
University of Alberta

Quest Patterns for Story-Based Video Games

by

Marcus Alexander Trenton

A thesis submitted to the Faculty of Graduate Studies and Research

in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computing Science

© Marcus Alexander Trenton

Fall 2009

Edmonton, Alberta

Permission is hereby granted to the University of Alberta Libraries to reproduce

single copies of this thesis and to lend or sell such copies for private, scholarly or

scientific research purposes only. Where the thesis is converted to, or otherwise

made available in digital form, the University of Alberta will advise potential

users of the thesis of these terms.

The author reserves all other publication and other rights in association with the

copyright in the thesis and, except as herein before provided, neither the thesis nor

any substantial portion thereof may be printed or otherwise reproduced in any

material form whatsoever without the author's prior written permission.

Examining Committee

Duane Szafron, Computing Science

Jonathan Schaeffer, Computing Science

Mike Carbonaro, Faculty of Education

Abstract

As video game designers focus on immersive interactive stories, the number of

game object interactions grows exponentially. Most games use manually-

programmed scripts to control object interactions, although automated techniques

for generating scripts from high-level specifications are being introduced. For

example, ScriptEase provides designers with generative patterns that inject

commonly-occurring interactions into games. ScriptEase patterns generate scripts

for the game Neverwinter Nights. A kind of generative pattern, the quest pattern,

generates scripting code controlling the plot in story-based games. I present my

additions to the quest pattern architecture (meta quest points and abandonable

subquests), a catalogue of quest patterns, and the results of two studies measuring

their effectiveness. These studies show that quest patterns are easy-to-use,

substantially reduce plot scripting errors, and their catalogue is highly-reusable

between games. These studies demonstrate ScriptEase generative quest patterns

are a desirable alternative to manual plot scripting in commercial, story-based

games.

Table of Contents

Chapter 1 - Introduction ... 1

1.1 - The Massive Video Game Industry .. 1

1.2 - Scripting in Video Games... 3

1.3 - Expanding the Use of Video Games ... 8

1.4 - Thesis .. 9

Chapter 2 - Related Work .. 12

2.1 - Computers as Authors .. 12

2.2 - Tools to Assist Authors .. 17

2.2.1 - Petri Nets ... 17

2.2.2 - Quests in Botfighters2 ... 19

2.2.1 - Neverwinter Nights ... 22

2.2.2 - Plot Wizard ... 25

2.2.3 - Lilac Soul‟s NWN Script Generator .. 28

2.2.4 - Previous Version of Quests in ScriptEase 30

2.3 - Contributions .. 33

Chapter 3 - ScriptEase and Quest Patterns .. 35

3.1 - ScriptEase ... 36

3.2 - Quest Patterns ... 40

3.2.1 - Quest Points .. 40

3.2.2 - Options .. 42

3.2.3 - States of a Quest Point .. 44

3.2.4 - Meta Quest Points ... 47

3.2.5 - Branching .. 50

3.2.6 - Subquests .. 52

3.2.7 - Quest completed Quest Points .. 55

3.2.8 - Commitment ... 57

3.3 - Improvements and Limitations ... 63

3.4 - Implementation ... 66

Chapter 4 - Quests in Commercial Video Games .. 69

4.1 - Previous Studies and New Questions ... 69

4.2 - Updating the Pattern Catalogue .. 71

4.3 - Metrics .. 78

4.4 - Results .. 85

4.5 - Conclusion .. 92

Chapter 5 - ScriptEase versus NWScript ... 94

5.1 - Method .. 95

5.2 - Results .. 100

5.3 - Conclusion .. 108

Chapter 6 - Future Work and Conclusions .. 110

6.1 - Summary ... 110

6.2 - Future Work .. 115

6.3 - Conclusions .. 116

Bibliography ... 117

Appendices .. 124

Appendix A - Quest Catalogue ... 124

Appendix B - Participant Briefing .. 153

Appendix C - Consent Form .. 154

Appendix D - Demographics Form .. 156

Appendix E - NWScript Tutorial ... 158

Appendix F - ScriptEase Tutorial .. 169

Appendix G - Quest Instructions .. 179

Appendix H - Quest Comparison ... 191

Appendix I - Overall Tool Comparison .. 193

List of Tables

Table 4.1 – Quest catalogue inherited from Curtis Onuczko 73

Table 4.2 – The number of patterns in catalogue after analyzing each game 73

Table 4.3 – Quest catalogue updated from my experience. Added patterns are

bolded; the rest are from Table 4.1, with some renamings and deletions. 74

Table 4.4 – Quest catalogue updated from Oblivion, relative to Table 4.3 75

Table 4.5 – Quest catalogue updated from KOTOR, relative to Table 4.4 76

Table 4.6 – Types of Adaptation ... 83

Table 4.7 - Summary of metric scores .. 86

Table 4.8 – Quests in Oblivion and KOTOR ... 86

Table 4.9 – Quest points in Oblivion and KOTOR ... 87

Table 4.10 – Meta quest points in Oblivion and KOTOR 87

List of Figures

Figure 1.1 – The plot diagram for The Three Little Pigs [38] 6

Figure 1.2 – A plot diagram for an interactive narrative .. 6

Figure 2.1 – Petri net model of a quest to obtain a puppet [5] 19

Figure 2.2 – The quest events and their relationships in the Defeat Enemy for

Money quest [42] ... 21

Figure 2.3 – Neverwinter Nights [32] ... 23

Figure 2.4 – The Aurora Toolset for Neverwinter Nights 24

Figure 2.5 – NWScript in the Aurora Toolset ... 24

Figure 2.6 – The Plot Wizard in the Aurora Toolset with the plot nodes of a quest

revealed ... 25

Figure 2.7 – Lilac Soul‟s NWN Script Generator ... 28

Figure 2.8 – Quest pattern diagram for a quest to defeat a dragon [35] 31

Figure 2.9 – ScriptEase‟s implementation of the defeat a dragon quest, from

Onuczko [35] .. 31

Figure 3.1 – An encounter pattern in ScriptEase opened to reveal its contents and

a menu for the encounter‟s Specific Item option ... 37

Figure 3.2 – Legend for quest pattern diagrams ... 41

Figure 3.3 – An Exterminate quest pattern instance representing the Defeat the

Dragon quest ... 41

Figure 3.4 – An Exterminate quest pattern implemented in ScriptEase, with the

Converse quest point opened to reveal its success and fail encounters 42

Figure 3.5 – The intended progression of the Defeat the Dragon quest 45

Figure 3.6 – An alternate progress for the Defeat the Dragon quest 46

Figure 3.7 – Another Exterminate quest pattern instance 48

Figure 3.8 – Exterminate pattern using meta quest points with a pair of possible

instances .. 49

Figure 3.9 – An Exterminate quest instance in ScriptEase that contains one

adapted and one unadapted meta quest point .. 50

Figure 3.10 – An Exterminate quest with an Acquire quest point as a dead-end

branch .. 51

Figure 3.11 – A non-linear quest with two branches .. 51

Figure 3.12 – Do one of many quest pattern with subquests 54

Figure 3.13 – Subquests and non-linear quests in ScriptEase 54

Figure 3.14 – The Remove the Dragon quest using Quest completed quest points

to provide a relationship with other quests without using subquests 57

Figure 3.15 – Do one of many quest pattern with committing quest points 58

Figure 3.16 – Committing quest points are mutually exclusive 59

Figure 3.17 – Using commitment to cause a dead-end branch (Acquire) to expire

if the main task (Kill) succeeds ... 60

Figure 3.18 – An Alarm quest point as an explicit failure condition 61

Figure 3.19 - How a dead-end committing branch can cause a quest to fail 62

Figure 3.20 – For this quest the branching structure is not obvious and ScriptEase

only shows a quest point‟s commitment when it is selected 62

Figure 4.1 – Formal definitions for usage ... 79

Figure 4.2 – Formal definitions for utility .. 80

Figure 4.3 – Formal definitions for coverage ... 82

Figure 4.4 – Formal definitions for precision ... 84

Figure 5.1 – Number of participants to implement a specific quest 101

Figure 5.2 – Difference in Quests Implemented Between Tools 103

Figure 5.3 – Percentage of implemented quests functioning correctly 103

Figure 5.4 – Average minutes needed to implement an individual quest 105

Figure 5.5 – Tool preference for individual and aggregated quests 106

1

Chapter 1 - Introduction

1.1 - The Massive Video Game Industry

 Video games are pervasive in our society. They can be found on a large

variety of technology platforms – including cell phones, personal computers, and

game consoles. Sixty-five percent of American households play video games [19].

The average gamer is thirty-five years old and has thirteen years of gaming

experience, dispelling the myth that video games are solely for children and

teenagers.

 With such a large market, it should come as no surprise that video games

form a multibillion dollar industry. Halo 3, the best-selling video game of 2007,

earned $170 million dollars (US) in its first day of sale [25]. That amount is more

than the $155 million dollar (US) record opening weekend for the movie The

Dark Knight [9] or the record opening day for the novel Harry Potter and the

Deathly Hollows, which sold 8.3 million copies earning an estimated $150 million

dollars (US) [19] [60]. The popularity of video games has increased rapidly; the

video game industry has tripled in size since 1996 [19]. With ten billion dollars in

sales for 2004, the video game industry is larger than the Hollywood movie

industry [59].

 Video games can generate more revenue than their movie counterparts. In

1995, GoldenEye, a successful movie in the James Bond franchise, earned $300

2

million dollars (US) [33]. In 1997, a video game based on the movie, GoldenEye

007 [22], was released. It sold over eight million copies [40]. The price of a video

game varies with the retailer but fifty dollars (US) is a good, if conservative,

estimate [31]. Therefore, the estimated revenue for the GoldenEye 007 game is

over $400 million dollars (US), exceeding the revenue of its movie counterpart by

$100 million.

 Similarities between video games and movies go deeper. The eight-digit

budgets of modern video games allow high production values. Musicians now

compose songs specifically for games, including the World of Warcraft [58]

soundtrack. Famous actors provide voice acting for a game‟s characters, such as

Samuel L. Jackson in Grand Theft Auto: San Andreas [23]. A game‟s release is

preceded by several months of expensive multi-media advertising, as was done

for Empire: Total War [18] in 2009.

 The core content of games has also grown more sophisticated. While

GoldenEye 007 was a revolutionary game in 1997, it is primitive by today‟s

standards. Modern games, like Elder Scrolls IV: Oblivion [16], render nearly

photo-realistic graphics. Physics concepts, such as momentum and buoyancy, are

directly incorporated into Half-Life 2 [24]. In World of Warcraft [58], thousands

of players can play the same game simultaneously in real time over the Internet.

Customers‟ expectations grow higher each year. Unfortunately, creating the

content for these multigigabyte-sized games increasingly takes more time.

Development times exceeding three years are not unheard of; Empire: Total War

3

took five years to develop [6]. The increased sophistication and high development

values of video games increases development costs.

1.2 - Scripting in Video Games

 Scripting is a major bottleneck for the flow of ideas from the authors‟

imaginations to the game‟s content. Scripts control the interactions of objects in a

video game – such as characters, furniture, items, and invisible markers for

locations. The degree of abstraction and control are similar to a movie script

dictating character dialogue and stage directions. Game scripts control simple

interactions, such as opening a door when a character pulls a lever or revealing a

ghost when the hero enters a room. Scripts select the available dialogue lines a

player character (PC) or non-player character (NPC) can speak, based on criteria

such as past actions and character attributes. For example, a script is used to

ensure that a conversation with the villain cannot occur until the hero possesses a

specific gemstone. Scripts are also used to remember characteristics related to PC

actions, such as a game score or a list of places visited.

 Video games provide a complex environment and little processing time for

an artificial intelligence (AI). Many techniques that are labelled as AI in computer

games are not considered as AI techniques in academia. Scripting is regularly

used as a substitute, in which case the actions of an NPC are specified like in a

flowchart: the goal is implicit. The human designer of the flowchart reasons how

to accomplish that goal. Therefore, scripts are also used in more complex

4

scenarios on both small and large scales. In Elder Scrolls IV: Oblivion, scripts are

used to control life-like NPC behaviours – such as running a shop during the day,

sleeping at home at night, and finding food to eat. To create challenging

opponents and helpful allies, scripts dictate NPC combat tactics and strategies

which control armies with hundreds of individual units in Starcraft [51], direct a

single creature with dozens of actions in Neverwinter Nights [32], and build cities

– while managing a variety of resources – in Warcraft III: Reign of Chaos [57].

 Scripting is also used to control plot in story-based video games. Such

games frequently boast strong, intricate plots – typically allowing the player to

control a single character or small group of characters that interact with an

expansive world through exploration, manipulation of the environment,

conversation, and combat. Players of such games frequently unravel, in parallel,

many interconnected threads of the plot by performing quests for numerous

NPCs. A quest is a single mission for the player of the game which is given its

own heading in the player‟s game journal. Each quest can have multiple solutions,

and some solutions can hinder other quests. The choices made during quests can

affect the course of the story, resulting in a different ending. This dissertation

focuses on expressing the plots of three popular, story-based games – 1)

Neverwinter Nights [32], 2) Elder Scrolls IV: Oblivion [16], and 3) Star Wars:

Knights of the Old Republic [49] – in a clear and concise model.

 The plot of a non-interactive narrative, like a book, can be expressed as a

story arc, like that of The Three Little Pigs depicted in Figure 1.1. In contrast, the

5

plot of a story-based game can be considered a flowchart, a decision tree, or even

a decision graph, in which each decision point corresponds to an event in the

game, like the example in Figure 1.2. These events vary in abstractness. Concrete

events include the death of a specific NPC or the acquisition of an item by the PC.

More abstract events include the PC becoming the leader of an organization or

becoming famous. Story authors naturally aggregate individual plot events into

more cohesive, self-contained units to ease comprehension. Example aggregations

include book chapters, play acts, and television episodes. Plot events in games are

commonly aggregated into quests; the example in Figure 1.2 illustrates a quest to

retrieve an ancient book from a ruined castle and return it to a wizard. Many

modern games, like Elder Scrolls IV: Oblivion, use an open-world design: PCs are

not restricted to a linear story line. Instead, they are free to roam about the world

and interact with a wide variety of game objects in almost any order. The game‟s

plot graph must therefore be comprehensive and flexible enough to anticipate any

meaningful action or event in the game and respond accordingly. Continuing the

previous example, if the PC destroys the book and fails that quest, the overall plot

of the story should continue. The game developer‟s challenge lies in modeling the

progression of events in a plot graph that is easy to understand and edit by the

story author yet retains the algorithmic simplicity required by the programmer

who implements it.

6

Figure 1.1 – The plot diagram for The Three Little Pigs [38]

Figure 1.2 – A plot diagram for an interactive narrative

7

 The plots of games are controlled through scripting. A scripting language

provides an interface between the game‟s engine, which knows when a lever is

pulled, and the author of a game story, who knows why the lever should be pulled

and what should happen when it is pulled. Since scripts are changed and tested

frequently, they are usually interpreted: at the moment of need during runtime

each line of a script is translated into binary code and executed, slowing runtime

performance. Alternately, scripts could be compiled: all scripts are translated in

binary code before execution at runtime, slowing development. Some games use a

general scripting language. For example, Vampire: The Masquerade – Bloodlines

[56] and Sid Meier's Civilization IV [46] use the Python scripting language, while

Homeworld 2 [26] and World of Warcraft [58] use Lua. Other games use custom

scripting languages. Neverwinter Nights [32], for example, uses NWScript, while

Elder Scrolls IV: Oblivion [16] uses TES Script. Typically, these scripting

languages are similar to the C or Java programming languages but possess much

less functionality. The scripting code is usually written manually using a text

editor, as opposed to using the more powerful tools available for programming

languages.

 Originally, video games were developed by small teams consisting of

members with the ability to program and script. As the complexity of game

production has increased, specialization of skills has occurred in the industry and

most game story authors today have little or no computer programming (or

scripting) experience. Either an author dictates story details to a programmer, who

8

writes scripts, or a technical designer is used as an intermediary. In either case,

vague requirements and miscommunication between authors and script

programmers can produce errors and delays.

 Even after a game‟s release, scripts are still created and edited. Many

games, such as Neverwinter Nights [32] and Warcraft III: Reign of Chaos [57],

support user-created content to extend the lifespan of games and generate greater

user interest. Defense of the Ancients [15] is an example of user-made playable

content for Warcraft III: Reign of Chaos that is popular enough to be played in

tournaments world-wide. To create this content, a user must write scripts to add

meaningful interactions, but the complexity of scripting foils many users.

1.3 - Expanding the Use of Video Games

 Video games have uses beyond entertainment. Flight simulators are used

to teach flying. The United States Army developed the free, publicly-available

video game America’s Army as a recruitment tool [2]. Video games have also

seen use in education. While some commercial video games (like Sid Meier’s

Civilization IV [46]) have limited educational value, some video games exist for

education purposes.

 Video games have some advantages over traditional teaching. The typing

game The Typing of the Dead [54], adapted from the arcade game The House of

the Dead 2, uses gameplay elements from commercial video games to make it

more engaging than traditional typing software. Furthermore, a study in a Chilean

9

school showed that video games can improve the teaching of reading, spelling,

and mathematics to first and second grade students [41]. The students readily

learned how to use the technology, were more motivated to learn, and could

progress at their own pace; the slowest student no longer delayed the entire class.

 The development educational software is also bottleneck by the based

complexity of scripting. One way to solve this problem is to reduce the difficulty

of programming, allowing more game authors to become programmers.

Programming environments like Alice [1] and Scratch [43] are iconic

programming systems designed to simplify programming so even children are

capable of writing programs. Instead of manipulating text directly, users

manipulate icons and buttons that represent text. Such systems could also be used

for creating simple games, but so far it has not been demonstrated that iconic

programming languages can be used to author complex games.

1.4 - Thesis

 Rather than lowering the complexity of programming, an alternate

approach is to eliminate programming altogether. ScriptEase [29]

(http://www.cs.ualberta.ca/~script/) realizes this alternate approach through

automated script generation. Experimentation has already demonstrated that non-

programmers can use ScriptEase to author simple stories [7]. While ScriptEase

provides the scripting code, quest patterns provide ScriptEase with a model to

represent the plots of story-based games.

http://www.cs.ualberta.ca/~script/

10

 I propose seven crucial qualities for a model (and its implementing tool) to

successfully script plots in story-based video games that are based on the works of

Cutumisu [11] and Spronck [48]:

1. Adaptability – The model should limit the author‟s imagination as little

as possible. The model must be able to describe a wide variety of plots,

including those developed for commercial, story-based games. If it cannot

describe a specific plot element, there should be a mechanism to add that

new plot element.

2. Clarity – The intent of any plot element and the resulting choices facing

the player should be easily discerned from the model. Both the story‟s

author and plot tool‟s implementer must understand the specifications of

the plot element.

3. Ease-of-use – An author with no programming experience should be

capable of using the model.

4. Effectiveness – Empirical evidence must show that the model is more

effective than the alternatives.

5. Reusability - To reduce development time, the components of the model

should be reusable within a plot element and within other plot elements.

6. Robustness – Since the narrative is interactive, the model should be able

to accommodate whatever actions the characters perform, including those

that change the intended order of events and introduce unexpected events.

11

7. Scalability – Describing an individual plot element is not enough. The

model must be able to describe the relationship between elements clearly

and effectively. Therefore, the entire narrative of a game should be easily

represented by the model, regardless of the number of plot elements or the

complexity of their relationships.

Unlike other plot models and tools used in academia and industry, I believe quest

patterns in ScriptEase possess all of these qualities.

 I have improved upon Curtis Onuczko‟s original quest pattern model [35],

developed in 2007, by adding a new abstraction – meta quest points – and

increasing the interactions between nested quests through abandonable subquests.

These contributions enhance the reusability and scalability of quest patterns.

These improved quest patterns were then used in a pair of studies to answer two

questions: 1) whether quest patterns are representative of plots in commercial,

story-based video games and 2) if quest patterns and ScriptEase are more

effective than manual scripting. I contend that quest patterns implemented in

ScriptEase are more reliable than manually-written scripts and can efficiently

represent the quests found in commercial, story-based videogames. Therefore,

quest patterns and ScriptEase can feasibly relieve the bottleneck of manually

scripting content that afflicts the massive video game industry.

12

Chapter 2 - Related Work

 While research has occurred in modeling dramatic structure [20] or

common character patterns in Russian folk tales [39], little has been directly

applied to interactive narrative, such as that found in video games. Academia, the

video game industry, and even third-party users have investigated the issue. Some

of the research focuses on using computer programs as a partial substitute for a

human author. Another branch of research produces tools and models to assist an

author. My research extends the latter branch, but it is instructive to discuss the

former. The difficulties in using computers as authors led into the development of

tools to assist authors.

2.1 - Computers as Authors

 A player faces a large number of choices in a story-based game, resulting

in a huge directional graph representing all the paths a plot can potentially take. In

an effort to alleviate the author‟s burden of writing and programming for every

possible contingency, computer programs can be used to implement the details of

the author‟s plot outline. In addition, a computer program can easily add a degree

of randomness so that the events of a plot will not unfold in a stale, predictable

manner. There are a variety of methods for accomplishing that automation with

varying degrees of author input.

 Marc Cavazza et al. [8] use simulation to create an emergent narrative.

Every NPC character possesses an artificial intelligence (AI) that attempts to

13

accomplish a goal. The NPCs simulate a dating scenario inspired by the Friends

television sitcom using the Unreal Engine found in video games such as Unreal

Tournament [55]. A plot emerges from the interactions of characters who act to

fulfill goals instead of following an explicit plot. The drawback of this approach is

diminished ease-of-use (since an author must program the AI for each of the

NPCs) and of clarity (since the consequences of the player‟s choices may not be

obvious from examining the NPCs‟ goals). Also, unlike typical video games, the

player is not at the centre of the game, though the player can influence the

outcome. In fact, if the player does nothing a narrative will still emerge.

 If the player is to play a more central role in the story, another mechanism

is needed to automate the details of an interactive narrative, such as a drama

manager. A drama manager program manipulates the characters and sequence of

events in a plot to maximize the anticipated enjoyment of the player. Several

researchers and the commercial game Left 4 Dead [27] use drama managers to

control the tension of the game.

 Left 4 Dead uses a drama manager called a director. The game revolves

around four players attempting to escape from a zombie apocalypse. The director

dynamically places enemies, medicine, and ammunition in the levels. To provide

rising and falling tension, the director places additional enemies and less aid if the

players are doing well and vice versa. The game‟s developers termed this concept

procedural narrative. The disadvantage of this approach is that it leaves little

room for plot. The role of a writer is reduced to outlining the journey (such as, the

14

hospital can only be reached by travelling through the sewers) and writing single

lines of random or contextual dialogue. Thus, procedural narrative lacks the

adaptability to represent more complex plots.

 To provide a stronger emphasis on plot, Mateas and Stern use the concept

of beats to control the events in their interactive drama Façade [30], in which the

player visits a couple with a deteriorating marriage. They describe a beat as “the

smallest unit of dramatic action that moves a story forward” [30]. One of the beats

in Façade is a discussion over the decoration of a room, during which the NPCs

try to manipulate the PC into agreeing with them. Which NPC the player supports

affects the outcome of the drama. Beats have a partial order and preconditions for

their activations. When activated, a beat affects the story through the actions of

the characters. Façade contains hundreds of beats, which the author must

program. A beat manager, a type of drama manager, determines the next beat to

be played partially based on the player‟s interactions, resulting in rising tension.

Façade accomplishes the goal of making every run through the game feel unique

by only using a few dozen of the hundreds of beats in each run.

 However, Mateas and Stern admit that their system will not scale to larger

applications. Façade took three person-years of effort to create a twenty-minute

interactive drama. The immense amount of programming effort needed for a short

game highlights a lack of ease-of-use. Another approach is needed for drama

managers to be applicable to commercial video games.

15

 Therefore Mateas, as part of the work of Sullivan et al., assisted in the

development of another drama management technique, declarative optimization-

based drama management (DODM) [52], which uses the commercial video game

Neverwinter Nights as a testing platform. Instead of choosing the next plot point

(the counterpart of a beat) to play from a list, DODM manipulates the game world

so the plot points occur dynamically. A good plot is well-paced, the player

receives foreshadowing of future events, and all events are motivated by the

player‟s knowledge of the game world. Sullivan et al. define a goodness score

that the DODM attempts to maximize. For example, if it has been a long time

since the last plot revelation, when the PC defeats an enemy, the DODM will

cause that enemy to drop a note hinting at an item that is needed to escape the

dungeon. The outline of the quest is still written by the author, while the

foreshadowing and pacing of the plot is controlled by the DODM. This limitation

of an author‟s control harms adaptability of the tool.

 While the previous drama managers were concerned with pacing and

tension, David Thue et al.’s PaSSAGE (Player-Specific Stories via Automatically

Generated Events) adapts the story to the player‟s preferences through delayed

authoring [53]. Delayed authoring infers a player‟s playing style (fighter, power

gamer, tactician, method actor, or storyteller) as the game progresses and adapts

the story‟s events to suit that style. For example, the event of discovering a

murderer‟s identity could lead to an immediate reward if the player is

accumulating wealth (a power gamer), a vigilante mission if the player is violent

16

(a fighter), or a puzzle to trap the murderer if the player previously chose to solve

puzzles (a tactician). Using Neverwinter Nights as a platform, his study with one

hundred and one participants has shown that those individuals less-experienced in

gaming preferred the adaptive story, supporting the practical application of this

line of research [53]. This is the only tool thus far that demonstrates its

effectiveness with an empirical study. Considering that story-based games usually

offer a variety of methods to complete a quest and PaSSAGE just infers the

player‟s preferred method, the author still exerts great control over the plot,

enhancing adaptability, unlike the previously described approaches. However,

delayed authoring does not assist the author in writing all these contingencies.

The tool still requires programming knowledge, and thus lacks ease-of-use.

 Except for PaSSAGE, all of the approaches mentioned diminish the role of

a human author in the video game creation process by reducing the author‟s

control over the context of events. This leads to poor adaptability, which is one of

the seven crucial qualities of a model and tool for plot. If an author no longer

knows which NPC possesses a crucial item, when and where characters encounter

each other, or how an argument escalates then the writing must forego such

contextual details or must cover all possibilities. The former tactic leads to a

generic or coarse plot (as seen in Left 4 Dead) while the latter overburdens the

author (as seen in Façade), violating another crucial quality of ease-of-use.

Authors have a critical role in story-based games, so replacing a human author is

not feasible. Though PaSSAGE automates the modeling of the player‟s actions, it

17

manipulates the plot deterministically with at most five branches based on playing

style. The author knows exactly how the plot is affected by PaSSAGE and can use

the tool to assist scripting the plot. PaSSAGE illustrates the potential for tools that

assist an author.

2.2 - Tools to Assist Authors

 For commercial games, I believe better stories will arise from tools that

assist an author rather than tools that replace an author. It is important for an

author to decide which plot events happen and their effects on the game world.

What is needed is a model for representing a plot that gives a human author full

control while allowing a computer program to assist. Researchers and developers

alike have suggested a variety of models and implemented several tools. Many of

these tools apply to the commercial video game Neverwinter Nights, though the

first two models described in this section do not. All of these tools illustrate the

evolution of automated scripting culminating in the quest patterns I have refined

and expanded upon.

2.2.1 - Petri Nets

 Brom and Abonyi use a type of directed graph called a Petri net to model a

quest [5]. Petri nets have a substantial body of supporting research and are used to

describe complex processes in which multiple events can occur concurrently – an

accurate description of a quest. Petri nets have an additional benefit of supporting

the mathematical verification of outcomes, ensuring the robustness of a quest.

18

However, the complexity of Petri nets violates another crucial quality: ease-of-

use. The roots of the graph are motivations of the PC and facts about the world,

from time of day to object locations. Every meaningful action or event for every

character is a node in the graph, resulting in complex graphs, such as the one

shown in Figure 2.1 taken from Brom and Abonyi [5]. In the quest shown in the

figure, the PC must obtain a puppet from a troupe of performers through theft,

purchase, or friendship. The complication is that a member of the troupe is

mistaken for a bandit. That simple plot is detailed with every possible

complication that can arise during its execution, from the PC failing to summon

the town‟s guards to the theatre burning down.

 There is no level of abstraction between the quest as a whole and minute

actions like “villagers going home.” This one graph displays too much

information: plot, behaviours, events, actions, and motivations. This lack of an

intermediate abstraction makes this model too complex for an average author to

use, which Brom and Abonyi concede. This lack of abstraction prevents the reuse

plot elements within the story, as every plot element emphasizes context rather

than common intent. Additionally, the goals of the quest and the choices the

player can make are difficult to discern, greatly diminishing the clarity of model.

The model could be refined through the experience gained from implementing

this model for a game, but that has not happened. This approach is currently too

complex to use. The following models use an abstraction between the level of

quests and actions to simultaneously solve the problems of reusability and clarity.

19

Figure 2.1 – Petri net model of a quest to obtain a puppet [5]

2.2.2 - Quests in Botfighters2

 A simpler quest model is presented by Saar [42]. A quest is composed of

quest events, like reaching a dialogue choice or the death of an NPC. A quest

begins at the start quest event and finishes at the end quest event. Each quest

20

event contains conditions for its execution and the actions that occur on

execution. These quest events are the abstraction that Brom and Abonyi needed.

Each quest event can have multiple resolutions, each leading to a different

subsequent quest event. Progress through the quest is restricted to a single path:

the next quest event to fire must directly follow the one previously fired. Figure

2.2 shows the model behind the Defeat Enemy for Money quest [41]. This model

has the benefits of simplicity, ease-of-implementation, and allows loops of quest

events, but it still prevents the elegant modeling of quests in which a multitude of

tasks can be accomplished in any order, which is a limitation in adaptability. In

addition, this model does not allow connections between quests, harming

scalability.

 The testing platform is a simplified version of the massively multiplayer

online game Botfighters 2 from It‟s Alive Mobile Games. The program, which is

integrated with the game‟s existing tools, includes a graphical user interface

(GUI), shown in Figure 2.2, for an author to create quests without writing scripts.

The GUI allows the author to create new quests, add or remove events in the

quest, change the relationship of events, and specify the event‟s parameters.

However, that is the limit of the GUI‟s power. It cannot change the conditions and

actions contained within a quest event. A programmer is needed to change those

conditions and actions, as well as add new types of quest events, which reduces

ease-of-use of the model.

21

Figure 2.2 – The quest events and their relationships in the Defeat Enemy for

Money quest [42]

 While this work is a step in the right direction, it is underdeveloped. The

author can only choose from a single type of quest and five types of quest events,

so more quests and quest events are needed. The interface gives no feedback on

invalid author choices. However, the idea of reusing quests and quest events

among multiple instances is a good one, and ScriptEase practises that idea as well.

22

2.2.1 - Neverwinter Nights

 Brom and Abonyi did not apply Petri nets to a commercial video game,

and Saar used a simplified version of Botfighters 2. An important test of a

model‟s effectiveness is whether it can function in a complete, commercially-

available video game. Some of the computer-as-authors tools discussed

previously use complete commercial video games as testing platforms. The only

video game mentioned repeatedly is Neverwinter Nights (NWN), which is used in

DODM and PaSSAGE. The next three tools to be discussed, Plot Wizard, Lilac

Soul's NWN Script Generator [28], and ScriptEase [35], use NWN as well. Why is

this game so popular for research? Video game developers usually refuse to

provide the tools used to develop their games in order to protect trade secrets. One

of the exceptions is Bioware Corp. [4], which not only released the Aurora

Toolset used to develop Neverwinter Nights but even designed this toolset to be

usable by the players of the game, affording researchers – as well as players – a

platform for experimentation.

 Since the discussion of the next three tools centres on their ability to

construct quests for NWN, it is worthwhile to describe that game. NWN (Figure

2.3) is Bioware Corp.‟s popular story-based game, winning 86 awards [32] since

its release in 2002. The popularity of NWN was enhanced by providing the Aurora

Toolset (Figure 2.4) with the game, which enables players to create their own

stories (which are called modules in NWN). Thousands of user-made stories are

available on-line. The top ten user-created modules have been downloaded more

23

than one hundred thousand times each. The Aurora Toolset supports visual tools

for creating conversations, NPCs, environments, and game objects. What is

lacking in the toolset is a simple way of designing interactions between game

objects. Instead, a user must manually write scripts in the NWScript language

using a text editor and a predefined list of API functions, variables, and constants

(as shown in Figure 2.5). The NWScript language resembles C but with fewer

features; there are no debugging tools and script errors fail silently.

Figure 2.3 – Neverwinter Nights [32]

24

Figure 2.4 – The Aurora Toolset for Neverwinter Nights

Figure 2.5 – NWScript in the Aurora Toolset

25

2.2.2 - Plot Wizard

 The Aurora Toolset contains a tool for scripting quests: the Plot Wizard

shown in Figure 2.6. The assumption behind its design is that the quests would be

developed before the rest of the module. It provides four quest templates and the

ability to create more customized quests. The author specifies the plot giver, the

villain(s), extra(s), and prop(s). These objects are chosen from a catalogue of

every object possible, rather than those already present in the module. After the

wizard has finished, the toolset can easily refer to and place these objects.

Figure 2.6 – The Plot Wizard in the Aurora Toolset with the plot nodes of a

quest revealed

26

 Despite its integration with the toolset and the meaningful defaults in the

templates, the wizard has some significant weaknesses. The main weakness is the

small catalogue of templates and their lack of adaptability. The four templates

provided are Assassination, Assassination (no proof required), Fetch and Deliver,

and Fetch and Retrieve. This small list is actually even smaller than it appears due

to a lack of reusability. The two assassination templates are just variations of each

other; the wizard is too inflexible to allow for such variations within the same

template. Similarly, the only difference between the two fetch templates is

whether the receiver of the item is the same NPC that asked the PC to fetch the

item in the first place. There is a mechanism to add new templates to this limited

catalogue, but there are other limitations to the wizard.

 Each quest is composed of plot nodes, the counterparts of Saar‟s quest

events. The four plot nodes that compose a Fetch and Retrieve quest are shown in

Figure 2.6. Each plot node represents an interaction between the PC and a cast

member of the quest. There are some safeguards to prevent logical errors: the

villain (who presumably dies during the quest) cannot be used in the final plot

node as the NPC that gives the PC a reward for the completing the quest. The

types of interactions are fixed at talking with an NPC, killing an NPC, acquiring

an item, and unlocking a placeable (such as a chest or door). This fixed list

insufficiently represents all the potential plot nodes present in the story included

with NWN, such as entering an area or using a lever. Each plot node has a rigid

structure, preventing the addition of other actions. For example, while it is

27

possible to use the plot wizard to script that the acquisition of a magical sword

from a stone causes a journal entry to appear, it is impossible to add a lightning

visual effect, which is a limitation in adaptability. Even the ordering of plot points

is inflexible and fallible; the intent is that each plot node is completed sequentially

from top to bottom, but it is possible to skip some plot nodes. If a player acquires

the item used by the Fetch and Retrieve quest before being told by an NPC to

retrieve that item, then the PC will skip that conversation plot node. Instead, the

PC receives a journal entry advising them to return the item to its original owner,

even though the PC has not met the owner and does not know to whom the item

belongs. Thus, the model shows a lack of robustness.

 Another significant limitation of the wizard is that each quest must be

linear, a lack of adaptability. There is no way to specify in the wizard that there

are two possible methods of completing a quest (two branches). This stifles an

author significantly, since tension and choice are two essential components of

drama. For example, the choice of resolving a quest peacefully or violently is

common in story-based games, including NWN. While it is possible to work

around this limitation by manually editing scripts produced by the wizard, such

changes would require programming knowledge that fewer and fewer story

authors possess. In addition, such changes will be overwritten if the wizard is

subsequently used to edit that quest. Though useful for a niche of commonly-used

quests, the Plot Wizard tool is not adaptable enough for general use.

28

2.2.3 - Lilac Soul’s NWN Script Generator

 While the Plot Wizard is useful for quests, any scripting tool can

potentially be used to manage plot. Lilac Soul‟s NWN Script Generator

(abbreviated as Lilac Soul Generator) [28] is a general-purpose, publicly-released,

third-party automated scripting program. Like the Plot Wizard, the Lilac Soul

Generator uses plain-English terminology as much as possible instead of scripting

terminology, as shown in Figure 2.7. This tool has been downloaded over one

hundred and thirty thousand times, which demonstrates the demand for a script

generator that does not require programming knowledge.

Figure 2.7 – Lilac Soul’s NWN Script Generator

29

 Although the catalogue of script templates is much larger than the Plot

Wizard‟s, it still lacks the power of manual scripting. The catalogue only contains

events caused by the PC or by an NPC‟s heartbeat (a timer that fires every six

seconds while the creature is alive), preventing the tool from scripting plots

concerning interactions between NPCs. Unlike the Plot Wizard, the catalogue is

fixed so further additions are impossible. The adaptability of the tool suffers as a

result.

 Also, unlike the Plot Wizard, the Lilac Soul Generator is not completely

integrated with the Aurora Toolset. Manual user action and knowledge are

required to correctly install the generated scripts using the Aurora Toolset.

Scripting knowledge is still required in some cases, diminishing ease-of-use for

non-programmers. For example, the script that fires when the PC acquires any

item requires the user to manually merge script fragments dictating what happens

when the PC acquires a specific item.

 Though it is possible to use the Lilac Soul Generator to script quests, it is

not easy. While the Plot Wizard incorporates the high-level concepts of a quest

and plot points into its design, the Lilac Soul Generator does not. Instead, low-

level concepts (such as events and actions) must be used. Each aspect of a quest,

from conversation control to displaying journal entries, must be scripted

independently; no mechanism exists to organize these scripts for ease of

reference. The result is that all scripts controlling quests, behaviours, and

30

miscellaneous reactions are jumbled together, increasing the difficulty of editing

generated scripts for particular quests at a later time. Thus, the tool lacks clarity.

2.2.4 - Previous Version of Quests in ScriptEase

 Since the tools designed by the game developers and third-party

developers were unsatisfactory in automatically scripting quests, in 2007 Curtis

Onuczko applied a more formal approach using the ScriptEase tool [35]. He

applied the concept of software design patterns [21] to quest design [36]. A

software design pattern is a human-readable, reusable guide for solving a common

programming problem. The guide is often written in pseudocode. Quest patterns

are simple enough to be understood and created by a game author while also

simple enough to be easily implemented by a programmer. Quest patterns are

expressed in a hierarchy of patterns; quests patterns are composed of quest point

patterns (the counterpart of the Plot Wizard‟s plot nodes and Saar‟s quest events)

that are, in turn, composed of encounter patterns. Encounter patterns describe

actions that occur in response to a specific event. For example, when the villain is

killed, the encounter makes an appropriate entry in the PC‟s journal. Such an

encounter pattern is used to construct a Kill quest point pattern as part of an

Assassinate quest pattern. Though these patterns could be applied to generate any

scripting language, the ScriptEase tool generates NWScript of NWN as a proof of

concept.

31

Figure 2.8 – Quest pattern diagram for a quest to defeat a dragon [35]

Figure 2.9 – ScriptEase’s implementation of the defeat a dragon quest, from

Onuczko [35]

 ScriptEase‟s quest patterns improve over the quest templates of the Plot

Wizard in many ways. ScriptEase is designed to be as powerful as manual

scripting, in contrast to the restrictive Plot Wizard and Lilac Soul‟s Script

Generator. In quest patterns, the relationships between quest points are

represented in a directed graph of events, as opposed to the Plot Wizard‟s linear

chain, so that quests in which the PC must accomplish several goals in any order

are now expressible. The catalogue of patterns – quest, quest point, and encounter

32

– is easily extensible. The patterns are also adaptable so that each quest can be

customized to what the author wants: the addition of new quest points to an

existing quest or new visual effects to an encounter is easily accomplished. Unlike

the Lilac Soul Generator, ScriptEase integrates with the NWN script compiler so

that scripts created with ScriptEase can be immediately played in NWN, without

any additional work in the Aurora Toolset. However, ScriptEase is not as

integrated as the Plot Wizard: ScriptEase and the Aurora Toolset cannot work on

the same module at the same time. Unlike the Plot Wizard or the Lilac Soul

Generator, ScriptEase can detect when a quest point fails at runtime (for example

a Converse quest point fails if the NPC to be conversed with dies), give an

appropriate journal entry, and determine if the quest as a whole can still be

completed. Quest points can also be marked as optional, allowing some quest

points to be skipped. Chapter 3 - ScriptEase and Quest Patterns explains how

these advantages are accomplished.

 Onuczko demonstrated the power of his quest patterns by expressing all of

the quests found in the Beggar‟s Nest area of Neverwinter Nights (nine in total) as

quest patterns. These quests required 93 adaptations (changes to the original

pattern) to generate 255 lines of scripting code that would have otherwise been

written manually. He argued the effort required in making an adaptation to a

pattern in ScriptEase is less than that needed to write and test a script line, since

automatically-generated scripts are free of the programming errors that afflict

manually-written scripts.

33

 Onuczko‟s quest patterns meet all seven of the crucial qualities for a plot

model. However, there is still room for improvement in reusability, scalability,

and effectiveness. The quest patterns included in Onuczko‟s dissertation [35] are

unsophisticated, providing an opportunity for additional abstraction in quests and

quest points. His quest pattern catalogue was admittedly incomplete, containing

only five patterns: retrieve/deliver an item quest, retrieve/deliver multiple items

quest, retrieve/deliver one of multiple items quest, talk to quest, and kill a creature

quest. This limited catalogue provides opportunities for abstraction between

patterns, since there are repetitions of similar retrieve quest patterns. To express

all the quests found in NWN‟s included story, let alone other commercial games,

more quest patterns are needed. The effectiveness of these patterns was

demonstrated for NWN but not for other commercial, story-based games. Though

a hierarchy of quests and subquests can be defined, they only serve as

aggregations of quest points, though more interaction between a superquest and

subquest is possible.

2.3 - Contributions

 Of all the research and tools reviewed, quest patterns in ScriptEase

provide the most functionality. However, ScriptEase still suffers from the same

problem as the other tools: a lack of reusability in patterns and templates.

Seemingly minor variations – whether proof of an assassination is required or

whether the receiver of an item is the same person who sent the PC to fetch it –

require separate quests.

34

My contributions improve four of the seven crucial qualities of plot models

list in Section 1.4 - Thesis. My research solves the reusability problem of multiple

quest patterns being variations of each other. Furthermore, my research improves

the scalability of quest patterns and demonstrates their adaptability and

effectiveness through a pair of studies. Specifically, I make five contributions to

quest patterns, whose details are explained in the next two chapters:

1. An abstraction of a quest point, the meta quest point, which enhances the

reusability of quest patterns by allowing the quest designer to specify an

intent for a quest point while letting the author fulfill that intent by

matching the context of the story

2. A consistent, practical, and scalable mechanism for hierarchical quest

construction by abandoning expired subquests

3. An adaptable and comprehensive quest catalogue representing a wide

variety of quests found in commercial story-based video games

4. A case study that shows the effectiveness of the quest catalogue through

high ratings of coverage, precision, utility, and usage across three of the

most popular story-based games of recent years

5. A user study empirically validating that quests authored using quest

patterns are more reliable than those manually scripted, further

demonstrating the effectiveness of quest patterns

35

Chapter 3 - ScriptEase and Quest Patterns

 In contrast to other graphical programming tools (like Alice), ScriptEase

does not seek to teach programming to a video game story author that otherwise

has no use for it. Instead, the idea behind ScriptEase is that a tool should use the

language of the user instead of inventing a new language that the user must learn.

 ScriptEase and quest patterns work together to develop a story from the

imagination of the author to the finished work presented to the player. Quest

patterns model quests for a video game at a level of abstraction that an author can

understand and use. Quest patterns are also specific enough that a programmer

can implement them. In the case of ScriptEase, they are specific enough that code

can be automatically generated from them. Though the two ideas of modelling

and scripting may appear distinct, they are closely related in this case. ScriptEase

uses a hierarchy of patterns to model and implement its automated scripting. The

quest patterns‟ model extends this hierarchy, but so do other patterns, like

conversations and behaviours. Quests are just a specific type of pattern used to

express plot. Therefore, greater insight into the workings of quest patterns can be

gained by first examining how ScriptEase uses patterns in general and then

examining quest patterns in greater detail, including my meta quest point and

abandonable subquest creations.

36

3.1 - ScriptEase

 ScriptEase allows an author to create story interactions in a top-down

manner. The author starts with an abstract intent embodied by selecting a pattern

[21] and creating an instance of it. The pattern provides high-level specifications

on how to realize this intent. The author then adapts the pattern to the context of

the game‟s story in a hierarchical manner, starting from general options and

proceeding to specific details. ScriptEase uses this adapted pattern to generate the

scripting code needed to accomplish this intent in the game. If the patterns in the

catalogue are insufficient for the current story in the game, an author can

construct a new pattern and add it to the pattern catalogue for reuse in the current

story and future stories. Although the pattern catalogue is game independent, the

current implementation of ScriptEase only generates NWScript code for

Neverwinter Nights (NWN). However, this implementation is sufficient to show

the utility of using generative patterns in story-based games.

 ScriptEase‟s procedure is the opposite of bottom-up manual scripting, in

which the author creates expressions that are placed into statements that are

placed into scripts. In fact, with ScriptEase an author always selects from a small

number of explicit options and never has to create any kind of expression or other

construct on a blank page. With ScriptEase‟s top-down approach an author can

select a high-level pattern without considering its details. A high-level pattern

often provides default values for the details, which may be changed using menus.

37

Figure 3.1 – An encounter pattern in ScriptEase opened to reveal its contents

and a menu for the encounter’s Specific Item option

 For example, suppose an author wants to create an interaction that when a

Gemstone is placed on a Pedestal a Boulder slides to reveal a cave opening. This

is an example of an encounter pattern in which actions occur in response to an

event. The author would begin by selecting the intent, the Placeable – Add

specific item – Open door pattern from the encounter pattern catalogue [29] to

create an instance of the pattern, as represented by the line in Figure 3.1 that starts

with the script letter E. The encounter pattern in Figure 3.1 is open to reveal its

contents, but the author does not need to open it to use it. The author only needs

38

to adapt the encounter pattern instance, which is done by selecting choices for the

pattern‟s options: The Placeable used, the Specific Item added to The Placeable,

and The Door opened. Figure 3.1 shows the author selecting the Gemstone as the

Specific Item option from a menu. The author has already selected the Boulder as

The Door option and the Pedestal as the The Placeable option. The plain English

used in ScriptEase highlights the pattern‟s clarity.

 Figure 3.1 illustrates that an encounter pattern can contain four types of

basic components: events (V), definitions (D), conditions (C) and actions (A).

These components are the bottom of the pattern hierarchy. An event is an

occurrence in the world, like disturbing the inventory of the Pedestal. A definition

is the equivalent to an assignment statement in a programming language and can

use a variety of concepts:

 A dynamic game object, a state or object statistic that may change during

runtime (such as the door closest to the Pedestal or the PC‟s wealth),

 The result of mathematical or logical operation, and

 Answers of true or false to questions (like whether the item added to the

Pedestal‟s inventory is the Gemstone).

An action also encompasses multiple concepts:

 One or more calls to game engine that affects objects (for example,

opening a door as shown in Figure 3.1),

 Changes to the game‟s interface (such as starting a conversation), and

39

 Recording current information (like how many doors the PC has opened).

A condition provides additional constraints on whether the subsequent actions

occur. The example in Figure 3.1 has a condition ensuring that only the

Gemstone, and no other item, will trigger the actions when it is added to the

Pedestal.

 An author only needs to know about the contents of an encounter if the

contents must be changed or when a new encounter pattern is being designed. For

example, if the author wanted to adapt the encounter in Figure 3.1 further by

firing a visual effect when the door is opened, the author could open this

encounter and add a visual effect action after the action that opens the door.

Adding an action involves selecting it from a menu and setting its options – in this

case, the kind of visual effect and its target. These encounter patterns are easy-to-

use. A case study [29] showed that high school students, many without

programming experience, could use encounter patterns.

 Encounter patterns are the building blocks for more sophisticated patterns,

including behaviours, dialogue, and quests. Behaviour patterns are used to specify

which tasks are performed by NPCs and when these tasks can be initiated,

interrupted, resumed [14], and learned [13]. Behaviours can be used to create

more realistic environments, such as a busy tavern [14] or foes that learn to fight

better [13]. Dialogue patterns [47] can be used to control conversation by

generating scripts that determine which lines can be spoken under which

40

conditions. However, this dissertation focuses on quest patterns that are described

in the next section.

3.2 - Quest Patterns

 Many story-based games have a nonlinear plot. The plot can be considered

a large decision graph that is traversed as the story unfolds. It specifies and

controls the potential decisions a player can make at each point in the story. The

graph can be divided into units called quests. A quest is single mission that the PC

can or must complete. Quest patterns build upon the hierarchy of patterns used in

ScriptEase to implement these quests and their decision graphs. This hierarchy

and the mechanisms used to develop successively more complex plots are

described in this section.

 Quest patterns focus on the journal entries found in story-based games.

Usually in such games (like Neverwinter Nights, Elder Scrolls IV: Oblivion, and

Star Wars: Knights of the Old Republic), an in-game journal lists active and

completed quests. When a significant event occurs in the quest, the journal

updates to summarize the quest‟s progress and remind the player what the PC

should do next. These significant events are termed quest points, the counterpart

of the Plot Wizard‟s plot events or Saar‟s quest events.

3.2.1 - Quest Points

 A quest is composed of quest points. For example, a Defeat the Dragon

quest can be divided into three quest points: Conversing with a villager to learn

41

that the dragon is a menace, Killing the dragon, and Conversing again with the

villager to report success. This example is represented by the Exterminate quest

pattern. A simple diagram of this pattern is shown in Figure 3.3, with the legend

in Figure 3.2. A ScriptEase representation of the pattern is shown in Figure 3.4, in

which a Q represents a quest, a ▪ (bullet) represents a quest point, and the

Converse quest point is opened to reveal its encounter pattern components.

Legend

Shapes

Meta quest point

Quest point

Subquest/mini-quest

Chain of
“Placeholder”
quest points

Borders

Placeholder

Normal

Committing

Enabler
relationship

Figure 3.2 – Legend for quest pattern diagrams

Figure 3.3 – An Exterminate quest pattern instance representing the Defeat

the Dragon quest

42

Figure 3.4 – An Exterminate quest pattern implemented in ScriptEase, with

the Converse quest point opened to reveal its success and fail encounters

3.2.2 - Options

 Options in ScriptEase are choices for configuring a pattern. Just as

encounter patterns have options to set (such as the specific item in Figure 3.1),

quest patterns and quest point patterns have options as well. Every quest pattern

has two common options, a name and a failure journal entry that is displayed if

the quest fails. Quest patterns can also have options unique to the individual

pattern. The Exterminate quest pattern‟s unique options are the victims and how

many of the victims must be killed. In the Defeat the Dragon example, the unique

options are set so that the victim is a dragon and PC must kill only one. Each

quest point pattern has many options that are described in this section:

 Name,

 Success and failure journal entries,

43

 Commitment (whether this quest point is mutually exclusive with other

quest points of the quest),

 Experience points awarded (the power of a character is measured through

experience points),

 Gold awarded,

 Immediately preceding quest points,

 How many of those preceding quest points must succeed before this quest

point is enabled, and

 Unique options for each quest point.

For example, the unique options for a Converse quest point are the NPC to be

conversed with and the dialogue line that marks the quest point‟s success.

 Although there are many options for quest points, two mechanisms

automate option setting: defaults and inheritance. For example, the number of

victims option has a default of one in the Exterminate quest pattern. A pattern can

inherit the choices for unique options of the patterns that contain it. For example,

the Kill quest point inherits the victim and the number of victims automatically

from the Exterminate quest‟s options. Similarly, an encounter pattern can inherit

options from the quest point or quest it is contained in. Inheritance allows a

choice made in a high-level pattern to automatically set options at multiple low-

level patterns, saving the user effort and reducing the opportunity for error.

44

3.2.3 - States of a Quest Point

 Quest points measure how far the player has progressed in a quest and the

player‟s available paths for future progress. Thus, the state of quest points and the

mechanisms for state transitions are the crux of this quest model. A quest pattern

guides a player through a quest by enabling quest points at the appropriate points

in a story. An enabled quest point can potentially be the next quest point reached

by the player. When a quest point is reached it may enable its subsequent quest

points. The first quest point of a quest is automatically enabled. Figure 3.5 shows

the first few steps of the Defeat the Dragon quest if it progresses in the intended

order. For example, step one in Figure 3.5 shows that the first Converse quest

point is enabled at the start of the story. This means that the PC can converse with

the quest-giving NPC at that time. An enabled quest point becomes reached, and

ceases to be enabled, when it either succeeds or fails. Each quest point has at least

one encounter that if fired causes a quest point to succeed (E+ in Figure 3.4), and

zero or more encounter patterns that if fired cause a quest point to fail (E-). For

example, if the PC reaches a specific line of dialogue with the quest giver (step

two of Figure 3.5) the first Converse quest point succeeds (step three), and if the

quest giver dies before the conversation takes place then the Converse fails.

Success and failure have their own journal entries.

45

Figure 3.5 – The intended progression of the Defeat the Dragon quest

 When a quest point is reached its successor quest points may become

enabled. A quest point maintains a list of which quest points can enable it and

how many of those quest points must be successfully reached (succeed) before it

is enabled. By default, for linear quests in ScriptEase when a quest point

succeeds, the subsequent quest point is enabled. As depicted in step three of

Figure 3.5, when the first Converse quest point succeeds the Kill quest point

becomes enabled. When Kill succeeds the second Converse – the end quest point

– is enabled. When the end quest point succeeds, the quest succeeds. If a quest

point fails then it enables no other quest points. If there is no longer a way for the

46

end quest point to succeed – such as when no quest points are enabled – then the

entire quest fails. The condition for a quest‟s success is explicit, but the condition

for failure is implicit and more complex to compute.

Figure 3.6 – An alternate progress for the Defeat the Dragon quest

 A quest point cannot be reached if it is not enabled. What happens if a

quest point‟s success encounter fires before the quest point is enabled? Figure 3.6

illustrates such a situation for the Defeat the Dragon quest. In that example,

assume the PC kills the dragon before conversing with the villager (step one of

Figure 3.6). In this case, the Kill quest point is not enabled when the dragon is

killed. The generated scripts record that the Kill‟s success encounter fired (step

two) but do not mark the Kill as reached, since it was not enabled. For a quest

point to succeed it must be enabled and one of its success encounters must fire.

47

However, immediately after the PC Converses with the quest giver to receive the

quest (the yellow arrow in step two), the Converse succeeds (in step three) and the

Kill quest point is enabled. Since its success encounter has already fired and is

enabled (represented by both a blue and yellow outline in step three), the Kill

quest point immediately succeeds (step four). Therefore, the PC can perform the

encounters in the first two quest points of the Exterminate quest in the opposite

order without breaking the quest, demonstrating the robustness of quest patterns.

 The separation of the encounter success and quest point success allows

quests to progress even if the success encounters occur in an alternate order.

ScriptEase automatically generates the complex scripts that determine at runtime

whether any quest point is enabled, fired, reached, successful, or failed. This

automation aids the design of new patterns, whether by an author or by a designer

of a new quest pattern. Their task is reduced to specifying the success and failure

encounters for each quest point and the enabling relationships between quest

points.

3.2.4 - Meta Quest Points

 Many of the tools reviewed in the previous chapter have a problem with

flexibility, causing poor reusability. Conceptually similar quests were represented

with separate patterns or templates. The current iteration of quest patterns solves

this problem through abstraction. For example, the Exterminate pattern instance

of Figure 3.3 is very specific – it both starts and ends with a Converse quest point.

48

However, similar quests often start and end in a variety of different ways. For

example, in the Defeat the Dragon quest the author may instead want the PC to

arrive in a village to witness the menacing dragon leaving, and after the dragon is

defeated to have a villager reward the PC with some jewellery. In this case, the

author may want to start the quest with an Arrive quest point and end the quest

with a Converse – give items quest point as shown in Figure 3.7, instead of

starting and ending the quest with Converse quest points shown in Figure 3.3.

Figure 3.7 – Another Exterminate quest pattern instance

 Although the quests in Figure 3.3 and Figure 3.7 have only one quest point

in common (Kill), the quests are so conceptually similar that it is inefficient for

them to be instances of two separate quest patterns. I created meta quest points as

an abstraction to solve this reusability problem. A meta quest point can be used

anywhere that a quest point can be used. A meta quest point is an abstract quest

point that can easily be adapted to one of a small set of manually-selected quest

point patterns or quest patterns, or to any other quest point, if necessary. Setting a

meta quest point to a quest pattern is one way of forming a subquest, which are

discussed in a later section. Meta quest points provide unlimited scope for

structural change, since a meta quest point can be adapted to an empty node, a

single quest point, or a subquest with variable length and structure.

49

Every quest starts and ends, which is where we see the most variation in

quests. Therefore, I created a Start meta quest point whose intended choices

include Converse and Arrive, and an End meta quest point that includes the

intentions Converse and Converse – give items. Figure 3.8 shows the Exterminate

pattern using meta quest points, along with two possible instances. Meta quest

points have a double-dashed border both before and after being adapted to a

specific quest point. Another example of a meta quest point occurs in the Search

quest pattern, where the Discover meta quest point includes both Converse and

Approach for greater adaptability.

Figure 3.8 – Exterminate pattern using meta quest points with a pair of

possible instances

 An unadapted quest point succeeds as soon as it is enabled, thus

functioning as a meaningless placeholder. For example, if the author wants no

reward and no recognition after the PC kills the dragon the End meta quest point

50

would remain unadapted. The End meta quest point would succeed (thus

completing the quest) as soon as the preceding Kill quest point succeeds. Figure

3.9 shows ScriptEase‟s implementation of this quest, in which ¤ represents a meta

quest point. The Start quest point is adapted but the End is not.

Figure 3.9 – An Exterminate quest instance in ScriptEase that contains one

adapted and one unadapted meta quest point

3.2.5 - Branching

 Our example Exterminate quest pattern is linear, but many quests in

interactive story-based games are non-linear. There are two reasons for branching

structures in a quest. The first is using dead-end branches to represent optional

events. The second is providing more than one method to accomplish a goal.

Quest patterns can support both kinds of branching.

 An example of a dead-end branch is when a PC acquires a sword to help

defeat the dragon. Though the sword is not required to defeat the dragon, the

sword can still be an important part of the plot if the villager tells the player of its

existence and utility. A dead-end quest point is not referenced by any other quest

point‟s enabler list, so when it succeeds no other quest points are enabled. Figure

51

3.10 demonstrates a dead-end branch that uses an Acquire quest point. When the

Converse succeeds it enables both the Acquire and Kill quest points.

Figure 3.10 – An Exterminate quest with an Acquire quest point as a dead-

end branch

 Branches do not need to be dead-ends. Suppose the dragon problem could

also be resolved peacefully by persuading the dragon to leave the village. Figure

3.11 shows this more general quest that splits into two branches and then merges

back together: one branch contains a Kill quest point and the other contains a

Converse – use skill (e.g. intimidate, diplomacy, medicine, etc…) quest point. The

notation of “1 enable” on the final Converse quest point conveys the author‟s

intent that only one of the two preceding quest points to succeed to enable it.

Figure 3.11 – A non-linear quest with two branches

52

 For the example in Figure 3.11, the same conversation occurs regardless

of whether the dragon was removed peacefully or violently. This was done

deliberately to keep to example simple. If a conversation tailored to each branch is

desired, a Converse can be added to the end of each branch and the End can be

left unadapted.

 The additional choices for completing the quest complicate the logic for

determining if the quest fails or succeeds. Although the PC‟s lack of skill may

cause the Converse – use skill quest point to fail, the Kill quest point must also

fail for the quest as a whole to fail. ScriptEase generates scripts to support this

logic without programmer intervention, by enabling the second Converse quest

point when either quest point succeeds or by failing the quest if both quest points

fail.

3.2.6 - Subquests

 The plot of a game consists of many quests and they are not all

independent, leading to the concept of subquests. A subquest is a quest pattern

that is used as a single quest point in another quest, including as a choice for a

meta quest point. Subquests allow the plot of a story to be represented in a

scalable manner by a hierarchy of subquests. When the subquest is enabled as a

quest point in the superquest, the first quest point contained in the subquest is

enabled. When a subquest succeeds/fails it succeeds/fails as a quest point in the

superquest.

53

 For example, suppose the dragon cannot be persuaded to leave by a simple

conversation. Instead, the dragon will only leave voluntarily if it receives a

gemstone the villagers stole from it. The acquisition and delivery of the gemstone

can be represented by a Retrieve quest pattern. The evolved dragon quest can now

be represented by the Do one of many quest pattern instance shown in Figure

3.12, in which the player can choose between the Retrieve and Exterminate

subquests. A subquest is represented as a rectangle. A Join quest point represents

the point in the story when the PC has completed the needed number of branches.

The Join quest point succeeds as soon as the required number of enabling quest

points succeed, one enable in the case of the quest in Figure 3.12. The purpose of

a Join quest point is to give a journal entry when numerous independent tasks

have been completed and the player may not remember what to do next. In this

case of the dragon quest, the Join will succeed as soon as either the Exterminate

or Retrieve subquest succeeds and will write a journal entry reminding the player

to report back to the quest giver. The ScriptEase view of this pattern is shown in

Figure 3.13 with the subquests expanded. Since the ScriptEase view is a tree

view, it does not explicitly display the branching and merging of the quest.

However, viewing the enablers of the Join quest point shows that quest is not

linear and the “Minimum # Enablers” field shows that it only needs one preceding

quest point to succeed before it is enabled.

54

Figure 3.12 – Do one of many quest pattern with subquests

Figure 3.13 – Subquests and non-linear quests in ScriptEase

 A quest point can only succeed or fail, but a subquest has an additional

outcome: abandonment. In the dragon quest example, if the player has completed

the quest through the Exterminate subquest then the dragon is dead and there is no

point in completing the Retrieve subquest. Therefore, no further progress in the

Retrieve subquest should occur. I created the concept of abandoned subquests to

support this notion. If a subquest is marked as abandonable, when the superquest

completes all quest points in the subquest are disabled and an abandonment

journal entry is written. Why not just fail that subquest? Separating the journal

entries based on failure or abandonment allows those journal entries to contain

greater context, increasing adaptability. Using a failure journal entry would

falsely imply that the quest ended because the PC made an error, instead of

55

completing an alternate solution. Why not just leave the quest unresolved? That

solution is also unsatisfactory. Abandonable subquests prevent the journal from

filling with subquests that can no longer advance the plot. The player is no longer

falsely told by these journal entries that they should complete those redundant

subquests.

 A variation of a subquest is a miniquest. The journal entries for each

subquest appear under different headings from the superquest and each other. All

of the journal entries for a miniquest appear under the same heading as the

superquest. Otherwise, a miniquest operates identically to a subquest. The

distinction gives the author greater control over the number of quest headings in

the journal and hints to the player how conceptually separate the quests are. Thus,

a single quest (from a player‟s perspective) can be constructed from multiple

quest patterns (from an author‟s perspective).

3.2.7 - Quest completed Quest Points

 Quests can be related to each other in ways that are not easily expressed in

a hierarchy of subquests. For example, let us return to the dragon quest of Figure

3.11: the PC can resolve the dragon problem through violence or diplomacy.

What if the villagers will not entrust this dangerous quest to any wandering

stranger but only to the person who rescued several of their children from bandits

(the Captive Children quest)? What if the dragon will not listen to the PC unless it

knows the PC is already a skilled negotiator, like the one that resolved a merchant

56

feud? Modelling the Captive Children quest as a subquest of Remove the Dragon

would work, although the hierarchy would get more complex if this subquest is

used in multiple other quests. For example, the Captive Children quest could be a

prerequisite to another quest, Orphaned Children. It may be impractical to make a

single quest a subquest for two distinct quests. Another quest prerequisite

mechanism is needed. In addition, subquests are insufficient, since they cannot

guard the middle of one quest based on the completion of another. For example,

the author wants the Merchants’ Feud quest to guard the diplomatic conversation

with the dragon, but not to stop the player from receiving the quest. An awkward

solution would be to directly express the enable relationship between quest points

belonging to different quests. This solution will become more difficult and tedious

as the number of quests in a game grows, so a more elegant solution is needed.

 The Quest completed quest point solves this problem by allowing a quest

point to be guarded by the completion of any quest. This enhances the scalability

of quest patterns, since there no longer needs to be a hierarchical connection

between a prerequisite quest and the quest point it guards. A Quest completed‟s

success encounter fires when the specified quest succeeds. This method is simpler

than the usual enabler relationship, since picking a quest from a list of all quests is

much easier than picking a quest point from a list of all quest points in all quests.

Figure 3.14 shows how Quest completed quest points can be used. A Quest

completed quest point for the Captive children quest and another for the

57

Merchants’ feud quest are used to specify the relationship between those quests

and the Remove the Dragon quest.

Figure 3.14 – The Remove the Dragon quest using Quest completed quest

points to provide a relationship with other quests without using subquests

 However, there is a potential problem with this solution. What is stopping

the PC from conversing with the dragon without first completing the Merchants’

feud quest? According to the previous explanation, all the quest points‟ success

encounters can fire independently. The answer is that those encounters can have a

condition that only allows the encounter to fire if a given quest point is enabled

(there is also a counterpart condition requiring a quest point to succeed). Thus, the

conversation with the dragon can be prevented until the Merchants’ feud

succeeds. Although this solution is not as elegant as desired, it works. A better

solution is described in the Chapter 6 - Future Work and Conclusions .

3.2.8 - Commitment

 In the dragon example of Figure 3.12, the PC can complete both the

Exterminate and Retrieve branches of the quest by first retrieving the gemstone

and then killing the dragon. The author may not want to allow the PC to succeed

at both subquests. ScriptEase uses the concept of commitment to allow the author

58

to define a mutually exclusive set of quest points. A quest point can be normal (a

dashed border) or committing (a solid border). By default a quest point is normal.

When a normal quest point succeeds, it enables its successor quest points.

However, it does not affect other quest points that are already enabled. In contrast,

when a committing quest point (denoted by a solid border in the figures) succeeds

it disables all quest points in the quest, except for the ones it enables.

Figure 3.15 – Do one of many quest pattern with committing quest points

Figure 3.15 shows the dragon quest with two committing quest points.

Figure 3.16 highlights the difference in what occurs when either type of quest

point succeeds. As step one of Figure 3.16 depicts, when the normal Start –

Converse quest point succeeds, it enables both the Exterminate and Retrieve

subquests. Step two shows that when the committing Retrieve subquest succeeds it

disables the Exterminate subquest and enables the Join quest point. The

Exterminate subquest is permanently disabled as no quest point remains that

could re-enable it. Thus, a committing quest point can be used to commit the PC

to a specific branch of a quest. By itself, committing quest points only prevent

other quest points from being enabled: the PC can return the gemstone to the

dragon and then still kill the dragon, except now the Exterminate subquest is not

59

considered completed. However, by adding actions to those quest points‟ success

encounters, the mutual exclusivity of the quest points can be further enforced. For

example, when the PC gives the dragon the gemstone, the dragon could fly away

as an action.

Figure 3.16 – Committing quest points are mutually exclusive

 Committing quest points allow far greater control over the plot in other

ways, namely expired branches and explicit failure. An expired branch is an

optional, dead-end branch that is disabled at a certain point in the quest. Figure

3.10, which had an optional quest point of acquiring a sword, illustrates the need

for supporting expired branches in the dragon quest. However, is it relevant to the

60

plot if the player acquires the sword after the dragon is defeated? No, especially if

a journal entry explicitly states the sword should be used against the dragon. By

this point in the quest, the relevance of the sword has expired. Adapting the Kill

quest point into a committing quest point (Figure 3.17) solves this problem. If Kill

succeeds before Acquire then Acquire is disabled due to the commitment of the

Kill. Since Acquire is disabled it cannot be reached, and no journal entry will be

given if the sword is acquired. The final Converse quest point still becomes

enabled, allowing the quest to finish. Thus, the dead-end Acquire branch expires

once the main task of Kill succeeds. This mechanism provides an elegant way of

modeling hints or reminders given to the player.

Figure 3.17 – Using commitment to cause a dead-end branch (Acquire) to

expire if the main task (Kill) succeeds

 Another use of commitment is to force explicit failure of a quest. In the

dragon example, suppose if the player does not defeat the dragon by midnight

then the dragon destroys the village, causing the player to fail the quest. The

diagram for this quest is shown in Figure 3.18, in which the Alarm quest point

represents the arrival of midnight. As described so far, the only way for a quest to

fail is when it is impossible for the final quest point to succeed, which is implicit.

61

In general implicit failure is useful since it relieves the author from the

responsibility of listing all of the ways a quest could fail. However, sometimes an

author wants to force failure. Such is the case in this example. A committing

dead-end quest point can be used to create an explicit failure event. Figure 3.19

demonstrates this procedure. In step 1, when Alarm succeeds, Kill is permanently

disabled and Fail is enabled. Since there is still an enabled quest point (Fail) the

quest as a whole does not fail yet. The Fail quest point is designed to succeed

automatically upon becoming enabled (step 2), resulting in no enabled quest

points remaining and the implicit failure of the quest as a whole.

 It should be noted that the Fail quest point is completely redundant. If it

was removed then the quest would fail as soon as Alarm succeeded. So why even

use a Fail quest point? It serves as an explicit warning to the author that following

this branch of the quest causes the whole quest to fail, as the branching structure

of a quest is not obvious at a glance in ScriptEase (see Figure 3.20).

Figure 3.18 – An Alarm quest point as an explicit failure condition

62

Figure 3.19 - How a dead-end committing branch can cause a quest to fail

Figure 3.20 – For this quest the branching structure is not obvious and

ScriptEase only shows a quest point’s commitment when it is selected

63

3.3 - Improvements and Limitations

 Quest patterns have evolved since the work of Curtis Onuczko [35]. My

contributions to quest pattern mechanics are meta quest points and abandonable

subquests. Abandonable subquests solved a problem of scope with subquests.

Before a superquest could only enable a subquest, now a superquest can disable a

subquest as well. Meta quest points have a more profound impact on the

reusability of quest patterns and clarity of designer‟s intent. Before I conceived

meta quest points, it was impossible to introduce structural variation into a single

quest pattern. This prior limitation led to many similar patterns sharing the same

intent. For example, the original quest catalogue contained three variations of

patterns to retrieve one or more items, which have since been unified into a single

Retrieve pattern. An analogous problem with the Assassination and Assassination

(with proof) templates (the counterparts of quest patterns) occurs in the Plot

Wizard. We can use the concept of a meta quest point to represent both templates

in ScriptEase with a single Assassinate quest pattern using an Obtain Proof meta

quest point containing a Retrieve subquest choice. Similar abstraction problems

affect other tools for NWN. The meta quest point abstraction allows the catalogue

of quest patterns to shrink while still providing the same expressive power.

 Meta quest points do have limitations. Their lack of options impairs

clarity. Normal quest points have options. For example, the Converse quest point

has a success dialogue line option. However, the Start meta quest point, which

can be set to a Converse quest point, should not have the same option. A Start can

64

also be set to an Arrive quest point, which does not have this option. Therefore,

options for meta quest points are not appropriate in most circumstances. An

example of a circumstance where meta quest point options are appropriate is the

Gain item meta quest point. All of its intended quest points have an item option.

In such cases meta quest point options are desirable.

 However, if meta quest point options are supported, there is no simple

mechanism for automatically linking the choices for the options of a meta quest

point to choices for the options of a quest point, as was possible between quest

patterns and quest points. A quest pattern contains its quest points, so a quest

point option can be set in the scope of the quest pattern. However, a meta quest

point does not contain its quest points. A meta quest point is a list of potential

quest points with no scoping relationship. The result is that quest patterns that are

entirely composed of meta quest points have no options, since there is no way for

the meta quest points to use those options. This is the case with the Retrieve

pattern, which is composed of four meta quest points: Start, Gain item, Give item,

and End. In this case, it would be beneficial to have some way of declaring an

item option in the Gain Item and Give Item meta quest points, since all of their

intended quest points have an item option. The common item option could be

propagated to the Retrieve pattern, saving the author from needing to choose the

item multiple times.

 The current quest model possesses three other limitations as well.

Onuczko identified these limitations – loops, conflicting roles, and impossible

65

quest structure [35]. These still persist in the current iteration of ScriptEase.

Rather than addressing these simple issues, effort was spent researching new

techniques for designing patterns and studying the utility of ScriptEase and its

pattern catalogue.

The first limitation involves an unintended relationship between quest

points. There is no restriction to prevent quest points from forming a loop.

Repeating a quest point should be a logical error. Instead, the model ignores the

looping arc without informing the author, since a reached quest point cannot be

re-enabled. The second limitation is the assignment of NPCs to contradictory

roles. Frequently, quests require killing one NPC (the victim) and then reporting

the act to another NPC (the employer). Nothing in the quest patterns prevents the

same NPC from being selected to fulfill both roles. It is impossible to talk to a

dead NPC, so that quest can never succeed. The third limitation is that the user

may create a quest that is structurally impossible to complete – such as having no

links to the final quest point – but the author will not be warned.

 Two of these issues (loops and impossible quest structure) can be solved

by running existing algorithms at quest instantiation time, so they are not

interesting research issues. The remaining issue (conflicting roles) can be solved

in a straightforward manner by allowing an author to specify a quest point at

which an object‟s relevance expires and it cannot be used in the options of

following quest points.

66

3.4 - Implementation

 ScritpEase patterns have been described in this dissertation, but patterns

rely upon the underlying ScriptEase implementation to generate code. In addition,

the ScriptEase program requires programming code to construct and edit parse

trees, generate properly formed scripts, and read/write ScriptEase objects from/to

game modules.

 ScriptEase is written in java so it can be easily ported between operating

systems. The project is six years old and has evolved during my research. The

graphical user interface, the ability to read and write to NWN modules, and the

ability to generate scripts for encounters already existed. The ScriptEase

Implementation Team wrote the java code for ScriptEase necessary for quest

patterns [44]. About 2900 lines of java code were required to add the graphical

user interface for quest patterns, the structure dictating the composition of the

patterns, and the ability to generate scripts for quest patterns. This java code was

written over a period of two years by the implementation team.

 In addition to the challenge of integrating these 2900 lines of code into the

rest of the ScriptEase source code, quest patterns raised further challenges. Unlike

the other patterns used by ScriptEase, quest patterns use recursion. Subquests

cause this recursion by having quests within quests. The recursion relationship

becomes indirect when a meta quest point is set to a subquest. The relationship

becomes a quest within a meta quest point within a quest.

67

 Not only was java code necessary to implement quest patterns, but new

atomic ScriptEase components were also written in NWN‟s scripting language,

NWScript. Scripting code was needed for both for the SciptEase patterns and to

provide library functions for the quest system that uses those patterns.

 ScriptEase installs four scripts that serve as function libraries and the

runtime system for behaviours and quests. Specifically, there are two scripts that

implement the runtime system for quests: one for the journal entries and one for

the quest system. Both of these scripts were written by the ScriptEase

Implementation Team [44]. Upgrading the journal system so it lists all entries for

a quest rather than overwriting the last journal entry and allowing for gender-

specific text substitution required 269 lines of NWScript code. The runtime

system for quests that tracks the state of each quest and quest point as well as the

transition between states required 881 lines of NWScript code. In total, the

ScriptEase Implementation Team wrote 1150 lines of NWScript code to

implement quest patterns in addition to the 2900 lines of Java code.

 ScriptEase uses a hierarchy of patterns, which at the lowest level consists

of actions, definitions, and events. When new patterns of these types were added

new NWScript code was required. These new patterns and existing patterns were

synthesized to create the quest catalogue described in Appendix A - Quest

Catalogue. To create these new patterns, in addition to the ScriptEase patterns that

I constructed, I wrote 452 lines of NWScript code for new actions, definitions and

events. These lines of code controlled constructs such as the countdown timer

68

used in the Race against time pattern and such simple things as fetching and

storing data. However, I spent far more effort on creating the quest patterns, quest

points and meta quest points for the catalogue, out of encounters, actions,

conditions, definitions and events, than on writing the NWScript that implements

those patterns.

69

Chapter 4 - Quests in Commercial Video Games

 Throughout this dissertation, I have stressed the seven qualities needed by

a quest model and its tools: adaptability, clarity, ease-of-use, effectiveness,

reusability, robustness, and scalability. The improvements made to quest patterns

described in the previous chapter enhanced reusability and scalability. These

improvements were used in a pair of studies to determine the usability of quest

patterns.

4.1 - Previous Studies and New Questions

Three of the crucial qualities are easy to evaluate empirically: adaptability,

ease-of-use, and effectiveness. Adaptability can be shown by using the quest

model to represent the breadth of quests found in multiple commercial video

games. Ease-of-use and effectiveness can be demonstrated by user studies. Though

many of the related works do not provide empirical evidence supporting their

tools, several studies provide such evidence for quest patterns and ScriptEase.

 Three of these studies were performed before my work on quest patterns.

The first study showed ScriptEase‟s ease-of-use through a user study in which high

school English students used encounter patterns to create their own stories [7]. In

the second study, Curtis Onuczko performed a case study that showed a catalogue

of five quest patterns could represent nine quests found in a section of Neverwinter

Nights‟ (NWN) official campaign story [35]. He also showed in a third study that

70

the structure of quest patterns was suitable for randomly generating quests. When

such quests were complemented with manually-written dialogue, they were judged

by participants of the user study to be as good as manually constructed quests.

 However, three questions about ScriptEase and quest patterns still remain:

1. Are quest patterns adaptable enough to accurately represent all the quests

found in a story-based, commercial video game?

2. Are quest patterns in ScriptEase more effective than manual scripting for

programmers?

3. Can non-programmers use ScriptEase quest patterns?

The answer to the first two questions is yes, and the supporting empirical evidence

is detailed in this chapter and the next. The answer to the third question is probably

yes since it has been shown through user studies that non-programmers can use

other ScriptEase patterns. In addition, students taking the CMPUT 250: Computers

and Games course at the University of Alberta have successfully used a

preliminary version of quest patterns. I focused on whether quest patterns provide

a professional script programmer a more desirable alternative to manual plot

scripting. The more difficult question of whether quest patterns are more effective

than manual scripting was answered by a user study in Chapter 5 - ScriptEase

versus NWScript, in which university students scripted quests using both

ScriptEase and the native, text-based NWScript editor for NWN.

71

 The question of adaptability of quests patterns for commercial video games

was answered by examining all the quests found in the story-based, commercial

video games Elder Scrolls IV: Oblivion (Oblivion) [16] and Star Wars: Knights of

the Old Republic (KOTOR) [49]. I measured the compatibility of the quests of

these games with ScriptEase‟s catalogue of quest patterns that was designed for

use with NWN.

4.2 - Updating the Pattern Catalogue

 No matter how easy-to-use a tool is, if it cannot perform the task required

by its users then it will not be used. This principle also applies to quest patterns

and ScriptEase. One of the most important aspects of using generative design

patterns is the size and quality of the pattern catalogue. If the catalogue is too

small then the users will spend too much time adapting and augmenting the

patterns. If the catalogue is too big then it will be difficult to browse and users

may end up selecting the wrong pattern or creating a redundant pattern when they

cannot find the appropriate pattern. Both outcomes lead to excessive adaptation

and augmentation. If the catalogue is of poor quality then the chosen pattern will

need to be heavily adapted before being useful. Thus, it is important to have a

catalogue that is the proper size and contains the most popular patterns – both

simple and complex.

 I spent considerable time on development, application, and evaluation of

the pattern catalogue. The other automated scripting tools for NWN mentioned in

72

Chapter 2 - Related Work all had limited catalogues. Designing new patterns in

ScriptEase is easy – often not requiring programming knowledge – allowing the

quest catalogue to expand greatly. Curtis Onuczko‟s original catalogue of 5 quest

patterns grew after his dissertation was finished. I began my thesis with the

existing catalogue of 12 quest patterns and 20 quest point patterns, listed in Table

4.1. My first task was to redesign the quest pattern catalogue. These patterns were

added subjectively initially, based on my experience with video game plot

structures. New patterns were added and redundant ones were removed. Meta

quest points were added to every quest pattern in the catalogue as well, resulting

in the catalogue in Table 4.3.

 For this study, the plots of Oblivion [16] and KOTOR [49] were analyzed.

Metrics measured the effectiveness of the patterns. Then patterns were added,

edited, or removed from the catalogue and the updated catalogue was remeasured.

The summary of the changes in the catalogue for each game is shown in Table

4.2. The first number in each cell is the number of patterns in the catalogue after

the catalogue was updated. The numbers in brackets reveals how many patterns

were added and removed from the catalogue due to the analysis of that game. The

details of these updates to the catalogue are described in Table 4.4 and Table 4.5,

respectively. The catalogue resulting from both analyses is detailed in Appendix

A - Quest Catalogue.

73

Quests (12 total) Quest Points (20 total)

Any

Converse – All

Converse – Approach – Converse

Converse – Arrive – Converse

Converse – Kill – Converse

Feud

Implicate

Journey

Malign

Phases

Placeholder

Wait

Alarm

Acquire

Approach

Area barrier

Arrive

Arson

Automatic

Converse

Converse – take item

Convince

Fail

Join

Kill

Pay

Place item

Quest completed

Rendezvous

Take non-blueprint

Trigger

Verbal skill

 Table 4.1 – Quest catalogue inherited from Curtis Onuczko

 Initial Oblivion KOTOR

Quests 26 33 (+7) 36 (+3)

Quest Points 30 46 (+17, -1) 49 (+3)

Meta Quest Points 17 17 (+1,-1) 17

Table 4.2 – The number of patterns in catalogue after analyzing each game

74

Quests

(25 total, 14 new)

Quest Points

(30 total, 14 new)

Meta Quest Points

(17 total, all new)

Activate

Ambush

Area barrier

Assassinate

Convince

Do in any order

Do one of many

Escort

Expel

Exterminate

Feud

Hunt

Implicate

Investigate

Journey

Pause

Placeholder

Race against time

Rally

Recovery expedition

Rescue

Retrieve

Search

Subquest chain

Wait

Alarm

Acquire

Approach

Area barrier falls

Area barrier rises

Arrive

Arson

Automatic

Converse

Converse – give item

Converse – has item

Converse – take item

Converse – use skill

Fail

Filter class

Filter gender

Filter level

Filter race

Join

Kill

Pay

Quest completed

Place item

Timer aborts

Timer expires

Timer starts

Trigger

Use placeable

Use item with placeable

Use spell on placeable

Activate placeable

Any

Arrange meeting

Discover

End

Escort begins

Escort ends

Gain authority

Gain item

Give item

Hint

Hire

Obtain proof

Start

Start ambush

Track

Travel

Table 4.3 – Quest catalogue updated from my experience. Added patterns

are bolded; the rest are from Table 4.1, with some renamings and deletions.

75

Additions

Quests (7) Quest Points (16) Meta Quest Points (1)

Backup plan

Bodyguard

Conditional reward

Deadline

Follow

Gladiator

Profit

Converse – exchange items

Earn

Equip

Filter amount

Leave area

Murder

NPC perceives NPC

NPC perceives PC

Open placeable

PC dies

Rest

Status effect

Steal

Unequip

Use item

Use spell on NPC

Wound

Negotiate

Deletions

Quests (0) Quest Points (1) Meta Quest Points (1)

 Converse – take item Any

Edited

Quests (1) Quest Points (3) Meta Quest Points (8)

Investigate Approach

Converse – give items

Timer expires

Activate

Discover

End

Escort begins

Escort ends

Give item

Hint

Start

Table 4.4 – Quest catalogue updated from Oblivion, relative to Table 4.3

76

Additions

Quests (3) Quest Points (3) Meta Quest Points (0)

Advocate

Backstory

Tournament

Menu choice

Minigame

Party member

Edited

Quests (6) Quest Points (0) Meta Quest Points (4)

Assassinate

Convince

Cooperate

Expel

Feud

Search

 End

Escort begins

Give item

Start

Table 4.5 – Quest catalogue updated from KOTOR, relative to Table 4.4

 Why not analyze Neverwinter Nights’ (NWN) [32] main campaign as

well? ScriptEase was designed with NWN in mind. A previous study [12] already

measured the effectiveness of the encounter pattern catalogue in generating NWN

main campaign stories. I expected the quest pattern catalogue to accurately reflect

the quests used in NWN‟s main campaign since ScriptEase was designed with that

game in mind. Therefore, to test the effectiveness of our quest pattern catalogue, I

selected different games for study: Oblivion and KOTOR. Both Oblivion and

KOTOR, like NWN, are popular story-based games. Bioware Inc.‟s [4] KOTOR

won 126 awards since its release in 2003, and Bethesda Softworks‟ [3] Oblivion

won 103 awards since its release in 2006. Like NWN, Oblivion provides a

powerful toolset – reliant on scripting – and has an active online community

making new game components and scenarios. These two companies are major

North American developers of video role-playing games, a genre that I observed

77

frequently boasts about their intricate plots. Oblivion and KOTOR are

representative of this genre, since they are critically-acclaimed for their complex

plots. Representing the quests of both games using quest patterns would

demonstrate that quest patterns are applicable to the complex stories of

commercial video games.

 No Oblivion or KOTOR code was generated for the quests, since

ScriptEase only produces scripts for NWN. Thus, whether quest patterns are

computationally feasible for scripting in these games is still unknown. However,

each quest was successfully represented using quest patterns. Regrettably, there

was not enough time to personally play each game enough to discover every

nuance of their plot structure. Instead, the list of Oblivion‟s quests and the details

of each quest were derived from a pair of walkthroughs [17][34]: textual

descriptions of quests from third-party sources. Similarly, another pair of

walkthroughs was used for KOTOR [37][50]. These sources were chosen since

they frequently refer to the exact journal entries and conversations from the game.

This level of detail was necessary to accurately determine whether the quest could

be represented with patterns.

 Initially, each of Oblivion‟s quests was represented by the most appropriate

patterns, if they existed. After the initial evaluation of the quest catalogue, missing

patterns were added to the catalogue to represent the concepts that could not be

elegantly represented using the original pattern catalogue. The updated pattern

catalogue was then evaluated again to measure the improvement. This process was

78

repeated on KOTOR using the catalogue updated from Oblivion. Thus, the pattern

catalogue evolved through its use in NWN, Oblivion, and KOTOR – in that order.

 The catalogue was updated in numerous ways. The simplest changes were

adding, removing, or renaming a pattern. More intricate updates were performed as

well. Some quest points were updated by changing their options or the encounter

patterns they contained. Some meta quest points were updated by changing their

list of intended quest points. Some updates changed the structure of a quest pattern

by adding or removing quest points or branches. Other changes replaced a quest

point with a meta quest point. The pattern changes were subjective in nature. I

ensured the pattern made sense when considered in isolation and was general

enough for reuse across games. In addition, the pattern was specific enough to

address a need in the game. The improvement of these subjective changes to the

patterns was measured objectively with metrics.

4.3 - Metrics

 Four metrics were used to measure the effectiveness of the catalogue:

usage, coverage, utility, and precision. These metrics were first introduced to

measure encounter patterns used to recreate NWN‟s official campaign story [12].

 Usage measures how much of the pattern catalogue is used in a specific

application, in this case a video game. Usage is expressed as a ratio of the number

of patterns from the catalogue used in the application over the number of patterns

in the catalogue. Thus, if an application uses 4 patterns out of a catalogue of 10

79

patterns, it has a usage of 0.4 or 40%. The number of instances of those patterns is

irrelevant for usage. The score ranges from 0 (when none of the patterns from the

catalogue are used) to 1 (when all of the catalogue‟s patterns are used). Higher

usage is better since unused patterns are a hindrance to a user trying to find an

appropriate pattern and contribute to unnecessary pattern creation, documentation,

and maintenance costs. Since quest-related patterns can be divided by type – such

as quests, quest points, and meta quest points – the usage metric can be applied to

each type separately. Therefore, a game story could use 20% of a catalogue‟s

quests, 60% of its quest points, and 30% of its meta quest points. The formal

definition for usage is given in Figure 4.1.

𝑃𝐶𝑎𝑡𝑡 ≝ 𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑠 𝑜𝑓 𝑡𝑦𝑝𝑒 𝑡 𝑖𝑛 𝑡𝑕𝑒 𝑐𝑎𝑡𝑎𝑙𝑜𝑔𝑢𝑒 ,

 where 𝑡 ∈
𝑞𝑢𝑒𝑠𝑡𝑠 𝑞 , 𝑞𝑢𝑒𝑠𝑡 𝑝𝑜𝑖𝑛𝑡𝑠 𝑞𝑝 ,

 𝑎𝑛𝑑 𝑚𝑒𝑡𝑎 𝑞𝑢𝑒𝑠𝑡 𝑝𝑜𝑖𝑛𝑡𝑠 𝑚𝑞𝑝

𝑖𝑝 ≝ 𝑎𝑛 𝑢𝑛𝑎𝑑𝑎𝑝𝑡𝑒𝑑 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒 𝑜𝑓 𝑝𝑎𝑡𝑡𝑒𝑟𝑛 𝑝

𝑖𝑝 ≝ 𝑎𝑛 𝑎𝑑𝑎𝑝𝑡𝑒𝑑 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒 𝑜𝑓 𝑝𝑎𝑡𝑡𝑒𝑟𝑛 𝑝 ↔

 ∃ 𝑎𝑑𝑎𝑝𝑡𝑎𝑡𝑖𝑜𝑛𝑠 𝑎1 ⋯𝑎𝑛 ∋ 𝑖𝑝 = 𝑎𝑛 ⋯𝑎1𝑖𝑝

𝐼𝐴𝑝𝑝𝑡 ≝
𝑎𝑑𝑎𝑝𝑡𝑒𝑑 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 𝑜𝑓 𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑠 𝑜𝑓 𝑡𝑦𝑝𝑒 𝑡

𝑢𝑠𝑒𝑑 𝑖𝑛 𝑡𝑕𝑒 𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛

𝑃𝐴𝑝𝑝𝑡 ≝ 𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑠 𝑜𝑓 𝑡𝑦𝑝𝑒 𝑡 𝑢𝑠𝑒𝑑 𝑖𝑛 𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛 ≝ 𝑝 ∋ 𝑖𝑝 ∈ 𝐼𝐴𝑝𝑝𝑡

𝑢𝑠𝑎𝑔𝑒 𝑐𝑎𝑡𝑎𝑙𝑜𝑔𝑢𝑒,𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑡 ≝
 𝑃𝐶𝑎𝑡𝑡 ∩ 𝑃𝐴𝑝𝑝𝑡

 𝑃𝐶𝑎𝑡𝑡

Figure 4.1 – Formal definitions for usage

80

 Utility measures how often each pattern is used. Utility is defined as the

ratio of the number of instances of the pattern in the application over all patterns

used in the application. The formal definitions for utility are given in Figure 4.2.

For example if the Retrieve quest pattern has 12 instances in a game story that uses

4 different quest patterns then the Retrieve quest pattern has a utility of 3. The

lowest score possible is 0, when the pattern is not used in a game story. Utility is

an indicator of reusability. Higher utility is better since the effort needed to learn

how to use the pattern and the cost of creating, testing, and maintaining the pattern

is amortized over the number of uses. Like usage, utility can be applied separately

to each type of pattern.

𝐼𝐴𝑝𝑝𝐶𝑎𝑡𝑡 ≝ 𝑖𝑝 ∈ 𝐼𝐴𝑝𝑝𝑡 ∋ 𝑝 ∈ 𝑃𝐶𝑎𝑡𝑡

𝑢𝑡𝑖𝑙𝑖𝑡𝑦 𝑐𝑎𝑡𝑎𝑙𝑜𝑔𝑢𝑒,𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑡 ≝
 𝐼𝐴𝑝𝑝𝐶𝑎𝑡𝑡

 𝑃𝐶𝑎𝑡𝑡 ∩ 𝑃𝐴𝑝𝑝𝑡

Figure 4.2 – Formal definitions for utility

 Whether a catalogue contains the most appropriate patterns is measured by

coverage. The exact definition of coverage (as formally stated in Figure 4.3)

depends on the type of pattern. For meta quest points, coverage depends on the

meta quest point‟s list of intended quest points. If a game‟s quest requires that a

catalogue‟s meta quest point be adapted to an unintended quest point, then that

game essentially requires a meta quest point that is not found in the catalogue. For

example, Acquire is an intended quest point for the Gain item meta quest point, but

the Wound quest point is not. Thus, a quest that requires a Gain item meta quest

81

point to be adapted to a Wound quest point requires a meta quest point that is not

found in the catalogue. Coverage for meta quest points is the ratio of the number of

meta quest point patterns in the game that are found in the catalogue over the total

number of meta quest point patterns in the game. The highest coverage score is 1,

meaning that all meta quest points used in the game came from the catalogue;

Conversely, the lowest coverage score is 0, meaning none of the meta quest points

in the game came from the catalogue. Therefore, higher coverage is better since

user performs fewer adaptations to inappropriate meta quest points.

 For a quest point, coverage is concerned with whether that quest point was

intended to do what is needed by the story or must be replaced by a newly-created

quest point. Coverage for quest points is defined analogously to coverage for meta

quest points; coverage is the ratio of the number of quest point patterns in the game

that are found in the catalogue over the total number of quest point patterns in the

game. The range of quest point coverage scores and their implication is the same

as coverage for meta quest points.

 For quests, coverage considers how much structural adaptation is necessary

to transform the quest pattern instance into the instance needed for a quest in the

game‟s story. The possible quest adaptations are divided into three categories:

trivial, minor, and major. The adaptation and their costs are shown in Table 4.6.

The adaptation cost of a quest is the sum of the minor adaptations or infinite if

there are any major adaptations. Trivial adaptations have no cost. A minor

adaptation changes the length of a quest pattern; a major adaptation changes its

82

structure, such as branching. A trivial adaptation does not change the length or

structure of a quest. The n-coverage of a story is defined as the ratio of the quests

with an adaptation cost less than or equal to n divided by the number of quest

patterns in the application. For example, suppose an application has 10 quests: 3

quests with an adaptation cost of 0, 5 with an adaptation cost of 1, 1 with an

adaptation cost of 2, and 1 with an infinite adaptation cost. That story has a 0-

coverage of 3/10 = 0.3, and a 1-coverage of (3+5)/10 = 0.8. The n-coverage of this

application is 0.9 for n greater than or equal to 2. A high n-coverage value of an

application for low n‟s is better, since it means that an appropriate pattern with a

low number of necessary adaptations is present in the catalogue.

a𝑖𝑝
≝ 𝑎1 ⋯𝑎𝑛 ∋ 𝑖𝑝 = 𝑎𝑛 ⋯𝑎1𝑖𝑝

TrivialAdapt ≝ 𝑡𝑟𝑖𝑣𝑖𝑎𝑙 𝑞𝑢𝑒𝑠𝑡 𝑎𝑑𝑎𝑝𝑡𝑎𝑡𝑖𝑜𝑛𝑠

MinorAdapt ≝ 𝑚𝑖𝑛𝑜𝑟 𝑞𝑢𝑒𝑠𝑡 𝑎𝑑𝑎𝑝𝑡𝑎𝑡𝑖𝑜𝑛𝑠

MajorAdapt ≝ 𝑚𝑎𝑗𝑜𝑟 𝑞𝑢𝑒𝑠𝑡 𝑎𝑑𝑎𝑝𝑡𝑎𝑡𝑖𝑜𝑛𝑠

𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 𝑐𝑎𝑡𝑎𝑙𝑜𝑔𝑢𝑒, 𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑚𝑞𝑝 ≝
 𝑃𝐶𝑎𝑡𝑚𝑞𝑝 ∩ 𝑃𝐴𝑝𝑝𝑚𝑞𝑝

 𝑃𝐴𝑝𝑝𝑚𝑞𝑝

𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 𝑐𝑎𝑡𝑎𝑙𝑜𝑔𝑢𝑒, 𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑞𝑝 ≝
 𝑃𝐶𝑎𝑡𝑞𝑝 ∩ 𝑃𝐴𝑝𝑝𝑞𝑝

 𝑃𝐴𝑝𝑝𝑞𝑝

𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒(𝑖𝑝 ∈ 𝐼𝐴𝑝𝑝𝐶𝑎𝑡𝑞) ≝

∞, 𝑖𝑓 a𝑖𝑝

∩ MajorAdapt ≠ ∅

1, a ∈ MinorAdapt
0, a ∈ TrivialAdapt

a ∈ a
𝑖𝑝

, otherwise

𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 𝑐𝑎𝑡𝑙𝑜𝑔𝑢𝑒,𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛,𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑞 ≝

1, 𝑖𝑓 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 𝑖𝑝 ≤ 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒

0, 𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒

𝑖𝑝∈𝐼𝐴𝑝𝑝𝐶𝑎𝑡 𝑞

 𝐼𝐴𝑝𝑝𝐶𝑎𝑡𝑡

Figure 4.3 – Formal definitions for coverage

83

Adaptation
Coverage

Category

Precision

Cost

Setting a meta quest point Trivial 0

Replacing a quest point Trivial 0.1

Chaining a quest point Trivial 0

Intentionally changing the number of enables

for a quest point
Trivial 0

Intentionally changing the number of branches Trivial 0.1

Inserting a quest point linearly Minor 0.2

Deleting a quest point linearly Minor 0

Unintentionally adding branches Major 0.3

Removing branches Major 0.2

Adding a dead-end branch Major 0.2

Unintentionally changing the enabler list Major 0.4

Unintentionally changing number of enables required Major 0.1

Changing the commitment of a quest point Major 0.4

Table 4.6 – Types of Adaptation

 While coverage measures the structural cost for adaptations, precision

measures the amount of user effort needed to transform an initial quest pattern

instance into the desired pattern instance. To be consistent with other metrics

where higher is better, precision for a quest starts at 1 and is reduced by each type

of adaptation performed, to a minimum of 0. Based on my experience with

ScriptEase in constructing and using quests, I assigned an precision cost to each of

the quest adaptations, as shown in Table 4.6. The more effort the user must expend

84

in time and thought, the more severe the precision cost. Though changing the

commitment of a quest point is easy to do, a lot of thought is needed to anticipate

the effects of the change, thus earning a severe precision cost. Every type of

adaptation does not need to occur to reduce a quest‟s precision to 0, only a few

complex adaptations are needed. As an example of precision, a quest pattern that

requires setting meta quest points (cost 0), inserting one quest point in-line (cost

0.2), and adding a second branch (cost 0.3), has a precision 1 - 0 - 0.2 - 0.3 = 0.5.

The precision for a game is the average precision of its quests. The formal

definitions of precision are given in Figure 4.4.

𝑐𝑜𝑠𝑡(𝑎) ≝ 𝑡𝑕𝑒 𝑐𝑜𝑠𝑡 𝑜𝑓 𝑎𝑑𝑎𝑝𝑡𝑎𝑡𝑖𝑜𝑛 𝑎

𝑐𝑜𝑠𝑡(𝑖𝑝) ≝ 𝑐𝑜𝑠𝑡(𝑎𝑘)

𝑛

𝑘=1

∋ 𝑖𝑝 = 𝑎𝑛 ⋯𝑎1𝑖𝑝

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑐𝑎𝑡𝑎𝑙𝑜𝑔,𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑞 ≝
 𝑚𝑎𝑥 0, 1 − 𝑐𝑜𝑠𝑡(𝑖𝑝) 𝑖𝑝∈𝐼𝐴𝑝𝑝 𝑞

 𝐼𝐴𝑝𝑝𝑞

Figure 4.4 – Formal definitions for precision

 In Table 4.6, the precision cost for an adaptation does not always match the

coverage category. Some trivial adaptations have a positive precision cost, while

some minor adaptations have a zero precision cost. The reason for the apparent

mismatch is that precision and coverage measure two distinct concepts: structural

change and user effort. Even though deleting a quest point changes the quest‟s

85

structure, affecting coverage, it is an easy operation to perform, which does not

affect precision.

4.4 - Results

 These metrics were applied to the quests from Oblivion and KOTOR.

Oblivion has 166 quests which are represented using hundreds of quest patterns

(including subquests), hundreds of meta quest points, and over a thousand quest

points. Using those counts as measures, KOTOR (with its 93 quests) is about half

the size of Oblivion. The statistics of the quest, quest point, and meta quest point

patterns – before and after the catalogue updates – are given in Table 4.8, Table

4.9, and Table 4.10 – respectively and summarized in Table 4.7. The first three

rows of each table contain the raw data for the total number of patterns and

instances used in each game. These data are used to calculate the usage and utility

for the pattern type. Oblivion had 166 quests and KOTOR had 93. Each quest had

precision and coverage scores that are not given in the tables. The summary for the

metrics in Table 4.7 uses the average of the scores for each type of pattern. Since

there are multiple definitions of coverage for quests, the 3-coverage is used in the

average in Table 4.7.

86

Metric Oblivion KOTOR

 Before After % Change Before After % Change

Usage 0.85 0.88 +3% 0.56 0.58 +5%

Coverage 0.51 0.69 +34% 0.76 0.86 +13%

Precision 0.58 0.69 +19% 0.74 0.78 +5%

Utility 38 31 -19% 24 23 -4%

Table 4.7 - Summary of metric scores

 Oblivion KOTOR

Before After Before After

Patterns in catalogue 26 33 33 36

Patterns in game 21 28 14 17

Pattern instances in game 332 347 186 189

Usage 0.8077 0.8484 0.4242 0.4722

Utility 15.81 12.39 13.29 11.12

0-Coverage 0.1687 0.1687 0.3548 0.4408

1-Coverage 0.2771 0.4096 0.5161 0.6129

2-Coverage 0.3434 0.5000 0.6129 0.6989

3-Coverage 0.3976 0.5723 0.6344 0.7204

Precision 0.5801 0.6898 0.7365 0.7774

Table 4.8 – Quests in Oblivion and KOTOR

87

 Oblivion KOTOR

Before After Before After

Patterns in catalogue 30 46 46 49

Patterns in game 24 38 25 28

Pattern instances in game 1463 1523 732 746

Usage 0.8 0.8478 0.5435 0.5714

Utility 60.96 39.05 29.28 26.64

Coverage 0.6486 1 0.8929 1

Table 4.9 – Quest points in Oblivion and KOTOR

Oblivion KOTOR

Before After Before After

Patterns in catalogue 17 17 17 17

Patterns in game 16 16 12 12

Pattern instances in game 619 674 368 387

Usage 0.9412 0.9412 0.7059 0.7059

Utility 38.69 42.13 30.67 32.25

Coverage 0.5000 0.5000 0.7500 0.8571

Table 4.10 – Meta quest points in Oblivion and KOTOR

 The metrics mostly improved with the updates to the catalogue, which was

expected. Quest patterns and quest point patterns improved the most, while meta

quest points did not improve by much.

 Ten new quest patterns were added to the catalogue by the end of the study.

These new patterns are used in the second analysis of the games, improving usage.

Since these new patterns better represented some quests in Oblivion and KOTOR,

88

coverage and precision increased. Utility dropped since the instances are now

spread over more patterns in the updated catalogue.

 The effects of adding new quest points were a little more subtle. More

happened than a simple increase of nineteen new quest point patterns. Some new

patterns were added to the catalogue for symmetry even though they were not used

in the games. For example, since an Unequip quest point (when the PC removes a

specific piece of equipment) was added to the catalogue, an Equip quest point was

added as well for future use, even though it was not used. The addition allows the

catalogue to anticipate future use rather than being updated ad hoc. Also, two quest

points were replaced. In order to provide clearer and more powerful quest points,

Converse – give item (to the PC) and Converse – take item (from the PC) were

replaced with Converse – give items (a generic transfer with the function of both

original give and take quest points) and Converse – exchange items (a transfer in

which both characters give and receive items). The metrics‟ scores still changed in

the same manner as they did for quests and for similar reasons. Usage and

coverage went up while utility went down.

 The metrics for meta quest points changed in different ways. A redundant

meta quest point (Any which was redundant with the Placeholder quest) was

removed and a new meta quest point (Negotiate) was added, keeping the overall

number of meta quest points unchanged. Usage remained unchanged since the

redundant quest point and the new meta quest point were both used in Oblivion.

The substantial change came from the increase in intended choices for each meta

89

quest point. These allowed many costly replacement adaptations in the first

analysis to become less costly set operations in the second analysis, increasing

utility. Coverage did not change much in Oblivion since each of the eight meta

quest points did not add enough new choices to cover everything needed. This was

a subjective decision to prevent rarely-used choices from cluttering the menu for

each meta quest point. For example, in one quest the PC gains an item by

wounding another creature. However, a Wound quest point as a choice for a Gain

item meta quest point seemed specific to only Oblivion and too rare to add the

catalogue, as it would only be used in 1 of the 83 Gain item meta quest points used

in Oblivion. This was an explicit trade-off in favour of utility over coverage. For

KOTOR enough choices were added to improve coverage without adding anything

too rare or specific to only that game.

 More additions to the catalogue were made during the analysis of the first

game (Oblivion) than the second (KOTOR). The second game only added 43% of

the number of quest patterns that were added for the first game. The analogous

percentage for quest points was 19%. The first game added a single meta quest

point while the second game added none. There are three possibilities why this

occurred:

1) Oblivion is larger or more creative game than KOTOR, so it possessed a

greater variety of patterns due to size and variety.

90

2) Oblivion and KOTOR share many of the same patterns. If the order of

analysis had been switched then KOTOR would have had as many new

patterns as Oblivion.

3) The base catalogue was comprehensive enough to represent KOTOR

without significant updates.

 The first possibility seems unlikely since KOTOR uses almost as many

patterns as Oblivion. KOTOR uses 61% of the number of quest patterns as used in

Oblivion, with 74% and 75% as analogous percentages for quest points and meta

quest points respectively. The percentages of pattern additions are far lower.

Therefore, the smaller size of KOTOR is not likely to be responsible for the fewer

number of additions to the catalogue.

 The second possibility is also unlikely. KOTOR did not use many of the

patterns that Oblivion added. Only one of the seven quest patterns added from

Oblivion is found in KOTOR (Conditional reward). The one meta quest point

Oblivion added is found extensively in KOTOR (Negotiate). Of the sixteen quest

points originally found in Oblivion only four are found in KOTOR (Wound, Open

placeable, Leave area, and Filter amount). Obviously, none of the patterns

originally found in KOTOR were found in Oblivion or else they would have been

found in Oblivion first.

 From a gameplay perspective, it makes sense that these two games would

use different plot elements; Oblivion and KOTOR possess different strengths as a

91

game. Oblivion emphasizes the environment (with a day-night cycle), the legal

system of the world, and the artificial intelligence (AI) of its NPCs. Therefore,

many of the plots focus on the environment (Rest, Trigger, Alarm, and Pause are

used frequently) and NPC‟s observations (NPC perceives NPC, Steal, and Murder

are present in Oblivion but not in KOTOR). The quests of Oblivion tend to be

rather simple and linear, as the simple Exterminate and Retrieve quest patterns

were the most commonly used. KOTOR focuses on detailed, non-linear quests,

instead of the environment and AI. Many of KOTOR‟s quests have two branches:

one involving good actions and the other involving evil actions. Thus, the Do One

of Many quest pattern was the most frequently used quest pattern. The potentially-

lengthy dialogue-oriented Investigate and the simple combat-oriented Exterminate

were tied for next most frequently used quest pattern.

 The evidence supports the third possibility. Despite emphasizing different

gameplay elements in the plot, KOTOR‟s patterns were already represented in the

catalogue since KOTOR‟s initial scores for precision and coverage were almost

always higher than Oblivion‟s final scores. Therefore, the initial quest catalogue

(as shown in Table 4.3) was suited for KOTOR, requiring few updates to

accommodate KOTOR‟s quests. Perhaps this is due to the fact the NWN and

KOTOR were created by the same game studio, Bioware. Five of the nine core

game designers for NWN worked on KOTOR.

92

4.5 - Conclusion

 The results for the study are positive. For the case of Oblivion and

KOTOR, the catalogue represented both games‟ complex quests while requiring

only a few additions. Even though the initial catalogue was not designed with

these games in mind, 29 new patterns needed to be added to an existing catalogue

of 73, a 40% increase in size. These additions increased coverage for Oblivion

between 43% and 48% for 1-coverage, 2-coverage, and 3-coverage, while 0-

coverage was unchanged. In KOTOR, all the coverage measures improved

between 13% and 25%. Both games benefitted from an increase in precision, 19%

for Oblivion and 5% for KOTOR. KOTOR benefitted less since the initial

catalogue already described its quests precisely without needing many updates,

demonstrating the reusability of the catalogue. As well, Oblivion benefitted

greatly from the catalogue updates, showing that the pattern catalogue is

adaptable from game to game.

 Normally, a high usage is good. However, a large difference in usage

before and after the catalogue update is not, as it shows that many more new

patterns were needed to represent the game‟s quests. However, adding the new

patterns produced only a small change in usage (for each pattern type up to a 6%

increase in Oblivion and up to a 12% increase in KOTOR). This result reveals that

neither game required a drastic increase in the number patterns, of any type, to

represent its quests more effectively.

93

 However, the increase in coverage, utility, and usage came at a cost. The

greater variety of quest and quest point patterns in the catalogue caused a drop in

utility between 19% and 56%. Since Oblivion required more new patterns it had

the greater drop in utility. Despite this drop, each quest pattern was still used at

least an average of 12 times and an average of 26 times for quest points. The

patterns were still being reused frequently, showing the pattern catalogue was not

overly-specialized. Thus, the costs of expanding the pattern catalogue are

outweighed by the benefits. Overall, this study supports the effectiveness of quest

patterns in commercial, story-based video games.

94

Chapter 5 - ScriptEase versus NWScript

 Since I claim that ScriptEase is easy-to-use and effective, it is natural to

compare it to the original tool used for scripting in NWN, NWScript. While a

previous study demonstrates that high school students are capable of using

encounter patterns [7], this study compares the use of quest patterns versus manual

scripting by university students to author stories in NWN. This study was approved

by The Faculties of Arts, Science, and Law Research Ethics Board under

application number 1956(CLG08-12-01).

 There were two objectives for the study: determine which tool participants

could use to produce scripts more effectively and which tool participants preferred.

The participants were asked to script eight predesigned quests using both

NWScript and ScriptEase (using the post-KOTOR catalogue from the previous

chapter). Additionally, participants tested those scripts for correctness by playing

their creations in NWN. A quest was considered implemented when a participant

believed the scripts required by the instructions were complete and had started

working on the next quest. It does not necessarily mean that the scripts were

correct. To determine the effectiveness of a tool, I measured the number of quests

implemented, the number of implemented quests that functioned correctly, and the

amount of time needed to implement quests (which was recorded on the form in

Appendix H - Quest Comparison). Preference for one tool over the other was

determined by compiling questionnaire responses concerning each individual quest

(Appendix H - Quest Comparison) and the overall experience (Appendix I -

95

Overall Tool Comparison). Each preference question used a 5-point scale. Each

quest had a preference question concerning ease-of-use, speed, and ease-of-

debugging. Overall preference had two questions: which tool is preferred for the

study and which is preferred for future use. These two overall preference questions

were aggregated to give a preference score for the tool.

5.1 - Method

 This study used an incomplete repeated measures design [45]. The

participants were randomly divided as evenly as possible into two groups: the

group that used ScriptEase first and the group that used NWScript first. The study

had four phases. The first phase was a demographics survey (which is found in

Appendix D - Demographics Form) that gathered data such as the participant‟s

age, gender, field of study, and prior use of ScriptEase and NWScript. For the

second phase, each group used the initial tool. For the third phase each group used

the other tool. The fourth phase consisted of the participants completing a

questionnaire on their preference between the tested tools (found in Appendix I -

Overall Tool Comparison).

 The incomplete repeated measures design was selected due to the length of

the study and the small number of participants. While this design does make the

study lengthier by having each participant use both tools, it allows the participants

to directly compare both tools, an economical use of the few participants. The

repeated measures occurred during one session, as it seemed too unlikely that all

96

participants could attend a session for each tool. The six-hour length of the study

session could have exhausted the participants, biasing their performance. This

concern was addressed by providing a lunch with food and drink as well as

balancing which tool was the first to be used across groups. The balancing and

randomization of the order of tools also counters other biases, such as preferring

the first tool used or being more effective with the last tool through experience.

Due to the length of the experiment, participants were monetarily compensated

upon signing the consent form (in Appendix C - Consent Form).

 Participant recruitment focused on computing science students at the

University of Alberta, though it was not limited to them. The participant briefing

was sent out by email (found in Appendix B - Participant Briefing). The twenty-

three participants who responded were assigned either January 17
th

 or January 24
th

of 2009 as the day of their experimental session. The two groups were balanced by

numbers with twelve for the earlier date and eleven for the later.

 The participants were screened for familiarity with the necessary concepts.

All but one of the twenty-three participants were computing science or engineering

students at the University of Alberta; the one exception had graduated previously.

The participants were required to know at least one C-like programming language,

to shorten the time needed to learn NWScript. Of the 20 participants that

completed the demographics form precisely enough to answer the question of

years of programming experience (responses on the questionnaire like “a long

time” were omitted), they had a mean of 5.3 years, with a median of 2.5, and range

97

of 1 to 30 years. Familiarity with video games was also required since this

experience would reduce the time needed to test scripts in the game. We expected

that participants were already biased towards NWScript since its C-like structure

was more familiar to participants than the more abstract patterns of ScriptEase.

 The participants were quite familiar with video games. All of the

participants had played at least one role-playing video game (a genre known for

elaborate plots), and 78% of the participants had played seven or more role-

playing games. A video game course at the University of Alberta uses NWN and an

older version of ScriptEase that uses a prototype version of quest patterns.

Therefore, we expected some of the participants to be familiar with NWN, some

with its scripting language of NWScript, and some with ScriptEase‟s patterns. In

fact, 52% of the participants had played NWN before with only a single participant

that completed its main campaign story. A smaller percentage, 21%, had

previously used NWScript and 17% had used ScriptEase. The participants were

familiar enough to know what capabilities to expect from the tools but not familiar

enough to know the tested tools thoroughly.

 The participants were instructed to script eight quests for a story in NWN

with each tool (those instructions are found in Appendix G - Quest Instructions).

Except for the quests, the story was otherwise complete: all required terrain,

objects, and conversations were already present. I assumed that eight quests were

more than a participant could implement in the 175 minutes allotted for each tool,

but they were encouraged to implement all quests to add time pressure. The time

98

pressure replicates the task of an actual video game programmer. A tutorial with an

example quest was provided with each tool (Appendix E - NWScript Tutorial and

Appendix F - ScriptEase Tutorial). The quests were implemented in a specified

order. The same order was used for each tool. After the same quest was

implemented with each tool, participants marked which tool they preferred.

The quests used are typical of those found in story-based games. None of the

quests‟ descriptions used the name of the ScriptEase quest pattern. Therefore, it

was non-trivial for a participant to find the appropriate pattern. In addition, to

represent the situation where no appropriate pattern exists in the catalogue, one of

the quests had no corresponding quest pattern in the provided catalogue. The

catalogue used in this study is the one that resulted from the previous case study,

with one omitted quest pattern. This mirrors the real-world situation where an

author will need to spend time finding the most appropriate pattern. After a time

limit was reached for both tools, the participants completed an overall preference

questionnaire. The eight quests listed below were completely independent of each

other and varied in complexity:

1. Lighthouse Inspection – The PC is hired by an engineer to inspect the

lighthouse and report back.

2. The Lost Diamond – The PC finds a treasure map which leads to a

diamond hidden among ruins.

99

3. Dragon Disposal – A villager pleads for the PC to remove a young dragon

threatening the village. The dragon can be killed or driven off by ringing

the warning bell.

4. Save Jurenglade from the Undead – A farmer hires the PC to defeat the

zombies attacking the village.

5. Medicine Run – A doctor orders the PC to fetch medicine from a merchant.

6. A Taxing Situation – A fisher wants the PC to frame the tax collector by

planting contraband in his tax chest.

7. The Bandits' Hostage – The PC must save a young boy from bandits and

return him to his mother.

8. Wolfbane – A farmer hires the PC to kill the pack of wolves that threaten

her cows.

 The order of quests was chosen to measure specific characteristics of the

tool. The first three quests were the most important. The first quest was a simple

quest with a linear progression of events. This tested the most basic use of

ScriptEase – a default linear order of events. A linear order is also the easiest to

implement through manual scripting. Thus, the first quest served as a learning

quest. The second quest was also simple and linear, but ScriptEase lacked the

corresponding quest pattern in its catalogue, forcing the participants to adapt a

more inappropriate quest pattern. This tested the participants‟ ability to fill a gap in

the pattern catalogue by making substantial adaptations using ScriptEase. The third

100

quest was simple but had two branches. This tested the usability of ScriptEase‟s

branching quests.

 The purpose of the remaining five quests was to determine if participants

could implement more quests with one tool over the other. The fourth through

seventh quests were linear (with some dead-end branches) but successively

increased in length and complexity. The seventh quest was the longest and most

difficult; it used a dead-end branch and was the only quest to use subquests (it had

two). The eighth and final quest was simple and very similar to the fourth quest to

help distinguish between those participants who could not implement the previous,

most-difficult quest due to a lack of time and those who could not solve the

scripting tasks.

5.2 - Results

There are several confounding variables that threaten an incomplete

repeated measure design. For example, it is possible that what the participants

learned while using the first tool could help them use the second tool. Another

concern is whether the participants could be exhausted when using the second tool.

However, a set of T-tests show that these two concerns did not significantly affect

the study. Comparing the percentage of the quests implemented correctly,

participants averaged 46.04% when using NWScript first and 49.24% when using

NWScript second, with a p-value of 0.424, when asking whether the second value

is significantly higher than the first. For ScriptEase the respective values are

101

80.00% first, 68.45% second, that produce a p-value of 0.265. The overall

percentage of correctly implemented quests per participant was 64.91% for the

first tool used (whether it was quest patterns or NWScript) and 51.16% for the

second tool used, producing a p-value of 0.139. Thus, what the participants learned

with one tool did not significantly help them use the other tool, and neither did

exhaustion significantly affect the study.

Figure 5.1 – Number of participants to implement a specific quest

 However, the results of the study did not exactly match expectations, the

main reason being that the study proved more difficult than predicted by the pilot

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

1 2 3 4 5 6 7 8

P
a

rt
ic

ip
a

n
ts

Quest #

Participants that Implemented a

Specific Quest

NWScript

ScriptEase

102

study. Figure 5.1 shows the number of participants who implemented each quest

with each tool. Since the quests were completed in order from 1 to 8, the number

of participants to implement each quest decreases. Four participants did not

implement any quests within the time limit. Of the 23 participants, 6 implemented

the third quest with ScriptEase and 7 did so with NWScript, which is far fewer

than expected.

 There is no statistical significance between the average number of quests

implemented with each tool (1.74 for ScriptEase and 2.17 for NWScript, with a p-

value of 0.194), which also defies my prediction that more participants would

implement more quests using ScriptEase. However, as we will see later,

participants correctly implemented more quests with ScriptEase.

 However, Figure 5.1 does not tell the whole story about quest completion.

Only one participant implemented three quests with both tools, though more

participants implemented the first three quests with just one tool. The data suggests

many participants were more productive with one tool than the other, though

which tool was more productive varied from person to person. Figure 5.2 shows

that only 3 of the 23 participants implemented the same number of quests with

each tool, not including 4 participants who implemented 0 quests with each tool.

The remaining 16 participants were more productive with one tool over the other.

For example, there were 5 participants who implemented 2 more quests with

NWScript than with ScriptEase.

103

Figure 5.2 – Difference in Quests Implemented Between Tools

Figure 5.3 – Percentage of implemented quests functioning correctly

0 1 2 3 4 5

3 more using NWScript than ScriptEase

2 more using NWScript than ScriptEase

1 more using NWScript than ScriptEase

Equal, positive number with both tools

1 more using ScriptEase than NWScript

2 more using ScriptEase than NWScript

3 more using ScriptEase than NWScript

No quests implemented

Participants

Difference in Number of Quests

Implemented Between Tools

104

 While no tool was more effective for completing more quests, there was a

more effective tool for completing quests correctly. Participants were instructed to

verify through testing that their quests met specifications. In addition, after the

experiment I tested each quest to determine if it met the specifications. The

correctness for each quest was binary: either a correctly fulfilled every requirement

or it did not. Figure 5.3 shows that after the first quest the percentage of quests

correctly-implemented with ScriptEase was at least as great NWScript‟s. However,

for the first quest ScriptEase‟s scripts were less reliable than NWScript‟s, perhaps

due to a steeper learning curve for ScriptEase.

 In total, 30 of the 40 quests implemented using ScriptEase functioned

correctly, but only 26 of the 50 implemented with NWScript functioned correctly.

The number of correct quests per participant had a mean of 1.30 for ScriptEase and

1.13 for NWScript, which a T-test showed is not significantly different (p-value of

0.325). But, the percentage of correct quests per participant had a mean of 75.25%

for ScriptEase and 47.89% for NWScript, which is significantly different. A one-

tailed T-test, assuming unequal variance of the samples, produces a p-value of

0.0122, well within statistical significance at the 95th percentile. Therefore, scripts

generated by ScriptEase are 1.57 times more reliable than scripts written in

NWScript. For quests 2 and 3 specifically the multipliers are 2.43 and 4.67

respectively. Even with fewer samples the reliability difference between the tools

for quests 2 and 3 is significant at the 95
th

 percentile; a one-tailed T-test for quests

2 and 3 produced p-values of 0.0001021 and 0.03482 respectively. No tool was

105

statistically more reliable for quest 1. The most frequent bugs found in the quests

scripted using NWScript originated from quest events being completed in an

unintended order.

Figure 5.4 – Average minutes needed to implement an individual quest

 The time needed to implement the quests revealed mixed results.

Intuitively, Figure 5.4 shows that after a sizeable learning curve ScriptEase was

quicker to use. However, this assertion cannot be supported statistically. I consider

the time spent on the tutorial in addition to the time used to implement quest one as

the learning curve for each technique. The mean time for this learning curve was

129 minutes for ScriptEase, compared to 90 minutes for NWScript. Using a one-

tailed, unequal variance T-test – this difference is statistically significant at the

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8

M
in

u
te

s

Quest #

Average Time Needed to Implement a

Specific Quest

NWScript

ScriptEase

106

95th percentile with a p-value of 0.000394. On a quest-by-quest basis, NWScript

was 61% faster for quest 1 with a p-value of 0.000685, ScriptEase was 42% faster

for quest 2 with a p-value of 0.00384, and no tool was significantly faster for quest

3 (the p-value was 0.379). Further quests were not analyzed since so few

participants implemented those quests. Even though NWScript was quicker to

learn, it did not result in quicker times for later quests.

Figure 5.5 – Tool preference for individual and aggregated quests

 The results for tool preference were somewhat positive. Z-tests were used

for calculating preference, with a hypothesized population mean of neutral

preference and using the sample‟s standard deviation. As shown in Figure 5.5 and

verified by two-tailed Z-tests, participants were neutral about tool preference for

quest 1 (p-value of 0.959), the learning quest, and overall (p-value of 0.486).

However, after the first quest they significantly preferred ScriptEase. The one-

107

tailedZ-test on the preferences scores for quests 2 through 6 shows ScriptEase was

preferred at the 95th percentile with a p-value of 2.042E-12.

 The results for the reliability test were expected but the speed and

preference tests‟ results were not. The expectation was that the participants would

overall prefer to use ScriptEase and would implement more quests with it. The

comments of the participants identified two factors that could have prevented that

result. The first factor was the number of critical bugs in ScriptEase. Several of

these bugs could only be fixed by restarting the program:

 a malfunctioning undo/redo operation,

 a memory leak for text input that rendered ScriptEase unusably slow after a

few hundred typed words, and

 the inability to remove unwanted scripts from game objects.

Since ScriptEase was preferred after the first quest, it is possible the participants

learned to avoid or work-around the bugs. Though NWScript was not free of bugs,

they were fewer in number and less severe than ScriptEase‟s. However,

participants commented that NWScript‟s interface was awkward and slow-to-

navigate, preventing NWScript from achieving a better preference score.

 The second factor was the length of the study; the participants commented

that they only felt comfortable with the tools near the end of the allotted time. The

study should have been longer to reduce the impact of the learning curve and allow

for more data to be gathered. A longer study could have been more favourable to

108

ScriptEase; the data shows that participants preferred ScriptEase for the later

quests, once they became familiar with its interface. Though ScriptEase had a

longer learning curve, it was at least as fast as NWScript for later quests.

 There was a third factor that strongly influenced the result that more quests

were implemented using NWScript. Participants were often “fooled” into thinking

that they had finished a quest with NWScript, even though it did not meet the

specifications. Therefore, they proceeded to the next quest. This allowed them to

implement more quests with NWScript. If an automatic verifier checked each

implemented quest then it would have caught the bugs in the quests, slowing the

development of the buggy NWScript quests. In this case, the number of

implemented quests would have been reduced and the percentage of correct quests

would have increased. Since using the respective tool, NWScript or ScriptEase, for

debugging was part of the test, no such verifier was provided. The fact ScriptEase

provides automated script generation to prevent many of these bugs indicates

ScriptEase is more robust.

5.3 - Conclusion

 The quest patterns of ScriptEase were more effective than the manual

scripting of NWScript in several ways. ScriptEase was significantly preferred after

the learning phase (completion of the tutorial and first quest). Significant results

favouring ScriptEase were found in quest reliability, both overall and for quests 2

and 3 specifically. The data showed that overall ScriptEase‟s quest patterns were

109

1.57 times more reliable (when correctness is binary) than NWScript‟s. More

specifically, when an appropriate pattern was not available for a quest, ScriptEase

was 2.43 times more reliable and 42% faster to script with than NWScript,

supporting that ScriptEase‟s patterns are easily adaptable. Another impressive

result is that ScriptEase was 4.67 times more reliable for the quest involving

multiple branches, showing that ScriptEase‟s automated management of quest

progression simplifies the process of creating more complex quests. In contrast,

participants implemented insignificantly more quests using NWScript (the T-test

yielded a p-value of 0.194); however, they frequently suffered from bugs caused

by completing the quest‟s events in an unintended order.

 For a commercial video game, more reliable scripts would reduce the cost

of testing, especially for story-based games that frequently use branching plots

(such as Star Wars: Knights of the Old Republic used in the next study).

Therefore, the superior reliability of and preference for quest patterns supports the

assertion that they are more effective than manual scripting for use in video

games.

110

Chapter 6 - Future Work and Conclusions

6.1 - Summary

 The multibillion dollar commercial video game industry needs better

models and tools for scripting plots. I have described seven qualities that such

models and tools should possess. Among all the techniques developed to relieve

the plot scripting bottleneck, only the quest pattern model and the ScriptEase tool

fulfill all seven criteria. They do so in the following ways:

 Adaptability through an easily-augmentable catalogue of patterns, which

demonstrably represent the diverse quests of the complex, story-based,

commercial video games Elder Scrolls IV: Oblivion (Oblivion) and Star

Wars: Knights of the Old Republic (KOTOR)

 Clarity provided by using plain-English terminology instead of a

programming language and by using abstraction so details are hidden from

the initial view

 Ease-of-use by not requiring programming experience

 Effectiveness from automatically-generated scripts that use reliable

templates, preventing many mundane errors that afflict manual scripting

 Reusability from a pattern catalogue, in which each pattern can be reused

multiple times within a game and across multiple games

111

 Robustness through a quest model that tracks whether each quest point is

enabled, fired, succeeded, or failed – which accommodates actions that

would normally interrupt the intended progression of a quest

 Scalability by representing the relationship between plot elements using

enabler links, subquests, and Quest completed quest points

Curtis Onuczko originally developed quest patterns [35], but I have improved the

quest model relative to two criteria (reusability and scalability) and demonstrated

the model‟s strength relative to two other criteria (adaptability and effectiveness)

with a user study and a case study.

 I have enhanced the reusability of quest patterns by creating meta quest

points. A designer can now specify the intent for a quest point while allowing an

author to choose a specific quest point matching the context of the story. This

mechanism allows several similar quest patterns to be unified into a single

pattern, as was the case when three fetch-and-deliver quest patterns in Onuczko‟s

catalogue were unified into a single Retrieve quest pattern. Additionally, the large

variety of beginnings (conversation, observation, acquisition, etc...) and endings

(delivery, reward, arrival, etc...) for a quest can now be represented through Start

and End meta quest points, rather than using separate quest patterns for each

combination of beginning and ending. This new level of abstraction allows a

small catalogue of 36 quest patterns, 49 quest point patterns, and 17 meta quest

point patterns to represent 169 commercial quests by using 536 quest pattern

112

instances, 2269 quest point instances, and 1061 meta quest point instances.

Without meta quest points, representing all those quests would require hundreds

of additional quest patterns in the catalogue or require the author to perform

thousands of adaptations to the pattern instances.

 By using enabler links, subquests, and Quest completed quest points –

quest patterns could already scale to represent complex plots. However, I further

improved scalability by creating abandonable subquests. Abandonable subquests

add a third outcome for a quest, abandonment, in addition to the existing

outcomes of success and failure. This additional outcome allows for more

branching quests in which a user can complete a quest using a multitude of

methods, each method being represented as a subquest. Once the player completes

one of those subquests, the rest of the subquests can expire, which was not

possible in the previous quest model. In the previous model, the journal entries for

the now-redundant subquests would remain open, misleading the player into

believing that completing those subquests would further the plot. These branching

quests are becoming increasingly common as more commercial games are

emphasizing moral choices (like in KOTOR) or creative solutions to problems

(like in Vampire: the Masquerade – Bloodlines). Such games can benefit from the

subquest control provided by abanondable subquests.

 I have demonstrated the effectiveness and adaptability of quest patterns by

conducting a pair of studies. The adaptability of quest patterns was demonstrated

by a case study of two popular, story-based video games: Oblivion and KOTOR.

113

The metrics of usage, utility, coverage, and precision were used to measure the

effectiveness of the pattern catalogue, both before and after the catalogue was

updated with the patterns found in each game. The updates increased the coverage

scores between 0% and 48% in Oblivion and between 12% and 25% in KOTOR.

Precision increased by 19% for Oblivion and 6% for KOTOR. Since the initial

precision for KOTOR was already high at 0.7365, KOTOR did not benefit much

from the updates since the catalogue already precisely represented the game. The

additions to the catalogue did cause up to a 6% increase in usage for Oblivion and

up to a 12% increase in usage for KOTOR. This slight increase is better than a

larger increase, since a slight increase shows that only a few new patterns needed

to be added to the catalogue to completely represent the game‟s quests. Overall,

Oblivion best demonstrated the catalogue‟s adaptability, and KOTOR best

demonstrated the catalogue‟s reusability. However, adding these new patterns

caused a decrease in utility, the worst case being a 56% drop in utility for quest

point patterns in Oblivion. However, even in that worst case, any quest point was

still used on average 24 times in Oblivion, showing the patterns were highly

reusable.

 Together, these metrics show that quest patterns are adaptable enough to

use in the complex plots of these commercial video games; this result hints that

many story-based games, which have less complex plots, can benefit from quest

patterns. Currently in video game development, confusion can arise between an

author (who writes an intricate plot) and a script programmer (who implements

114

that plot). This confusion could be avoided by using the simple and expressive

quest pattern model.

The other study was a user study in which twenty-three participants

compared the automated scripting used by ScriptEase‟s quest patterns against the

manual scripting used by NWScript in Neverwinter Nights (NWN). The

participants were programmers, whom I believe were biased towards manual

scripting since they were already familiar with a similar programming language.

However, this study showed that quest patterns were significantly more effective

in several ways. After the first quest, used for learning, ScriptEase was preferred.

The quests scripted using quest patterns were more reliable overall and also for

quests 2 and 3 specifically. Quest reliability was binary: either a quest correctly

met all of the specifications or it did not. Overall, quest patterns were 1.57 times

more reliable than those scripted with NWScript. That multiple became 4.67

when participants scripted a quest with two branches (quest 3). Even when the

appropriate pattern for a quest was omitted from the catalogue (quest 2), quest

patterns were 2.43 times more reliable and 42% faster to script than NWScript,

which shows that quest patterns are easily adaptable. Altogether, this study shows

that quest patterns are usable and more effective than the alternative manual

scripting language.

115

6.2 - Future Work

 The improvement and application of the quest pattern model answers

some questions and raises others for future research:

 Since generative design patterns are applicable to video games, could they

be applied to other tasks in which similar pieces of scripting code are

written repeatedly, such as webpage programming?

 Now that we know that quest patterns are more efficient, more robust,

easier-to-use, and preferable to manual scripting – another question is

whether non-programmers can use them effectively; anecdotal evidence

indicates the answer is yes, but a user study should be conducted.

 Since KOTOR was represented with only a small addition to the catalogue,

is there a set of patterns common to all (or at least to the majority of)

story-based games?

 Meta quest points have a list of quest points used for specialization. How

large should that list be? How many entries would overwhelm an author?

 On a more narrow scope, some of the quest points of the catalogue provide

an opportunity for new research into encounter patterns, which were beyond the

scope of my thesis. Some quest points serve as guards (like the Quest completed

quest point) to other quest points. This is not the right layer of abstraction; such a

guarding quest point should instead be a condition for the success encounter of

the quest point it guards. But, making such conditions (and their associated

116

definitions) as easily interchangeable as quest points would require changing the

model for encounters. Thus, the results of this research raise new questions for

both the narrow scope of improving encounter patterns and the grand scope of

applications for generative design patterns.

6.3 - Conclusions

 My research makes several contributions; my creations of meta quest

points and abandonable subquests add to the expressive power of quest patterns.

The studies of quests in commercial video games and the ability of programmers

to use quest patterns show that ScriptEase and quest patterns provide a desirable

alternative to manual scripting in commercial, story-based video games. This

research can help alleviate the bottleneck of plot scripting that afflicts modern

video game development, for both commercial and educational purposes. Games

with more complex plots can now be scripted more reliably, reducing

development costs and allowing an author more direct control over the product.

The pervasive, multibillion-dollar video game industry can benefit from this

research.

117

Bibliography

[1] Alice. http://www.alice.org/.

[2] America‟s Army. United States Army. http://www.americasarmy.com/.

[3] Bethesda Softworks. http://www.bethsoft.com/eng/index.php.

[4] Bioware Corp. http://www.bioware.com/.

[5] C. Brom and A. Abonyi. Petri Nets for Game Plot. In Proceedings of the

Society for the Study of Artificial Intelligence and the Simulation of

Behaviour (2006). http://artemis.ms.mff.cuni.cz/main/papers/IVE-

dramamanager-2006.pdf.

[6] S. Butts. Empire: Total War - The Post-Mortem. IGN. March 13, 2009.

http://uk.pc.ign.com/articles/962/962469p1.html.

[7] M. Carbonaro, M. Cutumisu, H. Duff, S. Gillis, C. Onuczko, J. Siegel, J.

Schaeffer, A. Schumacher, D. Szafron, and K. Waugh. Interactive Story

Authoring: A Viable Form of Creative Expression for the Classroom.

Computers and Education, 51(2): 687 – 707, September 2008.

[8] M. Cavazza, F. Charles, and S. Mead. Sex, Lies, and Video Games: an

Interactive Storytelling Prototype. University of Teesside, 2002.

www.scm.tees.ac.uk/users/f.charles/publications/conferences/2002/aaai20

02.pdf.

[9] M. Cieply. Batman‟s „Dark Knight‟ Sets Weekend Record. New York

Times. July 21
st
, 2008.

http://www.nytimes.com/2008/07/21/movies/20cnd-batman.html.

http://www.alice.org/
http://www.americasarmy.com/
http://www.bethsoft.com/eng/index.php
http://www.bioware.com/
http://artemis.ms.mff.cuni.cz/main/papers/IVE-dramamanager-2006.pdf
http://artemis.ms.mff.cuni.cz/main/papers/IVE-dramamanager-2006.pdf
http://uk.pc.ign.com/articles/962/962469p1.html
http://www.scm.tees.ac.uk/users/f.charles/publications/conferences/2002/aaai2002.pdf
http://www.scm.tees.ac.uk/users/f.charles/publications/conferences/2002/aaai2002.pdf
http://www.nytimes.com/2008/07/21/movies/20cnd-batman.html

118

[10] Cost of making games set to soar. British Broadcasting Corporation.

November 17
th

, 2005. http://news.bbc.co.uk/2/hi/technology/4442346.stm.

[11] M. Cutumisu. Using Behavior Patterns to Generate Scripts for Computer

Role-Playing Games. Doctorate of Philosophy thesis. University of

Alberta, 2009.

[12] M. Cutumisu, C. Onuczko, D. Szafron, J. Schaeffer, M. McNaughton, T.

Roy, J. Siegel, and M. Carbonaro. Evaluating Pattern Catalogs - The

Video games Experience. In proceedings of the 28th International

Conference on Software Engineering (May 2006): 132-141.

[13] M. Cutumisu, D. Szafron, M. Bowling, and R. S. Sutton. Agent Learning

using Action-Dependent Learning Rates in Computer Role-Playing

Games. In Proceedings of the Fourth Artificial Intelligence and Interactive

Digital Entertainment Conference (Palo Alto, USA, October 2008): 22-29.

[14] M. Cutumisu, D. Szafron, J. Schaeffer, M. McNaughton, T. Roy, C.

Onuczko, and C. Mike. Generating Ambient Behaviors in Computer Role-

Playing Games. IEEE Intelligent Systems, 21(5): 19-27, Sept./Oct. 2006.

[15] Defense of the Ancients. Modification of Warcraft III: Reign of Chaos.

Blizzard Entertainment. Vivendi. http://www.dota-allstars.com/.

[16] Elder Scrolls IV: Oblivion. Bethesda Game Studios. Bethesda Softworks

and Take-Two Interactive.

http://www.elderscrolls.com/games/oblivion_overview.htm.

http://news.bbc.co.uk/2/hi/technology/4442346.stm
http://www.dota-allstars.com/
http://www.elderscrolls.com/games/oblivion_overview.htm

119

[17] The Elder Scrolls IV: Oblivion – Walkthrough. IGN and Gamespy.

http://faqs.ign.com/articles/699/699097p1.html.

[18] Empire: Total War. Creative Assembly. Sega.

http://www.totalwar.com/empire/index.php?t=EnglishUSA.

[19] Entertainment Software Association.

http://www.theesa.com/facts/index.asp.

[20] G. Freytag. Freytag‟s Technique of the Drama: An Exposition of

Dramatic Composition and Art. Scott, Foresman, Chicago, 1900.

[21] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns:

Elements of Reusable Object-Oriented Software. Addison-Wesley,

Reading, MA, 1994.

[22] Goldeneye 007. Rare. Nintendo.

[23] Grand Theft Auto: San Andreas. Rockstar North.

http://www.rockstargames.com/sanandreas/.

[24] Half-Life 2. Valve Corporation. Sierra. www.half-life2.com.

[25] S. Hillis. Microsoft says "Halo" 1st-week sales were $300 mln. Reuters

UK. October 4
th

, 2007.

http://uk.reuters.com/article/technologyNews/idUKN0438777720071005

[26] Homeworld 2. Relic Entertainment. Sierra. http://www.relic.com/games/.

[27] Left 4 Dead. Turtle Rock Studios. Valve Corporation.

http://www.l4d.com/.

http://faqs.ign.com/articles/699/699097p1.html
http://www.totalwar.com/empire/index.php?t=EnglishUSA
http://www.theesa.com/facts/index.asp
http://www.rockstargames.com/sanandreas/
http://www.half-life2.com/
http://uk.reuters.com/article/technologyNews/idUKN0438777720071005
http://www.relic.com/games/
http://www.l4d.com/

120

[28] Lilac Soul's NWN Script Generator V2.3.

http://nwvault.ign.com/View.php?view=Other.Detail&id=625.

[29] M. MacNaughton, M. Cutumisu, D. Szafron, J. Schaeffer, J. Redford, and

D. Parker. ScriptEase: Generative Design Patterns for Computer Role-

Playing Games, 19th IEEE International Conference on Automated

Software Engineering (September 2004, Linz, Austria): 88-99.

[30] M. Mateas and A. Stern. Façade: An Experiment in Building a Fully-

Realized Interactive Drama. In Proceedings of the Game Developers

Conference: Game Design Track, San Jose, 2003.

http://www.interactivestory.net/papers/MateasSternGDC03.pdf.

[31] The Movie Industry Vs. the Gaming Industry. Associated Content.

September 19
th

, 2008.

http://www.associatedcontent.com/article/1015720/the_movie_industry_v

s_the_gaming_industry.html?cat=19.

[32] Neverwinter Nights. BioWare Corp. Infogrames.

http://nwn.bioware.com/.

[33] The Numbers.

http://www.thenumbers.com/movies/series/JamesBond.php.

[34] Oblivion: Quests. UESPWiki. http://www.uesp.net/wiki/Oblivion:Quests.

[35] C. Onuczko. Quest Patterns in Computer Role-Playing Games. Master‟s

Thesis. University of Alberta, 2007.

http://nwvault.ign.com/View.php?view=Other.Detail&id=625
http://www.interactivestory.net/papers/MateasSternGDC03.pdf
http://www.associatedcontent.com/article/1015720/the_movie_industry_vs_the_gaming_industry.html?cat=19
http://www.associatedcontent.com/article/1015720/the_movie_industry_vs_the_gaming_industry.html?cat=19
http://nwn.bioware.com/
http://www.thenumbers.com/movies/series/JamesBond.php
http://www.uesp.net/wiki/Oblivion:Quests

121

[36] C. Onuczko, D. Szafron, and J. Schaeffer. Stop Getting Side-Tracked by

Side-Quests. In AI Game Programming Wisdom 4, Editor S Rabin.

Charles River Media (2008): 513-528.

[37] J. Patterson. Star Wars Knights of the Old Republic FAQ/Walthrough.

http://www.gamefaqs.com/computer/doswin/file/516675/29302.

[38] Plot Diagram for the Three Little Pigs.

http://206.110.20.121/~schoenfe/Homework/SeptemberWork/Plot%20Dia

gram-3%20Little%20Pigs.doc.

[39] V. Propp. Morphology of the Folktale. University of Texas Press, Austin,

TX, 1968.

[40] Rare. Microsoft Game Studios.

http://www.rareware.com/company/press-microsoft1.html.

[41] R. Rosas, M. Nussbaum, P. Cumsille, V. Marianov, M. Correa, P. Flores,

V. Grau, F. Lagos, X. López, V. López, P. Rodriguez, and M. Salinas.

Beyond nintendo: design and assessment of educational video games for

first and second grade students. Computers and Education, 40:71–94,

2003.

[42] W. Saar. Quest System for Massive Multiplayer Online Role-Playing

Games. Master‟s Thesis. Royal Institute of Technology, 2004.

http://www.nada.kth.se/utbildning/grukth/exjobb/rapportlistor/2004/rappor

ter04/saar_william_04085.pdf.

[43] Scratch. http://scratch.mit.edu/.

http://www.gamefaqs.com/computer/doswin/file/516675/29302
http://206.110.20.121/~schoenfe/Homework/SeptemberWork/Plot%20Diagram-3%20Little%20Pigs.doc
http://206.110.20.121/~schoenfe/Homework/SeptemberWork/Plot%20Diagram-3%20Little%20Pigs.doc
http://www.rareware.com/company/press-microsoft1.html
http://www.nada.kth.se/utbildning/grukth/exjobb/rapportlistor/2004/rapporter04/saar_william_04085.pdf
http://www.nada.kth.se/utbildning/grukth/exjobb/rapportlistor/2004/rapporter04/saar_william_04085.pdf
http://scratch.mit.edu/

122

[44] ScriptEase Implementation Team. http://www.cs.ualberta.ca/~script/.

[45] J. Shaughnessy, E. Zechmeister, and J. Zechmeister. Research Methods

in Psychology. McGraw-Hill, New York City, 2006.

[46] Sid Meier's Civilization IV. Firaxis Games. Take-Two Interactive.

http://www.2kgames.com/civ4/.

[47] J. Siegel and D. Szafron. Dialogue Patterns - A Visual Language For

Dynamic Dialogue, Journal of Visual Languages and Computing, In Press

2009, 27 pages.

[48] P. Spronck, M. Ponsen, I. Sprinkhuizen-Kuyper, and E. Postma.

Adaptive game AI with dynamic scripting. Machine Learning, 63(3):217-

248, 2006.

[49] Star Wars: Knights of the Old Republic. Bioware. LucasArts.

http://www.lucasarts.com/index.htmls.

[50] Star Wars: KOTOR @ GameBanshee.

http://www.gamebanshee.com/starwarskotor/walkthrough.php.

[51] Starcraft. Blizzard Entertainment. Vivendi.

http://www.blizzard.com/us/starcraft/.

[52] A. Sullivan, S. Chen, and M. Mateas. Integrating Drama Management

into an Adventure Game. In Proceedings of the Fourth Artificial

Intelligence and Interactive Digital Entertainment Conference (Palo Alto,

2008). www.aaai.org/Papers/AIIDE/2008/AIIDE08-039.pdf.

http://www.cs.ualberta.ca/~script/
http://www.2kgames.com/civ4/
http://www.lucasarts.com/index.htmls
http://www.gamebanshee.com/starwarskotor/walkthrough.php
http://www.blizzard.com/us/starcraft/
http://www.aaai.org/Papers/AIIDE/2008/AIIDE08-039.pdf

123

[53] D. Thue, V. Bulitko, M. Spetch, and E. Wasylishen. Learning Player

Preferences to Inform Delayed Authoring. Papers from the AAAI Fall

Symposium on Intelligent Narrative Technologies. FS-07-05: pp. 158-161.

AAAI Press. Arlington, Virginia, USA. November 9, 2007.

http://ircl.cs.ualberta.ca/files/webfm/games/pubs/thue07-aaaisymp.pdf.

[54] The Typing of the Dead. Smilebit.

http://www.neoseeker.com/Games/Products/DC/typingdead/.

[55] Unreal Tournament. Epic Games and Digital Extremes. GT Interactive.

http://www.unreal.com/.

[56] Vampire: The Masquerade – Bloodlines. Troika Games. Activision.

[57] Warcraft III: Reign of Chaos. Blizzard Entertainment. Vivendi.

http://www.blizzard.com/us/war3/.

[58] World of Warcraft. Blizzard Entertainment. Vivendi.

http://www.worldofwarcraft.com/index.xml.

[59] M. Yi. They Got Game. San Francisco Chronicle. December 18th, 2004.

http://www.sfgate.com/cgi-

bin/article.cgi?f=/chronicle/archive/2004/12/18/MNGUOAE36I1.DTL.

[60] S. Zeitchik. 'Deathly Hallows' sells 8.3 million. Variety. July 22
nd

 2007.

variety.com/article/VR1117968991.html?categoryid=21&cs=1.

http://ircl.cs.ualberta.ca/files/webfm/games/pubs/thue07-aaaisymp.pdf
http://www.neoseeker.com/Games/Products/DC/typingdead/
http://www.unreal.com/
http://www.blizzard.com/us/war3/
http://www.worldofwarcraft.com/index.xml
http://www.sfgate.com/cgi-bin/article.cgi?f=/chronicle/archive/2004/12/18/MNGUOAE36I1.DTL
http://www.sfgate.com/cgi-bin/article.cgi?f=/chronicle/archive/2004/12/18/MNGUOAE36I1.DTL
http://www.variety.com/article/VR1117968991.html?categoryid=21&cs=1

124

Appendices

Appendix A - Quest Catalogue

Each pattern‟s description is from the quest catalogue.

Quest Points

• Acquire: This quest point succeeds when the PC acquires a specified

number of items of the specified blueprint.

• Alarm: This quest point succeeds at a specific hour of the day, regardless

of the activities of the PC. If time is artificially forwarded past this hour, it

will succeed immediately after time is forwarded. Note that the hour of the

day will not be checked until the quest point is enabled.

• Approach: This quest point succeeds when the PC approaches within a

specified distance of the target and this quest point is enabled. Optionally,

a caption can appear above the PC. If no caption is desired then leave the

'Caption' field empty or remove the 'Module heartbeat - speak caption'

encounter.

• Area barrier falls: This quest point will automatically succeed and drop

an area barrier created by the 'Area barrier rises' quest point. When the PC

clicks on the 'Area Transition' they will be transported to the destination

and 'Travel Time' hours will elapse.

• Area barrier rises: This quest point will automatically succeed. When it

does, it will turn an 'Area Transition' into a barrier. Whenever the 'Area

Transition' is clicked the PC will begin an 'Introspection' conversation.

The barrier can be dropped with an 'Area barrier falls' quest point.

• Arrive: This quest point succeeds when the PC enters the area and this

quest point is enabled. Optionally, a caption can appear above the PC. If

no caption is desired then leave the 'Caption' field empty or remove the

'Area enter - speak caption' encounter.

• Arson: This quest point succeeds if the PC burns a placeable. The PC can

burn the placeable by possessing an item used to ignite placeable and then

selecting a specified dialogue line while speaking to the placeable. The

burning will last a specified length of time after which the 'Original

placeable' will be replaced by the 'Replacement placeable'. The quest point

will fail if the original placeable is destroyed before it can be burned.

• Automatic: This quest point will succeed as soon as it is enabled.

125

• Converse: This quest point succeeds if the 'Success Line' of dialogue is

reached and fails if the NPC who speaks the 'Success Line' is killed.

• Converse – exchange items: This quest point succeeds when a specified

line of dialogue is reached. Upon being reached, specified items are

exchanged between the PC and the NPC. The quest point fails if the NPC

involved in the exchange dies.

• Converse – give items: This quest point succeeds when a specified line of

dialogue is reached. Upon being reached, the specified items are

transferred. The quest point fails if the NPC involved in the transfer dies.

• Converse – has items: This quest point succeeds when a specified line of

dialogue is reached and a character (PC or NPC) is holding a specified

number of a specified item. This quest point fails if the NPC dies.

• Converse – use skill: This quest point succeeds when the PC successfully

uses a skill in a conversation with an NPC. If the skill check fails, this

quest point will fail. The quest point will also fail if the NPC dies.

• Earn: This quest point succeeds when the PC sells good worth a specified

amount of money to a specified merchant. The money can be accumulated

over several transactions. This quest point will fail if the merchant dies.

• Equip: This quest point succeeds when the player equips a specified item.

• Fail: This quest point succeeds as soon as it is enabled, making it

functionally identical to an „Automatic‟ quest point. This quest point does

not cause the quest to fail, but can be used to explicit mark that a quest

will fail if a committing dead end branch with this quest point succeeds.

• Filter amount: This quest point succeeds when there is the right amount

of a (usually intangible) quantity. For example, ensuring the PC has

enough fame or that the PC is in jail could be handled with this quest

point. The 'Set amount' action must be used to change the desired amount

relevant to this quest point. The 'Set amount' action does not need to be

contained in this quest point. To clarify, if during the progress of one quest

the player's fame increases then the 'Filter amount' quest point set to fame

in another quest can succeed.

• Filter class: This quest point succeeds if the PC has at least 1 level in the

given class. This quest point is meant to serve as a guard for another quest

point with class-specific content. For example, if a rogue 'Filter Class'

quest point is placed before a 'Converse' quest point with a conversation

tailored for rogues then the 'Converse' quest point can only be reached if

the PC has a level in the rogue class. If the PC acquires another class, the

class requirement will be checked again using the classes of the PC.

126

• Filter gender: This quest point succeeds if the PC is the given gender.

This quest point is meant to serve as a guard for another quest point with

gender-specific content. For example, if a male 'Filter gender' and female

'Filter gender' quest points each guarded a different 'Converse - give items'

quest point then it would allow a different item to be given the PC

depending on whether the PC is male or female.

• Filter level: This quest point succeeds if the PC has at least the given

number of levels. This quest point is meant to serve as a guard for another

quest point with level-specific content, such as preventing a weak PC from

acquiring a quest that is too difficult. If the PC acquires more levels, the

level requirement will be checked again using the new PC level.

• Filter race: This quest point succeeds if the PC is a given race. This quest

point is meant to serve as a guard for another quest point with class-

specific content. For example, if a dwarf 'Filter Race' quest point is placed

before a 'Converse' quest point with a conversation tailored for dwarves

then the 'Converse' quest point can only be reached if the PC is a dwarf.

• Join: This quest point succeeds when it is enabled by a set number of

quest points. This is a specialization of the 'Automatic' quest point and is

intended for use when multiple branches of a quest join back together.

• Kill: This quest point succeeds if a specified number of NPCs of a

specified blueprint are killed.

• Leave area: This quest point succeeds when a specified NPC leaves the

area. The quest point fails in the NPC dies.

• Menu choice: This quest point succeeds when the PC chooses a specfied

option in the menu.

• Minigame: This quest point succeeds when the PC wins a specified

minigame.

• Murder: This quest point will succeed when the PC kills a good-aligned

creature of a specific blueprint.

• NPC perceives NPC: This quest point will succeed when an NPC of a

specified blueprint perceives a NPC of another specified blueprint. The

quest point will fail if either the observing NPC or the target NPC dies.

• NPC perceives PC: This quest point will succeed when an NPC of a

specified blueprint perceives the PC. The quest point will fail if the

observing NPC dies.

• Open placeable: This quest point succeeds when a placeable is opened.

The quest point will fail if the placeable is destroyed.

• Party member: This quest point succeeds when a specified NPC joins the

PC's party.

127

• Pay: This quest point succeeds when the 'Pay Line' is reached and the PC

pays an amount of gold to an NPC. If the PC does not have enough gold,

the 'Pay Line' will not be displayed. The quest point fails if either the 'No

Pay Line' is reached or if the NPC dies.

• PC dies: This quest point succeeds when the PC dies.

• Place item: This quest point succeeds when the specified number of items

of a specified blueprint is placed into the placeable's inventory. The quest

point fails if the specified placeable is destroyed.

• Quest completed: This quest point will be reached when another specified

quest is completed.

• Rest: This quest point succeeds when the PC rests. The quest point must

be enabled before it can be reached.

• Status effect: This quest point will succeed when a creature has a

specified status effect, such as blinded, charmed, or stunned. The status

effect can be delivered by spell or by physical attacks. The quest point will

fail if the creature is killed.

• Steal: This quest point will succeed when the PC acquires an item

belonging to a NPC. Specifying that an item belongs to a NPC is done

using the 'Set item owner' action. Regardless of how the item is acquired –

such as picking it off the ground, through conversation, or pick pocketing

– if the item is marked as belonging to an NPC then it is stolen. The items

can be disowned, so they can legally acquired by the PC, by the 'Disown

items' action.

• Timer aborts: This quest point will automatically succeed and abort a

specified timer. The corresponding 'Timer expires' quest point will never

fire. If the timer is aborted before the 'Timer starts' quest point is reached

then the 'Timer starts' quest point can still succeed but the timer will not be

activated. An aborted timer cannot be reactivated.

• Timer expires: This quest point will succeed when a specified timer

expires. That timer must have first been started with a 'Timer starts' quest

point and cannot have been aborted with a 'Timer aborts' quest point. The

rate at which game time passes is adjusted in the Aurora Toolset. This

quest point will also print out periodic warning messages consisting of the

'Warning Prefix', the remaining seconds, and the 'Warning Suffix'. If no

warning message is desired leave both the 'Warning Prefix' and 'Warning

Suffix' empty.

• Timer starts: This quest point succeeds automatically and starts the

specified timer. That timer can be aborted with a 'Timer aborts' quest

point. When the timer expires the corresponding 'Timer expires' quest

128

point will succeed. The rate at which game time passes is adjusted in the

Aurora Toolset.

• Trigger: This quest point succeeds when the PC enters a trigger and this

quest point is enabled. Optionally, a caption can appear above the PC. If

no caption is desired then leave the 'Caption' field empty or remove the

'Trigger enter - speak caption' encounter.

• Unequip: This quest point succeeds when the player unequips an item.

• Use item: This quest point succeeds when the PC uses a specified item.

• Use item with placeable: The quest point will succeed if the PC uses a

specified placeable with a specified item in their inventory. The item is

consumed when the placeable is used. This quest point will fail if the

placeable is destroyed.

• Use placeable: This quest point will succeed when the PC uses a specified

placeable. This quest point will fail if the placeable is destroyed.

• Use spell on NPC: This quest point succeeds if a specified spell is cast on

a specified NPC. The quest point will fail if the NPC dies.

• Use spell on placeable: This quest point will succeed when a PC uses a

specified spell on a specified placeable.

• Wound: This quest point will succeed if the specified creature is

wounded. Optionally, if the damage type matters then the quest point will

only succeed if the creature is wounded by the specified type of damage.

This quest point will fail if the creature dies before being wounded.

Meta Quest Points

• Activate placeable: This meta quest point represents how the the PC

activates a placeable. There are several recommended bindings for this

meta quest point:

o Open placeable – The PC opens the placeable to activate it

o Use placeable – The PC activates placeable item by using it

normally

o Use item with placeable – The PC activates an item by consuming

an item in their inventory

o Use spell on placeable – The PC activates the placeable by casting

a spell on it

• Arrange meeting: This meta quest point represents how a meeting is

arranged with the PC. There are several recommended bindings for this

meta quest point:

o Acquire – The PC obtains an item describing the meeting place

129

o Automatic – The meeting does not need to be arranged

o Converse – The meeting is arranged during a conversation

• Discover: This meta quest point represents how a person or object is

found after a search. There are several recommended bindings for this

meta quest point:

o Alarm – The search is over at a certain time of day

o Approach – The search is over when the PC approaches the target

o Arrive – The search ends when the PC arrives in an area

o Converse – The search is over when the PC talks to an NPC about

the target and gets a definitive answer

o Trigger – The search is over when the PC enters a region in an area

that may or may not contain the target

o Use placeable – The search ends when an placeable is used

• End: This meta quest point represents how a quest ends and is intended to

be used as the last quest point of a quest. There are several recommended

bindings for this meta quest point:

o Arrive – The quest end when the PC enters an area

o Automatic – The quest ends automatically after the previous quest

point (presumably the climax) is reached

o Converse – The quest ends when the PC talks to an NPC

o Converse - exchange items – The quest ends when the PC and an

NPC exchange items

o Converse - give items – The quest ends when the PC gives the

NPC an item or vice versa

o Kill - The quest ends when a NPC, such as the villain, dies

o Place item – The quest ends when a PC places an item in a

container

o Use placeable – The quest ends when a placeable, such as an

escape pod, is used

• Escort begins: This meta quest point represents how an escort begins.

Either the PC or an NPC can be the escorter. There are several

recommended bindings for this meta quest point:

o Approach – The escort begins with the PC approaching an NPC

o Arrive – The escort begins when the PC enters an area

o Converse – The escort begins with the PC talking to an NPC

o Converse - give items – The escort begins when items are

transferred through conversation

o Kill – The escort begins when an NPC, who was presumably

guarding the follower, dies

o NPC perceives PC – The escort begins when the follower

perceives the PC

o Pay – The escort begins with the PC paying an NPC

130

o Trigger – The escort begins with the PC entering a region within

the area.

• Escort ends: This meta quest point represents how an escort ends. Either

the PC or an NPC can be the escorter. There are several recommended

bindings for this meta quest point:

o Approach – The escort ends with the PC approaching an NPC

o Arrive – The escort ends when the PC enters an area

o Converse – The escort ends with the PC talking to an NPC

o Converse - give items – The escort ends when items are transferred

through conversation

o Kill – The escort ends when an NPC dies

o NPC perceives NPC – The escort ends when the follower perceives

a different NPC

o Trigger – The escort ends with the PC entering a region within the

area.

• Gain authority: his meta quest point determines how a PC gains authority

over an NPC. There are several recommended bindings for this meta quest

point:

o Acquire – The PC acquires items to gain authority

o Converse – The PC is deputized through conversation with an

authority

o Converse - exchange items – The PC gains authority by

exchanging items with the NPC

o Converse - give items – A transfer of items between the PC and the

NPC gives authority

o Converse - has item – The PC gains authority by showing an NPC

an item during conversation

o Converse - use skill – The PC gains authority through skill in

conversation

o Convince – The PC gains authority by convincing an NPC in one

of a variety of ways

o Filter class – The PC gains authority because of their profession

o Filter gender – The PC gains authority because of their gender

o Filter level – The PC gains authority because of their previous

experience

o Filter race – The PC gains authority because of their race

o Pay – The PC gains authority through bribery

o Retrieve – The PC gains authority by retrieving items for an

authority

• Gain item: This meta quest point represents how the PC gains an item.

There are several recommended bindings for this meta quest point:

o Acquire – The PC gains the item by any means, including picking

it off the ground

131

o Converse - give items – The PC gains the item through a

conversation

• Give item: This meta quest point represents how the PC gives an item to

an NPC or organization. There are several recommended bindings for this

meta quest point:

o Converse - exchange items – The PC and an NPC exchange items

o Converse - give items – The PC gives the item to an NPC during a

conversation

o Converse - has item – The PC merely has to show the item during

a conversation

o Place item – The PC gives the item by putting it in a placeable

o Use item with placeable – The PC sacrifices the item to use a

placeable.

• Hint: This meta quest point represents how the PC receives a hint on how

to complete the current quest. There are several recommended bindings

for this meta quest point:

o Acquire – The PC receives a hint by acquiring an item

o Automatic – There are no hints to receive

o Converse – The PC receives a hint by talking to an NPC

o Converse - exchange items – The PC receives a hint through an

exchange of items

o Converse - give items – The PC receives a hint by giving or

receiving an item

o Converse - has item – An NPC will give the PC a hint if the PC

possesses an item

o Convince – The PC receives a hint by convincing an NPC

• Hire: This meta quest point represents how the PC is hired by another

character. There are several recommended bindings for this meta quest

point:

o Converse – The PC is hired after a conversation with an NPC

o Converse - give items – The PC is hired after a conversation with

an NPC where one of them receives an item

• Negotiate: This meta quest point represents the PC conversing with an

NPC. There are several recommended bindings for this meta quest point:

o Converse – The PC simply talks to the NPC

o Converse - exchange items – The PC exchanges items with the

NPC during conversation

o Converse - give items – The PC gives/receives items to/from the

NPC during conversation

o Converse - has item – The PC can only talk to the NPC while

possessing an item

132

o Converse - use skill – The PC can only talk to an NPC after

manipulating them

o Pay – The PC can only talk to an NPC after paying them

• Obtain proof: This meta quest point represents whether proof of a deed

needs to be acquired and delivered. There are several recommended

bindings for this meta quest point:

o Automatic – There is no need to acquire nor deliver proof

o Retrieve – The PC must acquire the proof and deliver it

• Start: This meta quest point represents how a quest begins and is intended

to be used as the first quest point of a quest. There are several

recommended bindings for this meta quest point:

o Acquire – The quest begins when the PC acquires an item

o Approach – The quest begins when the PC approaches something

o Arrive – The quest begins when the PC arrives in an area

o Automatic – The quest begins as soon as the module is loaded

o Converse – The quest begins through conversation

o Converse - give items – The quest begins when an item is

transferred between the PC and an NPC during conversation

o Converse - use skill – The quest begins through the PC's skill in

conversation

o Equip – The quest begins when the PC equips an item

o Filter class – The quest begins if the PC has a level in a specified

class

o Filter gender – The quest begins if the PC is a specified gender

o Filter level – The quest begins if the PC has enough experience

o Filter race – The quest begins if the PC is the specified race

o Kill – The quest begins when the PC kills a specific NPC

o Quest completed – The quest begins when another quest is

completed

o Pay – The quest begins when the PC pays an NPC

o Trigger – The quest begins when the PC enters a region of an area

• Start ambush: This meta quest point represents what causes an ambush to

be sprung. There are several recommended bindings for this meta quest

point:

o Approach – The ambush begins when the PC approaches an NPC

o Arrive – The ambush begins when the PC enters an area

o Converse – The ambush begins when the PC talks to an NPC

o Trigger – The ambush begins when the PC enters a region inside of

an area

• Track: This meta quest point represents how the PC tracks down a person

or object. There are several recommended bindings for this meta quest

point:

133

o Acquire – The PC acquires an item which gives a clue about the

target's location

o Arrive – The PC gains a clue by arriving in an area

o Automatic – There is no trail of clues and the track succeeds

automatically

o Converse – The PC gains a clue by talking to an NPC

o Converse - give items – Through conversation the PC acquires an

item with a clue

o Converse - use skill – The PC receives a clue through skill in

conversation

o Convince – The PC convinces an NPC to give a clue

o Journey – The PC gains a clue by completing a journey

o Open placeable – The PC receives a clue by looking into a

container

o Trigger – The PC gains a clue by entering a region of an area

o Wait – The PC gains a clue by waiting for someone or something

• Travel: This meta quest point represents how the game determines the PC

has reached a location. There are several recommended bindings for this

meta quest point:

o Approach – The PC reaches a location by approaching an NPC

o Arrive – The PC reaches a location by entering an area

o Trigger – The PC reaches a location by entering a region within an

area

134

Quest Patterns

Legend

Shapes

Meta quest point

Quest point

Subquest/mini-quest

Chain of
“Placeholder”
quest points

Borders

Placeholder

Normal

Committing

Enabler
relationship

Activate

Start End

Activate
placeable

The PC must activate several placeables. The ‘Activate’ meta quest point
describes how a single placeable is activated. The ‘Activate’ meta quest
point can be chained to create a series of placeables to be activated.

135

Advocate

Start End

Converse Fail

Negotiate

The PC must converse with a chain of NPCs. Each link of the chain is a
'Negotiate' meta quest point that requires the PC to reach a line of
dialogue in a conversation. There is only one 'Negotiate' meta quest point
initially and more may be created through chaining. If the PC reaches the
failure dialogue line then the quest immediately fails.

Ambush

Start End
Arrange
meeting

Automatic
Start

ambush

Make opponents
hostile

There will be an ambush with either the PC or an NPC as the target. First, a
meeting must be arranged between the opponent and the PC. What initiates the
ambush is determined by a ‘Start ambush’ meta quest point. Finally, the
opponent and PC become hostile to each other. The opponent will attack the PC.
Any NPCs which belong to the same faction as the opponent will also become
hostile but will not attack the PC until the PC attacks a member of their faction.
The author may order other faction members to instantly attack the PC on a
member-by-member basis.

136

Area barrier

Area
barrier

rises

Quest to drop barrier

Area
barrier

falls
PlaceholderStart End

The PC is prevented from using an area transition until the contained mini-quest
is completed. Whenever the PC attempts to use the specified area transition, an
introspection conversation will begin instead. What mini-quest the PC must do
between the area barrier rising and falling is initially represented by a
‘Placeholder’ mini-quest which should be replaced. When that mini-quest is
completed the area barrier will be removed automatically.

Assassinate

Gain
item

Arson

Place
item

Kill

The trail of hints

Get poison Use poison

Hint

Ambush

Start EndJoin
(1 enable)

The PC must assassinate an NPC. There are a variety of ways the victim can be
assassinated: directly by killing the victim, indirectly by committing arson, or
indirectly by poisoning. Optionally, the victim can be lured into an ambush or the
PC can seek out hints.

137

Backstory

Start End

Backstory fragment

Filter
level

Negotiate

The PC learns a little about an NPC's backstory whenever the PC reaches specific
levels. Each 'Backstory fragment' mini-quest contains a 'Filter level' quest point
to provide a level threshold and a 'Negotiate' meta quest point to determine
how the PC learns the backstory fragment. Initially, there is only a single
'Backstory fragment' but more can be created through chaining that mini-quest.

Backup plan

Original plan

Original plan
fails

Backup plan
succeeds

Original plan
succeeds

Placeholder

Start Automatic
(1 enable)

End

Placeholder EndPlaceholder

Backup plan

The PC attempts to complete the original plan (which should replace the
‘Placeholder’ subquest). If the ‘Original plan fails' quest point succeeds then the
PC must complete a backup plan (also initially a ‘Placeholder’). There are two
separate successful endings corresponding to two ‘End’ meta quest points: one for
the original plan and one for the backup plan.

138

Bodyguard

Kill Fail

The quest the ward
must survive

PlaceholderStart End

Ward dies

The PC must protect a specified NPC until another task (represented by the
‘Placeholder’ miniquest) is completed. If that NPC dies before that task is
completed, the quest fails. Otherwise, the quest succeeds.

Conditional reward

Main task

Use conditional
ending

Side task Conditional
ending

Regular ending

Placeholder

Start
Automatic
(1 enable)

End

Placeholder
Automatic
(2 enables)

End

The PC must perform some task represented by the main subquest. If the PC
completes an optional bonus/penalty subquest they will receive a different
reward provided by different ‘End’ meta quest points.

139

Convince

Pay

Converse
– use skill

Gain
Authority

Negotiate

Bribe

Persuade

Use authority

Start
Join

(1 enable)
End

The PC must convince another NPC on an issue. There are many way to convince
an NPC and only one way needs to be successful: bribery, conversational skill,
and use of another's authority. This quest will fail if the NPC is killed or every
method of convincing the NPC fails.

Cooperate

Join
(2 enables)

Converse

Converse

Person 1
cooperates

Person 2
cooperates

Inform person 1 of
cooperation

Inform person 2 of
cooperation

Start
Join

(2 enables) End

Convince

Convince

The PC must convince 2 people to cooperate. It does not matter in which order
the people are convinced. After both people have been convinced the PC must
then inform both people, again in any order, that an agreement has been
reached.

140

Deadline

Alarm Fail

The quest under
a time limit

PlaceholderStart End

The PC must perform a task (which should replace the ‘Placeholder’ subquest)
before the deadline or else the quest will fail. The deadline is an hour of the day,
so the task should take less than a day to complete.

Do in any order

X

Join
(X enables)

Placeholder

PlaceholderStart End

The PC must do all of the the subquests to complete this quest, however the
subquests may be done in any order. The default pattern has 2 subquest
branches but it is easy to create more branches. Each branch must be enabled by
the 'Start' meta quest point and the 'Join' quest point must be enabled by that
branch. The 'Minimum # of enablers' in the 'Join' quest point should be equal to
the number of branches.

141

Do one of many

X

Join
(1 enables)

Placeholder

PlaceholderStart End

The PC needs to only complete 1 of the subquests to complete this quest. The
default pattern has 2 subquest branches, but it is easy to create more branches.
Each branch must be enabled by the 'Start' meta quest point and the 'Join' quest
point must be enabled by that branch.

Escort

Escort
begins

Automatic

Escort
ends

Automatic

Action to begin
escort

Action to end
escort

What causes the
escort to begin

What causes the
escort to end

Start

End

The PC must escort an NPC. What causes the escort to start is determined by the
‘Escort begins’ meta quest point. During the escort the NPC will follow the NPC.
What causes the escort to end is determined by the ‘Escort ends’ meta quest
point.

142

Expel

Kill

Convince the target
to leave

Arson

Acquire proof for
employer

Obtain
proof

(1 enable)

Convince

Implicate

Start
Join

(1 enable)
End

The PC must expel an NPC victim from a location. There are 4 ways of expelling
the victim: 1) Convince them to leave 2) Kill them 3) Burn their property
4) Implicate them. Only 1 of these 4 methods needs to succeed to complete this
quest. If the PC convinces the victim to leave or kills the victim then proof may
need to be delivered to the employer.

Exterminate

Kill
Start End

The PC must kill at least one group of NPCs. Each group is represented by a ‘Kill’
quest point that requires the PC to kill a specified number of creatures of a
specified blueprint. The ‘Kill’ quest points can be chained if more than one group
of creatures must be killed.

143

Feud

Converse

Converse

Hire

Hire

Rival 1
complains

Hired by rival 1

Rival 2
complains

Hired by rival 2

Ruin rival 2

Ruin rival 1

Rivals cooperate

Expel

Cooperate

Expel

Start Join
(1 enable)

End

The PC must resolve a feud between two NPCs or their respective organizations.
Each of the rivals can hire the PC to expel the other rival. The quest can end in
one of three ways: The first rival is expelled, the second rival is expelled, or both
rivals are convinced to cooperate.

Follow

Escort
begins

Automatic

Escort
ends Automatic

Action to
begin move

Action to end move

What causes the
guide to move

What causes the
guide to stop

Start

End

Uncompletable

Maintain the
distance between
guide and follower

The PC must follow an NPC from one place to another. How the following begins
and ends is represented with the 'Escort begins' and 'Escort ends' meta quest
points.

144

Gladiator

Kill

FailPlaceholder

Start End

Restriction violated

The PC must kill the target while obeying some restriction. That restriction
should replace the ‘Placeholder’ subquest. The quest will fail if the PC ever
violates that restriction. If no restriction is desired then leave its placeholder
alone.

Hunt

Kill

Kill the target

The trail of clues

Give proof of the
kill to employer

Discover

How the target is found

Obtain
proof

Track

Start End

The PC must hunt a group of creatures and kill them. There is an optional chain
of 'Track' meta quest points to provide a trail of clues. Once the creatures have
been killed the 'Obtain proof' meta quest point can require the PC to deliver
items, such acquiring kill trophies from the creatures and delivering them to the
employer.

145

Implicate

Gain
item

Place
item

Hint

How to implicate
target

Gain contraband Plant
contraband

Converse

Report target to
authority

Start End

The PC must implicate an NPC by planting an item in a container and reporting
the possession to an NPC authority figure. There is an optional meta quest point
that can be used to provide the PC with a hint, such as to the location of the
implicating item.

Investigate

Negotiate
Start End

The PC must converse with a chain of NPCs. Each link of the chain is a 'Negotiate'
meta quest point that requires the PC to reach a line of dialogue in a
conversation. There is only one 'Negotiate' meta quest point initially and more
may be created through chaining.

146

Journey

Travel
Start End

The PC must travel somewhere. The travel meta quest point describes how one
stage of the journey is reached. The 'Travel' meta quest point may be chained to
create a journey with multiple stages.

Pause

Timer
ends

Timer
starts

Start End

This quest will succeed after a specified number of seconds have elapsed. No
action by the PC is required or expected. This quest should be used as a mini-
quest to create a pause between the events of another quest. The ‘Timer name’
option of each ‘Pause’ quest must have a unique name.

147

Placeholder

Start End

This is a placeholder quest. It should be replaced with another quest pattern.

Profit

Earn
Start End

The PC must earn a specified amount of money by selling goods to a specified
merchant. Chaining the 'Earn' quest point and increasing their 'Money' option
allows the game to respond to the increasing wealth of the PC.

148

Race against time

Timer
expires

Timer
aborts

Timer
starts

Fail

The quest under a
time limit

Placeholder

Start

End

The PC must perform a task under a time limit or else the quest will fail. The task
that must be completed is represented with a placeholder quest, which should
be replaced with the appropriate quest or quest point. While the countdown
timer is active, a warning will periodically appear above the PC's head. If no
warning message is desired leave both the 'Warning prefix' and 'Warning suffix'
empty.

Rally

X

Join
(X enables)

Convince

ConvinceStart End

The PC must convince several people independently from each other. For
example, the PC must convince each lord on a council to elect the PC as
emperor. The default pattern has 2 subquest branches but it is easy to create
move branches. Each branch must be enabled by the 'Start' meta quest point
and the 'Join' quest point must be enabled by that branch. The 'Minimum # of
enablers' in the 'Join' quest point should be equal to the number of branches.

149

Recovery Expedition

Get the items and
give them to the

employer

The trail of clues

Journey Retrieve

Track

Start End

The PC must journey to acquire a set of items and deliver them. Optionally, the
PC may receive a series of clues by using a chain of 'Track' meta quest points.

Recovery Expedition

Get the items and
give them to the

employer

The trail of clues

Journey Retrieve

Track

Start End

The PC must journey to acquire a set of items and deliver them. Optionally, the
PC may receive a series of clues by using a chain of 'Track' meta quest points.

150

Retrieve

Give
item

Gain
item

Start End

The PC must acquire items and deliver them. How they are to be acquired and
delivered is represented with the 'Gain item' and 'Give item' meta quest points
respectively.

Search

Discover

How the target
is found

The trail of clues

Track

Start End

The PC must find a person, place, or thing. There is an optional chain of 'Track'
meta quest points that provide clues to lead the PC to the target. The 'Discover'
meta quest point specifies how the target is found. The placeholder subquest
should be replaced with whatever should happen when the target is found.

Placeholder

Aftermath of the
discovery

151

Placeholder

Subquest chain

Start End

The PC must complete a chain of subquests. Initially, there is only 2 subquests in
the chain but more can be easily added through the insert or chain operation.

Tournament

Minigame
Start End

The PC must win a chain of minigames. The PC will fail the quest if they lose any
of the minigames. There is only one 'Minigame' quest point initially and more
can be created through chaining.

152

Wait

Alarm PlaceholderStart End

The PC must wait for a specific hour of the day. What the PC must do next when
that hour arrives should replace the ‘Placeholder’ subquest. An example of a
'Wait' quest would be waiting until midnight for an informant to appear in an
alley and then talking to the informant to gain vital information.

153

Appendix B - Participant Briefing

 You are invited to participate in a study being conducted by Marcus

Trenton, under the supervision of Dr Duane Szafron. The study examines the

effectiveness of two different tools, the Aurora Toolset's NWScript and

ScriptEase, in creating scripts for quests in the computer game Neverwinter

Nights. Due to the technical nature and lengthy duration of scripting, only those

with previous experience with a scripting or programming language and an

interest in computer games qualify for this study. Tutorials with examples for

both the Aurora Toolset's NWScript and ScriptEase will be provided for

reference.

 The study is scheduled for either Saturday, January 17th or Saturday,

January 24th in the Games and Graphics Lab, CSC 105. The study will occur

from 10am to 5pm with an hour lunch break where drinks and pizza will be

provided. Since this study is lengthy, participants will be paid fifty dollars

compensation for participation.

 If you are interested in or would like to know more then please reply to

this email to reserve one of the twenty seats in the study, and please indicate

which of the dates you would be available.

154

Appendix C - Consent Form

The original formatting has been altered to fit the dissertation format.

155

Research Information and Participants‟ Consent Form:

Is ScriptEase More Effective at Scripting than the NWScript?

Purpose. You are invited to participate in a research study Is ScriptEase More Effective at

Scripting than the NWScript? being conducted by Dr. Duane Szafron and Marcus Trenton of the

Department of Computer Science, University of Alberta. The study examines the effectiveness of

two different tools, the Aurora Toolset and ScriptEase, in creating scripts for the computer game

Neverwinter Nights. We are interested in which tool is easier to use, results in fewer errors, and is

faster to use.

Your participation. Your participation involves first filling out a pre-experiment demographics

survey. Then you will use the Aurora Toolset and ScriptEase tools to script up to eight quests per

tool for the game Neverwinter Nights and use that game to test them. Finally, you will complete a

questionnaire about ease of use, errors encountered, speed of use, and overall preferences for each

tool. The experiment should take about six hours to complete. You will receive $50 compensation

for participation.

Your rights. Your decision to participate in this study is entirely voluntary and you may decide at

any time to withdraw from the study. Your decision to discontinue will not affect your academic

status or access to services from the University of Alberta. If you choose to participate, you may

skip any items you do not wish to answer. Responses made by individual participants on the

questionnaire will remain confidential, and your name will not appear on the questionnaire or be

associated with your responses in any way. Questionnaires/scripts will be identified only by a

researcher-assigned code number. Only researchers associated with the project will have access to

the questionnaires. The results of this study may be presented at scholarly conferences, published

in professional journals, or presented in class lectures. Only grouped (aggregate) data will be

presented. The data will be securely stored by Dr. Duane Szafron for a minimum of five years.

Benefits and risks. This research can potentially contribute to the advancement of tools for

scripting in computer games. There are no foreseeable risks to this study, but if any risks should

arise, the researcher will inform the participants immediately. If you should experience any

adverse effects, please contact Dr. Duane Szafron and/or Dr. Don Heth immediately.

Contact information. If you have any questions or comments on the study, or if you wish a

clarification of rights as a research participant, you can contact Dr. Duane Szafron or the Arts,

Science & Law Research Ethics Board at the number and address below.

Dr. Duane Szafron, Ph.D. Dr. Don Heth, Ph.D.

Department of Computer Science Chair, Arts, Science & Law Research Ethics Board

University of Alberta University of Alberta

Edmonton, AB T6G 2E9 Edmonton, AB T6G 2E9

(780) 492-5468 (780) 492-4224

Signatures. Please sign below to indicate that you have read and understood the nature and

purpose of the study. Your signature acknowledges the receipt of a copy of the consent form as

well as indicates your willingness to participate in this study.

Participant‟s Signature

Date

Researcher‟s Signature

Date

156

Appendix D - Demographics Form

The original formatting has been altered to fit the dissertation format.

157

Pre-Experiment Demographics Survey

Participant Number: ______

Age:___

Gender:___

Current Degree and

Major:___

Year of Study: ______

Years of programming experience: _____________

How regularly do you play video games? (check one)

Never □ Once a month □ Once a week □

Several times weekly □ Daily □

How many computer or console role-playing games (RPGs) have you played?

(check one)

0 □ 1 □ 2 □ 3 □ 4-6 □ ≥7 □

Have you played Neverwinter Nights before? (check all that apply)

Never played □ Played but never completed □ Completed □

Created modules □

How many scripts have you written using NWScript in the Aurora Toolset?

(check one)

0 □ 1-9□ 10-99 □ ≥100 □

How many patterns have you made in ScriptEase? (check one)

0 □ 1-9□ 10-99 □ ≥100 □

158

Appendix E - NWScript Tutorial

The original formatting has been altered to fit the dissertation format.

159

How to Script with NWScript and the Aurora Toolset

 The Aurora Toolset is a large and powerful tool, but this tutorial will only

cover scripting, as that is the focus of the experiment. The relevant GUI controls

are highlighted in the screenshot below. Your goal is to write scripts, but you will

need to attach them to game objects, blueprints, and conversations.

Loading the Module

 When the experiment begins the proper module and area should already be

opened. Should it ever be closed and need to be reopened select the “File” drop-

down menu and select “Open”. Choose to open the “Experiment Aurora” module.

Expand the “Areas” hierarchy on the left sidebar and double click on “Longroot

Forest”. The area will load and the scripting can proceed.

Game Objects, Blueprints, and Resource References

 A game object is anything that can be placed on the map that is not terrain:

non-player characters (NPCs), items, and placeables (chests) are all game objects.

How game objects are referenced in Neverwinter Nights is similar to how objects

are referenced in object-oriented programming. A blueprint is like a class. A

blueprint is uniquely identified by its resource reference (ResRef) as a class is by

its name. Instances of blueprints are called game objects in this tutorial.

160

 Blueprints can fall into several categories, with only creatures, placeables,

items, and triggers relevant to the experiment. The following picture to the left

shows the buttons to click to access the lists of these blueprints. These categories

are further divided into those blueprints that were provided with the game, the

standard blueprints, and those that were created for a specific module, the custom

blueprints. This experiment only uses custom blueprints. Each category of

blueprints is arranged in a hierarchy. The blueprints are found at the bottom of the

hierarchy.

 All the custom item

blueprints are shown in the

picture to the right. They were

revealed by clicking the

placeable icon, the “Custom”

button, the plus sign for

“Containers & Switches” folder,

and then the plus sign for

“Miscellaneous”. The name attribute for the blueprint

is displayed.

 Names and tags are two important attributes

for game objects and blueprints. The name is what

the player sees when playing the game. A tag is a second name that is invisible to

the player. Scripts refer to game objects by their tags. Tags do not have to be

unique. If a script refers to a tag then it will randomly pick a game object

with that tag.

 In this module every blueprint has a unique tag. The game objects of that

blueprint all use that tag. That is not a problem since no script in this experiment

will require distinguishing between two objects of the same blueprint.

To view the name and tag of a blueprint right click on the blueprint and select

“Edit”. The properties window of the blueprint will appear and the “Basic” tab

will contain the name and tag.

Events

 All scripts occur in response to events.

For example, an NPC has a script that describes

what happens when that NPC is killed. The

picture to the left shows the NPC can have

scripts to react to many different events. Each

event has a slot that can hold a script. This NPC

already has default scripts for each slot. These

default scripts can be edited or replaced with a

new script.

 One of the more unintuitive slots is the

161

“OnHeartbeat” slot. A game object's heartbeat is a script that fires every six

seconds during the game.

 The “...” button is used to select an existing script. The “Edit” button

opens up the NWScript editor so changes can be made to this script.

 Scripts can be attached to several different constructs. The relevant

constructs are blueprints, game objects, conversations, and module events.

Editing a Blueprint's Scripts

 The blueprints can be found in the right sidebar. Click on the icon

representing the type of blueprint and click the “Custom” button. Navigate to the

bottom of hierarchy to find the module's blueprints. To edit a blueprint's scripts

right click on the blueprint and select “Edit”. When the properties window

appears, go to the “Scripts” tab. The “...” button is used to select an existing script.

The “Edit” button opens up the NWScript editor so changes can be made to this

script.

 Changing the blueprint's script will not automatically change the

scripts of its game object instances. Updating instances will remove any

scripts from the game objects and replace them with the blueprint's scripts.

To update a blueprint's instances right click on the blueprint and select “Update

Instances”. A series of questions concerning the scope of the update will now

appear. The questions will be slightly different depending on the type of blueprint

being updated. Answer “Yes” to each question with that option. If a screen with

check boxes appears then click “Select All” and select “Okay”.

Editing a Game Object's Scripts

 All of the game objects in the module are found on the left sidebar of the

screen. Right click the game object and select “Properties”. When the properties

window appears, select the “Scripts” tab. The “...” button is used to select an

existing script. The “Edit” button opens up the NWScript editor so changes can be

made to this script.

Conversations

 A conversation is a sequence of dialogue lines alternating between an

NPC (red) and the PC (blue). One conversation file holds all the dialogue between

a single NPC and the PC (player character).

162

 All the conversations present in the module can be found in the left

sidebar of the screen. To open a conversation double click the conversation's

name. As an example, the conversation file woreck_conv contains dialogue

between the NPC Woreck and the PC. The picture above shows there are two

main branches of the conversation: the branch where Woreck gives the PC a quest

and the branch where Woreck thanks the PC for completing the quest.

 Scripts are needed to decide which lines of dialogue are shown under

which circumstances and what actions are taken when a dialogue line is reached.

All conversations start at the “Root” node. The conversation can then proceed to

one of the red NPC dialogue lines contained within. The potential dialogue lines

will be examined in order from top to bottom. The script in the “Text Appears

When ...” slot determines if that dialogue line can be shown. The first dialogue

line that the NPC is allowed to say will be chosen and displayed.

 Red NPC dialogue lines contain a set of blue dialogue lines the PC can

choose from. Each PC dialogue line can also have a “Text Appears When ...”

script. Every dialogue line that a PC is allowed to say will be chosen and

displayed.

Whenever an NPC dialogue line is displayed or a PC dialogue line is chosen then

the script in the “Actions Taken” slot will be executed.

Editing a Conversation's Scripts

 The list of all conversations can be found in the left sidebar. Double click

a conversation file to bring up its window. In a conversation window there are

163

two slots to attach scripts to. These slots can be found under the “Text Appears

When ...” tab and the “Actions Taken” tab. The “...” button is used to select an

existing script. The “Edit” button opens up the NWScript editor so changes can be

made to this script.

Editing Scripts on the Player Character's Events

 All of the events that happen to a PC or to the module itself are found in

the module's event list. This list can be found by clicking on the “Edit” drop-down

menu and selecting “Module Properties”. When the properties window appears

click on the “Events” tab. All of the script slots are now visible. The “...” button is

used to select an existing script. The “Edit” button opens up the NWScript editor

so changes can be made to this script.

Scripting

 Once a script window is open there are several tools at your disposal, most

of which are shown in the picture below. The search field can be used to find

functions and constants whose name contains a given string. The function API

shows all the functions that pass through the search filter. If the function is

selected its documentation appears in the bottom pane. If the function is double

clicked then that text appears where the cursor is in the coding pane. The code

pane is where the scripting code is typed.

 The scripting language, NWScript, uses a syntax close to C but with less

functionality. Everything in NWScript is case sensitive. There are four

important data types in NWScript: integers (int), strings (string), objects (object),

and actions (action). Integers and strings work exactly like their counterparts in C.

Objects act like another primitive data type. They do not have methods and

their data can only be accessed indirectly through functions. Objects cannot

be created or destroyed explicitly; other functions must be called to do that.

Actions are commands for game objects. Some actions occur immediately; others

will be put in a queue. Actions can not be used with an '=' operator. Actions

can only be created with functions and them immediately used in other

functions. The lexicon of all NWScript functions with can be found on the

desktop as Lexicon.chm.

164

 There are a number of features in NWScript that are not found in C. Each

script is associated with an object that can be referenced through the

OBJECT_SELF constant. For example, if a wolf has a script in its OnKilled slot

then that wolf can be referenced through that script's OBJECT_SELF constant.

Functions also have optional parameters. The function shown in the picture above

has an optional parameter. In that example, the bPassive parameter is optional.

“ActionAttack(oAttackee)” and “ActionAttack(oAttackee, bPassive)” are both

valid uses of the function. In the case of the former the parameter bPassive is

assumed to be false, as indicated in the function's documentation.

 Data can be stored and retrieved through the SetLocalInt and GetLocalInt

functions, with similar functions for strings. These functions require the object

which will hold the data as a parameter. If the object the data is stored on is killed

then the data is lost, so it is important to pick the correct object to store the data

on. The example quest stores all data on the module object itself since the module

can never die.

 The script will compile every time it is saved. The results of the compile

will be displayed in the bottom bar, where the function documentation usually is.

The game can still run even if the script does not successfully compile. In that

case the script will not be executed at all.

 Finally, if a default script must be edited then new functionality should be

added onto the script instead of removing the existing functionality. Do not break

what already works in the game in order to making something else work.

165

Journals and Quests

 Journals are used to remind the PC of what they have done and what they

should be doing. Journals are the primary way of measuring progress in a quest.

To edit journal entries click on the “Tools” drop-down menu and select “Journal

Editor”. The window similar to the picture below should appear.

 Quests are displayed in a hierarchy three layers deep. The first layer is the

root node, which does nothing. The second layer contains the names of the quests.

The third layer contains the numbered journal entries for that quest.

 A new quest can be created by right clicking the “Root” and selecting

“Add”. When the quest is selected the window should look like window in the

picture below on the left. A quest has a name and a tag. The players see the name

of the quest, while scripts refer to the tag of the quest. Do not use the XP field; it

does not work, and will not award the PC any experience.

 A journal entry is created by right clicking a quest and selecting “Add”.

When a journal entry is selected the window should look like the window in the

picture below on the right. The “Text” box in the bottom center of the window is

where the text of the journal entry goes. Each journal entry of a quest has an ID

number which is used in scripting. The “Finish Category” check box marks

this journal entry as being a final journal entry for the quest. When that box

is checked the journal entry will appear in the “Quests Completed” tab of the

journal.

Example Quest

 An example quest has already been scripted in the current module. This

section will describe the techniques and ideas used in scripting the quest. The text

of the journal entries and scripts themselves will not be shown in the tutorial since

they can be easily viewed in the module.

 The goal of the quest is simple: To lead Woreck to Castle Holarg. In a bit

more detail, there are three stages to the quest:

1. The PC talks to Woreck to receive the quest and Woreck begins to follow

the PC

166

2. The PC arrives at Castle Holarg, causing Woreck to stop following the PC

3. The PC talks to Woreck Svikt to receive a reward

Six scripts are used in this quest:

 quest0conv1act is attached to “Actions Taken” of the line “It is my duty to

take the brunt of a dragon for you? *Sigh* If it is required of me then let

us go.” in woreck_conv

 quest0conv1when is attached to “Text Appears When” of the line “*Heavy

breath* You there! You have a new duty for the King.” in woreck_conv

 quest0conv2act is attached to “Actions Taken” of the line “An empty

charm? What a grand payment. Good day to you.” in woreck_conv.

 quest0conv2when is attached to “Text Appears When” of the line in

“Good, the Magistrate is already present. You have served well, citizen,

but this message is for his ears only. Take this lucky talisman as payment.

Its luck is clearly exhausted for me.” in woreck_conv

 quest0end_follow is attached to the “OnEnter” event of the Castle Holarg

Entrance trigger blueprint

 There is one more script that is already present in the module but is not

related to this quest. The reveal_map script, which reveals the map for the player,

is attached to the “OnEnter” event of the area. The reveal_map script should not

be removed since a revealed map will make navigating the game world easier.

Variables

 To track progression through the quest, a set of variables are stored on the

module. Each of these variables stores whether a stage has been completed. Other

systems can work but this is the one used in the example. While it may seem

intuitive to use one variable to store progress using the ID of the journal entry this

creates problems with the non-linear nature of quests. Some quests can be

completed in a different ordering of stages, in which case tracking each individual

stage provides simpler logic.

Journals

 A good first step in creating a quest is writing its journal entries using the

Journal Editor. Each stage of the quest naturally correspond to a journal entry.

The example quest was made with a name of “Messenger from the Frontier” a tag

of “Quest0” for easy reference. Three journal entries where then created. The

journal entries followed the chronological order of the quest. This is a

requirement of NWScript, since a lower numbered journal entry cannot be

displayed after a higher number journal entry. In the example the third and final

journal entry was marked as a “Finish Category”.

167

Conversations

 Conversations play a large role in governing the quest, so they were

scripted next. The file woreck_conv contains the conversation between Woreck

and the PC. The conversation has two main branches: the branch where Woreck

instructs the PC to lead him to Castle Holarg and the branch where Woreck thanks

the PC for traveling with him. To ensure the branches appear in the correct

circumstance a script was assigned to each of their “Text Appears When ...” slots.

The script quest0conv1when ensures that Woreck will only offer the quest if the

PC has not already accepted the quest. This is done by simply checking that the

first stage of the quest has not been reached yet.

 The script quest0conv2when ensures that Woreck will only thank the PC

for completing the quest if the PC has lead Woreck to Castle Holarg and has not

yet thanked the PC. This done by checking that the second stage of the quest has

been completed but the third stage has not.

 These scripts at the start of dialogue branches ensure they will appear at

the correct times, but they do not advance the quest in any way. A pair of scripts

on the end of those branches in the “Actions Taken” slots do that.

 The script quest0conv1act will fire when the PC has reached the dialogue

line where they agree to travel with Woreck. That script will give the PC the first

journal entry, mark the first stage as completed, and instruct Woreck to follow the

PC.

 The script quest0conv2act will fire when the PC has reached the dialogue

line where they thank Woreck for the reward given for traveling to Castle Holarg.

That script will give the PC the final journal entry, mark the third stage as reached,

give gold and experience to the PC, and transfer the reward item from Woreck to

the PC.

Blueprints

 There is still one last problem to solve in the example quest: How does the

game know when the PC has reached Castle Holarg? There is a trigger in front of

Castle Holarg named the Castle Holarg Entrance. The script quest0end_follow is

attached to “OnEnter” of the Castle Holarg Entrance trigger blueprint. The script

checks whether Woreck is following the PC by checking that the first stage has

been completed. If Woreck is following the PC then the second stage is marked as

completed, the second journal entry is given, and Woreck stops following the PC.

Once the blueprint was changed its instance was updated or else the new

script would not be applied.

168

How to Play Neverwinter Nights

 To test the game click on the build drop-down menu and select “Test

Module”. Another way to launch the game is to press 'F9'. Be sure to save any

changes.

Game Controls

 Move by left clicking open ground

 Rotate the camera by placing the cursor at the edge of the screen or use the

arrow keys

 Fight by left clicking an enemy NPC (a creature with a red name)

 Talk by left clicking a friendly NPC (a creature with a blue name)

 Open a container's inventory screen by left clicking it. Double click an

item to take it.

 Left click a dialogue option to select it

 Open the PC's inventory screen by pressing 'i'

 Open the journal by pressing 'j'. The “Quests” tab on the left contains

active quests while the “Quests Completed” tab in the middle contains

completed quests.

 Open the map by pressing 'm'

 Highlight interactive objects by holding 'Tab'

169

Appendix F - ScriptEase Tutorial

The original formatting has been altered to fit the dissertation format.

170

How to Script with ScriptEase

 The quests of role-playing video games can be broken down into patterns.

Common quest patterns include defeating an enemy, retrieving an item, and

traveling to a location. ScriptEase provides a catalogue of these patterns and a

means of implementing them with scripts. The quest patterns of ScriptEase

provide a way of controlling the actions and progression of a quest.

 This tutorial will detail how to construct the example 'Escort' quest pattern

in the accompanying module. More advanced controls than those needed to

construct the example quest pattern will be described afterwards.

Starting ScriptEase

 The experiment should begin with

ScriptEase already open and the proper

module loaded. In case the program exits,

ScriptEase can be reopened by double

clicking the ScriptEase icon on the desktop.

The module is loaded by selecting the “File”

drop-down menu and selecting “Open Module ...” and then “Experiment

ScriptEase”. A bug in ScriptEase will occur and you should ask the leading

experimenter to fix it. As the above picture shows, there should already be two

things present in the open module: an encounter called “Area PC Enter – reveal

map” and an example quest called “Messenger from the Frontier”. Though there

are not essential, do not delete either of them. The former allows easier navigation

of the game world and the latter provides a useful example.

Quest Structure

 The idea behind the example quest is simple: The player character (PC)

must lead the non-player character (NPC), Woreck, to Castle Holarg. The idea

behind the quest can be expanded upon to include many details such as what is

the reward or how does the game know when the PC has arrived at Castle Holarg.

Similarly, programming in ScriptEase starts with the idea behind the quest and

gradually expands upon it until all the details have been determined. ScriptEase

scripts quests using a hierarchy of constructs. The patterns higher in the hierarchy,

such as quest patterns, are more abstract and describe ideas. The patterns lower in

the hierarchy, such as encounter patterns, are more concrete and describe actions.

Quest Patterns

 A quest pattern represents the idea behind a typical quest found in

most role-playing games, usually summed up as a single verb, like

171

'Assassinate'. The example quest is an 'Escort' quest. The idea of an 'Escort' quest

is that the PC must escort an NPC until a goal is reached.

 Most operations in ScriptEase are

accessible by right clicking. This quest

was created by right clicking on the root

folder “Experiment ScriptEase.mod” and

selecting “New Specific Quest -> Custom

-> Quests -> Escort”. The new quest,

represented by a blue 'Q' will appear in the

module, similar to the picture on the left.

The red 'x' in the bottom-left corner states

not enough information has been specified

by the user. A quest with a red 'x' will not

work. Additional information can be specified within the tabs of the pattern or the

tabs of other patterns contained within it. The 'Escort' quest pattern has three tabs

which provide documentation and options for the users.

 The “Description” tab provides the name of the quest pattern, which was

set to “Messenger from the Frontier” for the example. A description summarizing

the “Escort” quest pattern is also given in that tab.

 The “Journal Entry” tab has a field for providing a journal entry if the

entire quest fails. The journal entries for a successful quest are entered at the quest

point level described later in the tutorial.

 While the “Description” and “Journal Entry” tabs are

found in all quest patterns, the “Follower” tab is an option

specific to this quest. An option in ScriptEase is like a

parameter in a programming language; it needs to be set to a

value before it can be used. The “Follower” option is set to the

blueprint of the NPC who follows the PC. This piece of

information is needed for the quest to compile successfully.

Every object in the game Neverwinter Nights has a blueprint.

All objects of the same type, like wolves, share the same wolf

blueprint.

Picking a Blueprint

 There are two ways of picking the “Follower” blueprint,

as indicated by the radio button at the bottom of the “Follower”

tab. The first method is to pick from a drop-down list of

appropriate blueprints that have already been used by a pattern

higher in the hierarchy. There is nothing higher than a quest

pattern though, so that list will be empty for this quest pattern.

Quest point patterns and encounter patterns can benefit from this method.

 The second method is to use the “Pick...” button to access the blueprint

picker, which is shown in the picture to the left. The picker will display a

172

hierarchy of blueprints organized by category. Navigate a hierarchy to pick a

blueprint or choose a blueprint from the drop-down list of all blueprints of the

chosen category. Categories that are not appropriate will be grayed out.

Using the second method, “Woreck” was chosen to be the “Follower”. Once

someone is chosen to be the “Follower” the red 'x' disappears from the quest. This

occurred because several of the patterns contained inside the “Escort” quest

pattern referenced the “Follower” and couldn't compile until the “Follower” was

set to a NPC. This option mechanism ensures that “Woreck” needs only be

selected once to be used in multiple circumstances.

 Though the red 'x' has disappeared and there is enough information for the

quest to compile, there is not yet enough information to have a perfectly working

quest since many ScriptEase patterns have a default that does nothing. For

example, the “Start” quest point inside of “Escort” does not nothing by default

and that needed to be changed. Those changes are described in the section on

quest points below.

Quest Points and Meta Quest Points

 Quest patterns are composed of a sequence of quest point and meta quest

point patterns. Quest points represent key plot events within a quest, such as a

conversation or the death of a character. A meta quest point is an abstract

version of a quest point representing the different ways that the event could

occur. 'Start' is a meta quest point which represents how a quest can be begin. The

meta quest point can be set a quest point like, 'acquiring' with an item,

'conversing' with an NPC, and 'arriving' at an area. The advantage of using meta

quest points in quest patterns is flexibility. A smaller catalogue of quest patterns

can cover a larger range of quest ideas. Each meta quest point suggests

appropriate quest points but they can be set to any quest point.

 To view the quests and meta quest

points of a quest pattern click the blue icon

left of the quest. The quest points are

marked with a '•' in the picture below. The

meta quest points are marked with a '¤'.

There are six quest points and meta quest

points in the 'Escort' quest pattern The first

meta quest point is a “Start” meta quest

point. In the example this meta quest point

was set to “Converse” since the quest

begins through conversation. Setting a

meta quest point to a quest point, in this

case a “Converse” quest point, is done by right clicking the meta quest point

and selecting “Set Meta Quest Point... -> New Quest Point... -> Custom ->

Quests -> Converse”. Any quest point found at the final list is intended to fill

that meta quest point. Unsetting a meta quest point is done by right clicking the

173

meta quest point and selecting “Set Meta Quest Point... -> Unset”. After the “Start”

meta quest point was set to the “Converse” quest point the meta quest point was

renamed “Start – Converse”.

 If a meta quest point is unset then

it does nothing: no journal entries, no

generated scripts, absolutely nothing. That

quest point is ignored and the quest

progresses to the next quest point in the

chain. This is different then the 'Automatic'

quest point which can still give a journal

entry and will generate scripts.

 The picture to the left shows the

tabs of a quest point and shows the window

corresponding to the “Journal Entries” tab.

The “Description” tab of a quest point is

just like the “Description” tab of a quest: it

contains the name of the quest point and a

summary of it. The “Quest Point” tab

contains information about how this quest point affects the progress of a quest and

its contents, which are detailed in a later section of the tutorial. Every quest point

has a “Journal Entries” tab. That tab contains journals entries that are shown when

that quest point succeeds or fails. The remaining tabs are options for the quest

point. A “Converse” requires the “NPC” and “Success Line” options be set, which

is why a red 'x' appeared when the “Start” meta quest point was set to “Converse”.

The NPC to be conversed with and dialogue line which causes the quest point to

succeed must now be specified.

 The first option is the

NPC who the PC converses

with, which is “Woreck”. It is

selected the same way as the

“Follower” was to the quest.

Since the “Follower” was

defined higher in the hierarchy

than the quest point, the

“Follower” option can be

reused, as shown in the

diagram on the left. Such reuse

leads to more easily adaptable

patterns, since if the “Follower” was changed to a different NPC that change

would propagate to all contained patterns, like “Converse” the quest point in this

example, which use that option.

 The second option is the “Success Line”, the dialogue line which must be

reached for the quest point to succeed. However, the dialogue picker is different

174

than the blueprint picker. The dialogue picker is shown in the picture below. To

understand the picker requires a description of a conversation.

 A conversation is a sequence of dialogue lines alternating between an

NPC (red) and the PC (blue). One conversation file holds all the dialogue between

a single NPC and the PC. For example, the conversation file woreck_conv

contains dialogue between the NPC Woreck and the PC. The picture below shows

there are two main branches of the conversation: the branch where Woreck gives

the PC a quest and the branch where Woreck thanks the PC for completing the

quest. The line “It is my duty to take the brunt of a dragon for you? *Sigh* If it is

required of me then let us go.” of woreck_conv corresponds to the PC accepting

the quest so it is picked to be the “Success Line”.

 When the options of the “Start - Converse” quest point are set the red 'x'

should disappear again. The remaining work with the quest points is simpler. The

“Escort Begins” meta quest point should remain unset. This sounds unintuitive

but the dialogue line of the “Success Line” of the “Start” meta quest point already

states that escort should begin at that point in the story. Thus, the “Automatic –

begin escort action” should be the next quest point to occur. The reason the

“Escort Begins” exists is that the NPC who gives the quest in “Start” meta quest

point may be a different NPC than the one to be escorted. In this example quest

those NPCs where the same so the “Escort Begins” doesn't need to do anything.

 The “Escort Ends” meta quest point is set to the “Trigger” quest point.

That quest point's option of “Trigger” is set to the “Castle Holarg Entrance”

trigger. Now when the PC enters the invisible trigger region in the game this quest

point will succeed. There is an option for a caption to be spoken by the PC when

they enter the trigger, but it remains empty since no caption is desired in this

example.

 The “End” meta quest point is set to the “Converse – take item” quest

point. This quest point scripts that when a specific line a dialogue is spoken

Woreck should give the PC a lucky talisman. The “Giver” option is once again

“Woreck”. The “Success Line” is “An empty charm? What a grand payment.

Good day to you.” of woreck_conv. The “Item” is the “Lucky Talisman”. Finally,

the “Quantity” remains at 1. In the “Quest Point” tab the “XP Awarded” field was

set to 100 and the “Gold Awarded” field was set to 50. The quest is now almost

complete.

Encounters

Just as quests were composed of quest points, a quest point is composed of

encounters. An encounter reacts to an event in the game with a sequence of

actions. For example, an encounter can specify that when a lever is pulled a door

opens. A quest point can be expanded to reveal its encounters by clicking the blue

icon to the left of the quest point. The result should look similar to the picture to

the left.

175

 All encounters are independent of

each other; their order does not matter.

Encounters are represented by an 'E'. The

encounters with a '+' will cause the containing

quest point to succeed when the encounter

fires. Similarly, an encounter with a '-' will

cause a failure. Encounters without a '+' or '-'

do not directly affect the success or failure of

the quest point. They are placed in the quest

point for convenience.

 Every encounter has at least two tabs.

The “Description” tab has a field for the quest

point name and a summary of the encounter.

The “Plot” tab has a radio button that specifies how many times this encounter

can fire. The default is it fires every time its conditions are met. The remaining

tabs are options of the encounter, which work in the same way a quest point's or

an quest's options do.

 An encounter is composed of condition and action patterns, but you

do not need to view or edit any of them for this experiment.

Controlling (Enabling/Disabling) Dialogue

The only thing left to do for the example quest to work is to add an encounter to

each of the converse quest points. Currently, the top branch of woreck_conv will

always appear during a conversation. However, the branch dealing with accepting

the quest should only appear before the PC accepts the quest, and similarly, the

the branch dealing with rewarding the PC should only appear after the PC reaches

Castle Holarg. Thus, the 'accepting' branch should only appear when “Start –

Converse” is enabled; a discussion of what it means for a quest point to be

enabled is in the 'Quest Point Progress and Operatoins' section. Similarly, the

'reward' branch should only appear while “End – Converse take item” is enabled.

 To control the dialogue a “Conversation filter – quest point enabled”

encounter must be created for each quest point that involves conversation.

To create the encounter for the 'accepting' branch right click the “Start –

Converse” quest point. Select “New Specific Encounter -> Custom -> Quests

-> Conversations -> Conversation filter – quest point enabled”. The “Dialogue

Line” should be set to the line “*Heavy breath* You there! You have a new duty

for the King.” in woreck_conv. The “Quest Point” option should be set to “Start –

Converse”. Create a similar encounter for “End – Converse take item” except the

“Dialogue Line” should be “Success Line” is “Good, the Magistrate is already

present. You have served well, citizen, but this message is for his ears only. Take

this lucky talisman as payment. Its luck is clearly exhausted for me.” in

woreck_conv, and the “Quest Point” should be “End – Converse take item”. The

example quest should now work as desired.

176

Quest Point Progress and Operations

How Quest Points Track Quest Progression

 The progression of a quest is measured in quest points, ordinary and meta.

For linear quests sequence of quest point progression is a chain that begins at

“Start” and finishes at “End”. The example “Escort” quest is linear. The chain is

linked together by enablers. The enablers specify the order the quest's events

should occur in. For example, the picture below shows the “Escort Begins” quest

point is enabled by the “Start” quest point. This makes sense since PC should not

be able to escort Woreck until they begin the quest.

 The first quest point begins enabled.

Once a quest point becomes enabled it can

either succeed or fail, at which point it stops

being enabled. When that quest point

succeeds its success journal entry is given and

its successor quest point becomes enabled.

When the last quest point succeeds the quest

is over. If a quest point fails then its failure

journal entry is given and nothing new is

enabled, possibly severing the chain. If there

is no longer a way for the last quest point

to succeed then the entire quest fails and

the quest's failure journal entry is given.

 However, the events of a quest do not

have to happen in order. Consider a different

quest where the PC is hired to kill a monster.

The PC would start by conversing with the NPC. Then the PC would kill the

monster. Finally, the PC would converse with the NPC again. The quest points of

the quest would be

 Start - Converse

 Kill

 End - Converse

However, the quest should still succeed if the PC kills the monster first and then

converses with the NPC twice. This is not a problem in ScriptEase since quest

points can be reached without being enabled. After the first 'Converse'

succeeds the 'Kill' would immediately succeed since it was already reached. Since

journal entries only appear when the quest point succeeds/fails they are given the

order the quest points appear in the quest.

 So far linear quests have been discussed. Not all quests are linear though.

A quest point can enable multiple other quest points, thus creating multiple

branches for the quest to progress in. Similarly, a quest point can be enabled by

multiple other quest points. Consider a quest where the PC must either converse

177

with an NPC or kill that NPC. The “Start” would enable both “Converse” and

“Kill”, while the “End” would be enabled by both “Converse” and “Kill”. The

number of enables required by the “End” would determine how many of the

preceding quest point need to succeed. One enable requires either “Converse” or

“Kill” to succeed, while two enables would require both to succeed. The list of all

enablers for a quest point is found in its “Quest Point” tab.

 To change the number of enablers of a quest point go to its “Quest Point”

tab shown in the picture to the left. The “Minimum # Enablers” field is located on

this pane. To change which quest points enable the current one click on the “Pick”

button. A window will pop up where you can select which quest points will be

enablers. A quest point cannot enable itself.

 Some quests are complex enough to

have subquests, which are quests within

quests. An example would be the 'Cooperate'

quest shown in the picture below. In a

'Cooperate' quest two NPCs must be

convinced to cooperate. 'Convince' is itself a

quest. In the 'Cooperate' quest a 'Convince'

subquest is a single quest point. When the

'Convince' subquest succeeds/fails the

'Convince' quest point of 'Cooperate'

succeeds/fails.

 By using a check box on the “Quest

Point” tab a subquest can be turned into a

miniquest. All of a miniquest's journal

entires appear under the same heading as

the superquest's. A subquest's journal

entries appear under a different heading than the superquest's. In ScriptEase

subquest is represented by a 'Q' and a miniquest by a 'q'.

Changing a Quest's Structure

 Setting a meta quest point is not the only thing that can change the

structure of a quest. Quest points can be reordered, replaced, inserted, and deleted

with in a quest.

 Quest points can be reordered by dragging a quest point into its containing

quest. This action will place the dragged quest point at the bottom of the list of

quest points. Reordering quest points does change how the quest progresses.

The first quest point in the list will always function as the starting quest point

and will be begin enabled, and the last quest point will always function as the

ending quest point. When the ending quest point succeeds the quest succeeds.
Any quest point (meta or ordinary) can be replaced with another quest point.

A replacing quest point will keep the enablers, gold and XP awards, and

journal entries from original quest point. Replacing a quest point is done by

178

right clicking it and selecting “Replace With...”. The menus then branch to allow

you to select any ordinary quest point, meta quest point, and subquest to replace

the current quest point with.

 Removing a quest point is easy: right click the quest point and select

“Delete”. When a quest point is deleted its enabler links are broken. All quest

points that were enabled by the deleted quest point must now be enabled by

another quest point.

 To make a new quest point right click on the quest and select “New

Specific Quest Point -> Custom -> Quests ->” and then the desired quest

point. To make a new meta quest point or new subquest select and “New Meta

Quest Point” or “New Subquest” instead of “New Specific Quest Point”. The new

quest point will appear at the bottom of the quest. The quest points should now be

reordered in the quest so they appear in the correct positions. The enablers of the

new quest point must be set as well.

 Quest points can also be inserted after another quest point. This does not

break the enabler chain. If the chain was originally A -> C and 'B' is inserted after

'A' the chain automatically becomes A -> B -> C. To insert a quest point right

click the original quest point and select “Insert...” and navigate to find the quest

point, meta quest point, or subquest to be inserted.

Playing Neverwinter Nights

 ScriptEase will automatically generate the scripting code for Neverwinter

Nights if the “File” drop-down menu is picked and “Save Module and Compile”

is selected. A window will appear describing the compiling process. If it is

successful then the next step is to run this module in Neverwinter Nights. Click

the “Build” drop-down menu and select “Load and Play Module in NWN” to run

the module or press 'F9'.

Game Controls

 Move by left clicking open ground

 Rotate the camera by placing the cursor at the edge of the screen or use the

arrow keys

 Fight by left clicking an enemy NPC (a creature with a red name)

 Talk by left clicking a friendly NPC (a creature with a blue name)

 Open a container's inventory screen by left clicking it. Double click an

item to take it.

 Left click a dialogue option to select it

 Open the PC's inventory screen by pressing 'i'

 Open the journal by pressing 'j'. The “Quests” tab on the left contains

active quests while the “Quests Completed” tab in the middle contains

completed quests.

 Open the map by pressing 'm'

 Highlight interactive objects by holding 'Tab'

179

Appendix G - Quest Instructions

The original formatting has been altered to fit the dissertation format.

180

Quest 1: Lighthouse Inspection

Summary: The PC is hired by Wriggle to inspect the lighthouse and report back.

Relevant locations:

 The NPC Wriggle is by the shady tree map marker and speaks the

wriggle_conv conversation

 The Lighthouse Region trigger surrounds the lighthouse at the lighthouse

map marker

Tasks:

 After the PC accepts the quest by reaching the dialogue line “That is a full

bag. I will gladly do this task.” of wriggle_conv the dialogue line

“Uggghhh it is too hot today.” of wriggle_conv, which offers the quest, no

longer appears.

 Once the dialogue line “That is a full bag. I will gladly do this task.” of

wriggle_conv is spoken the PC receives a quest “Lighthouse Inspection”

and its first journal entry “The lazy engineer, Wriggle Broadfoot, wants

me to survey the lighthouse for damage.”

 When all of the following conditions are met:

o The PC enters the Lighthouse Region trigger

o The dialogue line “That is a full bag. I will gladly do this task.” of

wriggle_conv conversation is spoken

then the following actions occur:

o The PC receives the journal entry “I am no expert, but the

lighthouse appears to be in good condition. I should return to

Castle Holarg and tell Wriggle Broadfoot the good news.”

o The PC speaks “Hmmm ... everything looks fine here, no cracks”

in text above their head

 The dialogue line “*Snore* Huh? What? Oh, there are you are.” of

wriggle_conv should only appear after the PC has entered the Lighthouse

Region trigger, and it should disappear again when the dialogue line

“*Growl* You have won this time.” of wriggle_conv is spoken.

 Once the dialogue line “*Growl* You have won this time.” of

wriggle_conv is spoken the following actions occur:

o The quest is over and the PC receives its final journal entry “I did

Wriggle Broadfoot's work for him and he cheated me on the

payment. I will get my revenge another time.”

 The PC receives 25 gold and 100 experience (XP)

181

Quest 2: The Lost Diamond

Summary: The PC finds a treasure map which leads to the Clautman Diamond.

Relevant locations:

 The treasure map item is inside the half-buried chest placeable at the

shipwreck map marker

 The Clautman Diamond item is inside the weathered sack placeable at the

tower ruins map marker

Tasks:

 When the PC acquires the treasure map inside the half-buried chest the

PC receives a quest “The Lost Diamond” and its first journal entry “What

a lucky day; I found a treasure map. It indicates the Clautman Diamond is

buried in the ruins of a watchtower.”

 When the following conditions are met:

o The PC acquires the Clautman Diamond from the weathered sack

o The PC has acquired the Treasure Map

then the following actions occur

o The quest is over and the PC receives its final journal entry “I have

found the massive Clautman Diamond. It must be worth a fortune,

maybe even 2 fortunes.”

o The PC receives 150 experience (XP)

 If the PC acquires the Clautman Diamond first then no journal entries

appear until the treasure map is acquired

182

Quest 3: Dragon Disposal

Summary: Habe pleads for the PC to get rid of a dragon wyrmling. The dragon

can be killed or driven off by using a lever to ring the warning bell.

Relevant locations:

 The NPC Habe, who is at the north edge of Jurenglade, holds the pie item

and speaks the conversation habe_conv

 The warning bell lever placeable is by the watchtower at the watchtower

map marker

 The NPC dragon wyrmling is at the dragon's lair map marker

Tasks:

 After the dialogue line “So, I need to pull a lever or kill a baby dragon.

This sounds too easy. I will be back.” of the conversation habe_conv is

spoken the dialogue line “Greetings. Care to do an old farmer a favour?”

of habe_conv no longer appears.

 Once the dialogue line “So, I need to pull a lever or kill a baby dragon.

This sounds too easy. I will be back.” of habe_conv is spoken the PC

receives a quest “Dragon Disposal” and its first journal entry “There is a

dragon wyrmling outside of Jurenglade threatening the chickens and Habe

Ugren wants me to get rid of it. I can either kill it or flip the warning bell

lever to drive it off.”

 The PC receives the journal entry “I have killed the baby dragon. I almost

regret it but it was a menace. I should inform Habe Ugren.” when all of

the following conditions are met:

o The dragon wyrmling has died

o The dialogue line “So, I need to pull a lever or kill a baby dragon.

This sounds too easy. I will be back.” of habe_conv has been

spoken

 The PC receives the journal entry “The warning bell is ringing loudly.

Hopefully, it will drive the dragon away or summon the soldiers to defend

the village. Habe Ugren will want to hear this good news.” when all of the

following conditions are met:

o The PC flips the warning bell lever

o The dialogue line “So, I need to pull a lever or kill a baby dragon.

This sounds too easy. I will be back.” of habe_conv has been

spoken

 The dialogue line “Have you rid the countryside of the dragon?” of

habe_conv should only appear after all the following conditions are met:

o The Dragon Wyrmling is dead or the warning bell lever has been

flipped.

183

o The dialogue line “So, I need to pull a lever or kill a baby dragon.

This sounds too easy. I will be back.” has been spoken

and it should disappear again when the dialogue line “Mmm my favourite

kind of pie.” of habe_conv has been spoken.

 Once the dialogue line “Mmm my favourite kind of pie.” of habe_conv

has been spoken the following actions occur:

o Habe gives the PC the pie from his inventory

o The quest is over and the PC receives its final journal entry

“Jurenglade's chickens are now safe from the baby dragon, and

Habe Ugren has given me a tasty pie. It was a good day.”

o The PC receives 500 experience (XP)

 If the PC kills the Dragon Wyrmling or flips the warning bell lever before

talking to Habe then the PC must still talk to Habe twice: once to get the

quest and another to finish the quest

184

Quest 4: Save Jurenglade from the Undead

Summary: Cadros hires the PC to defeat the zombies attacking Jurenglade.

Relevant locations:

 The NPC Cadros, who is at the north edge of Jurenglade, holds the bear

pelt item and speaks the cadros_conv conversation

 The zombie NPCs are at the arena map marker

Tasks:

 After the dialogue line “Enough history! I will go and bring them their

final death.” of cadros_conv is spoken the dialogue line “You look like the

capable sort. Could you help our village in its hour of need?” of

cadros_conv no longer appears.

 Once the dialogue line “Enough history! I will go and bring them their

final death.” of cadros_conv is spoken the PC receives a quest “Save

Jurenglade from the Undead” and its first journal entry should appear:

“Cadros Basker told me that 6 zombies are attacking the town. I should go

to the unholy ground of the arena in the northern woods and kill them.”

 The PC receives a journal entry “I have killed all the zombies that haunt

the arena. I should report the good news to Cadros Basker in Jurenglade.”

once the following conditions are met:

o The dialogue line “Enough history! I will go and bring them their

final death.” of cadros_conv has been spoken

o 6 zombies are dead

 The dialogue line “Such a foul stench! You have fought the zombies.” of

cadros_conv should only appear after both of the following conditions

have been met:

o The dialogue line “Enough history! I will go and bring them their

final death.” of cadros_conv has been spoken

o 6 zombies have been killed

and it should disappear again after the dialogue line “It will do. Goodbye.”

of cadros_conv has been spoken

 Once the dialogue line “It will do. Goodbye.” of cadros_conv has been

spoken then the following actions occur:

o Cadros Basker gives the PC the bear pelt from his inventory

o The quest is over and the PC receives its final journal entry

“Jurenglade is safe from the undead, and I have been paid with an

expensive bear pelt.”

o The PC receives 300 experience (XP)

 If the PC kills the zombies before talking to Cadros then the PC must still

talk to Cadros twice: once to get the quest and another to finish the quest

185

Quest 5: Medicine Run

Summary: Doctor Trier hires the PC to collect trelion leaves from Walina.

Relevant locations:

 The NPC Doctor Trier is by the Castle Holarg map marker and speaks the

dr_trier_conv conversation

 The NPC Walina, who is at the north edge of Jurenglade, holds the trelion

leaves item and speaks the walina_conv conversation

Tasks:

 After the dialogue line “Okay, okay, I am going.” of dr_trier_conv is

spoken the dialogue line “Traveler, I need your help.” of dr_trier_conv no

longer appears.

 Once the dialogue line “Okay, okay, I am going.” of dr_trier_conv is

spoken the PC receives a quest “Medicine Run” and its first journal entry

“An outbreak of ecoplamenia requires trelion leaves to cure. The rather

somber Doctor Trier wants me to collect these leaves from Walina Selsea

in Jurenglade.”

 The dialogue line “What do you want? Please tell me you can fix a wagon.”

of walina_conv will only appear when the dialogue line “Okay, okay, I am

going.” of dr_trier_conv has been spoken, and should disappear when the

dialogue line “I have to go now.” of walina_conv has been spoken.

 When the dialogue line “Not that disease again. Here, take them. Blasted

wagon *kick*. I know Doctor Trier will pay me back.” of walina_conv is

spoken Walina gives the PC the trelion leaves from her inventory.

 When the PC acquires the trelion leaves they receive the journal entry “I

have obtained the trelion leaves from Walina Selsea. I must quickly

deliver them to Doctor Trier at Castle Holarg.”

 The dialogue line “I can smell the trelion leaves on you. Please give them

to me.” of dr_trier_conv should only appear when the PC has the trelion

leaves, and it should disappear when the dialogue line “*Snatch* Goodbye.

I have lives to save.” of dr_trier_conv has been spoken.

 Once the dialogue line “*Snatch* Goodbye. I have lives to save.” of

dr_trier_conv has been spoken following actions occur:

o The PC gives Doctor Trier the trelion leaves from their inventory

o The quest is over and the PC receives its final journal entry

“Doctor Trier has the trelion leaves she needs to cure the sick in

Castle Holarg, but she refused to give me a reward.”

o The PC receives 200 experience (XP)

186

Quest 6: A Taxing Situation

Summary: Nilly wants the PC to frame the tax collector Argus by planting liquid

rainbow in his tax chest.

Relevant locations:

 The NPC Nilly is by the wharf map marker and speaks the nilly_conv

conversation

 The liquid rainbow item is inside the secret cache placeable by the

watchtower map marker

 The tax chest placeable is near the shady tree map marker

 The NPC Magistrate Serjo is near the Castle Holarg map marker

Tasks:

 After the dialogue line “From past experience ...” in the conversation

nilly_conv is spoken the dialogue line “Hi there cutey. Are you interested

in some dirty work?” of nilly_conv no longer appears.

 Once the dialogue line “From past experience ...” of nilly_conv is spoken

the PC receives a quest “A Taxing Situation” and its first journal entry

“Nilly Basker has asked me to frame the tax collector Argus Ritker for

drug smuggling. She suggests I obtain some liquid rainbow. I should learn

where I can find it.”

 Once the dialogue line “This sounds like fun. I will do it.” of nilly_conv is

spoken the PC receives a journal entry “Nilly Basker says I can find some

liquid rainbow in a secret cache by the watchtower.”

 The PC receives the journal entry “I have acquired some liquid rainbow.

Now I need to put it in Argus Ritker's tax chest. He should be close to

Castle Holarg.” when all of the following conditions are met:

o The PC acquires liquid rainbow

o The dialogue line “From past experience ...” of nilly_conv has been

spoken.

 The PC receives the journal entry “The setup is complete. All I have to do

is tell the Magistrate of Castle Holarg about the liquid rainbow in the tax

chest and then I can watch the fireworks.” when all of the following

conditions are met:

o The tax chest receives liquid rainbow

o The dialogue line “From past experience ...” of nilly_conv has been

spoken.

 The dialogue line “What do you want, peasant?” of magistrate_conv

should only appear when all of the following conditions are met:

o The tax chest contains liquid rainbow

o The dialogue line “From past experience ...” of nilly_conv has been

spoken.

187

and it should disappear when the dialogue line “Then do not let me delay

you from checking his tax chest.” of magistrate_conv has been spoken.

 When the dialogue line of “Then do not let me delay you from checking

his tax chest.” of magistrate_conv has been spoken the PC receives a

journal entry “The Magistrate was fuming at Argus Ritker's 'guilt'. The

poor sod. I should tell Nilly Basker of my success. She was at the wharf

the last time I talked to her.”

 The dialogue line “I hope you have good news. I am downright giddy with

anticipation.” of nilly_conv should only appear when the dialogue line

“Then do not let me delay you from checking his tax chest.” of

magistrate_conv has been spoken, and it should disappear when the

dialogue line “It was my pleasure.” of nilly_conv has been spoken.

 Once the dialogue line “It was my pleasure.” of nilly_conv has been

spoken the following actions occur:

o The quest is over and the PC receives its final journal entry “Nilly

Basker was overjoyed that her scheme succeeded. She was

positively giddy.”

o The PC receives 400 experience (XP)

 If the PC acquires the liquid rainbow or places it in the tax chest before

talking with Nilly the PC must still talk to Nilly before talking to

Magistrate Serjo.

188

Quest 7: The Bandits' Hostage

Summary: The PC must save Desmoth from bandits and return him to his mother,

Kira.

Relevant locations:

 The NPC Kira, who is by the potato field in Jurenglade, holds the ransom

note item and speaks the kira_conv conversation
 The NPC Mira is by the orchard in Jurenglade and speaks the mira_conv

conversation
 The bandit camp entrance trigger is between Jurenglade map marker and

the bandit camp map marker
 The NPC Desmoth is at the bandit camp map marker and speaks the

desmoth_conv conversation

Tasks:

 After the dialogue line “I will bring him back too.” of kira_conv is spoken

the dialogue line “Help! Help! My son has been kidnapped. My Desmoth

is gone.” of kira_conv no longer appears.
 Once the dialogue line “I will bring him back too.” of kira_conv is spoken

the follow happens:
o PC receives a quest “The Bandits' Hostage” and its first journal

entry “A hysterical Kira Ugren asked me to save her son Desmoth

from bandits. I should talk with Mira Selsea; she knows where the

bandits came from.”
o The PC reveive the ransom note from Kira Ugren's inventory.

 The dialogue line “What can I do for you, stranger?” of mira_conv only

appears when the dialogue line “I will bring him back too.” of kira_conv

has been spoken, and it should disappear when the dialogue line “Then I

will distribute righteous vengence for him too.” of mira_conv has been

spoken.
 When the dialogue line “Then I will distribute righteous vengence for him

too.” of mira_conv is spoken the PC receives a journal entry “Mira Selsea

spotted the bandits fleeing south-west into the woods. I should look for

Desmoth there.”
 The PC receives the journal entry “I have found poor Desmoth. He is in a

camp full of bandits. I must talk him into following me.” when all of the

following conditions are met:
o The PC enters the bandit camp entrance trigger
o The dialogue line “I will bring him back too.” of kira_conv has

been spoken.
 The dialogue line of “AHHH! Please do not hurt me!” of desmoth_conv

appears when the PC has entered the bandit camp entrance trigger, and

189

disappears when the dialogue line of “Follow me.” of desmoth_conv has

been spoken.
 When all of the following conditions are met

o The PC has entered the bandit camp entrance trigger
o The dialogue line “Follow me.” of desmoth_conv has been spoken

then the following actions occur:
o Desmoth follows the PC
o The PC receives the journal entry “The traumatized Desmoth is

following me back to his mother in Jurenglade's farm. I should not

waste any time.”
 When the following conditions are met for the first time

o The PC is within 8.0 metres of the Kira
o The dialogue line “Follow me.” of desmoth_conv has been spoken

then the following actions occur:
o Desmonth stops following the PC
o The PC receives the journal entry “I have returned young Desmoth

to his mother, Kira Ugren. I should talk to her about the reward.”
 When the dialogue line of “Desmoth! You brought my Desmoth back.

How can I ever thank you?” of kira_conv only appears when the following

conditions are met:
o The PC is within 8.0 metres of Kira
o The dialogue line “Follow me.” of desmoth_conv has been spoken

and it should disappear when the dialogue line “I looted the bandits'

camp. ...” of kira_conv has been spoken.
 Once the dialogue line “I looted the bandits' camp. ...” of kira_conv has

been spoken these actions occur:
o the quest is over and the PC receives its final journal entry

“ Desmoth is back with his mother and I have the bandits' loot.

Everybody is satisfied, well except for the bandits.”
o The PC receives 700 experience (XP)

190

Quest 8: Wolfbane

Summary: Kit hires the PC to kill the pack of 5 wolves that threaten her cows.

Relevant locations:

 The NPC Kit is at the cow pen in Jurenglade and speaks the kit_conv

conversation

 The wolf NPCs are at the wolves' den map marker

Tasks:

 After the dialogue line “I will return when I wear their hides as boots.” of

kit_conv is spoken the dialogue line “Hello there. Come to admire our

farm? It is not much, but it is ours.” of kit_conv no longer appears.

 Once the dialogue line “I will return when I wear their hides as boots.” of

kit_conv is spoken the PC receives a quest “Wolfbane” and its first journal

entry “Kit Basker is having trouble with a pack of 5 wolves. Enough

trouble that she wants them dead. I can find the wolves in the eastern

woods.”

 The PC receives a journal entry “I have killed the wolves and turned their

pelts into a new pair of boots. My feet will be warm this winter. I should

show Kit Basker back in Jurenglade.” once the following conditions are

met:

o 5 wolves are dead

o The dialogue line “I will return when I wear their hides as boots.”

of kit_conv has been spoken

 The dialogue line “Since my poor cows have not met your blade, I can

only hope those wolves have.” of kit_conv should only appear after all of

the following conditions have been met:

o 5 wolves have been killed

o The dialogue line “I will return when I wear their hides as boots.”

of kit_conv has been spoken

and it should disappear when the dialogue line “Thank you.” of kit_conv

has been spoken.

 Once the dialogue line “Thank you.” of kit_conv has been spoken then the

following actions occur:

o The quest is over and the PC receives its final journal entry “Kit

Basker was pleased to learn I have killed the wolf pack. Another

honest day's work is done.”

o The PC receives 200 gold (XP)

 If the PC kills the wolves before talking to Kit then the PC must still talk to

Kit twice: once to get the quest and another to finish the quest

191

Appendix H - Quest Comparison

The original formatting has been altered to fit the dissertation format.

192

Quest Comparison

Participant number: _____

Quest number: _____

Enter a time for the first two statements and a number for all further statements.

 NWScript ScriptEase

Starting time for quest work

Ending time for quest work

Number of compiles after the first in-game

test run

Number of in-game test runs

Number of bugs encountered with the tool

Respond to each statement by marking one of the five choices

 Strongly

Agree

Slightly

Agree

Neutral Slightly

Disagree

Strongly

Disagree

ScriptEase was easier to use

than NWScript

ScriptEase allowed me to make

quests faster than NWScript

ScriptEase allowed me to find

and fix errors faster than

NWScript

193

Appendix I - Overall Tool Comparison

The original formatting has been altered to fit the dissertation format.

194

Overall Tool Preference

Participant number: _____

Respond to each statement by marking one of the five choices and provide a brief

explanation for your choice.

 Strongly

Agree

Slightly

Agree

Neutral Slightly

Disagree

Strongly

Disagree

Overall, I preferred using

ScriptEase instead of

NWScript to create the

quests found in this study.

Why?

__

__

__

 Strongly

Agree

Slightly

Agree

Neutral Slightly

Disagree

Strongly

Disagree

Overall, I would prefer to

use ScriptEase instead of

NWScript to create quests

in a module of my own

design.

Why?

__

__

__

