
“Always acknowledge a fault. This will throw those in authority
off their guard and give you an opportunity to commit more.”

-Mark Twain (1835 - 1910)

Figure 1: Used with permission of Zach Weinersmith. Taken from http://www.

smbc-comics.com/index.php?id=854
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Abstract

Multiconnected Universes can possibly explain the low multipole suppression ob-

served in Cosmic Microwave Background data. We compare complete predicted

correlation patterns of the temperature fluctuations in the multiconnected mod-

els with constant positive curvature to what is observed in WMAP experiment.

Likelihood for three models is computed as the function of the curvature which

controls the size of the multiconnected Universe relative to distance travelled by

CMB photons. As curvature increases from zero for the Universe that is nearly

flat and infinite, the size of the multiconnected space becomes smaller than pho-

ton horizon. There, predicted correlation patterns change from featureless to

more complex. Our analysis gives no evidence for such small topological spaces.

During transition likelihood curves for all three investigated spaces show similar

features, attributed to the alignment of model correlation patterns to random

features in the unique observed CMB realization, and not selective of a specific

multiconnected space.
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Chapter 1

Introduction

Modern observations of distant galaxies show us that the Universe is expanding
[Hubble 1936]. If we follow this expansion back in time, to the early Universe, we
reach an epoch when the Universe was dense and hot. According to the Big Bang
theory the Universe began with a singularity at z =∞1 or at t = 0. This changed
with the introduction of the idea that the hot Big Bang stage was preceded by
the inflationary era of almost exponential expansion, driven in the simplest of
models by the vacuum energy of some scalar field. This era is estimated to have
happened around t ≈ 10−35s. The introduction of the inflationary era into the
Big Bang model resolves some of the paradoxes that exist, such as the horizon
problem, the flatness problem and the magnetic-monopole problem.

Scalar potential fields have quantum fluctuations. During the inflationary era
these quantum fluctuations were frozen in and expanded with the space to larger
scales, over time these fluctuations formed the perturbations in the matter den-
sity that we see today. The evolution and properties of these matter density
fluctuations as the Universe continued to expand after inflation, is of particular
interest as they contain information about the structure of the Universe. These
perturbations are also the seeds for the structure of the distribution of matter
that we observe in our Universe today and are imprinted as fluctuations of tem-
perature and polarization into Cosmic Microwave Background Radiation (CMB
for short).

At the end of inflation the Universe reheats and subsequently cools adiabatically
as it expands. After t ≈ 10−3 s, once the temperature was at or below T ∼ 1013K,
baryons were able to condense from the quark plasma. The Universe at this time
was fully ionized and contained primordial photons. These photons were strongly
coupled to the matter through Compton scattering, this strong coupling gave rise
to the conception of the photon-baryon fluid, the physics of which are detailed
in e.g., [Seager et al. 2000]. This strong coupling explains the perfect blackbody

1z is the measure of red-shift z = λobserved−λemited

λemited
= aemited

aobserved
where a is the scale factor of

the Universe [Carroll 2004].
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frequency spectrum of the emitted photons [Fixsen et al. 1996]. Figure 1.1 is the
blackbody spectrum of the CMB as measured by the COBE FIRAS experiment.
Due to the thermodynamic equilibrium the information about the early Universe
is obscured, this is the reason for which the specific processes of that time do not
concern us.

Figure 1.1: The modern observation of the CMB photon emission spectrum
as measured by the COBE FIRAS experiment. This graph contains both the
data points and the theoretical blackbody curve. The error bars of the data
points are smaller than the width of the line of the theoretical blackbody curve,
and is why the CMB has one of the best blackbody spectrums ever observed.
We would like to acknowledge the NASA science team and LAMBDA for pro-
duction of image. Taken from http://lambda.gsfc.nasa.gov/product/cobe/

cobe_images/firas_spectrum.jpg

The evolution of inhomogeneities during this stage is driven by the balance of
the pressure provided by the photons and the gravitational force exerted on the
matter as it falls into the potential wells. The interplay between these two forces
causes near harmonic oscillations similar to a spring in a constant gravitational
field [Hu & Dodelson 2002]. The oscillations behave like standing acoustic waves
[Hu & White 1996], where their spectrum is well understood and left an imprint on
the CMB and in the distribution of the matter that we see in the Universe today,
called baryon acoustic oscillations (BAO) [Beutler et al. 2011]. The analysis of
these acoustic like oscillations is used to determine the cosmological parameters
of the Universe. This methodology is analogous to sand on the surface of a
vibrating drum, [Luminet 2006] by analyzing the density patterns of the sand we
can determine the properties such as the tension and the density of the drum
head, even its shape. Strong coupling of the photons to the matter, means that
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the density fluctuations are represented as the temperature fluctuations of the
photons for the CMB sky.

As the Universe continued to expand it eventually reached a temperature of
T ≈ 3000, at this time the ions and electrons could combine to form neutral
atoms, this is called the time of recombination and occurred at around a red-
shift of z ≈ 1000,2. Ionized hydrogen combines to become atomic hydrogen at
T ≈ 10000K but this is just an energy estimation and does not include the effect
that there are 109 photons per baryon at that time. As such when this and other
physical effects are incorporated we obtain a more physical value of T ≈ 3000,
the physics of this decoupling is described in, e.g., [Seager et al. 2000]. When
the ions formed neutral atoms the photons were no longer strongly coupled to
the matter. The decoupling of the photons allowed their travel throughout the
Universe virtually unimpeded. These photons are emitted from what is called the
horizon of last scattering, and form what we observe as the Cosmic Microwave
Background Radiation.

1.1 Temperature Fluctuations

The temperature fluctuations that we see on the sky are actually the combination
of two effects on the photons. The first is the temperature fluctuations that
existed at the time of recombination and the second is the interactions that the
photon experiences as it traveled across the visible Universe to the observer. This
section will briefly go over some of the basics of how the temperature fluctuations
are created and how the cosmological parameters of the Universe affect their
observed temperature, ending with the equation that we use in the analysis of
the Universe’s topology. This section is intended as a simple overview, for a more
in-depth exposition of the theory of CMB fluctuations see, e.g., [Hu 1996; Hu &
White 1996] and the references therein.

Two components are required to analyze the physics of the perturbations in the
plasma of the early universe. Kinetic theory, which focuses on the transport of
the photons through the perturbed space, and perturbation theory, which is used
to determine the evolution of these fluctuations. The perturbed metric of the
Universe is given as follows in spherical comoving coordinates,

ds2 = a2(η)
[
(1 + 2Φ)dη2 − (1− 2Ψ)(dχ2 + S2

k(χ)dΩ2)
]

(1.1)

Sk(χ) = R0 sin(χ/R0) , k = +1

= χ , k = 0

= R0 sinh(χ/R0) , k = −1

2T (z) = T (z = 0)(1 + z), ⇒ T (1000) ≈ 3.0K × 1000
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R0 is the curvature of the 3-space, a is the scale factor of expansion, χ is the
radial comoving distance and dη = dt/a(t) is the conformal time. Ψ describes
the perturbations in spatial curvature, and Φ is the Newtonian potential field.

From the kinetic theory we have the Boltzmann equation [Hu & Dodelson 2002].[
∂

∂η
+
∂xi

∂η

∂

∂xi
+
∂γi

∂η

∂

∂γi

]
Θ = Sg + Ss , (1.2)

xi is the i’th component of the position, γi is the i’th component of the directional
unit vector of the photon’s momentum, and Θ(η,x, γ) = ∆T

T̄
are the temperature

fluctuations. Sg and Ss are the source functions from the gravitational and scat-
tering effects respectively, these source functions contain the physics that affects
the observed temperature of the photons.

The anisotropies that we observe are small, as such we can approximate the
evolution of these fluctuations to the first linear order. The photon distribution
is a uniform blackbody [Fixsen et al. 1996] and the lack of distortions in the
blackbody spectrum confirms that the approximation to first order is valid [Hu
& Dodelson 2002]. As in General Relativity there is a certain gauge freedom, we
need to specify a relation between the idealized unperturbed background space-
time and our perturbed physical space-time. Though the final observables are
gauge independent, there is a subtlety here which means the gauge has to be fixed
before calculations can proceed. Two popular gauge choices are the free falling
synchronous gauge and the longitudinal gauge, which can be more physically
intuitive. For details on the gauge choice and effects see, e.g., [Hu 1996]. This
discussion occurs in the longitudinal gauge, which is also known as the Newtonian
gauge.

The first order evolution equation for the Fourier component k of the photon
temperature in a flat space is given by [Hu 1996].

d

dη
(1 +R)Θ̇0 +

k2

3
Θ0 = −k

2

3
(1 +R)Ψ− d

dη
(1 +R)Φ̇ (1.3)

Θ0 is the locally isotropic (monopole with respect to the photon’s momentum)
temperature fluctuation in the electron’s frame, R = 3ρB

4ργ
is the measure of baryon

to photon ratio. The dot represents the derivative with respect to the conformal
time and we have set the speed of light c = 1.

This equation is similar to the equation for a driven harmonic oscillator with an
effective mass meff = (1 + R). To visualize these fluctuations, for sufficiently
high k we can neglect the slow time variation of R, Ψ and Φ. Then, using that

s =
√

dPγ
d(ρb+ργ)

= 1√
3(1+R)

is the speed of sound we obtain,

Θ̈0 + k2s2Θ0 = −k
2

3
Ψ . (1.4)
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This is the equation for a simple oscillator in a constant gravitational field, and
has the following solution,

Θ0(η) = [Θ0(0) + (1 +R)Ψ] cos krs +
1

ks
Θ̇0(0) sin krs − (1 +R)Ψ (1.5)

rs ≈ sη, which is the sound horizon. Perturbations beyond the size of the sound
horizon are not acoustical oscillations, at these large scales these perturbations
are the frozen perturbations that originate from the scalar field during the infla-
tionary era. The initial values Θ0(0) and Θ̇0(0) are set in very early Universe,
when the scales of all the relevant perturbations were much larger than the hori-
zon.

Using the photon continuity equation we can similarly obtain for the local dipole
term Θ1 in the temperature, due to electron velocity,

Θ1(η) = 3[Θ0 + (1 +R)Ψ]s sin krs +
3

k
Θ̇0(0) cos krs (1.6)

Equations 1.5 and 1.6 contain all the effects that dominate the anisotropies before
recombination also known as primary anisotropies [Hu 1996]. We ignore the
dipole effects as these only come into play at smaller scale anisotropies.

The first effect we will analyze is only the effect due to the falling down a gravi-
tational well. In the early Universe was radiation dominant ⇒ R ≈ 0. The per-
turbations that follow the growing adiabatic mode are frozen outside the horizon
that corresponds to Θ̇0(0) = 0. The solution in the equation 1.5 then becomes
Θ0(η) = [Θ0(0) + Ψ] cos krs − Ψ. The last term −Ψ is simply a blue or red
shift that occurs when light falls into or climbs from the potential well. We are
interested in the effective temperature fluctuations Θeff = Θ0 + Ψ, that is the
temperature fluctuations that incorporates this frequency shift experienced by
the light as it escapes the potential well.

[Θ0 + Ψ](η) = [Θ0(0) + Ψ] cos krs

During the matter dominated epoch [Θ0 + Ψ](ηm) = 1
3
Ψ(ηm) (in a large scale

limit, ηm is some late time moment in matter dominated epoch) [Sachs & Wolfe
1967]. The solution then becomes [Θ0 + Ψ](η) = 1

3
Ψ(ηm) cos krs. These oscilla-

tions are acoustic standing waves, therefore we can look at their spectrum, which
is the square of the amplitude as the function of k, at any particular time. When
cos krs = 1 or −1 we see that [Θ0 + Ψ](η) is at a maximum or minimum, re-
spectively, while when cos krs = 0 effective temperature fluctuations vanish. The
peaks in our spectrum occur at k = π

sη
at time η, thus are the modes of maximum

compression and maximum rarefaction for the odd and even peaks respectively.

Changing the baryon density ratio will affect the spectrum. All terms are af-
fected for equation 1.3, except for the pressure term. The solution in the limit of
constant R is then [Hu & Dodelson 2002],

[Θ0 + (1 +R)Ψ](η) = [Θ0(0) + (1 +R)Ψ](ηm) cos krs

5



Changing the ratio changes the sound horizon rs, due to the change in the speed
of sound s, as such we can expect a shift in the spectrum. Analogous to adding
mass to the end of a spring, our oscillations will have a larger amplitude due to
this increased effective mass. The effective temperature fluctuation being Θ + Ψ
we will obtain a shift in the equilibrium position from Θ = −Ψ to Θ = −(1+R)Ψ,
this shift is not symmetric. As such we see an enhancement of the compression
modes in the well, and thus only every other peak in our spectrum is enhanced
[Hu 1996]. These results also hold even when R is not in the limit of being varied
constantly in time [Hu & Dodelson 2002].

The change in the equation of state as Universe expands causes the potential
wells to change in time. When Universe transitions from radiation to matter
domination and from matter to Λ-term domination, potential wells shallow out.
This shallowing of the wells provides a driving effect for the oscillations, because
the wells are shallower when the photons climb out, as to when they fell in, this
is the Φ̇ term in equation 1.5. During the recombination epoch, that is near to
radiation-matter transition, this effect shuts off faster the larger the amount of
dark matter there exists. Incorporating all the previous effects with this, a high
third peak in the spectrum is a good indication of dark matter dominance [Hu &
Dodelson 2002].

The photon-baryon fluid is not prefect, as it has viscosity and heat conduction
[Hu & Dodelson 2002]. These imperfections contribute to an overall dampening

effect on our spectrum. The exponential dampening is on the order of e−
k2η
τ̇ ,

where τ̇ ≡ neσTa is the differential Thomson optical depth.

All the effects discussed previously are in the pre-recombination photon-baryon
plasma epoch. There are effects that occur after recombination that affects the
temperature fluctuation spectrum. Just after the time of recombination we have
what is called the early Integrated-Sachs-Wolfe (ISW) effect. This is from the
shallowing of the potential wells as the Universe completes the change from ra-
diation to matter domination after the time of last scattering.

The late ISW effect is similar the early ISW effect and is also caused by the
time varying potential perturbations. The difference is that these occur when
the Universe becomes dark energy dominated, which leads to decay of potential
perturbations. This only effects large scales (small l) because as the photons
travel through the visible Universe they travel through many peaks and valleys
of the smaller scale potential modes, over the time scale of these potential per-
turbations. Generally the temperature fluctuations at higher l will not be greatly
affected by the late ISW effect and the effect at low l is at the level of only a few
percent.

We know from our observations of the Universe today that the intergalactic gas
is ionized, this reionization had to occur no later than z ≈ 6.5 or before Universe
was t ≈ 1 billion years old. Therefore our spectrum will be dampened at the
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higher mode frequencies, but since the gas is so rarefied there is no additional
acoustic oscillation effects on the temperature fluctuations [Hu & Dodelson 2002].

The last effects are from foreground sources and their gravitational lensing. These
are non-Gaussian due to their origin and can cause great problems for data anal-
ysis. Some sources can be dealt with by comparing to x-ray maps and simply
masking out the affected areas. In fact this method was used to first determine if
the observed anisotropies seen by COBE were caused by foreground emission of
hot gasses [Boughn & Jahoda 1993]. This is the primary reason why most data
analysis of the CMB is done with a mask of these foreground objects and regions.

Let us look at the expected power spectrum in more detail. Our first peak is
the first compression mode, second peak is the first rarefaction mode, the third
peak is the second compression mode, and so on and, and so forth. Figure 1.2
shows the effect of varying an individual parameter on the power spectrum and
figure 1.3 is a schematic of how the cosmological parameters individually affect
the power spectrum and the combined final outcome.

Figure 1.2: Visual representation of how the power spectrum changes as an in-
dividual cosmological parameter is varied. Image from [Hu & Dodelson 2002],
Plate:4
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Figure 1.3: A schematic of how varying different cosmological parameters affects
the CMB power spectrum. Image from [Hu 1996], Fig:8

1.1.1 Equation for the Temperature Fluctuations

We will be dealing with the signal smoothed over large angular scales, which
limit us to the Sachs-Wolfe k → 0 regime for temperature fluctuations. In the
Sachs-Wolfe regime we can separate the time and space component of the po-
tential Φ(η,x) = D(η)Φ(ηH ,x), where the time dependence of the growing mode
of perturbations is in D(η) normalized to D(ηH) = 1. It is worth noting that
for hydrodynamic matter Φ = −Ψ, which is the assumption made about the
photon-baryon plasma. The other assumption that we have in our calculation of
the anisotropies, is that we ignore higher local moments of photon distribution,
as these affect only modes of higher spatial frequencies. We also assume that the
time of recombination was instantaneous, a valid approximation for the lower fre-
quency modes. The complete equation that is used to calculate the temperature
fluctuations is equation 1.7 [Bond et al. 2000b].

∆T

T̄
(q̂) =

1

3
Φ(χq̂)|χ=χH + 2

∫ χH

0

Ḋ(χ)Φ(χq̂)e−τreion(χ) dχ (1.7)

q̂ is the unit vector that points to a position on the sky, χ is the comoving
distance along the line of sight such that χH is the comoving distance to the last
scattering surface. Time-dependent functions Ḋ(χ) and τreion(χ) are evaluated
at the time moment η = η0 − χ when the photon is at the radial distance χ,
η0 being the present time. We remark that the moment of last scattering is
ηH = η0 − χH . T̄ is the mean temperature of the CMB map. It is worth
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noting that these temperature fluctuations are at large scale and as such are not
acoustical oscillations as they are larger that the sound horizon at the time of
recombination. These temperature fluctuations originated from the perturbations
in the potential field caused by the vacuum fluctuations of the scalar field at the
inflationary epoch.

1.2 The Power Spectrum

In the previous section we saw how to compute the temperature fluctuation for
a point on the sky in the direction q̂, at large scales. However it is multiplied
by a random amplitude, set at inflation, and its comparison with observed sky
can be done only statistically. The correlation function is defined as the average
product of the temperature fluctuations in two directions.

C(q̂, q̂′) = 〈∆T (q̂)∆T (q̂′)〉 (1.8)

On the other hand we can decompose these temperature fluctuations into spher-
ical harmonics.

∆Tlm =

∫
∆T (q̂)Ylm(q̂) dq̂ (1.9)

and define the covariance matrix Clml′m′ , calculated the following way,

Clml′m′ = 〈∆Tlm∆T ∗l′m′〉 . (1.10)

Clml′m′ and C(q̂, q̂′) are related through spherical harmonic decomposition.

Clml′m′ =

∫
C(q̂, q̂′)Ylm(q̂)Y ∗l′m′(q̂

′) dq̂ dq̂′ (1.11)

Our fluctuations are homogeneous as such there is no cross correlation between
lm modes, Clml′m′ = Clmδll′δmm′ . Clm is called the power spectrum. If in addition
we have statistical isotropy, the correlation function will depend only on the angle
between two directions cos θ = q̂ · q̂′ and the power spectrum in turn will depend
only on l and not on m.

Cl =
2l + 1

4π

∫
C(cos θ)Pl(cos θ) d(cos θ) (1.12)

The angular brackets 〈 〉 represent a statistical average over an ensemble of all
possible realizations of the CMB, but we only have one sky and thus only one
realization. Therefore how do we obtain the ensemble average? There are es-
sentially two procedures. Compute the correlation function then convert to the
power spectrum or to first decompose the temperature fluctuations into spherical
harmonics then calculate the power spectrum.

9



We start with our data map of temperature values on the sky T (q̂). The CMB is
very uniform and is a perfect blackbody with an average temperature according to
its blackbody spectrum of T̄ = (2.72548±0.57)K [Fixsen 2009]. The temperature
fluctuations are ∆T (q̂) = T (q̂)−T̄ . The dipole of the temperature fluctuations is
removed as it is dominated by our motion relative to the CMB. The temperature
fluctuations that remain in the map after the dipole removal are small and in the
0.1mK range, these temperature fluctuations can be seen in figure 1.6.

If the temperature fluctuations are homogeneous, then C(q̂, q̂′) = C(∆θφ), where
∆θφ is the directional difference of the two points on sky, such that q̂′ = q̂ + ∆θφ.
Therefore C is only a function of directional difference between the two directions,
and we can estimate our correlation function by marginalizing over all points that
have this same directional difference ∆θφ.

C(∆θφ) =
1

4π

∫
∆T (q̂)∆T (q̂ + ∆θφ) dq̂ (1.13)

If the temperature fluctuations are in addition isotropic, we have no dependence
on the direction provided by ∆θφ, as such C(q̂, q̂′) = C(cos θ), cos θ = q̂ · q̂′.
Therefore to improve the estimate we further marginalize so that there is only
the dependence on the angle between q̂ and q̂′.

C(cos θ) =
1

16π2

∫ ∫
∆T (q̂)∆T (q̂′)δ(cos θ − q̂ · q̂′) dq̂ dq̂′ (1.14)

Now we estimate the power spectrum in lm space. We start with the power
spectrum Clm = |∆Tlm|2 for the homogeneous field. If the field is isotropic the
estimation of the power spectrum is accomplished by averaging over the respective
m values.

Cl =
1

2l + 1

l∑
m=−l

Clm (1.15)

This estimation is how the correlation function from the data of observed sky is
often obtained [Szapudi et al. 2001]. From the CMB data’s power spectrum we
can reconstruct the cosmological parameters of the Universe. The power spectrum
modes are independent allowing the comparison of a model to the data be a simple
modification of the χ-squared test. This is one of the greatest strengths of power
spectrum analysis.

Masks are difficult to deal with in power spectrum analysis. For they can cause
cross correlation of modes which are more significant for masks that are more
extended and irregular. To solve this Monte-Carlo simulations can be run on
many theoretical CMB sky realizations based on a known power spectrum to
determine a correction. In real space for the correlation function, the advantage
is there is no issue in dealing with a mask. In fact masks are quite simple as the
points that are masked are simply ignored when computing the marginalisation.
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The downside is that there can be strong correlation between different length
scales ∆θφ, thus comparing results to theory can be complicated.

For the most part CMB analysis is done using the power spectrum, but for our
purposes this is not appropriate. We cannot assume isotropy of our Universe, as
such the power spectrum would be at the homogeneous estimation stage only.
We are interested in the lower l modes as such with out the marginalisation of
m we would have significantly larger error due to the lack of points to sample
over at these large scales. There remains the possibility that the multiconnected
space may also break homogeneity which would further complicate the use of the
power spectrum.

Figure 1.4 shows the power spectrum for the 7-year WMAP dataset that is com-
pared with the theoretical predictions in figure 1.2. The gray band shows the
cosmic variance ∆Cl, which is an intrinsic uncertainty in our measurements, this
is from the fact that we have only one realization of our CMB to observe.

∆Cl =

√
2

2l + 1
Cl (1.16)

As we approach smaller l this corresponds to larger modes on the sky, the number
of points therefore to sample for each mode is reduced significantly and the cosmic

variance grows. For the quadrupole l = 2 we have an error of ±Cl
√

2
5
, i.e over

60%. The monopole and dipole terms of our spectrum are not considered in the
analysis on the CMB. Though the anisotropies will have monopole and dipole
terms, it is impossible to distinguish them from the the mean temperature offset
and our motion through space relative to the CMB respectively.
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Figure 1.4: 7-year WMAP measured power spectrum. The gray shadow
represents the cosmic variance, note that it is inversely proportional to
l. Image from http://wmap.gsfc.nasa.gov/media/111133/111133_7yr_

PowerSpectrumL.jpg, courtesy of the NASA/WMAP science team

1.3 Discovery and Observation of the CMB

In 1964-1965, A.A. Penzias and R.W. Wilson set out to analyze noise in radio
antennae. Much to their surprise they actually discovered something far more
profound. After taking into account Ohmic loss, atmospheric absorption and
back-lobe response3 an unaccounted for temperature of (3.5±1.0)K at 4080MHz
was detected [Penzias & Wilson 1965]. Using the temperature for known common
radio sources determined by other researchers and their own data, they deter-
mined that this signal did not originate from some unaccounted for known radio
source, but from something new. They determined that this signal is isotropic,
unpolarized and is not affected by the seasonal variations. What they did not
know at that time was that this signal is the CMB.

It was theorized that the Universe either began from a singularity, or that the
Universe oscillates in size from a very small to large sizes for all eternity, this
means that the early Universe is expected to be hot [Gamow 1948; Alpher &
Herman 1948]. Either way the Universe, at some point the Universe had to
reach a temperature in excess of 1010K,4 [Dicke et al. 1965]. It was accepted
that the early Universe was hot as it did also explain the ≈ 25% He produced

3In directional antennae there are two main regions of signal strength front-lobe: the signal
strength in the direction you want the signal to propagate and back-lobe the signal strength
propagating in the opposite direction

4If the universe was a cycle then a temperature of 1010K is required so that the mater from
the previous cycle is decomposed into basic baryons. As a singularity the Universe will be dense
at the beginning with T � 1010K
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through early nucleosynthesis [Carroll 2004]. P.G. Roll and D.T. Wilkinson set
out to detect this radiation from the early Universe and were in the process of
constructing a radiometer and horn, set to measure at λ = 3cm, when A.A.
Penzias and R.W. Wilson discovered the CMB [Dicke et al. 1965]. In theory
this radiation had to have a T ≤ 40K [Dicke et al. 1965] based on the value of
the Hubble constant and that is what A.A. Penzias and R.W. Wilson measured.
Unfortunately the data from the CMB at that time was not able to determine
the curvature of the Universe.

Further experiments were done to measure any anisotropies in the CMB [Par-
tridge 1988]5, but other than just the dipole [Smoot et al. 1977], no other anisotro-
pies were observed [Smoot et al. 1990]. In 1989 a satellite called the Cosmic
Background Explorer (COBE for short) was launched into orbit to gather a full
sky map of the CMB for both temperature variations (DMR) and the frequency
spectrum (FIRAS) [Boggess et al. 1992]. COBE’s data provided the first defini-
tive detection of anisotropies in the CMB, other than that from just the dipole
[Smoot et al. 1992]. Unfortunately it did not have a high resolution as it had an
experimental beam of around FWHM ≈ 7◦ (to a resolution of around l ≈ 25,6

) and a sensitivity of around ∆T ≈ 0.15mK(rms) [Boggess et al. 1992]. Many
experiments were done that later confirmed these results [White et al. 1994].
Out of these experiments two of the more famous of them were MAXIMA and
BOOMERanG7.

MAXIMA and BOOMERanG were both high altitude balloon based experiments
that observed a high resolution section of the sky [Rabii et al. 2006; de Bernardis
et al. 1999]. BOOMERanG8 consisted of two flights one in 1998 and the other
in 2003, they both measured a high resolution map having a beam of around
(12 to 20 arcmin) [de Bernardis et al. 1999]. This confirmed and was able to
determine with more precision, the cosmological parameters due to this higher
resolution of the smaller temperature fluctuation modes [MacTavish et al. 2006].
MAXIMA9 mapped a high resolution section of the sky as well [Rabii et al.
2006]. Though the experimental runtime was shorter than BOOMERanG, some
interesting properties such as gaussianity were examined along with a check for
the results obtained by other experiments10. In 2001 the Wilkinson Microwave
Anisotropy Probe (WMAP) was launched, this provided the next highest res-
olution full sky map available. WMAP has a beam width of FWHM = (0.88,
0.66, 0.51, 0.35 and 0.22)◦, and a sensitivity of ∆T ≈ 35 µK at a pixel size of

5Read this paper to get information on the state of the CMB experiments at 1988
6Resolution in l ≈ 180◦

res(FWHM) , this is a crude estimate of the potential beam resolution in

lm space to which they can observe
7For a list of all CMB observation experiments and their information can be obtained from

the LAMBDA website: http://lambda.gsfc.nasa.gov/product/expt/
8http://cmb.phys.cwru.edu/boomerang/
9http://cfpa.berkeley.edu/group/cmb/

10MAXIMA publication page http://cosmology.berkeley.edu/group/cmb/comp_

publications.html
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0.3◦× 0.3◦ [NASA/WMAP Science Team 2010]. This allowed WMAP to reach a
resolution of around l ≈ 820.

The next highest resolution full sky map is from the Planck satellite launched
in 2009. This satellite is producing the highest resolution full sky temperature
maps of the CMB anisotropies. Planck has a beam size of FWHM= (33.16,
28.09 and 13.08) arcmin for LFI,and FWHM= (9.59, 7.18, 4.87, 4.7, 4.73 and
4.51) arcmin for HFI. The sensitivity of LFI is ∆T

T̄
= (2.0, 2.7, and 4.7) 10−12 at a

resolution of (33, 24, 14) arcmin respectively, and for HFI ∆T
T̄

= (5.0, 3.1, 14.7,
147 and 6700) 10−12 at a resolution of 5.0 arcmin [The Planck Collaboration
2005; Planck Collaboration et al. 2013a]. This will most definitely be the last
high sensitivity and resolution (l ≈ 2400), full sky temperature intensity map,
as the new exciting area of research on the CMB is in its polarization. The
polarization is not of much interest to us, due to the computational requirements
and there is no real advantage in using it. The polarization is expected to contain
interesting information, one of the most interesting being the proof of primordial
gravitational waves though no definitive discovery of them has yet been made.
Figure 1.5, 1.6 and 1.7 are foreground reduced maps of the CMB from the three
different full sky satellites experiments to date. Note that 1.5, is not from the
COBE satellite, due to its low resolution it is not possible to obtain a full sky
foreground reduced map, hence we used the WMAP map but degraded to the
resolution as seen by COBE.

Figure 1.5: Full sky map of the temperature anisotropies at the resolution of
COBE taken from the WMAP data, this is done because there is no foreground
reduced noise map for the COBE satellite. The map uses the same temperature
scale as WMAP (fig:1.6). Image is from http://map.gsfc.nasa.gov/media/

030653/030653_1_1280.png, courtesy of NASA/WMAP science team.
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Figure 1.6: Full sky map of the temperature anisotropies from the nine
year WMAP data, this is a foreground noise reduced map with a temper-
ature scale of ±200mK. Image is from http://lambda.gsfc.nasa.gov/

product/map/current/map_images/9yr_4096/ilc_9yr_temp_4096.png, cour-
tesy of NASA/WMAP science team.

Figure 1.7: Full sky map of the temperature anisotropies from the Planck
satellite, this is a foreground noise reduced map. Image is from http:

//spaceinimages.esa.int/var/esa/storage/images/esa_multimedia/

images/2013/03/planck_cmb/12583930-4-eng-GB/Planck_CMB.jpg, courtesy
of the ESA and the Planck Collaboration
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1.4 Shape of the Universe

The main purpose in this investigation is to analyze possible shapes of the Uni-
verse, but what do we mean by shape, which is a rather general term? The
shape of the Universe can be separated into two components, the geometry of the
Universe’s 3-space and its topology.

1.4.1 Geometry

Since Euclid formally defined flat space, around 300 BC, mathematicians have
been searching for a contradiction of his famous fifth postulate11. It was not
until in the early 1800’s that mathematicians discovered the hyperbolic space
that contradicts this postulate, however they could not determine if we lived in
this space or not.

In 1909 Einstein postulated general relativity, where the field equations of general
relativity are used to described the geometry of space from its energy densities.
General relativity only describes the local geometry and does not describe the
shape of the Universe as a whole. In 1922, A. A. Friedmann applied Einstein’s
field equations to the homogeneous model of the Universe, this gave a first real
glimpse into the possibilities and conditions under which the Universe would
have a non-Euclidean geometry. Friedmann’s equations relate the curvature of
the space to the density of matter and expansion rate of the Universe,

H(t)2 ≡

(
ȧ

a

)2

=
8πG

3c2
ε(t)− κc2

a2R2
0

(1.17)

G is the gravitational constant, H is the Hubble constant, R0 is the current
curvature radius of the 3-space, and ε(t) is the energy density of the Universe.
Assuming curvature is the same everywhere due to homogeneity, there are essen-
tially only three global geometries, open, flat, and closed described by the value
of κ = −1, κ = 0 and κ = +1 respectively. Out of these three possibilities only
one is intrinsically finite in size and that is the closed space. The two curved
3-spaces are also called hyperbolic (open) and spherical (closed). In hyperbolic
spaces parallel geodesics tend to diverge, where as in spherical spaces they tend
to converge, or it can be thought of in terms of triangles, where the sum of its
angles in a closed space is ≥ 180◦ and in an open space is ≤ 180◦, see the fig-
ure 1.8. This is one of the earliest relations used in trying to determine if the
Universe has a curvature.

The observed Universe is surprisingly isotropic and homogeneous, thus it is as-
sumed in the first approximation to be described by the Friedmann-Lemâıtre-

11Have two geodesics l m and a geodesic t crossing both l and m forming the angles φ and θ
both on the same side with reference to t, if φ + θ < 180◦, then l and m will intersect on the
same side as the angles of t.

16



Figure 1.8: The three spacial geometries as predicted by the Friedmann-Lemâıtre
metric. Notice the triangles and how the angles are ”bowed” in the curved spaces.
The top geometry is the closed, the middle is the hyperbolic and the last is the
flat. Image from http://map.gsfc.nasa.gov/media/990006/9900062048.jpg,
courtesy of the NASA/WMAP science team
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Robertson-Walker metric given by the unperturbed part of equation (1.1). This
constitutes the standard model of the Universe. In this model we can describe
the curvature in terms of the parameter known as the curvature density Ωk.

Ωk = 1− Ω(t) = − κc2

R2
0a(t)2H(t)2

(1.18)

Ω(t) is the ratio of the density in the Universe to the critical density which is the
density for the space to be flat.

Ω(t) =
ε(t)

εc(t)
, εc(t) ≡

3c2

8πG
H(t)2 (1.19)

Similarly, the Ωi parameters are defined for individual energy components that
fill the Universe.

Modern measurement of CMB temperature anisotropies provide the best to date
estimates for the main cosmological parameters, especially when combined with
other measurements such as the distribution of galaxies at large scales (BAO).
Cosmological parameters obtained by fitting the WMAP 9-year data are summa-
rized in Table 1.1.

Table 1.1: The Cosmological Parameters from the WMAP 9-year Data Set [Hin-
shaw et al. 2012].

Parameters 9-Year WMAP Only WMAP+eCMB+BAO
Ωk −0.037+0.044

−0.042 −0.0049+0.0041
−0.0040

Ωtot 1.037+0.044
−0.042 1.0049+0.0041

−0.0040

Ωm 0.19 < Ωm < 0.95 (95%CL) 0.292± 0.010
ΩΛ 0.22 < ΩΛ < 0.79 (95%CL) 0.713± 0.011
t0 (Gyr) 14.8± 1.5 13.99± 0.17
H0 (km/s/Mpc) 38 < H0 < 84 (95%CL) 68.0± 1.0

eCMB uses information obtained by other CMB sky experiments, BAO is from
the baryon acoustic oscillations.

This shows that CMB data alone allows the spatial geometry of our Universe
to be either flat or curved. Combining CMB data with Large-Scale-Structure
datasets highly prefers nearly flat spaces, but with a slight positive curvature.

With our focus on a multiconnected positively curved Universe, let us quote here
geometrical characteristics of the Universe with 9-year WMAP only parameters
and Ωk = −0.037. The distance to the last scattering surface is χLSS = 2.8239 c

H0
,

and the curvature radius of the 3-sphere is R0 = 5.1988 c
H0

, therefore,
χLSS = 0.5432 R0.

VS3 = 2π2R3
0 = 2773.569(

c

H0

)3, VLSS =
4

3
πχ3

LSS = 94.327(
c

H0

)3
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⇒ VLSS

VS3
= 0.034

CS3 = 2πR0 = 32.665
c

H0

⇒ 2χLSS

CS3
= 0.173

From these values we are seeing only about 3.4% of the volume of the Universe
if it is just S3, but 17.3% of the circumference of the Universe, which is quite
impressive for a seemingly small value of Ωk. By introducing a compactification
we can potentially introduce a case where we are close to viewing 100% of the
Universe.

1.4.2 Multiconnected topology

Though the Friedmann-Lemâıtre metric does describe the geometry of the 3-
space, it contain no information about, nor is it affected by the introduction of
some sort boundary condition on the 3-space. Similarly Einstein’s field equations
are local and are not affected by imposing a compactification of the space, though
this does not mean that this compactification will not affect the boundary con-
ditions on the physical fields that evolve in such space. The introduction of a
compactification is given in the simplest terms as a periodic boundary condition
creating what is called the fundamental domain, which is a set of points of the
space that are unique.

A multiconnected space, is a space where for any point x in the fundamental
domain, there exists at least one loop l that can not be continuously shrunk down
to the single point x. Any function along such loop will be periodic. For example
take a square of length a with a periodic boundary condition, for simplicity let us
take the point at coordinates (x, y), the origin being at the center of the square.
Take a line and run it to the edge of the square at (x, a/2), and (x,−a/2) this
created a loop that runs through point x, but can not be continuously shrunk to
a single point at x. This is because it passes through our boundary condition12.

It is easier to deal with a tiling of images of the fundamental domain (M) over
the 3-space, this set of all tiles is called our universal covering space (Mu). Our
universal covering space is simply connected, meaning that we can take any loop
l that passes through point x contained in the 3-space and continuously shrink it
to the point x. It is simpler to deal with a tiling on the universal covering space
because it is an isotropic and homogeneous space, as described by our Friedmann-
Lemâıtre metric. Figure 1.9 shows how this tiling functions, a particle traveling
along the curved line is seen entering and leaving the individual image domains,
when dealing with only the fundamental domain and not using the universal
covering space it can be quite inconvenient.

12This is the popular example of a loop that goes around a 2-torus
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Figure 1.9: The top panel is the universal cover R3 tiled by hexagons. The line
is a particle trail in the flat space. The bottom image is the trail as seen using
the periodic boundary conditions of the fundamental domain.
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How do we construct our fundamental domain? The main idea is that our com-
pactification can not induce any additional curvature, therefore there can be no
stretching or bending of the space. Not all shapes are capable of being a fun-
damental domain given this restriction, this is analogous to why a soccer ball
can not be tiled by hexagons alone unless our ball is no longer S2. As such
we must construct our fundamental domain using only isometric transitions13 Γ,
this prevents any addition of curvature, which would affect our distance relations.
Therefore we must find a fundamental domain were we can map all points in a
domain to all their images using transitions in Γ. A fundamental domain shape
is not usable when there does not exist a mapping to map all points from one
image domain Ia to another image domain Ia+n, that is isometric, for all a and n,
where a and n are such that Ia and Ia+n is also contained in the set of all image
domains.

We focus on the spherical case, as the latest data shows that the Universe is
closer to a closed space than to an open one. For the S3 space, the group of
isometries is SO(4) = Γ, which are all rotations in a four dimensional space, but
unlike in three dimensions there is no point that is held fixed during the rotations.
Due to the rotational nature of these transitions, we use unit quaternions14 to
describe theses rotations [Gausmann et al. 2001]. We describe the position of
each image by a unit quaternion, this allows treatment of transitions from one
image to another by the use of a rotation matrix for the unit vector quaternions.
A more detailed view on the construction of the finite subgroups for S3 can be
found in, e.g. [Gausmann et al. 2001].

Table 1.2: Table of the finite subgroups of S3 Universal Cover from [Gausmann
et al. 2001].

Group transitions Space Symbol Order Shape of
Fundamental Domain

Cyclic group Zn n lens
Binary dihedral group Dm 4m, m ≥ 2 m sided prism
Binary tetrahedral group T 24 regular octahedron
Binary octahedral group O 48 regular truncated cube
Binary icosahedral group I 120 regular dodecahedron

Let D be the discrete subgroup of isometries that translate all points in a domain
to an image domain. The isometries that remain are γ = Γ/D, out of these
remaining transitions the isotropy group is broken and possibly the homogeneity
group as well depending on the domain. For a 3-space to be globally isotropic, it
is required that the set of all rotations of the 3-space are isometric. Let’s look at
an example in 2-space where we choose a point near the edge of the fundamental

13isometric transitions retain the distance relation between points
14These are the four dimensional analog to complex numbers
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domain. If we rotate all points around this point, when they cross the boundary
some renter with a different distance relation to one another, this is best seen in
figure 1.10. Take the two points a and b they are a distance d from each other
(this being the shortest distance between them), now rotate the 2-space to the
prime 2-space. The distance between a′ and b′, d′ 6= d, therefore rotation is not
an isometric transition for all points in this multiconnected space. If we expand
to all multiconnected spaces it is obvious that this will always be the case, all
multiconnected spaces are globally anisotropic.

Homogeneity requires that translations in the 3-space are isometric. Not all
multiconnected spaces are globally homogeneous, For example a Klein bottle
though not a flat 2-space it will serve to illustrate a non globally homogeneous
multiconnected space. See figure 1.11, where under a translation, the shortest
distance between a′ and b′ is not the same as the shortest distance between a
and b, d′ 6= d. Essentially the property that destroyed homogeneity is that
the boundaries are anti-parallel in figure 1.11. Multiconnected spaces with a
hyperbolic universal cover are all inhomogeneous [Bond et al. 1998]. This leads
to the observer dependence which is an issue, as computationally it will lengthen
run times of the analysis because we have to simulate for many observer positions.
Even if a multiconnected space that is inhomogeneous is found to fit the Universe,
there is the nagging question as to why are we located where we are, especially if
we are near the center of the Universe. Having a homogeneous space is therefore
much simpler conceptually.

It is worth noting that even though the local geometry of the 3-space is not
affected by the introduction of the multiconnectivity, presence of a particular
curvature does restrict the allowable types of fundamental domains. This is due
to the requirement to preserve the constant curvature everywhere.

1.4.3 Why a Compact Space

Why are we interested in a multiconnected Universe? First of all for the com-
pactness of our Universe, multiconnected spaces are the only compact possibility
if the curvature is negative or zero. While spherical models are compact by them-
selves, the observed value of curvature is such that S3 spaces that fit the data
are very large and my benefit from extra topological compactification. Philo-
sophical reasoning for compactness may be that nothing in the Universe is truly
infinite so why should the Universe itself be infinite in size. There are also many
theories that are formulated with extra compact dimensions, so why would the
three space-like dimensions be infinite? It has also been mentioned that the pro-
duction of a finite (smaller) universe is more probable than that of an infinite
(larger) one [Cornish et al. 1998]. Then there exists observational evidence that
a compact universe can account for some peculiar observations. The CMB power
spectrum as a significant lower mode suppression [Spergel et al. 2003; Smoot
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Figure 1.10: The top panel is the universal cover R2 tiled by squares which
corresponds to a torus. The bottom panel is the fundamental domain. The two
points a and b are rotated 90◦ to a′ and b′. As can be seen rotation not isometric
as d′ 6= d. Therefore violating global isotropy.
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Figure 1.11: The top panel is the universal cover R2 tiled by squares which
correspond to the multiconnected space of a Klein bottle. The bottom panel
is the fundamental domain. The two points a and b are moved using the same
translation to a′ and b′. As we can see in this case the translation is not isometric
as d′ 6= d. Therefore violating global homogeneity.
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et al. 1992] which can be explained by the presence of a compact universe provid-
ing a characteristic length scale causing this lower mode suppression. A strange
quadruple-octupole alignment in the the CMB spectrum also exists, which may
point to some specific topology as the cause [Aurich et al. 2007], but investigations
have not yet revealed any positive results. Though these observations are odd it
is worth noting that there is the possibility that our observations could simply
be due to random chance, like the role of a dice this could just be the realization
that we have for our sky. Since the CMB is a random Gaussian field for which
we only have one realization, our one realization can have some particularities,
that when averaged over the ensemble of all realizations disappears.

1.4.4 Methods of Detection

There are a number of methods to determine the shape of the fundamental do-
main. They fall into two basic categories, direct methods and indirect methods.
The direct methods have the potential to blindly determine the shape of the
fundamental domain from the observed data, a seemingly stronger approach.
Whereas indirect methods, need a topological model to compare the observed
data with, to see if it is a good fit. This is long and can be an ultimately futile
task as the number of possible multiconnected spaces is well into the infinities.

1.4.4.1 Direct Methods

These methods are the seemingly logical choice to use when determining the
topology of the Universe. There are two ways to get direct measurements of
the fundamental domain, the first is to search for multiple images [Sokolov &
Shvartsman 1974], called the crystallographic method [Lehoucq et al. 1996; Uzan
et al. 1999], and then there is the circles in the sky method [Weeks 1998; Cornish
et al. 1998].

The crystallographic method is very simple in conception, but rather difficult in
execution. The essence of the idea is that, if we live in a multiconnected space
we have the possibility to observe multiple images, from multiple directions of
the same object. This only works assuming that the Universe is smaller than our
visual horizon. Take for example a fundamental domain that is a two dimensional
square, with sides of length a, and a universal covering space that is R2. In this
domain there is a galaxy (O) at distance l from the observer, now let the horizon
be of radius a. Figure 1.12 depicts what we see, and that is, that there will
be three images (I) of the galaxy (O). There are some issues with this. The
first being, that the farther the distance to an image, the farther back in time
the object is being observed, this means that not only will the observer have to
deal with the obscuring effects from the red-shift and intermediate objects, but
will also need to consider the evolution of the astronomical object that is being
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observed. Quasars are some of the brightest objects in the sky, obviously these
would make great sources to test for the topology, but unfortunately Quasars
are short lived objects on the astronomical scale. Meaning that the difference
in the distance to an image and from the source will have to be correspondingly
short [Lehoucq et al. 1996]. There are many types of objects to choose from
such as galaxies and galaxy clusters, recorded in many different sources catalogs.
Consequently it could take a very long time to measure a positive detection, if
one exists, unless one test for a specific topology. The second being, that the size
difference between the horizon and the fundamental domain does has to be such
that there exists an image to view. So we have to consider that there might not
be an object suitable for this kind of observation.

Figure 1.12: This is a universal cover corresponding to R2, tiled by squares. The
original object O has three images I, where as the rest are not visible since they
are beyond the horizon.

The circles in the sky method is more elegant. In this method the idea is to
look for correlated pairs of circles of temperature values on different parts of the
sky [Cornish et al. 1998]. These circles originate from the overlap of the last
scattering horizon with itself, as seen by an observer from multiple directions, see
figure 1.13. What is seen are two circles that have the same temperatures along
these circles on the sky.

This again requires that the fundamental domain be smaller than the horizon of
last scattering, but unlike the crystallographic method, the size difference between
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Figure 1.13: The intersection of the horizon with two image horizons from adja-
cent image domains, where they intersect is a circle that can be seen from two
directions. These two circles will be correlated as they are images of the same
temperatures on the sky.
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Figure 1.14: Running a plane through one of the circle pairs found on the sky
provides an edge to the fundamental domain.

them does not have to be as severe. Even if the domain is only marginally smaller,
there will still be some overlap of the last scattering surface, only the size of the
circles will change with the size of the domain, becoming smaller, the larger the
domain is relative to the horizon of last scattering. If pairs of circles are found,
it is rather simple to form a domain [Weeks 1998]. To do so one simply places
an infinite plane that intersects the horizon of last scattering and one of the
correlated circles, this forms the edge of the domain as in figure 1.14. The more
circles that are found the more edges of the domain are determined. A check of
the domain is that it should tile the universal covering space, this is a great check
for errors such as false circles [Cornish et al. 1998]. Another procedure is that
one is not required to find all the pairs of correlated circles, as each pair provides
a holonomy of the multiconnected space which can be used to limit the number
of possible multiconnected spaces for our Universe. Unfortunately this method
is highly susceptible to the effects caused by secondary anisotropies.

To date no direct detection of any kind has been made. This is not an indi-
cation that no topological signal exists, but these method are computationally
intensive and making blind tests for the topology are almost impossible. As such
constraints are usually used, such as a specific topological model.
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1.4.4.2 Indirect methods

Indirect methods potentially do not require that the Universe be of a certain
size. These methods analyze patterns that emerge given a certain topological
constraint. As seen before, the power spectrum is a powerful tool, and it can be
used to investigate the possible finite nature of the Universe. The issue is that a
multiconnected spaces are not isotropic as seen in figure 1.10, which makes the
whole point of using the power spectrum inappropriate. But we can estimate a
possible characteristic length scale of the Universe by assuming that it is isotropic
and then analyzing the suppression of the lower multipoles, to obtain the length
scale. This does not provide a specific shape of the fundamental domain, but it
is no less interesting.

Another method, which is the one that we use, is to compare a theoretical corre-
lation for a certain model/shape of the CMB in real space to the observed CMB
data map. What we obtain is the probability of observing our CMB data map
(a single possible realization), given our theoretical basis. This method is known
as the Likelihood method.
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Chapter 2

Likelihood Function and
Correlation Matrix

2.1 The Correlation Matrix

The observed CMB temperatures T (q̂), in the direction on the sky is specified by
the unit vector q̂ from the observer. This temperature reflects the random per-
turbations in photon-baryon plasma at the epoch of last scattering, and modifica-
tions to the temperature induced during photon propagation from the surface of
last-scattering to the observer. These temperatures constitute a two-dimensional
random field on a 2-sphere, and this field is practically Gaussian due to the
quantum origin of perturbations and linearity of their evolution.

Experimentally determined temperature maps are pixelated, thus one deals with
a finite set of random variables that can be viewed as a finite-dimensional vector
x = (T1, T2, · · ·Tnp), where np is the number of pixels that make up our map.
If one focuses on temperature fluctuations, each ∆Tp is a random variable with
zero mean, but correlated between different pixels as described by the covariance
matrix,

C = Cpp′ = 〈∆T (p)∆T (p′)〉 (2.1)

which plays the role that the correlation function plays in the continuous case.

We are interested in the probability of having a specific set of temperatures values
that constitute our map, like the data map that we see as our observed CMB sky.
As stated our random field is Gaussian, as such all of its statistical properties
can be described by C, namely the probability distribution of x is given by,

P (x) =
1

(2π)
np
2 det(C)

1
2

e−
xTC−1x

2 (2.2)

The statistical properties that are contained in C originate from the physical
processes that form the CMB anisotropies. To compare the data with a model,
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we need first of all to generate a theoretical prediction for correlation matrix
CT, called our theoretical correlation matrix. To reiterate CT is the np by np
correlation matrix for the model and is in pixel space which contains np pixels,
CTpp′ is the value of the correlation between pixel p and pixel p′ that the theory
predicts.

2.1.1 Correlation Matrix Generation for a Given
Multiconnected space

The theoretical correlation matrix must be generated for our multiconnected
space.

CTpp′ = T̄ 2

〈
∆T

T̄
(p)

∆T

T̄
(p′)

〉
(2.3)

To determine the correlation between two points on the sky, p and p′, we first
we must compute their ∆T according to equation 1.7. q̂ and q̂′ are the unit
directional vectors for p and p′ respectively from the observer. The correlation
matrix then becomes equation 2.4 which when expanded becomes equation 2.5.

CTpp′ = T̄ 2

〈(
1

3
Φ(χq̂)|χ=χH + 2

∫ χH

0

Ḋ(χ)Φ (χq̂) e−τreion dχ

)
(

1

3
Φ(χq̂′)|χ=χH + 2

∫ χH

0

Ḋ(χ)Φ(χq̂′)e−τreion dχ

)〉
(2.4)

CTpp′ =
1

9
T̄ 2 〈Φ(χH q̂)Φ(χH q̂′)〉

+
2

3
T̄ 2

∫ χH

0

Ḋ(χ)e−τreion (〈Φ(χq̂′)Φ(χH q̂)〉+ 〈Φ(χH q̂′)Φ(χq̂)〉) dχ

+ 4T̄ 2

∫ χH

0

∫ χH

0

Ḋ(χ1)Ḋ(χ2)e−2τreion〈Φ(χ1q̂
′)Φ(χ2q̂)〉 dχ1 dχ2 (2.5)

Therefore the correlation between two points on the sky is related to the correla-
tion of the potential field in space. To obtain the potentials correlation between
the two points in space we use equation 2.6 [Bond et al. 2000a]

ξΦ(x,x′) = 〈Φ(x)Φ(x′)〉 =
∑
i

P (ki)

mi∑
j

Ψij(x)Ψ∗ij(x
′) (2.6)

P (ki) is the power spectrum for the potential perturbations, and Ψij are the eigen-
functions of the Laplace operator in the fundamental domain (∆2 + k2

i )Ψij = 0.
Calculating these eigenfunctions can be lengthy and difficult for a given funda-
mental domain. The calculation of the eigenfunctions can be done, as outlined
for spherical multiconnected spaces in e.g. [Lehoucq et al. 2002], but there is an
alternative, called the method of images [Bond et al. 1998].
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2.1.2 Method of Images

Computing the correlation between two points x and x′ in a multiconnected space
can be done by summing the correlation function of the universal covering space
for point x and all the images of x′. This method is called the method of images.
To derive this method start with the following two relations.∫

M
ξfΦ(x,x′)Ψi(x

′) dx′ = PΦ(ki)Ψi(x) (2.7)∫
Mu

ξuΦ(x,x′)Ψi(x
′) dx′ = PΦ(ki)Ψi(x) (2.8)

The f represents the fundamental domainM, and u is for the universal covering
spaceMu. The eigenfunctions of the fundamental domainM are also the eigen-
functions of the universal cover Mu, therefore we can equate the previous two
relations [Bond et al. 1998].∫

Mu

ξuΦ(x,x′)Ψi(x
′) dx′ =

∫
M
ξfΦ(x,x′)Ψi(x

′) dx′ (2.9)

The universal covering space Mu is tiled by images of the fundamental domain
M, the integral over all of Mu is then simply the sum of the integrals over the
individual images of M that tile the universal cover. Therefore we manipulate
the integral in equation 2.8 the following way.∫

Mu

ξuΦ(x,x′)Ψi(x
′) dx′ =

∑
π∈Π

∫
M
ξuΦ(x, πx′)Ψi(x

′) dx′ (2.10)

=

∫
M

[
′∑

π∈Π

ξuΦ(x, πx′)]Ψi(x
′) dx′ (2.11)

π ∈ Π represents an image of the fundamental domain M which is Mπ in the
set of all possible image domains denoted by Π, note that since it is an image
Mπ =M. Equating with equation 2.7 obtains the following relation.∫

M
ξfΦ(x,x′)Ψi(x

′) dx′ =

∫
M

[
′∑

π∈Π

ξuΦ(x, πx′)]Ψi(x
′) dx′ (2.12)

The ′ on the
∑′

π∈Π indicates that the sum may need to be regularized, though this
is only for a non-closed universal covers, where there is an infinite set of image
domain such, as the flat and the hyperbolic universal covering spaces [Bond et al.
1998]. We do not have to deal with this issue as our universal cover is S3 and thus
finite. Equation 2.12 holds for all the eigenfunctions of the multiconnected space
Ψi, thus we obtain our main equation for the method of images, equation 2.13.

⇒ ξfΦ(x,x′) =
∑
π∈Π

ξuΦ(x, πx′) (2.13)
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This equation provides the relation as stated in the beginning of this section, and
saves us from having to compute the eigenfunctions for the multiconnected space.

To use this method in determination of the correlation between two points, we
start with the two points in space which are x and x′. First we place the images
of x′, πx′, in all the image domains. Now we use equation 2.13 which means that
we need the correlation between x and πx′ for the universal cover’s correlation
function ξu. The correlation function ξu(x, πx′) is simply calculated as stated
previously using equation 2.6. We then sum over all the images to obtain the
correlation value for the two points x,x′.

It is this method that we use in the computation of our theoretical correlation
matrices. Using equation 2.5, we use the method of images to compute the
potential spacial correlation functions and obtain our CT. Figure 2.1 and 2.2
are visualization of the correlation about pixel number 500 for an isotropic and
anisotropic Universe respectively

Figure 2.1: Correlation matrix visualization for the 500th pixel, for an isotropic
model. This is for a space that has a large domain size when compared to the
distance of the last scattering horizon. Notice the lack of correlation patterns.

33



Figure 2.2: Correlation matrix visualization for the 500th pixel for an anisotropic
space. This is for a space that has a small domain size when compared to the
distance of the last scattering horizon. Notice the increased correlation with other
pixels.

2.1.3 Visualization of the effects of the Topology

A visualization of multiple images of a point as seen by an observer in a multicon-
nected spaces can be simulated. Three visualizations were computed for the three
multiconnected spaces that we will examine. The three figures in figure 2.3 show
images of an object located at the observer as seen when the horizon is such that
it encompasses the universal covering space. As such we should be able to count
the number of domains that tile the universal covering space minus two, since the
observer does not see oneself in the domain that the observer occupies, and that
the last domain’s image simply fills the whole sky as it is located in the point
on our 3-sphere universal covering space that is antipodal to the observer. From
the three figures we can actually make out the shape that is the multiconnected
space, the most obvious being the dodecahedral space-I.
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Figure 2.3: Visualization on the sky of images for the observer. The top panel is
space-I, the middle panel space-T, and the last panel space-O see section 1.4.2.
The size of the dot is inversely proportional to the distance from the observer.
This distance is also color coded so that we may observe the images on overlapping
lines of sight.
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2.2 Likelihood function

The Likelihood function computes a value for which the effectiveness of the topo-
logical model can be determined. Essentially it is the probability of observing
the observed CMB data map given a certain topological model. This is a non-
normalized probability, as we do not have access to all possible skies to which it
can be normalize against as we only have one sky to observe. But this value is
useful for the comparison between models.

2.2.1 Meaning of the Likelihood

The likelihood is the probability that our data x will be realized given the corre-
lation matrix C. Simply Lx(C) = P (x|C)1 where x is our observed CMB data
map. We can easily calculate the likelihood value using equation 2.2, the n-point
probability function of a random Gaussian field with correlation matrix C.

P (x|C) =
1

(2π)
np
2 det(C)

1
2

e(− 1
2
xTC−1x) (2.14)

C is our correlation matrix in pixel space, which contains the statistics of our
model. However, to objectively judge the model, it would be more appropriate
to find the posterior probability P (C|x). Bayes theorem states that P (a|b) =
P (b|a)P (a)

P (b)
therefore we can calculate P (C|x) from P (x|C) the following way.

P (C|x) =
P (x|C)P (C)

P (x)
(2.15)

P (x) is called the evidence and is the probability of obtaining this data realization
from all possible others. We only have one sky as such we do not know P (x)
but this simply a normalization term. P (C) is called the prior which represents
our prior knowledge about the probability of the model being chosen out of all
possible models. It is here that we may add additional constraints obtained from
other experiments or observations on the likelihood that this model is a good fit.
For us, in this experiment we have an equally weighted prior. By not knowing
the exact values for P (C) and P (x), we can only compare ratios.

P (C1|x)

P (C2|x)
=
P (x|C1)

P (x|C2)
=
Lx(C1)

Lx(C2)
(2.16)

This is why we only use the likelihood value. Our data x contains both the
signal, for which we have the theoretical correlation matrix CT and the noise
to which we have the correlation matrix CN. Due to the fact that the noise is

1The notation P (a|b) represents the probability of obtaining/observing the value(s) a while
having the value(s) b fixed
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generated at the detector, (electronics noise, stray high energy particles, ...), and
that the cosmological anisotropies are generated far away from the detector, they
are assumed within good approximation to be uncorrelated. Being uncorrelated
the correlation matrix C is simply the sum of the two, CT + CN. This means
that our likelihood equation can be written as equation 2.17.

Lx(CT) =
1

(2π)
np
2 det(CT + CN)

1
2

e(− 1
2
xT(CT+CN)−1x) (2.17)

We showed how to calculate CT in section 2.1.1 and CN is obtained from our
experiment as we will see later in section 3.2.

For computations the natural logarithm of the likelihood, called the log-likelihood
is must nicer to deal with. The final equation that we use in our investigation is
equation 2.18.

ln(L) = −1

2

[
np ln(2π) + ln(det(CT + CN)) + xT(CT + CN)−1x

]
(2.18)

For simplicity from now on we will use the notation L which represents Lx(CT).

2.2.2 Modes

We are looking for a topological signal as such we are only interested in the
lower frequency modes, i.e. the large structures in the CMB anisotropies. This is
because the effect of a characteristic length imposed on the Universe by a compact
multiconnected space will have the greatest effect on these lower frequency modes.
Therefore we smooth out all the higher frequencies, as such our CT tends to
become degenerate, with a number of the eigenmodes being quite small. When
noise is large, this is not a problem since we invert CT + CN, and the noise
is expected to be uncorrelated, and therefore diagonal. WMAP and Planck for
example have very large signal to noise ratio when re-binned to Nside = 16, as
such the addition of the noise can be ineffective in masking these very small
amplitude modes. WMAP for example has around 1% error compared to signal
at Nside = 16 (see section 3.2 for details). As such the noise does not contribute
significantly to the signal, which can make dealing with the likelihood function
quite tricky.

The issue is that the likelihood value is greatly affected by these small modes,
partially due to the inverse determinant term in equation 2.18. We can induce
invertibility by simply dropping these troublesome small or zero modes by using
something like a condition number for the matrix. Because the likelihood value
by itself is more or less meaningless this appears to be okay, but upon comparison
to another likelihood value for another model we then have a problem.

Unfortunately a dynamic choice from model to model that changes the number
of modes to be used by the theory is not very informative, since each model can
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have a different mode structure, by dropping different modes for computations,
it is unclear if the likelihood difference between the models is due to the loss of
modes or if it is due to a topological signal. Even the addition of an artificial
noise parameter to bump up these lower modes can greatly affect the likelihood
value.

A solution is to decompose the correlation matrix and project it onto a set of
basis modes that is consistent for every model. By standardizing every model
use the same set of eigenmodes we can manipulate the rank of the correlation
matrix, while maintaining consistency between the models, the specifics of this
is in section 3.3.

To understand the effect that the modes have on the likelihood value let us start
with the ln(L) function that is equation 2.18. CT is symmetric therefore we can
decompose it as

CT = ΨΛΨ−1 (2.19)

Λ is a diagonal np × np matrix, where Λii = λi and Λij = 0, i 6= j. Ψ is the
np×np matrix of the eigenvectors where the i’th column is the i’th eigenvector ϕi
of CT. By construction these eigenvectors are orthonormal ⇒ ϕiϕ

T
j = 0, i 6= j.

Let our map consist of a single eigenvector of CT, therefore x = aϕ1, where a
is the amplitude of the map. Now we will examine two cases where we will limit
the number of non-zero eigenmodes. We will also ignore the noise component
for simplicity. Before this can be done we must analytically calculate the best
amplitude for our model. This can be done analytically as we are ignoring the
noise contribution to the likelihood function. This has to be computed because
though we know what the amplitude should be when we compute CT, the best
amplitude may vary sightly from model to model.

det(ACT) = An det(CT) (2.20)

⇒ ln(L) = −1

2

[
n ln(2π) + n ln(A) + ln(det(CT)) +

xTCT−1x

A

]
(2.21)

We want A at a maximum, ⇒ 0 = d
dA

ln(L) = 1
L

d
dA
L and solve for A. 1

L 6= 0.

⇒ 0 =
d

dA
L =

n

A
− xTCT−1x

A2

⇒ nA = xTCT−1x

⇒ A =
xTCT−1x

n

Substituting into equation 2.21 gives us,

ln(L) = −n
2

[
ln(

2π

n
) + 1 + ln(xTCT−1x) +

ln(det(CT))

n

]
(2.22)
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From equation 2.22 there are only two components that depend on the eigen-
modes: xTCT−1x and det(CT). Now we will examine two cases for the effect
that the number of non-zero eigenmodes has on the difference in likelihood values.

Case 1:
Let CT only have only one eigenmode ⇒ Λij = λ1, i = j = 1 and Λij = 0
everywhere else. Essentially what we are doing is ignoring the zero eigenmodes
for this matrix, as such that they do not appear in the determinate and for
inversion the 0 eigenmodes are set to ∞. This is in pixel space and not what we
do in reality as we project onto a set of basis eigenvectors thus reducing the rank
of the matrix which is explained in more detail in section 3.3.

xTCT−1x = a2ΨT
1 ΨΛ−1ΨTΨ1

ΨT
1 Ψ =

[
1 0 · · · 0

]

xCT−1xT = a2
[
1 0 · · · 0

]


1
λ1

0 · · · 0

0 0 · · · 0
...

...
. . .

...
0 0 · · · 0




1
0
...
0


xTCT−1x =

a2

λ1

(2.23)

ln(det(CT)) =
n+1∑
i=1

ln(λi) = ln(λ1) (2.24)

Substituting in 2.23 and 2.24 into equation 2.22 we obtain.

ln(L) = −n
2

[
ln(

2π

n
) + 1 + (

1

n
− 1) ln(λ1)

]
(2.25)

Case 2:
Let CT have two non-zero eigenmodes.

⇒ Λ =


1
λ1

0 · · · 0

0 1
λ2
· · · 0

0 0 · · · 0
...

...
. . .

...
0 0 · · · 0


Just as we did for Case 1 we we obtain:

xTCT−1x =
a2

λ1

(2.26)

ln(det(CT)) = ln(λ1) + ln(λ2) (2.27)
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Therefore the only difference from Case 1 is equation 2.27.

ln(L) = −n
2

[
ln(

2π

n
) + 1 + (

1

n
− 1) ln(λ1) +

1

n
ln(λ2)

]
(2.28)

The difference between these two cases is ∆ ln(L) = ln(Lcase1) − ln(Lcase2) =
−1

2
ln(λ2). Therefore as we decrease the number of non-zero modes the value

of ln(L) increases and becomes more favorable when compared to a model with
more eigenmodes, this is assuming that λ2 is greater than 1. In reality λ2 is very
small as we are manipulating the conditionality of the matrix and dropping these
small modes, therefore it will dominate ln(L) thus the difference will be quite
significant between the two models. As such one must make a consistent choice
when comparing different models to eliminate any increases to the likelihood value
due to one model having extra eigenmodes, and is why we use the procedure in
section 3.3.
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Chapter 3

The Code

The computation of the likelihood is accomplished by a program called Topmarg,
originally created by Dr. C. Contaldi then developed into its current state, as
of the date of this thesis, by Dr. Pogosyan and Mr. Knutson. Topmarg is
a likelihood code that computes the maximum log-likelihood value for a given
CT. We provide the likelihood code with four pieces of crucial information, the
pixelated to Nside = 16 data map, the Nside = 16 theoretical correlation matrix
for our model, the inverse noise map that is obtained from the data, and the
analysis mask that has been chosen.

First the map is smoothed with a Gaussian beam, then it is masked by our
analysis mask. The noise and theoretical correlation matrices are also smoothed
with a Gaussian beam and CT is additionally smoothed with the pixel window
to simulate effect of pixelization. It is also possible to introduce an experimental
beam for the apparatus to be used when smoothing, but a beam file must be
provided. The correlation matrices are then masked by the same analysis mask
as the data.

Next, the data vector x and the correlation matrices CT and CN are decomposed
into the chosen set of basis eigenvectors, and then reduced to only contain the
decided number of modes. All is then passed to the core of the program, which
calculates the maximum likelihood value. There are two sets of parameters that
can be varied for the theory in the determination of the maximum likelihood
value. These are the amplitude and orientation of our anisotropic space relative
to the data map. We do know what the expected amplitude is to be from the data,
but there may be differences in the best amplitude between models. The use of
a numerical multidimensional minimization routine is used for the determination
of the best orientation and for each orientation tested the best amplitude must
also be found, this accomplished by the use of another numerical minimization
routine.

When the largest log-likelihood value is found, this the maximum log-likelihood
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value for this model at the best orientation and with the best amplitude.

3.1 Smoothing and Masking Of CTpp′ and x

The patterns that are of interest to us are those at large scales, therefore we
smooth out the higher frequency modes of the map, and correlation matrices.
Smoothing reduces the features in the map to those of around the same size as
seen by the COBE satellite (figure 1.5).

The Data map used is a reduced resolution map with Nside = 16 of ∆T values
from the much higher highest resolution map of ∆T with an Nside = 512 like that
in figure 1.61, this is accomplished by re-binning the Nside = 512 subpixles into
the larger Nside = 16 pixels. Before the re-binning of the map we mask the point
sources and the galactic plane by setting their temperatures to 0. The mask used
is the WMAP mask wmap temperature kq75 analysis mask r9 9yr v5.fits
(figure 3.1) from the 9-yr WMAP data release2. Since the map is re-binned, there
will be some pixels that will only have a handful of sub-pixels that contribute
to the temperature value of the pixel. The re-binned point source mask is that
in figure 3.2, where the value in each pixel represents the fraction of unmasked
sub-pixels. We have chosen that for a pixel to have a valid temperature value
it must have no more than 50% of its sub-pixels masked. This is essentially like
masking the re-binned data map with the mask in figure 3.3. It is this final data
map in figure 3.4, which is then smoothed.

The reason why we do not smooth a full sky map is due to the hot sources that
exist in the galactic plane. These hot sources contaminate the whole map when
smoothed, this effect is far more detrimental than if these hot spots are masked
to ∆T = 0 and then these 0 temperature values spread out by the smoothing.

All smoothing is done in lm space as to reduce any artificial effects due to the
pixelated nature of the map. To smooth the maps we first collect the beams. The
full width half max value for the Gaussian beam that we use in our investigation is
FWHM= 492.0 arcmin, which is very close to the COBE satellite’s experimental
beam. The HEALPix routine, generate beam [Górski et al. 2005] generates the
l weights that are the Gaussian beam (Gl). Now that we have the Gaussian
beam weights, we can smooth the data map. First the data is decomposed into
spherical harmonics to obtain its alm values. Once this is completed, the map
is now in a form such that it can be smoothed using another HEALPix routine
alter alm [Górski et al. 2005], with the generated Gl. The Gl weights that are
generated for FWHM=492.0 arcmin are in figure 3.6. Figure 3.5 is our re-binned
CMB data map after smoothing.

1Number of pixels in a HEALPix map is npix = 12×N2
side

2Data release for 9-yr WMAP is obtained from the LAMBDA web site http://lambda.

gsfc.nasa.gov/
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Figure 3.1: The Nside = 512 point source mask used when re-binning from Nside =
512 to a lower resolution data map.

Figure 3.2: The point source mask re-binned to the Nside = 16 point source mask,
the scale from 0-1 represents the fraction of sub-pixels that remain per pixel, after
being masked by the Nside = 512 point source mask.
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Figure 3.3: The Nside = 16 effective mask for the Nside = 16 pixels that are fully
masked by the 50% masked sub-pixel criteria. pi ≤ 0.5 ⇒ pi = 0, pi > 0.5 ⇒
pi = 1

Figure 3.4: The re-binned to Nside = 16 data map that is provided to the Likeli-
hood Code.
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Figure 3.5: The Nside = 16 map after it is smoothed by the Gaussian beam with
a FWHM= 492.0 arcmin

Now that we have the smoothed data map we need to smooth the correlation
matrix. We may add an experimental beam B exp if necessary, this is given in
pixel space and is derived from the specifications of the experimental appara-
tus. The experimental beam is necessary as the theoretical correlation matrix
must be coherent with the data map, which due to its origin will contain this
experimental beam effect. We do not use a WMAP experimental beam since
it is insignificant when compared to the large Gaussian beam. Again using the
same HEALPix routine generate beam another set of l weights are generated but
for the experimental beam Exl. Only one last component to the beam must be
generated before we can smooth the theoretical correlation matrix and that is the
pixel window effect. Due to the manner that the theoretical correlation matrix is
computed each pixel is simply the value as if it only contained the central point
of that pixel. The data pixels are an average of the temperature values contained
within that pixel. As such we need to smooth out this singular point such that
the correlation matrix ends up with the same effect as the data. Its beam weights
are calculated using the HEALPix routine pixel window [Górski et al. 2005], which
provides another set of l weights, pixwl. Figure 3.7 is the pixwl weights that are
generated. To combine these beams we multiply the three weights.

Wl = (Gl)(Exl)(pixwl) (3.1)

Now that we have our combined beam weights Wl, the correlation matrix is then
smoothed. Again the smoothing is done in lm space, so CT is converted from
pixel space to lm space and then smoothed, in the following manner.

CT smoothedlml′m′ = CTlml′m′WlWl′ (3.2)
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Figure 3.6: The l weights for the Gaussian beam as generated by generate beam
with a FWHM= 492.0 arcmin.

Figure 3.7: The l weights for the pixel window beam as generated by
pixel window.
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Note that the weights are m independent, therefore all m for a specific l or l′

are weighted equally when smoothed. Figure 3.8 and figure 3.9 is the correlation
matrix for Ωk = −1.26× 10−2 before and after smoothing respectively.

Figure 3.8: Visualization about the 500th pixel for the correlation matrix of
space-I with an Ωk = −1.26× 10−2 before smoothing

Figure 3.9: Visualization about the 500th pixel for the correlation matrix of
space-I with an Ωk = −1.26× 10−2 after smoothing
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Now we must mask using our chosen analysis mask, because there are sections
that after smoothing have been contaminated and must be removed for accuracy.
The final map which is in figure 3.10, only has 1838 out of total 3072 pixels are
unmasked. We smooth and then use an additional mask as regions near masked
pixels will be corrupted after smoothing, this is because during the smoothing
process these zeros will be spread out to the neighboring pixels.

Figure 3.10: The Nside = 16 data map after it has been smoothed by the Gaussian
beam with a FWHM= 492.0 arcmin, and masked by the chosen analysis mask.

3.2 Noise

The level of noise in the observed temperature at a particular pixel is determined
by the noise of the instrument and the number of times the pixel has been ob-
served. We calculate the noise variance per pixel ni from the number of hits on
each pixel hi and the variance in the WMAP time stream data, σ.

ni =
σ2

hi
(3.3)

Both σ and hi are quantities provided by the WMAP data release for pixels at
the highest WMAP resolution which corresponds to Nside = 512. This formula
assumes that the noise during each observation of the pixel is independent, which
is appropriate since subsequent observations are significantly separated in time.
As part of our analysis we re-bin the WMAP maps to lower, Nside = 16 resolution
and recompute the noise accordingly, taking into account that the pre-masking
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can mask out some high resolution pixels from the low resolution ones. Therefore
the noise ni for pixel i at Nside = 16 is reduced to,

ni =
σ2∑
j hj

, where, j is the index of the subpixels contained in pixel i

Figure 3.11 shows the Nside = 16 noise map, with the typical noise level being
around 1µK, given that our ∆T from the data are around 100µK, we have that
the noise is about 1% of the signal.

The noise per pixels, observed multiple times is practically uncorrelated between
the pixels. Therefore the noise correlation matrix is a diagonal matrix where the
diagonal is simply, σ2

hi
. The noise has to be smoothed and masked for consistency,

which uses the same beam as the data smoothing. This is done using the same
method as on the correlation matrix. Smoothing induces some cross correlation
as can be seen in figure 3.12 which is the visualization of the correlation of the
500th pixel for the smoothed noise correlation matrix.

Figure 3.11: This is a visualization of the noise variance for each pixel, which are
weighted by the number of observations in that pixel.
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Figure 3.12: This is the visualization of the noise correlation matrix for pixel 500
after the smoothing. The correlation to other pixels is now noticeable.

3.3 The Basis Modes

Do to the nature of the likelihood function and its relation to the number of
eigenmodes in the model, as seen in section 2.2.2, it can be difficult to compare
models as their set of eigenvectors for CT can be different. To standardize all
models with each other we use a set of basis eigenvectors such that we project
all maps and matrices onto this basis and conduct the likelihood run in this
projected mode space. This basis set of eigenvectors is from the fiducial model
which corresponds to a flat isotropic Universe. A flat isotropic model was chosen
as the fiducial model because all models can be extrapolated to this limit. When
Ωk approaches 0, this corresponds to the fundamental domain size approaching
infinity, which increases isotropy of the observed Universe.

The correlation matrix of the fiducial map is constructed from the Cl values, which
are obtained from the CAMB program using the LAMBDA website interface3.
The cosmological parameters used are those from the 9-year WMAP data release
when Ωk is set to zero, this is Table 4 from the paper [Hinshaw et al. 2012]. The
maximum log-likelihood value for this model was calculated and was determined
to be ln(L) = 3049.30. This is indeed an isotropic space as can be seen from
figure 3.13 which is the correlation for the 500th pixel of the fiducial model. Now
that we have the set of basis eigenvectors we project the map and correlation

3Thanks to the lambda website for providing the online interface for the CAMB developed
by Antony Lewis and Anthony Challinor, http://lambda.gsfc.nasa.gov/toolbox/tb_camb_
form.cfm

50



Figure 3.13: Visualization of the correlation for the 500th pixel for the fiducial
model after smoothing.

matrices onto them. The number of modes used in the projection has to be
chosen and the rest of the modes are simply projected out. For the correlation
matrices,

C̃ = ΨCΨT (3.4)

Ψ is a nmodes by npix matrix where each column of this matrix is a chosen
eigenvector of the fiducial theoretical correlation matrix and C is our npix by
npix correlation matrix, therefore we are left with C̃ which is a nmodes by
nmodes matrix. For the map we have,

x̃ = Ψx (3.5)

Therefore the likelihood equation that we use for the computation of the likeli-
hood value is then,

ln(L) = −1

2

[
np ln(2π) + ln(det(C̃T + C̃N)) + x̃T(C̃T + C̃N)−1x̃

]
(3.6)

The number of modes that was chosen to be used in the computation of our like-
lihood is 837, the value of nmodes can be increased to 1200 before the degeneracy
of the matrix makes it not behave properly.

3.4 Convergence

During the creation of the theoretical correlation matrix, we do not have any
statistical knowledge for the orientation of our model to the data map. (α, β, γ)
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represent the Euler angles for the orientation of the model to the sky, this provides
three degrees of freedom when determining our maximum likelihood value. The
amplitude for our theory A from model to model may vary slightly, therefore we
must determine the best amplitude as well.

ln(L) = −1

2
ln(det(AC̃T(α, β, γ)+C̃N))+− x̃T (AC̃T(α, β, γ) + C̃N)−1x̃

2
(3.7)

To find the maximum likelihood value we must find the best amplitude at the best
orientation for the model. For simplicity this is actually computed by minimizing
the − ln(L) function4. Finding the best amplitude is simple, as the log-likelihood
curve as a function of amplitude only has one peak, figure 3.14. We use the
numerical recipes routine brent [Press et al. 2001] for the determination of the
best amplitude. Brent is a useful routine for a one dimensional minimization,
because there is no need to calculate any derivatives, also we can be sure of
convergence from the start. Another useful option that brent offers is the tol
option, which allows the user to set the precision for the minimization condition,
where usually this is set to the machine’s floating point precision. When we create
the theoretical correlation matrix we know what the amplitude should roughly
be, but since we are dealing with ln we do not want our best amplitude to be 1,
as this would make ln(A) = 0. As such we normalize our theory so that the best
amplitude will be around 0.1.

Figure 3.14: Log-likelihood value as a function of the amplitude for the spherical
space I with Ωk = −9.2× 10−3.

4This is because computationally it is easier since we using Numerical Recipes minimizing
routines [Press et al. 2001]
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The best orientation is significantly more troublesome to determine. There are
three degrees of freedom, for the relative orientation of the model, as such we can
not simply bracket the minimum and solve as with brent. For this, the numerical
recipes routine amoeba is used [Press et al. 2001]. Amoeba is a down hill simplex
method and in our case the simplex is a tetrahedron. This routine has a good
convergence, and has the benefit of not requiring the calculation of derivatives
in the rotation space, which in our case is not possible. The orientation of the
model is described in Euler angles, because they describe the rotation of any three
dimensional object. Euler angles unfortunately come with degeneracy, as such we
actually minimize in a projected non-degenerate rotation space, to be sure that
we will not have the case where two vertices of the simplex have different Euler
angles that are in fact degenerate. To convert the Euler angles to the projected
non-degenerate rotation space they are first converted into a unit quaternion q.

q0 = cos(
β

2
) cos(

α + γ

2
)

q1 = sin(
β

2
) sin(

γ − α
2

)

q2 = sin(
β

2
) cos(

γ − α
2

)

q0 = cos(
β

2
) sin(

α + γ

2
)

The unit quaternion lies on a 3-sphere of unit radius, which has a two to one
correspondence of all possible rotations of the fundamental domain, therefore
only half of the sphere is needed to describe all possible rotations. Unfortunately
this rotation space is not very useful, so we project the hemisphere into R3, by
stereographic projection from the south pole of the northern hemisphere5. The
formula is exactly that for a 2-sphere case projected onto R2.

ui =
qi

2/(1 + q0)
, for i = 1, 2, 3 (3.8)

This is the projected non-degenerate rotation space where the amoeba simplex
walks. For each orientation we have to run the brent routine and determine
its best amplitude, thus determining the maximum log-likelihood value for that
specific orientation. The likelihood space of angles is not a nice smooth domain,
but is riddled with many local minima and maxima. This poses a problem as
amoeba tends to get stuck in these local minima. Figure 3.15 shows a slice of the
R3 non-degenerate rotation space.

The obvious choice to correct this would be with the use of an annealing pa-
rameter, but this parameter would not solve this problem as the minima are

5From the south pole we draw a line to the rotation point on the northern hemisphere, where
the line intersects with R3 is the value for our rotation u.
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Figure 3.15: The maximum log-likelihood value as a function of two projected
non-degenerate rotation space coordinates u(1) and u(2) for the spherical space
I with Ωk = 9.2× 10−3. Note: the slice is of the plane where u(3) = 0.0 and has
a resolution of ∆u = 0.0014.
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quite localized and not board enough to make this method effective. The initial
starting position and size of the simplex, has an effect on the convergence to a
specific minima. Therefore to solve this problem we have chosen to run a set of
likelihood runs, given different and randomly chosen initial simplexes, where the
largest likelihood value out of these runs is then chosen as our final maximum
log-likelihood for the model. In our investigation we started with 20 randomly
chosen simplexes. During the investigation a few runs were done to a higher
iteration count but with little effect, as such 20 iterations will most likely contain
the maximum log-likelihood value for the model.

3.5 Map Making

It is useful to be able to randomly realize a map based on a theoretical correlation
matrix, as you can then use the generated map as a test for a positive case
result [Planck Collaboration et al. 2013b]. To realize a map from a correlation
matrix C, a set of random values y which follow a univariant and uncorrelated
Gaussian distribution with zero mean, 〈yyT 〉 = I, is used. Let x = C

1
2 y, where

C = C
1
2 C

1
2 . C is positive semidefinite and symmetric, therefore C

1
2 will also

be positive semidefinite and symmetric. We compute the following to see if the
relation

〈
xxT

〉
= C still holds.〈

xxT
〉

=
〈

[C
1
2 y][C

1
2 y]T

〉
=
〈
C

1
2 yyTC

1
2
T
〉

= C
1
2

〈
yTy

〉
C

1
2
T = C

Therefore we can realize a map based on the correlation matrix CT by,

x = CT
1
2 y (3.9)

Taking a square root of the covariance matrix is easily achieved in eigenmode
decomposition CT = ΨΛΨT . Ψ is a np × np matrix and the columns of this
matrix are the CT’s eigenvectors. Λ is a np × np diagonal matrix consisting of
the eigenmodes.

CT = ΨΛΨT = CT
1
2 CT

1
2 (3.10)

∴ CT
1
2 = ΨΛ

1
2 (3.11)

Λ is a diagonal matrix therefore,

Λ
1
2 =


λ

1
2
12 0 · · · 0

0 λ
1
2
22 · · · 0

...
...

. . .
...

0 0 · · · λ
1
2
np np

 (3.12)
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The noise component of the matrix can also be realized, in exactly the same
manner by using another set of random univariate Gaussian numbers y′. The
noise is not correlated with the signal, therefore our final map realization is:

map = CT
1
2 y + CN

1
2 y′ (3.13)

Figures 3.16, 3.17, 3.18 and 3.19 are some realized maps for different y and CT.

Figure 3.16: Four randomly generated maps for the space-I with Ωk = −5.4 ×
10−3.
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Figure 3.17: Four randomly generated maps for the space-I with Ωk = −9.0 ×
10−3.

Figure 3.18: Four randomly generated maps for the space-I with Ωk = −1.28 ×
10−2.
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Figure 3.19: Four randomly generated maps for the isotropic fiducial map.
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Chapter 4

Investigation

The region of parameter space where the curvature of the Universe is such that the
horizon of last scattering approaches the boundary of the domain is of particular
interest. It is in this region where the size of domain decreases below the last
scattering radius, that the visible Universe looses its isotropy and the correlations
between sections of the sky, become more prominent.

There is a reference point at which the boundary of the domain and the horizon
intersect. This occurs at a specific Ωk value for the specific multiconnected space.
This point is where Ωk is such that the horizon of last scattering first touches
the boundary of the fundamental domain, i.e is equal to the radius of the sphere
inscribed into domain, χinsc.

To construct the CT matrix we have the set of isometries that describe the tiling
of the universal cover by the fundamental domain. This information provides
the distance between the two nearest image domains, which is directly related to
χinsc. With the value of χinsc for the given multiconnected space, we can then
compare to the distance of the last scattering horizon, and determine at which
respective Ωk value is where the last scattering surface has a radius corresponding
to the inscribed sphere of the fundamental domain.

The likelihood code was then run for a sampling of discrete Ωk values near the
inscribed region and beyond to where boundary and horizon intersect. The main
results were obtained with the parameters values that are on what is called the
degeneracy line, shown in figure 4.1. Along the degeneracy line the parameters
change in such way as to keep the position of power spectrum peaks and therefore
most of high l modes fixed as Ωk varies. This is important, as previously stated
we do not use higher frequency l in our investigation. These higher frequencies
are well known and contain much of the information about the cosmological
parameters of the Universe, as such we want these high l to remain constant as
we vary Ωk. Along this degeneracy line ΩΛ is calculated using equation 4.1. The
value of the Hubble constant also changes with Ωk along this degeneracy line,
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following equation 4.2.

ΩΛ(Ωk) = ΩΛ(0) + 2.7049 Ωk (4.1)

H0(Ωk) = H0(0) + Ωk (388.0 + 1200.0Ωk) (4.2)

Ωm is calculated from Ωk and ΩΛ using the equation, Ωm = 1.0 − Ωk − ΩΛ. We
also obtained runs for when ΩΛ and the Hubble constant are held constant as Ωk

varies. Both parameter lines used are shown in figure 4.1. The fiducial model lies
at their intersection with the flat space line.

Figure 4.1: Plot of the parameter degeneracy line for Ωk ∈ [−0.079, 0], this is
inside the acceptable range for Ωk as measured by WMAP (table 1.1). Above
the diagonal line Ωm + ΩΛ = 1.0 is the closed space, and below is the open space.
Along the line is the flat space. The horizontal line at ΩΛ = 0.721 corresponds
to the parameters of the models when ΩΛ is held constant.

4.1 Results for the Three Multiconnected Spaces

Three multiconnected spaces for the spherical universal cover are investigated.
These three were chosen and out of the five for the spherical universal cover, as
these three are more restrictive than the lens and polyhedral domains, that have
infinitely many possibilities both in size and in shape. The results for likelihood
analysis presented in this section are the main results of this thesis. They are
discussed and tested in the following sections.
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4.1.1 Space-I

This is a popular multiconnected space used when investigating the shape of our
Universe, as it fits reasonably well to the quadrapole and octupole suppression
as observed in the COBE and WMAP data [Luminet et al. 2003]. This is a
multiconnected space with a fundamental domain shape that consists of a regular
dodecahedron. Using our knowledge of the distribution of domains, we have that

Figure 4.2: Shape of a regular dodecahedron as seen in flat space. Im-
age taken from http://upload.wikimedia.org/wikipedia/commons/6/66/

POV-Ray-Dodecahedron.svg, used under the terms of the GNU Free Documen-
tation License.

the distance between the two closest domains is 0.2R0, R0 being the curvature
radius. Since the inscribed sphere touches the center of each face we therefore
determine that χinsc = 0.1R0. By calculating when χinsc and the distance to the
surface of last scattering are equal we can determine the respective Ωk value when
this happens. We calculated that for this multiconnected space, Ωk ≈ −9.9×10−3

when the horizon has a radius that corresponds to χinsc. Figure 4.3 shows the
maximum log-likelihood curve for the varying Ωk along the parameter degeneracy
line, the lower panel is for a wider range of Ωk, and upper panel zoomed in
near the transition region. There are three features to this curve worth taking
note of, the smooth region up to the vertical line, the bump at the vertical
line and the disjointed decreasing region after the vertical line. The table 4.1
contains a portion of the Ωk sampling values with corresponding relevant distances
and cosmological parameters, as such we can see how varying Ωk affects the
parameters of the Universe.
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Figure 4.3: Maximum log-likelihood for the spherical multiconnected space-I as
the function of Ωk varying along the degeneracy line. The vertical line is the value
of Ωk when the horizon first touches the boundary of the fundamental domain.
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Table 4.1: Parameters for the Ωk Sampling Along the Degeneracy Line for Space-I

Ωk χLSS χBound
χLSS
χBound

H0 ΩΛ Ωm

( c
H0

) ( c
H0

) (Km/s
Mpc

)

-.0010 3.2888 9.9346 0.3310 69.6132 .7253 .2756
-.0054 3.2176 4.2752 0.7526 67.9398 .7134 .2919
-.0056 3.2145 4.1981 0.7657 67.8648 .7129 .2927
-.0058 3.2114 4.1251 0.7785 67.7900 .7123 .2934
-.0060 3.2083 4.0558 0.7910 67.7152 .7118 .2941
-.0070 3.1930 3.7549 0.8503 67.3428 .7091 .2978
-.0076 3.1839 3.6037 0.8835 67.1205 .7074 .3001
-.0082 3.1749 3.4693 0.9151 66.8991 .7058 .3023
-.0084 3.1720 3.4278 0.9254 66.8255 .7053 .3030
-.0086 3.1690 3.3877 0.9354 66.7520 .7047 .3038
-.0088 3.1660 3.3489 0.9454 66.6785 .7042 .3045
-.0090 3.1631 3.3115 0.9552 66.6052 .7037 .3052
-.0092 3.1602 3.2753 0.9648 66.5320 .7031 .3060
-.0094 3.1572 3.2403 0.9744 66.4588 .7026 .3067
-.0096 3.1543 3.2064 0.9838 66.3858 .7020 .3075
-.0098 3.1514 3.1735 0.9930 66.3128 .7015 .3082
-.0100 3.1485 3.1416 1.0022 66.2400 .7010 .3090
-.0102 3.1456 3.1106 1.0112 66.1672 .7004 .3097
-.0104 3.1427 3.0806 1.0202 66.0946 .6999 .3104
-.0106 3.1398 3.0514 1.0290 66.0220 .6993 .3112
-.0108 3.1370 3.0230 1.0377 65.9496 .6988 .3119
-.0122 3.1172 2.8443 1.0960 65.4450 .6950 .3171
-.0124 3.1144 2.8212 1.1039 65.3733 .6945 .3178
-.0126 3.1116 2.7988 1.1118 65.3017 .6939 .3186
-.0128 3.1088 2.7768 1.1196 65.2302 .6934 .3193
-.0200 3.0141 2.2214 1.3568 62.7200 .6739 .3460
-.0250 2.9537 1.9869 1.4866 61.0500 .6604 .3645
-.0350 2.8442 1.6793 1.6937 57.8900 .6333 .4015
-.0400 2.7944 1.5708 1.7789 56.4000 .6198 .4201
-.0500 2.7028 1.4050 1.9237 53.6000 .5928 .4571
-.0600 2.6205 1.2825 2.0432 51.0400 .5657 .4941
-.0700 2.5461 1.1874 2.1442 48.7200 .5387 .5312
-.0800 2.4782 1.1107 2.2312 46.6400 .5116 .5682
-.0900 2.4161 1.0472 2.3072 44.8000 .4846 .6052
-.1000 2.3588 0.9935 2.3744 43.2000 .4575 .6423

χBound is the distance to the boundary.
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4.1.2 Space-T

Space-T is a multiconnected space where the fundamental domain shape is that
of a regular octahedron. It is shown in Figure 4.4. From the tiling of the 3-sphere

Figure 4.4: Shape of a regular octahedron as seen in flat space. Image taken
from http://upload.wikimedia.org/wikipedia/commons/0/07/Octahedron.

svg, used under the terms of the GNU Free Documentation License.

by these domains we have that the distance between the two closest domains is
0.3̄R0. Therefore the inscribed radius is χinsc = 0.16̄R0. Just as for Space-I,
we calculated that when the horizon first touches the boundary occurs when
Ωk ≈ −3.30× 10−2. Figure 4.5 shows the maximum log-likelihood curve for the
chosen Ωk sampling, for space-T, along the parameter degeneracy line. There are
three features to this curve that are the same as for space-I. The table 4.2 contains
a portion of the Ωk sampling values with corresponding relevant distances and
cosmological parameters.
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Figure 4.5: Maximum log-likelihood for the spherical multiconnected space-T as
the function of Ωk varying along the parameter degeneracy line. The vertical line
is the value of Ωk when the horizon first touches the boundary of the fundamental
domain.
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Table 4.2: Parameters for the Ωk Sampling Along the Degeneracy Line of Space-T

Ωk χLSS χBound
χLSS
χBound

H0 ΩΛ Ωm

( c
H0

) ( c
H0

) (Km/s
Mpc

)

-.0020 3.2721 11.7080 0.2795 69.2288 .7226 .2793
-.0040 3.2397 8.2788 0.3913 68.4672 .7172 .2867
-.0060 3.2083 6.7596 0.4746 67.7152 .7118 .2941
-.0100 3.1485 5.2360 0.6013 66.2400 .7010 .3090
-.0120 3.1200 4.7798 0.6527 65.5168 .6955 .3164
-.0140 3.0923 4.4252 0.6988 64.8032 .6901 .3238
-.0160 3.0655 4.1394 0.7406 64.0992 .6847 .3312
-.0200 3.0141 3.7024 0.8141 62.7200 .6739 .3460
-.0220 2.9894 3.5301 0.8468 62.0448 .6685 .3534
-.0240 2.9654 3.3798 0.8774 61.3792 .6631 .3608
-.0260 2.9421 3.2472 0.9060 60.7232 .6577 .3682
-.0300 2.8972 3.0230 0.9584 59.4400 .6469 .3830
-.0320 2.8756 2.9270 0.9824 58.8128 .6414 .3904
-.0340 2.8546 2.8396 1.0053 58.1952 .6360 .3978
-.0360 2.8340 2.7596 1.0270 57.5872 .6306 .4053
-.0400 2.7944 2.6180 1.0674 56.4000 .6198 .4201
-.0420 2.7752 2.5549 1.0862 55.8208 .6144 .4275
-.0440 2.7565 2.4962 1.1043 55.2512 .6090 .4349
-.0460 2.7382 2.4413 1.1216 54.6912 .6036 .4423
-.0500 2.7028 2.3416 1.1542 53.6000 .5928 .4571
-.0520 2.6856 2.2961 1.1696 53.0688 .5873 .4645
-.0540 2.6688 2.2532 1.1845 52.5472 .5819 .4719
-.0560 2.6524 2.2126 1.1988 52.0352 .5765 .4793
-.0600 2.6205 2.1376 1.2259 51.0400 .5657 .4941
-.0620 2.6050 2.1028 1.2388 50.5568 .5603 .5015
-.0640 2.5899 2.0697 1.2513 50.0832 .5549 .5089
-.0660 2.5750 2.0381 1.2634 49.6192 .5495 .5164
-.0700 2.5461 1.9790 1.2865 48.7200 .5387 .5312
-.0720 2.5320 1.9513 1.2976 48.2848 .5332 .5386
-.0740 2.5182 1.9248 1.3083 47.8592 .5278 .5460
-.0760 2.5046 1.8993 1.3187 47.4432 .5224 .5534
-.0800 2.4782 1.8512 1.3387 46.6400 .5116 .5682
-.0820 2.4654 1.8285 1.3483 46.2528 .5062 .5756
-.0840 2.4527 1.8066 1.3577 45.8752 .5008 .5830
-.0860 2.4403 1.7855 1.3668 45.5072 .4954 .5904
-.0900 2.4161 1.7453 1.3843 44.8000 .4846 .6052

χBound is the distance to the boundary.
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4.1.3 Space-O

Space-O is a multiconnected space where the fundamental domain shape consists
of a regular truncated cube, as shown in Figure 4.6. Using the distribution of

Figure 4.6: Shape of a regular truncated cube as seen in flat space.
Image taken from http://upload.wikimedia.org/wikipedia/commons/c/c0/

Truncatedhexahedron.jpg, used under the terms of the GNU Free Documenta-
tion License.

domains we have that the distance between the two closest domains is 0.25R0 and
that the radius of the inscribed sphere is χinsc = 0.125R0. Just as for space-I and
space-T we are able to calculate that Ωk ≈ −1.65 × 10−2 for when the horizon
of last scattering first touches the boundary of the multiconnected space. Figure
4.7, is the maximum log-likelihood curve for the chosen Ωk sampling in space-
O, along the parameter degeneracy line. There are three features to this curve
that are the same as the previous 2 multiconnected spaces. Table 4.3 contains
a portion of the Ωk sampling values with corresponding relevant distances and
cosmological parameters.
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Figure 4.7: Maximum log-likelihood for the spherical multiconnected space-O as
a function of Ωk varying along the parameter degeneracy line. The vertical line
is the value of Ωk when the horizon first touches the boundary of the space.
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Table 4.3: Parameters for the Ωk Sampling Along the Degeneracy Line for Space-
O

Ωk χLSS χBound
χLSS
χBound

H0 ΩΛ Ωm

( c
H0

) ( c
H0

) (Km/s
Mpc

)

-.0010 3.2888 12.4182 0.2648 69.6132 .7253 .2756
-.0020 3.2721 8.7810 0.3726 69.2288 .7226 .2793
-.0030 3.2558 7.1697 0.4541 68.8468 .7199 .2830
-.0040 3.2397 6.2091 0.5218 68.4672 .7172 .2867
-.0050 3.2239 5.5536 0.5805 68.0900 .7145 .2904
-.0060 3.2083 5.0697 0.6328 67.7152 .7118 .2941
-.0070 3.1930 4.6937 0.6803 67.3428 .7091 .2978
-.0080 3.1779 4.3905 0.7238 66.9728 .7064 .3015
-.0090 3.1631 4.1394 0.7641 66.6052 .7037 .3052
-.0100 3.1485 3.9270 0.8018 66.2400 .7010 .3090
-.0110 3.1341 3.7442 0.8371 65.8772 .6982 .3127
-.0120 3.1200 3.5848 0.8703 65.5168 .6955 .3164
-.0130 3.1060 3.4442 0.9018 65.1588 .6928 .3201
-.0140 3.0923 3.3189 0.9317 64.8032 .6901 .3238
-.0150 3.0788 3.2064 0.9602 64.4500 .6874 .3275
-.0160 3.0655 3.1046 0.9874 64.0992 .6847 .3312
-.0170 3.0523 3.0119 1.0134 63.7508 .6820 .3349
-.0180 3.0394 2.9270 1.0384 63.4048 .6793 .3386
-.0190 3.0266 2.8489 1.0624 63.0612 .6766 .3423
-.0200 3.0141 2.7768 1.0854 62.7200 .6739 .3460
-.0210 3.0017 2.7099 1.1077 62.3812 .6712 .3497
-.0220 2.9894 2.6476 1.1291 62.0448 .6685 .3534
-.0230 2.9774 2.5894 1.1498 61.7108 .6658 .3571
-.0240 2.9654 2.5349 1.1699 61.3792 .6631 .3608
-.0250 2.9537 2.4836 1.1893 61.0500 .6604 .3645
-.0260 2.9421 2.4354 1.2081 60.7232 .6577 .3682
-.0270 2.9307 2.3899 1.2263 60.3988 .6550 .3719
-.0280 2.9194 2.3468 1.2440 60.0768 .6523 .3756
-.0290 2.9082 2.3060 1.2612 59.7572 .6496 .3793
-.0300 2.8972 2.2672 1.2779 59.4400 .6469 .3830
-.0310 2.8864 2.2304 1.2941 59.1252 .6441 .3867
-.0320 2.8756 2.1953 1.3099 58.8128 .6414 .3904
-.0330 2.8650 2.1617 1.3253 58.5028 .6387 .3941
-.0340 2.8546 2.1297 1.3404 58.1952 .6360 .3978
-.0350 2.8442 2.0991 1.3550 57.8900 .6333 .4015
-.0360 2.8340 2.0697 1.3693 57.5872 .6306 .4053
-.0370 2.8239 2.0415 1.3832 57.2868 .6279 .4090
-.0380 2.8139 2.0145 1.3968 56.9888 .6252 .4127
-.0390 2.8041 1.9885 1.4101 56.6932 .6225 .4164

χBound is the distance to the boundary.
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4.1.4 Summary of the Three Spaces Results

All three spaces show the same three distinct features in their log-likelihood
curves. There are two distinct regions to the curve, a smooth region when Ωk

is close to 0 and a disjointed non-monotonically decreasing tail region when Ωk

is such that the distance to the horizon of last scattering is larger than the size
of the compact space. All three curves have a bump of ∆ lnL = 6.0 for space-I,
∆ lnL = 2.6 for space-T, and ∆ lnL = 4.5 for space-O. This bump occurs at
the region where the horizon first intersects with the boundary. The fact that
all three show this bump is interesting and is an indication that this is not a
detection for a specific topology but rather the possibility of some alignment of
features of our single realization of the CMB sky that we observe.

4.2 Discussion

One of the most intriguing features that all obtained likelihood curves exhibit is
some (at the level of ∆ lnL = few) enhancement of the likelihood for models
with the space size just near the diameter of LSS versus the infinite isotropic
models. This enhancement slowly accumulates as Ωk reaches this critical value,
while for smaller spaces the likelihood quickly drops. This enhancement is equally
observed in all topological models studied, and even when the multiconnected
CTpp′ is compared with a random realization from knowingly isotropic model.
Thus it cannot be understood as a detection of a specific topology, but what is
then the origin of the effect?

Each realization of the CMB sky has some distinct features to it, which can
be seen in figure 3.4. Even though the mechanism of CMB generation might be
isotropic statistically, there still exists some non-isotropic features in a single real-
ization. The smooth bump that is observed in the maximum log-likelihood curve
for all three spaces (figures 4.3, 4.5, 4.7) occurs when the diameter of the observ-
able Universe 2χLSS increases to reach the size of the fundamental domain. What
is occurring in this region of the parameters, is an alignment of our anisotropic
model to some non-isotropic features in the single realization of CMB map that
we observe. When a theory has a small |Ωk| the fundamental domain is quite
large compared to the size of the observable Universe, as such the theory predicts
that the observable Universe is mostly isotropic with no correlation features in
the theoretical correlation matrix, like that in igure 2.1. As |Ωk| becomes larger
the distance between the boundary and the horizon narrows, this increases the
correlation pattern between different pixels in our theory. This increase occurs
gradually, starting with very weak and few large scale correlation patterns. It
seems that such weak patterns are always able to adjust to some features in our
CMB map leading to a slight increase in the maximum likelihood value. I.e as the
theory tends to develop some anisotropic correlations, there exists an orientation
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that fits specific features of the CMB map more precisely than a model with no
anisotropic correlation features to it.

There is a limit to this increase in the maximum likelihood value. As the funda-
mental domain becomes smaller, the complexity of the correlations in the theory
increases. This creates the need for too many features to be aligned in the CMB
map. Ultimately this hampers the maximum likelihood value, because one feature
in the map may align well with the theory, where as the rest will not, this causes
an overall decrease in the maximum likelihood value as |Ωk| gets larger. This is
the reason why most of this tail region is below the more smooth region as in the
smooth region the observable Universe is more isotropic and as such there are no
specific correlations to align the features with. The maximum likelihood curve,
in the tail region is quite non-monotonic. This is expected and is attributed to
the alignment of the the features in the CMB and our theory’s correlation pat-
terns. In the more isotropic region there is very little in the theory to restrict the
alignment, leading to a smooth like curve. In the tail region, the change in the
correlation patterns from Ωk to Ωk can be quite severe. Some models may have
a certain set of correlations patterns in them that fits features on the CMB sky
better than their neighbors, as such they will have a larger maximum likelihood
value, and leads to the disjointed nature of the tail region.

The results that we obtained are quite similar to those obtained in the inves-
tigation done by the Planck team [Planck Collaboration et al. 2013b]. From
their data they also observed a small increase in the maximum likelihood at and
around when the horizon is near the boundary of the fundamental domain. In
their investigation they marginalized over all likelihood values and observed that
the bump disappeared [Planck Collaboration et al. 2013b]. They also ran a test
on a randomly generated map from a topological model with a given Ωk to exam-
ine the effect on the likelihood curve. In this case there is a noticeable increase
in the maximum likelihood value at the Ωk of the model. This increase remains
strong even after the marginalisation over the orientation of the model to the
map.

We also obtained a marginalized log-likelihood run for space-I only which can
be seen in figure 4.8. This was done along the parameter degeneracy line and
for the same Ωk sampling as for space-I. The bump is now significantly reduced
to just ∆ lnL = 1.3, well within the range of variance between models which
follows what was observed by the Planck team. The Planck team also examined
the maximum likelihood curve for a randomly generated map based on a purely
isotropic model. They found that even for the isotropic model this bump is still
present [Planck Collaboration et al. 2013b]. This indicates that this bump is not
due to a specific topological model.

As an additional test we also obtained a run for the likelihood values over the
same Ωk samplings, but with ΩΛ held constant. The maximum log-likelihood
curves for the three spaces are, figure 4.9 for space-I, figure 4.11 for space-O,
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Figure 4.8: Marginalized log-likelihood over rotation, for a sampling of Ωk over
the inscribed region of the spherical multiconnected space-I. The vertical line
corresponds to the Ωk value when the horizon corresponds to the inscribed sphere
of the multiconnected domain.
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and figure 4.10 for space-T. They all have the same features as in the previous
cases, the smooth small |Ωk| region, the bump which occurs when the horizon
first touches the boundary of the space and the disjointed, non-monotonically
decreasing tail region. This indicates that the features that we are observing in
the likelihood curve are not model dependant and do not demonstrate a detection
of a particular multiconnected topology.

Figure 4.9: Maximum log-likelihood for the spherical multiconnected space-I as
the function of Ωk, holding ΩΛ constant. The vertical line is the value of Ωk when
the horizon first touches the boundary of the fundamental domain.
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Figure 4.10: Maximum log-likelihood for the spherical multiconnected space-T
as the function of Ωk, holding ΩΛ constant. The vertical line is the value of Ωk

when the horizon first touches the boundary of the fundamental domain.

Figure 4.11: Maximum log-likelihood for the spherical multiconnected space-O
as the function of Ωk, holding ΩΛ constant. The vertical line is the value of Ωk

when the horizon first touches the boundary of the fundamental domain.
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4.3 The effect of the Mask

After the re-binning that is done to obtain the data map at Nside = 16 (section
3.1) some of the pixels that are near the galactic plane can be quite hot. The
pixels in this region have a large variance when compared to the pixels that are
in the rest of the map, due to the point source masking, figure 3.1. As such we
do not trust the temperature values of these pixels in this region, therefore they
are masked out for the analysis.

We use a very conservative mask, that is the mask which is in figure 4.12 called
our analysis mask. This mask consists of two parts. When we re-bin the mask
to Nside = 16 from the point source mask at Nside = 512, we require that for a
pixel to be unmasked no less than 70% of its sub-pixels be unmasked. The final
mask for this condition is shown in figure 4.13. The 70% criteria was chosen
as it provides an even layer of masked pixels around the galactic bulge which
is corrupted after smoothing. The second part of this mask is a band mask of
the galactic plane which is a 20◦ band from the galactic equator. Both these
conditions together provide the mask that we use in our analysis.

Figure 4.12: The 70% criterion mask with the 20◦ band mask. This is the analysis
mask that is used in the determination of the maximum likelihood value in our
main results.

The choice of mask is important. Masking too much or too little can seriously
affect the maximum likelihood curve. A run using the same Ωk sampling was done
for space-I along the parameter degeneracy line, but with a mask without the 20◦

band from the galactic equator, called the 70% criterion mask, the resulting
curve in figure 4.15. The maximum log-likelihood curve figure 4.15 shows a
∆ lnL = 14.6, which is twice more than the value when using the analysis mask.
Care has to be taken because as stated in section 4.2 the model’s correlations do
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Figure 4.13: The 70% criterion mask.

Figure 4.14: The 70% criterion mask with the 45◦ band mask.
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align themselves to features in the CMB map causing an increase in the maximum
likelihood value. The difference between the analysis mask and the 70% criterion
mask is that we unmasked pixels close to the galactic plane. It seams that these
temperature pixels aid in the alignment with the correlation patterns predicted
by the model at the Ωk corresponding to the bump, increasing the maximum
likelihood value. These pixels are close to the galactic plane and as previously
stated retain some corruption from the galactic plane, this is why we use the
analysis mask for our main results. We have a run for space-I using the 70%
criterion mask where ΩΛ is held constant the resulting curve is figure 4.16.

In the tail section of the likelihood curve in figure 4.9, there is a large increase of
the maximum likelihood value around Ωk = −0.0126, this is significantly reduced
when using the 70% criterion mask, indicating that we actually unmasked some
features that make the map more restrictive in the alignment, than when we ran
with the analysis mask.

What if the mask is too large? Another run was done on space-I, but we increased
the band mask from 20◦ to 45◦ seen in figure 4.14. Unfortunately due to the loss
of pixels the number of modes had to be reduced to 437. As can be seen in
figure 4.17 the value of the likelihood changed but not the characteristic features
of the curve that we have seen in the other likelihood runs. Instead of a bump we
have the steady increase to where the bump should be, but instead of decreasing,
the maximum likelihood keeps increasing, though retaining the disjointed nature
that is expected within this tail region. By reducing the sky to such a small section
we have reduced the restrictiveness of the map. When the model’s correlations
become more complex they are able to fit the features that are retained in these
smaller sections of the sky. Therefore when the map is less restrictive the more
complex correlation patterns in the model can then fit the rest of the features in
the data more easily, providing an overall plateaux like nature to the maximum
likelihood curve in the tail region.
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Figure 4.15: Maximum log-likelihood for the spherical multiconnected space-I as
the function of Ωk varying along the degeneracy line. Using the 70% criterion
mask. The vertical line is the value of Ωk when the horizon first touches the
boundary of the space.
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Figure 4.16: Maximum log-likelihood for the spherical multiconnected space-I as
the function of Ωk, holding ΩΛ constant. Using the 70% criterion mask. The
vertical line is the value of Ωk when the horizon first touches the boundary of the
space.

Figure 4.17: Maximum log-likelihood for the spherical multiconnected space-I as
the function of Ωk varying along the degeneracy line. Using the 45◦ band mask.
The vertical line is the value of Ωk when the horizon first touches the boundary
of the space.
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Chapter 5

Conclusion

The shape of the Universe is what has been investigated. Multiconnected spaces
are of particular interest because they provide a compactification of the Universe,
while retaining the constant universal curvature that fits our observations so well.
We investigated three spherical multiconnected spaces called, space-I, space-T
and space-O. The investigation of closed geometry was done because the latest
observations from WMAP determine that the Ωk value is more closed than open.
The measured value from WMAP is Ωk = −0.037+0.044

−0.042. These three spaces were
chosen out of the possible five multiconnected spaces for a positive curvature
Universe corresponding to a universal cover of S3, as the other two being the
prism and lens spaces are infinite in number. The chosen spaces are also more
“equally proportioned” without the more drastic anisotropy of the prism and
lensed spaces.

A sampling over Ωk in the region where the last scattering horizon intersects with
the boundary of the space was chosen for each multiconnected space. For each
Ωk a maximum likelihood value was obtained, this involved determining the best
amplitude at the best orientation of our model in relation to the data. All the
Ωk together form what is called the maximum likelihood curve of the model.

There are three prominent features to this curve, the smooth region up to when
the horizon intersects with the boundary of the space, the bump at the inter-
section point and the disjointed non-monotonically decreasing likelihood value
after the intersection. The bump occurs at the location when Ωk is such that
the horizon intersects with the boundary of the space. This bump is in all the
maximum likelihood curves for all three spaces, whether it be on the parameter
degeneracy line or for ΩΛ held constant. This is in agreement with what was
observed by the Planck investigation team during their topological investigation
from the Planck data [Planck Collaboration et al. 2013b]. The bump is not a
detection of a topological signal, but is due to an alignment of the model to some
features that are contained in our CMB map. The disjointed non-monotonically
decreasing likelihood tail region is when the horizon becomes larger with respect
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to the distance to the boundary of the space. The correlation patterns in this
tail region becomes more complex and can change significantly from Ωk to Ωk.
This results in the deceasing disjointed nature of the likelihood curve in the tail
region. The smooth section of the likelihood curve is due to the lack of complex
correlations in the model. As such there is no large great change from Ωk to
Ωk only a slight gradual increase in the existing correlations, which leads to the
smooth nature in this regime.

The choice of mask is very important in the analysis. We obtained two maximum
likelihood curves for the space-I, one using a small more liberal mask and the other
using a larger more conservative mask. This difference between the two masks
showed a change in the maximum likelihood curve. For the smaller more liberal
mask the ∆ lnL at the bump increased around two times the ∆ lnL from our
analysis mask. We also saw by decreasing the amount of masked sky a significant
peak that existed in the tail region using the analysis mask disappeared. This
indicates that the analysis mask cuts some features in the map reducing the
restrictiveness of the fit. This allowed a model with a more complex correlation
pattern to align more easily and increased its maximum likelihood value. For
the larger more conservative mask the maximum likelihood in the tail region was
no longer decreasing in the disjointed manner but rather plateaued in the same
disjointed manner. This again is attributed to the reduction of restrictions that
occurs when we remove large sections of the map. All likelihood runs for the
three different masks showed the same basic features a smooth start, a bump
and a disjointed tail, all properties attributed to the alignment of the changing
correlations to the CMB map.

A final test was done on space-I where rather than determining the best orien-
tation for a given Ωk, we marginalized over the orientation space of the model.
The likelihood curve’s bump was significantly reduced, down to the level of ac-
ceptable variance between models. The Planck collaboration did an investigation
using a random realization for a given topological model and determined, that
even when marginalized a likelihood bump at the Ωk of the model remains sig-
nificantly present in the curve [Planck Collaboration et al. 2013b]. The Planck
collaboration also did an investigation of a random realization of the sky for a
given isotropic model and the resulting likelihood curve still showed this bump.
This is not a detection of a specific multiconnected topology but of an alignment
to some features in the CMB sky which could be the result of the fact that this
is a single realization and as such it is expected to contain some features in it.

The next step in this investigation would be the addition of a prior to the like-
lihood value, such as the higher frequency l likelihood fit. Further investigation
into which features are being aligned and their origin, could be of benefit in the
deeper understanding of the origin of these features.
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