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Abstract

Dialogue generation systems (chatbots) are currently one of the most noted

topics in natural language processing, and many companies are investing in-

tensively on creating such systems for automation of tasks. Given the notable

success of deep learning methods in the creation of state-of-the-art models in

other domains such as computer vision, recommender systems, and natural

language processing, there has been in recent years a surge in creating chat-

bot systems using deep learning methods. In the case of dialogue generation,

deep learning provides methods to bootstrap a large corpus of data with min-

imal feature engineering, enabling the chatbot systems to learn the feature

representation from data and create coherent and well-structured responses.

Task-oriented chatbots are a type of dialogue generation system which tries

to help the users accomplish specific tasks, such as booking a restaurant table

or buying movie tickets, in a continuous and uninterrupted conversational

interface and usually in as few steps as possible. Given the abundance of

such systems in industry and how lucrative chatbots can be in saving cost

and increasing user satisfaction, we decided to focus our study on this type of

chatbot systems.

Self-attentional models are a new deep learning paradigm for sequence

modelling tasks. These models differ from the previous sequence modelling

methods, e.g. models based on recurrent neural networks and convolutional

neural networks, in a way that their architecture is only based on the attention

mechanism. Transformer was the first self-attentional model which was re-
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cently proposed by Google Brain and could beat the state-of-the-art models in

neural machine translation tasks. This fact motivated us to explore the usage

of self-attentional models for the task of creating task-oriented chatbots. We

compare common sequence modelling models with the self-attentional models

and provide a comprehensive analysis. Our results show that self-attentional

models can create task-oriented chatbots with higher BLEU score compared

to recurrent neural networks and also with faster training time.

Lastly, we address the problem of evaluating chatbots by implementing

a user-simulation based evaluation method for task-oriented chatbots. Our

evaluation method is a pipelined user simulator, i.e. containing natural lan-

guage understanding, user simulator, and natural language generation com-

ponents, similar to Microsoft’s user simulators used to train reinforcement

learning agents but conditioned on user profile and characteristics which make

it more realistic.
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If a machine is expected to be infallible, it cannot also be intelligent.

– Alan Turing, 1912-1954
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Chapter 1

Introduction

Conversational agents are commonly one of the hot topics in AI community

within both academia and industry. The prospect of conversational agents

is of great interest to many companies including Google, Microsoft, Ama-

zon, Apple, Alibaba, and many others. The AI-powered conversational agents

have a wide range of applications which lead to the emergence of fields such

as Conversational AI and Conversational Commerce [78]. We can categorize

these AI-powered dialogue generation systems into two main categories of task-

oriented and open-domain chatbots. Task-oriented chatbots aim to help the

user complete a specific task. Google’s Duplex [65] is an example of a task-

oriented chatbot which helps users make reservations by calling the stores on

behalf of the user. On the other hand, open-domain chatbots aim to have a

conversation with the user covering a wide range of topics and keep the user in

conversation as long as possible. A great example of an open-domain chatbot

is Microsoft’s Xiaoice [123] which has about 660 million users online. In this

study, we only focus on task-oriented chatbots.

The general architecture of task-oriented chatbots falls into two major de-

sign architectures, namely pipelined and end-to-end [14]. The pipelined archi-

tecture is made up of different components for language understanding, de-

cision making, and creating a human-understandable response, each of them

can be trained individually and then plugged into the chatbot, while the end-

to-end architectures try to achieve the same goal in a single network in which

all component are trained together. There has been a wide number of research

1



papers implementing variations of sequence-to-sequence models for the devel-

opment of end-to-end networks and most of them rely on sequence-to-sequence

architectures based on recurrent neural networks (RNNs). Transformer [109]

is the new model proposed by Google AI team which is purely attention based

and has beat the state-of-the-art for machine translation tasks. Furthermore,

Universal Transformer [22] has been recently proposed which works well for

language understanding tasks on which the Transformer model could not per-

form well. We will explore these two newly proposed models for the task of

creating task-oriented chatbots and provide a comprehensive comparison be-

tween some of the most commonly used models used for training task-oriented

chatbots and the two aforementioned models.

One of the main challenges for the researchers working on conversational

agents is the evaluation of these models [69]. The evaluation methods for open-

domain and task-oriented chatbots are usually different due to the fact that

these chatbots have different goals. The goal for open-domain chatbots is to

keep the user engaged as much as possible while the goal for the task-oriented

one will be to get the specified task done both successfully and usually with the

minimum number of conversation turns. Furthermore, current automatic eval-

uation metrics for task-oriented chatbots make the comparison of the pipelined

and end-to-end trained chatbots hard since they do not take semantics of the

sentences into consideration and also encourage the models to follow a specific

flow of dialogue while there are many ways a task-oriented dialogue can be

formed. We propose a new evaluation method for task-oriented chatbots by

implementing a user simulator [93] which is conditioned on the user profile

[95] and thus make it possible to simulate different user behaviours. The pro-

posed evaluation method will also make it easier to compare pipelined and

end-to-end trained chatbots.

1.1 Motivation

Given the success of deep learning models in other fields such as computer

vision, there has been a significant increase in the usage of deep learning
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methods for different NLP tasks which have lead to the creation of state-

of-the-art results in many of those domains. One of the NLP domains in

which deep learning models have significant contribution is Conversational AI

in which researchers and machine learning engineers have used deep learning

methods for the task of creating conversational agents which can interact with

people via auditory or textual methods. Conversational AI and Conversational

Commerce [26] are new trends in industry and academia which try to address

industry problems using the conversational agents. Task-oriented chatbots

are one of the main types of conversational agents which are adopted by many

Small and Medium-sized Businesses (SMBs) and large corporations to provide

a better user experience for their customers.

Deep learning methods for dialogue generation systems make it possible

to take advantage of conversations corpora such as chat logs or forum dis-

cussions and make the chatbot model learn directly from data with minimal

feature engineering. Transformer and Universal Transformer are amongst the

deep learning methods that have created state-of-the-art in some NLP tasks.

Their usage for task-oriented dialogue generation systems is not yet explored

comprehensively and one of the main contributions of this thesis to provide

such a comprehensive comparison and analysis. Furthermore, evaluation of

dialogue generation systems is still a controversial issue amongst the research

community and even some researchers compared current evaluation methods

of dialogue generation systems with human evaluation and demonstrated the

deficiencies of current evaluation methods for dialogue generation systems [69].

Using a user simulator which can model user behaviour and profile can be a

good approach for both training and evaluations of chatbots and one of the

contributions of this study is to show that such method can provide reliable

evaluations for task-oriented chatbots.

1.1.1 Conversational AI and Conversational Commerce

Conversational AI is the science of developing agents which are able to com-

municate with humans in a natural way [88]. Digital assistants such as Apple’s

Siri, Google Assistant, Amazon Alexa, and Alibaba’s AliMe are examples of
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successful chatbots developed by large companies to engage with their cus-

tomers. Most of these chatbots are generally task-oriented and serve a limited

range of tasks, such as setting an alarm or typical information retrieval tasks.

The goal for researchers both in academia and industry is to augment these

chatbots with capabilities to have a chitchat with users but there is still a long

way to reach the chatbot which is able to have natural everyday conversations

with humans [64].

Conversational Commerce is another recently high-profile field that tries

to tackle the business problem using Conversational AI and tries to connect

shoppers and brands via textual or voice interface. Most of the chatbots devel-

oped in this field are usually task-oriented and sometimes have basic chitchat

capabilities, and their final goal is to try to help users have a better experience

while shopping for items online. Conversational Commerce is enabling brands

to have to the long-desired one-on-one conversation and engagement with their

customers in a continuous and uninterrupted way.

1.1.2 Applications of Chatbots

Chatbots usually fall into the open-domain and task-oriented groups. The goal

for open-domain chatbots is to have a chitchat conversation with the users,

and the user can talk about many different topics with the chatbot. The user

can ask about the weather, and the chatbot must be able to not only answer

appropriately but also has to accompany the answer to weather query with

some response that could potentially lead to a more engaging conversation

with the user. For example, if the user asks about the weather in Edmonton,

a possible good answer from an open-domain chatbot would be: “It’s a little

bit chilly outside. You may want to stay home and watch some horror movies

instead!”. On the other hand, a task-oriented chatbot would answer this ques-

tion with a response like “Right now in Edmonton it’s -10 Celsius and sunny”

which is not an engaging answer possibly leading to a prolonged conversation

with the user.

Given the brief comparison between functionality and general purpose of

task-oriented and open-domain chatbots, it is important to note that most
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of the chatbots developed by SMBs and large corporations are task-oriented.

Given the complexity of open-domain chatbots, they are still far from the

current capabilities of current techniques used in building dialogue genera-

tion systems [110]. However, researchers in academia and industry are try-

ing to augment the capabilities of the task-oriented chatbots with limited

chitchat functionality. This additional functionality makes the users want to

have longer chats with the chatbot because of its more human-like interac-

tion. Microsoft’s Xiaoice [123] is a good example of how users get much more

engaged when they feel that they have become friends with the chatbot. Ama-

zon’s Alexa Prize competition [88] is a well known competition which tries to

promote the development of such chatbots.

Applications of task-oriented chatbots cover a wide range of domains. Typ-

ical examples are reservation chatbots, Frequently Asked Questions (FAQ)

chatbots, and customer-service chatbots. Deployment of task-oriented chat-

bots could have lucrative advantages for most SMBs and also giant corpora-

tions. The reductions of cost for human labour in simple question answering

tasks, getting insights and feedback from customer engagement with a chat-

bot, and better customer experience given the continuous and uninterrupted

availability of a chatbot service are amongst the most important advantages

of using a task-oriented chatbot. For example, consider the automation of a

call centre using a task-oriented chatbot. A well-trained task-oriented chatbot

can handle most of the FAQs by callers and also is able to redirect to an agent

if it notices that cannot handle the call. This could reduce the number of

employees in the call centre noticeably since most of the calls can be handled

by the chatbot. Google Duplex [65], a chatbot service able to make calls on

behalf of the user for mostly reservation tasks, eBay’s ShopBot [86], a personal

shopping assistant, and Automat’s BeautyBot [71] are examples of successful

task-oriented chatbots.

Chatbots can also be used for applications related to health. Chatbots

developed in this domain are not necessarily as task-oriented one and tend to

have more engaging interactions with the user by having task-related chitchats

with the user but are not still considered open-domain chatbots. Babylon

5



Health [90] tries to automate the process of initial diagnosis and triage through

a conversational interface. This can help many patients who have difficulty in

accessing a doctor get online medical consultation and get medical assistance in

an urgent situation. Woebot [29] is another use case of conversational agents in

the health domain which tries to help users with their depression and provide

therapy based on psychological methods.

1.1.3 Deep Learning for Dialogue Generation Systems

Deep learning methods try to learn a hierarchical representation of data which

makes them a strong candidate for many NLP tasks such as Part-Of-Speech

(POS) tagging, parsing, named-entity recognition (NER), question answering,

and language understanding tasks. The power of deep learning in learning a

meaningful representation of data without using much manual hand-crafted

feature engineering makes it a strong candidate for developing dialogue gen-

eration systems [129][14].

Deep learning plays an important role in the development of both open-

domain and task-oriented chatbots. Sequence-to-sequence learning methods

using neural networks [102] have created state-of-the-art results in dialogue

generation systems. Given the complexity of a chatbot which has to under-

stand the user utterance, process the information given by the user and in-

tegrate it with other relevant information and at last create an appropriate

response which is relevant and informative, makes the usage of deep learn-

ing methods in dialogue generation systems more appealing. Traditionally

hand-crafted rules were used for both understanding user utterances and the

response generation mechanism. Early chatbots like Eliza [114] and Parry [12]

are examples of chatbots which use hand-crafted scripts to communicate with

humans. Deep learning methods make the process of creating chatbots easier

in a way that there is minimal need for usage of hand-crafted rules and deep

learning methods can learn directly from the conversation’s data.

Dialogue generation systems (both open-domain and task-oriented) can be

modeled as a sequence modeling task in which the deep learning model is pro-

vided with the conversation corpus and learns the dependencies between the
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tokens and concepts in the corpus in order to be able to generate relevant

and appropriate responses. The learning task is usually formed in a sequence-

to-sequence learning method in which the input sequence is the context of

the conversation up to some point in the past, and the target is the response

which system should generate. The state-of-the-art deep learning models for

sequence modeling have three main architectures which are recurrence-based,

convolution-based, and self-attentional models which we will elaborate more

in Chapter 2. The self-attentional models (Transformer and Universal Trans-

former) are relatively new models which purely work based on attention mech-

anism and have shown great results in a number of NLP tasks. We will explore

the usage of these models for the task of task-oriented dialogue generation sys-

tems and provide a comprehensive comparison between these architectures for

this specific task.

1.1.4 Self-attentional Models for Sequence Modeling

Transformer [109] and Universal Transformer [22] are self-attentional deep

learning models for sequence modeling which purely rely on self-attention

mechanism (see Chapter 2.3). The Transformer model could beat state-of-

the-art model in neural machine translation (NMT) tasks and achieves a 2

points increase in BLEU score which is a significant performance increase in

NMT task. The self-attention mechanism allows the model to learn long-term

dependencies and learn different concepts available in the corpus in a way that

the model was able to handle the coreference resolution [131] problem in the

task of NMT [106]. The usage of the self-attention mechanism in the archi-

tecture of the Transformer model allows high parallelization capability to the

model which can be trained faster compared to recurrence-based models.

Universal Transformer [22] is a variation of the Transformer model which

tries to introduce a recurrence to the model so that it can perform better

in some language understanding tasks. The original Transformer model did

not have any recurrence and was not able to perform well in some language

understanding tasks compared to recurrence-based models such as RNNs. The

Universal Transformer model extends the Transformer model by applying the
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recurrence method not time-wise similar to RNN model, but token-wise which

means the recurrence is applied on the different representation of a token in

the different layers of the Universal Transformer and the model can decide

where to stop the recurrence. Methods such as Adaptive Computation Time

[37] are applied to the Universal Transformer model to help the model perform

token-wise recurrence computation more efficiently and faster [99].

1.1.5 Evaluation of Task-oriented Chatbots

One of the main challenges that researchers and engineers face in the domain

of dialogue generation systems is the evaluation of these systems. Due to the

fact that these systems are supposed to act like humans and create an engag-

ing and context-relevant response, it is challenging to automatically evaluate

these systems. The evaluation metrics and methods used for the evaluation

of task-oriented and open-domain chatbots have slight difference due to the

fact that their final purpose is different. Task-oriented chatbots are supposed

to complete a specific task in as few turns as possible and provide relevant

responses while open-domain chatbots are intended to keep the user engaged

and have a long conversation with the user.

The evaluation methods and metrics used in sequence modeling tasks such

as BLEU [82] which is usually used in NMT tasks is also used in chatbot

evaluation. The other methods that are usually in the evaluation of task-

oriented chatbots are per-turn accuracy, per-dialogue accuracy, and entity F1

score. All of these metrics try to pick the best model which is able to output

responses which are exactly similar to the training corpus and even if the

chatbot generates another relevant response, which is different from what it

was supposed to generate according to the training corpus, it will be penalized.

This process can be alleviated through methods such as beam search [30][125]

but still will not be solved entirely and needs more research.

All the aforementioned methods for the evaluation of task-oriented chatbots

do not model the user error and characteristic in the evaluation process. Using

a user-profile conditioned user simulator, which is able to simulate real users

with different characteristics, seems a promising approach in order to better

8



evaluate the task-oriented chatbots. We create such an evaluation method

using the user simulator, natural language understanding (NLU), and natural

language generation (NLG) modules and evaluate the trained chatbots by

measuring metrics such as the number of turns in the conversation in order

to provide an evaluation method which models the user characteristic in the

process of evaluation.

1.2 Problem Formulation

In this study we try to address two problems. One is to investigate the usage

of self-attentional models for creating end-to-end task-oriented chatbots. We

setup a number of experiments on different datasets to check whether we

can use the self-attentional models for this task and also benchmark their

performance against state-of-the-art sequence modelling methods.

The second problem we address in this study is to evaluate the usage of

profile-conditioned user simulator for assessment of task-oriented chatbots. As

mentioned before, the goal for task-oriented chatbots is to complete the user

task in as few turns as possible and thus we can formulate this problem into

an optimization problem in which we try to optimize the number of turns in

a task-oriented conversation with respect to a limited number of turns as our

constraint.

1.3 Thesis Statement

In this study, we investigate the Transformer and Universal Transformer mod-

els for the aim of creating task-oriented chatbots. We also propose a pipelined

evaluation method for task-oriented chatbots using a user simulator condi-

tioned on the user profile. We claim that the self-attentional models can be

used to train end-to-end task-oriented chatbots with comparable accuracy to

recurrence-based sequence modelling methods and often in a faster way. We

also claim that a profile-conditioned user simulator can be used as an evalua-

tion method for task-oriented chatbots.
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1.4 Thesis Contribution

The contributions of this study are in two categories. First, we use the Trans-

former and Universal Transformer models for the purpose of training task-

oriented chatbots and provide comprehensive comparison and analysis for each

of the models. In the second part, we propose a new evaluation method for

task-oriented chatbots by implementing a user simulator which takes user pro-

file (characteristics) into account. A detailed description of each of the contri-

butions is as follows:

• Transformer and Universal Transformer Models: We train and

evaluate task-oriented chatbots for each of these models and compare

them with current state-of-the-art recurrence-based sequence modelling

methods for developing task-oriented chatbots. We use three different

sets of datasets from the restaurant and movie domain and evaluate the

trained chatbots.

• User Simulator Conditioned on User Profile: We use the idea of

Agenda-based user simulator [93] and combine it with the user profile

in order to make the user simulator more realistic. We train an NLU

module and also define a template-based NLG module for the proposed

evaluation method in order to make it able to talk to chatbots and re-

spond accordingly. This pipelined method can be used as an evaluation

method for task-oriented chatbots.

1.5 Organization of the Dissertation

For each of the contributions mentioned in 1.4 we have a chapter. In Chapter 2

we will discuss the different deep learning architectures used in sequence mod-

eling tasks. We also have a background chapter (Chapter 3) about methods for

developing task-oriented chatbots and creating task-oriented training corpus.

In Chapter 4 we focus on the evaluation of task-oriented chatbots and dis-

cuss the proposed evaluation methods. In Chapter 5, we will demonstrate the

experiment results for both the self-attentional models usage in task-oriented
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chatbots and also the profile-conditioned user simulator. Chapter 6, conclu-

sion and future work, addresses the possible ways to add contributions to this

thesis. We also provide some examples of data preprocessing procedure in

Appendix A and also explain the details of a rule-based chatbot that we use

in our experiment in Appendix B. Having this explanation in mind, the six

chapters in this study are as follows:

• Chapter 1. Introduction : In this chapter we’ll provide some back-

ground on Conversational AI and its impact on businesses. We also

explain how current deep learning methods can help us create intelli-

gent, context-aware chatbots and briefly mention our contributions in

this study.

• Chapter 2. Preliminaries for Sequence Modeling with Self-

attentional Models : Detailed description of recurrent and convolu-

tional methods for sequence modeling tasks, Detailed description, and

analysis of Transformer and Universal Transformer models and their use

cases for natural language processing (NLP) tasks.

• Chapter 3. Task-oriented Dialogue Generation Systems : An

overview of methods used for development of task-oriented chatbots for

both end-to-end and pipelined architectures. We also discuss the dif-

ferent methods used in creating the training corpus for task-oriented

chatbots.

• Chapter 4. Evaluation of Task-oriented Dialogue Generation

Systems : An overview of metrics and methods used for the evaluation of

task-oriented chatbots alongside the detailed description of implementing

the profile-conditioned user simulator evaluation method.

• Chapter 5. Experiments and Results : Training and data prepa-

ration process for training task-oriented chatbots is explained in this

chapter. Experimental results of trained models are also included in this

chapter.
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• Chapter 6. Conclusion and Future Work : In this chapter we

explain what we learned and explain what are the possible ways to extend

this study for future research.

• Appendix A. Data Preparation Process: A few samples of both

raw and processed task-oriented dialogues to demonstrate the data prepa-

ration process for training end-to-end task-oriented chatbots.

• Appendix B. Rule-based Chatbot: Sample of a rule-based chatbot

we used in our experiments.
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Chapter 2

Preliminaries for Sequence
Modeling with Self-Attentional
Models

Sequence modeling is the use of machine learning and deep learning models

for probabilistic modeling of a sequenced data. Language modeling is one the

core tasks of sequence modeling in which we try to find a model which can

learn the joint probability distribution of the tokens in the sequenced data

(text data). The language model can be used to predict the next token (e.g.,

word) given the current context. Sequence modeling is widely used in many

NLP fields such as machine translation, dialogue generation, NER, and text

summarization. The core idea behind the sequence modeling is to learn the

joint probability distribution of the tokens (a generative model) which also can

be used as a discriminative model and conditioned on the context to predict

the next tokens.

Many neural-based architectures have been proposed for the task of se-

quence modeling in NLP, and the state-of-the-art models mainly fall into three

main categories which are recurrence-based models (e.g. RNNs), convolution-

based models (e.g., Convolutional Sequence-to-Sequence (ConvS2S)), and self-

attentional models (e.g., Transformer). In the recurrence-based model, the se-

quence is fed to the model sequentially, and the model tries to learn the depen-

dencies between the tokens using the backpropagation through time (BPTT)

method [118]. The convolution-based models try to use 1-D convolution in or-
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der to model the sequence in a hierarchical approach in which multiple layers

of convolution are stacked on top of each other in order to model the whole

sequence. Their architecture also allows high parallelization which results in

faster training compared to recurrence-based models. The main problem of

convolution-based models is that the convolution is done position-based (re-

gardless of whether the tokens in those positions are related to each other)

and therefore some of the semantic concepts may be missed during the train-

ing and the model will not be able to learn those concepts. Self-attentional

models, such as Transformer, try to address this problem by incorporating the

self-attention mechanism in sequence modeling. The self-attention mechanism

allows the model to learn the intra-dependencies between the tokens and as-

sign (relevance) weights to them so that the models are able to learn all the

concepts in the sequence. This idea is depicted in Figure 2.1 [108][52].

Figure 2.1: Convolution-based (left) vs self-attention-based (right) sequence
modeling [109]

The Transformer model [109] was first used in neural machine translation

tasks and could lead to state-of-the-art results with significant enhancement

compared to previous models. The main difference between the Transformer

model and the other models used for sequence-to-sequence modeling task is

that the Transformer model only relies on the attention mechanism and there

is no recurrence or convolution as in the previous models. The Transformer

architecture makes it an ideal model for parallelizing and thus the training

could be done faster compared to recurrent and convolutional models used

for sequence modeling tasks. The Transformer model was able to beat state-

of-the-art in tasks such as machine translation, but in some language under-

standing tasks, it could not beat recurrence-based models [22]. The Universal

Transformer model [22] tried to tackle this problem by incorporating the recur-

rence into the Transformer model in a depth-wise way instead of time-based
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recurrence and hence has the parallelization capability of Transformer as well

as the recurrence of models like RNNs.

In the following sections, we will discuss different architectures used in

sequence modeling tasks and explain their architectures as well as the build-

ing blocks and methods used in these models. In Section 2.1 and 2.2 we

will discuss the sequence modeling models which use recurrence and convolu-

tion in their architecture respectively. In Section 2.3 we discuss the attention

mechanism and its variations and then in Section 2.4 we discuss the usage of

self-attentional models for sequence modeling task and their applications in

different machine learning tasks.

2.1 Recurrence-based Sequence Modeling

Using the recurrence for sequence modeling is the most intuitive way to build

a model. In recurrence-based sequence modeling, the tokens are fed into the

model in a sequential way, and the model learns the dependencies between

the tokens given the context from the past (and the future in case of bi-

directional RNNs). RNNs and their variations such as Long Short-term Mem-

ory (LSTM) and Gated Recurrent Units (GRU) are the most widely used

recurrence-based models used in sequence modeling tasks. The recurrence-

based models are trained using the BPTT method in which the errors are

backpropagated through time up to some step in the past, and the gradients

are calculated accordingly. The exploding and vanishing gradient [85] prob-

lems are among the main limitations of RNNs which do not allow the model

to learn long-term dependencies. LSTMs alleviate this problem by changing

the architecture of the model in a way that information can flow through the

model from the past directly, and the model can decide what parts of the

information from the past to keep. In Section 2.1.1 we will discuss the RNN

model and how it is trained using BPTT. We also discuss the bi-directional

architecture of RNN models and later in Section 2.1.2 we discuss the LSTM

model and how its architecture can handle vanishing gradient problem and

learn long-term dependencies.
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2.1.1 Recurrent Neural Networks

Recurrent neural networks are a family of neural networks designed to process

the sequential data. Given the sequence X = x1, x2, ..., xt, the RNN model tries

to learn dependencies between the given tokens of the sequence and create a

joint probability distribution of the whole sequence. This is shown in Equation

2.1. As noted in this formula, the joint probability can also be written in the

form of multiplication of conditional probabilities the RNN model tries to learn

the joint distribution by computing the probability of the current token given

all (or a number of) its previous tokens.

P (x1, x2, .., xt) =
t∏

i=2

P (xi | x1, ..., xi−1)P (x1) (2.1)

All sequence modeling tasks try to learn such a joint probability distribu-

tion between the tokens of the given sequence data. RNN models [44] try to

model such a distribution using a sequence of hidden states (cells). The basic

equation of an RNN model (and also all recurrence-based models) is shown in

Equation 2.2 [35].

ht = f(ht−1, xt; θ) (2.2)

The hidden state of an RNN (i.e., ht) is supposed to store all the informa-

tion of the sequence model from the beginning up to time step t. For updating

the hidden state ht, we will pass all the information from the previous tokens

which are stored in ht−1 and the current token xt to some function f which can

learn the joint probability distribution given in Equation 2.1. Note that in the

ideal case the model should be able to store all the information from previous

states in its hidden state ht, but given that all of these models are trained

in a differential method (using BPTT in case of recurrence-based models) the

computational limitations of the cells and problems like vanishing/exploding

gradients make it impossible to learn these dependencies for long input se-

quences.

To further expand Equation 2.2, we can unfold the basic RNN model and

write Equation 2.2 for an unfolded RNN in Equation 2.3 [35],
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at = b+Wht−1 + Uxt

ht = tanh(at)

ot = c+ V ht

ŷt = softmax(ot)

(2.3)

where W,U, V, b, c are learnable parameters for the model and the softmax

function is defined as in Equation 2.4 and the tanh function is defined as in

Equation 2.5.

softmax(z)j =
exp(zj)∑n

j=11 exp(zj)
(2.4)

tanh(x) =
2

1 + exp (−2x)
− 1 (2.5)

Note that some RNNs have output tokens in some time steps and therefore

ŷt is used to create the output token(s).

2.1.2 LSTM and Bi-Directional LSTM

LSTM networks are a special kind of RNN networks which can learn long-term

dependencies [45]. RNN models suffer from vanishing gradient problem [7]

which makes it hard for RNN models to learn long-term dependencies. LSTM

model tackles this problem by defining gating mechanism which introduces

input, output and forget gates and the model has the ability to decide how

much of the previous information it needs to keep and how much of the new

information it needs to integrate and thus this mechanism help the model

keep track of long-term dependencies. LSTM transition formula is depicted in

Equations 2.6, 2.7, and 2.8 [39][80].

it = sigmoid(Wix
t + Uih

t−1 + bi)(input gate)

ot = sigmoid(Wox
t + Uoh

t−1 + bo)(output gate)

f t = sigmoid(Wfx
t + Ufh

t−1 + bf )(forget gate)

(2.6)

The equations in 2.6 depict the three main gates in the LSTM network.

The input gate checks how much the new token xt is worth regarding the
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information it carries compared to previous information (stored in hidden state

ht−1). The forget gate function is to determine how much of the information

from the past (stored in hidden state ht−1) is worth keeping. Finally, the

output gate decides how much of the information from both hidden state ht−1

and current token xt should be used in updating the current cell state Ct. The

cell state acts like a channel in which information can pass and each LSTM

cell tries to modify this information if needed. The update formulas for the

cell states is shown in Equation 2.7. Note that the � sign is the Hadamard

multiplication [100] sign (i.e. point-wise multiplication).

C̃t = tanh(Wcx
t + Uch

t−1 + bc)(updated cell state)

Ct = f t � Ct−1 + it � C̃t(final cell state)
(2.7)

Finally, the hidden state of the LSTM network is updated according to

equation 2.8 in which the output and the final cell state are used in order to

determine the hidden state of current time. Note that in Equation 2.7, the

previous hidden state and the current token are used in order to decide whether

to update the current cell state C̃t. Then the LSTM uses the information from

the input gate (which is basically a scalar) in order to decide how much of the

information from the update cell state should be kept and the information

from the forget gate is used to decide how much of the information from the

previous cell state has to be thrown away.

ht = ot � tanh(Ct)(updated hidden state) (2.8)

This architecture in the LSTMs can help the model learn long-range de-

pendencies given the fact that the information can travel through the cell state

and the LSTM model decides how to tweak that information and whether to

add more information given the current token to the cell state or whether to

forget the information from the past. In theory, this model should be able to

model very long sequences, but in practice, due to the differential training of

these models, there is still a limitation on how much information can be kept.

Bi-directional LSTMs [94] are a variation of LSTMs which proved to give

better results for some NLP task [38]. The idea behind a Bi-directional LSTM
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is to give the network (while training) the ability to not only look at past

tokens as LSTM but to future tokens, so the model has access to information

both form past and future. In the case of a task-oriented dialogue generation

systems, in some cases, the information needed so that the model learn the

dependencies between the tokens comes from the tokens that are ahead of

the current index, and if the model is able to take future in time tokens into

accounts it can learn more efficiently.

2.1.3 Gated Recurrent Unit

GRU [16] is a variation of the LSTM network in which instead of three gates, we

have two gates called reset gate and update gate. GRUs are computationally

more efficient and faster compared to LSTM models. The architecture of a

GRM model can be seen in Equation 2.9. The input gate and the forget gate

of the LSTM are merged and the update state is created. There is also a

reset gate which decides how much of the information from the previous states

should be forgotten. The cell state is modeled differently in GRU and the

equation to update it is simpler [80].

zt = sigmoid(Wzx
t + Uzh

t−1)(update gate)

rt = sigmoid(Wrx
t + Urh

t−1)(reset gate)

h̃t = tanh(rt � Uht−1 +Wxt)

ht = (1− zt)� ht + zt � ht−1

(2.9)

2.2 Convolution-based Sequence Modeling

Sequence modeling usually relies on recurrent models such as RNNs since their

architecture is designed to process a sequence of data while the convolutional

neural networks (CNN) [63] are mostly used in image analysis. RNNs are

designed to handle variable length sequences while CNNs are designed to han-

dle images with different size [35]. However, it is possible to use CNNs for

sequence modeling tasks, and in fact in some cases, CNNs could outperform

certain RNNs architectures and produce better results. The main advantage
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of using CNNs instead of RNNs for sequence modeling is the fact that CNNs

can leverage the parallelization power of GPUs better than RNNs and also

since the number of non-linearities in the model is fixed and independent of

sequence length, the optimization process is easier compared to RNNs [33].

RNNs need to process the input in a sequential way while the CNNs can

process different chunks of the input concurrently and thus can parallelize this

process. Note that CNNs do not take at the input sequentially, and therefore

they are not able to model dependencies between tokens that are far away

from each other. The solution to this problem is to stack multiple layers of

CNN layer on top of each other, so long-range dependencies can be seen and

processed by the model. The stacking of layers in CNNs for sequence modeling

allows the model to grow its receptive field, or in other words context size,

and thus can model complex dependencies between different sections of the

input sequence. In multi-layer CNN sequence modeling architecture, nearby

tokens interact in lower layers while tokens which are far from each other will

interact in the higher level layers. The receptive field size can be increased in

an exponential way using dilated convolutions [130] so the number of stacked

layers in the CNN architecture needed to model long sequences will be lowered

considerably as depicted in Wavenet architecture in Figure 2.2 (it will be

downsized in a logarithmic way).

Another advantage of using CNNs is that they can look at the whole se-

quence in multiple layer architectures which helps the model learn long-range

dependencies in the higher level layers in which the order of tokens in the se-

quence does not matter while in RNN models this problem is present. Given

the fact that in RNNs the sequence is processed in a sequential way, there-

fore, the model is not able to look at the tokens in the future. This issue

is addressed in RNNs by training the model in both backward and forward

fashion in which we train the model two times once feeding the model with

the original sequence and once the reversed version of the sequence so that the

RNN can look at the sequences both from left-to-right and from right-to-left.

Another way to solve this issue is using bi-directional RNNs as described in

Section 2.1.2. Another advantage of CNNs over RNNs is that CNNs use less
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Figure 2.2: Wavenet architecture with dilated convolution [107]

memory compared especially in long sequences. This is due to the fact that

RNNs need to store the partial derivatives of the whole sequence up to some

point back in time, as used in BPTT [118] and truncated BPTT [49], while in

CNNs this number is actually the depth of the CNN architecture which tends

to be smaller for long sequences [6][54][32].

Given the aforementioned properties for the CNNs, they seem a good can-

didate to be used for calculating representations of the sequences and thus be

used for sequence modeling. In NLP domain, CNNs have been used for sen-

tence and document classification [57][128][55][51], semantic role labeling [18],

text summarization [33], language modeling [20], and Neural Machine Trans-

lation [32][54][33]. In this study, recent usage of CNNs for NMT in ByteNet

[54] and ConvS2S [32], and WaveNet [107] (used for audio synthesis), is of

great interest since these models lead to the creation of self-attentional-based

models like Transformer and thus in the following sections we will give an

overview of these models.
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2.3 Attention Mechanism

Attention mechanism is one of the most exciting and useful advances in deep

learning which in some cases augmented the models [5] and also lead to models

that instead of recurrence use attention mechanism [109]. Attention idea has

been firstly used in computer vision applications such as in [62][24] and later

was used in NLP domain, specially for machine translation task [5][73]. Before

using attention mechanism, the final hidden state of the encoder, which is sup-

posed to have the gist of the information in the whole sequence, was passed to

the decoder and thus decoder could decide what token to output based on the

information in this single hidden state. However, given a rather long sequence,

the final hidden state of the encoder fails to capture all the information needed

for appropriate modeling and also it is highly unlikely that information from

initial tokens of the sequence which are far from the last hidden state is cap-

tured. Given the problems above, the idea of attention mechanism was used

while training the decoder in sequence-to-sequence learning models. In each

step in decoding, the attention mechanism looks at all the hidden states of

the encoder and assigns a score to each of them by comparing them to tar-

get hidden state in the decoder and create a context vector which has all the

relevant information needed for the model to decide which token to output in

the decoding step. This context vector is then used with target hidden state

to decide which token to output. Figure 2.3 depicts the attention mechanism

used for the application neural machine translation [72].

2.3.1 Luong and Bahdanau Attention Mechanism

The method to calculate attention weights and context vector are shown in

Equations 2.10 through 2.14. In the first step, the current hidden state in the

decoder (ht or target hidden state) is compared against all the hidden states

in the encoder (he) and a score is assigned to each of the hidden states in the

encoder. This is score is called attention weight and the formula to calculate

attention weights is shown in Equation 2.10:
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Figure 2.3: Attention mechanism in used in NMT [73]

αte =
exp(score(ht, he))∑E
e=1 exp(score(ht, he))

(2.10)

where E is the number of hidden states in the encoder. After calculating the

attention weights, a context vector is calculated which contains aggregated in-

formation from all the hidden states of the encoder weighted by their relevance.

The formula to calculate the context vector is shown in Equation 2.11:

ct =
∑
e

αtehe (2.11)

The context vector then is then used with ht to calculate the attention

vector. The attention vector contains all the necessary information from the

hidden states in the encoder as well as the current target hidden state and is

passed to the decoder in order to continue the decoding process. The method

to calculate the attention vector is shown in Equation 2.12

αt = tanh(Wc[ct;ht]) (2.12)

It is important to mention that there are two methods to calculate the score

(attention weight) used in Equation 2.10. The method shown in Equation 2.13

is called the Luong Attention method [73] and is in the form of multiplicative

style which is similar to a one-layer multi-layer perceptron (MLP).

score(ht, he) = hTt Whe (2.13)
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The second method to calculate the attention weights is called the Bah-

danau Attention [5] and is in the form of additive style which is similar to a

two-layer MLP.

score(ht, he) = vTa tanh(Wa[ct;ht]) (2.14)

where va and Wa are learnable parameters for the attention model.

2.3.2 Self-Attention Mechanism

Self-attention or intra-attention is an attention mechanism in which we try to

learn the relationships between the tokens in a sequence and learn a represen-

tation of the whole sequence. The self-attention mechanism has been widely

used in many NLP tasks, including sentence representation [68], abstractive

summarization [15], semantic role labeling (SRL) [103], and Natural Language

Inference (NLI) [83][96].

Transformer [109] model is the first model that entirely relies on the self-

attention mechanism for both encode and decoder, and that is why it is also

referred to as a self-attentional model. In neural machine translation tasks,

CNNs and self-attentional networks could beat the recurrent models (RNNs),

and thus some speculate that the ability of the self-attention mechanism to

learn long-range dependencies between the tokens which can help the model

extract semantic features from the sequences [104].

2.3.3 Multi-head Attention Mechanism

Multi-head attention is another variation of attention mechanism in which

different attention models (layers) are created and trained separately so each

of them could focus on specific topics and concepts in the sequence. In the case

of NLP, multi-head attention has been used for sentence representation [68]

in which they defined multiple heads for sentence embedding. For example,

consider the sentence “I went to the restaurant where President Obama had

lunch, who is the best president in the USA in my opinion, and ordered some

cheap Italian food”. There are different topics discussed in this sentence which

have different semantic meanings which are about the Italian restaurant and
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president Obama. A simple attention mechanism may not be able to capture

all the topics discussed in a sentence or capture all the semantic concepts in

a sequence if we want to generalize. Multi-head attention solves this problem

by defining multiple heads for the attention mechanism, each of them having

different matrices and variables to represent different topics, in hope to capture

most of the topics in the sequence.

Figure 2.4: Multi-head (self-)attention in Transformer Model [109]

Figure 2.4 depicts the two different heads for the Transformer model in

the same layer of the encoder (we will discuss the Transformer architecture

later in the next section). This image has been rotated 90 degrees clockwise

in order to ease readability. These two heads depict the self-attention weights

learned in layer 5 (out of 6) of the encoder in a Transformer model trained

for NMT task. The intensity of the colours shows how much each of the

tokens (in the left side for each head) attend to the other tokens in the same

sentence. The distribution of the colour intensities clearly shows that the

model is focusing on two different topics (while in some cases it may be hard to
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interpret that topic based on the attention weights) each of them representing

an abstract concept in the sentence. The multi-head attention can be applied

to all the sequence modeling models with encoder-decoder architecture which

utilize attention mechanism in order to help the model learn about different

topics and semantic concepts in the sequence.

2.4 Self-Attentional based Sequence Modeling

Self-attentional models are a class of deep learning model which learn the rep-

resentation of the sequence using the self-attention mechanism. Transformer

and the Universal Transformer are current state-of-the-art models for sequence

learning which completely rely on the self-attention mechanism for sequence

modeling. The computational complexity (in terms of training time) for the

three aforementioned sequence modeling methods (i.e., recurrence, convolu-

tional and the self-attentional) is shown in Table 2.1 in which n is the number

of tokens in the sequence, d is the dimensionality of the hidden state, and k is

the kernel size in convolutional models.

Layer Type Computational Complexity
Recurrent O(n.d2)

Convolutional O(k.n.d2)
Self-attentional O(n2.d)

Table 2.1: Comparison of time complexities for different layers used in sequence
modeling [Adapted from [109]]

This table shows the per-layer time complexities for each of the layer types

used in sequence modeling. In cases in which n < d, the self-attentional

model is faster compared to other layers. This case happens in most of the

applications for sequence modeling tasks since the typical numbers for hidden

state dimensionality are most of the times larger than the sequence length

[109].

In the following sections, we will discuss the Transformer and the Universal

Transformer models in more detail. We will also discuss the applications of

each of these models in different domains.
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2.4.1 Transformer

Transformer is a relatively new model proposed by Vaswani et al. [109] from

Google AI which could noticeably improve the state-of-the-art machine trans-

lation tasks. Transformer is the first model which uses pure attention mech-

anism, instead of recurrence, to learn the dependencies between input and

output. It is based on the self-attention idea which is intended to learn a

representation of a sentence by relating different positions of that sentence.

Transformer also uses multi-head attention which intends to give the model

the ability to look at different representations of the different positions of both

the input (encoder self-attention), output (decoder self-attention) and also

between input and output (encoder-decoder attention).

Figure 2.5: The Transformer model architecture [109]

Architecture of the Transformer Model

The encoder is comprised of N identical layers, each of them having a multi-

head self-attention mechanism as the first part and the second part is a simple
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feed-forward network. Note that the model also uses residual connection [16]

followed by layer normalization [4] after each part. The decoder has almost

the same architecture as the encoder except that it has three main parts. The

second and the third part are the same as the encoder, but the first part is

a masked multi-head self-attention mechanism. The masked multi-head self-

attention mechanism makes sure that decode behaves in an autoregressive

way [36] meaning that the prediction for a specific position in the decoder

only depends on the previously generated positions.

The self-attention mechanism used in Transformer is a special kind of self-

attention called scaled dot-product attention which can be computed using

Equation 2.15. The notation used in this equation tries to model the attention

mechanism as a series of queries (packed in matrix Q), keys (packed in matrix

K), and values (packed in matrix V ) which then are used in this equation in

order to compute the attention matrix. A rescaling is also done in order to

handle large values of the QKT where dk is the dimension of both keys and

queries.

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V (2.15)

In order to better learn the different concepts available in the data, multi-

head attention is used instead of single-head attention. In multi-head self-

attention mechanism used in the Transformer architecture, different and sep-

arate representations of the input are learned and then concatenated together

in order to create the final representation. Equation 2.16 depicts this proce-

dure in which h number of heads are learned and then concatenated in order

to compute the final attention matrix.

MultiheadAttention(Q,K, V ) = concat(head1, ..., headh)WO

headi = Attention(QWQ
i , KW

K
i , V W

V
i )

(2.16)

Note that WK ,WQ,W V are separately learnable parameters for each of

the heads and the WO is the final linear model which creates the final repre-

sentation of the attention matrix.
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The attention mechanism is used in three different ways in the Transformer

architecture. First, the encoder has a self-attention mechanism in which the

keys, queries, and values all come from the encoder and therefore, in a specific

layer, each position can attend to all the positions in its previous layer. The

same mechanism is also true for the decoder but with the small difference that

each position, in one layer, can attend to all the positions in the previous layer

up to the index of that position. As explained before, this is to make sure

that the model behaves in an autoregressive way. Finally, the encoder-decoder

attention mechanism is the third attention mechanism in the Transformer

architecture in which the keys and values come from the last encoder layer

but the queries are from the current decoder layer, and in each of the decoder

layer, this attention matrix is calculated accordingly.

It is also important to notice that as in the convolutional models, there is

no notion of time in the self-attentional models as well. The whole sequence

is fed to the encoder and the decoder, and since there is no recurrence in

training, the model looks at the whole sequence without considering that it is

a sequential type of data. In order to help the model understand the notion of

time, we embed time in the sequence by using positional embedding technique

[33] in which add either constant numbers (representing time) or sinusoidal

function with different frequencies in order to give the model a notion of time.

In Transformer model, sine and cosine functions shown in Equation 2.17 are

used for positional embedding where dmodel is the dimension of input and

output tokens in the model.

PE(pos,2i) = sin(pos/100002i/dmodel)

PE(pos,2i+1) = cos(pos/100002i/dmodel)
(2.17)

Applications of the Transformer Model

Given the great success of Transformer model in machine translation task [109]

and the fact that it offers a different training paradigm in which self-attention

is the main mechanism used for training and its ability to learn long-term

dependencies, many researchers tried to apply it on different learning tasks
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including computer vision and NLP tasks. In computer vision tasks, the idea

of self-attention and Transformer model has been used in image generation

[127][132][84], image classification [53], and video captioning tasks [133]. In

the NLP domain, Transformer model has been used for mathematical language

understanding [113], language modeling [19][91], machine translation [109][2],

sentiment analysis [87], question answering [87][25][126], and text summariza-

tion [70].

2.4.2 Universal Transformer

Transformer model is a self-attentional feed-forward sequence model which

does not have any recurrence. It turns out that the recurrence used in RNN

models is essential for some tasks in NLP including language understanding

task and thus the Transformer fails to generalize in those tasks. The Universal

Transformer model [22] tries to tackle this problem by introducing recurrence

in the Transformer model.

Architecture of the Universal Transformer Model

The Universal Transformer model is an encoder-decoder based sequence-to-

sequence model which applies recurrence to the representation of each of the

positions of the input and output sequences. The main difference between the

RNN recurrence and Universal Transformer recurrence is that the recurrence

used in Universal Transformer is applied on consecutive representation vectors

of each token in the sequence (i.e., over depth) whereas in the RNN models

this recurrence is applied on positions of the tokens in the sequence. This

idea is depicted in Figure 2.6 in which htm is the representation of token m

in the recurrence step time t. This figure shows the depth-wise recurrence

for two consecutive recurrence steps in which self-attention mechanism and

transfer function are applied to the representations of each token. The transi-

tion function serves as the recurrence transformation and is either a separable

convolution [17] or a fully-connected two-layer MLP with RELU activation

function.

Figure 2.7 depicts the recurrent blocks of both encoder and decoder in
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Figure 2.6: Depth-wise recurrence used in Universal Transformer model [22]

the Universal Transformer model. The main difference between the Universal

Transformer model and the Transformer model (see Figure 2.5) is that in the

Transformer model a constant number of stacked layers are used in both the

encoder and the decoder while in the Universal Transformer model, the number

of stacked layers can vary based on how many recurrence time steps the model

is trained with. A variation of the Universal Transformer, called Adaptive

Universal Transformer, applies the Adaptive Computation Time (ACT) [37]

technique on the Universal Transformer model which makes the model train

faster since it saves computation time and also in some cases can increase the

model accuracy [22]. The ACT allows the Universal Transformer model to use

different recurrence time steps for different tokens. The ACT technique is used

in RNN model to modulate the computation time for each token based on the

fact that in sequence modeling problems, some tokens are more ambiguous

than others and thus the ACT technique helps the model have more focus on

those tokens.
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Figure 2.7: The Universal Transformer model architecture [22]
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Chapter 3

Task-Oriented Dialogue
Generation Systems

Task-oriented chatbots tend to help the user accomplish a specific task such

booking a salon, restaurant, parking, etc., successfully and usually with the

minimum number of interactions. These systems should be able to query

databases or call an API dynamically in the conversation in order to complete

the task. For example, a task-oriented chatbot designed to help customers

make a reservation in restaurants should be able to query the database of

restaurants (with their meta information) in order to look for what the user

gave it as his/her preferences. These user preferences will be given to the

chatbot in the form of domain-specific entities. Chatbot then queries the

database in order to provide suggestions to the user and also can ask about

more information in order to limit its search space and provide more specific

suggestions. When all the required information is provided by the user, the

chatbot can call an API in order to make the reservation process complete and

notify the user if the reservation was made successfully or not. This example

is one of the possible scenarios that could happen in reality and the number

of possible scenarios heavily depends on the complexity of the task.

In the following sections, we will discuss the different architectures of task-

oriented chatbots and also explain the taxonomy that is common among the

task-oriented chatbots. In Section 3.1, we will explain the user intent and

entities that are common among the task-oriented chatbots regardless of their

architecture. Later in Section 3.2, we explain the different methods used for
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creating task-oriented chatbots and also explain different architectures used

in each of those methods. Lastly, in Section 3.3, we will explore how the

datasets used for training task-oriented chatbots are created and also explain

the different methods used for dataset generation.

3.1 Taxonomy of Different Task-Oriented Di-

alogue Generation Systems

There are several ways to implement a task-oriented chatbot including com-

plete rule-based chatbots, machine learning based methods, or hybrid methods

which incorporate both machine learning and domain-specific rules. Regard-

less of how these chatbots are implemented, there are some common modules

which these task-oriented chatbots have to implement in order to be able to

comprehend the user provided information and generate an appropriate re-

sponse. Generally speaking, the task-oriented chatbot should be able to first

understand the user intent, e.g., booking a restaurant or finding a movie, and

be able to discern the domain-specific entities provided by the user. The chat-

bot should also be able to keep track of user intent and entities throughout

the conversation and process them in order to either retrieve relevant infor-

mation from the database or ask relevant questions from the user to make the

task complete in a reasonably limited time. Finally, the chatbot has to have

a robust and well-defined policy system in order to take appropriate actions

given the current state of the conversation. In the following sections, we ex-

plain the intent and entity concepts which are the main building blocks of a

task-oriented chatbot.

3.1.1 Determining the User Intent

Task-oriented chatbots are designed to help the user accomplish a specific task

in predefined domains. For example, given the restaurant domain, the user

may have many intents such as finding a restaurant, booking a table, or search-

ing for a specific type of food in mind and each of these intents can be defined

as a task for the chatbot. Determining the user intent is one of the main
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challenges that a task-oriented chatbot has to do, and many big corporations

have built systems which can be used as an intent classifier for task-oriented

chatbots [10]. Luis [120] by Microsoft1, Amazon’s Lex2, Google’s Dialogflow3,

IBM’s Watson4, and Facebook’s Wit5 are the major Natural Language Under-

stating (NLU) providers which users can use to do intent classification in their

task-oriented chatbots. Rasa NLU6 [8] is an open-source NLU platform which

we will explore more later in Section 4.3.4.

3.1.2 Identifying the Needed Entities

One of the main components of task-oriented chatbots is its ability to rec-

ognize the domain-specific entities from user input (either text or auditory)

which show the user preferences The possible entities for reserving a restaurant

are restaurant name, cuisine type, location ,date, time, and number of people.

These are required entities which the chatbot needs to know their value in

order to complete the task and make a reservation. The user can also ask

the chatbot about entities like phone number, working hours, and address of

the restaurant that the chatbot made the reservation for. These entities are

optional entities which are not necessarily required for the chatbot in order to

make the reservation complete and usually are asked by the user after the task

is complete. The distinction between required and optional entities are highly

domain-specific but usually required entities are informable which means the

user has to provide the value for these entities for the chatbot and the optional

entities are requestable which means the user can request the value for these

entities from the chatbot [67].

1https://www.luis.ai
2https://aws.amazon.com/lex
3https://dialogflow.com
4https://www.ibm.com/watson/services/natural-language-understanding
5https://wit.ai
6https://github.com/RasaHQ
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3.2 Architecture of a Standard Task-Oriented

Dialogue Generation System

There are multiple ways to implement a task-oriented chatbot. Task-oriented

chatbots can be designed using a set of hand-crafted and carefully-designed

rules like Parry [12] or Eliza [97]. Another way that has recently been popular

for designing task-oriented chatbots is corpus-based which means the chatbot

can be trained with a relatively large corpus of conversational data(e.g., chat

logs). It is worth mentioning that most systems usually use a combination of

these two techniques since some domain-specific rules need to be applied for

a task-oriented chatbot and it is not probably efficient for the system to learn

those domain-specific rules from the corpus. Deep learning methods are one

of the best ways to implement corpus-based chatbots and many architectures,

and many of the state-of-the-art methods for building task-oriented chatbots

are heavily based on deep learning methods.

Corpus-based architecture for task-oriented chatbot design usually falls

into two main categories which are end-to-end and pipelined architectures.

In end-to-end design, all the components of the chatbot, i.e., NLU, dialogue

management, and NLG are learned in an end-to-end way, and some of these

components can be implicitly implemented using deep learning methods such

as encoder-decoder based models. In contrast, in pipelined chatbots, each of

these components is trained separately, and then they are combined in order

to build the final chatbot system.

3.2.1 Rule-based Task-Oriented Chatbots

In rule-based chatbot design, domain-specific rules and pattern matching are

used for both NLU and dialogue management components of the task-oriented

chatbot. The chatbot runs the user query against a set of pre-defined patterns

and extracts the information needed in order to understand what user intends

to say and then tries to respond based on other sets of rules that are task-

specific. It is needless to mention that the complexity of the rules defined for

the chatbot to follow in order to provide an appropriate response given the
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current state of the conversation heavily depends on the complexity of the

task and that is the origin of one of the main problems related to rule-based

chatbots. Given a complex task, it takes a considerable amount of man-hours

to define all the rules and their relationships.

Artificial Intelligence Markup Language (AIML) [112] is one the com-

monly used techniques for the development of rule-based conversational agents.

AIML is an XML-based markup language which tries to helps the task of di-

alogue modeling which follows a stimulus-response approach [74]. AIML con-

sists of special tags which can define how the chatbot can respond based on the

user utterance. Each of the user utterances (stimulus) will be modeled using

the tags in AIML, and the chatbot can respond to those utterances using the

pre-defined responses. Artificial Linguistic Internet Computer Entity (ALICE)

[112] was the first chatbot designed using the AIML language that could pass

the Loebner Prize [75] in, a Turing Test for computer programs, in 2000 and

2001. It is worth mentioning that the learning method of ALICE is based on

active learning approach in which a human, called botmaster, tries to improve

the responses and query understanding of the chatbot and make modifications

to the template and patterns in the AIML code. Another successful chatbot

(open-domain chatbot) developed using AIML is Mitsuku7 developed by Steve

Worswick which could won the Loebner Prize in 2013, 2016, 2017, and 2018

[111][1].

The aforementioned chatbots, ALICE and Mitsuku, are on the list of Leob-

ner Prized chatbots and both of them were developed using the AIML method.

This shows that the AIML method could lead to the creation of a chatbot that

can respond to humans appropriately with consideration of the context of the

conversation and can even able to pass the Turing Test. However, the com-

plexity of the task, thus the complexity of the AIML code, and the amount of

man-hours needed to such a chatbot is not feasible for many people and corpo-

rations and therefore there is a need for automation of the learning process for

conversational agents. The corpus-based methods can help us with this prob-

lem and provide methods and models which can learn how to understand user

7https://www.pandorabots.com/mitsuku/
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queries and respond accordingly by learning from chat logs and conversational

datasets.

3.2.2 Corpus-based Task-Oriented Chatbots

In contrast to rule-based chatbots which are created by hand-crafted domain-

specific rules, the corpus-based chatbots learn to converse with the users by

learning the conversations from a corpus. The corpus can be chat logs of a

call centre which contains the typical conversations between the agents and

the customers (usually FAQs) or from a live conversational interface available

in many websites in which a real agent has a conversation with the customers.

Given the need for a corpus which contains the domain-specific conversations

and the fact that the chatbot will be trained using the corpus dataset, the

quality and relevance of the corpus play an important role in building a robust

and functional task-oriented chatbot. However, in some cases, the access to

such corpus for specific domains is not possible, or such a corpus does not exist.

One of the active research areas in task-oriented dialogue generation systems

is about methods to create domain-specific datasets which can be used for

training of task-oriented chatbots. In Section 3.3 we will explain some of the

most common methods researchers and engineers use to create these datasets.

3.2.3 End-to-End Architectures for Task-Oriented Dia-
logue Generation Systems

End-to-end architectures are one of the most used architecture for research in

the field of conversational AI. The advantage of using end-to-end architecture

is that one does not need to explicitly train different components for language

understanding and dialogue management and then concatenate them. This

makes the task of creating the chatbot easier in a way that one needs to only

define the architecture once and then train the model in an end-to-end way.

The downside of using end-to-end method is that typically one needs more

training data in order to train a reasonably good chatbot. For the sake of

conversational agents, using end-to-end training is the dominant way in open-

domain chatbots, and also many of models proposed to train task-oriented
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chatbots are trained in an end-to-end way.

Many models are proposed to train chatbots in an end-to-end way. All

the sequence learning models (i.e., recurrence-based, convolution-based, and

self-attentional models) can also be used for training end-to-end task-oriented

chatbots. Our main contribution in this study is the comparison of the most

widely used sequence learning architectures for the task of creating end-to-end

task-oriented chatbots and later in Chapter 5. We will discuss how we can

configure and prepare task-oriented conversation data to be used in sequence

learning models. Apart from the sequence learning models, other architectures

that are specifically designed for task-oriented dialogue generation are also

proposed. Network-based end-to-end trainable model [117] is one the most

popular end-to-end architectures used for training task-oriented chatbots. The

architecture of this model is depicted in Figure 3.1.

Figure 3.1: Architecture of network-based end-to-end trainable task-oriented
chatbot [117]

Each of components in Figure 3.1 correspond to one of the main tasks

that the chatbot has to do. The model tries to learn the user intent and also

extract and keep track of different entities in the user utterance and then make

a decision based on the current state of the conversation. It is also able to
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query a database and create natural utterance. The generation network is

similar to NLG in pipelined architecture and the intent network, and belief

tracker serves as the NLU component, and finally, policy network serves as the

dialogue management components in the pipelined architecture. The difference

between this architecture and the pipelined architecture is that this network-

based model is trained end-to-end and the error can back-propagate through

all of the components. This makes the task of training harder since all of these

components are trained all together, and therefore much more data is needed

to train it compared to pipelined architectures.

Another popular method for training chatbots is based on memory net-

works [101]. Memory networks augment the neural networks with task-specific

memories which the model can learn to read and write. Memory networks have

been used in [9] for training task-oriented in which they store dialogue con-

text in the memory module, and then the model uses it to select a system

response (also stored in the memory module) from a set of candidates. A vari-

ation of Key-value memory networks [79] has been used in [28] for the training

task-oriented chatbots which stores the knowledge base in the form of triplets

(which is (subject,relation,object) such as (yoga,time,3pm)) in the key-value

memory network and then the models tries to select the most relevant entity

from the memory and create a relevant response. This approach makes the

interaction with the knowledge base smoother compared to other models.

Another approach for training end-to-end task-oriented dialogue systems

tries to model the task-oriented dialogue generation in a reinforcement learning

approach in which the current state of the conversation is passed to some se-

quence learning network, and this network decides the action which the chatbot

should act upon. End-to-end LSTM based model [121], and the Hybrid Code

Networks [119] can use both supervised and reinforcement learning approaches

for training task-oriented chatbots. Figure 3.2 depicts the architecture of the

Hybrid Code Network model.

In the Hybrid Code Network model architecture, all the information from

the past (or up to some point in the past) is passed to an RNN network. The

RNN network is then trained in order to select the best action given the cur-
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Figure 3.2: Architecture of Hybrid Code Network model [119]

rent state of the conversation. This approach is very similar to reinforcement

learning method in which a policy network is trained to select the best action

(here chatbot action) given the current state (where the state is the current

state of the conversation). This approach makes it possible to train the model

both in supervised and also reinforcement learning ways. The use of reinforce-

ment learning can help the model learn with fewer data points, but usually,

user feedback or a user simulator is needed in order to learn the best policy.

3.2.4 Pipelined Architecture for Task-Oriented Dialogue
Generation Systems

In contrast to end-to-end architectures in which all the components of the

task-oriented chatbot, including NLU, dialogue management, and NLG are

trained all together, and these components are implicit in the model architec-

ture, the pipelined architecture tries to implement each of those components

individually and then stick them back together in order to make a complete

task-oriented chatbot system. The general architecture for a pipelined task-

oriented chatbot is depicted in Figure 3.3.

In the following sections, we will explain how each of these components
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Figure 3.3: Pipelined architecture for task-oriented dialogue generation sys-
tems

contributes to the final task-oriented chatbot and what are the available models

and methods for each of the components.

Natural Language Understanding

NLU component is the component responsible for understanding the user ut-

terances and extract specific information from it. NLU is somewhat similar to

dialogue generations systems in a sense that it has a wide spectrum of imple-

mentations ranging from simple rule-based and pattern matching method to

complex deep neural networks. The rule-based methods mostly rely on regu-

lar expression based methods in which specific patterns are used to parse the

sentence and extract specific information from the sentence.

NLU in task-oriented chatbots is supposed to extract two types of informa-

tion from the sentences which are user intent and name of the entities (slots)

specific to the task as depicted in Figure 3.4. Note that NLU is a general term,

and different type of chatbots and query systems will have different type of

NLUs since there is need to extract more information, such as semantic roles

or sentiment, from the input sentences and some NLU service providers such

as IBM Watson NLU8 do provide this extra information. Most of the task-

oriented chatbots will work fine if the NLU provides the user intent and slot

name because these two pieces of information are essential for the chatbot in

order to take the right action in dialogue management component.

8https://www.ibm.com/watson/services/natural-language-understanding/
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Figure 3.4: Typical NLU system for a task-oriented dialogue generation system

The user intent classification part of the NLU can be implemented using

a broad spectrum of techniques from classical machine learning methods like

SVM (Support Vector Machine) [77] to deep learning methods such as CNNs

[41] and DCNs (Deep Convex Networks) [23][105]. For entity extraction, classi-

cal methods like regular expression, CRF-based (Conditional Random Fields)

methods [61] and also LSTM-based methods such as LSTM-CRF [48] can be

used.

Dialogue Management

Dialogue management is the task of using all the information of the current

state of the conversation in order to find the best action that the chatbot has to

take. This action can be querying an API or a knowledge based (KB), asking

the user more information, or making sure that the user gave you the correct

information. The model used in dialogue management has to be able to first

extract and gather all the necessary information from the user and possibly

other sources and have a reasonable policy to decide what action to be taken.

The methods for dialogue management range from rule-based methods [34]

to deep learning based models [43]. End-to-end LSTM based model [121],

and the Hybrid Code Networks [119] discussed in Section 3.2.3 can also be

used in dialogue management since they can learn a policy based on all the

information of the current state of the conversation. Rasa Core9 [8], which is

9https://www.rasa.com/docs/core/
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one the most widely used open-source dialogue management frameworks, uses

an ensemble of machine learning [121] and rule-based methods for training a

policy network.

Natural Language Generation

NLG is the generation of a natural language sentence given the current state of

the conversation. It can also mean converting the chatbot action into a natural

language sentence. The generation of such a natural language sentence can

be done using template-based methods, N-gram models [21], or deep sequence

generation models such as using CNN [115] and LSTM [116] for NLG.

3.3 Task-Oriented Dialogue Datasets

As mentioned in Section 3.2.2, the quality of the corpus used for training

corpus-based task-oriented chatbots is of great importance since it directly

affects the robustness of the trained chatbot. In case such a high-quality

corpus does not exist for a specific domain, there are multiple ways to create

them. The data generation techniques for task-oriented chatbots fall into main

three categories which are machine-to-machine (M2M), human-to-machine,

and human-to-human methods. In the following section, we will briefly explain

how each of these methods is used to create domain-specific datasets.

3.3.1 Dialogue Action

Dialogue action is one of the main constituents of a task-oriented dialogue

dataset. Dialogue actions convey either the user’s or the system’s (chatbot)

intent in a specific turn and can semantically represent the sentence used in

that specific turn [42]. Typical examples of a dialogue action are INFORM

which means that either the user or the system wants to inform a slot (entity)

value to the other speaker, REQUEST which means a slot value is asked from

the other speaker. Other commonly used dialogue actions in the task-oriented

conversations are GREETING, CONFIRM, REQUEST, OFFER, SELECT,

NEGATE, and DENY [95]. A complete list of dialogue actions can be found
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in the Dialogue State Tracking Challenge book [42]. It is important to note

that dialogue actions are not natural language sentences, but are able to model

the semantic state of a specific turn in a task-oriented conversation.

3.3.2 Methods for Creation of Task-Oriented Dialogue
Datasets

Existing task-oriented dialogue datasets can be categorized into three main

groups based on how they were created, and the three main groups are machine-

to-machine, human-to-machine, and human-to-human methods. In the follow-

ing sections, we will discuss these three data creation methods and provide a

list of available datasets for each of them.

Machine-to-Machine

In machine-to-machine (M2M) technique a simulation is conducted using a

user simulator and a system simulator. The created conversations between

the simulators are then converted to natural language either by either pre-

defined rules [9] or turkers (usually using Amazon Mechanical Turk10) [95] to

create utterances that are natural. The datasets created using the machine-

to-machine technique can be easily adapted to cover a particular domain, and

since the conversation templates are generated by the simulators, the quality

of the which conversation templates can be checked before it is converted to

natural language looking utterances. It is also possible to control the flow of

the conversations since they are created by simulators. However, using this

method for dialogue generation can introduce bias in the dataset in a way that

the distribution of the created conversations is different from conversations in

reality in which real users converse with real agents. This problem can be

alleviated by conditioning the user simulator on user profile attributes which

try to define some properties, such as verbosity, politeness, etc., for the user

simulator to make it sound like more natural and realistic. We will be using

the datasets publicly provided by [95] and therefore we will discuss how these

datasets were created.

10https://www.mturk.com
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In the method proposed by Shah et al. [95], the data generation system is a

pipeline of different components as depicted in Figure 3.5. In task specification

part, a sample database which contains the information for the all the domains

that the conversations are intended to cover will be used to sample entity

values. Each domain has its own specific entities which are also called slots.

For example, the possible slots used in movie domain are movie name, theater,

date, time, and location. and for the restaurant domain the possible slots are

restaurant name, cuisine, price range, date, time, and location. The database

in the task specification part should have possible values for each of these

slots in each domain so that they can be sampled to create scenarios. As an

example, the possible values, called S, for slot date available in the database

could be S = {tomorrow, today, next week,march 2nd, don’t care}.

Figure 3.5: Pipleline used in M2M for outline and paraphrase generation [95]

In scenario generation part, a scenario is created which later will be used

to create a conversation. The scenario consists of a user profile and user goal.

As discussed earlier, the user profile contains some attributes related to the

users which can be used in user simulator in order to make it more realistic.

The user goal is a set of sampled slot value pair for each of the domains that

will be used in the conversation. As illustrated in Figure 3.5, the user goal

can have multiple intents, each of them belonging to a different domain, and

these intents with their sampled slot value pairs in outline generation.

In outline generation part, we will pass a scenario to the outline generation

system in which it will be used in a self-play conversation modeling. In the
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self-play model, a user simulator and a system simulator are used to create an

outline. The outline contains the template of a conversation between the user

and the system and is intended to model a real conversation that happens

in those domains. The user simulator is based on the Agenda-based user

simulator [93] but is conditioned on the user profile, and the system simulator

is simply implemented using finite-state machines [47]. In this phase, each of

the scenarios will be used to create an outline, and later the generated outline

will be passed to paraphrasing phase.

In paraphrasing phase, the generated outlines will be passed to turkers in

a crowd-sourcing platform such as Amazon Mechanical Turk. The turkers will

be instructed to paraphrase the outline sentences into natural language sen-

tences. This process not only helps with creating natural language sentences

but also adds variation to the sentences. The crowd-sourced dataset which is

now paraphrased can is supposed to cover most of the conversation scenarios

that happen in reality. The sim-M (movie domain) and sim-R (restaurant do-

main) datasets11 created in [95] are examples of machine-to-machine dataset

generation.

Human-to-Machine

In the human-to-machine method for data collection, an initial system is cre-

ated so that people can chat with it and create more dialogues. In this ap-

proach, a system is created using either rule-based methods or trained with a

domain-specific corpus and then is deployed to interact with real users and

therefore create more task-oriented dialogue data for that specific domain

[89][11]. The problem with this method is that the creation of the initial

system which is used to interact with the users heavily impacts the quality of

the data. The DSTC2 & 312 [42] datasets are the most widely used datasets

which are created using the human-to-machine method.

11Available at https://github.com/google-research-datasets/simulated-dialogue
12Available at http://camdial.org/ mh521/dstc/
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Human-to-Human

Human-to-human dataset generation is perhaps the most obvious and efficient

way for the creation of task-oriented datasets. In this method, a scenario

for the task-oriented conversation is created in which a user has to complete

specific tasks (such as buying a book and reserving a restaurant table), and

then these scenarios are used in crowd-sourcing platforms such as AMT in

order to create natural language sentences for the scenarios. One of the most

widely used methods for creating human-to-human datasets using AMT is

called WOZ (Wizard of Oz) [56] which is an interactive way to design task-

oriented datasets in which a sample of conversation is given to a turker and the

turker is asked to add one turn to the conversation and then the conversation is

passed to another turker. Using the WOZ technique, one can create a diverse

set of task-oriented datasets which can also have multiple-domains (i.e., a

dataset with movie and restaurant domains). MultiWOZ dataset13 [11] and

the dataset created by Eric and Manning in [28]14 are examples of datasets

created using the human-to-human approach. The Restaurant Game [81] is

one of the methods which user behaviour and thus realistic datasets can be

generated for creating task-oriented chatbots.

13Available at http://dialogue.mi.eng.cam.ac.uk/index.php/corpus/
14Available at https://nlp.stanford.edu/blog/a-new-multi-turn-multi-domain-task-

oriented-dialogue-dataset/
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Chapter 4

Evaluation of Task-Oriented
Dialogue Generation Systems

Evaluation of chatbots refers to the process in which a chatbot agent is tested

against a number of metrics in which its ability in different phases of lan-

guage understanding and relevant response generation are tested. The chat-

bots are usually supposed to act like humans and create an engaging and

context-relevant response, it is challenging and hard to evaluate these sys-

tems. Chatbots can be either evaluated automatically or manually. In the

manual evaluation, the conversation history of a chatbot with real users (or

a user simulator) is passed to evaluators (e.g., Amazon MT workers) and its

quality is evaluated based on domain-specific metrics. In this study, we are

more interested in automatic evaluation metrics, and specifically, we will focus

on evaluation metrics for task-oriented chatbots as manual evaluation is costly

and time consuming.

Regardless of the type of the chatbot (i.e., task-oriented or open-domain)

and its architecture (i.e., end-to-end or pipelined), chatbots have to go through

three phases for response generation. The first phase is understanding user

utterance and extracting the necessary and relevant information from the user

utterance. The second phase is processing all the information from the current

state of the conversation and the information from the user utterance and

choose an appropriate action (e.g., issuing an API call, query a database,

ask the user more information, etc.). The third phase for the chatbot is the

NLG part in which the chatbot creates an appropriate response in the form of
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natural language which is understandable by the user. It is important to note

that the aforementioned three phases are more related to pipelined chatbots in

which for each of these phases there is a trained module and the final chatbot is

created by concatenating these modules (see Section 3.2.4). In the end-to-end

chatbot architecture, these phases are implicitly learned by the model.

The evaluation metrics and methods used for the evaluation of task-oriented

and open-domain chatbots have slight difference due to the fact that their fi-

nal purpose is different. Task-oriented chatbots are supposed to complete a

specific task in as few turns as possible and provide relevant responses while

open-domain chatbots are intended to keep the user engaged and have a long

conversation with the user. The evaluation methods and metrics used in se-

quence modeling tasks such as BLEU [82] which is usually used in machine

translation tasks is also used in chatbot evaluation. The other methods that

are usually in the evaluation of task-oriented chatbots are per-turn accuracy,

per-dialogue accuracy, and entity F1 score. It is important to notice that

the evaluation metrics of task-oriented chatbots do not model user error and

characteristic in the evaluation process. Using a user-profile conditioned user

simulator which is able to simulate a real user with different characteristics

seems a promising approach in order to better evaluate the task-oriented chat-

bots. We create such an evaluation method using the user simulator, NLU, and

NLG modules and evaluate the trained chatbots by measuring metrics such as

the number of turns in the conversation in order to provide a proper evaluation

method which models the user characteristic in the process of evaluation.

The outline of this chapter is as follows. In Section 4.1 we explain with

detail the evaluation metrics that we will later use in our experiments. Later

in Section 4.3 we explain the profile-conditioned user simulator evaluation

method and explain its different components.
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4.1 Evaluation Metrics for Task-oriented Dia-

logue Generation Systems

Evaluation of dialogue generation systems is a hard task [69][14] due to the

fact that the generated dialogues have to be both structurally and semantically

correct and coherent while the latter is a very hard task. For this study, we

use four common metrics used in the evaluation of task-oriented chatbots [27].

Given the fact that end-to-end architectures of chatbots are language genera-

tion models, thus we can use the evaluation metrics used in the evaluation of

language generation models for evaluation of chatbots. BLEU metric is one of

the most popular evaluation methods for such systems and thus we will use it

for the evaluation phase.

As explained in Section 3.1.2, one of the main tasks of task-oriented chat-

bots is to extract the domain-specific entities from the user utterance and

thus it is important to evaluate the chatbot’s ability for this task. Entity F1

score is the evaluation metric that we will use for the evaluation of end-to-end

trained chatbots for this task. The other two methods that we will use for

evaluation of chatbots are per-turn and per-dialogue accuracy which measure

how chatbot can generate response according to the training corpus. In the

following sections, we will dive more into these evaluation methods and also

discuss their drawbacks.

4.1.1 BLEU

We use the BLEU (bilingual evaluation understudy) [82] metric which is com-

monly used in machine translation tasks. BLEU metric can be used to evaluate

dialogue generation models as in [66][92][27]. BLEU metric is a word-overlap

metric which computes the co-occurrence of N-grams in the reference and the

generated response and also applies the brevity penalty which tries to penalize

far too short responses which are usually not desired in task-oriented chatbots.

We compute the BLEU score using all generated responses of our systems.

The formula for calculating BLEU score is shown in Equation (4.1):
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BLEU = min(1,
output length

reference length
) ∗ (

4∏
i=1

precisioni)
1
4 (4.1)

where the first term, min(1, output length
reference length

), is brevity penalty and penalizes

the answers which are far too short. The second term in Equation (4.1),

(
∏4

i=1 precisioni)
1
4 , is the product of precision for all N-grams of size 1 to 4.

BLEU metric was mainly designed for evaluation of machine translation

tasks [125], but it has been used for evaluation almost all the NLP tasks which

are in the form of language generation. Using BLEU score makes sure that

the generated response is identical to the target response in the test dataset,

but the model could generate a response which is entirely different from the

target response though still a valid response. The usage of beam search can

alleviate this problem [122]. In beam search decoding, the model considers

the K most probable tokens and computes the multiplied log probabilities of

tokens for each path and this process is repeated for each path until end of

sentence token is reached and the output sentence (i.e. system response in

case of a task-oriented chatbot) is generated (see 5.3 for more detail).

4.1.2 Per-Turn Accuracy

Per-turn accuracy measures the similarity of the system generated response

versus the target response. Eric and Manning [27] used this metric to evaluate

their systems in which they considered their response to be correct if all tokens

in the system generated response matched the corresponding token in the

target response. This metric is a little bit harsh, and the results may be low

since all the tokens in the generated response have to be exactly in the same

position as in the target response.

As an example, consider the target response ”The reservation for Pom

restaurant at 2 pm is confirmed“ which is a turn in a conversation about

reserving a restaurant. If the chatbot manage to create the exact same response

as the target response then it is deemed to have created the correct response.

Note that even if the chatbot creates the response with missed, additional, or

reordered tokens which may have the same meaning as the target response it
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won’t be deemed as the correct response.

4.1.3 Per-Dialogue Accuracy

We calculate per-dialogue accuracy as used in [27][9]. For this metric, we con-

sider all the system generated responses and compare them to target responses.

A dialogue is considered to be true if all the turns in the system generated

responses match the corresponding turns in the target responses.

Consider a sample target conversation X = {x1, x2, ..., xk} in which xi is

the ith turn in the conversation with total of k turns. Consider the case in

which the chatbot creates the response X ′ = {x′1, x′2, ..., x′k}. The response,

here the whole conversation X ′, is considered is to be correct if every token in

x′i is in the exact same position as in the xi for i=1,...,k. Note that the order

of turns and the number of turns do matter in this metric and that is why it

is considered a very harsh metric.

4.1.4 Entity F1 Score

Datasets used in task-oriented tasks have a set of entities which represent user

preferences. For example, in restaurant domain chatbots common entities

are meal, restaurant name, date, time and the number of people. These are

usually the required entities which are crucial for making reservations, but

there could be optional entities such as location or rating. Each target response

has a set of entities which the system asks or informs the user about. Our

models have to be able to discern these specific entities and inject them into

the generated response. To evaluate our models we could use named-entity

recognition evaluation metrics [50]. F1 score is the most commonly used metric

used for evaluation of named-entity recognition models which is the harmonic

average of precision and recall of the model. We calculate this metric by

micro-averaging over all the system generated responses.

F − Score = 2 ∗ (
Precision ∗ Recall

Precision + Recall
) (4.2)
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4.2 User Simulators For Task-Oriented Chat-

bots

All the aforementioned evaluation methods of task-oriented chatbots try to

assess the chatbot’s ability in learning based on the training corpus, and the

evaluation is done using the test dataset. However, given the functionality of a

task-oriented chatbot in serving users for doing specific tasks, it makes sense to

employ either real users or a user simulator for the evaluation of the chatbot.

Utilizing real users for the task of chatbot evaluation can be costly, and in such

cases, it may be useful to have a user simulator which can emulate the real

users as much as possible. Building such a user simulator is a hard task due

to the fact that the final user simulator has to be able to emulate the real user

in a realistic way which consists of user behaviour and user characteristics. A

user simulator is considered to be the alternative which tries to imitate the

behaviour of chatbot users while conversing with the task-oriented chatbot.

There are generally two methods for creating user simulators for task-

oriented chatbots which are agenda-based simulators and model-based sim-

ulators [31]. In agenda-based user simulator we use hand-crafted rules to

simulate the interaction of a user with the task-oriented chatbot while in the

model-based methods we rely on some corpus to learn the behaviour of the

user. It is also possible to use a mix of both techniques for creating the user

simulator.

Agenda-based user simulator [93] is one of the most widely used methods

for implementation of user simulators as used in Microsoft’s TC-bot [67]. The

advantage of using an agenda-based user simulator is that there is no need for

a dataset to train the user simulator and we can add as many hand-crafted

rules as we need to the simulator to cover every possible case. This is needed

for simulators used in industry chatbots since we need to handle every possible

case (and corner cases) in order to make sure the chatbot works well. On the

other hand, this process can be tedious and time-consuming since these rules

are hand-crafted.

Model-based methods usually rely on learning the used behaviour based
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on some corpus [13]. End-to-end user simulators have recently been proposed

which try to train end-to-end sequence learning models on the task-oriented

corpus and emulate the user [60] [3]. Using end-to-end sequence learning

models with later variable models has also been proposed to add user behaviour

to a user simulator [40]. The advantage of using model-based user simulators

is that we can learn the user behaviour from some training corpus without the

need to create hand-crafted rules as used in agenda-based simulators. On the

other hand, it is likely that some cases (most probably corner cases) are not

available in the corpus and thus the chatbot is not evaluated on how it handles

those situations.

We propose a new user simulator for task-oriented chatbots which has a

pipelined architecture similar to Microsoft’s user simulators used to train rein-

forcement learning agents in [67] but in our architecture we try to incorporate

the user profile by conditioning the agenda-based user simulator on a user

profile and thus try to make it easier to incorporate user behaviour and user

characteristic into the user simulator.

4.3 Profile-Conditioned User Simulator

Our proposed method is based on a pipelined architecture which makes the

task of adding user behaviour and user characteristic to the simulation easier.

The architecture of our model is depicted in Figure 4.1.

There are five components in the profile-conditioned simulator. The user

simulator, NLG, NLU, user goal, and user profile are implemented and trained

independently and then concatenated together in order to create the user sim-

ulator. The mechanism of the proposed user simulator is as follows. The user

simulator used utilizes a user profile and a user goal in order to create an-

notations. An annotation consists of a dialogue action and a list of entities

with their values which are chosen randomly. An example of an annotation

is INFORM(cuisine=Persian,date=tomorrow) which can be translated into

natural language like “I want to go to a Persian restaurant tomorrow”. The

annotation is then passed to our template-based NLG and converted into nat-
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Figure 4.1: Architecture of a pipelined profile-conditioned user simulator

ural language. The generated sentence which conveys what the user simulator

intends to convey to the chatbot is then passed to a trained task-oriented

chatbot, and the response from the chatbot is passed to the NLU. The NLU

component is the only component in our system that needs to be trained in

order to identify the intent and the entities from the chatbot response. Based

on the intent and list of entities extracted from the chatbot response, an an-

notation is created an passed to the user simulator in order to update its

state. This process is repeated until the conversation ends. The end of the

conversation is reached either when the user is satisfied and decides to end

the conversation, or a maximum number of turns is reached. The latter is

implemented in order to avoid infinite loops in the conversation in which a

number of turns are repeated infinitely.

In the following sections, we will detail each of these components individ-

ually and explain the methods used for their implementation.

4.3.1 User Profile

User profile is a simple key-value data structure which stores the behavioural

characteristics of the user. For instance, verbosity, politeness, openness, and
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misspells entities are sample characteristics of a user which depict different

ways in which the user can express its intention to the chatbot and also if he

is likely to make mistakes in uttering the entities. These characteristics are

completely domain-based and are intended to model different behaviours of

real-user as much as possible in order to create a robust chatbot which can

handle different types of users.

Verbosity, politeness, and misspelling are some examples of user charac-

teristics which we can use in the user profile. If a user is verbose, then their

utterance is longer compared to others and also it contains more dialogue ac-

tions and entities. As an example, a verbose user may say “I want to book a

table for two people tomorrow at Fancy Restaurant” while a non-verbose one

will only say ”I want to book a table for two people“. A polite user tends to

say greetings in the beginning of the conversation and also says goodbye when

the conversations ends. The misspelling characteristic of the user makes them

prone to misspell entities when they converse with the chatbot. Note that all

these characteristics can be formulated into a probabilistic structure in which

we can assign probability to each of the user characteristics. The higher the

probability, the more the user shows that specific characteristic.

For example in Figure 4.1, the user profile shows the verbosity of user set

to 0.5. This is a random number chosen from the uniform distribution on

interval [0,1]. It is likely that this user creates long utterances with more than

one dialogue action in the conversation. A verbosity 0 means that the user

only pops one annotations from the agenda and a verbosity of 1 means that

the user always pops the maximum allowed number of annotations from the

agenda.

The user is also likely to misspell some entities when conversing with the

chatbot with a chance of 0.4. When simulating this user, we misspell each

entity with a chance of 0.4 by either adding extra characters or changing some

random characters.
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4.3.2 User Goal

User goal consists of a list of entities with their respective values. A sample

user goal is shown in Figure 4.1. The user goal is a representation of user

preference and can be used in the user simulator in order to either respond to

some of the questions that the system asks the user in order to determine his

preferences (REQUEST dialogue action from the chatbot).

In order to make the user goal more realistic, we add multiple entity types

to it. The entity types that we use are fixed, flexible, multiple-values, and open.

The fixed entities are the ones in which user only wants that specific value for

that entity. The flexible entities means that the user preference is the value

specified for that entity but is OK with other values in case that a specific

value is not available. The multiple-value entity means that the user has a list

of values for that entities which any of them can be used and the open entity

means that the user does not care about the value of that entity.

In Figure 4.1, the user goal has three entities with their respective values.

The time entity is of type open values since its value is ”dont care“. The date

and cuisine entities can be of type fixed or flexible since they only have on value

(i.e. ”tomorrow“ for date and ”persian“ for cuisine). Note that when running

the user simulator, all the entities will be assigned some type randomly and

then some random values will be assigned to them based on their type.

4.3.3 Agenda-based User Simulator

The agenda-based user simulator [93] is one of the most widely used user

simulators. Agenda is a stack-like data structure which stores annotations.

The agenda is a representation of a user goal and its constraints. A sam-

ple of agenda-based user simulator is depicted in Figure 4.1. At the top of

this agenda-based user simulator, the annotation INFORM(date=tomorrow)

is available. If this annotation is popped from the user simulator, then it is

passed to the NLG and then to the chatbot. We can also pop multiple annota-

tions from the agenda based on the verbosity of the user. Also, it is important

to notice that the agenda can be updated based on the answers from the chat-
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bot. This is due to the fact that the agenda of a user simulator should contain

all preferences and constraints that the user has in his mind at the current

turn in the conversation.

When initializing the user simulator, we create an agenda for each intent

that the user wants to cover. We then randomly sample the user goal for each

intent and choose some of the entities with their respective values for each of

them. Note that for those entities that are not available in the agenda we refer

to the user goal in case we need their values during the conversation.

4.3.4 Rasa NLU

Rasa NLU1 [8] is one of the most widely used open-source NLU frameworks. It

provides two main functionalities for training an NLU model for task-oriented

chatbots which are user intent classification and entity extraction. For user

intent classification, one or a combination of different models such as keyword-

based (similar to regex), SVM-based classification with Bag of Words (BOW)

features, MITIE intent classification [58], and Facebook’s StarSpace model for

multilabel classification [124] are used.

For entity extraction, a number of named-entity recognition methods such

as regex-based entity extraction, Facebook’s duckling2, CRF-based entity ex-

traction [76], MITIE entity extractor [58], and Spacy’s Named-entity Recog-

nition (NER) model [46] is available to be used for entity extraction.

4.3.5 NLG

For NLG in our user simulator, we use a template-based NLG method in which

the dialogue action and the list of the entities are converted into natural lan-

guage. For example, an annotation such as INFORM(date=tomorrow,time=2

pm) will be converted into “tomorrow at 2pm”.

We wanted to make it easier for the research community to use our profile-

conditioned user simulator in their research and thus decided to create a frame-

work, called ChatSim, for evaluation of task-oriented chatbots so that both

1https://github.com/RasaHQ
2https://github.com/facebook/duckling
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researchers and practitioners can plug-in their task-oriented chatbot and get

some preliminary evaluation of their chatbot in a few minutes.

We will finalize this chapter by explaining the ChatSim library and its

components and use cases and will move into the experiments and results in

the next chapter.

4.4 ChatSim; A Simulation-based Evaluation

Library for Task-oriented Chatbots

ChatSim3 is a architecture-agnostic evaluation library for task-oriented chat-

bots which uses different user simulators for the evaluation of task-oriented

chatbots. The architecture-agnostic aspect of ChatSim means that it can be

used for the evaluation of both end-to-end and also pipelined task-oriented

chatbots. Its architecture is modular which consists of an NLU, an NLG, a

user simulator, a moderator, and a task-oriented chatbot. The modulatiry of

ChatSim allows the user to use different models for the NLG, NLU, and the

user simulator components.

Since most of the components of the ChatSim are already explained in

Section 4.3, we only briefly dive into its components in the next section. Then

we explain the workflow of ChatSim and enumerate its use cases. Finally, we

mention some future work on ChatSim and the components/features we could

add to it in order to make it more useful for both researchers and practitioners.

4.4.1 ChatSim Components

As mentioned earlier, the components of ChatSim are an NLU, an NLG, a

moderator, a user simulator, and the chatbot which we want to evaluate. The

NLU component can be both a rule-based system or a machine learning based

model. We plan to use Rasa NLU for the initial version of ChatSim, but users

can train and add their custom NLU system to the framework if needed. The

NLG component can also be both template-based (which we use for the initial

version of ChatSim) or a neural sequence-to-sequence model.

3https://github.com/msaffarm/chatsim
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The moderator is a new component we added to ChatSim in order to

moderate the conversation flow and the interaction between the user simulator

and the task-oriented chatbot. It makes sure that the conversation between

the user simulator and the chatbot is sensible (e.g. the conversation does

not turn into a conversation loop) and also controls the maximum number of

turns in a single conversation between the user simulator and the chatbot. It

also collects statistics about the performance of the chatbot with respect to

different evaluation metrics. These metrics could be the average number of

turns, and success rate of the task-oriented chatbot. User defined metrics can

also be added to this component so that the moderator can keep track of them

when running the conversation simulations.

The user simulator is probably the most important component in this

framework which serves as the user chatting with the task-oriented chatbot.

We use the profile-conditioned user simulator as our first simulator in this

library, but like other components it can be replaced with custom simulators.

The chatbot which we want to evaluate can be both an end-to-end or

a pipelined task-oriented chatbot. For end-to-end chatbots, we pass the re-

sponse from the chatbot to the NLU system so that the dialogue action (see

3.3.1) and the entities can be extracted from the response and be passed to

the user simulator. For the pipelined task-oriented chatbots, we bypass the

NLU component since the response from the chatbot already contains the dia-

logue action and entities and thus can be directly passed to the user simulator.

Note that we are using the profile-conditioned user simulator for this case and

since the profile-conditioned user simulator takes dialogue action and entities

as input to its agenda, we need to convert the response from the end-to-end

chatbot into the format that is understandable by the user simulator. In case

a different simulator is used, e.g. an end-to-end user simulator which takes a

sequence as input rather than the dialogue action and entities, different strate-

gies need to be implemented in order to make the whole simulation pipeline

work. We consider this issue as a future work that needs to be addressed and

integrated into the ChatSim.
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4.4.2 ChatSim Workflow and Use Cases

The workflow of the simulation used in ChatSim follows the same workflow

depicted in Figure 4.1. The moderator creates a user simulator with some

user profile and simulates the conversation between the user simulator and the

chatbot for a couple of times. It gets the utterance from the user simulator

and passes it to the NLG module to create a natural language version of that

utterance. That utterance is then given to the chatbot to process and the

response from the chatbot is passed to the NLU in order to break it down

to dialogue action and entities. The dialogue action and entities are passed

to the user simulator so it can update its agenda based on that and create a

response.

This cycle continues until either the chatbot can successfully fulfill the

needs of the user simulator so that the user simulator ends the conversation or a

maximum number of turns is reached and the conversation will be terminated.

Note that the task-oriented chatbots are supposed to satisfy the needs of the

user with as few turns as possible and therefore the intuition behind the latter

criteria to end the conversation is to make sure that the conversation does no

take much time to be handled by the task-oriented chatbot. The moderator

runs this simulation for a couple of times by initializing the user simulator with

different agendas, and the same personality, and collects statistics related to

evaluation metrics.

We plan to make ChatSim a general evaluation platform for task-oriented

chatbots so that users can easily plug in their chatbots into ChatSim and get

evaluation metrics in a few minutes. Users are able to test their chatbots

against different user personalities which makes it more realistic and enables

them to find out about the possible weaknesses of their chatbots when specific

user types are using their chatbot. The use cases of ChatSim would be all the

possible use cases of task-oriented chatbots in different domain such a restau-

rant reservation chatbots, movie booking chatbots, flight booking chatbots,

and so on.
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4.4.3 ChatSim Desiderata

Our plan to further improve ChatSim is to add more models for different

components such as NLU, NLG, and the user simulator and also add user

custom evaluation metrics. For the NLU, we could add the feature that user

can train neural models which can determine multiple intents in the utterance.

For the NLG, we could give the user the ability to train a neural sequence-to-

sequence model. We could also add an end-to-end user simulators to ChatSim

so that users can train their own user simulator using their own corpus. This

feature gives the users the ability to use specific training corpus (e.g., chat

logs) for the user simulator which might be close to their target chatbot users.
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Chapter 5

Experiments and Results

In this chapter we will discuss both the experiments procedures and the results

for each of the contributions (see 1.4) and provide insights about the results.

The outline of this chapter is as follows. In Section 5.1 we will talk about the

datasets used in this study and also explain the data preparation process. In

Section 5.2 we will discuss the training procedure for running the experiments

and the detail of the training and inference process. Later in Section 5.4 we

will discuss the experiments in detail and discuss the results.

5.1 Data Preparation

5.1.1 Datasets

For this study we use three datasets to compare self-attentional models with

other sequence modeling models for the task of task-oriented chatbots. The

first dataset that we use is the Dialogue State Tracking Competition 2 (DSTC2)

dataset1 [42] which is the most widely used dataset for research on task-

oriented chatbots. Table 5.1 shows the statistics about the training, test,

and development sets in the DSTC2 dataset.

Dataset Number of Slots Train Dev Test
Restaurant 8 1618 1117 500

Table 5.1: Statistics of DSTC2 Dataset

We also used two other datasets recently open-sourced by Google Re-

1http://camdial.org/ mh521/dstc/
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search [95] which are M2M-sim-M (dataset in movie domain) and M2M-sim-R

(dataset in restaurant domain)2. M2M stands for Machines Talking to Ma-

chines which refers to the framework with which these two datasets were cre-

ated. In this framework, dialogues are created via dialogue self-play and later

augmented via crowdsourcing (see 3.3.2). Table 5.2 shows both movie and

restaurant datasets information which we will use to train and evaluate the

models.

Dataset Number of Slots Train Dev Test
Restaurant 9 1116 349 775

Movie 5 384 120 264

Table 5.2: Statistics of M2M Dataset

The M2M dataset has more diversity in both language and dialogue flow

compared to the the commonly used DSTC2 dataset which makes it appealing

for the task of creating task-oriented chatbots. This is also the reason that we

decided to use M2M dataset in our experiments to see how well models can

handle a more diversed dataset. Table 5.3 shows the comparison between the

M2M and DSTC2 datasets.

Metric DSTC2 (Train) M2M Restaurant (Train)
Unique uni-grams/total tokens 0.0049 0.0092
Unique bi-grams/total tokens 0.0177 0.0670
Unique transitions/total turns 0.0982 0.2464

Table 5.3: Comparison of M2M and DSTC2 datasets

5.1.2 Data Preprocessing

We use neural encoder-decoder architectures and model the dialogue gener-

ation problem as a sequence-to-sequence learning problem. Consider a sam-

ple dialogue D in the corpus which consists of a number of turns exchanged

between the user and the system. D can be represented as the sequence

{(u1, s1), (u2, s2), ..., (uk, sk)} where k is the number of turns in this dialogue.

At each time step in the conversation, we encode the conversation turns up

2https://github.com/google-research-datasets/simulated-dialogue
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to that time step, which is the context of the dialogue so far, and the system

response after that time step will be used as the target. For example, given

we are processing the conversation at time step i, the the context of the con-

versation so far will be {(u1, s1, u2, s2, ..., ui)} and the model has to learn to

output {(si)} as the target. Check Appendix A to see some samples of both

raw and processed dialogues.

5.2 Training

We used tensor2tensor library3 [108] in our experiments for training and evalu-

ation of sequence modeling methods. We use Adam optimizer [59] and conduct

early stopping [35] to avoid overfitting in our experiments for training each of

the models. We also used grid search for hyperparameter tuning for all of the

trained models. The hidden state size for all models was set to 128 and the

batch size was set to 4096 for all the experiments.

In order to alleviate the response generation problem, as we will discuss in

Section 5.3, we use beam search technique for each beam size α ∈ {1, 2, 4} and

pick the best result. Note that when α = 1, we are using the original greedy

search method for generation task.

5.2.1 Sequence-to-Sequence Models

We used the following sequence-to-sequence models for the task of creat-

ing end-to-end task-oriented chatbots. We trained 7 different sequence-to-

sequence models in our experiments which are:

• LSTM model

• LSTM model with attention mechanism

• Bidirectional LSTM model (Bi-LSTM)

• Bidirectional LSTM model with attention mechanism

• Transformer model

3https://github.com/tensorflow/tensor2tensor
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• Universal Transformer model

• Universal Transformer model with ACT mechanism

5.2.2 Optimizers

We use Adam optimizer [59] for training the models. We set β1 = 0.9, β2 =

0.997, and ε = 10−9 for the Adam optimizer and started with learning rate of

0.2 with noam learning rate decay schema [109]

5.2.3 Hyperparameter Tuning

We used grid-search for tuning parameters of all the models. For LSTM-based

models we tuned number of hidden layers, and dropout. For self-attentional

models we tuned number of layers, number of attention heads, and dropout.

For the Universal Transformer with ACT module we also tuned the ACT type.

5.2.4 Regularization Methods

We used dropout [98] in [0.7,0.9] range for all the trained models. We also used

early stopping [35] while training the models in order to avoid overfitting.

5.3 Inference

We ran the inference phase for each of the models using the best model selected

by early stopping criteria and also used beam search as well as greedy search

for decoding. The reason for using beam search in the inference phase is

explained in the following section.

5.3.1 Beam Search

Most of the sequence-to-sequence learning models used in NLP learn a proba-

bilistic distribution over the data and if they are used in a text generation task

such as machine translation, image caption generation, language modeling and

also dialogue generation, the model tries to do a search over the vocabulary

tokens (e.g., words) based on the learned probability distribution over the
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whole vocabulary set. This procedure can be done using two methods which

are greedy search and beam search. In greedy search method, the model picks

the most probable token at each time step given the tokens decoded so far

while in the beam search method the model tries to conduct a search over the

possible most probable sequence of tokens. For each time step in beam search,

the model selects the K most probable tokens and computes the multiplied log

probabilities of tokens for each path and this process is repeated for each path

until end of sentence token is reached [30].

Beam search has proved to be an essential part in generative NLP task such

as neural machine translation [125]. In the case of dialogue generation systems

beam search could help alleviate the problem of having many possible valid

outputs which do not match with the target but are valid and sensible outputs.

Consider the case in which a task-oriented chatbot, trained for restaurant

reservation task, in response to user utterance “Persian food”, generates the

response “what time and day would you like reservation for?” but the target

defined for the system is “would you like fancy restaurant?”. The response

generated by chatbot is a valid response which asks the user about other

possible entities but does not match with the defined the target. This problem

which is not unique to dialogue generation systems and other generative models

have the same issue can be alleviated through usage of beam search.

5.4 Experiments and Results

The experiments for training end-to-end task-oriented chatbots are availabe

open-source in chatbot-exp repository4 in github. All the instructions to repli-

cate the results can be found there.

5.4.1 Comparison of Models for Training Task-Oriented
Chatbots

The results of running the experiments for the aforementioned models is shown

in Table 5.4. The bold numbers show the best performing model in each of

4https://github.com/msaffarm/chatbot-exp
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the evaluation metrics. As discussed before, for each model we use different

beam sizes (bs) in inference time and report the best one.

Dataset Model BLEU Per-Turn Per-Diag Entity F1

test LSTM(bs=1) 5.75 17.70 0.0 5.63
LSTM+Att.(bs=2) 30.84 18.08 0.15 32.16
Bi-LSTM(bs=2) 30.38 18.04 0.0 24.34
Bi-LSTM+Att.(bs=2) 38.64 26.04 0.62 43.52
Transformer(bs=2) 51.83 39.02 1.7 64.20
UT(bs=2) 48.17 35.76 2.93 61.56
UT+ACT(bs=2) 39.40 30.00 0.15 61.49

dev LSTM 16.13 10.33 0.0 6.54
LSTM+Att. 31.05 18.68 0.31 32.59
Bi-LSTM 30.92 19.07 0.31 25.91
Bi-LSTM+Att. 39.12 27.28 0.96 44.15
Transformer 54.18 41.09 0.62 66.02
UT 47.89 35.57 1.23 61.33
UT+ACT 39.27 29.30 0.31 62.50

Table 5.4: Evaluation of Models on DSTC2 dataset for both test and devel-
opment datasets (bs: The best beam size in inference; UT: Universal Trans-
formers)

Our findings presented in Table 5.4 show that self-attentional models out-

perform common recurrence-based sequence modelling methods in all of the

evaluation metrics by a high margin. This shows that the use of self-attentional

models (both Transformer and Universal Transformer) can improve the results

in training end-to-end task-oriented chatbots and thus they can be both used

separately or used as the building blocks of more complex models for train-

ing end-to-end chatbots as a replacement for recurrence-based blocks such as

LSTM.

The results of the Transformer model outperforms other self-attentional

models, suggesting its effectiveness in this task, but comparing the results of

the Transformer model and the Universal Transformer shows that the Univer-

sal Transformer can generate very good results for this task, close to those of

Transformer, but not exceeding them.

Another observation from the results of Table 5.4 is that using attention

mechanism on top of recurrence-based models such as LSTM and Bi-LSTM

can significantly increase the performance of the models, which highlights the
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power of the attention mechanism used in sequence modelling methods. Later

in Section 5.4.3, we further investigate the effectiveness of the attention mech-

anism used in sequence modelling tasks both in recurrence-based and self-

attentional models.

Moreover, we tested the models on the two aforementioned datasets, which

are M2M movie (M2M-M) and M2M restaurant (M2M-R) datasets. The mo-

tivation for us to run the experiments on these datasets was to check whether

the check the effect of dataset on training end-to-end task-oriented chatbots

and see of self-attentional models supremacy is consistent when used on other

datasets and the results are not corpus-biased. The results of our experiments

are shown in Table 5.5.

Dataset Model BLEU Per-Turn Per-Diag Entity F1

M2M-R LSTM(bs=2) 6.00 2.3 0.0 7.99
(test) LSTM+Att.(bs=1) 7.9 1.84 0.0 16.77

Bi-LSTM(bs=1) 8.15 1.8 0.0 19.61
Bi-LSTM+Att.(bs=1) 8.3 0.97 0.0 24.12
Transformer(bs=1) 10.28 1.76 0.0 36.92
UT(bs=2) 9.15 1.88 0.0 25.44
UT+ACT(bs=2) 8.54 1.43 0.0 23.12

M2M-M LSTM(bs=4) 7.7 3.36 0.0 31.07
(test) LSTM+Att.(bs=2) 8.3 3.27 0.0 31.18

Bi-LSTM(bs=2) 9.6 2.09 0.0 28.09
Bi-LSTM+Att.(bs=2) 10.62 2.54 0.0 32.43
Transformer(bs=1) 11.95 2.36 0.0 39.89
UT(bs=2) 10.87 3.15 0.0 34.15
UT+ACT(bs=2) 10.48 2.46 0.0 32.76

Table 5.5: Evaluation of models on M2M restaurant (M2M-R) and movie
(M2M-M) dataset for test datasets (bs: The best beam size in inference; UT:
Universal Transformers)

As evident in this table, the numbers drop significantly compared to the

DSTC2 dataset numbers. We think this is due to the fact that the diversity

of M2M dataset is much higher than the DSTC2 dataset while the corpus size

(i.e. train set size) is lower. The lack of enough training data, given the more

diversity in M2M dataset in both bi-grams and possible scenarios, leads to

lower numbers in the evaluation metrics. However, the self-attentional model

still outperform other models in the BLEU and Entity-F1 metrics.
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We also examined the results (chat corpus) of the trained models and no-

ticed an interesting fact. In some cases, the model creates a plausible response

but the target response is a different one in the M2M training corpus and

thus the evaluation metrics cannot accurately measure the performance of the

trained chatbot. As we mentioned this problem in the inference section (see

??), one of the possible solutions to this problem is the usage of beam search

but our experiments showed that this is not enough. This motivated us to

create the user-simulation evaluation framework which tries to capture the

alternative valid responses by the chatbot instead of punishing it responding

with utterances which are not the same as the target response but still are

valid ones.

5.4.2 Time Performance Comparison

Table 5.6 shows the time performance of the models on DSTC2 dataset. Note

that in order to get a fair time performance comparison, we trained the models

with the same batch size and on the same GPU. These numbers are for the

best performing model (in terms of evaluation loss and selected using the

early stopping method) for each of the sequence modelling methods. Time to

Convergence (T2C) shows the approximate time that the model was trained

to converge. We also show the loss in the development set for that specific

checkpoint.

Model T2C (sec) Dev Loss
LSTM 1100 0.89

LSTM+Att 1305 0.62
Bi-LSTM 1865 0.60

Bi-LSTM+Att 2120 0.49
Transformer 612 0.31

UT 1939 0.36
UT+ACT 665 0.33

Table 5.6: Comparison of convergence performance of the models on DSTC2
dataset

According to the results in Table 5.6 which shows the time performance of

the models, the Transformer model beats all the models in terms of conver-
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gence time. Comparing the results of the Universal Transformer and Universal

Transformer with adaptive computation time (ACT) technique shows the ef-

fectiveness of the ACT technique in terms of reducing the convergence time,

but it can not beat the other self-attentional models in terms of evaluation

metrics as evident in Table 5.4.

5.4.3 Effect of (Self-)Attention Mechanism

Self-attentional models rely on self-attention mechanism for sequence mod-

elling. Recurrence-based models such as LSTM and Bi-LSTM can also be aug-

mented in order to increase their performance, as evident in Table 5.4 which

shows the increase in the performance of both LSTM and Bi-LSTM when

augmented with attention mechanism. This leads to the question whether we

can increase the performance of recurrence-based models by adding multiple

attention heads, similar to the multi-head self-attention mechanism used in

self-attentional models, and outperform the self-attentional models. In other

words, can we beat the Transformer model by adding more attention heads

to the Bi-LSTM model (while keeping it computationally reasonable to train)

for the task of training and end-to-end task oriented chatbot?

To investigate this question, we ran a number of experiments in which

we added multiple attention heads on top of Bi-LSTM model and also tried

a different number of self-attention heads in self-attentional models in order

to compare their performance for this specific task. Table 5.7 shows the re-

sults of these experiments. Note that the models in Table 5.7 are actually

the best models that we found in the experiments in Table 5.4 and we only

changed one parameter for each of them, i.e. the number of attention heads

in recurrence-based models and the number of self-attentional heads in self-

attentional models, keeping all other parameters unchanged. We also report

the results of models with beam size of 2 in inference time. This is to make sure

that the only parameter that can affect the results is the number of attention

heads (NH in Table 5.7). We increased the number of attention heads in the

Bi-LSTM model up to 64 heads to see its performance change. Note that in-

creasing the number of attention heads makes the training time intractable and
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Dataset Model BLEU Per-Turn Per-Diag Entity F1

test Bi-LSTM+Att.[NH=1] 38.64 26.04 0.62 43.52
Bi-LSTM+Att.[NH=4] 42.23 29.01 0.92 48.06
Bi-LSTM+Att.[NH=8] 42.61 28.18 0.77 49.90
Bi-LSTM+Att.[NH=16] 43.11 30.34 0.61 50.87
Bi-LSTM+Att.[NH=32] 48.62 36.46 1.85 59.8
Bi-LSTM+Att.[NH=64] 47.33 33.17 1.23 56.49
Transformer[NH=1] 45.90 36.64 1.7 57.55
Transformer[NH=4] 51.83 39.02 1.7 64.20
Transformer[NH=8] 51.37 39.45 3.24 62.38
UT[NH=1] 43.02 31.20 1.54 60.10
UT[NH=8] 48.17 35.76 2.93 61.56
UT+ACT[NH=1] 34.98 25.66 0.46 51.32
UT+ACT[NH=8] 36.29 24.97 0.31 55.27

dev Bi-LSTM+Att.[NH=1] 39.12 27.28 0.96 44.15
Bi-LSTM+Att.[NH=4] 40.47 27.64 0.93 48.10
Bi-LSTM+Att. [NH=8] 42.78 28.36 0.31 50.05
Bi-LSTM+Att.[NH=16] 42.88 30.36 0.93 52.09
Bi-LSTM+Att.[NH=32] 49.36 38.24 0.61 61.26
Bi-LSTM+Att.[NH=64] 47.28 33.12 0.93 56.86
Transformer[NH=1] 47.86 38.33 1.85 60.37
Transformer[NH=4] 54.18 41.09 0.62 66.02
Transformer[NH=8] 51.54 39.42 1.54 63.56
UT[NH=1] 43.01 32.12 1.58 60.42
UT[NH=8] 47.89 35.57 1.23 61.33
UT+ACT[NH=1] 35.74 26.46 0.31 52.71
UT+ACT[NH=8] 38.95 27.10 0.31 57.02

Table 5.7: Evaluation of effect of self-attention mechanism using DSTC2
dataset (Att: Attention mechanism; UT: Universal Transformers; ACT: Adap-
tive Computation Time; NH: Number of attention heads

time consuming while the model size would increase significantly as shown in

Table 5.8. Furthermore, by observing the results of the Bi-LSTM+Att model

in Table 5.7 (both test and development set) we can see that Bi-LSTM perfor-

mance is decreases and thus there is no need to increase the attention heads

further.

Our findings in Table 5.7 show that self-attention mechanism can outper-

form recurrence-based models even if the recurrence-based models have mul-

tiple attention heads. If we compare the results of the highlighted records in

Table 5.7, we can see that the Bi-LSTM model with 64 attention heads can-

not beat the best Transformer model with NH=4 (the best model trained on

DSTC2 dataset) and also its results are very close to the Transformer model
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with NH=1. This observation clearly depicts the power of self-attentional

based models and demonstrates that attention mechanism used in self-attentional

models as the backbone for learning, outperforms recurrence-based models

even if they are augmented with multiple attention heads.

Model T2C (sec) Dev Loss
Bi-LSTM+Att.[NH=1] 2120 0.49
Bi-LSTM+Att.[NH=4] 3098 0.47
Bi-LSTM+Att.[NH=8] 3530 0.44
Bi-LSTM+Att.[NH=16] 3856 0.44
Bi-LSTM+Att.[NH=32] 7320 0.36
Bi-LSTM+Att.[NH=64] 9874 0.38

Transformer[NH=1] 375 0.33
Transformer[NH=4] 612 0.31
Transformer[NH=8] 476 0.31

Table 5.8: Comparison of convergence performance of the models

5.4.4 Profile-Conditioned User Simulator

We used a trained end-to-end chatbot on movie domain, and a rule-based

one in the evaluation of profile-conditioned user simulator. Our current NLU

system needs full-annotated training data, i.e. data with annotated dialogue

actions and entities, and thus we had to use the chatbots trained on M2M

dataset. The DSTC2 dataset lacks the dialogue action annotation and thus

could not be used for the purpose of training the NLU system in the profile-

conditioned user simulator. Therefore, we used the M2M-M (M2M dataset

in movie domain) dataset and used it for training the chatbots in our evalu-

ation process. All of our trained models (i.e. the NLU and the chatbot) are

integrated with the ChatSim library.

Note that we train the NLU model using the same dataset with which we

train the chatbot. This is to make sure that the trained NLU module is not

of source a error while the chatbot utterances are passed to it and that it can

fully understand the chatbot utterances and extract the dialogue action and

entities from it.

We ran 100 simulations using different goals and one specific personality
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for the user simulator and measured two metrics for the chatbot which are

the mean number of turns in conversations and the success rate of the chat-

bot. Given the randomness in user profile, the experiments were ran 10 times

and mean and standard deviation of metrics were calculated. The user goals

were chosen randomly from slots in the M2M-M dataset and their respective

values. These slots are time, date, movie, number of tickets (people), and the

theatre name. For each of these slots we selected some random values from the

database and used it in our simulations. Furthermore, the user profile for this

specific experiment is ”verbosity=0.3, politeness=0.9, misspell entities=0.1,

agenda size=0.85 “.

We evaluated two different chatbots trained on the M2M-M dataset. The

details about these chatbots are as follows:

• We selected the best self-attentional model trained on M2M-M dataset.

This model is a Transformer model which its automatic evaluation results

are depicted in Table 5.5. Note that this chatbot is an end-to-end model

which needs a lot of training data and since the M2M-M dataset is a

small dataset we expect the chatbot not to perform very well.

• In order to show that the evaluation system can compare two different

chatbots with different capabilities, we decided to create a rule-based

chatbot and evaluate it using our evaluation framework. The rule-based

chatbot uses domain-specific (movie domain in our case) database and

ontology in order to make the right decision given the current state of

the conversation. Note that the decision making part of this chatbot is

rule-based rather than an end-to-end model. We expect this chatbot to

perform very well given the fact that it’s a rule-based one in which we

can hard-code all the required rules. The rules used for this chatbot are

in shown in Appendix B.

We ran experiments for each of aforementioned chatbots. The maximum

allowed number of turns per conversation was set to 15 for this experiment

and if the number of turns in a conversation exceeded this threshold, then it

would be assumed a failed conversation. The results are depicted in Table 5.9.
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Model Avg. Number of Turns per Conversation Success Rate
Transformer 8.2±0.93 9.7±1.15%
Rule-based 9.5±1.17 100±0.0%

Table 5.9: Chatbot evaluation results using profile-conditioned user simulator

Note that the Transformer chatbot is not able to keep track of the entities

properly. That is the reason that the success rate of the chatbot is low. Most

of the times, the chatbot failed to create a reservation based on the user pref-

erences and even if the chatbot made the reservation it was considered a failed

conversation since the reservation was not compatible with user preference.

This is due to the fact that the chatbot does not have access to a database

and can not connect to it and also it can not keep track of the user preferences

properly. Also, it is not able to handle misspelling in the entity values. These

are the reason why the average number of turns in the Transformer chatbot is

lower than the rule-based one. However, in some cases the chatbot managed

to create a correct reservation based on the user preferences.

We use anecdotal evaluation to show that our evaluation framework can

do the assessment of task-oriented chatbots properly. As a future work, it

would be very insightful to conduct a user study to investigate the correlation

between the user evaluation metrics and the ChatSim’s metrics.

Here’s a sample of a successful conversation for the Transformer chatbot:

User: hi number of people is 1

System: what date and time and movie ?

User: date is tomorrow time is 2 pm

System: what date and time and movie ?

User: movie is avatar and theater is angelika

System: 2 pm is unavailable , choose between 6 pm and 7.15 pm?

User: time is 6 pm

System: purchase confirmed for 1 ticket to avatar at 6 pm at angelika theater

for tomorrow .

User: thank you
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Here’s a sample of a failed conversation for the Transformer chatbot:

User: hi number of people is 1

System: what date and time and movie ?

User: date is saturday time is 6 pm

System: what date and time and movie ?

User: movie is avatar and theater is angelika

System: 6 pm is unavailable , choose between 2 pm and 7.15 pm?

User: time is 2 pm

System: purchase confirmed for 1 ticket to avatar at 6 pm at angelika theater

for saturday .

User: good bye

In this case the user terminates the conversation since the chatbot fails to

make the right reservation.

Here is a sample of a successful conversation between the rule-based chat-

bot and the user simulator:

User: hi number of people is 1 theater is aquarius

System: what date ?

User: date is today

System: what time ?

User: time is 2 pm

System: what is the movie ?

User: movie is avatar

System: Do you confirm movie is avatar date is today for 2 pm at aquarius

for 1 person ?

User: that is right

System: purchase made successfully

User: thank you
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

In this thesis, we investigated the usage of self-attentional models for training

end-to-end task-oriented chatbots and showed that self-attentional models can

be used for this task. We compared self-attentional models against state-of-

the-art recurrence-based sequence modelling methods which are commonly

used for training task-oriented chatbots on three different datasets (DSTC2,

M2M-M, and M2M-R) and evaluated them both using common automatic

evaluation metrics used in task-oriented chatbots and also their training time

performance. Furthermore, we investigated the effectiveness of self-attention

mechanism versus recurrence-based sequence modelling for training end-to-end

task-oriented chatbots. Our findings show that:

• Transformers and Universal-Transformers are indeed effective at gener-

ating appropriate responses in task-oriented chatbot systems. In fact,

their performance is even better than the typically used deep learning

architectures both in evaluation metrics used for the evaluation of task-

oriented chatbots and also their training time performance.

• It is not always recommended to use end-to-end models for training

task-oriented chatbots. As mentioned before, end-to-end models need a

considerable amount of training data in order to learn be able to learn all

the patterns in the data. This is not always possible since in many cases

we do not have enough training data and training end-to-end models
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will not result in chatbots with good functionality. The alternative to

end-to-end models is pipelined and rule-based chatbots which need less

training data and specific rules can be hard-coded in them.

• Self-attention mechanism contributes most to the performance of self-

attentional models (at least for the task of creating end-to-end task-

oriented chatbots). Moreover, recurrence-based models can not beat self-

attentional models even if they are augmented with multiple attention

heads.

Moreover, we introduced the profile-conditioned user simulator as an eval-

uation method for task-oriented chatbots. We open-sourced ChatSim which

is an architecture-agnostic, simulation-based evaluation platform for task-

oriented chatbots and added the profile-conditioned user simulator to it. We

evaluated a trained end-to-end chatbot with the profile-conditioned user sim-

ulator and showed that this method can be used as an evaluation method for

task-oriented chatbots.

6.2 Improving Task-Oriented Dialogue Gener-

ation Systems

In future work, it would be interesting to compare the performance of self-

attentional models (specifically the winning Transformer model) against other

end-to-end architectures such as the Memory Augmented neural networks [28].

The current methods that we used in this thesis do not have explicit memories

to be used as a knowledge base and thus it would be a great future work to

augment self-attentional models with memory and thus increase their capabil-

ities in both keeping track of the entity values. Another possible future work

is to augment the self-attentional models with components which can query

some database and be able to retrieve information from them. This allows

seamless integration of these models with any database on custom domains

and thus can dramatically increase their usability.

Another possible future work is to investigate the reason why self-attention
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mechanism can beat the recurrence-based models even if we add multiple lay-

ers of attention on top of the recurrence-based models. Self-attentional models

can model long sequences very well since they don’t suffer from problem like

the vanishing/exploding gradients. On the other hand, the attention mech-

anism allows the recurrence-based model to capture the information in the

long sequences. It would be interesting to fully understand the functionality

of the attention mechanism and know why it is more useful when used in self-

attentional models compared to its usage as an augmentation on recurrence-

based models.

6.3 Improving Profile-Conditioned User Sim-

ulator

Adding some more granularity levels to entity types can also make the user

simulator more realistic. One idea for increasing the granularity level of entities

is adding optional or required types to the entities. The optional entity is a

type of entity in which its value is not necessary for the conversation to be

finished and does not affect the success rate of the conversation. For example,

phone number of the restaurant can be an optional entity in restaurant booking

chatbots which the user can ask the chatbot but is not essential for the task of

booking a restaurant. On the other hand, required entities are necessary for

task completion and thus needs to have proper values. The date of booking a

restaurant is an example of a required entity for a restaurant booking chatbot.

6.4 Improving the ChatSim Library

For improving the ChatSim library all the desiderata mentioned in Section

4.4.3 are potential future work. Adding a user interface on top of the library

could also improve its capabilities and make it easier for the users to exper-

iment with the library and integrate it with their custom dashboards used

in their own chatbot platforms. Integration of ChatSim with Rasa X1 could

1https://rasa.com/docs/rasa-x/
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also be a possible future work. Rasa X is a powerful tool for developing task-

oriented chatbots with a user-friendly user interface and since Rasa is the

leading chatbot platform used by many chatbot developers.
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Appendix A

Data Preparation Process

In this appendix we present two sample dialogues from the datasets that we

used for training the models and demonstrate the process which we use to

create the training dataset fed into end-to-end models.

A.1 DSTC2 Dataset Sample

Original Dialogue:

User: i’m looking for a restaurant in any area that serves belgian food

System: I’m sorry but there is no restaurant serving belgian food.

User: how about gastro of town please

System: I’m sorry but there is no restaurant serving belgian food.

User: there a restaurant that serves gastropub

System: Could you please repeat that?

User: i’m looking for a restaurant that serves gastropub

System: Ok, a restaurant in any part of town is that right?

User: yes

System: There are # restaurants serving gastropub food in any part of town

. What price range would you like?

User: i don’t care

System: the cow pizza kitchen and bar serves gastropub food.

User: what is the address

System: Sure , the cow pizza kitchen and bar is on Corn Exchange Street.
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User: and the phone number

System: The phone number of the cow pizza kitchen and bar is 01223 308871.

User: thank you good bye

Processed Dialogue:

Input 1: i’m looking for a restaurant in any area that serves belgian food

Target 1: I’m sorry but there is no restaurant serving belgian food.

Input 2: i’m looking for a restaurant in any area that serves belgian food

I’m sorry but there is no restaurant serving belgian food. how about gastro of

town please

Target 2: I’m sorry but there is no restaurant serving belgian food.

Input 3: i’m looking for a restaurant in any area that serves belgian food

I’m sorry but there is no restaurant serving belgian food. how about gastro of

town please I’m sorry but there is no restaurant serving belgian food. there a

restaurant that serves gastropub

Target 3: Could you please repeat that?

Input 4: i’m looking for a restaurant in any area that serves belgian food

I’m sorry but there is no restaurant serving belgian food. how about gastro of

town please I’m sorry but there is no restaurant serving belgian food. there

a restaurant that serves gastropub Could you please repeat that? i’m looking

for a restaurant that serves gastropub

Target 4: Ok, a restaurant in any part of town is that right?

Input 5: i’m looking for a restaurant in any area that serves belgian food

I’m sorry but there is no restaurant serving belgian food. how about gastro of

town please I’m sorry but there is no restaurant serving belgian food. there

a restaurant that serves gastropub Could you please repeat that? i’m looking

for a restaurant that serves gastropub Ok, a restaurant in any part of town is
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that right? yes

Target 5: There are # restaurants serving gastropub food in any part of town

. What price range would you like?

Input 6: i’m looking for a restaurant in any area that serves belgian food

I’m sorry but there is no restaurant serving belgian food. how about gastro of

town please I’m sorry but there is no restaurant serving belgian food. there

a restaurant that serves gastropub Could you please repeat that? i’m looking

for a restaurant that serves gastropub Ok, a restaurant in any part of town is

that right? yes There are # restaurants serving gastropub food in any part of

town . What price range would you like? i don’t care

Target 6: the cow pizza kitchen and bar serves gastropub food

Input 7: i’m looking for a restaurant in any area that serves belgian food

I’m sorry but there is no restaurant serving belgian food. how about gastro of

town please I’m sorry but there is no restaurant serving belgian food. there

a restaurant that serves gastropub Could you please repeat that? i’m looking

for a restaurant that serves gastropub Ok, a restaurant in any part of town is

that right? yes There are # restaurants serving gastropub food in any part of

town . What price range would you like? i don’t care the cow pizza kitchen

and bar serves gastropub food

Target 7: Sure , the cow pizza kitchen and bar is on Corn Exchange Street.

Input 8: i’m looking for a restaurant in any area that serves belgian food

I’m sorry but there is no restaurant serving belgian food. how about gastro of

town please I’m sorry but there is no restaurant serving belgian food. there

a restaurant that serves gastropub Could you please repeat that? i’m looking

for a restaurant that serves gastropub Ok, a restaurant in any part of town is

that right? yes There are # restaurants serving gastropub food in any part of

town . What price range would you like? i don’t care the cow pizza kitchen

and bar serves gastropub food Sure , the cow pizza kitchen and bar is on Corn

Exchange Street. and the phone number
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Target 8: The phone number of the cow pizza kitchen and bar is 01223

308871.

A.2 M2M-sim-M Dataset Sample

Original Dialogue:

User: hi, buy 3 movie tickets for tomorrow.

System: what movie do you want to see and what theater do you want to go

to?

User: i would like to see ae dil hai mushkil at the cinelux plaza theatre.

System: at what time?

User: 8:00 pm.

System: did you say 8:00 pm.

User: yes.

System: your purchase of 3 tickets for the 8:00 pm showing of ae dil hai

mushkil on march 08 th at the cinelux plaza theatre is confirmed.

User: bye.

Processed Dialogue:

Input 1: hi, buy 3 movie tickets for tomorrow.

Target 1: what movie do you want to see and what theater do you want to

go to?

Input 2: hi, buy 3 movie tickets for tomorrow. what movie do you want

to see and what theater do you want to go to? i would like to see ae dil hai

mushkil at the cinelux plaza theatre.

Target 2: at what time?

Input 3: hi, buy 3 movie tickets for tomorrow. what movie do you want
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to see and what theater do you want to go to? i would like to see ae dil hai

mushkil at the cinelux plaza theatre. at what time? 8:00 pm.

Target 3: did you say 8:00 pm.

Input 4: hi, buy 3 movie tickets for tomorrow. what movie do you want

to see and what theater do you want to go to? i would like to see ae dil hai

mushkil at the cinelux plaza theatre. at what time? 8:00 pm. did you say 8:00

pm. yes.

Target 4: your purchase of 3 tickets for the 8:00 pm showing of ae dil hai

mushkil on march 08 th at the cinelux plaza theatre is confirmed.

A.3 M2M-sim-R Dataset Sample

Original Dialogue:

User: hi, i want to make a restaurant reservation.

System: okay, where do you want to go, and how many people will there be?

User: the sushi boat for 6.

System: for what date?

User: this friday.

System: at what time?

User: 7 pm.

System: so you want a reservation for the sushi boat for this friday at 7 pm

for 6 people?.

User: that’s right

System: alright. your reservation is confirmed for 6 people at the sushi boat

friday at 7 pm

User: thanks!

Processed Dialogue:
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Input 1: hi, i want to make a restaurant reservation.

Target 1: okay, where do you want to go, and how many people will there be?

Input 2: hi, i want to make a restaurant reservation. okay, where do you

want to go, and how many people will there be? the sushi boat for 6.

Target 2: for what date?

Input 3: hi, i want to make a restaurant reservation. okay, where do you

want to go, and how many people will there be? the sushi boat for 6. for what

date? this friday.

Target 3: at what time?

Input 4: hi, i want to make a restaurant reservation. okay, where do you

want to go, and how many people will there be? the sushi boat for 6. for what

date? this friday. at what time? 7 pm.

Target 4: so you want a reservation for the sushi boat for this friday at 7 pm

for 6 people?.

Input 5: hi, i want to make a restaurant reservation. okay, where do you

want to go, and how many people will there be? the sushi boat for 6. for what

date? this friday. at what time? 7 pm. so you want a reservation for the sushi

boat for this friday at 7 pm for 6 people?. that’s right

Target 5: alright. your reservation is confirmed for 6 people at the sushi boat

friday at 7 pm
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Appendix B

Rule-based Chatbot

B.1 Rules Used in Rule-based Chatbot

The rule-based chatbot used in Section 5.4.4 has the following rules:

1. Ask the user about the movie domain entities one by one. The entities

are date, time, movie, number of people, and the name of theater.

2. Once all the entities are filled with valid values, send a confirmation to

the user with the registered values and wait for their confirmation.

3. Once the confirmation is done, send a notification of success to the user.

Note that the assumption is that all the values which user says for the entities

are available in the database and if there is a misspelling, the chatbot will

handle it without notifying the user.

99


	Introduction
	Motivation
	Conversational AI and Conversational Commerce
	Applications of Chatbots
	Deep Learning for Dialogue Generation Systems
	Self-attentional Models for Sequence Modeling
	Evaluation of Task-oriented Chatbots

	Problem Formulation
	Thesis Statement
	Thesis Contribution
	Organization of the Dissertation

	Preliminaries for Sequence Modeling with Self-Attentional Models
	Recurrence-based Sequence Modeling
	Recurrent Neural Networks
	LSTM and Bi-Directional LSTM
	Gated Recurrent Unit

	Convolution-based Sequence Modeling
	Attention Mechanism
	Luong and Bahdanau Attention Mechanism
	Self-Attention Mechanism
	Multi-head Attention Mechanism

	Self-Attentional based Sequence Modeling
	Transformer
	Universal Transformer


	Task-Oriented Dialogue Generation Systems
	Taxonomy of Different Task-Oriented Dialogue Generation Systems
	Determining the User Intent
	Identifying the Needed Entities

	Architecture of a Standard Task-Oriented Dialogue Generation System
	Rule-based Task-Oriented Chatbots
	Corpus-based Task-Oriented Chatbots
	End-to-End Architectures for Task-Oriented Dialogue Generation Systems
	Pipelined Architecture for Task-Oriented Dialogue Generation Systems

	Task-Oriented Dialogue Datasets
	Dialogue Action
	Methods for Creation of Task-Oriented Dialogue Datasets


	Evaluation of Task-Oriented Dialogue Generation Systems
	Evaluation Metrics for Task-oriented Dialogue Generation Systems
	BLEU
	Per-Turn Accuracy
	Per-Dialogue Accuracy
	Entity F1 Score

	User Simulators For Task-Oriented Chatbots
	Profile-Conditioned User Simulator
	User Profile
	User Goal
	Agenda-based User Simulator
	Rasa NLU
	NLG

	ChatSim; A Simulation-based Evaluation Library for Task-oriented Chatbots
	ChatSim Components
	ChatSim Workflow and Use Cases
	ChatSim Desiderata


	Experiments and Results
	Data Preparation
	Datasets
	Data Preprocessing

	Training
	Sequence-to-Sequence Models
	Optimizers
	Hyperparameter Tuning
	Regularization Methods

	Inference
	Beam Search

	Experiments and Results
	Comparison of Models for Training Task-Oriented Chatbots
	Time Performance Comparison
	Effect of (Self-)Attention Mechanism
	Profile-Conditioned User Simulator


	Conclusion and Future Work
	Conclusion
	Improving Task-Oriented Dialogue Generation Systems
	Improving Profile-Conditioned User Simulator
	Improving the ChatSim Library

	References
	Appendix Data Preparation Process
	DSTC2 Dataset Sample
	M2M-sim-M Dataset Sample
	M2M-sim-R Dataset Sample

	Appendix Rule-based Chatbot
	Rules Used in Rule-based Chatbot


