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Abstract 

Several candidate phenomenological expressions are studied for self-rippling energy that 

drives ripple formation of free single-layer graphene sheets. One phenomenological 

expression is admitted based on the stability criterion of periodic ripple mode, while all 

others are rejected because they cannot admit stable periodic ripple mode. The admitted 

phenomenological expression contains two terms: one quadratic term which acts like a 

compressive force and has a destabilizing effect, and another fourth-order term which acts 

like a nonlinear elastic foundation and has a stabilizing effect. The two associated 

coefficients depend on specific mechanism of self-rippling and can be determined based on 

observed wavelength and amplitude of ripple mode.  

Based on the admitted expression, the effect of an applied force on ripple formation is 

studied. The present model predicts that the rippling can be controlled or even suppressed 

with an applied tensile force, or collapsed into narrow wrinkles (of deformed wavelengths 

down to around 2 nm) under an applied compressive force, and the estimated minimum 

tensile strain to suppress rippling is in remarkable agreement with some known data. Our 

results show that self-rippling energy dominates ripple formation of sufficiently long free 

graphene ribbons, although it cannot drive self-rippling of sufficiently short free graphene 

ribbons. Consequently, a critical length is estimated so that self-rippling occurs only when 

the length of free single-layer graphene ribbons is much longer than the critical length. The 

estimated critical length is reasonably consistent with the known fact that self-rippling 

cannot occur in shorter free graphene sheets (say, of length below 20 nm).  
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Finally, the effect of a rigid substrate on ripple formation is studied, and the results 

show that rippling can be suppressed and the graphene monolayer can be ultra-flat in the 

appearance of a rigid substrate due to the van der Waals interaction between the 

substrate and graphene. For varying distance between graphene and substrate, there 

exists a critical distance below which rippling in graphene monolayer cannot exist due 

to the strong van der Waals interaction. However, when the distance between substrate 

and graphene is at least few times larger than the critical distance. the effect of substrate 

can be ignored and the graphene monolayer can be treated approximately as a free-

standing graphene monolayer.  
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Chapter 1 

Introduction 

1.1 Literature review 

Graphene is an atom-thick two-dimensional membrane of extraordinary thermal, 

mechanical, and electrical properties, with potential applications to nanotechnology. Its 

unique lattice honeycomb structure made it as a building block of other related materials, 

and it can be rolled to 1-D nanotube, stacked to 3-D graphite or wrapped to 0-D 

fullerenes. The in-plane strong σ-bonds between carbon atoms and long range  bonds 

perpendicular to the plane lead to lots of remarkable properties of graphene. For 

example, Mayorov et al. (2011) show that graphene on boron nitride at room 

temperature has the giant carrier mobility of 5 2 1 12 10 cm V S   , Balandin (2011) 

reported that graphene had very high thermal conductivity (25 times that of silicon). 

Besides these, other properties such as a weak optical absorptivity of 2.3% (Nair et al, 

2008), impermeability to any gases (Bunch et al, 2008), and ability to sustain densities a 

million times higher than that of copper (Moser et al. 2007) are also reported.  Among 

the list of many extraordinary properties of graphene, its mechanical properties have 

aroused intense experimental and theoretical studies. For instance, Lee et al. (2008) 

investigated the Young’s modulus and fracture strength of a monolayer graphene 

membrane by atomic force microscopy (AFM), reporting the values of 1 TPa and 130 
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GPa, respectively. For further details of elastic behavior of graphene membranes, see 

e.g. (Zhang et al, 2012) and cited references.  

Single-layer graphene samples was first isolated from graphite by Geim et al (2004). 

This led to an explosion of interest, partly because perfect two-dimensional crystals 

cannot exist in the free state, according to the Mermin-Wagner theorem (Mermin, 1968). 

Long-wavelength fluctuations destroy the long-range order of 2D crystals, which means 

2D membranes tends to be crumped in 3D space. However, these fluctuations can be 

suppressed by anharmonic coupling between bending and stretching mode meaning that 

a 2D membrane can exist but will exhibit strong height fluctuations (Fasolino et al. 

2007) (see Fig. 1.1), which was called ripples. Such microscopic corrugations have a 

profound impact on electronic, chemical and mechanical properties of graphene sheets. 

For instance, conical singularities would be formed due to rippling (Pereira et al. 2010), 

which could markedly affect the conductivity and mobility of graphene. In addition, 

elasticity softening of graphene monolayer due to ripples was reported by Lee (2015). 

Therefore it is of great interest to understand the intrinsic driving force for self-rippling 

and to develop simple theoretical models for rippling-related mechanical phenomena. 
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Fig.1.1 A representative configuration of a free single-layer graphene at room 

temperature (Fasolino et al. 2007-with the permission of the authors) 

1.2 Motivation of the thesis 

Various rippling mechanisms have been proposed, including thermal fluctuations 

(Fasolino et al. 2007, Gao et al. 2014), molecular absorption (Thompson-Flagg et al. 

2009) or influence of grain boundaries (Capasso et al. 2014). In particular, it is believed 

that van der Waals attractive force plays a key role in rippling-related phenomena. For 

example, Zhu et al. (2012) found that van der Waals attractive force can cause narrow 

standing wrinkles. Based on an over-simplified geometrical shape of ripple mode, an 

approximate model was proposed in a previous work (Ru. 2013) for reduced van der 

Waals energy due to ripple formation. However, a technical difficulty associated with 

the simplified rippling energy expression is that the derived expression cannot be 

written as a desired smooth integral form of the deflection and its derivatives. This 

limits its applicability to other rippling-related mechanical phenomena. To overcome 

this limit, a deflection-based phenomenological integral expression for rippling energy 
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of graphene monolayer and its implications to rippling-related elastic behavior of 

graphene membranes will be examined in the present thesis. 

1.3 The objectives and outline 

The present work aims to develop a general phenomenological integral expression for 

rippling energy that drives ripple formation of free graphene sheets. In view of the fact 

that self-rippling of graphene monolayers is characterized by the out-of-plane deflection, 

we study all possible weakly-nonlinear, lower-order candidate integral expressions 

which have a somewhat similar mathematical form as the over-simplified model derived 

in (Ru. 2013). Under some reasonable restrictions, it is shown that a phenomenological 

expression can be selected uniquely with two undetermined coefficients which can be 

estimated by the observed wavelength and amplitude of associated ripple mode.  

Specifically, the thesis includes: 

1) In Chapter 2, all proposed candidate phenomenological integral expressions for the 

rippling energy are examined based on an admissibility criterion whether the candidate 

expression admits stable periodic ripple mode. The two coefficients for the admitted 

phenomenological integral expression are estimated based on the known values of the 

wavelength and amplitude of observed ripple mode. Besides these, In order to better 

understand the physical meaning of the two coefficients, the dependency of the two 

coefficients on wavelength for a few given specific values of the amplitude is given at 

the end of Chapter 2. 
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2) In Chapter 3, some application of the proposed model are discussed. First, the effect 

of an applied force on the ripple formation of single-layer graphene sheets is studied. 

Then, the effect of such a rippling energy on compressed buckling of a short graphene 

ribbon is discussed. Finally, based on the rippling energy expression, the effect of 

substrate on ripple formation is studied. 

3) In Chapter 5, major conclusions are summarized and future work is recommended. 
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Chapter 2 

A Phenomenological Expression for Rippling Energy 

of Free Graphene Monolayers 

2.1 Admitted phenomenological expression for rippling 

energy of free graphene monolayers 

2.1.1 Candidate expressions for rippling energy 

In a previous paper (Ru, 2013), ripple formation of free single-layer graphene ribbons 

driven by the van der Waals-like rippling energy is studied based on a simplified 

geometrical model of a ripple mode. For such a simplified periodic ripple mode of 

amplitude A and wavelength  (or the wavenumber m , where 2 /m  ), the reduced 

rippling energy (per unit length) of a free single-layer graphene ribbon due to ripple 

formation was estimated as                                                                                                                      

                                                    2 2 4 4( ),m A m A m                                               (2.1)              

where   and   are two positive coefficients, and an estimate of the coefficient   is 

given in (Ru, 2013). Since the rippling energy (2.1) is an odd function of the 

wavenumber m , it cannot be expressed into a desired smooth integral expression of the 

deflection and its derivatives. This limits the application of expression (2.1). Here, to 

overcome this shortcoming, we try to find an alternative even-order expression which is 

qualitatively similar to (1) but can be written as a smooth integral form. 



7 

 

We study all possible phenomenological expressions which have a similar mathematical 

form as (2.1) but are even-order in both the wavenumber m  and the amplitude A  and 

thus are invariant with respect to the change in the sign of the deflection ( )w x  and the 

positive direction of x -axis. Here, we shall confine ourselves to the weakly nonlinear 

and lower-order cases when the (nonlinear) governing differential equation for the 

deflection is not higher than sixth-order. For a periodic ripple mode ( ) sin( )w x A mx , all 

such possible two-term, weakly-nonlinear and lower-order integral expressions for 

rippling energy are list as below 

2 2 2 2(1 ), 0, 0, 0,NA m A m N                                                  (2.2) 

          122 6 4

1 1 1 1 1( ), 0, 0, 0,
NA m A m N                                               (2.3) 

         224 2 4

2 2 2 2 2( ); 0, 0, 2,
N

A m A m N                                              (2.4) 

         324 4 4

3 3 3 3 3( ); 0, 0, 3,
N

A m A m N                                              (2.5) 

where N and Ni (i=1,2,3) are some non-negative integers, and the parameter pair   and 

  (or 
i  and , 1, 2,3i i  ) are two positive parameters, to be determined by 

experimental data of the wavelength and amplitude of observed ripple mode. Here the 

second term of expressions (2.2-2.5) is higher-order than the first term either in the 

amplitude A or in the wavenumber m, thus we set  
2 2N   for (4) and 3 3N   for (5). 

The expressions (2.2-2.5) are a complete list of all possible such two-term, weakly-

nonlinear, lower-order integral expressions. Among these candidate expressions, we 

shall select the right one which admits stable periodic ripple mode. 
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2.1.2 An admitted expression for rippling energy 

Since the form (2.2) has been confirmed (Ru, 2013) to admit stable ripple mode (when 

and only when 0N  ), the admissibility of the other three candidate expressions (2.3-

2.5) is examined based on a criterion whether it admits stable periodic ripple mode.  

Rejection of candidate form (2.3) 

With the candidate form (2.3) and bending strain energy, the total potential energy (per 

unit length) of a free single-layer graphene ribbon for a periodic ripple mode 

( ) sin( )w x A mx  is 

122 4 2 2 2 6 4

1 1 1 1 1 1

1
( , ) (1 ) ( ), 0, 0, 0,

2 4

NEI
U A m A m A m A m A m N                    (2.6) 

where EI  is the bending rigidity of the ribbon. Minimizing of the energy form (2.6) 

with respect to 2A and 2m  gives two conditions 

1

1

2 42 2 2 2

1 1 1

2 42 2 2 2

1 1 1 1

1
(1 ) 2 0,

2 2

3
(2 ) 3 0.

2 4

N

N

EI
A m m A m

EI
A m m N A m

  

  






   


    


                               (2.7) 

Eliminating 
2

1m from equation (2.7) gives an equation: 

                      12 42 2 2

1 1 1

3
(1 ) ( 6) .

2 4

NEI
A m N A m  

                                                  (2.8) 
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Since LHS of (2.8) is positive, expression (2.6) doesn’t admit stable ripple mode when 

1 7N  . Thus, because we shall confine ourselves to the lower-order case when the 

governing differential equation for the deflection is not higher than fourth-order, the 

number
1N  for (2.3) is not larger than 6, as mentioned previously. Therefore the 

candidate form (2.3) doesn’t admit stable ripple mode and thus is rejected. 

Rejection of candidate form (2.4) 

With the rippling energy form (2.4), the total potential energy (per unit length) of a free 

single-layer graphene ribbon for a periodic ripple mode ( ) sin( )w x A mx is 

222 4 2 2 4 2 4

2 2 2 2 2 2

1
( , ) (1 ) ( ); 0, 0, 2.

2 4

NEI
U A m A m A m A m A m N                  (2.9) 

Minimizing of the energy (2.9) gives two conditions, 

                            

2

2

2
2 42 2 2

2 2 22

2
2 42 2 2

2 2 2 22

1
(1 ) 2 2 0,

2 2

3
(2 ) 0.

2 4

N

N

EI A
A m A m

m

EI A
A m N A m

m

  

  






   


    


                         (2.10)                                   

Eliminating 
2

2 2

A

m
 from equation (2.10) gives an equation 

               22 42 2 2

2 2 2(3 ) (2 2 ) .
2

NEI
A m N A m  

                                             (2.11) 

Since LHS of (2.11) is positive, 2N  must be zero. Thus the candidate form (2.4) is 

rejected too. 

Rejection of candidate form (2.5) 

With the bending strain energy and the candidate rippling energy (2.5), the total 

potential energy (per unit length) of a free single-layer graphene ribbon for a periodic 

ripple mode ( ) sin( )w x A mx is 
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322 4 2 2 4 4 4

3 3 3 3 3 3

1
( , ) (1 ) ( ); 0, 0, 3

2 4

NEI
U A m A m A m A m A m N                    (2.12) 

Minimizing of the energy (2.12) gives two conditions, 

                            

3

3

2 42 2 2 2

3 3 3

2 42 2 2 2

3 3 3 3

1
(1 ) 2 2 0

2 2

3
(2 ) 2 0

2 4

N

N

EI
A m A A m

EI
A m A N A m

  

  






   


    


                         (2.13)                                   

Eliminating 
2

3A from equation (2.13) gives an equation: 

                   32 42 2 2

3 3 3

1
(1 ) (2 )

2 4

NEI
A m N A m  

                                             (2.14) 

Since LHS of (2.14) is positive, 3N  must be smaller than 2. Thus the candidate form 

(2.5) is rejected too. 

In summary, it is concluded that, among all four candidate forms (2.2-2.5), only the 

form (2.2) admits stable periodic mode, while all other 3 candidate forms (2.3-2.5) are 

rejected because none of them admits stable periodic ripple mode. For a free-standing 

graphene ribbon treated as an elastic beam, if the rippling energy has the form (2.2), the 

total potential energy can be written into a desired elegant integral form as  

2 2 2 2

0 0
( , ) ( ) [1 ( ) ] ( ) (1 4 ) ,

2

L L

L xx x x

EI
U A m w w dx w w dx                                 (2.15) 

where is the length of the graphene ribbon. For a periodic ripple mode 

( ) sin( )w x A mx , the total potential energy (per unit length) of the graphene ribbon 

is 

2 4 2 2 2 2 21
( , ) (1 ) (1 ).

2 4

EI
U A m A m A m A m A                                   (2.16) 

L



11 

 

Obviously the rippling energy of (2.16) is identical to the admitted form (2.2) with N=0. 

It is seen from (2.15) that the selected rippling energy (2.2) contains two terms: one 

quadratic term which has a destabilizing effect and acts like a compressive force ( 2 ), 

and the other fourth-order term which has a stabilizing effect and acts like a nonlinear 

elastic foundation. It is their nonlinear combined effect that selects a finite wavelength 

of the stable ripple mode for a sufficiently long free graphene ribbon, which is much 

smaller than the length of the ribbon. It should be mentioned that the present thesis 

focuses on periodic ripples and use them to identify the two coefficients of the proposed 

model. Once the proposed model is well identified, it could be used to study other 

mechanical phenomena such as randomly distributed non-periodic ripples.  In what 

follows, we will focus on the selected integral form (2.15) and its explicit expression 

(2.16) for a periodic ripple mode ( ) sin( )w x A mx .  

2.2 Estimation of the two coefficients ( ,  ) 

With the selected integral form (2.15) and the associated total energy (2.16) for a 

periodic ripple mode ( ) sin( )w x A mx , the minimization conditions give 

2 2 4 2

2 2 4 2

1
( ) 2 0, (2.17 )

2 2

3
(2 ) 0. (2.17 )

2 4

EI
m A m A a

EI
m A m A b

 

 


   


    


 

It follows from Eqs. (2.17a) and (2.17b) that  
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2 2 2

2 2

2 2 2

(3 ) ,
2

1
1

1 4 ,
3

EI
A m m

A m

A A m






 









                                                        (2.18) 

where EI  is the bending rigidity of graphene ribbons. For example, because the 

bending rigidity (per unit width) of single-layer graphene sheets is about 1 eV (Lindahl 

et al. 2012). A single-layer graphene ribbon of width b  has 1EI b eV  . Since EI is 

proportional to the width b of graphene ribbon, the parameter   given by (2.18) is 

proportional to the width while   is independent of the width. Here, we determine the 

parameter pair ,   for a graphene ribbon of width b  based on known experimental 

data of the wavelength and amplitude of observed ripple mode. 

There exist extensive experimental data on wavelength and amplitude of ripple modes 

of monolayer graphene, which widely vary with boundary support, substrate or thermal 

stress. Here we focus on free-standing monolayer graphene at room temperature without 

any boundary support, substrate or thermal stress. With transmission electron 

microscopy (TEM), Meyer et al. (2007) measured the wavelength of 10nm  and 

amplitude of 1nm . Bangert et al. (2009) used aberration-corrected scanning 

transmission electron microscope (superSTEM) to study ripples of free-standing 

monolayer graphene, and the wavelength and amplitude were estimated to be 10nm  

and 0.5nm , respectively. Zan et al. (2012) found that ripples in free-standing 

monolayer graphene have wavelengths of 5 to 10 nm, and amplitudes of typically 0.5nm. 

In addition, Breitwieser et al. (2014) reported ripple formation of free-standing single-
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layer graphene with wavelength of 6nm  and amplitude of 1nm . Thus the estimated 

ranges of the two coefficients   and  by (2.18) are 

2

17 18 2

0.107 0.427( ),

3.3 10 1.3 10 ( ),

Jm
b

m













   

:

:

                                            (2.19) 

which give the wavelength ranging from 5 nm to 10 nm and the amplitude ranging from 

0.5 nm to 1 nm at room temperature. As temperature changes, it is known that free 

graphene ribbons exhibit a negative coefficient of thermal expansion mainly due to 

rippling-induced contraction (Mounet et al. 2005, Yoon et al. 2011).  For a periodic 

ripple mode ( ) sin( )w x A mx , since rippling does not cause stretching strain of free 

graphene, the effective  contraction  of  graphene  ribbons  given  by  the  present  

model  is (Khamlichi, 2001)  

22 2
( 1 [ cos( )] 1) .L A x dx

 

 
                                               (2.20) 

For weakly nonlinear deflections, the average contraction strain   is given by 

2( / ) .
L

A
L

  


                                                    (2.21) 

If the weak temperature-dependence of other parameters (such as the negative 

coefficient of thermal expansion of graphene) is neglected, it follows from (2.21) that 

the change of the squared ratio 
2( )

A


 is directly proportional to the change of 

temperature, qualitatively consistent with existing literature (Fasolino, 2007). 
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2.3 Discussion on the two coefficients (  , ) 

In order to better understand the physical meaning of the two parameters    and  , the  

dependency of the two parameters on wavelength for a few given specific values of the 

amplitude A  is given in Figs. 1 and 2. 

 

Fig. 2.1 The dependence of the parameter 
2

0 / EI on the wavelength 
0/  ( 0 5nm  ) 
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Fig. 2.2 The dependence of the parameter 
2

0  on the wavelength 
0/  ( 0 5nm  ) 

It can be seen from Fig. 2.1 and Fig. 2.2 that the coefficient  of the quadratic term 

(which acts like a compressive force) decreases with the wavelength but is insensitive to 

the amplitude. On the other hand, the coefficient   of the fourth-order term (which acts 

like a nonlinear elastic foundation) decreases with the amplitude but is insensitive to the 

wavelength. Actually, because the data for single-layer graphene sheets meet the 

condition 2 2 3A m = , thus Eq. (2.19) can be simplified to the following approximate 

form  

2

2

3
,

2

1
.

3

EI
m

A









 


                                                                 (2.22) 
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It is seen from Eq. (2.22) that when the thickness of an elastic ribbon increases, because 

EI increases with cube of thickness (such as a continuum thin beam or a thick 

multilayer graphene sheets without interlayer sliding) but the coefficient  of self-

rippling energy scales with thickness, the wavelength (determined by the wavenumber 

m  by 2 /m  ) will increase quickly with increasing thickness. This implies that 

small-wavelength ripple modes are unlikely for relatively thick ribbons if interlayer 

sliding is prohibited, which is roughly consistent with experimental observation of 

multilayer graphene sheets (Wang et al, 2012). Indeed, the present model predicts that 

the extremely low bending rigidity of atom-thick monolayers, such as single-layer 

graphene sheets, is essentially responsible for observed stable periodic ripple mode. On 

the other hand, self-rippling is unlikely for thicker ribbons such as continuum elastic 

thin beams even only a few nanometers in thickness. 

2.4 Conclusions 

In summary, it can be concluded: 

1) Based on a criterion whether the model admits stable periodic ripple mode, an 

integral form along with two undetermined coefficients is selected uniquely among all 

possible two-term, weakly-nonlinear and lower-order integral expressions for rippling 

energy. 

2) The two coefficients for the admitted phenomenological integral expression can be 

well estimated based on the known values of the wavelength and amplitude of observed 

ripple mode.  
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3) One of two associated coefficients of the proposed expression is largely determined 

by the wavelength but insensitive to the amplitude of ripple mode, while the other one is 

essentially determined by the amplitude but insensitive to the wavelength 
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Chapter 3 

Some Application of the Proposed Model 

3.1 The effect of an applied force on ripple formation 

3.1.1 Formulation 

It is of great interest to study the effect of an applied force on ripple formation. With a 

total resultant axial force T  (tensile or compressive) applied to an elastic beam, the 

potential energy of the elastic beam of length L is given by (Khamlichi, 2001) 

2 2 2 2

0 0

1
( ) [1 ( ) ] ( ) [1 ( ) ] .

2 2 4

L L

xx x x x

EI T
w w dx w w dx                             (3.1) 

In which, 0T   stands for tensile force and 0T   stands for compressive force.  

Thus, for a periodic rippling mode ( ) sin( )w x A mx  and with the rippling energy (2.2), 

the total potential energy (per unit length) of a single-layer graphene ribbon subjected to 

a constant axial force T is  

   2 4 2 2 2 2 2 2 2 2 21 3
( , ) (1 ) (1 ) (1 ).

2 4 2 16
total

EI T
U A m A m A m A m A m A m A                (3.2) 

Minimizing Eq. (3.2) with respect to both 2A  and 2m gives two conditions: 
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2 2 4 2 2

2 2 4 2

3
(3 ) (1 ) 0, (3.3 )

2 2 8

1
( ) 0. (3.3 )

2 4

EI T
m A m A m a

EI
m A m A b






    


   


 

As we discussed before, it is seen from Eq. (2.21) that contraction of graphene ribbon 

becomes significant particularly for short-wavelength rippling under high compressive 

force. Thus actual deformed wavelength is given by 
' (1 )    , where λ is the 

wavelength in the undeformed configuration. 

 

3.1.2 Results and comparison with known data 

The effect of an applied force ( /T  ) on the deformed wavelength (which is the 

wavelength observed in experiments) and the associated amplitude-wavelength ratio of 

the ripple mode is shown in Fig. 3.1  for a graphene nanoribbon of width b  with a 

chosen typical parameter pair
2 18 2/ 0.427( ), 1.3 10 ( )b Jm m     .  
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Fig. 3.1 The effect of an applied force ( /T  ) on “deformed wavelength” and 

“deformed amplitude-wavelength ratio” 

 

Fig. 3.1 indicates that there exists a maximum tensile force ( 2 ) and a maximum 

compressive force ( 5 ), beyond which the stable periodic ripples cannot exist. Indeed, 

it follows from Eq. (3.3a) that 

                                    

2 2 4

2 2

(3 )
22 .

3
(1 )

8

EI
m A m

T

A m

  

 



                                                (3.4) 
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Thus, there is not a periodic rippling mode ( ) sin( )w x A mx  for any tensile force 

2T  . Actually, it is readily seen from (3.4) that for any tensile force 2T  , positive 

amplitude A  cannot exist. Therefore we define 2crT   as the minimum tensile force 

to suppress ripples. On the other hand, for any crT T (no matter tensile or compressive), 

it can be verified that the mode given by Eqs. (3.3a) and (3.3b) satisfies the stability 

conditions  

    

2 2 2

2 2 2 2 4 2 2 2

2 4

2 2 2

2 2

2 2 2 2 2 2 2 2 2 2 4 4

2 22 2

2 2 2 2 2

2 2 2

( , ) 5 16 3
( ) 0;

( ) 2 8 3 8 3

( , ) 2
0;

( )

( , ) ( , )

( ) ( ) ( ) 48 30 5
( )

4 16 6( , ) ( , )

( ) ( ) ( )

1
3 (2 )

2

16 6

U A m EI A m

A m A A m A m

U A m A

m m

U A m U A m

A m A m m E I A m A m

A mU A m U A m

A m m m

EI A m A

A







 
  

  


 



 

    


 

  




 2 2

0.
m



                          (3.5) 

It is noticed that Eq. (3.3b) is no longer valid if the rippling energy is absent (μ=0, γ=0), 

which implies that the rippling energy is essential for the existence of stable periodic 

ripples. 

 On the other hand, it follows from Eq. (3.3b) that 

2

2

4

2 .

8

EI
m

A
EI
m





                                                                     (3.6) 

Therefore, we have the restriction 
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4
4 2

.
EI




                                                                         (3.7) 

Thus, there exists a minimum wavelength 
4

1/4

min

2
( )

EI



  and the associated 

minimum deformed wavelength 
'

min min(1 )    , below which stable periodic ripples 

will not exist. The predicted minimum deformed wavelength is about 2.2 nm, 

reasonably consistent with some observed minimum wavelength 2 nm (Bai et al. 2014), 

and the associated maximum compressive force (per unit width)  is  about -2.1 nN/nm  

beyond  which  stable  periodic ripple modes will not exist. This is consistent with the 

fact that ripples would be collapsed into narrow standing wrinkles with large amplitude-

to-wavelength ratio (Zhang & Arroyo, 2014) under sufficient compressive stress. 

The present model predicts that the wavelength will increase with an applied tensile 

force and there exists a minimum tensile force to suppress ripples. This is consistent 

with the fact that ripples can be controlled (Bai et al, 2014) or even fully suppressed 

(Lui et al, 2009. Xue et al. 2011) with an applied tensile force (say, induced by a 

substrate). The minimum tensile force (per unit width) to suppress ripples, given by the 

present model with 2crT   and (2.19) is about (214 854 )  /pN nm  when the 

wavelength of free rippling mode varies from 5 nm to 10 nm. Using in plane elastic 

modulus 2 340 /DE N m (Lee et al. 2009) and the nominal thickness 0.34nm of single-

layer graphene, the corresponding tensile strain given by the present model is about 

0.06% 0.26%: . In particular, if the wavelength of free rippling mode is around 6 nm, 

the minimum tensile strain given by the present model is about 0.16%, in remarkable 
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agreement with known related data 0.25% (Roldán et al, 2011) where the wavenumber 

of free rippling is around 1/nm (which corresponds to a wavelength of 6nm ). Actually, 

it has been a real challenge for us to find more available data on the minimum tensile 

strain to suppress ripples. Here, we would mention that some recent experiment on 

strained graphene showed that in plane effective elastic modulus could increase to 

700 /N m:  under a pre-strains above 0.5% (Polin et al, 2015). It remains unclear 

whether this interesting phenomenon could be partially attributed to ripples under a pre-

strain.  

3.1.3 Conclusions 

In summary, it can be concluded: 

1) With an applied tensile force, ripples can be controlled or even fully suppressed. This 

conclusion is consistent with relative references, such as (Lui et al, 2009). 

2) The minimum tensile strain to eliminate rippling is determined by the coefficient μ, 

and is about 0.06%-0.26% when μ varies within the range given by (2.19). In particular, 

if the wavelength of free rippling mode is around 6 nm, the minimum tensile strain 

given by the present model is about 0.16%, in remarkable agreement with known 

related data 0.25% (Roldán et al, 2011) where the wavenumber of free rippling is 

around 1/nm (which corresponds to a wavelength of 6nm ).  

3) Under a sufficient compressive stress, the present model predicts that ripples would 

be collapsed into narrow standing wrinkles of minimum wavelengths around 2.2 nm, 

reasonably consistent with some observed minimum wavelength 2 nm (Bai et al. 2014). 
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3.2 Compressed buckling of a short graphene ribbon of 

limited length  

As mentioned previously, the selected rippling energy (2.2) contains two terms: a 

destabilizing quadratic term which acts like a compressive force (2  ), and a stabilizing 

higher-order term which acts like a nonlinear elastic foundation. It is their nonlinear 

combined effect that selects a finite wavelength for ripple mode which is usually much 

smaller than the length of free-standing graphene ribbon. All of previous analysis is 

based on an assumption that the wavelength of ripple mode is much smaller than the 

length of graphene ribbon and thus the constraint conditions at the two ends of the 

ribbon are negligible. Now let us consider buckling of a singlelayer graphene ribbon of 

limited finite length L  under a constant compressive force P . In this case, the applied 

compressive force P  is needed for compressed buckling with traditional buckling mode 

because the rippling energy characterized by the two parameters ( ,  ) is relatively 

weak and cannot drive self-rippling of a sufficiently short graphene ribbon. 

3.2.1 Governing equation and boundary conditions 

First, let us derive basic governing equation for a compressed graphene ribbon in the 

presence of the rippling energy defined by (2.2). In this case, the total potential energy 

of the ribbon under a constant compressive force P  is given by  

       

2 2 2 2

0 0

2 2

0

1
( ) [1 ( ) ] ( ) [1 ( ) ]

2 2 4

( ) (1 4 ) .

L L

xx x x x

L

x

EI P
V w w dx w w dx

w w dx 

   

 

 



                   (3.8) 
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Let  

2 2

1
0

2 2

2
0

2 2

3
0

( ) [1 ( ) ] ,
2

1
( ) [1 ( ) ] ,

2 4

( ) (1 4 ) ,

L

xx x

L

x x

L

x

EI
V w w dx

p
V w w dx

V w w dx 

 

  

  







                                                         (3.9) 

we have  

   

2 3

1
0

2 2 2

( [1 ( ) ] 4 ( ) )( )

[1 ( ) ]( ) ( [1 ( ) ] ( ) ) ,
0 0

L

xxxx x x xx xxx xx

xx x x xxx x x xx

V EI w w w w w w w dx

L L
EIw w w EI w w w w w

 

 

   

    


                      (3.10) 

              

3

2
0

3 2

0

[2 ( ) ] ( )
2

[2 ( ) ] [2 3( ) ]( ) ,
02 2

L

x x

L

x x xx x xx

P
V w w d w

LP P
w w w w w w w dx

 

 

  

    




                          (3.11) 

2 2

3
0

2

[2 (1 4 ) 8 ( ) ]( )

2 (1 4 )( )
0

L

xx x

x

V w w w w w dx

L
w w w

    

  

  

 


.                                      (3.12) 

Combining (3.10), (3.11) and (3.12) gives  

2 3 2

0

2 2 2

2 2 3 2

3
( [1 ( ) ] 4 ( ) ( )

2

2 (1 4 ) 8 ( ) )( ) [1 ( ) ]( )
0

{ [1 ( ) ] ( ) [2 ( ) ] 2 (1 4 )} 0.
02

L

xxxx x x xx xxx xx xx x xx

xx x xx x x

xxx x x xx x x x

V EIw w EIw w w EI w Pw P w w

L
w w w w w dx EIw w w

LP
EIw w EIw w w w w w w



    

  

      

    

      



      (3.13) 

Since  is arbitrary in the graphene ribbon, the governing equation is given by 

V

w
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4 4 2 3 2 2
2 3

4 4 2 3 2 2

2 2 2
2 2 2

2 2 2

( ) 4 ( )

3
( ) 2 8 8 ( ) 0.

2

d w d w dw dw d w d w d w d w
EI EI EI EI P
dx dx dx dx dx dx dx dx

dw d w d w d w dw
P w w
dx dx dx dx dx

  

   

    

             (3.14) 

In the absence of the rippling energy (2.2), for example, equation (3.14) agrees with the 

weakly nonlinear equation (2) of (Hunt et al. 1993). The derived weakly-nonlinear 

equation (3.14) could be used to study other rippling-related large deflection behavior of 

graphene ribbons in the presence of rippling energy.   

On the other hand, the boundary conditions given by (3.13) are 

 

2 2 3

2

2

[1 ( ) ] ( ) [2 ( ) ]
2

2 (1 4 ) 0 0,

[1 ( ) ] 0 ( ) 0,

xxx x x xx x x

x

xx x x

P
EIw w EIw w w w

w w or w

EIw w or w

  



   

   

  

                          (3.15)                            

which give the following 3 types of boundary conditions    

2 3 2

: 0, 0; (3.16 )

: 0, 0; (3.16 )

: 0, [1 ( ) ] [2 ( ) ] 2 (1 4 ) 0. (3.16 )
2

x

xx

xx xxx x x x x

fixed w w a

hinged w w b

P
free w EIw w w w w w c 

 

 

      

 

 

3.2.2 Linear buckling analysis and critical length  

 

To validate the proposed model, let us ignore all nonlinear terms of equation (3.14), it 

turns into 

4 2 2

4 2 2
2 0.

d w d w d w
EI P
dx dx dx

                                                   (3.17) 

crL
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Since now we consider a graphene ribbon of finite length, the role of boundary 

condition cannot be neglected. First let us suppose that the buckling mode for a hinged 

graphene ribbon which satisfies the boundary conditions (3.16b) at both ends as  

                                                 sin( ), 1,2,3...
n

w B x n
L


                                          (3.18) 

Substituting Eq. (3.18) into Eq. (3.17), the lowest critical load can be obtained by 

1n   

2

2
2 .cr

EI
P

L


                                                             (3.19) 

For sufficiently long graphene ribbons, the first term on RHS of Eq. (3.19) (which is the 

critical compressive force in the absence of the rippling energy) can be extremely low 

and ignorable as compared to the second term (2  ), and thus the rippling energy 

dominates and determines the nonlinear ripple mode of small wavelength (rather than 

the classical linear bucking mode (3.18)). For sufficiently short graphene ribbons, 

however, the first term on (3.18) becomes dominant over the second term and thus an 

applied compressive force 0crP  is needed for compressed buckling of the short ribbon 

with the classical linear bucking mode (3.18). Therefore, for given value of  , a critical 

length 
crL can be determined by setting in (3.18). In particular, the defined 

critical length of graphene ribbons is independent of their width. 

 The predicted critical length changes between 1.5-3 nm with the range of  given in 

Eq. (2.19). Similarly, if we choose the buckling mode 
2

(1 cos( )), 1,2,3...
n

w B x n
L


    

0crP 


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which satisfies the boundary conditions (3.16a) for a doubly-clamped graphene ribbon, 

the estimated critical length is from 3-6 nm. When the length of graphene ribbon is 

much larger than
crL , the rippling energy is dominant and strong enough to drive self-

rippling with nonlinear periodic mode of small wavelength. On the other hand, when the 

length of graphene ribbon is comparable or smaller than
crL , the rippling energy cannot 

drive self-rippling, and an additional compressive force is needed for traditional 

compressed buckling of the short ribbon with the classical linear bucking mode. This 

result is consistent with related reference (Carlsson et al, 2007) where it was reported 

that small-sized graphene membranes do not show self-rippling, whereas macroscopic 

membranes have significant ripples. Moreover, the above estimated critical lengths (a 

few nanometers), are reasonably consistent with some known references (Thompson-

Flagg et al, 2009) where the authors reported a flat monolayer graphene sample of size 

10 10nm nm  and (Fasolino et al, 2007) and only graphene samples of length larger than 

20 nm could show significant self-rippling.   

3.2.3 Initial post-buckling of a short graphene ribbon. 

For sufficiently short graphene ribbons, self-rippling with multi-wave mode is unlikely 

and the classical buckling mode dominates. In this case, let us examine initial post-

buckling of a short graphene ribbon driven by the rippling energy with no external force 

( 0P  ). For example, for a short hinged graphene ribbon, substituting the linear 

buckling mode sin( )w B x
L


  into Eq. (3.14), the potential energy as a function of 

amplitude  is given by B
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2 4 4 6 2 2 4 2

3 5
( ) .

4 16 2 2

EIB EIB B B
V B

L L L L

     
                               (3.20) 

The equilibrium of post-buckling is determined by , which gives 

4 4 2 4 2 2[( 8 ) 4 4 ] 0.crB EI L B L L L                                             (3.21) 

Clearly, it can be seen from Eq. (3.21) that 0B   is the only solution for any 

2

2
cr

EI
L L




  . However, when crL L , a positive amplitude can be determined by the 

following expression 

 
4 2 2

2

4 4

4 4
.

8

crL L L
B

EI L

 

 





                                                        (3.22) 

Similarly, for a short clamped graphene ribbon, when 
22

cr

EI
L L




  , the amplitude 

can be determined as below  

4 2 2
2

4 4

2 2
.

8 20

crL L L
B

EI L

 

 





                                                      (3.23) 

To study the effect of rippling energy on small-amplitude initial post-buckling 

( / 1B L = ) of a short graphene ribbon, the relation between the amplitude and various 

length crL L for different given boundary condition is shown in Fig. 3.2. 

( )
0

dV B

dB

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Fig. 3.2 The amplitude B as a function of different length of short graphene ribbon for 

different boundary conditions (
2 17 2/ 0.107( ), 3.3 10 ( )b Jm m     ) 

It is seen from Fig. 3.2 that for both clamped and hinged boundary conditions, the 

amplitude of buckling mode driven by the rippling energy is insensitive to the length 

when the graphene ribbon has a length more than 1.5-2 times the critical length , 

and the amplitude depends on boundary constrains, which means that boundary effect 

cannot be ignorable for the buckling behavior of short graphene ribbons. 

3.2.4 Conclusions 

 

crL
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In summary, it can be concluded: 

1) When the length of graphene ribbon is much larger than
crL , the rippling energy is 

dominant and strong enough to drive self-rippling with nonlinear periodic mode of 

small wavelength.  

2) When the length of graphene ribbon is comparable or smaller than
crL , the rippling 

energy cannot drive self-rippling, and an additional compressive force is needed for 

traditional compressed buckling of the short ribbon with the classical linear bucking 

mode.  

3) The above estimated critical lengths (a few nanometers), are roughly consistent with 

some known references such as (Thompson-Flagg et al, 2009) in which only graphene 

samples of length larger than 20 nm could show significant self-rippling. 

4) For both clamped and hinged boundary conditions, the amplitude of buckling mode 

driven by the rippling energy is insensitive to the length when the graphene ribbon has 

a length more than 1.5-2 times the critical length . 

5) The amplitude depends on boundary constrains, which means that boundary effect 

cannot be ignorable for the buckling behavior of short graphene ribbons. 

 

3.3 Substrate effect on the ripple formation 

Since single-layer graphene sheets are usually mechanically exfoliated on an 

amorphous substrate (Bao et al, 2009), the van der Waals interaction between 

graphene and substrate plays a critical role in determining the morphology of 

crL
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supported graphene. Recently, ultra-flat graphene was reported on Mica substrate (Lui 

et al, 2009) and hexagonal boron nitride substrate (Xue et al, 2011), respectively. 

Motivated by this, the effect of substrate on ripple formation can be studied based on 

the rippling energy expression (2.2). 

3.3.1 Formulation 

The key point here is to determine the free energy of van der Waals interaction 

between a rippled graphene monolayer and a rigid flat substrate. Here, the classic form 

of Lennard-Jones potential for the pair-wise interaction between a carbon atom and a 

substrate atom is taken,  

                                            1 2

6 12
( ) ,LJ

C C
W r

r r
                                                     (3.24) 

where r is the distance between two atoms, 1C and 2C are the constants for the 

attractive and repulsive interactions. Assuming a homogeneous substrate, we sum 

(integrate) the energy between one carbon atom and all the atoms in the substrate to 

obtain an atom-surface potential for each carbon atom near the surface. Next, 

summing up the atom-surface potential for all the carbon atoms in the monolayer 

graphene results in the monolayer-surface interaction energy. Based on this, the van 

der Waals free energy between a flat graphene monolayer and a rigid flat substrate can 

be given in the form (Aitken et al, 2010)  

                                         
3 90 0

0

3 1
( ) [ ( ) ( ) ],

2 2
wdW

h h
U h

h h
                                (3.25) 
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where wdWU  is the monolayer-surface interaction energy per unit area, h  is the point-

wise distance between the flat monolayer and the rigid flat substrate, 0h  is the 

corresponding equilibrium distance, and 0  is the interfacial adhesion energy per unit 

area. 

Assuming a rippled graphene on the substrate is in form of 0( ) sin( ),h x h A mx 

(see Fig. 3.3) for a relatively small amplitude (

0

1
A

h
= ), the average interaction energy 

per unit area between a rippled graphene and a rigid flat substrate is approximately 

given by using the 4
th

 order Taylor expansion of ( )h x  (Aitken et al, 2010) 
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                               (3.26) 

With the rippling energy (2.2) and the interaction energy (3.26), the total potential 

energy (per unit length) of a graphene ribbon with width  b  is                                                                                               
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                               (3.27) 

Minimizing Eq. (3.27) with respect to both 2A  and 2m gives two conditions: 
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        Fig. 3.3 Schematic illustration for a rippled graphene on a flat surface 

3.3.2 Result on two specific substrates 

For example, the equilibrium distance 0h  and the interfacial adhesion energy 0 for a 

graphene monolayer on a mica substrate (Lui et al, 2009) are given in (Rudenko et al, 

2011)  

2

0 0: 0.49 , 4.6 /graphene on mica h nm eV nm                           (3.29) 

Similarly, for a graphene monolayer on an hBN substrate (Xue et al, 2011), 0h  and 0

are given in (Sachs et al, 2011) 

2

0 0: 0.35 , 3.8 /graphene on hBN h nm eV nm                           (3.30)   

For  and   within the range given in (2.19), and 1EI b eV  . Eqs. (3.28a) and 

(3.28b) can be solved easily. The results show that for both substrates the solution 

gives 2 0A  , which means that intrinsic ripples in free-standing graphene monolayer 

can be fully suppressed by the mica or hBN substrate. This conclusion is consistent 

with known experiments (Lui et al, 2009 and Xue et al, 2011). 
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3.3.3 Effect of varying distance between graphene and substrate 

Certainly, the values of 0h and 0  change with different substrates. Thus, the 

dependence of substrate effect on different substrates is a subject of great interest. 

Now let us study the effect on ripple formation of varying distance between the 

graphene monolayer and substrate. To isolate the effect of varying distance, we treat 

the interfacial adhesion energy 0  as a given value while the distance h between the 

graphene monolayer and substrate as a variable. From Eq. (3.28b), we have 

2
2

2 43

8

EIm
A

EI
A m










                                                  (3.31) 

Substituting Eq. (3.31) into Eq. (3.28a), we find 

2 2
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   

  
    

                                (3.32) 

Combining with Eqs. (3.31) and (3.32), the relation between the amplitude of ripple 

mode and the distance between graphene and substrate can be obtained easily. For 

example, If we choose 
2 18 2/ 0.427( ), 1.3 10 ( )b Jm m    

2

0 00.35 , 3.8 /h nm eV nm    and 1EI b eV  , the relation between the amplitude 

and the dimensionless distance ( 0/h h ) is given as below.  
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Fig. 3.4 The amplitude of ripple mode as a function of varying distance between the 

graphene monolayer and substrate 

 

It is seen from Fig. 3.4 that there exists a critical distance ratio 0/h h  around 1.8 below 

which the van der Waals interaction is strong enough to fully suppress the ripples. Thus, 

the intrinsic ripples in graphene monolayer cannot exist when the distance between 

graphene and substrate is smaller than this critical value. However, the van der Waals 

energy will decrease with increasing distance. Therefore, the ripples start to appear 

when the distance ratio 0/h h  is bigger than 1.8 and the amplitude of ripple mode is 
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growing fast with the increasing distance. When the distance ratio 0/h h  is bigger than 4, 

it is seen from Fig.3.4 that the van der Waals interaction can be ignored and the 

graphene monolayer can be treated approximately as a free-standing graphene. 

3.3.4 Conclusions 

In summary, it can be concluded: 

1) In the appearance of a rigid substrate, the intrinsic ripples in free-standing graphene 

monolayer tends to be suppressed by the van der Waals interaction between the 

substrate and graphene. For some specific substrates, such as mica or hBN. The ripples 

can be fully suppressed at the equilibrium distance between graphene and substrate. 

2) There exists a critical distance between graphene and substrate. When the distance is 

smaller than the critical distance, ripples in graphene monolayer cannot exist due to the 

strong van der Waals interaction. However, when the distance is several times larger 

than the critical distance. the effect of substrate can be ignored and the graphene 

monolayer can be treated approximately as a free-standing graphene.  
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Chapter 4 

Conclusions and future work 

4.1 Conclusions 

Several candidate phenomenological expressions are studied for self-rippling energy 

that drives ripple formation of free single-layer graphene sheets. One phenomenological 

expression is admitted, while all others are rejected because they cannot admit stable 

periodic ripple mode. The admitted phenomenological expression contains two terms: 

one quadratic term which acts like a compressive force and has a destabilizing effect 

and another fourth-order term which acts like a nonlinear elastic foundation and has a 

stabilizing effect.  Between the two coefficients one of the proposed expression is 

largely determined by the wavelength but insensitive to the amplitude of ripple mode, 

while the other one is essentially determined by the amplitude but insensitive to the 

wavelength. The two associated coefficients depend on specific mechanism of self-

rippling and can be determined based on observed wavelength and amplitude of ripple 

mode. Based on the admitted expression, some application of the proposed model are 

examined. The major conclusions are summarized below: 

1) The effect of an applied force on ripple formation is studied. Our model show that 

with an applied tensile force, ripples can be controlled or even fully suppressed. This 

conclusion is consistent with relative references, the minimum tensile strain to eliminate 

rippling is determined by the coefficient μ, and is about 0.06%-0.26%. In particular, if 
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the wavelength of free rippling mode is around 6 nm, the minimum tensile strain given 

by the present model is about 0.16%, in remarkable agreement with known related data 

0.25% where the wavenumber of free rippling is around 1/nm (which corresponds to a 

wavelength of 6nm ).  On the other hand, under a sufficient compressive stress, the 

present model predicts that ripples would be collapsed into narrow standing wrinkles of 

minimum wavelengths around 2.2 nm, reasonably consistent with some observed 

minimum wavelength 2 nm. 

2) Our results show that self-rippling energy dominates ripple formation of sufficiently 

long free graphene ribbons, although it cannot drive self-rippling of sufficiently short 

free graphene ribbons. Consequently, a critical length is estimated so that self-rippling 

occurs only when the length of free single-layer graphene ribbons is much longer than 

the critical length. The estimated critical length is reasonably consistent with the known 

fact that self-rippling cannot occur in shorter free graphene sheets (say, of length below 

20 nm). Further, the effect of rippling energy on traditional compressed buckling of 

short graphene ribbons is examined. The results show that initial post-buckling of 

traditional half-wave or single-wave buckling mode can exist for short graphene ribbons, 

while multi-wave ripple mode occurs only for sufficiently long graphene ribbons. It is 

expected that the proposed phenomenological model could be used to study other 

rippling-related mechanical behavior of graphene ribbons. 

3) Finally, the effect of a rigid substrate on ripple formation has been studied, and the 

results show that the rippling can be suppressed and the graphene monolayer can be 

ultra-flat in the appearance of a rigid substrate due to the van der Waals interaction 
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between the substrate and graphene. There exists a critical value of distance below 

which ripples in graphene monolayer cannot exist due to the strong van der Waals 

interaction. However, when the distance is several times larger than the critical distance. 

the effect of substrate can be ignored and the graphene monolayer can be treated 

approximately as a free-standing graphene.  

 

4.2 Future work 

In the thesis, we treat the graphene as a 1D elastic beam or ribbon. A 2D model for 

rippling energy of free-standing graphene membranes could be developed based on the 

present model by replacing xw by w , as shown below  

2( )(1 4 )
A
w w w ds     g                                                      (4.1) 

Further details would be investigated in a future work. 
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