandle, PANEL_Amp_On_5, &Amp_On_5);
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return;

//
// DSN_Load_Vars : Load variables to the screen
/

/
void DSN_Load_Vars(void)
// MAIN PANEL

//COM Ports

SetCtrlVal (panelHandle, PANEL_LOG_COM3, Is_COM3);
SetCtrlVval (panelHandle, PANEL_LOG_COM2, Is_COM2);
SetCtriVval (panelHandle, PANEL_LOG_COM1, Is_COM1);



SetCtriVal (panelHandle,
SetCtrival (panelHandle,
SetCtriVval (panelHandle,
SetCtrlVval (panelHandle,

// GRAPH PANEL

//Read Graph #1

SetCtrlval( g_Handle,
SetCtrlval( g_Handle,
SetCtrival ( g_Handle,
SetCtrival ( g_Handle,
SetCtrlval( g_Handle,
//Read Graph #2

SetCtrival ( g_Handle,
SetCtrival ( g_Handle,
SetCtrlval( g_Handle,
SetCtrlval( g_Handle,
SetCtrival ( g_Handle,
//Read Graph #3

SetCtrlval( g_Handle,
SetCtrlval( g_Handle,
SetCtrival ( g_Handle,
SetCtrival ( g_Handle,
SetCtrlval( g_Handle,
//Read Graph #4

SetCtrival ( g_Handle,
SetCtrival ( g_Handle,
SetCtrlval( g_Handle,
SetCtrlval( g_Handle,
SetCtrival ( g_Handle,

// A Sensors

SetCtrival (panelHandle,
SetCtriVval (panelHandle,
SetCtrlVval (panelHandle,
SetCtrlVval (panelHandle,
SetCtrival (panelHandle,
SetCtriVval (panelHandle,
SetCtrlVval (panelHandle,
SetCtrlVval (panelHandle,
SetCtrival (panelHandle,
// B Sensors

SetCtrlVval (panelHandle,
SetCtrlval (panelHandle,
SetCtrlval (panelHandle,
SetCtrilVval (panelHandle,
SetCtrlVval (panelHandle,
SetCtrlVval (panelHandle,
SetCtrival (panelHandle,
SetCtriVval (panelHandle,
SetCtrlVval (panelHandle,
// Sensor Positions
SetCtrival (panelHandle,
SetCtriVval (panelHandle,
SetCtrlVval (panelHandle,
SetCtrlVval (panelHandle,
SetCtrival (panelHandle,
SetCtriVval (panelHandle,
SetCtrlVval (panelHandle,
SetCtrilval (panelHandle,
SetCtrilval (panelHandle,
SetCtriVval (panelHandle,
SetCtrlVval (panelHandle,
SetCtrlval (panelHandle,
SetCtrlval (panelHandle,
SetCtriVval (panelHandle,
SetCtrlVval (panelHandle,
SetCtrlval (panelHandle,
SetCtrilval (panelHandle,
SetCtrlval (panelHandle,
// Sensor Position Array
Key_Radial_Positions[0]
Key_Radial_Positions[1]
Key_Radial_Positions[2]
Key_Radial_Positions[3]
// Equipment Setup
SetCtrilVval (panelHandle,
SetCtrlval (panelHandle,

// COM PANEL

SetCtrival( com_Handle,
SetCtrlval ( com_Handle,
SetCtrival ( com_Handle,
SetCtrlval ( com_Handle,
SetCtrival( com_Handle,
SetCtrival ( com_Handle,
SetCtrival ( com_Handle,
//SetCtrliIndex(com_| Handl

SetCtrival ( com_Handle,
SetCtrlval ( com_Handle,
SetCtrival( com_Handle,
SetCtrival( com_Handle,
SetCtrlval ( com_Handle,
SetCtrival ( com_Handle,
SetCtrlval ( com_Handle,

SetCtrival ( com_Handle,
SetCtrival ( com_Handle,
SetCtrival ( com_Handle,
SetCtrival( com_Handle,
SetCtrival ( com_Handle,
SetCtrival ( com_Handle,
SetCtrlval( com_Handle,

// TEST PARAMETERS

SetCtrlVval (panelHandle,
SetCtrlval (panelHandle,
SetCtrival (panelHandle,

SetCtrlVval (panelHandle,
SetCtrlVval (panelHandle,
SetCtrival (panelHandle,

PANEL_LOG_DAQ,
PANEL_LOG_FUNCTION_GEN,
PANEL_LOG_Graph,
PANEL_LOG_LOGtoFile,

G_SETUP_Var_G_1,
G_SETUP_X Range G
G_SETUP_Y Mode_G_1,
G_SETUP_Y Min G 1,
G_SETUP_Y Max_G_1,

G_SETUP_Var_G_2,
G_SETUP_X_Range_G_2
G_SETUP_Y Mode_G_2,
G_SETUP_Y_Min_G_2,
G_SETUP_Y_Max_G_2,

G_SETUP_Var_G_3,
G_SETUP_X Range G
G_SETUP_Y Mode_G_3,
G_SETUP_Y Min_G_3,
G_SETUP_Y Max_G_3,

G_SETUP_Var_G_4,
G_SETUP_X_Range_G_4,
G_SETUP_Y Mode_G_4,
G_SETUP_Y_Min_G_4,
G_SETUP_Y_Max_G_4,

PANEL_SENSOR_SELECT_1A,
PANEL_SENSOR_SELECT_2A,
PANEL_SENSOR_SELECT_3A,
PANEL_SENSOR_SELECT_4A,
PANEL_SENSOR_SELECT_5A,
PANEL_SENSOR_SELECT_6A,
PANEL_SENSOR_SELECT_7A,
PANEL_SENSOR_SELECT_8A,
PANEL_SENSOR_SELECT_9A,

PANEL_SENSOR_SELECT_1B,
PANEL_SENSOR_SELECT 2B,
PANEL_SENSOR_SELECT 3B,
PANEL_SENSOR_SELECT 4B,
PANEL_SENSOR_SELECT 5B,
PANEL_SENSOR_SELECT 68,
PANEL_SENSOR_SELECT 7B,
PANEL_SENSOR_SELECT 8B,
PANEL_SENSOR_SELECT 9B,

PANEL_S1A_POSITION,
PANEL_S2A_POSITION,
PANEL_S3A_POSITION,
PANEL_S4A_POSITION,
PANEL_S5A_POSITION,
PANEL_S6A_POSITION,
PANEL_S7A_POSITION,
PANEL_SB8A_POSITION,
PANEL_S9A_POSITION,
PANEL_S1B_POSITION,
PANEL_S2B_POSITION,,
PANEL_S3B_POSITION,
PANEL_S4B_POSITION,
PANEL_S5B_POSITION,
PANEL_S6B_POSITION,,
PANEL_S7B_POSITION,
PANEL_S8B_POSITION,
PANEL_S9B_POSITION,

S2A
S4A
S6A

S9A
S2B

S6B
S8B

= S8B_Pos[0];
= S8A_Pos|[0];
= S7B_Pos[0];
= S7A_Pos[0];
PANEL_EXP_TYPE,
PANEL_RUN_MODE,

COM_SP_COM,
COM_SP_BR,
COM_SPP,
COM_SP_DB,
COM_SP_SB,
COM_SP_INPUTQ,
COM_SP_OUTPUTOQ,
e, COM_SP_COM,

COM_SP_COM_2,
COM_SP_BR 2,
COM_SP_P_2,
COM_SP_DB 2,
COM_SP_SB_2,
COM_SP_INPUTQ 2,
COM_SP_OUTPUT]_2,

COM_SP_COM_3,
COM_SP_BR 3,
COM_SP_P_3,
COM_SP_DB_3,
COM_SP_SB_3,
COM_SP_INPUTQ 3,
COM_SP_OUTPUTQ_3,

S1A_|
S3A_
S5A_|

S7A_
S8A_]

S1B_]
S3B_|
S4B
S5B_|
S7B_]

S9B_

Is_DAQ);
Is_Function_Gen);
Is_Graph);
Is_Log);
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plotvar_G_1);
X_Range_G_1);
Y_Mode_G_1);
Y_Min_G_1);
Y_Max_G_1);

plotvar_G_2);
X_Range_G_2);
Y_Mode_G_2);

plotvar_G_4);
X_Range_G_4);
Y_Mode_G_4);
Y_Min_G_4);
Y_Max_G_4);

Is_S1A);
1s_S2A);
Is_S3A);
Is_S4A):
Is_S5A);
I1s_S6A);
Is_S7A);
1s_S8A);
I1s_S9A);

Is_S1B);
Is_S2B);
Is_S3B);
Is_S4B);
Is_S5B);
Is_S6B);
Is_S7B);
1s_S8B);
Is_S9B);

Pos
Pos
Pos
Pos
Pos
Pos
Pos
Pos
Pos
Pos
Pos
Pos
Pos
Pos
Pos
Pos
Pos
Pos

OOOOOOOOOOOOOOOOOO:

N o o o o N N N/ N/ NN/ N NN NN

Exp_Type);
Run_Mode) ;

SP_comport);
SP_baudrate);
SP_parity);
SP_databits);
SP_stopbits);
SP_inputq);
SP_outputq);
SP_portindex);

SP2_comport);
SP2_baudrate);
SP2_parity);
SP2_databits);
SP2_stopbits);
SP2_inputq);
SP2_outputq);

SP3_comport);
SP3_baudrate);
SP3_parity);
SP3_databits);
SP3_stopbits);
SP3_inputq);
SP3_outputq);

PANEL_P_MIN_SP, P_Min_SP);
PANEL_P_MAX_SP, P_Max_SP);
PANEL_P_SP_INCREMENTS, P_SP_lIncrements);

PANEL_P_MAX_T, P_Max_T);
PANEL_P_MIN_T, P_Min_T);
PANEL_P_T_ INCREMENTS P

T_Increments);



SetCtriVval (panelHandle, PANEL_DP_STIM_DURATION, DP_Stim_Duration);
SetCtrival (panelHandle, PANEL_MTS_SPAN, MTS_Span);

SetCtriVal (panelHandle, PANEL_P_F_INCREMENTS, P_F_Increments);
SetCtriVval (panelHandle, PANEL_P_MAX_F, P_Max_F);
SetCtrival (panelHandle, PANEL_P_MIN_F, P_Min_F): 168

SetCtrival (panelHandle, PANEL_DWELL_TIME, StimDwellTime);

SetCtriVal (panelHandle, PANEL_Amp_On_1, Amp_On_1);
SetCtriVval (panelHandle, PANEL_Amp_On_2, Amp_On_2);
SetCtriVal (panelHandle, PANEL_Amp_On_3, Amp_On_3);
SetCtriVal (panelHandle, PANEL_Amp_On_4, Amp_On_4);
SetCtriVval (panelHandle, PANEL_Amp_On_5, Amp_On_5);

SetCtriVal (panelHandle, PANEL_P_DP_AMP_1, DP_Amp_Array_Save[0]);
SetCtriVal (panelHandle, PANEL_P_DP_AMP_2, DP_Amp_Array_Save[l1]);
SetCtriVal (panelHandle, PANEL_P_DP_AMP_3, DP_Amp_Array_Save[2]);
SetCtriVval (panelHandle, PANEL_P_DP_AMP_4, DP_Amp_Array_Save[3]);
SetCtriVal (panelHandle, PANEL_P_DP_AMP_5, DP_Amp_Array_Save[4]);

SetCtriVal (panelHandle, PANEL_FUNC_GEN_VOLT_1, FuncGenVolt_Array_Save[0]);
SetCtrival (panelHandle, PANEL_FUNC_GEN_VOLT_2, FuncGenVolt_Array_Save[l]);
SetCtriVal (panelHandle, PANEL_FUNC_GEN_VOLT_3, FuncGenVolt_Array_Save[2]);
SetCtriVal (panelHandle, PANEL_FUNC_GEN_VOLT_4, FuncGenVolt_Array_Save[3]);
SetCtrival (panelHandle, PANEL_FUNC_GEN_VOLT_5, FuncGenVolt_Array_Save[4]);

return;

/
// DSN_Init2 o Init some variable and do some setup
//
void DSN_Init2()

{ // Set the colours up

return;

//
//
//
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%% MATLAB Plotting Script

% Written by: Marc Evans

% Last Updated: March 14, 2010

%

% This script generates a series of plots from a data file created by the
% Monitoring and Control Program that runs the COSI Acoustic Stimulation
% Chamber. The user is prompted to select the data file he/she wishes to
% plot and then the script generates all the relevant figures.

B B B B e B R A A T Tl
S START == —mmmm oo %
B B B B R A A T Tl

%% Prompt the user for a log file and calibration file and imports all data

% Opens a file selection box for *.log files
[fileToReadl,pathname] = uigetfile( ...
{**.log", "Data Files (*.log)"; ...
"E_xT, "ALL Files (*.*)"}, ...
"Select Log File®, ...
"MultiSelect®, "off");

% 1¥ file selection is cancelled, pathname should be zero
% and nothing should happen
if pathname ==
return
end

% Import the file
newDatal = importdata(fileToReadl);

% Break the data up into a new structure with one field per column.
colheaders = genvarname(newDatal.colheaders);
for 1 = 1l:length(colheaders)
dataByColumnl. (colheaders{i}) = newDatal.data(:, i);
end

% Create new variables in the base workspace from those fields.
vars = fieldnames(dataByColumnl);
for 1 = 1l:length(vars)
assignin(“base”, vars{i}, dataByColumnl.(vars{i}));
end

% Prompt user to enter the name of the fluid
Fluid_Name = ...
input(® Name of Fluid: \n Format (including brackets and dash): (Name - xx% mass)
"s7):
it isempty(Fluid_Name)
Fluid_Name = "**No fluid given**";

end

Yp——————mm——mm e %
% Import Calibration File
Yp————mmm——mmm e %

% Opens a file selection box for *.txt files
[fileToReadl,pathname] = uigetfile( ...
{"*.txt", "Data Files (*.txt)"; ...
EoxT, ANl Files (*.*)"}, ...
"Select Calibration File", ...

\n®,k
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"MultiSelect®, "off");

% 1¥ file selection is cancelled, pathname should be zero
% and nothing should happen
if pathname ==
return
end

% Import the file
newDatal = importdata(fileToReadl);

% Break the data up into a new structure with one field per column.
colheaders = genvarname(newDatal.colheaders);
for 1 = 1l:length(colheaders)
dataByColumnl. (colheaders{i}) = newDatal.data(:, i);
end

% Create new variables in the base workspace from those fields.
vars = Fieldnames(dataByColumnl);
for 1 = 1:length(vars)
assignin(“base”, vars{i}, dataByColumnl.(vars{i}));
end

9%%%96%6%%%%%%6%6%%%%%%6%6%%%%% %6%6%%%%% %6%6%6%%%% % %6%6%%%% % %6%6%%%% % %6%6%6%%% % % %6%6%%%% % %%6%% %% %

%% Prepare Variables

Yhmmmmmm e e %
% Setup General Variables
Y e e e %

% Scale Select Variables
Time_Hours = TIME./3600;
Exp_Stage = Logging_Trigger.*2;

% Apply Calibration Factors
S1A = S1A*mS1A + bS1A;

S2A = S2A*mS2A + bS2A;
S3A = S3A*mS3A + bS3A;
S4A = S4A*mS4A + bS4A;
S5A = S5A*mS5A + bS5A;
S6A = S6A*mS6A + bS6A;
%S7A = STA*mS7A + bS7A; % Bath Probe RTD
S8A = S8A*mS8A + bS8A;

S9A = S9A*mS9A + bS9A;

S1B = S1B*mS1B + bS1B;
S2B = S2B*mS2B + bS2B;
%S3B = S3B*mS3B + bS3B; % Pressure Relief Valve
S4B = S4B*mS4B + bS4B;
S5B = S5B*mS5B + bS5B;
S6B = S6B*mS6B + bS6B;
S7B = S7B*mS7B + bS7B;
S8B = S8B*mS8B + bS8B;
S9B = S9B*mS9B + bS9B;

% Determine Experiment Start
Start_Index = find(Logging_Trigger==1);
Start_Index = Start_Index(1);

% Determine Viscosity at Experiment Start
Baseline_Visc = Ave_L_Visc(Start_Index);

% Determine Temperature Limits
Low_Temp_Limit = Bath_Setpoint(Start_Index)-1;
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High_Temp_Limit = Bath_Setpoint(Start_Index)+1;

Yp————m - %
% Density Correction
Y ———m - %

Fluid_Density = ...
input(® Please Input Fluid_Density [g/mL]: \n");
if isempty(Fluid_Density)
Fluid_Density = 1;
end
Ave_L_Visc = Ave_ L Visc./Fluid_Density;

% Y———mmmmmmmmmm %
% % Correct Temperature/Pressure Instability
% Y———mmmmmm %

% % Store Uncorrected Viscosities
% ui = Ave_L Visc;

% % Interpolate Expected Viscosity at Exact Setpoint Conditions

% Ts = Bath_Setpoint(1l);

% Ps = 500;

% us interp2(pressures, temperatures,Static_PT_Viscosities,Ps,Ts);
% us = us.*ones(length(ui),1);

% % Interpolate Expected Viscosity at Current Conditions
% Ti = S7A;

% Pi = S2B;

% ut = zeros(length(ui),1);

% % Repeat this loop once for each reading

% % Variables to keep track of progress

% counter = O;

% processed_values = 0;

% display("Interpolating Viscosity Correction Factors®)
% percent_done = 0

% total_values = length(ui);

% for i=1:length(ui)

% ut(i) = interp2(pressures,temperatures,Static_PT_Viscosities,Pi(i),Ti(i));
% counter=counter+1;

% if counter>=1000

% eval([“clc"])

% processed_values=processed_values+counter;

% display("Interpolating Viscosity Correction Factors®)

% percent_done = 100*(processed_values/total_values)

% counter=0;

% end

% end

% % Apply Correction Factor to each reading
% PT_Corr_Viscosities = ui+(us-ut);

9%%%%6%0%%%%%%6%6%%%% % %%6%%%% % %%6%%%%% %6%6%6%%%% % %%6%%%% % %%6%6%%% % %6%6%% %% % % % %% %% %% % %% %% %%

%% Parse Data

Ypm———m %
% ldentify Dynamic Amplitudes
L it %

% Store FTirst dynamic pressure amplitude
Num_Dyn_Amps = 1;
Dyn_Amp_Array(1) = Dyn_Press_Amp(1);

% Count # of Distinct Dynamic Pressure Amplitude Steps in "Dyn_Press_Amp"



for

i = 1:length(Dyn_Press_Amp)
if Dyn_Press_Amp(i) ~= Dyn_Amp_Array(Num_Dyn_Amps)

% Store # in "Num_Dyn_Amps"
Num_Dyn_Amps = Num_Dyn_Amps+1;

% Store Amplitudes in "Dyn_Amp_Array"
Dyn_Amp_Array(Num_Dyn_Amps) = Dyn_Press_Amp(i);
end

% Each collumn of a "Parsed_XXX*® variable holds data for one dynamic
% pressure amplitude series

% Variables to keep track of progress
counter = O;

processed_values = 0;

percent_done = 0

total_values = length(vars)*length(TIME);

% Repeat this loop once for each dynamic amplitude series

for

end

i=1:Num_Dyn_Amps
% Find indices for one dynamic amplitude series
Start_Indices = find(Dyn_Press_Amp==Dyn_Amp_Array(i));
% Using index, assign values to parsed variable column
for j=1:length(vars)

% Repeat once for each index location

for k=1:length(Start_Indices)

eval(["Parsed_" vars{j} "(k,i)= dataByColumnl.(vars{j})(Start_Indices(k));"D;

counter=counter+1;

if counter>=1000
eval(["clc™])
processed_values=processed_values+counter;
display("Parsing Dynamic Amplitude Series”)
percent_done = 100*(processed_values/total_values)
counter=0;

end

end
end

9%%%%6%6%%%%%%6%6%%%%% % %6%%%%% % %6%%%%% % %6%6%% %% % %%6%%%% % %%6%%%% % %% %% %% % % % %6%%%% % % %% %% %%

%% Count Frequency Series and Parse Time

% Store FTirst frequency
Num_Freq = 1;
Freq_Array(l) = Parsed_FuncGen_Freq(10,2);

% Count # of Distinct Frequency Steps in "Parsed_FuncGen_Freq"
for 1 = 1l:length(Parsed_FuncGen_Freq)

iT Parsed_FuncGen_Freq(i,2) ~= Freq_Array(Num_Freq)
if Parsed_FuncGen_Freq(i,2)~= 0
% Store # in "Num_Freq"
Num_Freq = Num_Freq+1;
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% Store Frequency in "Freq_Array"
Freq_Array(Num_Freq) = Parsed_FuncGen_Freq(i,2);
end
end
end

% Zero each column of the Parsed_TIME matrix
Column_Subtraction = Parsed_TIME(1,:);
for i=1l:size(Parsed_TIME,2)
% Subtract the first time value in each column from the rows
for j=1:length(Parsed_TIME)
Parsed_TIME(j,1) = Parsed_TIME(J,i)-Column_Subtraction(i);
% Zero any resulting negative numbers
if Parsed_TIME(,1) <0
Parsed_TIME(j,1)=0;
end
end
end

9%%%696%%%%%%%6%6%%%%%%6%6%%%% % %6%6%%%%% %6%6%6%%% % % %6%6%%%% % %6%6%%%% % %6%6%6%%% % % %6%6%%%% % %%6%% %% %

%% Parse Frequency Series and Analyze Data

Ypm e %
% ldentify Frequency Series
Ypmm e %

% Repeat this loop once for each dynamic amplitude series

% (Once per column of Parsed_Ave_ L _Visc)

Critical_Data=0;

for a=1:Num_Dyn_Amps
% Find indices where stimulation is on (logging trigger = 1)
Current_Column = Parsed_Logging_Trigger(:,a);
Stimulation_On = find(Current_Column==1);

% Check each index for new frequency series
% Store viscosity in appropriate amplitude/frequency array location
v=0;
=1;
for z=1:length(Stimulation_On)-1
if (Stimulation_On(z+1)-Stimulation_On(z)==1) % Same freq series
i = i+l;
Critical_Data(a,f,i) = Parsed_Ave L Visc(Stimulation_On(z),a);

else % Reached next freq series

f = f+1;
i=1;
Critical_Data(a,f,i) = Parsed_Ave_ L_Visc(Stimulation_0On(z),a);
end
end
end
Y o %
% Calculate Viscosity Statistics
L %

% Repeat this loop once for each amplitude series
for a=l1:size(Critical_Data,l)
% Repeat this loop once for each frequency series
for f=1:size(Critical_Data,?2)
% Find non-zero entries
viscosities = zeros(l);
h=1;
for v=1:size(Critical_Data,3)
if Critical_Data(a,f,v)~=0
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viscosities(h) = Critical_Data(a,f,v);
h=h+1;
end
end

% Only interested in the latter half of the stimulation data

key_viscosities=zeros(1);

J=1;

for i=ceil(length(viscosities)/2):length(viscosities)
key viscosities(j)=viscosities(i);
J=i+l;

end

% Calculate statistics

Viscosity_Stats(a,f,1) = mean(key_viscosities);
Viscosity Stats(a,f,2) max(key_viscosities);
Viscosity_Stats(a,f,3) = min(key_viscosities);
Viscosity_Stats(a,f,4) = std(key_viscosities);

end
end
L %
% Collect Viscosity Values in Interpolation Array
L e e e e e %

Acoustic_AF_Viscosities = Viscosity Stats(:,:,1);

9%%%96%%%%%%%6%6%%%%%%6%6%%%% % %6%6%%%%% %6%6%6%%% % % %6%6%%%% % %6%6%%%% % %6%6%6%%% % % %6%6%%%% % %6%6%%%% %

%% Calculate Parameters: Plotting Parameters

Y %
% Calculate Plotting Parameters
Y %

% Interpolate Viscosity Limits
temperatures = (20:20:80);
pressures = (0:200:1000);

Mid = interp2(pressures,temperatures, ...
Static_PT_Viscosities,500,Bath_Setpoint(l));

Upper = interp2(pressures,temperatures, ...
Static_PT_Viscosities,500,Bath_Setpoint(1)-0.25);
Upper_Baseline_Visc = Baseline_Visc+(Upper-Mid);

Lower = interp2(pressures,temperatures, ...
Static_PT_Viscosities,500,Bath_Setpoint(1)+0.25);
Lower_Baseline_Visc = Baseline_Visc-(Mid-Lower);

% Deal with extrapolation limit
if(isnan(Upper_Baseline_Visc) == 1)
Upper_Baseline_Visc = Baseline_Visc+(Mid-Lower);

end

if(isnan(Lower_Baseline_Visc) == 1)
Lower_Baseline_Visc = Baseline_Visc-(Upper-Mid);

end

% Calculate Max Viscosity for Axis Scaling
Max_Viscosity = max(max(Viscosity_ Stats(:,:,1)));
if (Baseline_Visc > Max_Viscosity)

Max_Viscosity = Baseline_Visc;
end
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% Compute Viscosity Axis Ticks

viscosity_ticks = zeros(1l);

tick_increment = 50;

current_tick = 0;

i =1;

while current_tick < Max_Viscosity+tick_increment,
viscosity_ticks(i) = current_tick;
current_tick = current_tick+tick_increment;
= i+l;

end

9%%%%6%%%%%%%6%6%%%% % %6%6%%%% % %%6%%%%% %6%6%6%%% % % %6%6%%% % % %6%6%%%% % %6%6%6%%% % % %%6%%% % % %%6%% %% %

%% Generate Figure: Viscosity vs Frequency for Different Dynamic Pressures

% Create figure
figurel = figure;
set(figurel, “Position”,[80,80,1000,800]);

axesl = axes(“Parent”,figurel, ...
“XLim®, [min(Freq_Array) max(Freq_Array)], ---
"XTickMode®, "manual ", ...
“XTick®,[Freq_Array], --.
"YGrid®,"on", ...
“YLim®, [min(viscosity_ticks) max(viscosity_ticks)], ---
"YTickMode®, "manual ™, ...
"YTick",[viscosity_ticks]);

box("on®);
hold("on®);

if(Dyn_Amp_Array(1)~=0)

hl = errorbar(Freq_Array, Viscosity_Stats(l,:,1),Viscosity Stats(l,:,4));
end

ifT (Num_Dyn_Amps>1)

h2 = errorbar(Freg_Array, Viscosity Stats(2,:,1),Viscosity Stats(1,:,4));

end
it (Num_Dyn_Amps>2)

h3 = errorbar(Freq_Array, Viscosity Stats(3,:,1),Viscosity Stats(1,:,4));

end
it (Num_Dyn_Amps>3)

h4 = errorbar(Freg_Array, Viscosity_Stats(4,:,1),Viscosity_ Stats(1,:,4));

end
iT (Num_Dyn_Amps>4)

h5 = errorbar(Freq_Array, Viscosity Stats(5,:,1),Viscosity Stats(1,:,4));

end

% Plot Baseline Viscosity
Base = line([0 ; Freqg_Array(length(Freq_Array))], ---
[Baseline_Visc ; Baseline_Visc], "Color®, “k","LineWidth",2);

Upper_Lim = line([0 ; length(TIME)],[Lower_Baseline_Visc ; Lower_Baseline_Visc], --.

"LineStyle®,"--","Color®, "k","LineWidth*,2);

Lower_Lim = line([O ; length(TIME)], [Upper_Baseline_Visc ; Upper_Baseline_Visc], - ..

"LineStyle®,"--","Color®, "k","LineWidth*,2);

Ypmmmm e %
% Customize Appearance

Ypmmmm e e %
% Title

title({"Viscosity vs Acoustic Stimulation Frequency and Amplitude®, ...
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Fluid_Name}, - ..
"FontWeight®,"bold");

% Axes
xlabel ("Frequency [Hz]")
ylabel ("Viscosity [cP]")

% Series
markersize = 7;

iT(Dyn_Amp_Array(1)~=0)

set(hl, "Marker*®, 0", "MarkerSize" ,markersize, . ..
"Color®, "b", "MarkerFaceColor®,"b",...
"LineStyle®,"--") % freq_1
end
it (Num_Dyn_Amps>1)
set(h2, "Marker®, "x", "MarkerSize" ,markersize, ...
"Color®, "r", "MarkerFaceColor-®,"r",...

"LineStyle”,"--") % freq_2

end
it (Num_Dyn_Amps>2)
set(h3, "Marker®,"s","MarkerSize" ,markersize, ...
"Color®, "g", "MarkerFaceColor®,"g",...
“LineStyle","--") % freq_3
end
if (Num_Dyn_Amps>3)
set(h4, "Marker*®,"d", "MarkerSize" ,markersize, ...
“Color®, "m", "MarkerFaceColor®,"m",...
“LineStyle","--") % freq_4

end
ifT (Num_Dyn_Amps>4)
set(h5, "Marker*®,"+","MarkerSize" ,markersize, ...
“Color-, - -

c", “MarkerFaceColor®,"c",...
“LineStyle®,"--") % freq_4
end

% Legend

temp_legend = num2str(Dyn_Amp_Array®);
temp_legend(:,4) = * *;
temp_legend(:,5) =
temp_legend(:,6)
temp_legend(:,7) =
temp_legend(size(temp_legend)+1,

EERREXREXX
1
= () T

legend("100psi*®, "200psi®, "400psi*, "0Opsi at Setpoint T",...
"Opsi at Setpoint + 0.25°C", ...
"Location”, "SouthEast™);

9%%%%6%6%%%%%%6%6%%%%% % %6%%%%% % %6%%%%% % %6%0%%%% % %%6%%%% % %%6%%%% % %% %% %% % % % %6%%%% % % %% %% %%

%% Generate Figure: Viscosity, Temperature, Experiment Stage vs Time

Ypm——mm e %
% Plot Figure
Ypm—mmmmmmm %

% Create figure
figurel = figure;
set(figurel, “Position®,[0,0,1000,800]);

% Create axes
axesl = axes("Parent”,figurel, ...
“YColor®,[0 O 1], ---



*Position”,[0.13 0.11 0.775 0.815]);

box("on*®);
hold("all®);

% Plot multiple lines using plotyy

[AX,H1,H2] = plotyy(Time_Hours,[Ave_L Visc], ---
Time_Hours, [S7A,Exp_Stage], - - -
“Parent”,axesl);

% Plot constants

axes(AX(1));

H3 = line([0 ; length(TIME)],[Baseline_Visc ; Baseline_ Visc], --.
"LineStyle","--");

axes(AX(2));

H4 = line([0 ; length(TIME)],[Low_Temp_Limit ; Low_Temp_Limit], ...
"LineStyle®,"--");

H5 = line([0 ; length(TIME)],[High_Temp_Limit ; High_Temp_Limit], --.
"LineStyle®,"--");

Yommmm %
% Customize Appearance

Yommmmm %
% Title

title({"Viscosity and Temperature vs Time", ...
"(Also Showing Experiment Progression)®}, ...
"FontWeight®,"bold*");

% Axes
xlabel ("Time [hrs]®)
set(get(AX(1), “Ylabel®),"String”,"Viscosity [cP]")
set(AX(1), “ycolor®,"b", ...
"YTick", [0:100:1000])

set(get(AX(2), "Ylabel™),"String", "Temperature [°C]")
ylhim("manual *);
ylim([O 100]);
set(AX(2), “ycolor®,[0 0.498 0], ---
"YTick®, [0:10:100])

% Series
set(H1(1), “Color*®,"b", "Marker*®,".", "MarkerSize",1) %Viscosity
set(H2(1), "Collor®,[0 0.498 0], ... % Temperature

"LineStyle®,"-", ...
"Marker®,".", ...
“MarkerSize*,1)
set(H2(2),"Color®,"r", ... % Experiment Stage

“"Marker”®,".", ...
“MarkerSize®,1)

% Legend

legend([H1;H3;H2(1);H4;H2(2)], "Viscosity", " Initial Viscosity",...
“"Center Temperature®,"+1°C from Setpoint”®, "Experiment Stage”,...
"Location”, "SouthEast");

9%0%%%%%6%%%%%%%6%6%%%% % %6%6%%%% % %%6%6%%% % %%6%6%% %% % %%6%% %% % %%6%6%%% % %%6%% %% % % % %% %% %% % %6%%%

%% Generate Figure: Viscosity vs Time for Different Dynamic Pressures

% Create figure
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figurel = figure;
set(figurel, “Position”,[0,0,1000,800]);

% Create axes

axesl = axes("Parent”,figurel, ...
“YColor™®,"k", ...
“Position”,[0.13 0.11 0.775 0.815]);

box("on®);
hold("all®);

AX = plot(Parsed_TIME, Parsed_Ave L Visc, "LineStyle”,"-","Marker®,"_.",._.
"MarkerSize®,1);

% Plot constants

Max_Time = max(max(Parsed_TIME));

H = line([0 ; Max_Time],[Baseline_Visc ; Baseline_Visc], ...
"LineStyle”,"--", ...
“Color®,"k");

Ypmmm e %
% Customize Appearance
Yo %
% Title

title({"Viscosity vs Time for Different Dynamic Pressure Amplitudes®™},...
"FontWeight®,“"bold");

% Axes
xlabel ("Time [sec]");
ylabel ("Viscosity [cP]");

% Legend

HL = legend(num2str(transpose(Dyn_Amp_Array)), “Location”, "SouthEast");

v = get(HL, "title");

set(v, "string”, "Amplitude [psi]®);
%6%6%6%%%%%6%%%%%6%%%%%%%6%% %% %6%%6% %% %%6%% %% %6%6%6%% % %% %% %% %% %% 6%6%% % %% %%6%% % %% % % %%

%% Generate Video: Radial Temperatures vs Time

Ypmmmmmm %
% Initialize variables
Ypmmmmmm %

radial_temps=[S8B(1) S8A(1) S7B(1) S7A(1)]1;
radial_positions=[S8B_Pos(1) S8A_Pos(1l) S7B_Pos(1) S7A_Pos(1)];

Yp—————m———————————————— %
% Plot Figure
Yp—————————— - ——— %

% Create figure
figurel = figure;
set(figurel, "Position”,[50,50,640,480]);

% Create axes
axesl = axes("Parent”,figurel, ...
"YColor®,"k", ...
“Position”,[0.13 0.11 0.775 0.815]);
axis([0 37.5 0 30])

box("on®);
hold("all®);

AX=plot(radial_positions, radial_temps, "0",...
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"MarkerSize®,7, ...
"MarkerEdgeColor*®,"b", ...
"MarkerFaceColor®,"r=", ...
"LineStyle®,"-");

H4 = line([0 ; 37.5],[Low _Temp_Limit ; Low_Temp_Limit], ...
"LineStyle®,"--");

H5 = line([0 ; 37.5],[High_Temp_Limit ; High_Temp_Limit], ...
"LineStyle","--");

hold on

Yommmm e %
% Customize Appearance

Yommmm e %
% Title

title({"Radial Temperatures vs Time"},...
"FontWeight®,"bold™);

% Axes
xlabel ("Radial Distance from Centre [mm]")
ylabel ("Temperature [°C]")

% Legend
legend("Radial Temperature®,"+1°C from Setpoint®);

Ypmmmmmmmmmmm %
% Generate Movie
Ypmmmmmmmmmmm %

% Define Movie
aviobj = avifile("RadialTemperatureMovie.avi®)

counter=0

for i=1:length(TIME)-1
Movie_Array = getframe(figurel);
aviobj = addframe(aviobj,Movie_Array);
radial_temps=[S8B(i+1) S8A(i+1) S7B(i+1l) S7A(i+1)];
set(AX, "XData® ,radial_positions, "YData" ,radial_temps);
drawnow;

counter=counter+1;
if counter>=1000
counter=0;
check=i
end
end

close(figurel)
aviobj = close(aviobj);

B B B BB B B A B B AT o
e — END —mmmmmmmm e %
BB BB B B B A B B A o
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