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Abstract

Resource constraints, e.g. lack of time and human resources, is a major issue in software testing

practice. In short, testers have limited time to test software systems. Therefore, managers are

expected to spend more resources on software components that are likely to contain many defects.

To help managers make better decisions of selective testing, it is beneficial to identify defect-prone

software components before the actual testing.

In this thesis, we propose a model for software defect prediction. The proposed model com-

bines the topological properties of the software dependency network and the textual information

in source code to predict defect-prone software components. We evaluate our model on data from

Eclipse, Netbeans, and Gnome projects at different levels of granularity. The evaluation results are

encouraging, showing that our model achieves higher prediction accuracy than prior work.
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Chapter 1

Introduction

Defects in software systems are costly. According to a report by the U.S. National Institute of Stan-

dards and Technology, due to inadequate testing, the annual cost of software defects on U.S. econ-

omy is estimated to be 59.5 billions [52]. There have been numerous efforts in developing software

testing tools and techniques to identify and remove software defects [3]. However, as resources, e.g.

time and human effort, in the software development process are limited, it is infeasible to conduct

thorough tests on the entire software system [15]. Therefore, managers are typically expected to

allocate these resources on the parts that are likely to contain more defects. To help managers make

better decisions on selective testing and resource allocation, it is beneficial to predict defect-prone

software components automatically.

In order to predict defect-prone software components, researchers propose to use program de-

pendency relations. Previously, program dependency relations are widely used for software testing

[44] and debugging [2]. Zimmermann et al. claim that central software components are more likely

to be defect-prone and hence the topological properties of the software dependency network could

be used to assist the defect prediction task [64]. They use program dependency relations to construct

the software dependency network for binaries (DLL files) in Windows Server 2003, perform a so-

cial network analysis on the dependency network to measure the centrality of a particular software

component in the network, and subsequently use the network metrics as predictors of post-release

defects. They show that social network measures on the software dependency network are good

predictors of post-release defects.

Bird et al. combine the software dependency network [64] and the developer contribution net-

work [40] to construct a socio-technical network [4]. They argue that the socio-technical network

considers both overt program dependency relations and latent co-development relations (software

components that are developed by the same developer are implicitly related). Figure 2.1 shows an

example of the socio-technical network. Component A depends on component C and component

C depends on component B, D, and E. Developer Bob contributes to component A, B, and C and

developer Don contributes to component C, D, and E. The latent co-development relations that both

A and B are developed by Bob is captured by the path A-Bob-B and B-Bob-A. Bird’s experiment
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Bob A B 

C 

Don D E 

Figure 1.1: Socio-technical network example

shows that to predict post-release defects in Eclipse plugins, the socio-technical network approach

achieves a dramatically higher accuracy than the software dependency network and the developer

contribution network separately.

We note that both the software dependency network approach [64] and the socio-technical net-

work approach [4] perform a social network analysis without considering dependency strength in-

formation [62].

We argue that dependency strength information can be used together with network topological

properties to predict whether a software component is defect prone. The intuition is that depen-

dency strength reveals how tightly software entities are coupled and the degree of coupling indicates

software design quality [25]. Specifically, tight coupling between software components is generally

taken as poor design as it makes modification and parallel development complex [53]. Therefore,

we propose that different degrees of dependency strength (loose coupling and tight coupling) have

different contributions to defect-proneness and hence should be analyzed separately.

There are coupling metrics that quantify coupling by considering method invocation [14], mes-

sage passing [31], and co-changes [63]. Gethers et al. [22] argue that these metrics lack the ability

to identify implicit relations embedded in comments and identifiers. They further use case stud-

ies to demonstrate the efficacy of using topic models [12] to measure entity couplings. Moreover,

we note that, except for the topic model based approach [22], all these approaches work by study-

ing code structure and hence cannot measure the relation strength between software components

and non-software entities like developers [14, 31]. Therefore, in this work, in order to leverage

both overt software dependency relations and latent co-development relations, we use a topic model

to quantify coupling degrees between software components and between developers and software

components. In the remainder of this thesis, we refer to dependency strength as the strength of

the inter-component dependency relations and relation strength as the strength of either the inter-

component dependency relations or the developer-component contribution relations.
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In this work, we further leverage the dependency strength information and build a prediction

model of defect-proneness. First, we use a topic model [18] to determine relation strengths among

components and developers. Second, according to the strength, we classify relations into weak

relations and strong relations. While weak relations correspond to loose entity couplings, e.g.,

a software component depends slightly on another software component, strong relations abstract

tight entity couplings, e.g. a developer is very dedicated to a particular software component. Third,

according to the level of relation strength, either strong (tight coupling) or weak (loose coupling),

we construct two modified socio-technical networks for different levels of entity coupling. Fourth,

we conduct social network analyses on the socio-technical networks separately. These metric values

are used to measure the centrality of software components, and are then used as predictor variables

in a prediction model of defect-proneness.

We evaluate our approach on seven major releases of the Eclipse IDE (Integrated Development

Environment), six major releases of the Netbeans IDE and six major releases of Gnome. We build

a regression model with social network metric values as predictor variables, and use data from the

previous release to predict whether a software component in the current release is defect prone. The

experiment results show that our approach achieves markedly higher precision and recall than prior

work.

Thesis Statements

By conducting social network analysis on socio-technical networks of different levels of relation

strength separately, although the edges between elements within one network are still assigned unit

weight, we gain extra information of relation strength. The separation of relations comes from

following statements.

TS1: Strong relations and weak relations have different correlations with the number of defects.

TS2: Strong relations and weak relations have different contributions to the predictive power of

defect prediction models.

TS3: The separation of weak and strong relations improves the predictive power of defect-prone

software components.

TS4: Social network metrics that are calculated from the weak network and the strong network

can be used as predictors to predict defect-prone software components across releases.

We verify TS1 with the correlation results in section 4.2, and subsequently use the regression

results in section 4.3 to verify TS2, TS3, and TS4.

Thesis Contributions

In this thesis, we propose a prediction model of defect-prone software components, based on social

network analysis. Main contributions of this thesis are as follows.
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• Combine network topological properties and code textual information to predict software de-

fects.

• Demonstrate how to use the relation strength information to gain defect prediction accuracy.

• Compare our approach with a prior social network analysis based prediction method on a

finer-granular data set.

• Compare our approach with a prior social network analysis based prediction method on three

existing software systems.

• Build predictors of defect-prone software components, based on the social network analysis.

Most of this material has been published in the Proceedings of the 10th Working Conference on

Mining Software Repositories (MSR ’13) [28].

Thesis Organization

The remainder of this thesis is organized as follows. Chapter 2 introduces prior work of using

social network analysis to predict software defects and the application of topic models in software

engineering research. Chapter 3 sketches how we use dependency strength information to predict

whether a software component is defect-prone. Chapter 4 presents our experimental results and

demonstrates the improvement of prediction accuracy by using our prediction model. Chapter 5

discusses the threats to validity. Chapter 6 describes related work of using various metrics to predict

software defects. Finally, Chapter 7 concludes this thesis with ideas for future work.
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Chapter 2

Background

In this chapter, we elaborate on two concepts: the socio-technical network [4] and the citation

influence topic model [18].

2.1 Socio-technical Network

Bird et al. argued that dependency relations and contribution history should be used together [4].

They constructed the socio-technical network by combining the software dependency network (de-

pendency relations) and the developer contribution network (contribution history). To better explain

the socio-technical network, we first introduce the software dependency network and the developer

contribution network.

2.1.1 Software Dependency Network

Zimmermann et al. demonstrated that central software components are more likely to face defects

[64]. They built the software dependency network to capture the centrality of a particular software

component within the software system.

A B 

C 

D E 

Figure 2.1: Software dependency network example
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In the software dependency network, nodes denote software components and directed edges

between components denote the dependency relations between them. As an example, in Figure 2.1,

component A depends on component C, component C depends on component D, B, and E. In this

example, component C is more central than other components. Such centrality is included in the

network topology and can be extracted by social network analysis.

2.1.2 Developer Contribution Network

Pinzer et al. also claimed that network centrality measures are good indicators of defect-prone

components [40]. Instead of measuring the centrality of software components within the software

system, they constructed the developer contribution network and measured the centrality of software

components in the context of the development process.

Bob A B 

C 

Don D E 

5 

8 

10 

12 

7 

2 

Figure 2.2: Developer contribution network example

Figure 2.2 depicts an example of a developer contribution network. Circles denote software

components and rectangles denote developers. Undirected edges between a component and a devel-

oper represent that the component has contributions from the developer. The edges are all weighted

by the number of commits. In this example, component C has contributions from developer Bob and

developer Don, and is more central than other components in the development process.

Since all the edges are weighted in the developer contribution network, Pinzer et al. used a set of

social network metrics that can operate on a weighted network to measure the centrality of software

components, and used these metrics as predictors of defect-prone components.

2.1.3 Socio-technical Network

Bird et al. claimed that the centrality of a software component within the software system (soft-

ware dependency network) and the centrality in the development process (developer contribution

network) should be used together [4]. They constructed the socio-technical network by combining

the software dependency network and the developer contribution network.
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Bob A B 

C 

Don D E 

5 

5 

10 

7 7 

2 2 

8 

8 

10 

12 

12 

Figure 2.3: Socio-technical network example

The socio-technical network [4] can be formally defined as: let C be the set of software compo-

nents andD be the set of developers. The socio-technical network G is defined as: G = (V, EC ∪ ED),

where V = C ∪ D, EC ⊂ C × C is the set of unit edges (c, c′) that component c depends on c′ and

ED ⊂ (D × C) ∪ (C × D) is the set of weighted edges (c, d), (d, c) such that developer d contributed

to software component c. Edges (c, d), (d, c) is weighted by the number of commits the developer d

made to software component c.

Figure 2.3 presents an example socio-technical network that is constructed by combining a soft-

ware dependency network (Figure 2.1) and a developer contribution network (Figure 2.2). In Figure

2.3, component A depends on component C and component C depends on component B, D, and

E. Developer Bob made five commits to component A, ten commits to component B, and seven

commits to component C, and developer Don made two commits to component C, eight commits to

component D, and twelve commits to component E.

As shown in Figure 2.3, in the socio-technical network, symmetric pairs of directed edges be-

tween software components and developers are weighted by the number of commits, whereas di-

rected edges between software components are assigned unit weight. In other words, although the

socio-technical network considers the strength of contribution relations (number of commits), it

ignores potentially useful information about dependency strength.

Some of the social network metrics that Bird et al. use (like betweenness) can only be calculated

on an unweighted network, however, the socio-technical network contains both weighted edges and

unweighted edges. To remedy the issue of weights, Bird et al. convert the socio-technical network

into an unweighted network. For metrics that can be calculated on both unweighted and weighted

networks, Bird et al. use both these unweighted networks and the original weighted ones.
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words 

probability 

word probability 

RED 0.201 

PINK 0.169 

RENDER 0.153 

WHITE 0.110 

SCREEN 0.087 

BLUE 0.076 

BLACK 0.052 

PURPLE 0.017 

COLOR 0.017 

BRIGHT 0.008 

… … 

Figure 2.4: Topic: distribution of words

2.2 Citation Influence Model

The citation influence model [18] is a topic model that measures the influence of citations on the

citing paper in a document network. It extends the Latent Dirichlet Allocation (LDA) model [6]

by considering citations. In this section, we first introduce topic models and then give a formal

definition of the citation influence model.

2.2.1 Topic Models

A topic model is a generative model that specifies a probabilistic generative process for generating

documents. It assumes that a document is a mixture of topics, and a topic is a probability distribution

over words.

Figure 2.4 shows an example topic. We can see that a topic is modelled by the probability of

each word under that topic. According to the top ten words with the highest probability, we can

conclude that this topic is related to colors.

Similarly, a document can be modelled by a mixture of topics. Figure 2.5 depicts an example

document as a distribution of topics under that document.

A topic model abstracts the process of generating documents. In short, all the documents are

assumed to be generated by a particular generative process, and a topic model seeks to recover the

generative process given the documents. Figure 2.6 depicts the generative process for generating

documents. In Figure 2.6, the corpus is the collection of all the documents, and the vocabulary

contains all the distinct words. To generate a document, for each word, one first selects a topic from
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topics 

probability 

topic probability 

Topic 1 0.301 

Topic 2 0.119 

Topic 3 0.088 

Topic 4 0.071 

Topic 5 0.055 

Topic 6 0.043 

Topic 7 0.032 

Topic 8 0.017 

Topic 9 0.009 

Topic 10 0.008 

… … 

Figure 2.5: Document: mixture of topics

its topic mixture according to the probability of each topic under that document, and subsequently

selects a word according to the probability of each word under the selected topic.

Note that the generative process seeks to generate documents with given topic mixtures (distri-

bution over topics) and topics (distribution over words). However, to facilitate text analysis, one

often needs to infer the set of topics and the topic mixtures that were used to generate a collection of

documents, which is opposite to the generative process. Statistical techniques like Gibbs Sampling

[41] can be used to invert this process. The inferred topics and the topic mixture under a document

are used to model that particular document. Informally, Gibbs Sampling can be described as an

iterative process: first randomly select topic mixtures for each document and word distributions for

each topic, and then iteratively adjust the topic mixtures and word distributions given the already

generated documents, until the adjusted topic mixtures and word distributions converge.

9



doc A 

doc B 

Corpus Topics Vocabulary 

Topic 1 

Topic 2 

Topic 3 

word 1 

word 2 

word 3 

Figure 2.6: Generative process of topic models

2.2.2 Citation Influence Model

The citation influence model [18] extends the LDA model [6] by considering citations among doc-

uments. Specifically, when generating words, the citation influence model assumes that the citing

document can either select words from topics of its own topic mixture or from topics that are ‘bor-

rowed’ from cited documents. The percentage of words that are selected from ‘borrowed’ topics

of a cited document reveals the citation influence of that particular cited document over the citing

document.

The generative process of the citation influence model is given in Algorithm 1 and depicted in

Figure 2.7. In Figure 2.7, solid lines represent generative process of tokens that are selected from

a document’s own topic mixture, while dash lines represent generative process of tokens that are

selected from topics that are ‘borrowed’ from cited documents. Table 2.1 describes all the symbols

used in the algorithm. We refer readers to [18] for detailed definition of the citation influence model.

As a topic model, the citation influence model can be used to measure the coupling between

software components and non-software entities like developers. Subsequently, it can be applied to

the socio-technical network to quantify both the overt software dependency relations and the latent

co-development relations. Therefore, in this thesis, we apply the citation influence model rather than

other code structure based coupling measures [14, 31].

In this work, we use the citation influence model to quantify the strength of the inter-component

dependency relations and the strength of the developer-component contribution relations. Simply

put, we transform the socio-technical network into a document network, use the citation influence

model to quantify the citation influence and take the strength of citation influence as the strength of

10



Table 2.1: Notation used in the citation influence model.

Symbol Description
m the number of documents in corpus
k the number of topics
v the number of unique words in the vocabulary
c cited document
d citing document

ti, t, t
′ topic

w,w′ word
φi distribution of topic ti over v words
θj distribution of cited document cj over k topics
ψj distribution of citing document dj over k topics

αφ, αθ, αψ, αγ Dirichlet parameters of the multinomial distribution
φt, φt′ word distribution for topic t, t′

θc, θcl topic distribution for cited documents c, cl
ψd innovative topic distribution for citing document d
γd parameter of the distribution of citation influences of citing document d
λd parameters of the coin flip of citing document d
sd,w indicator of whether the word w in d is selected from a ’borrowed‘ topic

topic t token w’ 

cited document c 

token w 

citing document d 

S = 0 S = 1 

Figure 2.7: Generative process of the citation influence model
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Algorithm 1 Generative process of the citation influence model

1: for all topic t do
2: Select φt ∼ dirichlet(αφ)
3: end for
4: for all cited document c do
5: Select θc ∼ dirichlet(αθ)
6: for all each word w′ do
7: Select a topic t′ ∼ multinomial(θc)
8: Select a word w′ ∼ multinomial(t′)
9: end for

10: end for
11: for all citing document d do
12: Select ψd ∼ dirichlet(αψ) for its own topic mixture
13: for all word w do
14: Toss a coin sd,w ∼ bernoulli(λd)
15: if sd,w = 0 then
16: // this word is selected from a ‘borrowed’ topic of a cited document
17: Select a cited document cl ∼ multinomial(γd) from citations c1 . . . cN
18: Select a topic t ∼ multinomial(θcl)
19: Select a word w ∼ multinomial(φt′)
20: else
21: // this word is selected from its own topic mixture
22: Select t ∼ multinomial(ψd)
23: Select a word w ∼ multinomial(φt)
24: end if
25: end for
26: end for

12



dependency relations and contribution relations. A detailed description of this approach is discussed

in Chapter 3.
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Chapter 3

Methodology

The intuition of using social network metrics as predictors of defect-prone components is that central

software components (either central in the software structure or central in the development process)

are more likely to have many defects [40, 64, 4]. A central software component can be interpreted

as a component that coordinates many other components or is modified by many developers. These

previous studies do not look into the reason why central software components are more defect-prone,

but we conjecture that central components in the software system are more exposed to other entities,

and hence are more likely to be found to contain defects.

We observe that neither the software dependency network [64] nor the socio-technical network

[4] considers the strength of dependency relations. Specifically, although the socio-technical net-

work considers the strength of dependency relations to some extent by weighting the developer-

component edges by the number of commits, it does not consider the strength of the inter-component

dependency relations. However, dependency strength reveals the degree of coupling between soft-

ware entities and the degree of coupling signals design quality [25]. Therefore, we argue that re-

lations of different level of strength have different contributions to defects and hence should be

analyzed separately.

In this work, we separate tight coupling relations away from loose coupling relations and analyze

them separately. Major phases in our approach are:

1. Apply the citation influence model to the original socio-technical network to quantify the

strength of relations.

2. Classify the relations into two classes: weak and strong.

3. Build two equal level socio-technical networks for weak relations and strong relations respec-

tively.

4. Calculate social network metrics on the two networks and use the social network metrics as

predictors of defect-proneness.
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Figure 3.1: Document network

3.1 Phase I: Quantify Strength of Relations

The first step is to quantify the strength of relations in the socio-technical network. There are various

ways to evaluate the strength of relations like class inheritance [43] and parameter passing [17]. We

note that all these measures can only evaluate the strength of relations between software components.

Therefore, we use the citation influence model [18] to determine the strength of both the inter-

component dependency relations and the developer-component contribution relations in the socio-

technical network.

To use the citation influence model, we transform the socio-technical network into a document

network. Since the socio-technical network is composed of software components, developers and

edges that represent inter-component dependency relations or contribution relations, we simply re-

place each software component and developer by an associated document as depicted in Figure 3.1:

• Software component: we extract and aggregate the comments of all the source files in a soft-

ware component to be a document.

• Developer: we retrieve and aggregate the text in commit logs of a developer to be a document.

After the transformation, we apply the citation influence model to the document network to

quantify the citation influence of a citation on the citing document and use the strength of citation

influence as the strength of relations. The intuition is that text in source files and commit logs contain

latent information about the code structure and development process, and thus citation influence

reflects the strength of dependency relations and contribution relations.
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Figure 3.2: Citation influence model

As depicted in Figure 3.2, we transform developer Bob, Don, and component A, B, C, E, and

E into documents, and the directed edges that connect these entities in the socio-technical network

become directed edges that connect the corresponding documents in the document network. Docu-

ment Bob cites document A, B, and C, and document Don cites document C, D, and E. The citation

influence model may work out the influence of document C, D, and E on document Don by calcu-

lating, for example, that 5%, 40% and 10% of words in document Don are selected from topics that

are ‘borrowed’ from document C, D, and E respectively. The influence score of document C, D, and

E on Don is hence 0.05, 0.4 and 0.1. Since 45% of the words in document Bob are selected from

its own topic mixture, the innovation (self-influence) score of document Don is 0.45. The influ-

ence score of document C, D, and E on document Don and the innovation score of Don sum to 1.0.

Accordingly, based on the calculated citation influence in the document network, the strengths of

the developer-component contribution relations of Don-C, Don-D, and Don-E in the socio-technical

network are 0.05, 0.4, and 0.1, respectively.

Note that the socio-technical network combines the software dependency network and the de-

veloper contribution network to capture the centrality of software components in both the software

architecture and the context of the development process [4]. Correspondingly, directed edges that

are between the same two nodes have different weights and the strength of different types of edges

conveys different information:

• component-component: the strength indicates how tightly a software component is coupled

with another in the perspective of functionality.
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• component-developer: the strength can be interpreted as how deeply a developer focuses on

each software component. As is shown in Figure 3.1:

– component to developer: the strength of edges C-to-Bob and C-to-Don reveals the level

of contributions component C has received from developer Bob and Don and hence can

be used to tell who is the major developer.

– developer to component: the strength of edges Bob-to-A, Bob-to-B and Bob-to-C shows

how dedicated developer Bob is to component A, B and C respectively.

3.2 Phase II: Classify Relations into Weak and Strong

After quantifying the strength of relations, we classify the strength of relations into two classes:

weak and strong.

Since different levels of strengths of edges convey different information, we calculate a median

of inter-component dependency relation strength per release (referred to as inter-component me-

dian) and a median of developer-component contribution relation strength per release (referred to as

developer-component median). Moreover, as the developer-component contribution relations in the

socio-technical network are weighted by the number of commits, we also calculate a median of the

number of commits per release (referred to as the commit median).

For an inter-component dependency relation, as shown in Figure. 3.3, we simply classify it

as weak if the citation influence value is below the inter-component median, or strong if the cita-

tion influence value is above the inter-component median. We use the inter-component median as

the threshold because we want the number of classified weak relations and strong relations to be

balanced. Since the classified relations are further analyzed in the experiments (Chapter 4) to com-

pare their correlations with the number of defects, a balanced number of weak relations and strong

relations would make the comparison less biased.

As for a developer-component contribution relation, there are various ways to classify the developer-

component contribution relations, like using commit size as the threshold, however, we use a com-

bination of the citation influence and the number of commits as the threshold in the classification.

The reason of using the combination of the citation influence and the number of commits is that this

combination considers both the centrality within the software system and the centrality in the devel-

opment process. Moreover, commit size is incomparable when commits are made to components

that are written in different languages (e.g. a commit of 3 LOC to a Python module against a commit

of 10 LOC to a C module). As depicted in Figure. 3.4, we classify it as weak if the citation influence

value is below the developer-component median and the associated number of commits is below the

commit median, or strong if the citation influence value is above the developer-component median

and the associated number of commits is above the commit median. We discard edges below (over)
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Figure 3.4: Developer-component contribution relations classification

the developer-component median but over (below) the commit median since logically these edges

do not belong to any group.

Figure 3.5a shows an example classification. Software component C is tightly coupled with A,

B, and E but is only loosely coupled with D. Developer Don is more dedicated to component D than

to C and E, whereas developer Bob contributes much to component A, B, and C.

3.3 Phase III: Construct Equal-level Networks

After the classification, we construct two socio-technical networks for different classes of relation

strength (referred to as equal-level networks): one for strong relations and the other for weak rela-

tions. From Figure 3.5, the network in Figure 3.5b contains only weak relations (referred to as the

weak network) and the network in Figure 3.5c (referred to as the strong network) contains only the

strong relations. Both the weak network and the strong network are termed equal-level networks

since they contain only relations with the same class of strength.
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Figure 3.5: Example of weak relations and strong relations. Thick edges denote weak relations and
bold edges denote strong relations.
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3.4 Phase IV: Conduct Social Network Analysis on Equal-level
networks

Zimmermann et al. [64] recommends a set of social network metrics for building a prediction

model of defect-proneness. These metrics are used in [64, 4, 39] and are shown to be effective. In

our experiment (Chapter 4), we calculate these metrics on a per component basis and use them as

the predictor variables in the prediction model. In this section, we briefly introduce these metrics.

All these social network metrics measure the centrality of nodes in the network. The metrics

can be classified into two categories: global metrics and ego metrics. Global metrics are concerned

about the role of a component within the entire network. Ego metrics measure the degree of domi-

nation of a component over its neighbours (dependencies, dependent components, and contributing

developers).

Global Metrics

Global metrics measure the role a node plays within the entire network. In the context of a software

system, global metrics evaluate the centrality of a software component within the system. A software

component that is central to other components may be middleware or an adapter between software

layers.

Degree centrality [21] is simply the sum of outgoing edges and incoming edges. In the context

of the socio-technical network, high degree value indicates that a software component has many

dependencies, dependent components, or contributing developers.

Betweenness centrality [20] measures how many times a node falls on the shortest path between

others. If a software component is associated with a high degree of betweenness, this component

has a potential for acting as a middleware or interface between two disconnected subsystems or has

contribution from many developers.

Closeness centrality [47] evaluates the shortest distance from a node to all the other nodes in

the network, with a high score of closeness meaning this node is close to other nodes. In the socio-

technical network, if a software component is associated with a high closeness score, it is tightly

coupled with other entities (either software components or developers).

Information centrality [51] is similar to closeness centrality in that it also evaluates the distance

from a node to all the other nodes. The difference is that information centrality uses the harmonic

mean length of the path as distance.

Distance weighted reach [59] measures the number of other nodes that can be reached from a

node. It favours the case when many other nodes are reached within short steps.

Eigenvector centrality [45] suggests that the connection to a powerful neighbour (high values)

increases a node’s value more than a connection to a low valued neighbour. Each node’s centrality

value is the sum of the centrality values of that node’s neighbours.
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Bonacich’s power [8] is a variant of degree centrality. A node is considered as central if it has

connections to many other nodes or it has many neighbours that have connections to many other

nodes.

Structure holes [11] measure the lack of connections between two parties. A hole on the path

between two parties forces them to rely on a third party node for communication and that gives the

third party node (a broker) an advantage over them.

• Effective size is the number of edges that are connected to a node minus the average number

of edges that are connected to a node in the network.

• Efficiency is the effective size normalized by the size of the network.

• Constraint measures the disadvantage of a node that has limited options to reach other nodes.

• Hierarchy evaluates the concentration of the constraint value. When most of the constraint

value is imposed by a single neighbour, the hierarchy value is high.

Ego Metrics

Ego metrics [59] are concerned about the role of a node (called the ego) within the network that is

constructed by this node and its neighbours (called the ego network). In the context of the socio-

technical network, ego metrics measure the role a software component with its dependencies, de-

pendent components, and contributing developers.

In a directed network, an ego network can be constructed in different ways:

• In-neighbourhood: contains nodes that have an outgoing edge toward the ego.

• Out-neighbourhood: contains nodes that have an incoming edge from the ego.

• InOut-neighbourhood: a combination of the above sub-networks.

In the experiment, we calculate the following ego metrics on all three ego networks:

Size: number of nodes in the ego network.

Pairs: number of possible directed edges, Size× (Size− 1).

Ties: the number of directed edges in the ego network.

Density: ratio of possible ties that are present, Ties/Pairs.

Two step reach: the portion of nodes that can be reached within two steps.

Reach Efficiency: two step reach divided by size, reach/size.

Brokerage: number of pairs of nodes brokered by the ego.

Normalized brokerage: brokerage divided by pairs, brokerage/pairs.

Betweenness: betweenness centrality of the ego in the ego network.

Normalized betweenness: ego betweenness divided by pairs, betweenness/pairs.
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Above are 11 global metrics and 10 ego metrics for each kind of ego network (In-neighbourhood

ego network, Out-neighbourhood ego network and InOut-neighbourhood ego network). There are

in total 41 social network metrics. In chapter 4, we calculate these 41 social network metrics for each

software component on both the weak network and the strong network and use them as predictive

variables in the prediction model.

Some of the above metrics can only be calculated on an unweighted network (e.g. betweenness)

while others can be calculated on both an unweighted network and a weighted network (e.g. degree

centrality). To deal with social network metrics that require an unweighted network, we simply

remove the weights in each of the constructed weak and strong networks. For metrics that can be

calculated on both unweighted and weighted networks, we use both these unweighted networks and

the original weighted ones.
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Chapter 4

Experiment and Discussions

In this chapter, we describe our data collection effort, present the preliminary correlation result,

demonstrate how we predict defect-prone components, and discuss the prediction results. Briefly,

we collect data from the Eclipse project, the Netbeans project, and the Gnome project, calculate

social network metrics, train regression models on these metrics, and predict whether a software

component is defect-prone.

4.1 Data Collection

We collect development data and post-release defect data from seven major releases of the Eclipse

IDE (2.0 - 3.4), six major releases of the Netbeans IDE (6.1 - 7.0), and six major releases of the

Gnome desktop suite (2.16 - 2.26). We use post-release defects as the measure of defect-proneness

because they are often more problematic, as post-release defects can directly affect end-users and

are often relatively more expensive to fix [7].

4.1.1 Project Similarities and Differences

We gather data from multiple releases of three open-source projects: the Eclipse IDE, the Netbeans

IDE, and the Gnome desktop environment. All the three projects share a similarity of network

structure and development process but differ in domains and languages.

Structural Similarities

All these projects can be decomposed into a network of components. The Eclipse IDE and the

Netbeans IDE can be decomposed into a system of Java JAR files or a system of Java packages,

whereas the Gnome desktop environment can be decomposed into a network of sub-projects.

Process Similarities

Eclipse, Netbeans, and Gnome are open-source projects with a long development history and sta-

ble release policy. All the three projects accept code contributions from volunteer developers and
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hence communication between developers is made via electronic media like mailing lists and issue

trackers.

Domain Differences

Both the Eclipse IDE and the Netbeans IDE are software development environments that have a set

of development related functionality ranging from code management to compilation. Gnome is a

desktop environment that provides a graphical desktop interface and a set of applications like a web

browser and an XML library.

Language Differences

While the Eclipse IDE and the Netbeans IDE are written mostly in Java, Gnome is written in multiple

languages like C++, Python, Vala, etc.

4.1.2 Component Granularity

To decompose Eclipse into software components, we use a Java package as the level of component

granularity. We adopt this level of granularity because the number of defects associated with Java

classes is too low to make the defect data useful for prediction. We use only the Java packages that

exist in the Eclipse CVS repository and are shipped in the Eclipse IDE build for Linux x86/GTK 2.

The number of packages per release we use ranges from 300 in Eclipse-2.0 to 900 in Eclipse-3.4.

As for Netbeans, however, due to the large number of Java packages, the number of defects

associated with most packages is too low to make the defect data useful. Therefore, we use module

JAR files (where most modules contains multiple JAR files, and most JAR files contain multiple Java

packages) as the level of component granularity for Netbeans. We only use the module JAR files

that are shipped in the Netbeans Java SE build. The number of module JAR files per release we use

ranges from 500 in Netbeans-6.1 to 570 in Netbeans-7.0.

Since Gnome is written in multiple languages, decomposing it by language-specific units (e.g.

Java packages) would not work. For simplicity, we only consider the Gnome sub-projects that are

shipped with the Ubuntu releases. In an Ubuntu release, Gnome are decomposed and packed as

multiple Ubuntu packages (referred to as Ubuntu Gnome packages). We take each Ubuntu gnome

package as a single component. The number of Ubuntu Gnome packages per Ubuntu release we use

ranges from 230 in Gnome-2.16 to 250 in Gnome-2.26.

4.1.3 Development and Defect Data

For each project, we mine the code repository to obtain the development history and mine the bug

database to obtain the post-release defect data.
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Figure 4.1: Mine development history and defect data

Figure 4.1 depicts the process of mining the development history and the defect data. For post-

release defect data, we investigate the reported defects of release r that are opened after the release

date of r and before the release date of r + 1.

Mine Development Data

We first retrieve the commit histories and source files from the public Eclipse Git repository, the

Netbeans Mercurial repository, and the Gnome Git repository, and then extract development data

from the commit histories.

As shown in Figure 4.2, to extract the commit data, we clone the mentioned code repositories

to a local directory, convert the Netbeans mercurial repository into a Git repository mirror by using

the hg-fast-export tool 1, and write a tool to parse commits from local Git repositories. For each

commit in the code repository, we allocate it to a corresponding release and software component

according to the commit date and commit path. In this way, we extract the pre-release commit logs

from the code repositories.

Mine Defect Data

We identify defects by examining the commit logs to match commits with records from the bug

report database, and link matched commits to corresponding source files [50].

1http://repo.or.cz/w/fast-export.git/tree
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Figure 4.2: Mine development history

In order to identify post-release defects and assign defects to software components, we first

mirror both the code repositories and the bug report databases. As Eclipse, Netbeans, and Gnome

use bugzilla [48] as the bug tracker, we utilize its Exporting to CSV function to obtain all the defect

data.

With the mirrored code repository and bug report database, as depicted in Figure 4.3, we use

a similar matching heuristic as used in [50] to identify defect-fixing commits and extract the ap-

propriate bug report identifiers by parsing the commit logs. The extracted bug report identifiers are

subsequently used to search the associated bug reports in the bug database. After finding a defect-

fixing commit and bug report pair, we first check whether this defect is reported after the date of the

reported release and before the date of the next release by comparing the release date and the re-

ported date written in the bug report. If this defect is determined to be dated post-release, we then use

the commit path written in the commit log to assign this defect to concerned software components.

Note that our defect data mining approach collects the defect data only from the bugs that have

fixing commits associated with them. We observe that there are bug reports left open in the bug

tracker system, and no commit is made to fix those bugs. However, it is difficult to link those

ignored bugs to the corresponding component, hence we only focus on those bugs that have fix

commit associated with them. Moreover, we argue that those defects without associated fixing

commits may be ignored by the developers on purpose, e.g., they are just minor defects.
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Figure 4.3: Mine defect data

4.1.4 Social Network Metrics

To construct the equal-level network, we need to identify software inter-component dependency

relations and developer-component contribution relations.

As depicted in Figure 4.1, we retrieve the pre-release developer commit data to establish the

developer-component contribution relations of Eclipse, Netbeans, and Gnome.

To identify the inter-component dependency relations of Eclipse and Netbeans, we obtain the

Eclipse and Netbeans binaries from the public download site, and use the Java-bytecode analysis

tool DependencyFinder 2 to extract the program dependencies. The dependency relations are de-

termined at the class level. Consequently, we lift the dependency relations to the package level for

Eclipse and to the JAR file level for Netbeans. As for the inter-component dependency relations of

Gnome, since we only consider the sub-projects that are shipped with Ubuntu, we utilize the Ubuntu

package management command apt-rdepends to find dependency relations between Gnome pack-

ages.

We use the above mentioned techniques (Section 4.1.3) to obtain the development history and the

defect data from the Eclipse project, the Netbeans project, and the Gnome project, and subsequently

construct the socio-technical network, the weak network, and the strong network for each project.

These extracted data are used in the experiment to evaluate our methodology and to validate the

hypotheses. Table 4.1 gives a detailed description of the extracted defect data and the constructed

networks.
2http://depfind.sourceforge.net/
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Table 4.1: The extracted post-release defect data and the constructed socio-technical network, weak
network and strong network for Eclipse, Netbeans and Gnome. D-C relations denote the developer-
component contribution relations, C-C relations denote the inter-component dependency relations.

(a) Eclipse at the level of Java packages.

Release Network # of components # of developers # of post-release defects # of D-C relations # of C-C relations

2.0
Socio-technical

362 57 1238
2212 4586

Weak 1332 2198
Strong 880 2388

2.1
Socio-technical

418 50 940
3150 5576

Weak 1840 2572
Strong 1310 3004

3.0
Socio-technical

636 66 2261
4088 8555

Weak 2511 3731
Strong 1577 4824

3.1
Socio-technical

725 66 1208
4490 10317

Weak 2718 4681
Strong 1772 5636

3.2
Socio-technical

906 68 1175
4500 13608

Weak 2748 6458
Strong 1752 7150

3.3
Socio-technical

1169 55 729
3248 17685

Weak 1658 8773
Strong 1590 8912

3.4
Socio-technical

1260 56 508
3118 18981

Weak 1767 9295
Strong 1351 9686

(b) Netbeans at the level of Java JAR files.

Release Network # of components # of developers # of post-release defects # of D-C relations # of C-C relations

6.1
Socio-technical

481 128 457
3052 2716

Weak 1937 935
Strong 1115 1781

6.5
Socio-technical

527 144 326
4154 3155

Weak 2465 1252
Strong 1689 1903

6.7
Socio-technical

500 130 188
3610 3049

Weak 2293 1072
Strong 1317 1977

6.8
Socio-technical

524 89 203
3264 3241

Weak 1948 1256
Strong 1316 1985

6.9
Socio-technical

568 76 431
2992 3561

Weak 2022 1508
Strong 970 2053

7.0
Socio-technical

540 73 318
2128 3482

Weak 1429 1387
Strong 699 2095
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(c) Gnome at the level of Ubuntu packages.

Release Network # of components # of developers # of post-release defects # of D-C relations # of C-C relations

2.16
Socio-technical

164 314 14151
6516 152

Weak 3289 37
Strong 3227 115

2.18
Socio-technical

170 333 8987
5682 158

Weak 2865 41
Strong 2817 117

2.20
Socio-technical

175 353 3846
6054 160

Weak 3137 46
Strong 2917 114

2.22
Socio-technical

186 381 4819
6636 160

Weak 3332 37
Strong 3304 123

2.24
Socio-technical

189 375 1316
6816 155

Weak 3490 41
Strong 3326 114

2.26
Socio-technical

186 359 1482
7238 150

Weak 3716 43
Strong 3522 107

We use the Jung library 3 to calculate the aforementioned social-network metrics (Section 3.4).

These metrics are calculated on a component basis on both the original socio-technical network and

the equal-level networks. Specifically, for each component, we calculate three sets of social metric

values for it within the socio-technical network, the weak network, and the strong network.

4.2 Correlation with the Number of Post-Release Defects

In this section, we present the preliminary correlation results of Eclipse, Netbeans, and Gnome,

and use the correlation results to validate TS1. Briefly, for each release, we calculate the above

mentioned social network metrics (section 4.1.4) on the socio-technical network, the weak network,

and the strong network on a component basis, and correlate the social network metrics that are

calculated from the different networks with the number of post-release defects. We use Java package,

Java JAR file, and Ubuntu package as the level of component granularity for Eclipse, Netbeans, and

Gnome, respectively. Figure 4.4 depicts the correlation process.

Since the data is not normally distributed, we use Spearman’s correlation. The correlation value

is between -1 and 1. The closer this value is to -1 or 1, the stronger the relationship between the

metric value and the number of defects. We only present a sample of the correlation results of

Eclipse 3.4, Netbeans 7.0, and Gnome 2.26 in Table 4.2. The complete correlation results of the

investigated Eclipse releases (2.0 - 3.4), Netbeans releases (6.1 - 7.0), and Gnome releases (2.16 -

2.26) are presented in Table A.1, Table A.2 and Table A.3. Correlation significant at 99% and 95%

with Wilcoxon signed-rank tests are marked by (**) and (*) respectively.

3http://jung.sourceforge.net/index.html
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Figure 4.4: Correlation with the number of post-release defects

Note that we omit the correlation results of the Ego betweenness metric, the Ego normalized

betweenness metric, the Ego brokerage metric, and the Ego normalized brokerage for the in-

neighbour ego network and the out-neighbour ego network (Section 4.1.4). The reason is that, by

definition, these four metrics always generate zero values on the in-neighbour ego network and the

out-neighbour ego network, and hence are not meaningful for correlation purposes.

Based on the correlation results, we make the following observations:

• Most social network metrics calculated on the weak network have a higher correlation score

than that calculated on the strong network.

For instance, as is shown in Table 4.2a, most of the social network metrics calculated on the weak

network have higher correlation scores than that calculated on the strong network, with only three

exceptions: Degree centrality, Hierarchy, and Ego density. This finding holds across all investigated

Eclipse releases (2.0 - 3.4), Netbeans releases (6.1 - 7.0) and Gnome releases (2.16 - 2.26). It

suggests that, more often, the weak relations have a stronger relationship with the number of defects.

This finding supports TS1 that weak relations and strong relations have different correlations with

the number of defects.

As mentioned, tight coupling reveals bad design in practice [53] and is expected to contribute

more to the defects. However, our finding suggests that, in terms of social network metrics, loose

coupling (weak relations) have a stronger relationship with the number of defects. A possible ex-

planation is that most of the defects are caused by developers inexperienced in subtle dependencies.
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Table 4.2: Correlation of social network metrics with the number of post-release defects. Weak and
Strong denote the weak network and the strong network respectively. Bold values indicate that the
correlation on that network is higher than that on other networks. Correlation significant at 99% and
95% with Wilcoxon signed-rank tests [60] are marked by (**) and (*) respectively.

(a) Eclipse 3.4 at Java package level

Global Metrics
Metric Socio-technical Strong Weak
Degree centrality 0.508(**) 0.482(**) 0.473(**)
Betweenness centrality 0.365(**) 0.267(**) 0.439(**)
Closeness centrality 0.188(**) -0.098(**) 0.368(**)
Information centrality 0.398(**) 0.174(**) 0.428(**)
Distance weighted reach 0.218(**) -0.094(**) 0.378(**)
Eigenvector centrality 0.322(**) 0.312(**) 0.452(**)
Effective size 0.417(**) 0.255(**) 0.414(**)
Efficiency 0.249(**) 0.134(**) 0.144(**)
Constriant 0.218(**) 0.220(**) 0.349(**)
Hierarchy 0.302(**) 0.331(**) 0.160(**)

InOut-neighbourhood Ego Metrics
Metric Socio-technical Strong Weak
Ego size 0.365(**) 0.207(**) 0.382(**)
Ego ties 0.369(**) 0.197(**) 0.369(**)
Ego pairs 0.365(**) 0.207(**) 0.382(**)
Ego density -0.286(**) -0.164(**) -0.193(**)
Ego reach 0.228(**) 0.064 0.388(**)
Ego reach efficiency -0.183(**) -0.123(**) 0.244(**)
Ego brokerage 0.420(**) 0.279(**) 0.448(**)
Ego normalized brokerage 0.278(**) 0.239(**) 0.414(**)
Ego betweeness 0.401(**) 0.292(**) 0.440(**)
Ego Normalized betweeness 0.387(**) 0.316(**) 0.449(**)

In-neighbourhood Ego Metrics
Metric Socio-technical Strong Weak
Ego size 0.328(**) 0.289(**) 0.344(**)
Ego ties 0.323(**) 0.273(**) 0.321(**)
Ego pairs 0.328(**) 0.289(**) 0.344(**)
Ego density -0.127(**) -0.069(*) -0.077(*)
Ego reach 0.228(**) 0.064 0.388(**)
Ego reach efficiency -0.117(**) -0.158(**) 0.261(**)

Out-neighbourhood Ego Metrics
Metric Socio-technical Strong Weak
Ego size 0.353(**) 0.082(*) 0.420(**)
Ego ties 0.349(**) 0.063 0.418(**)
Ego pairs 0.353(**) 0.082(*) 0.420(**)
Ego density -0.207(**) -0.111(**) 0.308(**)
Ego reach 0.228(**) 0.064 0.388(**)
Ego reach efficiency -0.185(**) -0.009 0.318(**)
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(b) Netbeans 7.0 at Java JAR file level

Global Metrics
Metric Socio-technical Strong Weak
Degree centrality 0.507(**) 0.502(**) 0.492(**)
Betweenness centrality 0.366(**) 0.360(**) 0.438(**)
Closeness centrality 0.259(**) 0.098(*) 0.368(**)
Information centrality 0.432(**) 0.365(**) 0.461(**)
Distance weighted reach 0.286(**) 0.136(**) 0.376(**)
Eigenvector centrality 0.441(**) 0.439(**) 0.455(**)
Effective size 0.414(**) 0.315(**) 0.427(**)
Efficiency 0.045 0.064 -0.017
Constriant 0.253(**) 0.325(**) 0.376(**)
Hierarchy 0.247(**) 0.285(**) 0.147(**)

InOut-neighbourhood Ego Metrics
Metric Socio-technical Strong Weak
Ego size 0.396(**) 0.261(**) 0.415(**)
Ego ties 0.421(**) 0.267(**) 0.425(**)
Ego pairs 0.396(**) 0.261(**) 0.415(**)
Ego density -0.238(**) -0.185(**) -0.008
Ego reach 0.301(**) 0.221(**) 0.402(**)
Ego reach efficiency -0.010 -0.088(*) 0.276(**)
Ego brokerage 0.433(**) 0.349(**) 0.465(**)
Ego normalized brokerage 0.250(**) 0.287(**) 0.358(**)
Ego betweeness 0.412(**) 0.364(**) 0.457(**)
Ego Normalized betweeness 0.393(**) 0.377(**) 0.455(**)

In-neighbourhood Ego Metrics
Metric Socio-technical Strong Weak
Ego size 0.321(**) 0.285(**) 0.365(**)
Ego ties 0.315(**) 0.283(**) 0.358(**)
Ego pairs 0.321(**) 0.285(**) 0.365(**)
Ego density -0.030 0.105(*) 0.045
Ego reach 0.301(**) 0.221(**) 0.402(**)
Ego reach efficiency -0.019 -0.103(*) 0.291(**)

Out-neighbourhood Ego Metrics
Metric Socio-technical Strong Weak
Ego size 0.396(**) 0.202(**) 0.442(**)
Ego ties 0.386(**) 0.181(**) 0.442(**)
Ego pairs 0.396(**) 0.202(**) 0.442(**)
Ego density -0.239(**) -0.150(**) 0.247(**)
Ego reach 0.301(**) 0.221(**) 0.402(**)
Ego reach efficiency 0.051 0.068 0.331(**)
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(c) Gnome 2.26 at Ubuntu package level

Global Metrics
Metric Socio-technical Strong Weak
Degree centrality 0.616(**) 0.583(**) 0.619(**)
Betweenness centrality 0.489(**) 0.446(**) 0.620(**)
Closeness centrality 0.379(**) -0.163(*) 0.622(**)
Information centrality 0.588(**) 0.270(**) 0.662(**)
Distance weighted reach 0.400(**) -0.161(*) 0.626(**)
Eigenvector centrality 0.591(**) 0.534(**) 0.663(**)
Effective size 0.616(**) 0.582(**) 0.619(**)
Efficiency -0.267(**) -0.198(**) 0.028
Constriant -0.453(**) -0.392(**) 0.525(**)
Hierarchy -0.575(**) -0.565(**) 0.293(**)

InOut-neighbourhood Ego Metrics
Metric Socio-technical Strong Weak
Ego size 0.623(**) 0.615(**) 0.618(**)
Ego ties 0.608(**) 0.588(**) 0.612(**)
Ego pairs 0.623(**) 0.615(**) 0.618(**)
Ego density -0.607(**) -0.618(**) -0.257(**)
Ego reach 0.561(**) 0.274(**) 0.645(**)
Ego reach efficiency -0.260(**) -0.426(**) 0.341(**)
Ego brokerage 0.618(**) 0.570(**) 0.670(**)
Ego normalized brokerage 0.026 0.100 0.500(**)
Ego betweeness 0.612(**) 0.567(**) 0.667(**)
Ego Normalized betweeness 0.592(**) 0.509(**) 0.658(**)

In-neighbourhood Ego Metrics
Metric Socio-technical Strong Weak
Ego size 0.613(**) 0.621(**) 0.613(**)
Ego ties 0.609(**) 0.624(**) 0.612(**)
Ego pairs 0.613(**) 0.621(**) 0.613(**)
Ego density -0.412(**) -0.398(**) -0.210(**)
Ego reach 0.561(**) 0.274(**) 0.645(**)
Ego reach efficiency -0.402(**) -0.462(**) 0.365(**)

Out-neighbourhood Ego Metrics
Metric Socio-technical Strong Weak
Ego size 0.605(**) 0.346(**) 0.652(**)
Ego ties 0.590(**) 0.324(**) 0.645(**)
Ego pairs 0.605(**) 0.346(**) 0.652(**)
Ego density -0.550(**) -0.334(**) 0.356(**)
Ego reach 0.561(**) 0.274(**) 0.645(**)
Ego reach efficiency -0.258(**) -0.046 0.385(**)
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Since loosely coupled software components are expected to share little similarity in terms of func-

tionality, e.g. network and memory management, developers dedicated to one component may lack

experience or knowledge to handle rarely referenced dependencies.

We conclude that for the investigated Eclipse releases, Netbeans releases, and Gnome releases,

there is no evidence to reject TS1 that strong relations and weak relations have different correlations

with the number of defects.

• Most social network metrics calculated on the weak network have a higher correlation score

than that calculated on the original socio-technical networks.

For investigated Eclipse releases (2.0 - 3.4), Netbeans releases (6.1 - 7.0), and Gnome releases

(2.16 - 2.26), we observe that most of the social network metrics have higher correlation scores on

the weak networks than on the original socio-technical network. As shown in Table 4.1c, most of

the metrics on the weak networks are more correlated with the number of defects than that on the

socio-technical network, with only a few exceptions like Efficiency Hierarchy, and Ego Density.

This finding is persistent across all investigated Eclipse releases (2.0 - 3.4), Netbeans releases (6.1 -

7.0), and Gnome releases (2.16 - 2.26). It implies that, for Eclipse, Netbeans, and Gnome, the weak

relations alone have a stronger relationship with the number of defects than mixed with the strong

relations as in the socio-technical network.

In previous work [64, 39, 58, 4], social network metrics are used to measure the centrality of

software components, and are used as predictors of software defects. These metrics are calculated

on a network mixed with both weak relations and strong relations. However, our findings suggest

that weak relations and strong relations have different correlations with the number of defects, and

hence should be analyzed separately. Therefore, we conjecture that the separation of weak relations

(loose coupling) from strong relations (tight coupling) will increase the predictive power of a defect

prediction model.

4.3 Logistic Regression

As with previous work [64, 4], to predict whether a software component is defect-prone, we calculate

the social network metrics and use the metric values as the predictor variables in logistic regressions.

In this section, we present the regression results of Eclipse, Netbeans, and Gnome, and use the

regression results to validate TS2.

4.3.1 Preprocess with PCA

Before training regression models, as proposed by [64, 4], we preprocess the metric values with stan-

dardization and principal component analysis (PCA) [29]. As suggested by [64, 4], some of these

metrics are correlated with each other, e.g. Ego size calculated on the in-neighbourhood network
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Figure 4.5: Compute principal components

and the inout-neighbourhood network. Since such correlation violates the assumption of indepen-

dent predictor variables in regressions, we use PCA to address this multicollinearity issue. PCA

transforms the set of metric values into a set of uncorrelated principal components (PC). A principal

component is a linear combination of original metric values. Each principal component is indepen-

dent of the others. We retain the minimum number of principal components that accounts for 95%

of the variance in the original data and select the retained principal components as the predictor

variables in regressions.

As depicted in Figure 4.5, we calculate the social network metrics on a component basis on the

socio-technical network, the weak network, and the strong network, and put the calculated metric

values together to form a metric value matrix. We subsequently apply the PCA to the metric value

matrix to compute principal components for all the software component. These principal compo-

nents are then used as predictors in the logistic regression model to predict whether a software

component is defect-prone.

4.3.2 Evaluation Metrics

As with prior work [64, 4], we use four information retrieval metrics to evaluate predictions from

the logistic regression model: precision, recall, F score, and Area under ROC curve (AUC) [42].

Let TF be true positives, FP be false positives and FN be false negatives.

Precision =
TP

TP + FP
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Precision measures type I error by calculating the proportion of the components that are classified

as defect-prone are truly defect-prone components. The closer the precision is to 1, the less type I

error this model makes in prediction.

Recall =
TP

TP + FN

Recall measures type II error by calculating the proportion of the truly defect-prone components

that are identified as defect-prone components. The closer the recall is to 1, the less type II error this

model makes in prediction.

F -score =
2× precision× recall
precision+ recall

F score considers both precision and recall, it can be calculated by computing the harmonic mean

of precision and recall.

Area under ROC curve (AUC) is used to measure the classification ability of a prediction model.

It is measured by calculating the area under the Receiver Operating characteristic (ROC) curve.

ROC is used to illustrate the performance of a binary classifier system like logistic regression as its

discrimination threshold is varied. This curve is created by plotting the value of true positive rate

against false positive rate. The closer AUC value is to 1, the better the prediction is [10].

In addition to the information retrieval metrics, we use the Nagelkerke coefficient of determi-

nation [38], also known as Nagelkerke’s pseudo R2 , to measure how well the built model fits the

training data. Similar to R2, this metric evaluates how well the model explains the variance of the

data but does not tell how good the prediction is.

4.3.3 Cross Validation

To verify whether the separation of weak relations and strong relations increases predictive power,

as presented in Figure 4.6, we calculate metrics on the original socio-technical network, the weak

network, and the strong network, apply PCA to the metrics to compute principal components, and

use the principal components as predictors to build logistic regression models. We subsequently use

K-fold cross validation [9] to measure the predictive power of these models.

On the Eclipse, Netbeans, and Gnome datasets, we take a software component as defect-prone

if this component is ranked in the top X % by the most number of defects. We use 10, 15, 20, 25,

30 as thresholds for X. For the different thresholds for defect-proneness, we subsequently train four

logistic models:

1. Socio-technical model: built with metrics calculated on the socio-technical network.

2. Weak model: built with data from the weak network.

3. Strong model: built with data from the strong network.
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Figure 4.6: Train logistic regression models

4. Weak+Strong model: built with both data from the weak network and data from the strong

network.

To clarify, for the Weak+Strong model, we use metric values from both the weak network and

the strong network to form a combined metric value matrix, and apply PCA to the combined metric

value matrix to compute principal components as predictors.

In total, there are 5 × 4 = 20 different prediction models per project release. We use repeated

K-fold cross validation [9] to evaluate the predictive power of these models. In short, K-fold cross

validation works by dividing the data into K disjoint groups with nearly equal size, training and

testing the model K times, each time using K-1 groups for training and the remaining one group for

testing. Accordingly, we compute the evaluation metrics (4.3.2) for these K testings and use average

values of evaluation metrics to measure how accurate these models are. We refer readers to [9] for a

detailed definition of K-fold cross validation.

Since researchers find from empirical experience and simulation studies that 10-fold cross vali-

dation is likely to achieve a good evaluation accuracy [16], we set K = 10 in our experiment. We

repeat the 10-fold cross validation process 20 times and calculate the average values of evaluation

metrics. A sample of the cross validation results of predicting top 30% defect-prone Eclipse Java

packages, Netbeans Java JAR files, and Gnome Ubuntu packages is presented in Table 4.3. The

complete cross validation results of the investigated Eclipse (2.0 - 3.4), Netbeans releases (6.1 -

7.0), and Gnome releases (2.16 - 2.26) are presented in Table B.1, Table B.2, and Table B.3.

Based on the cross validation results, we make the following observations:
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Table 4.3: Results of repeated 10-fold cross validation of Eclipse, Netbeans and Gnome. Given data
from current release, predict whether a software component is defect-prone after current release.
Bold values indicate that they are higher than values calculated on other networks.

(a) Predict top 30% defect-prone Eclipse Java packages

Release Network Precision Recall F-Score AUC Nagel.

2.0
Socio-technical 0.714 0.526 0.592 0.855 0.440
Weak 0.782 0.546 0.629 0.851 0.447
Strong 0.780 0.489 0.587 0.836 0.354
Weak+Strong 0.774 0.537 0.621 0.873 0.504

2.1
Socio-technical 0.751 0.570 0.637 0.864 0.472
Weak 0.742 0.454 0.549 0.835 0.388
Strong 0.747 0.487 0.579 0.823 0.409
Weak+Strong 0.754 0.527 0.608 0.856 0.448

3.0
Socio-technical 0.832 0.598 0.689 0.882 0.508
Weak 0.789 0.597 0.673 0.870 0.500
Strong 0.798 0.573 0.660 0.877 0.516
Weak+Strong 0.807 0.656 0.717 0.901 0.586

3.1
Socio-technical 0.792 0.654 0.711 0.898 0.554
Weak 0.777 0.588 0.663 0.872 0.505
Strong 0.785 0.579 0.660 0.867 0.489
Weak+Strong 0.811 0.666 0.726 0.905 0.579

3.2
Socio-technical 0.777 0.686 0.726 0.844 0.452
Weak 0.772 0.626 0.689 0.817 0.394
Strong 0.754 0.609 0.670 0.813 0.374
Weak+Strong 0.791 0.661 0.718 0.845 0.463

3.3
Socio-technical 0.727 0.571 0.637 0.813 0.377
Weak 0.719 0.517 0.598 0.779 0.307
Strong 0.730 0.590 0.650 0.804 0.347
Weak+Strong 0.745 0.620 0.674 0.820 0.391

3.4
Socio-technical 0.738 0.429 0.537 0.802 0.348
Weak 0.701 0.420 0.518 0.775 0.298
Strong 0.723 0.446 0.547 0.792 0.321
Weak+Strong 0.738 0.512 0.600 0.816 0.382
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(b) Predict top 30% defect-prone Netbeans Java JAR files

Release Network Precision Recall F-Score AUC Nagel.

6.1
Socio-technical 0.719 0.596 0.644 0.827 0.388
Weak 0.735 0.568 0.634 0.799 0.332
Strong 0.646 0.575 0.600 0.807 0.358
Weak+Strong 0.706 0.585 0.634 0.846 0.432

6.5
Socio-technical 0.666 0.411 0.498 0.842 0.386
Weak 0.665 0.399 0.485 0.828 0.356
Strong 0.606 0.397 0.468 0.837 0.385
Weak+Strong 0.683 0.474 0.548 0.857 0.421

6.7
Socio-technical 0.698 0.347 0.448 0.845 0.369
Weak 0.668 0.328 0.426 0.828 0.357
Strong 0.688 0.379 0.471 0.840 0.365
Weak+Strong 0.685 0.406 0.494 0.848 0.385

6.8
Socio-technical 0.674 0.396 0.485 0.865 0.416
Weak 0.687 0.358 0.454 0.838 0.361
Strong 0.617 0.312 0.399 0.842 0.360
Weak+Strong 0.714 0.461 0.546 0.880 0.459

6.9
Socio-technical 0.769 0.436 0.548 0.852 0.433
Weak 0.764 0.394 0.509 0.829 0.375
Strong 0.765 0.425 0.536 0.830 0.386
Weak+Strong 0.779 0.481 0.586 0.857 0.445

7.0
Socio-technical 0.686 0.396 0.488 0.861 0.418
Weak 0.673 0.396 0.485 0.832 0.367
Strong 0.702 0.353 0.454 0.851 0.385
Weak+Strong 0.691 0.426 0.513 0.883 0.461

(c) Predict top 30% defect-prone Gnome Ubuntu packages

Release Network Precision Recall F-Score AUC Nagel.

2.16
Socio-technical 0.784 0.698 0.713 0.904 0.588
Weak 0.806 0.650 0.696 0.889 0.570
Strong 0.756 0.676 0.694 0.898 0.596
Weak+Strong 0.796 0.650 0.691 0.905 0.598

2.18
Socio-technical 0.801 0.626 0.677 0.876 0.531
Weak 0.778 0.697 0.716 0.880 0.535
Strong 0.803 0.635 0.689 0.904 0.583
Weak+Strong 0.832 0.734 0.762 0.903 0.593

2.20
Socio-technical 0.811 0.791 0.787 0.926 0.653
Weak 0.807 0.689 0.726 0.866 0.557
Strong 0.801 0.805 0.790 0.924 0.666
Weak+Strong 0.861 0.823 0.830 0.934 0.674

2.22
Socio-technical 0.714 0.688 0.682 0.903 0.573
Weak 0.855 0.700 0.747 0.877 0.564
Strong 0.787 0.655 0.693 0.907 0.586
Weak+Strong 0.829 0.733 0.763 0.877 0.581

2.24
Socio-technical 0.806 0.691 0.730 0.901 0.580
Weak 0.852 0.658 0.728 0.885 0.556
Strong 0.842 0.683 0.736 0.894 0.606
Weak+Strong 0.824 0.655 0.713 0.897 0.596

2.26
Socio-technical 0.818 0.777 0.783 0.935 0.694
Weak 0.842 0.729 0.768 0.908 0.653
Strong 0.876 0.752 0.794 0.937 0.705
Weak+Strong 0.823 0.759 0.775 0.938 0.703
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• For the investigated Eclipse, Netbeans, and Gnome releases, the predictive power of the Strong

model and the Weak model varies with releases.

For example, regarding Table 4.3a of Eclipse, F score on the Weak model is higher than that

on the Strong model for Eclipse-3.0 while F score on the Weak model is lower than that on the

Strong model for Eclipse-3.4. Across all the thresholds of defect-prone software components (top

5%, 10%, 15%, 20%, 25%, 30%), we observe the trend is that F score on the Weak model is per-

sistently higher than that on the Strong model for Eclipse-2.1, Eclipse-3.0, Eclipse-3.1, Eclipse-3.2,

Netbeans-6.8, and Netbeans-7.0, while F score on the Weak model is persistently lower than that

on the Strong model for Eclipse-3.3, Eclipse-3.4, Netbeans-6.1, Netbeans-6.9, Gnome-2.16, and

Gnome-2.26. Therefore, we can conclude that the prediction power of the Strong model and the

Weak model changes across releases.

This observation contradicts the correlation results by Section 4.2 that most social network met-

rics calculated on the weak network is higher than that calculated on the strong network. A possible

explanation is that many metrics with high correlation scores on the weak network are correlated

with each other and hence are less useful when used as predictors of defects in regression analysis.

The above observation shows that, for different releases, weak relations and strong relations as

predictors have different contributions to the predictive power of defects, which supports TS2 that

weak relations and strong relations have different contributions to the prediction power of defect pre-

diction models. Therefore, based on the above observations, we conclude that there is no evidence

to reject TS2.

• The predictions made by the Weak+Strong model are more accurate than predictions made by

the socio-technical model.

Taking Table 4.2b as an example, on most Netbeans releases, F score and Recall of the Weak+Strong

model is higher than that on the socio-technical model. This observation is persistent over all the

Eclipse models and most of the Netbeans models, and Gnome models.

While the data we use to train the socio-technical model is computed on a socio-technical net-

work mixed with weak relations and strong relations, the Weak+Strong model is trained by data

that is computed from the equal-level networks which contains only weak relations or strong re-

lations. Therefore, this observation supports TS3 that the separation of weak relations and strong

relations could improve the prediction power of defect models. Note that even if Table 4.3 shows

that weak relations and strong relations play a different role in the prediction models of defects,

it is not clear which kind of relation plays a significant role on a particular release, e.g., the weak

model for Netbeans-6.1 and strong model for Netbeans-6.8. Therefore, we combine the weak rela-

tions and strong relations together to build the Weak+Strong model and verify that the separation of

weak relations from strong relations could increase the prediction power of defect models. For the
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Figure 4.7: Prediction across releases

investigated Eclipse releases, Netbeans releases, and Gnome releases, we conclude that there is no

evidence to reject TS3.

4.3.4 Prediction Across Releases

We also evaluate our approach in a more realistic scenario, namely using data from the previous

release to predict the software components of the current release that are most likely to have post-

release defects. As is shown in Figure 4.7, we first train a logistic regression model with development

data and post-release defect data of release r − 1, and then use the development data of release r to

predict whether a software component is defect-prone after release r.

Note that social metric predictors are sensitive to the size of the network. As an example, since

the degree centrality of a node is the sum of outgoing edges and incoming edges, as the size of

the network grows over releases, the degree centrality value increases accordingly since the number

of neighbours increases. Thus, the difference of network size makes metric values of the same

component in two releases incomparable. To address the size issue, we normalize the metric values

before the PCA preprocess (Section 4.3.1). Specifically, we normalize the metric values using the

standard score [30]:

zmi =
vmi − µm

σm

For metric m, we center the metric value vmi of component i by subtracting the mean of vmi and

dividing it by the standard deviation. The resulting distribution of metric values has zero mean and

unit standard deviation.
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Table 4.4: Results of using data from a previous release to predict whether a software component is
defect-prone after release. Bold values indicate that they are higher than values calculated on other
networks.

(a) Predict top 30% defect-prone Eclipse Java packages

Release Network Precision Recall F-Score AUC Nagel.

2.1
Socio-technical 0.769 0.439 0.559 0.826 0.440
Weak 0.758 0.480 0.587 0.829 0.388
Strong 0.723 0.480 0.577 0.801 0.292
Weak+Strong 0.792 0.582 0.671 0.864 0.489

3.0
Socio-technical 0.767 0.462 0.577 0.830 0.472
Weak 0.750 0.500 0.600 0.851 0.425
Strong 0.746 0.412 0.531 0.783 0.299
Weak+Strong 0.719 0.561 0.631 0.877 0.501

3.1
Socio-technical 0.742 0.608 0.669 0.870 0.508
Weak 0.780 0.561 0.653 0.860 0.474
Strong 0.702 0.497 0.582 0.819 0.376
Weak+Strong 0.791 0.620 0.695 0.889 0.533

3.2
Socio-technical 0.843 0.480 0.612 0.809 0.554
Weak 0.759 0.536 0.628 0.857 0.453
Strong 0.715 0.531 0.609 0.835 0.392
Weak+Strong 0.792 0.649 0.714 0.896 0.554

3.3
Socio-technical 0.674 0.625 0.649 0.789 0.452
Weak 0.788 0.566 0.659 0.814 0.372
Strong 0.716 0.566 0.632 0.750 0.251
Weak+Strong 0.787 0.638 0.705 0.833 0.420

3.4
Socio-technical 0.599 0.534 0.565 0.772 0.377
Weak 0.757 0.484 0.591 0.774 0.295
Strong 0.690 0.550 0.612 0.764 0.273
Weak+Strong 0.747 0.605 0.669 0.825 0.410

Table 4.4 presents a sample results of using data from previous release to predict top 30% defect-

prone Eclipse Java packages, Netbeans Java JAR files, and Gnome Ubuntu packages in next release.

The complete prediction results of the investigated Eclipse releases (2.0 - 3.4), Netbeans releases

(6.1 - 7.0), and Gnome releases (2.16 - 2.26) are presented in Table C.1, Table C.2, and Table C.3.

Based on the results, we make the following observations:

• The predictions made using the Weak model are more accurate than predictions made on the

socio-technical model.

As shown in Table 4.4, in most cases, the Weak model achieves higher precision, recall, F score,

AUC, and Nagelkerke’s pseudo R2 values. Taking Table 4.4a of Eclipse as an example, on average,

the precision and recall of the Weak model are higher than that of the socio-technical model by 0.1

and 0.15. The results show that social network metrics calculated on the weak network are better

indicators of defective components than that calculated on the socio-technical networks.

• The predictions made using the Weak+Strong model are more accurate than predictions made

by the other models.
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(b) Predict top 30% defect-prone Netbeans Java JAR files

Release Network Precision Recall F-Score AUC Nagel.

6.5
Socio-technical 0.667 0.211 0.321 0.808 0.401
Weak 0.650 0.317 0.426 0.861 0.392
Strong 0.651 0.341 0.448 0.848 0.367
Weak+Strong 0.673 0.427 0.522 0.889 0.461

6.7
Socio-technical 0.636 0.308 0.415 0.799 0.386
Weak 0.662 0.398 0.497 0.829 0.356
Strong 0.615 0.390 0.478 0.837 0.385
Weak+Strong 0.679 0.463 0.551 0.853 0.421

6.8
Socio-technical 0.674 0.305 0.420 0.821 0.369
Weak 0.698 0.330 0.448 0.828 0.357
Strong 0.681 0.352 0.464 0.841 0.365
Weak+Strong 0.685 0.407 0.510 0.848 0.385

6.9
Socio-technical 0.830 0.321 0.463 0.825 0.416
Weak 0.680 0.358 0.469 0.835 0.355
Strong 0.625 0.316 0.420 0.843 0.359
Weak+Strong 0.726 0.474 0.573 0.883 0.459

7.0
Socio-technical 0.456 0.514 0.483 0.774 0.433
Weak 0.750 0.394 0.517 0.830 0.375
Strong 0.760 0.416 0.538 0.830 0.387
Weak+Strong 0.776 0.482 0.595 0.857 0.445

(c) Predict top 30% defect-prone Gnome Ubuntu packages

Release Network Precision Recall F-Score AUC Nagel.

2.18
Socio-technical 0.800 0.604 0.688 0.867 0.588
Weak 0.865 0.653 0.744 0.849 0.519
Strong 0.786 0.673 0.725 0.916 0.616
Weak+Strong 0.805 0.673 0.733 0.897 0.601

2.20
Socio-technical 0.800 0.721 0.759 0.883 0.531
Weak 0.786 0.623 0.695 0.832 0.470
Strong 0.800 0.679 0.735 0.877 0.514
Weak+Strong 0.833 0.660 0.737 0.896 0.583

2.22
Socio-technical 0.614 0.879 0.723 0.858 0.653
Weak 0.837 0.590 0.692 0.863 0.514
Strong 0.783 0.770 0.777 0.896 0.576
Weak+Strong 0.815 0.721 0.765 0.919 0.635

2.24
Socio-technical 0.516 0.493 0.504 0.742 0.573
Weak 0.829 0.586 0.687 0.815 0.481
Strong 0.796 0.672 0.729 0.898 0.579
Weak+Strong 0.804 0.638 0.712 0.900 0.577

2.26
Socio-technical 0.786 0.733 0.759 0.923 0.580
Weak 0.904 0.701 0.790 0.898 0.616
Strong 0.810 0.701 0.752 0.892 0.590
Weak+Strong 0.845 0.731 0.784 0.909 0.631
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As an instance, regarding Table 4.3b of Netbeans, on average, F score of the Weak+Strong model

outperforms other models (Weak, Strong, and socio-technical) by about 0.1. Also, the Nagelkerke’s

pseudo R2 of the Weak+Strong model in all Netbeans releases are higher than the other models.

Furthermore, we note that on the Eclipse, Netbeans, and Gnome datasets, on average, the preci-

sion and recall of our Weak+Strong model outperforms the socio-technical model by 0.1 and 0.15.

Considering the substantial number of Java packages shipped in the Eclipse IDE and Java JAR files

shipped in the Netbeans IDE, the improvement is significant in terms of the number of components

predicted to have defects. Take the prediction of top 25% defect-prone Eclipse-3.2 Java packages as

an example, 0.15 higher recall means we can identify 25% × 700 × 0.15 = 25 more defect-prone

Java packages.

For Gnome, however, we observe that the Weak+Strong model is not necessarily more accurate

than the other models. In Table 4.3c, for all releases, the F score of the Weak+Strong model is not

higher than all the other models. For Gnome-2.18, Gnome-2.22, Gnome-2.24, and Gnome-2.26, the

precision of the Weak+Strong model is lower than the Weak model. Although the prediction made

using the Weak+Strong model is not the most accurate, the Weak+Strong model achieves higher

precision and F score than the socio-technical model on most Gnome releases. Therefore, we can

still consider metrics calculated from the weak network and the strong network to be good predictors

of defect-prone software components.

Therefore, based on above findings, for the investigated Eclipse, Netbeans and Gnome releases,

we conclude that there is no evidence to reject TS4 that social network metrics calculated from the

weak network and the strong network can be used as predictors to predict defect-prone software

components across releases.
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Chapter 5

Limitations

This chapter discusses the threats to validity of the results of this thesis and the limitations of my

approach.

Threats to Validity

The main concern of validity is the accuracy of the extracted defect data and the reliability of the

evaluated relation strength.

The technique we use to identify defects is based on keyword matching in the commit log [50].

Due to the flexible nature of open source software projects, commit logs in Eclipse, Netbeans, and

Gnome that concern bugs do not necessarily follow a common phrasing pattern. Therefore, the

matching heuristic cannot guarantee full coverage of possible defect related keywords and hence

the defect data we extract from the bug report database and repository are likely to be incomplete.

Furthermore, the relation strength is measured by the citation influence model [18]. This measure

is affected by the text quality in commit logs and source file comments. Namely, lack of comments

in source files and varying vocabulary could affect the use of textual measures. We argue that text

quality of the commit logs and the coverage of comments are common issues in exploring open

source projects [5] and we expect that the general trend in our findings will still be preserved with

better data.

In addition to the text quality issue, the choice of optimal topic model parameters could be a

difficult task [24]. In our experiments, we simply use the default settings as in [18]. Namely, we

set K = 20 as the number of topics. Further analysis is required to infer the optimal parameters.

However, even with default parameterK = 20, we show that the weak relations and strong relations

have different correlations with the number of defects and optimal parameters will only improve the

results. Therefore, we can expect that the trend in our findings will hold with optimal parameters.

Another threat to validity comes from the fact that the bug reports we use to extract defect data

is filed by users. First of all, users are likely to report duplicated bugs [46]. Secondly, users may not

encounter or forget to report failures in the software even if a component is faulty. Thirdly, bugs that
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are found in a particular release by users may root from an earlier release but are mistakenly marked

as found in a later release. Therefore, the defect data we extract from the bug report databases are

likely to be incomplete and inaccurate. However, as with the text quality issue, the reliability of user

filed bug reports is a common issue in exploring open source projects [5]. We expect that the general

trend in our findings will still be preserved with better data.

General Limitations

In this thesis, we propose to use the citation influence model to determine the strength of relations

in the socio-technical network so as to construct the weak network and the strong network, and

apply social network analysis to the two networks to calculate metrics as predictors of defect-prone

software components. Our approach can only operate on a software system that is able to handle

topic models and social network analysis.

First of all, the investigated software system and the version control system must preserve

enough information of the development process (e.g. comments in source code and commit logs)

so that the citation influence model is able to extract reliable topics and the relations of topics from

the logged text. It requires the developers to be disciplined to write down necessary documents and

meaningful commit logs. Therefore, out approach may only work on a mature software system with

professional developers and documentation policy.

Secondly, the investigated software project must be big enough (the number of components and

the number of involved developers) to construct a network of considerable size. As we calculate so-

cial network metrics on the network, metrics calculated on a small network might not be an accurate

indicator of centrality of software components.
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Chapter 6

Related Work

In this chapter, we discuss two lines of relate work: using various attributes to predict software

defects and the application of topic models in mining software repositories.

6.1 Predict Software Defects with Various Attributes

Other than using social network metrics to predict defect-prone software components, there have

been considerable efforts of using various attributes to predict software defects. Most of these at-

tributes can be classified into two categories: ‘non-structural’ and ‘structural’. While ‘non-structural’

attributes capture the internal features of a single software component, like code complexity met-

rics [35], ‘structural’ attributes are concerned with the high level software system structures and

the centrality of a particular software component within the global software system, e.g., software

dependency network metrics [64].

6.1.1 Non-structural Attributes

Nagappan et al. used code complexity metrics to build a prediction model of software defects [35].

Shin et al. further proposed to combine method-calling structures and code complexity metrics to

predict software defects [49]. In addition to the code attributes, Nagappan et al. demonstrated that

development history could be used to predict defect-prone software components. They built a pre-

diction model of software defects with code churn metrics and software dependency counts [37].

Apart from that, Nagappan et al. also demonstrated the efficacy of using change bursts (repeated

changes) as defect predictors [36]. Giger et al. further proposed a set of finer-grained code change

metrics. They subsequently used experiments on the Eclipse dataset to show that their metrics are

good predictors of software defects [23]. Note that the employment of ‘non-structural’ attributes

does not exclude the use of ‘structural’ attributes. Zimmermann et al combined ‘non-structural’

attributes (code complexity metrics) and ‘structural’ attributes (software dependency network) to-

gether to predict defect-prone software components [64]. Therefore, the equal-level networks (Sec-
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tion 3.3) we construct in this thesis could be used together with ‘non-structural’ attributes to predict

defect-prone software components.

6.1.2 Structural Attributes

In addition to code and history metrics, previous studies showed that social factors in both the soft-

ware dependency network and the development team had a significant effect on software quality.

Zimmermann et al. [64], Nguyen et al. [39], and Tosun et al. [58] constructed the software depen-

dency network at the binary level (Windows DLL files), the Java package level, and the Java JAR file

level, respectively, and used social network metrics to predict post-release defects. Wolf et al. [61]

showed that developer communication is highly correlated with integration failures. Pinzger et al.

[40] constructed a developer contribution network by linking a developer to a Windows Vista binary

that this developer has contributed to. They further used social network analysis on the developer

contribution network to demonstrate the efficacy of social network measures as predictors for post-

release defects. In this thesis, we also utilize social factors to predict software defects. However,

rather than exploring new metrics and new social factors, we seek to enhance the existing socio-

technical network approach [4] by considering the strength of social relations within the software

system and within the development team.

6.2 Topic Models in Mining Software Repositories

Topic models are widely used in the Mining Software Repositories field [57] to recover software ar-

tifact traceability [26], analyze software evolution [54, 55], and study software defects [13]. While

this thesis uses a novel topic model called the citation influence model, according to a survey con-

ducted by Thomas et al., the Latent Semantic Indexing (LSI) model [19] and the Latent Dirichlet

Allocation (LDA) model [6] are the two most heavily used topic models in the software engineering

community [57].

6.2.1 Software Artifact Traceability Recovery

Topic models could be used to trace related software artifacts, like linking requirements documents

to relevant source files. Such linking helps managers and developers to trace requirement (require-

ments documents) or concerns (bug reports) to the implementation (source files) [57]. Marcus et al.

used LSI [19] to measure the similarity between source files and external documents (i.e., user man-

uals) , and subsequently linked documents to similar source files [33]. Asuncion et al. used LDA

[6] during the software development process to link documents, e.g., wiki pages and bug reports,

to relevant software modules [1]. McMaillan et al indirectly linked pairs of relevant documents by

combining the links of documents to source files and source files to source files [34]. They used LSI

to trace relevant source files for the given document. Hindle et al. related code commits to the top-

ics extracted from requirements documents, and further validated the relevance between extracted
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topics and development efforts [26]. The assumption of using topic models to link source code

to related artifacts is that topic models could discover the latent textual relations between source

code and relevant documents. In this work, we use the citation influence model [18] to measure the

strength of textual relations between source code and relevant documents (Section 3.1).

6.2.2 Software Evolution Analysis

Researchers have proposed to apply the topic model to source files of different software releases to

monitor the changes of topics over time. Linkstead et al. applied the LDA topic model to source

files from different Eclipse releases and ArgoUML releases to study the trends in the topics over

time [32]. Hindle et al. applied the LDA topic model to developer commit logs to identify the trend

of topics in the development process [27]. Thomas et al. assessed the validity of using topic models

to analyze software evolution [54]. They used experiments on JHotDraw to demonstrate that most

changes in topics are caused by changes in software development activities. Thomas et al. further

introduced the Diff topic model and proposed to use Diff to analyze software topics evolution [56].

The Diff model is derived from LDA and could extract topics from source files in an incremental

way. In this thesis, we apply the citation influence model to different Eclipse, Netbeans, and Gnome

releases to evaluate the strength of relations. However, instead of studying the change of strength of

relations over time, we utilize the strength of relations to predict defect-prone software components

over time.
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Chapter 7

Conclusions and Future Work

In this thesis, we demonstrated how to leverage the relation strength information to assist social

network analysis for predicting defects. In the context of the Eclipse, Netbeans, and Gnome datasets,

we validated the following claims:

• Weak relations have a stronger relationship with the number of defects.

• In terms of social network analysis on the dependency network, weak relations and strong

relations have different correlations with the number of post-release defects.

• Strong relations and weak relations have different contributions to the predictive power of

defect prediction models.

• The separation of weak relations and strong relations in social network analysis improves the

predictive accuracy for defect-prone components.

We evaluated the above claims for the Eclipse, Netbeans, and Gnome data sets at the granularity

of Java packages, Java JAR files, and Ubuntu packages, respectively. The experiment showed that

the separation of weak relations and strong relations significantly improves the post-release defect

prediction accuracy.

In practical uses, our approach could help managers and testers better test a software system.

For example, managers and testers could use our approach to predict whether a software component

is defect-prone before the actual testing, and subsequently allocate more resources on the software

components that may contain many defects.

Regarding future work, we plan to apply our approach to other software systems to test the ef-

ficacy in different domains. Also, we can divide the software system into subsystems (e.g., Eclipse

platform and Eclipse plugin development environment) and compare the efficacy of our approach

in different subsystems. Apart from that, we note that lots of heterogeneous software systems have

external dependencies, and some defects are rooted in external dependencies or are caused by mis-

use of external dependencies. Therefore, to predict these inter-software defects, we plan to merge

the equal-level networks of related software systems and conduct social network analysis on the
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united equal-level network to predict defects across the software border. Last but not least, we plan

to investigate the optimal threshold for top X% rank for logistic regression. In the experiments,

we numerate different thresholds (10%, 15%, 20%, 25%, and 30%) for logistic regression without

selecting a best threshold. We could put more efforts on finding the optimal threshold given the

required recall and precision.
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Appendix A

Correlation of Social Network
Metrics with the Number of
Post-release Defects

56



Table A.1: Correlation of social network metrics for Eclipse with number of post-release defects.
Strong and Weak denote the Strong network and the Weak network respectively. Bold values indicate
that the correlation on that network is higher than that on other networks. Correlation significant at
99% and 95% with Wilcoxon signed-rank tests are marked by (**) and (*) respectively.

(a) Eclipse 2.0 at Java package level

Global Metrics
Metric Socio-technical Strong Weak
Degree centrality 0.603(**) 0.583(**) 0.570(**)
Betweenness centrality 0.298(**) 0.211(**) 0.410(**)
Closeness centrality 0.179(**) -0.213(**) 0.451(**)
Information centrality 0.491(**) 0.212(**) 0.491(**)
Distance weighted reach 0.201(**) -0.213(**) 0.456(**)
Eigenvector centrality 0.201(**) 0.473(**) 0.302(**)
Effective size 0.376(**) 0.165(**) 0.423(**)
Efficiency 0.123(*) 0.117(*) -0.155(**)
Constriant -0.151(**) 0.148(**) 0.390(**)
Hierarchy -0.125(*) 0.169(**) 0.240(**)

InOut-neighbourhood Ego Metrics
Metric Socio-technical Strong Weak
Ego size 0.309(**) 0.060 0.391(**)
Ego ties 0.331(**) 0.055 0.394(**)
Ego pairs 0.309(**) 0.060 0.391(**)
Ego density -0.205(**) -0.074 -0.190(**)
Ego reach 0.189(**) -0.087 0.474(**)
Ego reach efficiency -0.244(**) -0.181(**) 0.272(**)
Ego brokerage 0.354(**) 0.173(**) 0.479(**)
Ego normalized brokerage 0.145(**) 0.131(*) 0.345(**)
Ego betweeness 0.330(**) 0.221(**) 0.468(**)
Ego normalized betweeness 0.300(**) 0.267(**) 0.462(**)

In-neighbourhood Ego Metrics
Metric Socio-technical Strong Weak
Ego size 0.230(**) 0.169(**) 0.280(**)
Ego ties 0.225(**) 0.139(*) 0.279(**)
Ego pairs 0.230(**) 0.169(**) 0.280(**)
Ego density -0.029 -0.084 0.040
Ego reach 0.189(**) -0.087 0.474(**)
Ego reach efficiency -0.039 -0.195(**) 0.373(**)

Out-neighbourhood Ego Metrics
Metric Socio-technical Strong Weak
Ego size 0.399(**) 0.030 0.498(**)
Ego ties 0.424(**) 0.000 0.493(**)
Ego pairs 0.399(**) 0.030 0.498(**)
Ego density -0.110(*) -0.116(*) 0.173(**)
Ego reach 0.189(**) -0.087 0.474(**)
Ego reach efficiency -0.463(**) -0.180(**) 0.204(**)
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(b) Eclipse 2.1 at Java package level

Global Metrics
Metric Socio-technical Strong Weak
Degree centrality 0.625(**) 0.606(**) 0.584(**)
Betweenness centrality 0.424(**) 0.361(**) 0.446(**)
Closeness centrality 0.260(**) -0.106(*) 0.426(**)
Information centrality 0.580(**) 0.288(**) 0.477(**)
Distance weighted reach 0.311(**) -0.112(*) 0.438(**)
Eigenvector centrality 0.562(**) 0.474(**) 0.474(**)
Effective size 0.488(**) 0.314(**) 0.443(**)
Efficiency 0.086 0.149(**) -0.208(**)
Constriant -0.339(**) 0.212(**) 0.313(**)
Hierarchy -0.306(**) 0.179(**) 0.262(**)

InOut-neighbourhood Ego Metrics
Metric Socio-technical Strong Weak
Ego size 0.446(**) 0.236(**) 0.455(**)
Ego ties 0.450(**) 0.221(**) 0.458(**)
Ego pairs 0.446(**) 0.236(**) 0.455(**)
Ego density -0.383(**) -0.197(**) -0.152(**)
Ego reach 0.208(**) 0.129(*) 0.396(**)
Ego reach efficiency -0.344(**) -0.141(**) 0.239(**)
Ego brokerage 0.495(**) 0.349(**) 0.501(**)
Ego normalized brokerage 0.232(**) 0.239(**) 0.342(**)
Ego betweeness 0.476(**) 0.356(**) 0.475(**)
Ego normalized betweeness 0.401(**) 0.389(**) 0.438(**)

In-neighbourhood Ego Metrics
Metric Socio-technical Strong Weak
Ego size 0.386(**) 0.343(**) 0.369(**)
Ego ties 0.378(**) 0.318(**) 0.381(**)
Ego pairs 0.386(**) 0.343(**) 0.369(**)
Ego density -0.113(*) -0.124(*) 0.081
Ego reach 0.208(**) 0.129(*) 0.396(**)
Ego reach efficiency -0.283(**) -0.206(**) 0.276(**)

Out-neighbourhood Ego Metrics
Metric Socio-technical Strong Weak
Ego size 0.445(**) 0.109(*) 0.483(**)
Ego ties 0.432(**) 0.037 0.482(**)
Ego pairs 0.445(**) 0.109(*) 0.483(**)
Ego density -0.206(**) -0.290(**) 0.266(**)
Ego reach 0.208(**) 0.129(*) 0.396(**)
Ego reach efficiency -0.337(**) 0.040 0.241(**)
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(c) Eclipse 3.0 at Java package level

Global Metrics
Metric Socio-technical Strong Weak
Degree centrality 0.636(**) 0.611(**) 0.630(**)
Betweenness centrality 0.385(**) 0.322(**) 0.505(**)
Closeness centrality 0.178(**) -0.161(**) 0.446(**)
Information centrality 0.536(**) 0.345(**) 0.493(**)
Distance weighted reach 0.223(**) -0.108(*) 0.456(**)
Eigenvector centrality 0.253(**) 0.446(**) 0.465(**)
Effective size 0.551(**) 0.356(**) 0.504(**)
Efficiency 0.118(**) 0.157(**) -0.204(**)
Constriant -0.346(**) 0.247(**) 0.359(**)
Hierarchy -0.301(**) 0.170(**) 0.128(**)

InOut-neighbourhood Ego Metrics
Metric Socio-technical Strong Weak
Ego size 0.535(**) 0.308(**) 0.526(**)
Ego ties 0.559(**) 0.322(**) 0.510(**)
Ego pairs 0.535(**) 0.308(**) 0.526(**)
Ego density -0.337(**) -0.183(**) -0.261(**)
Ego reach 0.166(**) 0.028 0.430(**)
Ego reach efficiency -0.461(**) -0.375(**) 0.203(**)
Ego brokerage 0.551(**) 0.392(**) 0.525(**)
Ego normalized brokerage 0.224(**) 0.260(**) 0.366(**)
Ego betweeness 0.492(**) 0.389(**) 0.519(**)
Ego normalized betweeness 0.414(**) 0.394(**) 0.498(**)

In-neighbourhood Ego Metrics
Metric Socio-technical Strong Weak
Ego size 0.421(**) 0.372(**) 0.444(**)
Ego ties 0.413(**) 0.365(**) 0.429(**)
Ego pairs 0.421(**) 0.372(**) 0.444(**)
Ego density -0.174(**) -0.092(*) -0.049
Ego reach 0.166(**) 0.028 0.430(**)
Ego reach efficiency -0.235(**) -0.304(**) 0.276(**)

Out-neighbourhood Ego Metrics
Metric Socio-technical Strong Weak
Ego size 0.521(**) 0.184(**) 0.503(**)
Ego ties 0.536(**) 0.151(**) 0.504(**)
Ego pairs 0.521(**) 0.184(**) 0.503(**)
Ego density -0.151(**) -0.194(**) 0.323(**)
Ego reach 0.166(**) 0.028 0.430(**)
Ego reach efficiency -0.520(**) -0.324(**) 0.279(**)
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(d) Eclipse 3.1 at Java package level

Global Metrics
Metric Socio-technical Strong Weak
Degree centrality 0.632(**) 0.619(**) 0.607(**)
Betweenness centrality 0.438(**) 0.361(**) 0.538(**)
Closeness centrality 0.244(**) 0.162(**) 0.487(**)
Information centrality 0.575(**) 0.327(**) 0.529(**)
Distance weighted reach 0.274(**) 0.137(**) 0.489(**)
Eigenvector centrality 0.223(**) 0.380(**) 0.500(**)
Effective size 0.598(**) 0.415(**) 0.532(**)
Efficiency 0.116(**) 0.160(**) -0.186(**)
Constriant -0.463(**) 0.250(**) 0.402(**)
Hierarchy -0.410(**) 0.137(**) 0.181(**)

InOut-neighbourhood Ego Metrics
Metric Socio-technical Strong Weak
Ego size 0.584(**) 0.380(**) 0.549(**)
Ego ties 0.597(**) 0.376(**) 0.546(**)
Ego pairs 0.584(**) 0.380(**) 0.549(**)
Ego density -0.416(**) -0.265(**) -0.303(**)
Ego reach 0.198(**) 0.111(**) 0.481(**)
Ego reach efficiency -0.525(**) -0.386(**) 0.279(**)
Ego brokerage 0.599(**) 0.444(**) 0.568(**)
Ego normalized brokerage 0.233(**) 0.288(**) 0.419(**)
Ego betweeness 0.541(**) 0.426(**) 0.560(**)
Ego normalized betweeness 0.439(**) 0.404(**) 0.542(**)

In-neighbourhood Ego Metrics
Metric Socio-technical Strong Weak
Ego size 0.472(**) 0.395(**) 0.480(**)
Ego ties 0.464(**) 0.386(**) 0.472(**)
Ego pairs 0.472(**) 0.395(**) 0.480(**)
Ego density -0.206(**) -0.123(**) -0.068
Ego reach 0.198(**) 0.111(**) 0.481(**)
Ego reach efficiency -0.266(**) -0.263(**) 0.338(**)

Out-neighbourhood Ego Metrics
Metric Socio-technical Strong Weak
Ego size 0.545(**) 0.228(**) 0.538(**)
Ego ties 0.542(**) 0.180(**) 0.536(**)
Ego pairs 0.545(**) 0.228(**) 0.538(**)
Ego density -0.293(**) -0.306(**) 0.352(**)
Ego reach 0.198(**) 0.111(**) 0.481(**)
Ego reach efficiency -0.558(**) -0.330(**) 0.342(**)
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(e) Eclipse 3.2 at Java package level

Global Metrics
Metric Socio-technical Strong Weak
Degree centrality 0.593(**) 0.565(**) 0.586(**)
Betweenness centrality 0.417(**) 0.278(**) 0.501(**)
Closeness centrality 0.330(**) 0.149(**) 0.513(**)
Information centrality 0.518(**) 0.182(**) 0.530(**)
Distance weighted reach 0.364(**) -0.087(*) 0.520(**)
Eigenvector centrality 0.205(**) 0.282(**) 0.454(**)
Effective size 0.536(**) 0.253(**) 0.515(**)
Efficiency 0.190(**) 0.148(**) -0.117(**)
Constriant -0.308(**) 0.189(**) 0.403(**)
Hierarchy -0.232(**) 0.281(**) 0.116(**)

InOut-neighbourhood Ego Metrics
Metric Socio-technical Strong Weak
Ego size 0.507(**) 0.221(**) 0.511(**)
Ego ties 0.515(**) 0.209(**) 0.500(**)
Ego pairs 0.507(**) 0.221(**) 0.511(**)
Ego density -0.383(**) -0.199(**) -0.318(**)
Ego reach 0.277(**) -0.023 0.485(**)
Ego reach efficiency -0.389(**) -0.288(**) 0.264(**)
Ego brokerage 0.528(**) 0.269(**) 0.535(**)
Ego normalized brokerage 0.299(**) 0.224(**) 0.413(**)
Ego betweeness 0.498(**) 0.290(**) 0.527(**)
Ego normalized betweeness 0.445(**) 0.303(**) 0.516(**)

In-neighbourhood Ego Metrics
Metric Socio-technical Strong Weak
Ego size 0.375(**) 0.257(**) 0.410(**)
Ego ties 0.370(**) 0.251(**) 0.400(**)
Ego pairs 0.375(**) 0.257(**) 0.410(**)
Ego density -0.159(**) -0.081(*) -0.034
Ego reach 0.277(**) -0.023 0.485(**)
Ego reach efficiency -0.146(**) -0.216(**) 0.332(**)

Out-neighbourhood Ego Metrics
Metric Socio-technical Strong Weak
Ego size 0.508(**) 0.082(*) 0.538(**)
Ego ties 0.506(**) 0.038 0.537(**)
Ego pairs 0.508(**) 0.082(*) 0.538(**)
Ego density -0.329(**) -0.255(**) 0.354(**)
Ego reach 0.277(**) -0.023 0.485(**)
Ego reach efficiency -0.466(**) -0.251(**) 0.309(**)
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(f) Eclipse 3.3 at Java package level

Global Metrics
Metric Socio-technical Strong Weak
Degree centrality 0.563(**) 0.547(**) 0.515(**)
Betweenness centrality 0.371(**) 0.242(**) 0.474(**)
Closeness centrality 0.183(**) -0.128(**) 0.441(**)
Information centrality 0.461(**) 0.168(**) 0.468(**)
Distance weighted reach 0.209(**) -0.131(**) 0.448(**)
Eigenvector centrality 0.302(**) 0.259(**) 0.475(**)
Effective size 0.454(**) 0.245(**) 0.433(**)
Efficiency 0.221(**) 0.184(**) 0.035
Constriant 0.200(**) 0.138(**) 0.421(**)
Hierarchy 0.310(**) 0.350(**) 0.162(**)

InOut-neighbourhood Ego Metrics
Metric Socio-technical Strong Weak
Ego size 0.414(**) 0.205(**) 0.411(**)
Ego ties 0.424(**) 0.198(**) 0.404(**)
Ego pairs 0.414(**) 0.205(**) 0.411(**)
Ego density -0.307(**) -0.182(**) -0.243(**)
Ego reach 0.217(**) -0.027 0.451(**)
Ego reach efficiency -0.279(**) -0.261(**) 0.308(**)
Ego brokerage 0.451(**) 0.284(**) 0.483(**)
Ego normalized brokerage 0.271(**) 0.256(**) 0.417(**)
Ego betweeness 0.421(**) 0.290(**) 0.482(**)
Ego normalized betweeness 0.392(**) 0.312(**) 0.485(**)

In-neighbourhood Ego Metrics
Metric Socio-technical Strong Weak
Ego size 0.350(**) 0.286(**) 0.348(**)
Ego ties 0.343(**) 0.262(**) 0.338(**)
Ego pairs 0.350(**) 0.286(**) 0.348(**)
Ego density -0.167(**) -0.144(**) -0.049
Ego reach 0.217(**) -0.027 0.451(**)
Ego reach efficiency -0.159(**) -0.232(**) 0.320(**)

Out-neighbourhood Ego Metrics
Metric Socio-technical Strong Weak
Ego size 0.418(**) 0.057 0.470(**)
Ego ties 0.413(**) 0.036 0.469(**)
Ego pairs 0.418(**) 0.057 0.470(**)
Ego density -0.272(**) -0.123(**) 0.364(**)
Ego reach 0.217(**) -0.027 0.451(**)
Ego reach efficiency -0.337(**) -0.190(**) 0.363(**)
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(g) Eclipse 3.4 at Java package level

Global Metrics
Metric Socio-technical Strong Weak
Degree centrality 0.508(**) 0.482(**) 0.473(**)
Betweenness centrality 0.365(**) 0.267(**) 0.439(**)
Closeness centrality 0.188(**) -0.098(**) 0.368(**)
Information centrality 0.398(**) 0.174(**) 0.428(**)
Distance weighted reach 0.218(**) -0.094(**) 0.378(**)
Eigenvector centrality 0.322(**) 0.312(**) 0.452(**)
Effective size 0.417(**) 0.255(**) 0.414(**)
Efficiency 0.249(**) 0.134(**) 0.144(**)
Constriant 0.218(**) 0.220(**) 0.349(**)
Hierarchy 0.302(**) 0.331(**) 0.160(**)

InOut-neighbourhood Ego Metrics
Metric Socio-technical Strong Weak
Ego size 0.365(**) 0.207(**) 0.382(**)
Ego ties 0.369(**) 0.197(**) 0.369(**)
Ego pairs 0.365(**) 0.207(**) 0.382(**)
Ego density -0.286(**) -0.164(**) -0.193(**)
Ego reach 0.228(**) 0.064 0.388(**)
Ego reach efficiency -0.183(**) -0.123(**) 0.244(**)
Ego brokerage 0.420(**) 0.279(**) 0.448(**)
Ego normalized brokerage 0.278(**) 0.239(**) 0.414(**)
Ego betweeness 0.401(**) 0.292(**) 0.440(**)
Ego normalized betweeness 0.387(**) 0.316(**) 0.449(**)

In-neighbourhood Ego Metrics
Metric Socio-technical Strong Weak
Ego size 0.328(**) 0.289(**) 0.344(**)
Ego ties 0.323(**) 0.273(**) 0.321(**)
Ego pairs 0.328(**) 0.289(**) 0.344(**)
Ego density -0.127(**) -0.069(*) -0.077(*)
Ego reach 0.228(**) 0.064 0.388(**)
Ego reach efficiency -0.117(**) -0.158(**) 0.261(**)

Out-neighbourhood Ego Metrics
Metric Socio-technical Strong Weak
Ego size 0.353(**) 0.082(*) 0.420(**)
Ego ties 0.349(**) 0.063 0.418(**)
Ego pairs 0.353(**) 0.082(*) 0.420(**)
Ego density -0.207(**) -0.111(**) 0.308(**)
Ego reach 0.228(**) 0.064 0.388(**)
Ego reach efficiency -0.185(**) -0.009 0.318(**)
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Table A.2: Correlation of social network metrics for Netbeans with number of post-release defects.
Strong and Weak denote the Strong network and the Weak network respectively. Bold values indicate
that the correlation on that network is higher than that on other networks. Correlation significant at
99% and 95% with Wilcoxon signed-rank tests are marked by (**) and (*) respectively.

(a) Netbeans 6.1 at Java JAR file level

Global Metrics
Metric Socio-technical Strong Weak
Degree centrality 0.505(**) 0.475(**) 0.474(**)
Betweenness centrality 0.485(**) 0.425(**) 0.522(**)
Closeness centrality 0.465(**) 0.255(**) 0.500(**)
Information centrality 0.523(**) 0.478(**) 0.494(**)
Distance weighted reach 0.475(**) 0.278(**) 0.504(**)
Eigenvector centrality 0.413(**) 0.392(**) 0.431(**)
Effective size 0.511(**) 0.426(**) 0.485(**)
Efficiency 0.096(*) 0.083 0.094(*)
Constriant 0.176(**) 0.302(**) 0.283(**)
Hierarchy 0.147(**) 0.172(**) 0.160(**)

InOut-neighbourhood Ego Metrics
Metric Socio-technical Strong Weak
Ego size 0.475(**) 0.364(**) 0.462(**)
Ego ties 0.474(**) 0.344(**) 0.454(**)
Ego pairs 0.475(**) 0.364(**) 0.462(**)
Ego density -0.373(**) -0.319(**) -0.061
Ego reach 0.501(**) 0.331(**) 0.503(**)
Ego reach efficiency 0.203(**) -0.020 0.338(**)
Ego brokerage 0.530(**) 0.442(**) 0.501(**)
Ego normalized brokerage 0.335(**) 0.346(**) 0.381(**)
Ego betweeness 0.506(**) 0.432(**) 0.493(**)
Ego normalized betweeness 0.500(**) 0.451(**) 0.494(**)

In-neighbourhood Ego Metrics
Metric Socio-technical Strong Weak
Ego size 0.384(**) 0.342(**) 0.370(**)
Ego ties 0.344(**) 0.326(**) 0.344(**)
Ego pairs 0.384(**) 0.342(**) 0.370(**)
Ego density -0.098(*) 0.021 -0.024
Ego reach 0.501(**) 0.331(**) 0.503(**)
Ego reach efficiency 0.181(**) -0.017 0.399(**)

Out-neighbourhood Ego Metrics
Metric Socio-technical Strong Weak
Ego size 0.540(**) 0.338(**) 0.516(**)
Ego ties 0.503(**) 0.278(**) 0.511(**)
Ego pairs 0.540(**) 0.338(**) 0.516(**)
Ego density -0.393(**) -0.349(**) 0.215(**)
Ego reach 0.501(**) 0.331(**) 0.503(**)
Ego reach efficiency 0.177(**) 0.077 0.337(**)
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(b) Netbeans 6.5 at Java JAR file level

Global Metrics
Metric Socio-technical Strong Weak
Degree centrality 0.469(**) 0.463(**) 0.464(**)
Betweenness centrality 0.413(**) 0.391(**) 0.439(**)
Closeness centrality 0.319(**) 0.174(**) 0.426(**)
Information centrality 0.431(**) 0.392(**) 0.460(**)
Distance weighted reach 0.336(**) 0.213(**) 0.431(**)
Eigenvector centrality 0.459(**) 0.444(**) 0.428(**)
Effective size 0.463(**) 0.423(**) 0.449(**)
Efficiency 0.132(**) 0.182(**) -0.151(**)
Constriant -0.244(**) 0.162(**) 0.285(**)
Hierarchy -0.220(**) 0.206(**) 0.095(*)

InOut-neighbourhood Ego Metrics
Metric Socio-technical Strong Weak
Ego size 0.436(**) 0.342(**) 0.453(**)
Ego ties 0.443(**) 0.317(**) 0.454(**)
Ego pairs 0.436(**) 0.342(**) 0.453(**)
Ego density -0.329(**) -0.313(**) -0.235(**)
Ego reach 0.330(**) 0.287(**) 0.429(**)
Ego reach efficiency -0.122(**) -0.091(*) 0.234(**)
Ego brokerage 0.487(**) 0.447(**) 0.474(**)
Ego normalized brokerage 0.256(**) 0.259(**) 0.313(**)
Ego betweeness 0.446(**) 0.426(**) 0.462(**)
Ego normalized betweeness 0.424(**) 0.443(**) 0.447(**)

In-neighbourhood Ego Metrics
Metric Socio-technical Strong Weak
Ego size 0.400(**) 0.400(**) 0.359(**)
Ego ties 0.346(**) 0.359(**) 0.335(**)
Ego pairs 0.400(**) 0.400(**) 0.359(**)
Ego density -0.252(**) -0.177(**) -0.131(**)
Ego reach 0.330(**) 0.287(**) 0.429(**)
Ego reach efficiency -0.111(*) -0.168(**) 0.284(**)

Out-neighbourhood Ego Metrics
Metric Socio-technical Strong Weak
Ego size 0.441(**) 0.304(**) 0.465(**)
Ego ties 0.413(**) 0.218(**) 0.460(**)
Ego pairs 0.441(**) 0.304(**) 0.465(**)
Ego density -0.316(**) -0.325(**) 0.220(**)
Ego reach 0.330(**) 0.287(**) 0.429(**)
Ego reach efficiency -0.117(**) -0.015 0.262(**)
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(c) Netbeans 6.7 at Java JAR file level

Global Metrics
Metric Socio-technical Strong Weak
Degree centrality 0.416(**) 0.414(**) 0.424(**)
Betweenness centrality 0.383(**) 0.348(**) 0.448(**)
Closeness centrality 0.323(**) 0.137(**) 0.396(**)
Information centrality 0.402(**) 0.376(**) 0.444(**)
Distance weighted reach 0.333(**) 0.148(**) 0.399(**)
Eigenvector centrality 0.406(**) 0.389(**) 0.398(**)
Effective size 0.413(**) 0.314(**) 0.422(**)
Efficiency 0.149(**) 0.121(**) -0.060
Constriant -0.163(**) 0.209(**) 0.250(**)
Hierarchy -0.170(**) 0.152(**) 0.121(**)

InOut-neighbourhood Ego Metrics
Metric Socio-technical Strong Weak
Ego size 0.391(**) 0.252(**) 0.415(**)
Ego ties 0.379(**) 0.217(**) 0.414(**)
Ego pairs 0.391(**) 0.252(**) 0.415(**)
Ego density -0.321(**) -0.252(**) -0.154(**)
Ego reach 0.315(**) 0.188(**) 0.394(**)
Ego reach efficiency -0.041 -0.091(*) 0.219(**)
Ego brokerage 0.429(**) 0.327(**) 0.450(**)
Ego normalized brokerage 0.243(**) 0.216(**) 0.302(**)
Ego betweeness 0.409(**) 0.347(**) 0.442(**)
Ego normalized betweeness 0.397(**) 0.367(**) 0.437(**)

In-neighbourhood Ego Metrics
Metric Socio-technical Strong Weak
Ego size 0.333(**) 0.311(**) 0.344(**)
Ego ties 0.294(**) 0.290(**) 0.309(**)
Ego pairs 0.333(**) 0.311(**) 0.344(**)
Ego density -0.175(**) -0.069 -0.129(**)
Ego reach 0.315(**) 0.188(**) 0.394(**)
Ego reach efficiency -0.031 -0.152(**) 0.279(**)

Out-neighbourhood Ego Metrics
Metric Socio-technical Strong Weak
Ego size 0.394(**) 0.165(**) 0.447(**)
Ego ties 0.368(**) 0.109(*) 0.446(**)
Ego pairs 0.394(**) 0.165(**) 0.447(**)
Ego density -0.311(**) -0.223(**) 0.175(**)
Ego reach 0.315(**) 0.188(**) 0.394(**)
Ego reach efficiency -0.045 0.105(*) 0.220(**)
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(d) Netbeans 6.8 at Java JAR file level

Global Metrics
Metric Socio-technical Strong Weak
Degree centrality 0.462(**) 0.464(**) 0.453(**)
Betweenness centrality 0.447(**) 0.342(**) 0.432(**)
Closeness centrality 0.400(**) -0.080 0.394(**)
Information centrality 0.418(**) 0.361(**) 0.452(**)
Distance weighted reach 0.411(**) 0.072 0.394(**)
Eigenvector centrality 0.449(**) 0.360(**) 0.415(**)
Effective size 0.426(**) 0.359(**) 0.417(**)
Efficiency 0.225(**) 0.223(**) -0.164(**)
Constriant -0.315(**) 0.276(**) 0.335(**)
Hierarchy -0.313(**) 0.151(**) -0.101(*)

InOut-neighbourhood Ego Metrics
Metric Socio-technical Strong Weak
Ego size 0.396(**) 0.267(**) 0.396(**)
Ego ties 0.389(**) 0.236(**) 0.378(**)
Ego pairs 0.396(**) 0.267(**) 0.396(**)
Ego density -0.363(**) -0.282(**) -0.334(**)
Ego reach 0.385(**) 0.180(**) 0.403(**)
Ego reach efficiency -0.307(**) -0.066 0.293(**)
Ego brokerage 0.443(**) 0.393(**) 0.431(**)
Ego normalized brokerage 0.351(**) 0.299(**) 0.278(**)
Ego betweeness 0.436(**) 0.383(**) 0.432(**)
Ego normalized betweeness 0.417(**) 0.400(**) 0.424(**)

In-neighbourhood Ego Metrics
Metric Socio-technical Strong Weak
Ego size 0.303(**) 0.325(**) 0.277(**)
Ego ties 0.263(**) 0.318(**) 0.235(**)
Ego pairs 0.303(**) 0.325(**) 0.277(**)
Ego density -0.249(**) 0.040 -0.264(**)
Ego reach 0.385(**) 0.180(**) 0.403(**)
Ego reach efficiency -0.219(**) -0.143(**) 0.336(**)

Out-neighbourhood Ego Metrics
Metric Socio-technical Strong Weak
Ego size 0.430(**) 0.163(**) 0.454(**)
Ego ties 0.388(**) 0.117(**) 0.446(**)
Ego pairs 0.430(**) 0.163(**) 0.454(**)
Ego density -0.413(**) -0.253(**) 0.122(**)
Ego reach 0.385(**) 0.180(**) 0.403(**)
Ego reach efficiency -0.338(**) 0.062 0.278(**)
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(e) Netbeans 6.9 at Java JAR file level

Global Metrics
Metric Socio-technical Strong Weak
Degree centrality 0.506(**) 0.502(**) 0.504(**)
Betweenness centrality 0.386(**) 0.324(**) 0.407(**)
Closeness centrality 0.423(**) 0.187(**) 0.459(**)
Information centrality 0.458(**) 0.344(**) 0.469(**)
Distance weighted reach 0.429(**) 0.202(**) 0.458(**)
Eigenvector centrality 0.495(**) 0.238(**) 0.449(**)
Effective size 0.447(**) 0.349(**) 0.457(**)
Efficiency 0.161(**) 0.233(**) -0.283(**)
Constriant -0.384(**) 0.317(**) 0.202(**)
Hierarchy -0.362(**) 0.185(**) -0.249(**)

InOut-neighbourhood Ego Metrics
Metric Socio-technical Strong Weak
Ego size 0.432(**) 0.245(**) 0.440(**)
Ego ties 0.436(**) 0.225(**) 0.446(**)
Ego pairs 0.432(**) 0.245(**) 0.440(**)
Ego density -0.382(**) -0.260(**) -0.307(**)
Ego reach 0.400(**) 0.253(**) 0.464(**)
Ego reach efficiency -0.424(**) 0.034 0.159(**)
Ego brokerage 0.450(**) 0.319(**) 0.453(**)
Ego normalized brokerage 0.310(**) 0.234(**) 0.314(**)
Ego betweeness 0.437(**) 0.327(**) 0.443(**)
Ego normalized betweeness 0.393(**) 0.347(**) 0.417(**)

In-neighbourhood Ego Metrics
Metric Socio-technical Strong Weak
Ego size 0.331(**) 0.292(**) 0.323(**)
Ego ties 0.304(**) 0.290(**) 0.319(**)
Ego pairs 0.331(**) 0.292(**) 0.323(**)
Ego density -0.225(**) 0.046 -0.160(**)
Ego reach 0.400(**) 0.253(**) 0.464(**)
Ego reach efficiency -0.303(**) -0.083(*) 0.228(**)

Out-neighbourhood Ego Metrics
Metric Socio-technical Strong Weak
Ego size 0.430(**) 0.194(**) 0.465(**)
Ego ties 0.401(**) 0.114(**) 0.459(**)
Ego pairs 0.430(**) 0.194(**) 0.465(**)
Ego density -0.400(**) -0.355(**) 0.165(**)
Ego reach 0.400(**) 0.253(**) 0.464(**)
Ego reach efficiency -0.422(**) 0.163(**) 0.173(**)
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(f) Netbeans 7.0 at Java JAR file level

Global Metrics
Metric Socio-technical Strong Weak
Degree centrality 0.507(**) 0.502(**) 0.492(**)
Betweenness centrality 0.366(**) 0.360(**) 0.438(**)
Closeness centrality 0.259(**) 0.098(*) 0.368(**)
Information centrality 0.432(**) 0.365(**) 0.461(**)
Distance weighted reach 0.286(**) 0.136(**) 0.376(**)
Eigenvector centrality 0.441(**) 0.439(**) 0.455(**)
Effective size 0.414(**) 0.315(**) 0.427(**)
Efficiency 0.045 0.064 -0.017
Constriant 0.253(**) 0.325(**) 0.376(**)
Hierarchy 0.247(**) 0.285(**) 0.147(**)

InOut-neighbourhood Ego Metrics
Metric Socio-technical Strong Weak
Ego size 0.396(**) 0.261(**) 0.415(**)
Ego ties 0.421(**) 0.267(**) 0.425(**)
Ego pairs 0.396(**) 0.261(**) 0.415(**)
Ego density -0.238(**) -0.185(**) -0.008
Ego reach 0.301(**) 0.221(**) 0.402(**)
Ego reach efficiency -0.010 -0.088(*) 0.276(**)
Ego brokerage 0.433(**) 0.349(**) 0.465(**)
Ego normalized brokerage 0.250(**) 0.287(**) 0.358(**)
Ego betweeness 0.412(**) 0.364(**) 0.457(**)
Ego normalized betweeness 0.393(**) 0.377(**) 0.455(**)

In-neighbourhood Ego Metrics
Metric Socio-technical Strong Weak
Ego size 0.321(**) 0.285(**) 0.365(**)
Ego ties 0.315(**) 0.283(**) 0.358(**)
Ego pairs 0.321(**) 0.285(**) 0.365(**)
Ego density -0.030 0.105(*) 0.045
Ego reach 0.301(**) 0.221(**) 0.402(**)
Ego reach efficiency -0.019 -0.103(*) 0.291(**)

Out-neighbourhood Ego Metrics
Metric Socio-technical Strong Weak
Ego size 0.396(**) 0.202(**) 0.442(**)
Ego ties 0.386(**) 0.181(**) 0.442(**)
Ego pairs 0.396(**) 0.202(**) 0.442(**)
Ego density -0.239(**) -0.150(**) 0.247(**)
Ego reach 0.301(**) 0.221(**) 0.402(**)
Ego reach efficiency 0.051 0.068 0.331(**)
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Table A.3: Correlation of social network metrics for Gnome with number of post-release defects.
Strong and Weak denote the Strong network and the Weak network respectively. Bold values indicate
that the correlation on that network is higher than that on other networks. Correlation significant at
99% and 95% with Wilcoxon signed-rank tests are marked by (**) and (*) respectively.

(a) Gnome 2.16 at Ubuntu package level

Global Metrics
Metric Socio-technical Strong Weak
Degree centrality 0.557(**) 0.545(**) 0.558(**)
Betweenness centrality 0.533(**) 0.498(**) 0.600(**)
Closeness centrality 0.490(**) 0.228(**) 0.617(**)
Information centrality 0.537(**) 0.339(**) 0.617(**)
Distance weighted reach 0.497(**) 0.253(**) 0.617(**)
Eigenvector centrality 0.555(**) 0.539(**) 0.603(**)
Effective size 0.555(**) 0.531(**) 0.557(**)
Efficiency -0.165(*) -0.011 0.025
Constriant -0.247(**) -0.188(*) 0.422(**)
Hierarchy -0.473(**) -0.426(**) 0.397(**)

InOut-neighbourhood Ego Metrics
Metric Socio-technical Strong Weak
Ego size 0.557(**) 0.546(**) 0.553(**)
Ego ties 0.547(**) 0.532(**) 0.559(**)
Ego pairs 0.557(**) 0.546(**) 0.553(**)
Ego density -0.543(**) -0.550(**) -0.083
Ego reach 0.522(**) 0.276(**) 0.618(**)
Ego reach efficiency -0.391(**) -0.439(**) 0.361(**)
Ego brokerage 0.554(**) 0.537(**) 0.617(**)
Ego normalized brokerage 0.112 0.117 0.446(**)
Ego betweeness 0.546(**) 0.537(**) 0.613(**)
Ego normalized betweeness 0.538(**) 0.511(**) 0.598(**)

In-neighbourhood Ego Metrics
Metric Socio-technical Strong Weak
Ego size 0.557(**) 0.570(**) 0.533(**)
Ego ties 0.552(**) 0.565(**) 0.533(**)
Ego pairs 0.557(**) 0.570(**) 0.533(**)
Ego density -0.210(**) -0.196(*) -0.061
Ego reach 0.522(**) 0.276(**) 0.618(**)
Ego reach efficiency -0.441(**) -0.458(**) 0.401(**)

Out-neighbourhood Ego Metrics
Metric Socio-technical Strong Weak
Ego size 0.546(**) 0.367(**) 0.615(**)
Ego ties 0.531(**) 0.337(**) 0.614(**)
Ego pairs 0.546(**) 0.367(**) 0.615(**)
Ego density -0.489(**) -0.365(**) 0.402(**)
Ego reach 0.522(**) 0.276(**) 0.618(**)
Ego reach efficiency -0.375(**) -0.119 0.388(**)
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(b) Gnome 2.18 at Ubuntu package level

Global Metrics
Metric Socio-technical Strong Weak
Degree centrality 0.538(**) 0.507(**) 0.545(**)
Betweenness centrality 0.476(**) 0.468(**) 0.583(**)
Closeness centrality 0.469(**) 0.158(*) 0.587(**)
Information centrality -0.306(**) 0.360(**) 0.605(**)
Distance weighted reach 0.474(**) 0.173(*) 0.591(**)
Eigenvector centrality 0.512(**) 0.488(**) 0.602(**)
Effective size 0.531(**) 0.504(**) 0.544(**)
Efficiency -0.279(**) -0.192(*) 0.036
Constriant -0.341(**) -0.268(**) 0.486(**)
Hierarchy -0.487(**) -0.411(**) 0.314(**)

InOut-neighbourhood Ego Metrics
Metric Socio-technical Strong Weak
Ego size 0.546(**) 0.520(**) 0.540(**)
Ego ties 0.534(**) 0.503(**) 0.546(**)
Ego pairs 0.546(**) 0.520(**) 0.540(**)
Ego density -0.513(**) -0.515(**) -0.124
Ego reach 0.503(**) 0.212(**) 0.602(**)
Ego reach efficiency -0.217(**) -0.370(**) 0.369(**)
Ego brokerage 0.533(**) 0.494(**) 0.616(**)
Ego normalized brokerage -0.008 0.070 0.484(**)
Ego betweeness 0.530(**) 0.495(**) 0.613(**)
Ego normalized betweeness 0.513(**) 0.461(**) 0.601(**)

In-neighbourhood Ego Metrics
Metric Socio-technical Strong Weak
Ego size 0.529(**) 0.527(**) 0.532(**)
Ego ties 0.527(**) 0.530(**) 0.526(**)
Ego pairs 0.529(**) 0.527(**) 0.532(**)
Ego density -0.325(**) -0.341(**) -0.090
Ego reach 0.503(**) 0.212(**) 0.602(**)
Ego reach efficiency -0.377(**) -0.387(**) 0.387(**)

Out-neighbourhood Ego Metrics
Metric Socio-technical Strong Weak
Ego size 0.536(**) 0.305(**) 0.603(**)
Ego ties 0.515(**) 0.282(**) 0.605(**)
Ego pairs 0.536(**) 0.305(**) 0.603(**)
Ego density -0.442(**) -0.267(**) 0.422(**)
Ego reach 0.503(**) 0.212(**) 0.602(**)
Ego reach efficiency -0.199(**) -0.078 0.417(**)
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(c) Gnome 2.20 at Ubuntu package level

Global Metrics
Metric Socio-technical Strong Weak
Degree centrality 0.645(**) 0.616(**) 0.642(**)
Betweenness centrality 0.600(**) 0.579(**) 0.674(**)
Closeness centrality 0.531(**) 0.259(**) 0.677(**)
Information centrality -0.374(**) 0.423(**) 0.680(**)
Distance weighted reach 0.551(**) 0.264(**) 0.679(**)
Eigenvector centrality 0.623(**) 0.595(**) 0.681(**)
Effective size 0.642(**) 0.614(**) 0.641(**)
Efficiency -0.265(**) -0.121 0.103
Constriant -0.296(**) -0.188(*) 0.507(**)
Hierarchy -0.529(**) -0.408(**) 0.408(**)

InOut-neighbourhood Ego Metrics
Metric Socio-technical Strong Weak
Ego size 0.651(**) 0.639(**) 0.649(**)
Ego ties 0.640(**) 0.613(**) 0.641(**)
Ego pairs 0.651(**) 0.639(**) 0.649(**)
Ego density -0.619(**) -0.642(**) -0.088
Ego reach 0.577(**) 0.323(**) 0.684(**)
Ego reach efficiency -0.216(**) -0.412(**) 0.402(**)
Ego brokerage 0.647(**) 0.610(**) 0.696(**)
Ego normalized brokerage 0.102 0.225(**) 0.539(**)
Ego betweeness 0.643(**) 0.608(**) 0.689(**)
Ego normalized betweeness 0.629(**) 0.582(**) 0.671(**)

In-neighbourhood Ego Metrics
Metric Socio-technical Strong Weak
Ego size 0.642(**) 0.641(**) 0.631(**)
Ego ties 0.636(**) 0.634(**) 0.631(**)
Ego pairs 0.642(**) 0.641(**) 0.631(**)
Ego density -0.273(**) -0.245(**) -0.055
Ego reach 0.577(**) 0.323(**) 0.684(**)
Ego reach efficiency -0.416(**) -0.464(**) 0.436(**)

Out-neighbourhood Ego Metrics
Metric Socio-technical Strong Weak
Ego size 0.641(**) 0.398(**) 0.691(**)
Ego ties 0.627(**) 0.375(**) 0.689(**)
Ego pairs 0.641(**) 0.398(**) 0.691(**)
Ego density -0.538(**) -0.370(**) 0.487(**)
Ego reach 0.577(**) 0.323(**) 0.684(**)
Ego reach efficiency -0.206(**) -0.043 0.472(**)
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(d) Gnome 2.22 at Ubuntu package level

Global Metrics
Metric Socio-technical Strong Weak
Degree centrality 0.598(**) 0.568(**) 0.610(**)
Betweenness centrality 0.568(**) 0.512(**) 0.695(**)
Closeness centrality 0.439(**) -0.139 0.667(**)
Information centrality 0.577(**) 0.305(**) 0.702(**)
Distance weighted reach 0.227(**) -0.160(*) 0.668(**)
Eigenvector centrality 0.594(**) 0.570(**) 0.697(**)
Effective size 0.601(**) 0.571(**) 0.609(**)
Efficiency -0.209(**) -0.099 0.104
Constriant -0.329(**) -0.216(**) 0.571(**)
Hierarchy -0.524(**) -0.406(**) 0.395(**)

InOut-neighbourhood Ego Metrics
Metric Socio-technical Strong Weak
Ego size 0.603(**) 0.584(**) 0.606(**)
Ego ties 0.591(**) 0.560(**) 0.608(**)
Ego pairs 0.603(**) 0.584(**) 0.606(**)
Ego density -0.585(**) -0.583(**) -0.107
Ego reach 0.535(**) 0.393(**) 0.695(**)
Ego reach efficiency -0.215(**) -0.334(**) 0.466(**)
Ego brokerage 0.598(**) 0.575(**) 0.707(**)
Ego normalized brokerage 0.083 0.221(**) 0.572(**)
Ego betweeness 0.592(**) 0.576(**) 0.703(**)
Ego Normalized betweeness 0.574(**) 0.562(**) 0.693(**)

In-neighbourhood Ego Metrics
Metric Socio-technical Strong Weak
Ego size 0.596(**) 0.607(**) 0.594(**)
Ego ties 0.590(**) 0.608(**) 0.587(**)
Ego pairs 0.596(**) 0.607(**) 0.594(**)
Ego density -0.306(**) -0.250(**) -0.077
Ego reach 0.535(**) 0.393(**) 0.695(**)
Ego reach efficiency -0.413(**) -0.398(**) 0.486(**)

Out-neighbourhood Ego Metrics
Metric Socio-technical Strong Weak
Ego size 0.595(**) 0.417(**) 0.691(**)
Ego ties 0.578(**) 0.389(**) 0.694(**)
Ego pairs 0.595(**) 0.417(**) 0.691(**)
Ego density -0.570(**) -0.446(**) 0.479(**)
Ego reach 0.535(**) 0.393(**) 0.695(**)
Ego reach efficiency -0.212(**) 0.023 0.498(**)

73



(e) Gnome 2.24 at Ubuntu package level

Global Metrics
Metric Socio-technical Strong Weak
Degree centrality 0.645(**) 0.614(**) 0.647(**)
Betweenness centrality 0.545(**) 0.518(**) 0.639(**)
Closeness centrality 0.582(**) 0.329(**) 0.644(**)
Information centrality -0.246(**) -0.423(**) 0.662(**)
Distance weighted reach 0.602(**) 0.337(**) 0.647(**)
Eigenvector centrality 0.625(**) 0.581(**) 0.647(**)
Effective size 0.646(**) 0.615(**) 0.644(**)
Efficiency -0.295(**) -0.174(*) 0.082
Constriant -0.377(**) -0.225(**) 0.518(**)
Hierarchy -0.574(**) -0.440(**) 0.452(**)

InOut-neighbourhood Ego Metrics
Metric Socio-technical Strong Weak
Ego size 0.654(**) 0.639(**) 0.647(**)
Ego ties 0.650(**) 0.614(**) 0.655(**)
Ego pairs 0.654(**) 0.639(**) 0.647(**)
Ego density -0.627(**) -0.648(**) -0.118
Ego reach 0.596(**) 0.361(**) 0.666(**)
Ego reach efficiency -0.212(**) -0.390(**) 0.351(**)
Ego brokerage 0.649(**) 0.621(**) 0.673(**)
Ego normalized brokerage 0.061 0.253(**) 0.493(**)
Ego betweeness 0.640(**) 0.615(**) 0.669(**)
Ego normalized betweeness 0.623(**) 0.567(**) 0.653(**)

In-neighbourhood Ego Metrics
Metric Socio-technical Strong Weak
Ego size 0.636(**) 0.641(**) 0.641(**)
Ego ties 0.638(**) 0.642(**) 0.649(**)
Ego pairs 0.636(**) 0.641(**) 0.641(**)
Ego density -0.360(**) -0.254(**) -0.099
Ego reach 0.596(**) 0.361(**) 0.666(**)
Ego reach efficiency -0.383(**) -0.425(**) 0.366(**)

Out-neighbourhood Ego Metrics
Metric Socio-technical Strong Weak
Ego size 0.644(**) 0.408(**) 0.667(**)
Ego ties 0.634(**) 0.392(**) 0.668(**)
Ego pairs 0.644(**) 0.408(**) 0.667(**)
Ego density -0.550(**) -0.370(**) 0.435(**)
Ego reach 0.596(**) 0.361(**) 0.666(**)
Ego reach efficiency -0.201(**) 0.048 0.444(**)
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(f) Gnome 2.26 at Ubuntu package level

Global Metrics
Metric Socio-technical Strong Weak
Degree centrality 0.616(**) 0.583(**) 0.619(**)
Betweenness centrality 0.489(**) 0.446(**) 0.620(**)
Closeness centrality 0.379(**) -0.163(*) 0.622(**)
Information centrality 0.588(**) 0.270(**) 0.662(**)
Distance weighted reach 0.400(**) -0.161(*) 0.626(**)
Eigenvector centrality 0.591(**) 0.534(**) 0.663(**)
Effective size 0.616(**) 0.582(**) 0.619(**)
Efficiency -0.267(**) -0.198(**) 0.028
Constriant -0.453(**) -0.392(**) 0.525(**)
Hierarchy -0.575(**) -0.565(**) 0.293(**)

InOut-neighbourhood Ego Metrics
Metric Socio-technical Strong Weak
Ego size 0.623(**) 0.615(**) 0.618(**)
Ego ties 0.608(**) 0.588(**) 0.612(**)
Ego pairs 0.623(**) 0.615(**) 0.618(**)
Ego density -0.607(**) -0.618(**) -0.257(**)
Ego reach 0.561(**) 0.274(**) 0.645(**)
Ego reach efficiency -0.260(**) -0.426(**) 0.341(**)
Ego brokerage 0.618(**) 0.570(**) 0.670(**)
Ego normalized brokerage 0.026 0.100 0.500(**)
Ego betweeness 0.612(**) 0.567(**) 0.667(**)
Ego normalized betweeness 0.592(**) 0.509(**) 0.658(**)

In-neighbourhood Ego Metrics
Metric Socio-technical Strong Weak
Ego size 0.613(**) 0.621(**) 0.613(**)
Ego ties 0.609(**) 0.624(**) 0.612(**)
Ego pairs 0.613(**) 0.621(**) 0.613(**)
Ego density -0.412(**) -0.398(**) -0.210(**)
Ego reach 0.561(**) 0.274(**) 0.645(**)
Ego reach efficiency -0.402(**) -0.462(**) 0.365(**)

Out-neighbourhood Ego Metrics
Metric Socio-technical Strong Weak
Ego size 0.605(**) 0.346(**) 0.652(**)
Ego ties 0.590(**) 0.324(**) 0.645(**)
Ego pairs 0.605(**) 0.346(**) 0.652(**)
Ego density -0.550(**) -0.334(**) 0.356(**)
Ego reach 0.561(**) 0.274(**) 0.645(**)
Ego reach efficiency -0.258(**) -0.046 0.385(**)
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Appendix B

Cross Validation of Eclipse, Netbeans
and Gnome Logistic Models
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Table B.1: Results of repeated 10-fold cross validation of Eclipse. Given data from current release,
predict whether a Eclipse Java package is defect-prone in current release. Bold values indicate that
they are higher than values calculated on other networks.

(a) Predict top 10% defect-prone Eclipse Java packages

Release Network Precision Recall F-Score AUC Nagel.

2.0
Socio-technical 0.547 0.274 0.341 0.896 0.417
Weak 0.610 0.352 0.417 0.902 0.437
Strong 0.406 0.178 0.233 0.871 0.335
Weak+Strong 0.589 0.342 0.403 0.913 0.475

2.1
Socio-technical 0.678 0.439 0.500 0.909 0.490
Weak 0.689 0.374 0.458 0.863 0.388
Strong 0.752 0.415 0.510 0.887 0.461
Weak+Strong 0.690 0.419 0.496 0.905 0.489

3.0
Socio-technical 0.793 0.436 0.531 0.910 0.471
Weak 0.791 0.494 0.582 0.907 0.503
Strong 0.617 0.371 0.438 0.923 0.477
Weak+Strong 0.722 0.486 0.561 0.930 0.559

3.1
Socio-technical 0.772 0.468 0.559 0.929 0.553
Weak 0.831 0.453 0.565 0.913 0.505
Strong 0.740 0.390 0.488 0.917 0.511
Weak+Strong 0.742 0.518 0.591 0.948 0.613

3.2
Socio-technical 0.720 0.461 0.545 0.935 0.561
Weak 0.726 0.386 0.484 0.910 0.490
Strong 0.746 0.420 0.521 0.904 0.474
Weak+Strong 0.801 0.518 0.610 0.939 0.576

3.3
Socio-technical 0.718 0.413 0.510 0.881 0.444
Weak 0.760 0.327 0.442 0.863 0.411
Strong 0.743 0.349 0.462 0.864 0.400
Weak+Strong 0.741 0.402 0.510 0.893 0.477

3.4
Socio-technical 0.767 0.356 0.475 0.845 0.383
Weak 0.738 0.316 0.433 0.818 0.325
Strong 0.825 0.349 0.479 0.845 0.381
Weak+Strong 0.788 0.449 0.561 0.876 0.454
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(b) Predict top 15% defect-prone Eclipse Java packages

Release Network Precision Recall F-Score AUC Nagel.

2.0
Socio-technical 0.722 0.418 0.500 0.884 0.458
Weak 0.729 0.412 0.497 0.888 0.486
Strong 0.639 0.332 0.409 0.877 0.401
Weak+Strong 0.765 0.524 0.595 0.909 0.549

2.1
Socio-technical 0.798 0.478 0.573 0.883 0.481
Weak 0.732 0.416 0.504 0.853 0.406
Strong 0.752 0.391 0.496 0.870 0.441
Weak+Strong 0.768 0.439 0.535 0.893 0.488

3.0
Socio-technical 0.746 0.512 0.588 0.929 0.558
Weak 0.787 0.490 0.585 0.907 0.514
Strong 0.731 0.494 0.574 0.927 0.542
Weak+Strong 0.748 0.573 0.636 0.941 0.619

3.1
Socio-technical 0.695 0.455 0.534 0.914 0.524
Weak 0.773 0.423 0.527 0.888 0.478
Strong 0.683 0.399 0.485 0.900 0.492
Weak+Strong 0.760 0.546 0.621 0.925 0.573

3.2
Socio-technical 0.807 0.543 0.638 0.921 0.564
Weak 0.781 0.506 0.604 0.891 0.495
Strong 0.804 0.441 0.560 0.889 0.477
Weak+Strong 0.777 0.547 0.630 0.923 0.580

3.3
Socio-technical 0.756 0.481 0.579 0.877 0.473
Weak 0.841 0.433 0.562 0.836 0.396
Strong 0.712 0.385 0.492 0.857 0.413
Weak+Strong 0.747 0.496 0.588 0.890 0.498

3.4
Socio-technical 0.771 0.359 0.478 0.845 0.383
Weak 0.747 0.316 0.433 0.817 0.325
Strong 0.825 0.351 0.482 0.845 0.381
Weak+Strong 0.785 0.445 0.559 0.876 0.454
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(c) Predict top 20% defect-prone Eclipse Java packages

Release Network Precision Recall F-Score AUC Nagel.

2.0
Socio-technical 0.732 0.569 0.624 0.891 0.506
Weak 0.753 0.527 0.601 0.869 0.476
Strong 0.748 0.470 0.560 0.852 0.394
Weak+Strong 0.812 0.583 0.664 0.901 0.570

2.1
Socio-technical 0.765 0.473 0.566 0.889 0.515
Weak 0.738 0.455 0.540 0.863 0.448
Strong 0.774 0.430 0.532 0.861 0.453
Weak+Strong 0.743 0.462 0.551 0.886 0.495

3.0
Socio-technical 0.797 0.558 0.644 0.916 0.569
Weak 0.793 0.526 0.619 0.899 0.544
Strong 0.757 0.519 0.601 0.909 0.549
Weak+Strong 0.841 0.621 0.704 0.934 0.621

3.1
Socio-technical 0.724 0.497 0.579 0.895 0.521
Weak 0.792 0.493 0.596 0.883 0.503
Strong 0.747 0.459 0.558 0.886 0.484
Weak+Strong 0.815 0.615 0.691 0.915 0.575

3.2
Socio-technical 0.748 0.531 0.615 0.883 0.502
Weak 0.784 0.531 0.626 0.867 0.462
Strong 0.775 0.472 0.579 0.861 0.456
Weak+Strong 0.795 0.578 0.663 0.897 0.544

3.3
Socio-technical 0.754 0.481 0.580 0.878 0.473
Weak 0.836 0.434 0.564 0.837 0.396
Strong 0.713 0.386 0.493 0.857 0.413
Weak+Strong 0.750 0.495 0.590 0.889 0.498

3.4
Socio-technical 0.738 0.429 0.538 0.802 0.348
Weak 0.700 0.419 0.519 0.773 0.298
Strong 0.722 0.446 0.546 0.791 0.321
Weak+Strong 0.740 0.513 0.602 0.815 0.382
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(d) Predict top 25% defect-prone Eclipse Java packages

Release Network Precision Recall F-Score AUC Nagel.

2.0
Socio-technical 0.730 0.561 0.619 0.886 0.506
Weak 0.747 0.525 0.600 0.865 0.476
Strong 0.755 0.474 0.564 0.854 0.394
Weak+Strong 0.825 0.590 0.673 0.904 0.570

2.1
Socio-technical 0.751 0.565 0.636 0.863 0.472
Weak 0.738 0.448 0.545 0.836 0.388
Strong 0.755 0.492 0.581 0.827 0.409
Weak+Strong 0.757 0.529 0.612 0.853 0.448

3.0
Socio-technical 0.831 0.598 0.688 0.881 0.508
Weak 0.787 0.598 0.672 0.869 0.500
Strong 0.794 0.573 0.658 0.876 0.516
Weak+Strong 0.802 0.652 0.715 0.900 0.586

3.1
Socio-technical 0.795 0.654 0.712 0.899 0.554
Weak 0.775 0.588 0.664 0.871 0.505
Strong 0.786 0.582 0.663 0.869 0.489
Weak+Strong 0.811 0.664 0.723 0.903 0.579

3.2
Socio-technical 0.778 0.687 0.727 0.844 0.452
Weak 0.774 0.627 0.690 0.815 0.394
Strong 0.754 0.610 0.671 0.814 0.374
Weak+Strong 0.791 0.661 0.717 0.846 0.463

3.3
Socio-technical 0.729 0.572 0.638 0.812 0.377
Weak 0.719 0.515 0.596 0.778 0.307
Strong 0.728 0.590 0.648 0.805 0.347
Weak+Strong 0.747 0.622 0.676 0.822 0.391

3.4
Socio-technical 0.737 0.430 0.538 0.802 0.348
Weak 0.701 0.419 0.519 0.774 0.298
Strong 0.725 0.446 0.547 0.791 0.321
Weak+Strong 0.740 0.515 0.602 0.817 0.382
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(e) Predict top 30% defect-prone Eclipse Java packages

Release Network Precision Recall F-Score AUC Nagel.

2.0
Socio-technical 0.714 0.526 0.592 0.855 0.440
Weak 0.782 0.546 0.629 0.851 0.447
Strong 0.780 0.489 0.587 0.836 0.354
Weak+Strong 0.774 0.537 0.621 0.873 0.504

2.1
Socio-technical 0.751 0.570 0.637 0.864 0.472
Weak 0.742 0.454 0.549 0.835 0.388
Strong 0.747 0.487 0.579 0.823 0.409
Weak+Strong 0.754 0.527 0.608 0.856 0.448

3.0
Socio-technical 0.832 0.598 0.689 0.882 0.508
Weak 0.789 0.597 0.673 0.870 0.500
Strong 0.798 0.573 0.660 0.877 0.516
Weak+Strong 0.807 0.656 0.717 0.901 0.586

3.1
Socio-technical 0.792 0.654 0.711 0.898 0.554
Weak 0.777 0.588 0.663 0.872 0.505
Strong 0.785 0.579 0.660 0.867 0.489
Weak+Strong 0.811 0.666 0.726 0.905 0.579

3.2
Socio-technical 0.777 0.686 0.726 0.844 0.452
Weak 0.772 0.626 0.689 0.817 0.394
Strong 0.754 0.609 0.670 0.813 0.374
Weak+Strong 0.791 0.661 0.718 0.845 0.463

3.3
Socio-technical 0.727 0.571 0.637 0.813 0.377
Weak 0.719 0.517 0.598 0.779 0.307
Strong 0.730 0.590 0.650 0.804 0.347
Weak+Strong 0.745 0.620 0.674 0.820 0.391

3.4
Socio-technical 0.738 0.429 0.537 0.802 0.348
Weak 0.701 0.420 0.518 0.775 0.298
Strong 0.723 0.446 0.547 0.792 0.321
Weak+Strong 0.738 0.512 0.600 0.816 0.382
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Table B.2: Results of repeated 10-fold cross validation of Netbeans. Given data from current release,
predict whether a Netbeans Java JAR file is defect-prone in current release. Bold values indicate that
they are higher than values calculated on other networks.

(a) Predict top 10% defect-prone Netbeans Java JAR files

Release Network Precision Recall F-Score AUC Nagel.

6.1
Socio-technical 0.530 0.266 0.332 0.893 0.403
Weak 0.588 0.280 0.362 0.905 0.449
Strong 0.616 0.292 0.369 0.874 0.373
Weak+Strong 0.674 0.479 0.536 0.919 0.495

6.5
Socio-technical 0.670 0.414 0.498 0.841 0.386
Weak 0.658 0.399 0.485 0.830 0.356
Strong 0.606 0.388 0.459 0.836 0.385
Weak+Strong 0.679 0.471 0.546 0.854 0.421

6.7
Socio-technical 0.716 0.354 0.459 0.846 0.369
Weak 0.678 0.325 0.424 0.828 0.357
Strong 0.699 0.384 0.475 0.842 0.365
Weak+Strong 0.685 0.405 0.489 0.848 0.385

6.8
Socio-technical 0.679 0.397 0.487 0.865 0.416
Weak 0.691 0.356 0.455 0.836 0.361
Strong 0.655 0.320 0.412 0.843 0.360
Weak+Strong 0.727 0.468 0.549 0.884 0.459

6.9
Socio-technical 0.722 0.451 0.537 0.899 0.477
Weak 0.692 0.329 0.428 0.871 0.393
Strong 0.726 0.356 0.458 0.873 0.403
Weak+Strong 0.722 0.488 0.561 0.910 0.511

7.0
Socio-technical 0.684 0.397 0.488 0.862 0.418
Weak 0.654 0.393 0.480 0.833 0.367
Strong 0.699 0.352 0.450 0.853 0.385
Weak+Strong 0.699 0.428 0.517 0.884 0.461
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(b) Predict top 15% defect-prone Netbeans Java JAR files

Release Network Precision Recall F-Score AUC Nagel.

6.1
Socio-technical 0.660 0.383 0.468 0.867 0.401
Weak 0.603 0.290 0.377 0.858 0.391
Strong 0.635 0.347 0.430 0.850 0.369
Weak+Strong 0.661 0.422 0.501 0.889 0.461

6.5
Socio-technical 0.673 0.415 0.502 0.841 0.386
Weak 0.668 0.404 0.490 0.831 0.356
Strong 0.602 0.390 0.460 0.836 0.385
Weak+Strong 0.689 0.472 0.549 0.854 0.421

6.7
Socio-technical 0.704 0.351 0.452 0.845 0.369
Weak 0.685 0.333 0.431 0.829 0.357
Strong 0.710 0.388 0.483 0.841 0.365
Weak+Strong 0.684 0.407 0.495 0.846 0.385

6.8
Socio-technical 0.681 0.400 0.488 0.867 0.416
Weak 0.671 0.354 0.445 0.834 0.361
Strong 0.643 0.323 0.408 0.846 0.360
Weak+Strong 0.714 0.460 0.544 0.883 0.459

6.9
Socio-technical 0.764 0.434 0.543 0.852 0.433
Weak 0.759 0.392 0.506 0.830 0.375
Strong 0.764 0.424 0.534 0.830 0.386
Weak+Strong 0.777 0.482 0.585 0.856 0.445

7.0
Socio-technical 0.685 0.394 0.487 0.860 0.418
Weak 0.672 0.398 0.486 0.834 0.367
Strong 0.701 0.353 0.454 0.853 0.385
Weak+Strong 0.690 0.418 0.506 0.881 0.461

(c) Predict top 20% defect-prone Netbeans Java JAR files

Release Network Precision Recall F-Score AUC Nagel.

6.1
Socio-technical 0.719 0.599 0.646 0.830 0.388
Weak 0.732 0.570 0.634 0.798 0.332
Strong 0.649 0.572 0.601 0.805 0.358
Weak+Strong 0.704 0.583 0.632 0.846 0.432

6.5
Socio-technical 0.674 0.416 0.505 0.841 0.386
Weak 0.652 0.396 0.482 0.828 0.356
Strong 0.609 0.391 0.465 0.837 0.385
Weak+Strong 0.681 0.472 0.546 0.853 0.421

6.7
Socio-technical 0.724 0.353 0.454 0.847 0.369
Weak 0.667 0.334 0.430 0.827 0.357
Strong 0.695 0.380 0.475 0.841 0.365
Weak+Strong 0.698 0.405 0.497 0.847 0.385

6.8
Socio-technical 0.681 0.401 0.486 0.866 0.416
Weak 0.682 0.356 0.453 0.834 0.361
Strong 0.643 0.319 0.410 0.844 0.360
Weak+Strong 0.718 0.460 0.547 0.883 0.459

6.9
Socio-technical 0.764 0.436 0.545 0.855 0.433
Weak 0.761 0.393 0.506 0.830 0.375
Strong 0.758 0.422 0.531 0.830 0.386
Weak+Strong 0.776 0.479 0.582 0.857 0.445

7.0
Socio-technical 0.688 0.396 0.489 0.860 0.418
Weak 0.667 0.398 0.486 0.834 0.367
Strong 0.694 0.353 0.454 0.852 0.385
Weak+Strong 0.688 0.426 0.510 0.883 0.461
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(d) Predict top 25% defect-prone Netbeans Java JAR files

Release Network Precision Recall F-Score AUC Nagel.

6.1
Socio-technical 0.721 0.597 0.646 0.831 0.388
Weak 0.733 0.567 0.633 0.798 0.332
Strong 0.651 0.577 0.603 0.805 0.358
Weak+Strong 0.704 0.585 0.632 0.846 0.432

6.5
Socio-technical 0.672 0.419 0.504 0.843 0.386
Weak 0.666 0.404 0.489 0.829 0.356
Strong 0.600 0.389 0.462 0.837 0.385
Weak+Strong 0.681 0.476 0.549 0.856 0.421

6.7
Socio-technical 0.707 0.355 0.456 0.848 0.369
Weak 0.672 0.327 0.425 0.825 0.357
Strong 0.698 0.380 0.475 0.840 0.365
Weak+Strong 0.676 0.406 0.492 0.847 0.385

6.8
Socio-technical 0.688 0.399 0.490 0.864 0.416
Weak 0.683 0.360 0.454 0.837 0.361
Strong 0.639 0.313 0.404 0.844 0.360
Weak+Strong 0.713 0.468 0.549 0.885 0.459

6.9
Socio-technical 0.770 0.439 0.548 0.854 0.433
Weak 0.766 0.397 0.510 0.830 0.375
Strong 0.769 0.425 0.537 0.830 0.386
Weak+Strong 0.773 0.480 0.582 0.856 0.445

7.0
Socio-technical 0.684 0.395 0.488 0.860 0.418
Weak 0.673 0.393 0.481 0.832 0.367
Strong 0.702 0.352 0.455 0.851 0.385
Weak+Strong 0.692 0.420 0.510 0.881 0.461

(e) Predict top 30% defect-prone Netbeans Java JAR files

Release Network Precision Recall F-Score AUC Nagel.

6.1
Socio-technical 0.719 0.596 0.644 0.827 0.388
Weak 0.735 0.568 0.634 0.799 0.332
Strong 0.646 0.575 0.600 0.807 0.358
Weak+Strong 0.706 0.585 0.634 0.846 0.432

6.5
Socio-technical 0.666 0.411 0.498 0.842 0.386
Weak 0.665 0.399 0.485 0.828 0.356
Strong 0.606 0.397 0.468 0.837 0.385
Weak+Strong 0.683 0.474 0.548 0.857 0.421

6.7
Socio-technical 0.698 0.347 0.448 0.845 0.369
Weak 0.668 0.328 0.426 0.828 0.357
Strong 0.688 0.379 0.471 0.840 0.365
Weak+Strong 0.685 0.406 0.494 0.848 0.385

6.8
Socio-technical 0.674 0.396 0.485 0.865 0.416
Weak 0.687 0.358 0.454 0.838 0.361
Strong 0.617 0.312 0.399 0.842 0.360
Weak+Strong 0.714 0.461 0.546 0.880 0.459

6.9
Socio-technical 0.769 0.436 0.548 0.852 0.433
Weak 0.764 0.394 0.509 0.829 0.375
Strong 0.765 0.425 0.536 0.830 0.386
Weak+Strong 0.779 0.481 0.586 0.857 0.445

7.0
Socio-technical 0.686 0.396 0.488 0.861 0.418
Weak 0.673 0.396 0.485 0.832 0.367
Strong 0.702 0.353 0.454 0.851 0.385
Weak+Strong 0.691 0.426 0.513 0.883 0.461
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Table B.3: Results of repeated 10-fold cross validation of Gnome. Given data from current release,
predict whether an Gnome Ubuntu package is defect-prone in current release. Bold values indicate
that they are higher than values calculated on other networks.

(a) Predict top 10% defect-prone Gnome Ubuntu packages

Release Network Precision Recall F-Score AUC Nagel.

2.16
Socio-technical 0.569 0.450 0.482 0.921 0.507
Weak 0.412 0.308 0.331 0.905 0.451
Strong 0.468 0.410 0.408 0.928 0.509
Weak+Strong 0.488 0.394 0.417 0.935 0.553

2.18
Socio-technical 0.568 0.523 0.513 0.941 0.582
Weak 0.570 0.446 0.479 0.940 0.541
Strong 0.566 0.492 0.502 0.934 0.519
Weak+Strong 0.628 0.549 0.566 0.961 0.660

2.20
Socio-technical 0.559 0.504 0.502 0.944 0.570
Weak 0.645 0.567 0.581 0.946 0.581
Strong 0.662 0.553 0.579 0.958 0.646
Weak+Strong 0.687 0.618 0.634 0.966 0.732

2.22
Socio-technical 0.741 0.659 0.674 0.979 0.709
Weak 0.522 0.497 0.477 0.946 0.559
Strong 0.572 0.485 0.497 0.955 0.616
Weak+Strong 0.632 0.550 0.566 0.972 0.706

2.24
Socio-technical 0.640 0.548 0.565 0.969 0.667
Weak 0.686 0.602 0.605 0.951 0.628
Strong 0.746 0.654 0.673 0.982 0.755
Weak+Strong 0.840 0.786 0.799 0.992 0.862

2.26
Socio-technical 0.686 0.640 0.637 0.978 0.715
Weak 0.695 0.631 0.630 0.979 0.674
Strong 0.671 0.561 0.590 0.977 0.725
Weak+Strong 0.687 0.621 0.624 0.991 0.799
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(b) Predict top 15% defect-prone Gnome Ubuntu packages

Release Network Precision Recall F-Score AUC Nagel.

2.16
Socio-technical 0.484 0.340 0.373 0.851 0.393
Weak 0.480 0.308 0.355 0.828 0.325
Strong 0.568 0.410 0.455 0.826 0.375
Weak+Strong 0.609 0.427 0.473 0.848 0.404

2.18
Socio-technical 0.677 0.489 0.542 0.878 0.455
Weak 0.610 0.428 0.472 0.851 0.426
Strong 0.618 0.486 0.517 0.897 0.463
Weak+Strong 0.667 0.501 0.546 0.903 0.501

2.20
Socio-technical 0.805 0.658 0.704 0.943 0.642
Weak 0.731 0.599 0.636 0.947 0.654
Strong 0.828 0.681 0.724 0.944 0.684
Weak+Strong 0.783 0.685 0.707 0.962 0.732

2.22
Socio-technical 0.625 0.520 0.542 0.923 0.563
Weak 0.695 0.508 0.557 0.920 0.571
Strong 0.654 0.522 0.551 0.929 0.600
Weak+Strong 0.704 0.556 0.597 0.949 0.652

2.24
Socio-technical 0.821 0.701 0.727 0.977 0.773
Weak 0.763 0.663 0.688 0.964 0.720
Strong 0.767 0.728 0.722 0.976 0.775
Weak+Strong 0.891 0.842 0.848 0.979 0.811

2.26
Socio-technical 0.713 0.565 0.606 0.962 0.693
Weak 0.672 0.627 0.619 0.939 0.583
Strong 0.674 0.617 0.616 0.950 0.660
Weak+Strong 0.701 0.653 0.639 0.956 0.687

(c) Predict top 20% defect-prone Gnome Ubuntu packages

Release Network Precision Recall F-Score AUC Nagel.

2.16
Socio-technical 0.718 0.581 0.612 0.890 0.489
Weak 0.644 0.443 0.499 0.850 0.415
Strong 0.825 0.600 0.666 0.875 0.489
Weak+Strong 0.808 0.592 0.651 0.882 0.505

2.18
Socio-technical 0.624 0.543 0.546 0.884 0.457
Weak 0.653 0.479 0.515 0.875 0.435
Strong 0.607 0.523 0.534 0.885 0.492
Weak+Strong 0.702 0.552 0.582 0.909 0.523

2.20
Socio-technical 0.816 0.720 0.738 0.939 0.672
Weak 0.822 0.640 0.694 0.940 0.672
Strong 0.716 0.692 0.684 0.940 0.686
Weak+Strong 0.893 0.816 0.837 0.967 0.796

2.22
Socio-technical 0.723 0.591 0.619 0.903 0.539
Weak 0.758 0.643 0.670 0.886 0.570
Strong 0.710 0.589 0.609 0.923 0.585
Weak+Strong 0.815 0.692 0.722 0.923 0.628

2.24
Socio-technical 0.761 0.698 0.700 0.957 0.689
Weak 0.821 0.751 0.760 0.940 0.686
Strong 0.738 0.685 0.680 0.949 0.669
Weak+Strong 0.785 0.699 0.717 0.949 0.718

2.26
Socio-technical 0.842 0.763 0.778 0.963 0.739
Weak 0.780 0.722 0.724 0.941 0.672
Strong 0.802 0.794 0.768 0.958 0.706
Weak+Strong 0.871 0.798 0.810 0.964 0.744
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(d) Predict top 25% defect-prone Gnome Ubuntu packages

Release Network Precision Recall F-Score AUC Nagel.

2.16
Socio-technical 0.691 0.588 0.611 0.871 0.484
Weak 0.756 0.626 0.651 0.854 0.454
Strong 0.714 0.596 0.619 0.862 0.499
Weak+Strong 0.712 0.583 0.614 0.881 0.504

2.18
Socio-technical 0.632 0.538 0.554 0.875 0.471
Weak 0.666 0.568 0.580 0.872 0.468
Strong 0.683 0.555 0.582 0.890 0.520
Weak+Strong 0.754 0.594 0.637 0.905 0.558

2.20
Socio-technical 0.772 0.737 0.733 0.943 0.678
Weak 0.776 0.678 0.698 0.894 0.565
Strong 0.789 0.808 0.780 0.941 0.693
Weak+Strong 0.828 0.809 0.802 0.951 0.739

2.22
Socio-technical 0.720 0.628 0.651 0.910 0.575
Weak 0.782 0.626 0.677 0.892 0.566
Strong 0.773 0.575 0.638 0.904 0.580
Weak+Strong 0.745 0.631 0.662 0.912 0.612

2.24
Socio-technical 0.798 0.696 0.718 0.923 0.619
Weak 0.817 0.715 0.741 0.899 0.598
Strong 0.773 0.693 0.712 0.920 0.609
Weak+Strong 0.801 0.694 0.723 0.925 0.649

2.26
Socio-technical 0.821 0.789 0.784 0.933 0.678
Weak 0.819 0.710 0.743 0.897 0.637
Strong 0.853 0.720 0.761 0.940 0.723
Weak+Strong 0.883 0.725 0.779 0.934 0.701

(e) Predict top 30% defect-prone Gnome Ubuntu packages

Release Network Precision Recall F-Score AUC Nagel.

2.16
Socio-technical 0.784 0.698 0.713 0.904 0.588
Weak 0.806 0.650 0.696 0.889 0.570
Strong 0.756 0.676 0.694 0.898 0.596
Weak+Strong 0.796 0.650 0.691 0.905 0.598

2.18
Socio-technical 0.801 0.626 0.677 0.876 0.531
Weak 0.778 0.697 0.716 0.880 0.535
Strong 0.803 0.635 0.689 0.904 0.583
Weak+Strong 0.832 0.734 0.762 0.903 0.593

2.20
Socio-technical 0.811 0.791 0.787 0.926 0.653
Weak 0.807 0.689 0.726 0.866 0.557
Strong 0.801 0.805 0.790 0.924 0.666
Weak+Strong 0.861 0.823 0.830 0.934 0.674

2.22
Socio-technical 0.714 0.688 0.682 0.903 0.573
Weak 0.855 0.700 0.747 0.877 0.564
Strong 0.787 0.655 0.693 0.907 0.586
Weak+Strong 0.829 0.733 0.763 0.877 0.581

2.24
Socio-technical 0.806 0.691 0.730 0.901 0.580
Weak 0.852 0.658 0.728 0.885 0.556
Strong 0.842 0.683 0.736 0.894 0.606
Weak+Strong 0.824 0.655 0.713 0.897 0.596

2.26
Socio-technical 0.818 0.777 0.783 0.935 0.694
Weak 0.842 0.729 0.768 0.908 0.653
Strong 0.876 0.752 0.794 0.937 0.705
Weak+Strong 0.823 0.759 0.775 0.938 0.703
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Appendix C

Prediction Across Releases
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Table C.1: Results of using data from a previous release to predict whether an Eclipse Java package
is defect-prone in next release. Bold values indicate that they are higher than values calculated on
other networks.

(a) Predict top 10% defect-prone Eclipse Java packages

Release Network Precision Recall F-Score AUC Nagel.

2.1
Socio-technical 0.429 0.162 0.235 0.788 0.379
Weak 0.700 0.233 0.350 0.855 0.324
Strong 0.750 0.300 0.429 0.899 0.382
Weak+Strong 0.833 0.333 0.476 0.890 0.425

3.0
Socio-technical 0.559 0.352 0.432 0.796 0.484
Weak 0.643 0.243 0.353 0.873 0.388
Strong 0.875 0.378 0.528 0.868 0.399
Weak+Strong 0.882 0.405 0.556 0.900 0.480

3.1
Socio-technical 0.759 0.449 0.564 0.930 0.473
Weak 0.733 0.407 0.524 0.912 0.478
Strong 0.742 0.426 0.541 0.898 0.491
Weak+Strong 0.769 0.556 0.645 0.935 0.571

3.2
Socio-technical 0.780 0.410 0.538 0.919 0.617
Weak 0.833 0.510 0.633 0.935 0.568
Strong 0.813 0.531 0.642 0.948 0.595
Weak+Strong 0.844 0.551 0.667 0.966 0.667

3.3
Socio-technical 0.698 0.474 0.565 0.899 0.566
Weak 0.800 0.462 0.585 0.915 0.519
Strong 0.714 0.449 0.551 0.928 0.518
Weak+Strong 0.796 0.500 0.614 0.941 0.588

3.4
Socio-technical 0.571 0.198 0.294 0.863 0.502
Weak 0.780 0.410 0.538 0.905 0.482
Strong 0.758 0.321 0.450 0.887 0.410
Weak+Strong 0.766 0.462 0.576 0.923 0.524

89



(b) Predict top 15% defect-prone Eclipse Java packages

Release Network Precision Recall F-Score AUC Nagel.

2.1
Socio-technical 0.800 0.271 0.405 0.775 0.458
Weak 0.724 0.412 0.525 0.882 0.446
Strong 0.714 0.196 0.308 0.837 0.297
Weak+Strong 0.758 0.490 0.595 0.937 0.594

3.0
Socio-technical 0.642 0.400 0.493 0.857 0.481
Weak 0.774 0.407 0.533 0.842 0.408
Strong 0.722 0.220 0.338 0.837 0.333
Weak+Strong 0.707 0.492 0.580 0.910 0.533

3.1
Socio-technical 0.632 0.453 0.528 0.867 0.558
Weak 0.796 0.459 0.582 0.890 0.497
Strong 0.743 0.306 0.433 0.866 0.420
Weak+Strong 0.770 0.553 0.644 0.928 0.577

3.2
Socio-technical 0.735 0.466 0.570 0.876 0.524
Weak 0.755 0.389 0.514 0.873 0.425
Strong 0.694 0.358 0.472 0.871 0.414
Weak+Strong 0.750 0.505 0.604 0.922 0.554

3.3
Socio-technical 0.821 0.406 0.544 0.846 0.564
Weak 0.776 0.504 0.611 0.891 0.495
Strong 0.651 0.214 0.322 0.833 0.332
Weak+Strong 0.792 0.580 0.670 0.917 0.553

3.4
Socio-technical 0.556 0.473 0.511 0.818 0.473
Weak 0.839 0.406 0.547 0.827 0.367
Strong 0.701 0.318 0.437 0.813 0.326
Weak+Strong 0.770 0.505 0.610 0.882 0.491

(c) Predict top 20% defect-prone Eclipse Java packages

Release Network Precision Recall F-Score AUC Nagel.

2.1
Socio-technical 0.681 0.410 0.512 0.828 0.506
Weak 0.717 0.475 0.571 0.857 0.437
Strong 0.625 0.375 0.469 0.814 0.310
Weak+Strong 0.766 0.613 0.681 0.894 0.538

3.0
Socio-technical 0.676 0.455 0.543 0.875 0.515
Weak 0.733 0.423 0.537 0.858 0.449
Strong 0.675 0.346 0.458 0.841 0.372
Weak+Strong 0.737 0.538 0.622 0.904 0.551

3.1
Socio-technical 0.634 0.478 0.545 0.848 0.569
Weak 0.857 0.545 0.667 0.887 0.529
Strong 0.760 0.345 0.475 0.847 0.398
Weak+Strong 0.829 0.618 0.708 0.918 0.587

3.2
Socio-technical 0.812 0.495 0.615 0.858 0.521
Weak 0.762 0.455 0.570 0.866 0.449
Strong 0.708 0.343 0.462 0.840 0.380
Weak+Strong 0.777 0.545 0.640 0.908 0.546

3.3
Socio-technical 0.687 0.479 0.564 0.852 0.502
Weak 0.744 0.500 0.598 0.859 0.439
Strong 0.608 0.323 0.422 0.773 0.273
Weak+Strong 0.757 0.552 0.639 0.878 0.488

3.4
Socio-technical 0.758 0.320 0.450 0.775 0.473
Weak 0.839 0.406 0.547 0.827 0.367
Strong 0.701 0.318 0.437 0.813 0.326
Weak+Strong 0.770 0.505 0.610 0.882 0.491
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(d) Predict top 25% defect-prone Eclipse Java packages

Release Network Precision Recall F-Score AUC Nagel.

2.1
Socio-technical 0.647 0.423 0.512 0.829 0.508
Weak 0.765 0.488 0.595 0.856 0.434
Strong 0.765 0.488 0.595 0.855 0.410
Weak+Strong 0.754 0.575 0.652 0.899 0.554

3.0
Socio-technical 0.685 0.385 0.493 0.852 0.514
Weak 0.673 0.423 0.520 0.883 0.492
Strong 0.735 0.462 0.567 0.855 0.432
Weak+Strong 0.766 0.462 0.576 0.888 0.503

3.1
Socio-technical 0.645 0.597 0.620 0.862 0.533
Weak 0.792 0.615 0.693 0.911 0.566
Strong 0.822 0.569 0.673 0.890 0.521
Weak+Strong 0.811 0.662 0.729 0.930 0.634

3.2
Socio-technical 0.793 0.479 0.597 0.858 0.517
Weak 0.693 0.522 0.596 0.876 0.466
Strong 0.711 0.440 0.544 0.864 0.443
Weak+Strong 0.824 0.597 0.693 0.912 0.574

3.3
Socio-technical 0.657 0.490 0.561 0.858 0.501
Weak 0.764 0.505 0.608 0.857 0.452
Strong 0.758 0.521 0.617 0.870 0.469
Weak+Strong 0.777 0.599 0.676 0.899 0.554

3.4
Socio-technical 0.580 0.473 0.521 0.828 0.474
Weak 0.771 0.422 0.545 0.872 0.444
Strong 0.719 0.427 0.536 0.856 0.420
Weak+Strong 0.750 0.500 0.600 0.887 0.496

(e) Predict top 30% defect-prone Eclipse Java packages

Release Network Precision Recall F-Score AUC Nagel.

2.1
Socio-technical 0.769 0.439 0.559 0.826 0.440
Weak 0.758 0.480 0.587 0.829 0.388
Strong 0.723 0.480 0.577 0.801 0.292
Weak+Strong 0.792 0.582 0.671 0.864 0.489

3.0
Socio-technical 0.767 0.462 0.577 0.830 0.472
Weak 0.750 0.500 0.600 0.851 0.425
Strong 0.746 0.412 0.531 0.783 0.299
Weak+Strong 0.719 0.561 0.631 0.877 0.501

3.1
Socio-technical 0.742 0.608 0.669 0.870 0.508
Weak 0.780 0.561 0.653 0.860 0.474
Strong 0.702 0.497 0.582 0.819 0.376
Weak+Strong 0.791 0.620 0.695 0.889 0.533

3.2
Socio-technical 0.843 0.480 0.612 0.809 0.554
Weak 0.759 0.536 0.628 0.857 0.453
Strong 0.715 0.531 0.609 0.835 0.392
Weak+Strong 0.792 0.649 0.714 0.896 0.554

3.3
Socio-technical 0.674 0.625 0.649 0.789 0.452
Weak 0.788 0.566 0.659 0.814 0.372
Strong 0.716 0.566 0.632 0.750 0.251
Weak+Strong 0.787 0.638 0.705 0.833 0.420

3.4
Socio-technical 0.599 0.534 0.565 0.772 0.377
Weak 0.757 0.484 0.591 0.774 0.295
Strong 0.690 0.550 0.612 0.764 0.273
Weak+Strong 0.747 0.605 0.669 0.825 0.410
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Table C.2: Results of using data from a previous release to predict whether an Netbeans Java JAR
file is defect-prone in next release. Bold values indicate that they are higher than values calculated
on other networks.

(a) Predict top 10% defect-prone Netbeans Java JAR files

Release Network Precision Recall F-Score AUC Nagel.

6.5
Socio-technical 0.438 0.159 0.233 0.818 0.487
Weak 0.667 0.424 0.519 0.949 0.538
Strong 0.917 0.333 0.489 0.921 0.449
Weak+Strong 0.652 0.455 0.536 0.958 0.581

6.7
Socio-technical 0.154 0.059 0.085 0.682 0.434
Weak 0.773 0.386 0.515 0.892 0.421
Strong 0.750 0.341 0.469 0.908 0.446
Weak+Strong 0.727 0.364 0.485 0.933 0.510

6.8
Socio-technical 0.471 0.200 0.281 0.877 0.409
Weak 0.500 0.206 0.292 0.920 0.435
Strong 0.385 0.147 0.213 0.923 0.410
Weak+Strong 0.526 0.294 0.377 0.946 0.504

6.9
Socio-technical 0.500 0.239 0.324 0.902 0.460
Weak 0.765 0.325 0.456 0.904 0.446
Strong 0.706 0.300 0.421 0.906 0.402
Weak+Strong 0.773 0.425 0.548 0.939 0.556

7.0
Socio-technical 0.150 0.354 0.211 0.719 0.514
Weak 0.619 0.283 0.388 0.918 0.469
Strong 0.750 0.391 0.514 0.926 0.492
Weak+Strong 0.688 0.478 0.564 0.948 0.570
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(b) Predict top 15% defect-prone Netbeans Java JAR files

Release Network Precision Recall F-Score AUC Nagel.

6.5
Socio-technical 0.368 0.159 0.222 0.836 0.403
Weak 0.667 0.286 0.400 0.908 0.449
Strong 0.722 0.265 0.388 0.874 0.370
Weak+Strong 0.735 0.510 0.602 0.918 0.494

6.7
Socio-technical 0.417 0.147 0.217 0.828 0.363
Weak 0.706 0.273 0.393 0.875 0.379
Strong 0.750 0.273 0.400 0.907 0.420
Weak+Strong 0.750 0.341 0.469 0.925 0.490

6.8
Socio-technical 0.471 0.200 0.281 0.880 0.408
Weak 0.600 0.265 0.367 0.920 0.421
Strong 0.462 0.176 0.255 0.918 0.390
Weak+Strong 0.579 0.324 0.415 0.944 0.496

6.9
Socio-technical 0.684 0.181 0.286 0.860 0.451
Weak 0.765 0.325 0.456 0.904 0.451
Strong 0.647 0.275 0.386 0.918 0.427
Weak+Strong 0.773 0.425 0.548 0.938 0.544

7.0
Socio-technical 0.128 0.396 0.193 0.706 0.477
Weak 0.727 0.333 0.457 0.869 0.393
Strong 0.743 0.361 0.486 0.872 0.409
Weak+Strong 0.720 0.500 0.590 0.909 0.516

(c) Predict top 20% defect-prone Netbeans Java JAR files

Release Network Precision Recall F-Score AUC Nagel.

6.5
Socio-technical 0.282 0.250 0.265 0.820 0.401
Weak 0.650 0.317 0.426 0.861 0.392
Strong 0.651 0.341 0.448 0.848 0.367
Weak+Strong 0.673 0.427 0.522 0.889 0.461

6.7
Socio-technical 0.583 0.077 0.136 0.759 0.363
Weak 0.706 0.273 0.393 0.875 0.379
Strong 0.750 0.273 0.400 0.907 0.420
Weak+Strong 0.750 0.341 0.469 0.925 0.490

6.8
Socio-technical 0.674 0.305 0.420 0.821 0.369
Weak 0.698 0.330 0.448 0.828 0.357
Strong 0.681 0.352 0.464 0.841 0.365
Weak+Strong 0.685 0.407 0.510 0.848 0.385

6.9
Socio-technical 0.642 0.472 0.544 0.874 0.416
Weak 0.680 0.358 0.469 0.835 0.355
Strong 0.625 0.316 0.420 0.843 0.359
Weak+Strong 0.726 0.474 0.573 0.883 0.459

7.0
Socio-technical 0.128 0.396 0.193 0.706 0.477
Weak 0.727 0.333 0.457 0.869 0.393
Strong 0.743 0.361 0.486 0.872 0.409
Weak+Strong 0.720 0.500 0.590 0.909 0.516
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(d) Predict top 25% defect-prone Netbeans Java JAR files

Release Network Precision Recall F-Score AUC Nagel.

6.5
Socio-technical 0.548 0.138 0.221 0.797 0.416
Weak 0.647 0.268 0.379 0.858 0.387
Strong 0.635 0.402 0.493 0.859 0.401
Weak+Strong 0.654 0.415 0.507 0.884 0.451

6.7
Socio-technical 0.273 0.066 0.106 0.651 0.430
Weak 0.645 0.398 0.492 0.836 0.381
Strong 0.631 0.431 0.512 0.854 0.430
Weak+Strong 0.698 0.488 0.574 0.863 0.452

6.8
Socio-technical 0.622 0.295 0.400 0.815 0.374
Weak 0.667 0.330 0.441 0.832 0.359
Strong 0.708 0.374 0.489 0.843 0.371
Weak+Strong 0.723 0.374 0.493 0.850 0.389

6.9
Socio-technical 0.849 0.328 0.474 0.827 0.424
Weak 0.706 0.379 0.493 0.836 0.354
Strong 0.674 0.326 0.440 0.843 0.364
Weak+Strong 0.688 0.463 0.554 0.888 0.478

7.0
Socio-technical 0.415 0.532 0.466 0.771 0.435
Weak 0.789 0.409 0.538 0.830 0.376
Strong 0.740 0.394 0.514 0.821 0.356
Weak+Strong 0.756 0.474 0.583 0.856 0.446

(e) Predict top 30% defect-prone Netbeans Java JAR files

Release Network Precision Recall F-Score AUC Nagel.

6.5
Socio-technical 0.667 0.211 0.321 0.808 0.401
Weak 0.650 0.317 0.426 0.861 0.392
Strong 0.651 0.341 0.448 0.848 0.367
Weak+Strong 0.673 0.427 0.522 0.889 0.461

6.7
Socio-technical 0.636 0.308 0.415 0.799 0.386
Weak 0.662 0.398 0.497 0.829 0.356
Strong 0.615 0.390 0.478 0.837 0.385
Weak+Strong 0.679 0.463 0.551 0.853 0.421

6.8
Socio-technical 0.674 0.305 0.420 0.821 0.369
Weak 0.698 0.330 0.448 0.828 0.357
Strong 0.681 0.352 0.464 0.841 0.365
Weak+Strong 0.685 0.407 0.510 0.848 0.385

6.9
Socio-technical 0.830 0.321 0.463 0.825 0.416
Weak 0.680 0.358 0.469 0.835 0.355
Strong 0.625 0.316 0.420 0.843 0.359
Weak+Strong 0.726 0.474 0.573 0.883 0.459

7.0
Socio-technical 0.456 0.514 0.483 0.774 0.433
Weak 0.750 0.394 0.517 0.830 0.375
Strong 0.760 0.416 0.538 0.830 0.387
Weak+Strong 0.776 0.482 0.595 0.857 0.445
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Table C.3: Results of using data from a previous release to predict whether a Gnome Ubuntu package
is defect-prone in next release. Bold values indicate that they are higher than values calculated on
other networks.

(a) Predict top 10% defect-prone Gnome Ubuntu packages

Release Network Precision Recall F-Score AUC Nagel.

2.18
Socio-technical 0.571 0.471 0.516 0.888 0.507
Weak 0.778 0.438 0.560 0.888 0.491
Strong 0.636 0.438 0.519 0.910 0.507
Weak+Strong 0.667 0.500 0.571 0.945 0.600

2.20
Socio-technical 0.500 0.647 0.564 0.908 0.582
Weak 0.778 0.412 0.538 0.889 0.485
Strong 0.727 0.471 0.571 0.922 0.526
Weak+Strong 0.769 0.588 0.667 0.944 0.568

2.22
Socio-technical 0.800 0.444 0.571 0.919 0.570
Weak 1.000 0.588 0.741 0.926 0.523
Strong 0.769 0.588 0.667 0.962 0.622
Weak+Strong 0.933 0.824 0.875 0.978 0.829

2.24
Socio-technical 0.424 0.667 0.519 0.837 0.709
Weak 0.727 0.444 0.552 0.921 0.513
Strong 0.909 0.556 0.690 0.958 0.698
Weak+Strong 0.786 0.611 0.688 0.968 0.702

2.26
Socio-technical 0.407 0.611 0.489 0.924 0.667
Weak 0.846 0.524 0.647 0.938 0.600
Strong 0.938 0.714 0.811 0.958 0.669
Weak+Strong 0.938 0.714 0.811 0.962 0.739
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(b) Predict top 15% defect-prone Gnome Ubuntu packages

Release Network Precision Recall F-Score AUC Nagel.

2.18
Socio-technical 0.600 0.480 0.533 0.840 0.393
Weak 0.727 0.333 0.457 0.793 0.336
Strong 0.800 0.500 0.615 0.832 0.398
Weak+Strong 0.765 0.542 0.634 0.843 0.428

2.20
Socio-technical 0.812 0.500 0.619 0.901 0.455
Weak 0.750 0.360 0.486 0.817 0.380
Strong 0.765 0.520 0.619 0.879 0.452
Weak+Strong 0.786 0.440 0.564 0.891 0.486

2.22
Socio-technical 0.679 0.655 0.667 0.900 0.642
Weak 0.882 0.577 0.698 0.919 0.596
Strong 0.864 0.731 0.792 0.959 0.726
Weak+Strong 0.850 0.654 0.739 0.960 0.732

2.24
Socio-technical 0.263 0.357 0.303 0.832 0.563
Weak 0.650 0.448 0.531 0.894 0.503
Strong 0.708 0.586 0.642 0.923 0.573
Weak+Strong 0.739 0.586 0.654 0.937 0.615

2.26
Socio-technical 0.559 0.679 0.613 0.866 0.773
Weak 0.857 0.643 0.735 0.952 0.685
Strong 0.750 0.750 0.750 0.960 0.710
Weak+Strong 0.909 0.714 0.800 0.979 0.785

(c) Predict top 20% defect-prone Gnome Ubuntu packages

Release Network Precision Recall F-Score AUC Nagel.

2.18
Socio-technical 0.613 0.543 0.576 0.862 0.489
Weak 0.800 0.485 0.604 0.805 0.404
Strong 0.731 0.576 0.644 0.875 0.505
Weak+Strong 0.800 0.606 0.690 0.880 0.523

2.20
Socio-technical 0.846 0.611 0.710 0.936 0.457
Weak 0.714 0.429 0.536 0.820 0.385
Strong 0.643 0.514 0.571 0.868 0.455
Weak+Strong 0.654 0.486 0.557 0.880 0.467

2.22
Socio-technical 0.619 0.703 0.658 0.854 0.672
Weak 0.760 0.528 0.623 0.910 0.572
Strong 0.812 0.722 0.765 0.943 0.682
Weak+Strong 0.806 0.694 0.746 0.964 0.723

2.24
Socio-technical 0.750 0.474 0.581 0.899 0.539
Weak 0.792 0.514 0.623 0.842 0.455
Strong 0.733 0.595 0.657 0.900 0.536
Weak+Strong 0.808 0.568 0.667 0.915 0.580

2.26
Socio-technical 0.714 0.811 0.759 0.952 0.689
Weak 0.765 0.684 0.722 0.938 0.654
Strong 0.758 0.658 0.704 0.919 0.585
Weak+Strong 0.812 0.684 0.743 0.950 0.699
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(d) Predict top 25% defect-prone Gnome Ubuntu packages

Release Network Precision Recall F-Score AUC Nagel.

2.18
Socio-technical 0.647 0.524 0.579 0.858 0.484
Weak 0.767 0.561 0.648 0.823 0.425
Strong 0.722 0.634 0.675 0.881 0.508
Weak+Strong 0.765 0.634 0.693 0.874 0.511

2.20
Socio-technical 0.805 0.717 0.759 0.918 0.471
Weak 0.692 0.429 0.529 0.836 0.423
Strong 0.697 0.548 0.613 0.875 0.473
Weak+Strong 0.714 0.595 0.649 0.882 0.495

2.22
Socio-technical 0.560 0.824 0.667 0.844 0.678
Weak 0.800 0.522 0.632 0.835 0.478
Strong 0.786 0.717 0.750 0.925 0.623
Weak+Strong 0.767 0.717 0.742 0.939 0.658

2.24
Socio-technical 0.450 0.574 0.505 0.780 0.575
Weak 0.795 0.608 0.689 0.838 0.470
Strong 0.767 0.647 0.702 0.889 0.550
Weak+Strong 0.767 0.647 0.702 0.886 0.562

2.26
Socio-technical 0.761 0.745 0.753 0.912 0.619
Weak 0.821 0.681 0.744 0.900 0.594
Strong 0.805 0.702 0.750 0.898 0.553
Weak+Strong 0.854 0.745 0.795 0.916 0.641

(e) Predict top 30% defect-prone Gnome Ubuntu packages

Release Network Precision Recall F-Score AUC Nagel.

2.18
Socio-technical 0.800 0.604 0.688 0.867 0.588
Weak 0.865 0.653 0.744 0.849 0.519
Strong 0.786 0.673 0.725 0.916 0.616
Weak+Strong 0.805 0.673 0.733 0.897 0.601

2.20
Socio-technical 0.800 0.721 0.759 0.883 0.531
Weak 0.786 0.623 0.695 0.832 0.470
Strong 0.800 0.679 0.735 0.877 0.514
Weak+Strong 0.833 0.660 0.737 0.896 0.583

2.22
Socio-technical 0.614 0.879 0.723 0.858 0.653
Weak 0.837 0.590 0.692 0.863 0.514
Strong 0.783 0.770 0.777 0.896 0.576
Weak+Strong 0.815 0.721 0.765 0.919 0.635

2.24
Socio-technical 0.516 0.493 0.504 0.742 0.573
Weak 0.829 0.586 0.687 0.815 0.481
Strong 0.796 0.672 0.729 0.898 0.579
Weak+Strong 0.804 0.638 0.712 0.900 0.577

2.26
Socio-technical 0.786 0.733 0.759 0.923 0.580
Weak 0.904 0.701 0.790 0.898 0.616
Strong 0.810 0.701 0.752 0.892 0.590
Weak+Strong 0.845 0.731 0.784 0.909 0.631
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