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Abstract 

The main focus of this study is to consider strategies for several agents that try to capture a single 

moving target, that is, multi-agent moving-target search. Until now, researchers have treated the 

moving-target search problem as a single-agent search problem by using single-agent search algo­

rithms such as A* and single-agent search heuristic functions such as Manhattan distance. This 

thesis shows how coordinating multiple agents can be achieved with a simple algorithm, CRA, that 

uses the cover heuristic — a new heuristic function designed for multi-agent search problems. CRA 

improves the state-of-the-art on single- and multi-agent moving-target search. We show that CRA 

is optimal in graphs for which one pursuer has a winning strategy and we compare the performance 

of CRA with optimal strategies on small problems, showing that CRA is within 10% of optimal on 

this set of problems. Finally, we show that CRA has a higher success rate and a lower capture time 

than the previous state-of-the-art algorithms. 
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Introduction 

One of the central problems in artificial intelligence (AI) is single-agent search. Often, the objective 

of intelligent agents is to reach a specific state, or a goal, while minimizing the cost. This happens 

in a graph G = (V, E), where V is the set of vertices (states) and E is the set of edges (actions). 

One way to achieve the objective is to consider all possible sequences of actions and decide which 

one, if any, reaches the goal with the minimum cost. 

Very little attention has been given to a closely related problem: moving-target search (also 

known as moving-target pursuit). In this problem the goal is no longer to reach a fixed state but 

rather to reach the state occupied by another agent, the target. The problem then becomes a two-

player game: the optimal solution for the pursuer depends on what the target does and the optimal 

solution for the target depends on what the pursuer does. The game can be turn based: first agent a 

moves to a neighboring vertex or stays in its current vertex, then agent b moves (or stays) to complete 

a round. The game starts at round 0 with agent a at vertex -ua(0) and agent b at vertex Vb(0). At 

each round, t > 0, agent a moves from va(t — 1) to va(t) and then agent b moves from Vb(t - 1) to 

Vb(t). The game ends with a capture if agent a and agent b are in the same vertex: va(tc) = Vf,(tc) 

or va{tc) — Vb(tc — 1)- The round at which this occurs, tc, is the capture time. If after timeout steps 

there is no capture the game ends with a timeout. 

The agents can be both cooperating to reach each other, or perhaps one of them may be evading 

the other, or even one of them may be oblivious of the other. Each case may require a different 

strategy. A strategy for agent a is a function aa : V x V —> V that, for each possible vertex for 

a and b, gives the vertex va(t + 1) = aa(va(t), Vb(t)) that should be chosen next for agent a. An 

optimal strategy for the pursuers is one that minimizes the capture time. A winning strategy is a 

strategy which always captures the target, in the case of the pursuers, or always escapes, in the case 

of the target, regardless of the opponent's strategy. 

Being two-player games, these problems can be solved doing a minimax search in the joint state-

space. Unfortunately the time complexity of this approach grows exponentially with the number 

of agents and therefore is not viable for most practical applications. Actually, determining the 

number of pursuers necessary to capture a target in arbitrary graphs is EXPTIME-complete [14], 

and determining if n pursuers can capture a target takes time S7(j^|2^™+1^). 

Previous approaches address the single-agent moving-target search problem by using single-
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agent search techniques. One such approach is MTS [22], which conducts a real-time search whose 

goal is the current location of the target, usually using Manhattan distance as heuristic function. As 

will be seen later, there are other approaches that are better-suited for the moving-target problem. 

An even more interesting problem is multi-agent moving-target search (also known as cops and 

robbers) in which there are several pursuit agents cooperatively trying to capture one or more target 

agents. This is the main focus of this study. We will assume that the graph is undirected and all 

agents have perfect information. The emphasis is on adversarial multi-agent moving-target search 

with a single target. The solutions presented here are easily extendable to multiple targets but, 

because the performance measures with multiple targets is not as clear-cut as with a single target, 

we will focus only on the single target case. 

This dissertation establishes the thesis that an effective and efficient solution to the multi-agent 

moving-target search problem can be achieved using a heuristic evaluation function based on cover 

sets. A cover set is the set of locations that the pursuers can "cover" in that the target can not 

reach that location without being captured. The size of the cover set gives heuristic information 

about the mobility of the target—the pursuers maximizing the size of the cover set is equivalent to 

them surrounding the target. A simple algorithm that uses the cover heuristic, CRA, is developed. 

CRA avoids the exponential growth of the joint action-space when multiple agents are present by 

maximizing the size of the cover set independently for each pursuer, while introducing coordinated 

cooperation between pursuers. A target algorithm based on the cover heuristic, TGC, is also devel­

oped. This approach improves the state-of-the-art on single- and multi-agent moving-target search 

for both pursuers and targets. 

Also, a non-uniform-speed framework is developed that removes the restrictions on the edge 

costs and the speeds of the agents. In previous work the edge costs are uniform and the agents 

traverse one edge per step. We test CRA and TGC on this framework to analyze how pursuers with 

a speed disadvantage but a numerical advantage fare against a fast target. These studies show that 

previous approaches to moving-target search are ill-suited for these situations. 

Chapter 2 presents theoretical results concerning the capturability of a target in grids. It shows 

that three pursuers are sometimes necessary for general grid-worlds and that two pursuers are suf­

ficient in an empty grid. These results extend previous results on the number of pursuers necessary 

and sufficient for capture on graphs. Some results are also presented about the variable-speed frame­

work and the cover heuristic, for instance that the cover heuristic gives optimal strategies for one 

pursuer chasing one target in graphs where the pursuer has a winning strategy. 

An optimal solver is implemented and used as an absolute measure of performance. The optimal 

strategy can only be calculated for small maps and with a small number of agents due to its time 

complexity, but the results on these problems can be used to compare the performance of different 

approaches. CRA is compared to the optimal strategy showing that, in most cases, the success rate 

of CRA is within a few percentage points of the optimal strategy against an optimal target (for the 
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maps we use). This is in contrast with previous approaches that fare poorly in this situation. TGC 

is also compared to the optimal strategy showing that the cover heuristic also gives rise to an almost 

optimal target in these maps. 

Experiments are run on both commercial-game maps and hand-made maps to test the perfor­

mance of CRA and compare it to previous approaches. It is made evident that CRA does signifi­

cantly better than all other methods in a wide range of situations. Finally, the run time of the different 

approaches is compared to analyze practical considerations of CRA. 

The thesis is organized as follows: Chapter 1 gives an overview of previous related work, to 

give insight into the problem and its complexities. Chapter 2 deals with theoretical properties and 

results to study the limits and properties of the problem. Chapter 3 introduces and explains in 

detail heuristic methods, in particular the cover heuristic, to show how they can effectively solve the 

problem. Finally, Chapter 4 gives an empirical evaluation to ascertain the advantages of the methods 

in a practical context. Parts of this dissertation appear in "A Cover-Based Approach to Multi-Agent 

Moving Target Pursuit" by Isaza, et al. [19]. 
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Chapter 1 

Related Work 

There has been relatively little research on multiple-agent moving-target search. In this chapter we 

explore existing work on single-agent search, single-agent moving-target search and the theoretical 

results for single- and multiple-agent moving-target search problems. We also review state abstrac­

tion methods, as they have been used for single-agent moving-target search and because they will 

be useful when exploring heuristic methods in Chapter 3. These previous methods serve as a basis 

for the work presented here and as a comparison point. 

1.1 Theoretical properties of pursuit on a graph 

Parsons presented the first theoretical results related to the problems of pursuit [29]. He considers 

the problem of capturing an infinite-speed agent using multiple agents. The solution to this problem 

requires sweeping the graph so that the target has no possible hiding vertices. Parsons proves several 

results about the number of pursuers needed for this problem—the search number of the graph — 

when the graph is a tree. Megiddo, et al., show that determining if the search number of an arbitrary 

graph is below a given constant is NP-complete [27]. 

Aigner and Fromme make the first comprehensive study on pursuit, or the game of cops and 

robbers [2]. They characterize the cop-win graphs — for which the pursuers (cops) have a winning 

strategy — and the robber-win graphs. The most relevant contributions are the results for more than 

one pursuer. They prove that, for any value of n, there is a graph that requires at least n pursuers 

to capture an evading target. They also prove that, for planar graphs, 3 cops are always sufficient, 

that is, they always have a winning strategy. To prove this, they first prove that in planar graphs one 

pursuer can control a shortest path between two vertices by standing on the path and moving when 

the target moves so that the target cannot step into that path without being captured. By controlling 

two separate paths from a vertex v\ to a vertex t;2 two pursuers can control a region, as long as 

there is no shorter path outside the region between the vertices. The third pursuer then expands this 

region by taking control of another path, which frees one of the other pursuers to expand the region 

again. This process continues until all the vertices in the graph are controlled by the pursuers and 
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the target is necessarily captured. It is interesting to note that this idea is similar to cover (presented 

in Chapter 3). 

For an example of a planar graph in which three pursuers are necessary and sufficient, consider 

Figure 1.1. With less than 3 pursuers the target has a winning strategy because there are always 3 

edges leading out of any given vertex and all the cycles are of length 5 — the pursuers cannot take 

short cuts. Three pursuers are sufficient because they can surround the target by standing in each of 

the neighboring vertices of the target's vertex [2]. 

Figure 1.1: A planar graph in which 3 pursuers are necessary to capture a target. 

Nisse and Suchan consider the problem of a faster target [28]. They prove that in this situation 

the number of pursuers necessary in a planar graph becomes unbounded. To prove this, they prove 

that the strategy that the target should follow consists of keeping an escape margin around so that 

it can always escape to an adjacent subgrid. They arrive to the result that Cl^logn) pursuers are 

necessary to capture a fast target in an n x n 4-connected grid. 

In arbitrary graphs, the complexity of determining if n pursuers can capture a target is EXPTIME-

complete [31]. Goldstein and Reingold prove this result by transforming an alternating Boolean for­

mula (ABF) problem [14]. One pursuer is the prover while the remaining are split into two groups, 

each representing the variables for each of the two players. Determining if the target can be cap­

tured is equivalent to solving the ABF problem, and it can be done in exponential time (Section 2.1), 

therefore it is EXPTIME-complete. Section 2.1 presents the algorithm to determine if n pursuers 

can capture a target, and to calculate the optimal strategy. 

Bonato, et al. [6], consider the problem of determining the search-time, which is the time the 

pursuers require to capture the target when playing optimally (against an optimal target). The search-

time does not depend on the stating locations — it is an invariant of the graph. Bonato, et al., prove 

that deciding if n pursuers can capture a target within a given time limit is NP-complete. This result 

demonstrates the fact that determining the number of pursuers that should be used in a particular 

problem is not trivial. 
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1.2 Single-Agent Search 

Single-agent search is an important problem in AI and it is a good starting point when analyzing 

moving-target search. Several approaches to moving-target search problems are based on single-

agent search techniques. For this reason, existing solutions to the single-agent search problem are 

introduced before moving on to moving-target search. 

The single-agent search problem takes place on a weighted graph G = {V,E). The set of 

neighbors of a vertex v £ V is denoted N(v) C V. The cost of going from vertex v to vertex 

v' £ N(v) is c(v,v') £ R+ . An agent (the problem solver) occupies vertex va £ V, and the goal is 

vertex vg £ V. The problem consists of finding a shortest (minimum-cost) path from va to vg. 

The most widely-known algorithm for solving this problem is A* [16], which is optimal and 

complete but too slow and memory-consuming in many situations. The A* algorithm does a best-

first search by prioritizing node expansion using a heuristic evaluation function / : V —> K+ . The 

evaluation function for a vertex v £ V is defined as f(v) — g{v) + h(v) where g(v) is the cost of 

the shortest path from the start vertex (va) to v, and h(v) is an estimate of the cost of the shortest 

path from v to vg. Ifh is admissible (i.e., it never overestimates the true shortest-path cost), then A* 

is guaranteed to return a shortest path between va and vg. 

There are many variations of A* best suited for specific problems. Some of them are Iterative-

Deepening A* (IDA*) which reduces the space complexity [24], non-optimal real-time variants 

like Real-Time A* (RTA*) and Learning Real-Time A* (LRTA*) which can interleave planning 

and execution [25], non-optimal variants like Partial-Refinement A* (PRA*) which compromise 

optimality for solution time [33], and many more. The single-agent search problem has been studied 

extensively. 

1.3 Moving-Target Search 

The term moving-target search was coined by Ishida and Korf, who developed an algorithm with 

the same name, MTS [22], which was the first attempt at solving this problem. It is, basically, an 

extension of the single-agent search algorithm Learning Real-Time A* (LRTA*) [25], which, as its 

name implies, is a learning and real-time extension of A* [16]. 

The idea behind LRTA* is to interleave planning and execution so that the search algorithm 

takes a constant time per move. To achieve this, in each step, LRTA* chooses the successor with 

the smallest / value instead of doing a full A* search to the goal. Tt also keeps a table with learned 

heuristic values. Each time a heuristic depression is found — a vertex that has a lower heuristic 

value than every neighbor — LRTA* updates the heuristic values to "fill in" the depression. The 

pseudo-code for this algorithm is shown in Figure 1.2. It takes the current vertex, v, and returns the 

neighbor, v' £ N(y), with the smallest / value. 

While LRTA* learns the heuristic values for all states given a fixed goal, MTS learns heuristic 
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LRTA*(v) : v' G N(v) 
1 for each v' G N(v) do 
2 f(v')*-c{v,v') + h{v') 
3 end 
4 h(v) <- m h V /(•</) 
5 return a rgmi rv / ( ( / ) 

Figure 1.2: LRTA* algorithm 

values for every pair of states. Also, MTS learns when the target moves, not only when the pur­

suer moves. To do this, MTS keeps a table h(v, w) of heuristic values between vertices v and w. 

Figure 1.3 shows the details of the algorithm. 

MTS(v,w) : v' G N(v) 
1 h{v,w) <— max{/i(!),ii)),min„'[/i(v',«)) + c(v,v')}} 
2 return argmin,/ h(v',w) 

MTS-TargetMove(?;, w, w') 
1 h{v, w) <— max {h(v, w), h(v, w') — c(w, w')} 

Figure 1.3: MTS algorithm 

Because MTS learns the heuristic values for the current position of the target, every time the 

target moves it must learn the heuristic values from scratch (for the new target's position). This is 

the most serious drawback of this algorithm. The second version of MTS (MTS2) tries to mitigate 

this problem using "commitment" and "deliberation" [23]. The idea of commitment is to aim for a 

goal vertex while in a heuristic depression, ignoring the target's moves. The degree of commitment, 

C e N , specifies for how long to fix the goal after the border of the depression is reached. By doing 

this, the heuristic values in a depression can be filled-in only once even when the target moves. Once 

outside the depression the normal operation resumes. Deliberation deals with the problem of having 

to fill in a depression by visiting every state in the depression. With deliberation, when the pursuer 

finds itself inside a depression, instead of choosing an action and updating a value, it performs 

an offline search — without executing any moves — until the depression border is reached, it then 

performs the update, and starts following the path to exit the depression. The degree of deliberation, 

D e N , specifies for how long to do the offline search after finding an edge of the depression. 

Figure 1.4 shows the MTS2 algorithm. MTS2(-y, z, C, D) is called when the pursuer is to move 

from vertex v G V and the current goal vertex is z G V. C and D are the degree of commitment 

and the degree of deliberation, respectively. The current commitment c < C keeps track of how 

committed the agent is to the current goal vertex; it starts at 0. MTS2-TargetMove(ii,i(;,u/) is 

called when the target moves from w£Vtow'€ N(w). Here f(v', w) is defined as the heuristic 

value of v' plus the cost of going from v to v'\ f(v\ w) = h(v',w) + c(v, v'). This differs from the 

original version, in which h(v',w) is used alone to test for depression, but using f(v', w) allows the 

algorithm to handle non-uniform costs. When the costs are uniform (c(v,v') = l,Vi>' G N(v)) the 
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MTS2(v, z, C, D) : v' e N{v) 

10 
11 
12 
13 
14 
15 
16 

if there is an offline path then 
v' <— pop the first vertex on the path p 
return v' 

end if 
/min <- m i n ^ ' / ( V , 2:) 

if /i(v, z) > / m i n then c <— max{c —1,0} 
if h(v, z) < /m;n then c ±~ C 
if /i(t>, z) < fmin A £> ^ 0 then 

p <— OfflineSearch(u, z, £)) 
ti' *— pop the first vertex on the path p 
return v' 

end if 
if h(v, z) > fmin V D = 0 then 

h(v, z) <- max {/i(v, z), /min } 
return a rgmhv / (V, z) 

end if 

check for previous offline path 

decrease commitment 
commit to the current goal 

do offline search 

MTS2-TargetMove(u, w, w') 
1 itc = 0V v — w then 
2 h(v, w) <— max{/i(u,tf), /i(i>, «/) c(ty,w')} 

update heuristic estimate 

when there is no commitment 
update heuristic estimate 

3 
4 

z <— w' 
end if 

OfflineSearch(v, w, D) : path 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 

g < - {[u,0,/i(u,iy)]} 

s ^ 0 
/max < 0 
while q is not empty and d / 0 do 

[«, <7, /i] <— pop element with smallest g + h from # 
S f - s U {/u} 
if u = iu then 

return path leading to to 
end if 

J min * ° ° 
for every neighbor n G JV(w) not in s do 

q<-qU{{n,g + c(u, n), h(n, w)}} 
if g + c(u, n) + h(n, w) < fmm then 

/min <- (g + c(u, n)) + h(n, w) 
end if 

end for 
if g + h > / m i n then 

itg + h> /max then 
/max <- g + h 

9b ^ 9 
z <— u 
for x € s do h(x,w) <— /i end for 

end if 
if border found and g — g^> D then 

return path leading to z 
end if 

end if 
end while 
return error, the target is not reachable 

update the goal vertex 

priority queue 
closed set 
maximum f value, the border 

add to the closed set 
target found 

expand neighbors 

keep track of the smallest f 

outside depression 
border found 

keep the g value of the border 
this is the new goal vertex 
update heuristic estimates 

maximum depth reached 

Figure 1.4: The second version of the MTS algorithm 



algorithm reduces to the original version [23, 21 J. In the original version "the unit cost assumption 

is adopted to simplify the definition of speed of the problem solver and the target" [21, Section 3.2]. 

Later we will consider non-uniform speeds so it is necessary to generalize the algorithm. 

MTS2 differs from the initial version of MTS: when it is the pursuer's turn to move MTS2 

checks if the agent is inside a heuristic depression and if so commits to the current target's vertex 

(Line 7). Once outside a depression the commitment decreases gradually (Line 6). Then either an 

offline search or a real-time search are performed (Lines 8 to 16). When it is a target's move we 

perform the update as before only if the pursuer is not committed or the target has been reached. 

The offline search consists of a best-first search starting from the pursuer's vertex, v, until reach­

ing the border of the depression or the target, w. If the border is reached before finding the target 

then the search continues for D steps, to ensure that the depression is actually overcome (Lines 24 

to 26). Each time a border with a larger / value is found, the heuristic estimates of the vertices in 

the closed list are updated (Line 22). 

MTS2 has considerable advantages over MTS. While MTS always converges to the correct 

heuristic values given enough time, MTS2 manages to catch the target faster with a good choice 

of D and C and it converges faster as well [23]. Nonetheless, it still presents problems: the param­

eters D and C have to be tuned to specific targets and, most importantly, it fails to minimize the 

target's mobility. Finally, it does not coordinate multiple pursuers. 

1.4 State-space abstraction 

State-space abstraction is a technique used to speed up search [9,10,17, 33]. It has been used exten­

sively in several domains, from reinforcement learning [5] to stochastic shortest path problems [20]. 

For single-agent search it can be used either by searching in a smaller abstract space [10, 33], or by 

using the abstraction as a heuristic estimate in the non-abstract space [18]. For our purposes, the 

relevant approach is searching in an abstract space, or abstract graph. The basic idea is to generate 

an abstract graph from the original, ground-level, graph. The abstract graph is smaller but keeps the 

overall structure of the ground-level graph. Search is then performed in this abstract graph. 

A common abstraction algorithm is clique abstraction [9, 33]. Unlike other approaches that rely 

on domain knowledge to build the abstraction [7], clique abstraction relies on the local structure of 

the graph to automatically build abstractions. It clusters cliques into abstract states so that all the 

ground states are one action away from every other ground state in the clique. If there are orphaned 

states clique abstraction merges them into an adjacent abstract state. This way the abstract states 

consist of localized groups of ground states. 

Once the abstract graph is generated, any search algorithm can be used on it to generate an 

abstract path. After an abstract path is found it is refined to generate a ground-level path. The 

refinement process consists of building a corridor with all the ground states that abstract to any of 

the abstract states that lie on the abstract path. Then a search algorithm is run inside this corridor to 
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generate the ground-level path. 

An advantage of this method is that the abstract path can be refined by parts as needed. When 

a ground level action is needed the path is refined from the current abstract state to the next so that 

only a few ground actions are generated. This partial refinement process distributes the computation 

time throughout the execution so that the first-move time is reduced. It also saves time when the 

complete path is not needed, for example when the target is moving. 

A viable approach to the moving-target search problem is to follow the shortest path from the 

current vertex to the target's vertex. The problem with this approach is that it is expensive to calculate 

a path on every move. Abstraction can be used to speed-up the path finding to obtain an approach 

that is similar to MTS but does not learn, one such path-finding algorithm is Partial Refinement 

A* (PRA*) [33]. PRA* uses the abstraction and refinement techniques just described to generate 

partial paths in a short time, we are interested in PRA*(1) which refines only one abstract action at a 

time. It can be run on every move without much loss because an abstract path is generated and only 

one abstract action is refined. PRA* automatically chooses the level £m that is half-way between 

the ground level and the level at which the source and destination vertices lie on the same abstract 

state to execute an A* search, with £m < °Sk
2' , where k is the average size of the cliques. The 

maximum size of the abstract graph at level £m is \/\V\ and the complexity of refining the path is 

the number of ground states corresponding to the origin and destination abstract states (2k) times the 

number of levels for which this is done (£m): 0(2k£m) = 0(k logfe | V|). Therefore, the complexity 

per move of PRA* is the complexity of finding a path in the abstrat graph (0(^/|V] log \/|VT)) 

plus the complexity of refining one abstract action (0(klogk \V\)), assuming the branching factor 

is constant. 

Another approach is to use MTS with abstraction. Bulitko and Sturtevant use this idea in Partial 

Refinement MTS (PR MTS) [8], where they run MTS in an abstract space and then refine the abstract 

action. They report improvements in convergence time over the non-abstracted MTS. Nonetheless, 

these algorithms still suffer from the problems present on MTS: they do not minimize the target's 

mobility and they do not coordinate multiple pursuers. 

1.5 Other approaches 

The amount of literature on practical approaches to moving-target search problems is small. The 

most widely known approach is MTS and the related algorithms that aim for the current location of 

the target and treat the problem as a single-agent search problem. This approach has already been 

discussed and its drawbacks outlined. Another approach is the Trailblazer algorithm which is more 

a trailing algorithm than a pursuit algorithm [11]; while it deals with coordination it does not try to 

reduce the target's mobility or in any way surround it. 

The one algorithm that deals with pursuer coordination and with partially observable environ­

ments is Multiple Agents Moving Target Search (MAMTS) [13]. The MAMTS algorithm keeps a 
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belief set for every pursuer so that when the target is not visible they can coordinate the pursuit by 

choosing different regions to search for the target. Once the target is spotted they fall back to the 

"shortest path to target" strategy, which has drawbacks that have been discussed already. 

In summary, all existing approaches try to capture the target by following a short route to its 

current position. This approach is effective against targets that are not aware of the pursuer or 

that have simple strategies but it is ineffective against more involved targets, as will be shown in 

Chapter 4. An effective pursuit algorithm needs to reduce the target's mobility and, if multiple 

pursuers are available, surround the target. A good pursuer will outsmart its target rather than 

outrunning it, as is often seen in nature. 
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Chapter 2 

Theoretical Properties 

Research on moving-target search (also known as pursuit games or cops and robber) has focused on 

uniform-cost graphs with uniform-speed agents (i.e., traveling one edge per move). The uniform-

speed problem is considered first. In this context we present some interesting results for grids. 

Uniform speed moving-target search is an interesting problem but in real-world scenarios agents 

have different speeds and the terrain is not uniform. We therefore define and analyze the more 

realistic non-uniform-speed problem as well. 

2.1 Uniform speed 

For now assume that all agents have the same speed, that is, they traverse one edge per time step. 

The game takes place on an undirected graph G = (V,E). There are n + m agents: n pursuers 

( a i , . . . , an) and m targets (a„+i , . . . , an+m) . Each agent a ,̂ for 1 <i <n + m, has an associated 

vertex at time step t: v(ai, t), starting at V(OJ, 0). 

The game proceeds as follows. First the targets move, each choosing a vertex u € N[v(a,i,t)], 

v(ai,t + l) = u, then the pursuers move. The process repeats, removing targets as they are captured, 

until there are no targets left. A target at is captured at step tc by a pursuer ap ifv(at, tc) = v(ap, tc) 

or v(at,tc) =v(ap,tc - 1). 

The problem of determining if n pursuers can capture a target can be solved using a backtracking 

algorithm as shown in Figure 2.1. The algorithm starts from the capture joint-states and goes back to 

determine the capturability, and the time-to-capture, of all possible joint-states. To do this, it starts 

assigning a value of 0 to all the joint-states in which the target is captured and pushing them into a 

priority queue (Lines 4 to 6). After popping a joint-state from the queue, each of its predecessors is 

added to the queue after its time-to-capture (/i{p,t}(s)) is calculated (Lines 15 to 26). The process 

repeats until the queue is empty. There are | y | n + m joint states and there are at most bn+m joint 

predecessors if b is the number of moves available for each agent. Calculating the targets' value 

takes 0(bm) so the algorithm takes 0(\V\n+mbn+2m) operations in the worst case. Given that each 

joint state has to be visited at least once, the time complexity is Q(\V\n+m). 
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OptimalS trategy () 
1 for all joint-states, s do 
2 hp(s) <— oo 
3 1'H(S) ^~ °° 
4 if the target is captured in s then 
5 push [s, t — target-to-move, h = 0] into priority queue q 
6 end if 
7 end for 
8 while q is not empty do 
9 (s, t, h) <— pop the element with smallest h from g 

10 if t = target-to-move then 
11 ht(s)<-h 
12 else 
13 ^p(s) <— ^ 
14 end if 
15 for every successor s' of s do 
16 if £ = target-to-move then 
17 if ftp(s') = oo then 
18 push (s',pursuer-to-move, fo + 1) into q 
19 end if 
20 else 
21 if ht(s') = oo then 
22 h' <- TargetsValue(s') 
23 push (s', target-to-move, h') into g 
24 end if 
25 end if 
26 end for 
27 end while 

TargetsValue(s) : value 
1 h<r-Q 
2 for every successor s' of s do 
3 if hp(s') = oo then 
4 return oo 
5 end if 
6 if hp(s') > h then 
7 /i <- V( s ' ) 
8 end if 
9 end for 

10 return h 

Figure 2.1: The algorithm to calculate the optimal strategies and to determine the capturability of 
the target for all starting configurations. Complexity: 0{\V\n+mbn+2m) where b is the branching 
factor. 
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This algorithm is similar to Dijkstra's algorithm, the only difference is the fact that it has to 

switch between calculating a value when the pursuers are to move and calculating it when the target 

is to move. While in the first case it is straightforward (line 18), for the second (line 22) it is 

necessary to generate all successors for the target: if there is one destination state, 5, where ht{s) = 

oo, then the value cannot be determined (yet). Otherwise, the value is the largest of the successor 

values (see TargetsValue(s) in Figure 2.1). 

After the backtracking algorithm terminated, joint-states for which ht{s) = oo are the joint-

states in which the target cannot be captured. If there are no such joint-states then the target can 

always be captured and we know that n pursuers are sufficient. Furthermore, we know the strategy: 

pursuers greedily choose the successor with the smallest ht(s) and targets choose the successor with 

the smallest hp(s). 

There are situations where we know, using theoretical results, how many pursuers are necessary 

or sufficient without running the algorithm. For instance, in planar graphs at most three pursuers are 

needed. 

Theorem 2.1.1 ([2, Theorem 6]). Three pursuers are always sufficient to capture a single target in 

any planar graph. 

See Section 1.1 for an outline of this proof. 

Theorem 2.1.1 is relevant for many applications, including video games, in which planar graphs 

are used extensively. There are further results on different types of graphs, which may be of use for 

some particular applications [2, 3, 4, 30]. For now we concentrate on planar graphs. An interesting 

type of planar graph is the 4-connected grid, which is popular because of its simplicity. Being a 

planar graph, from the previous result we know that three pursuers are sufficient, but another matter 

is if they are necessary. We will first consider an empty rectangular grid. 

Theorem 2.1.2. In an empty rectangular grid two pursuers are necessary and sufficient to capture 

a single target [15]. 

Proof. The grid is of size C x R, where C is the number of columns and R is the number of rows. 

There is one target, T, and two pursuers, P and Q. Suppose that at time t the target is at column 

col(T, t) and row row(T, t), similarly with the pursuers. In at most max{C, R} steps the pursuers 

move so that col(P,t0) — col(T,t0) and row(Q,t0) — row(T,t0), with t0 < max{C, R}. From 

then on, P stays in the same column as T and Q stays in the same row as T. That is, at time t: 

1. If the target stands still both pursuers move closer while col(P,t + 1) = col(T, t + 1) and 

row(Q, t + 1) — row(T, t + 1). The distance decreases for both pursuers. 

2. If the target changes row then Q changes row as well so that row(Q, t + 1) = row(T, t + 1), 

and P changes row so that either it is closer to the target or the target is closer to the edge, 

while col(P,t + 1) = col(T,t) = col(T,t + 1). 
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3. If the target changes column then P changes column as well so that col(Q, t + 1) = col(T,t + 

1), and Q changes column so that it is closer to the target or the target is closer to the edge, 

while row(P,t + 1) = row(T,t) = row(T,t + 1). 

By following this strategy the pursuers will eventually corner the target and capture it, showing 

that two pursuers are sufficient. It is easy to see that one pursuer is not sufficient by noting that in 

rectangular grids all vertices have at least two neighbors (assuming C > 1 and R > 1) and there are 

no cycles of lenght less than 4, which proves that two pursuers are necessary. • 

This proof may suggest that two pursuers are sufficient for any type of grid-world but this is 

not the case. The following theorem establishes that three pursuers may still be needed in arbitrary 

grid-worlds. 

Theorem 2.1.3. Two pursuers are not always sufficient in an arbitrary grid-world. 

Proof. This will be proved by constructing a grid-world in which, for some initial configuration, two 

pursuers cannot capture a target. The graph in Figure 1.1 may be the simplest planar graph in which 

two pursuers are not sufficient [2]. That graph can be transformed into a grid-world as in Figure 2.2. 

Each of the 20 vertices of the graph in Figure 1.1 corresponds to a numbered node in the grid-world 

in Figure 2.2. Each numbered node has three "adjacent" numbered nodes, always 24 vertices away 

with no bifurcations in between. Assume that we place each of the agents in a different numbered 

node. The target can move to any of the three "adjacent" nodes in the time it takes the pursuers to 

reach the node in which the target was standing. Because there are always three "adjacent" nodes 

and there are no cycles of length less than 5 x 24, the target can always place itself in a node without 

meeting a pursuer so that the situation remains the same.1 • 

The OptimalStrategy algorithm was executed on this map (Figure 2.2), producing the expected 

result. But notice that there are some positions in which the target cannot escape with only two 

agents, like when the target is in the middle of a corridor surrounded by the pursuers. More specifi­

cally we have the following result: 

Proposition 2.1.1. The target can escape in the grid-world in Figure 2.2 if and only if it can get to 

a node n before any pursuer can reach n. 

Proof The OptimalStrategy algorithm was run on the map and the proposition was verified for all 

joint states. • 

These results are useful for determining how many pursuers to use in particular situations. They 

are also a good starting point when determining which strategy to use: if there are enough pursuers 

in a given graph then they can use a conservative strategy that minimizes the worst-case capture 

1 For the more general proof that, for any n, there is a graph in which n pursuers are necessary, see Theorem 3 of Aigner 
andFromme, 1984 [2]. 
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Figure 2.2: A grid-world in which three pursuers are necessary. 

time. If, on the other hand, we know beforehand that there is no winning strategy for the pursuers 

they might as well hope that the target will make mistakes and use a risky strategy that just rushes 

towards the target. 

2.2 Non-uniform speed 

Uniform-speed problems, while theoretically interesting, are not realistic. Here a model is intro­

duced for the moving-target search game with non-uniform-speed agents on non-uniform graphs, 

which is a generalization of the simpler model presented in the previous section. 

The game takes place in an undirected weighted graph G — (V, E) with edge costs c : V x V —> 

R+ , where c(u, v) is the minimum cost of going from vertex u to vertex v. There are n + m agents: 

n pursuers (a\,..., an) and m targets (an+i, • • •,an+m). Each agent a%, for 1 < i < n + m, has 

speed Si > 0, which remains constant. Each agent has a number of properties that change each time 

they execute an action: two vertices ut and vt, and a time ti, to mean that the agent reaches vertex Vi 

at time U, after leaving vertex Ui. Initially, agents are at the starting vertices m — v^ = Vi0 at time 

« i = 0 . 

The game proceeds as follows. Agents with the lowest value of ti are chosen to move next, ties 

are broken by sorting the agents so that agent a% goes before agent a,j when i < j , and targets always 

go before pursuers. Each agent a, either (1) chooses a neighbor w of u,, increments its time by the 
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time cost, tt *— U + c{v*,l"> , and sets u% *— t>,; and w, <— w, or (2) chooses to stand still, sets its time 

i-i to the minimum time of the agents of the opposing side or increments it by 5, a parameter, and 

sets Ui <— V{. The process repeats, removing targets as they are captured, until there are no targets 

left or there is a timeout. 

A target at is captured by a pursuer ap when: 

1. The target traverses an edge {ut,vt) while the pursuer traverses the same edge in the opposite 

direction: vt = up, ut = vp, tt >tp~ c(up,vp)/sp and tp >tt — c(utlvt)/st 

2. The target traverses an edge while the pursuer overtakes it: ut = up,vt = vp,tt—c(ut,vt)/st < 

tp - c(up, vp)/sp and tt > tp 

3. The pursuer traverses an edge while the target overtakes it: ut — up, Vt — vp, tp—c(up, vp)/sp < 

tt -c(ut,vt)/st and tp > tt 

4. The target reaches a vertex in which the pursuer is standing: vt = uv = vp and tt < tp 

5. The pursuer reaches the vertex in which the target is standing: ut—vt= vp and tt > tp 

6. The target reaches a vertex at the same time as the pursuer: vt = vp and tt — tp 

Notice that agents will be unable to change their mind after executing an action before reaching 

the destination vertex. If the action takes long to execute, either because the cost of the action is 

high or because the speed of the agent is low, the agent will be unable to take action for a long time. 

In other words the agent commits to the action for as long as it takes. This may cause problems 

when there are other agents that can quickly go between vertices because the slow agent will have 

less chances of moving and has to carefully decide before committing. One way of avoiding this is 

by having similar costs in all actions and having similar speeds for all agents. 

A point that also needs some attention is deciding who moves first. Because of the asymmetry 

of pursuit games, the target has to move first. To see why this is the case suppose that a pursuer 

and the target start in adjacent vertices. If the target were to move second then the pursuer would 

move to capture while the target would not get a chance to move, which is unfair. If, on the other 

hand, the target moves first then it always gets a chance to move on the round it is captured. In other 

words, having the target move first ensures that it always gets the chance to move before the capture 

condition is evaluated. 

That is the turn-based version. In the simultaneous move case there is no need to choose a 

player to move first. Simultaneous games are defined as games in which both players have to move 

without knowledge of the opponent's move. In most games this is achieved by making the players 

choose the moves simultaneously, hence the name. In the game just described the moves can not be 

simultaneous because the game is asynchronous — the move time depends on how long each agent 

takes to go from Ui to Vi. Therefore, to make the game "simultaneous", we have to hide information 
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about the last move. To do this we only reveal an agent's position when it reaches a vertex. In other 

words, the agent is hidden while traversing edges. 

We can take an intermediate stance between turn-based and simultaneous games in which infor­

mation is not given immediately but is given earlier than in the simultaneous case just described. 

For example we can define a fixed time interval in which to divulge information. In this case agents 

could pay for information by standing still for the fixed interval and getting the information about 

opponents' moves before deciding on a move themselves. The study of this intermediate kind of 

games if left as a subject for future research. 

For now lets consider the turn-based version. It would be desirable to extend the uniform-speed 

results to this domain. The following theorems show that extending the results is not straight­

forward. 

Theorem 2.2.1. The fact that n pursuers of speed s can capture a target of the same speed in a 

graph G does not imply that the same n pursuers in the same graph but with speed s — e can capture 

the target, for an arbitrarily small value oft. 

Proof. Consider the map in Figure 2.3, with a target in the lower left corner and a pursuer in the 

lower right corner. If the pursuer and target have the same speed then the target will not be able to 

get past the middle cell (capture condition 6). If, on the other hand, the speed of the target is slightly 

larger it will get into the corridor leading to the cycle and thus will escape capture. • 

Figure 2.3: A grid map in which a target can escape from a pursuer. 

Theorem 2.2.2 ([28, Theorem 2]). The number of pursuers necessary to capture a faster target in 

a planar graph is unbounded. 

Theorems 2.2.1 and 2.2.2 are show-stoppers. The only bound available is the one by Nisse and 

Suchan which says that at least ./log n pursuers are necessary in an empty n x n grid [28]. In the 
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extreme case where the target has infinite speed, graph-sweeping methods must be used [29, 27]. To 

sweep the graph, the pursuers move through the graph blocking out regions so that the target can not 

get to those regions without meeting a pursuer. 

The number of pursuers necessary in these cases will not be considered further. Instead, the 

variable speed framework will be used to test the performance of the algorithms and experimental 

results will be given. These results support the fact that a small number of pursuers will not be 

able to capture the target in every situation. As the speed of the pursuers decreases, the number of 

pursuers necessary increases super-linearly. The number of extra pursuers necessary depends on the 

graph, this will be further explored in Section 4.2. 
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Chapter 3 

Heuristic Methods 

Heuristic methods are used when a complete solution to a problem is not feasible; they give guidance 

to the problem solver so that it follows a path that is likely to lead toward the solution. In search 

problems, a heuristic function can be used to find near-optimal solutions by doing a best-first search 

or to speed up the search time when finding an optimal solution with, for example, A* [16]. A 

heuristic function gives an estimate of the optimal solution cost. 

In one extreme, a perfect heuristic function gives the exact solution cost for every state. In 

the other extreme, the totally uninformed heuristic gives no guidance. There is normally a trade­

off between the time required to calculate a heuristic and its quality; heuristic functions normally 

simplify the problem so that they are fast to calculate, at the cost of quality. It would be desirable to 

have a heuristic function that gives almost optimal estimates with as little computation as possible. 

One of the most common heuristic functions used in single-agent search is geometric distance 

(e.g., Manhattan or Euclidean distance). A first approach to the moving-agent problems could con­

sist of using geometric distance as the heuristic estimate. It may be surprising that doing this can 

lead to poor solution quality, which is not expected given the success of the geometric distance 

heuristic in common single-agent search problems. This is the major drawback of MTS and related 

algorithms. 

In this chapter we explore this counter-intuitive behavior and present a more appropriate so­

lution: cover. Cover performs exceptionally well in a wide variety of situations, although being 

considerably more expensive to calculate than geometric distance. An algorithm that builds on the 

strengths of the cover heuristic is presented, after the concept of cover has been introduced. 

3.1 The geometric distance heuristic 

Geometric distance is a good way to approximate the solution to some single-agent search problems, 

especially those on planar graphs. It has been used extensively in various domains with good re­

sults [16, 26]. The geometric distance heuristic has the advantage of being fast to calculate and being 

admissible. Admissible heuristic functions never overestimate the solution cost, which is required 
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Figure 3.1: A map in which a geometric distance heuristic does a bad job of capturing a target. 

when using A* to get an optimal solution the first time a goal state is expanded. 

In four-connected grids Euclidean distance may not be as good as Manhattan distance, which 

gives the actual solution costs when there are no obstacles. Manhattan distance is defined as 

d4((Xl,yi),(x2,y2)) = \X2 -Xi\ + I J/2 -Vl\, (3.1) 

it is the distance it would take you to go from one point to another inside a city in which the streets 

form a grid (therefore the name). This heuristic gives an exact solution cost in empty grids, and a 

reasonable solution cost for grid-worlds in which the obstacle density is low. Similarly, in eight-

connected grids the octile distance, 

4 {(xi,yi), (x2,2/2)) = [V2 - l j min{|a;2 - x i | , \y2 - y i | } + max{|x2 - £ i | , \y2 — 2/ij>, (3.2) 

gives actual costs when there are no obstacles. 

It is tempting to use a geometric distance heuristic for the moving-agent search problem. After 

all, the pursuers want to get as close as possible to the target, that is, to minimize the distance. The 

problem with this approach is that the mobility of the target is not minimized; the pursuer will, 

most likely, simply chase the target without being able to corner it. This problem is most obvious 

when there are multiple pursuers as they will cluster and follow the target as one, instead of using 

their advantage by surrounding the target. Moreover, this is assuming that the geometric distance 

heuristic is approximately accurate; if there are many obstacles the behavior only gets worse. 

Consider, for example, the round-table map in Figure 3.1 with two pursuers and one target. If 

the pursuers start close together and use a geometric distance heuristic they will run around taking 

the shortest route, which will likely be the same for both. This is clearly a bad strategy — a better 

strategy is to split up and go in opposite directions, even if this means that one pursuer has to take 

the long route. 
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Figure 3.2: The set of points to which both agents can get to at the same time defines a line that 
separates the pursuer's territory (gray) from the target's territory (white). 

3.2 The cover heuristic 

To motivate the cover heuristic, consider one target and one pursuer in an empty Euclidean plane. 

The agents have the same speed, s, the pursuer is at position (xp, yp) and the target is at position 

{xt,Vt) so that the Euclidean distance between them is 

d \f(xt -xp)
2 + (yt -ypf (3.3) 

In an attempt to find a strategy for the pursuers we consider all the points, L, which the pursuer and 

the target reach at the same time, where time is the distance divided by the speed: 

L = <(x,y) 
y/(x - xp)

2 + (y- yp)
2 __ y/(x - xt)

2 + (y - yt)
2 

= {(x,y)\(x- Xp)2 + (y- yp)
2 = (x - xt)

2 + (y - yt)
2} 

= {(x, y) | (x'p - x2) + (y2 - y2) - 2x(xp - xt) - 2y(yp - yt) = 0} 

Because the speeds are the same, the set is the perpendicular bisector of the line segment joining 

the agents, as shown in Figure 3.2. The strategy is straightforward: if the target's trajectory is going 

to intersect L the pursuer has to aim for the intersection point, I. By definition of L, the pursuer 

will catch the target at exactly / (unless the target steers away). If the target's trajectory does not 

intersect L in the future then the pursuer has to go in the same direction as the target so that the 

distance between them stays the same. The moment the target changes direction the pursuer updates 

its direction too to follow the above strategy. From this, the target's strategy is also clear: keep the 

distance between them constant by running away. 

If we add another pursuer then there are two lines, L\ and L^, one for each pursuer. The strategy 

for the target is to choose a direction so that its trajectory does not intersect either L\ or L?- With 
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only two lines this is still possible, so the target can still escape (see Theorem 3.2.1). If there are 

three pursuers then the pursuers can effectively surround the target so that, no matter what direction 

the target chooses, its trajectory will intersect a line. 

Theorem 3.2.1. On the entire Euclidean plane where the agents can move in any direction, there is 

no starting configuration (excluding starting configurations in which the target is captured) in which 

less than three pursuers can capture a target of the same speed. 

Proof. Each pursuer contributes a line to enclose the target and there is no closed polygon with less 

than three sides. Therefore, three pursuers are needed to surround the target. • 

Theorem 3.2.2. On the entire Euclidean plane, for any number of pursuers, n, there is always a 

starting configuration in which the target can escape. 

Proof. If the n pursuers are positioned so that their lines do not surround the target, the target can 

choose a trajectory in which the pursuers will not be able to capture the target. • 

This gives an insight into the capture condition and the strategy for both target and pursuers. The 

lines separate the territory "controlled" by the pursuers from the territory of the target; see Figure 3.2. 

We will call the pursuer's territory the cover set, C, which is the set of all states that the pursuers can 

reach earlier than or at the same time as the target. The strategies are simple: the pursuers select the 

joint actions leading to the states that maximize \C\ while the target tries to minimize \C\. 

One last theorem deals with a finite Euclidean plane. 

Theorem 3.2.3. On a finite convex subset of the Euclidean plane one pursuer can always capture 

one target of the same speed. 

Proof. By choosing the direction that minimizes the distance to the target, the pursuer can reduce 

the distance to the target when the target gets to the boundary of the region. Eventually the distance 

will become zero and the target will be captured. • 

3.2.1 Non-uniform speed 

The idea can be extended to the case where the agents have non-uniform speeds. We need to find 

the set of points that the pursuers can reach earlier than the targets. For each pair of pursuer p and 

target t, we have 

Cpt = ( (x , y) | x / ( * » - * ) a + ( t t . - »> a < v f o - * ) 2 + ( * - » ) ' 1 (3.4, 
y SP

 st j 

where the position of the pursuer (resp. target) is (xp, yp) (resp. (xt, yt)) and its speed is sp (resp. 

st). The boundary of Cpt is defined by an Apolloninan circle, but we will develop the details anyway. 

To find the boundary of Cpt we substitute the inequality for an equality and simplify the expression: 

s2[(xp - xf + (j/p - y)2} = s2
p[{xt - x)2 + (yt - y)2] 
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Expanding the squares and rearranging we get 

s2(x2
p - 2xpx + x2 + y2 - 2ypy + y2) ~ s2

p{x2
t ~ 2xtx + x2 + y2 - 2yty + y2) = 0. 

Now we separate the terms involving x and y: 

{s2 - s2
p)x

2 + (sf - s2
p)y

2 - 2(s2xp ~ s2
pxt)x - 2(s2yp - s2

pyt)y + 

sl{xl + yl)-sl(v
2
t+xl) = 0 

This is the equation of a conic section. If the speeds are different we can rearrange and complete the 

squares: 

s2
txp - s\xt \ f s2yp - apt \ s2(x2

p + y2) - s2
p{yf + xf) 

+ sl ) \ s1-sl 
which is the equation of a circle with center 

, x _ i stxP s
P

xt stVP
 s

PVt • 
\cx,cy) — ( „2 „2 ' „2 „2 I K ' 

st sp 

and radius 

r = J"-*!* \I(XP ~ Xt)2 + ^P ~ Vt^ = \32
Plt

32\d- (16) 

If sp < st, the cover set (Cpt) is all points inside the circle, if sp > st, Cpt is all the points outside 

the circle, if sp — st, Cpt is limited by the perpendicular bisector of the line segment joining the 

agents, as shown before. When there are several pursuers and one target, the cover set is the union 

of the cover set for every pursuer: Ct = IL Cpt. This is because as long as a point is covered by one 

pursuer the target cannot reach it. When there are several targets the cover set is the intersection of 

the cover sets for each target: C = |~|t (M Cpt). This is because as long as there is a target that can 

safely reach a point it is not covered. 

As an illustration consider the case in which st = 1, sp = 0.5, (xt,yt) = (0,0) and (xp,yp) = 

(1,0). The center of C is (c^Cj,) = ( j ^ b s ^ ) ~ (1-333,0) and the radius is r = |0 °^5_^ w 0.666. 

This is shown in Figure 3.3. 

Unlike the case when sp = st, when the speeds are different the cover-maximizing strategy may 

not be the best. When there is only one pursuer that is slower than the target, \C\ decreases as they 

get closer; as d —* 0, r —> 0. Even then, \C\ is a good heuristic: it minimizes the target's mobility by 

reducing the number of locations that the target can reach safely. Also, it automatically coordinates 

multiple pursuers because the cover set grows when the pursuers are separated; this leads to the 

pursuers spreading out and surrounding the target. 

24 



Target 
X 

I'LIIMILM" 

Figure 3.3: The cover set (gray) when the pursuer is slower than the target. 

3.2.2 Graphs 

We can apply the same ideas to graphs. The pursuer is at vertex vp G V and the target is at vt € V. 

The pursuer can reach v in time t(vp, v) = c(vp, v)/sp, where c{v\,V2) is the cost of the shortest 

path between v\ and V2, similarly for the target. The set C consists of all vertices v for which 

t(vp, v) < t(vt, v), given that the path from vt to v does not include vertices in C and the path from 

vp to v does not include vertices in V \ C. 

To build C it is necessary to start from the vertices that are nearby and do a breadth-first expansion 

so that the target paths do not intersect C. Both the cover set and its complement, the target-cover 

set, are calculated at the same time. Vertices can be marked as belonging to the cover set, marked as 

belonging to the target-cover set, or unmarked. We start with all vertices unmarked and then mark 

all the vertices currently occupied by an agent. Then we proceed until there are no more unmarked 

reachable vertices (see Figure 3.4). It takes time linear in (\E\ + \V\) log \V\ to calculate the cover 

set, which is the main disadvantage of using it as a heuristic, but this can be mitigated by using state 

abstraction. 

3.2.3 Advantages and disadvantages 

To see why cover gives a better solution than geometric distance, lets consider the round-table map 

in Figure 3.1. As explained before, a geometric distance heuristic may lead two pursuers in the same 

direction, making them trail the target indefinitely. On the other hand, if each pursuer maximizes \C\ 

independently, they will effectively separate and surround the target. This is because, if two pursuers 

stand in the same vertex, their cover is the same as if there were only one pursuer, but if they instead 

separate then they can increase the size of the cover set by covering separate regions. The fact 

that the cover set can be maximized independently is important because we can avoid exploring the 

joint-action space of all pursuers, which grows exponentially with the number of pursuers. 
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CalculateCoverQ : C 
1 < ? < - 0 
2 for each agent a do 
3 add [vertex v(a), speed s(a), type T(o) £ {target, pursuer}, t = 0] to q 

(pop pursuers first if there is a tie) 
4 end for 
5 while q is not empty do 
6 pop the element [v, s, T, t] with smallest t from g 
7 if v is marked then continue 
8 if T = pursuer them 
9 mark v as covered 

10 else 
11 mark v as target-covered 
12 end if 
13 for each neighbour v' of v, connected with an edge of cost c do 
14 if v' is not marked then 
15 add [v1, s, T, t + c/s] to q 
16 end if 
17 end for 
18 end while 

Figure 3.4: Cover set calculation algorithm. 

In many situations, the cover heuristic gives a good estimate of the optimal solution (as will be 

shown in Section 4.1), but there are particular situations in which it is misleading, as can be expected 

with heuristic methods. One such situation is when a pursuer is slower than the target and the target 

and pursuer are close to each other. In this case the cover heuristic will tell the pursuer to stand back 

and "cover" some region instead of rushing in for the target which may be a better strategy against 

some kinds of targets. The cover heuristic is conservative in the sense that it will not lead the pursuer 

near the target unless there is a high chance of the target being captured. While this may be a good 

strategy against optimal or near-optimal targets, there are better strategies when the target is not so 

smart. We will deal with this problem in Section 3.3. 

Another situation in which the cover heuristic may not give good results is when one pursuer 

is inside the area that another pursuer is already covering (see Figure 3.5). In this case all possi­

ble actions that the pursuer can take have the same value and therefore the pursuer has to make a 

uninformed decision. This leads to one pursuer using an effective strategy while the other moves 

randomly or stands still, which is definitely a bad idea. Fortunately, a simple tie-braking mechanism 

eliminates this problem, as will be shown in the next section. 

Even after addressing these two problems, there are specific situations when the cover heuristic 

has non-global minima. Take for example the four-connected grid depicted in Figure 3.6: the target 

cannot move without being captured and the pursuers cannot move without giving the target a chance 

to move. By following the cover heuristic the pursuers will stay like that forever, even though they 

can capture the target in a few moves if they break the dead-lock. To avoid these minima the pursuers 

can look ahead, but this has the drawback of increasing the time complexity. 
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Figure 3.5: The cover set of two pursuers and one target with the same speed. The second pursuer's 
cover (dark gray) is inside the first pursuer's cover (light gray). 
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Figure 3.6: A local minimum of the cover heuristic. The target, T, can not move without being 
captured by the pursuers, Pi and iV 

3.3 CRA 

A straight-forward way of using a heuristic function is with a greedy algorithm that, in each step, 

chooses the successor with the smallest heuristic value. For most heuristic functions this approach 

is not practical because the problem solver may get stuck in local minima. Fortunately this greedy 

approach gives acceptable results when using the cover heuristic — cover does have local minima 

but in many situations they are not detrimental to the overall result. 

Although using a greedy algorithm by itself gives acceptable results, there are ways to improve 

the greedy approach. The previous section highlighted several drawbacks of the cover heuristic: it 

may be too conservative, it needs a good tie-braking mechanism, and it needs a way of avoiding local 

minima. Another drawback, mentioned earlier, is the time complexity of calculating the cover set. 
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Following are the proposed solutions to mitigate these drawbacks, resulting in the CRA algorithm. 

3.3.1 Risk 

The cover heuristic has a tendency towards being conservative as it may prefer vertices that cover a 

large region, over vertices in which the pursuer is close to capturing the target. One such situation is 

when the pursuer is slower than the target and there are no other pursuers close by to help surround 

the target. This "waiting" behavior can be advantageous here because a slow pursuer will wait for its 

teammates to surround the target, but there are situations where a more risky pursuer works better. 

In the other extreme, a risky pursuer does not hold back at all — it only rushes toward the tar­

get, like a single-agent search algorithm guided by a geometric distance heuristic. While the risky 

strategy can be good against slow targets or targets that are not actively evading the pursuers, it does 

badly against fast or smart targets; the target waits for the pursuer to get near and then slips away. 

We need an intermediate solution, where we can set the pursuers' riskiness depending on the 

type of target. To do this, two moves are generated: the one with the largest cover value cm a x , and 

one proposed by a single-agent search algorithm guided by a geometric distance heuristic, such as 

PRA*, with cover value cr. The ratio of these two values, cr/cm&K, determines if the single-agent-

search move is actually risky or not. 

We use a risk parameter, p, to choose between the move proposed by cover and the move pro­

posed by, e.g., PRA*: if p < 1 — cr/cn,ax then we choose the cover move, else we choose the PRA* 

move. A risk of zero means that cover is always used, a risk of one means that PRA* is always used, 

and a risk in (0,1) chooses PRA* only when it is not too risky. With this approach the "riskiness" 

of the algorithm can be controlled via p. 

3.3.2 Abstraction 

As mentioned before, the time it takes to compute the cover set is proportional to (\E\ + \V\) log \V\. 

If this is done on a graph with branching factor b and for each of the n pursuers then it takes time 

proportional to bn\V\ log \V\. This may not be feasible for real-time applications, as it has to be 

done at every time step. Abstraction can be used to mitigate this problem. 

The abstraction methods were introduced in Section 1.4: an abstraction for the graph is built 

before the run begins, the CRA algorithm is run in the abstract graph, and the abstract actions are 

refined to obtain ground-level actions. By doing this, the complexity of calculating cover can be 

reduced to bn, with a high enough level of abstraction. The problem is that, as the abstraction level 

increases, the quality of the solution decreases. We therefore want to use the lowest abstraction level 

possible, given the time constraints. Also, abstraction introduces the time complexity required for 

the refinement process: kl where k is the average abstract state size and £ is the level of abstraction. 

Therefore, the overall time complexity per turn is 0(6n| V| log | V|fc-^ + M). 
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3.3.3 Tie-breaking 

In some situations the cover heuristic can not differentiate between several moves because they all 

have the same value. A good tie-breaking mechanism is needed to avoid making uninformed moves. 

The PRA* move calculated when dealing with risk (Section 3.3.1) can be used for this: if there are 

several moves with a cover value of cm a x , and the PRA* move is one of them, then CRA selects the 

PRA* move as it moves the pursuer closest to the target. 

Sometimes the PRA* move is too risky and it can not be used for tie-breaking because the 

decision is between conservative moves. In these situations we need another tie-breaking method. 

Here we want to avoid actions that lead to a vertex that is occupied by another pursuer and prefer 

actions that minimize the geometric distance. The actions that lead to a vertex that is occupied by 

another pursuer are removed (unless all actions lead to an occupied vertex) and from the remaining 

actions we select the one that minimizes the geometric distance heuristic (e.g., Manhattan distance). 

These tie-braking mechanisms boost the performance of CRA (see Chapter 4). The reason for 

this performance boost is that, when there are multiple agents, we often find that several moves 

are equivalent. If there is no tie-braking mechanism there will be many uninformed moves, which 

means that some of the pursuers will act randomly or stand still, which is a very bad strategy. 

3.3.4 Avoiding local minima 

The final concern is that the greedy method can lead to local minima, which tells the pursuers to 

stand still — all actions except stand-still lead to a higher heuristic value (see Figure 3.6). To avoid 

these situations, CRA forces the pursuers to move when no pursuer moved for a complete round. In 

most situations this will break the dead-lock. 

Avoiding dead-locks is very important because, once in a dead-lock, no agent will move (unless 

the target makes a mistake). If no agent moves then the timer will expire and the pursuers will not 

get a chance to capture the target — the pursuers have given up. This is why it is important to avoid 

these minima, even if the target temporarily gains an advantage. 

3.3.5 Putting it together: CRA 

The Cover with Risk and Abstraction (CRA) algorithm that uses the mechanisms outlined in the 

previous sections is described in Figure 3.7. CRA receives three parameters: the pursuer p, the 

risk p, and the abstraction level t, and returns an action for p. It first reduces the set of successor 

vertices of maximum cover with the tie-braking mechanisms (Lines 2 to 4, 9 to 12, and 13) and 

then compares the risk of the move proposed by PRA* with the allowed risk (Line 15) to choose the 

action and refine it. 

We run this for each pursuer independently. This means that the time complexity of the algorithm 

is linear in the number of pursuers, as there is no need to analyze the joint-actions of all the pursuers. 

The time complexity of the cover calculation is 0(bn\ V\ log |I^|fc_f + kt), as shown before. To this 
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CRA(p, p, I) : action 
1 A <— set of available abstract actions for p 
2 if no pursuer moved in the last turn then 
3 A <— A \ {stand-still} 
4 end if 
5 Vmax <— the abstract successor vertices in A with maximum cover 
6 WPRA* *~ the abstract successor given by PRA* 
7 cmax <— the cover value of v € Vmax 

8 CPRA* <— the cover value of WPRA* 
9 remove from Vmax vertices that are occupied by other pursuers 

10 if Vmax = 0 then 
11 restore Vmax to its original contents 
12 end if 
13 Umax <— the vertex in Vmax that minimizes the Manhattan distance 
14 Ac = 1 - cPRA»/cmax 

15 if Ac > p then 
16 return refine(vma.x,l) 
17 else 
18 return refine (vPRA*, £) 
19 end if 

Figure 3.7: The CRA algorithm. 

we have to add the time complexity of calculating the PRA* move: 0(<,/\V\log -̂ /fS7|+A: logfc \V \). 

While CRA is not constant-time, if a high enough level of abstraction is used it can be remarkably 

fast, especially as it is considering the whole graph to make a decision. 

If only local decisions were desired then a local cover function could be used that limits the 

cover calculation to a fixed depth and a local PRA* search could be performed as well. Limiting the 

size of this local space could produce a constant-time algorithm, however we leave this as a subject 

of future research. 

3.4 Target's Cover 

So far, we have explored the cover method from the pursuers' perspective; it can also be used as a 

target algorithm. For the targets, the algorithm consists of minimizing the cover, which corresponds 

to maximizing the target-cover. Most of the previous discussion applies for targets as well, except 

the tie-braking and the local minima. The tie-braking for a single agent is not a problem, as it is only 

a problem when dealing with multiple agents. This study considers only a single target, therefore 

the tie-braking issue is not a problem. The local minima is not a problem either because the target 

needs to escape from capture as long as possible, and standing still in a dead-lock is one way of 

achieving that. For these reasons the target's cover algorithm consists simply of a greedy algorithm 

with abstraction. 
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3.5 Theoretical properties of Cover 

Conjecture 3.5.1. For the uniform speed problems, the cover heuristic gives exact solution costs in 

graphs where one pursuer has a winning strategy against one target. 

Proof outline. According to Aigner and Fromme [2, Theorem 1], one pursuer is sufficient iff the 

graph can be reduced to a single vertex VQ, by successively removing pitfalls. A pitfall is a vertex 

p such that there is a dominating vertex d, that is, N[p] C N[d] (i.e., all neighbors of p are also 

neighbors of d), as shown in Figure 3.8. Suppose that for graph Go = (V,E) one pursuer is 

sufficient. To reduce Go we remove all pitfalls p G Po dominated by a vertex d G D0 to get 

Gi = (V\Po,E\ edges(Po)), then remove P\ to get G2 and so on until Dn = {VQ} and Pn = 0 

onG„ = ({w0}J). 

If there is a strategy for Gi for 0 < i < n then a related strategy can be applied to Gj_i: for all 

vertices in Gi the strategy is the same, for vertices in Pj_i the pursuer moves to a vertex not in Pj_i 

and then follows the same strategy. If the target steps into any vertex in P;_i the pursuer assumes 

that the target is in the dominating vertex in -Dj_i (which is part of Gi). This strategy is guaranteed 

to be as effective as in G; and to take at most two steps more: one if the pursuer has to step out of 

Pi-i and another when going from the dominating vertex to capture the target. 

Starting from Gn the strategy can be expanded to Go: go to vo and then follow the vertices that 

dominate the current location of the target, unless the starting vertex already dominates the subgraph 

where the target is, in which case there is no need to go to vo, just to follow the vertices that dominate 

the current location of the target. This is the optimal strategy against an optimal target because when 

the pursuer is at a dominating vertex the target can not escape from that subgraph while stepping into 

a vertex that does not dominate the target's vertex gives the target more room to move and therefore 

wastes time. To show that a pursuer guided by the cover heuristic follows this strategy note that VQ 

maximizes the cover set over all possible target vertices. If the pursuer is in a vertex that leads to 

vertices that dominate the target's vertex then the pursuer will move so as to increment the number 

of vertices it dominates, which increases the cover set. If the target is in a vertex dominated by the 

pursuer's vertex then the cover will be maximized by capturing the target. • 
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Figure 3.8: A graph in which one pursuer can always capture one target. By removing pitfalls 
(empty circles) it can be reduced to a single vertex, VQ. 
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Chapter 4 

Empirical Evaluation 

To evaluate the performance of the methods in a practical context, we use a framework for test­

ing different pursuit algorithms against different target algorithms. The framework, as outlined on 

Section 2.2, supports any number of agents with non-uniform speeds. Given a map, the framework 

generates random starting positions and lets the algorithms run until the target is captured or until the 

timer expires. We use timeouts to avoid infinite runs, using a time for each simulation that depends 

on the size of the map and is set at least one order of magnitude larger than the average capture time. 

Several different pursuit algorithms are used to be able to compare a range of behaviors in each 

situation, Table 4.1 gives the details. Likewise, a number of different target algorithms are used: Ta­

ble 4.2. Depending on the study, different combinations of these targets are tested against pursuers. 

The optimal solver can only be used for small maps with a small number of agents due to its time 

complexity. Also, the algorithms based on minimax are too slow when there is a large number of 

agents so they are used only in the smaller problems. 

Abbreviation Description Further details 
OPT 

CRA(p,^) 

MTS 

PRA* 

MMX(d) 

MMC(d) 

Optimal solver. Section 2.1 

Cover with Risk and Abstraction using risk p and Section 3.3 
abstraction level £. 

The improved version of MTS with C — D = 10. Section 1.3 

Partial Refinement A*. Section 1.4 

Minimax to a depth of d plies using geometric dis- [32] 
tance as the evaluation function. 

Minimax to a depth of d plies using cover as the [32] 
evaluation function. 

Table 4.1: The pursuit algorithms. 
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Abbreviation Description Further details 
OPT Optimal solver. Section 2.1 

TGC Greedy target guided by the cover heuristic. Section 3.4 

SFL Simple Flee target randomly places beacons on -
the map and uses PRA* to get a path to the bea­
con that is furthest from the pursuers. It follows 
that path for five moves and then chooses a bea­
con again. 

DAM(d) Dynamic Abstract Minimax runs minimax at the [8] 
highest level of abstraction. If an escape from the 
pursuers is not found then it goes to a lower level 
of abstraction and the process repeats. When an 
abstract action that leads to escape is found it is 
used to guide the target. 

MMX(rf) Minimax to a depth of d plies using geometric dis- [32] 
tance as the evaluation function. 

MMC(d) Minimax to a depth of d plies using cover as the [32] 
evaluation function. 

Table 4.2: The target algorithms. 

4.1 Optimal solution 

The first evaluation consists of comparing the proposed approach to the optimal strategy. The opti­

mal strategy can only be computed for small maps with few agents, therefore in this part five maps 

are used: an empty 5 x 5 rectangular grid, a 9 x 9 grid with a round table in the middle, a 10 x 11 

maze grid, a dodecahedron on which three pursuers are necessary (Figure 1.1) and an hexagonal 

grid on which one pursuer is sufficient (Figure 3.8); the maps are illustrated in Figure 4.1. Notice 

that this is only a small sample of all possible graphs in which cover may be used, it is the subject 

of future research to determine if these results apply in the general case. 

When comparing we will use four types of targets — OPT, TGC, DAM, and SFL—and four 

types of pursuers — OPT, CRA(p = 0, £ = 0), MTS, and PRA*. The number of pursuers used for 

each map is the smallest required for capture, therefore on the grid maps the number of pursuers is 

2, on the dodecahedron the number is 3, and on the hexagonal grid the number is 1. All agents have 

the same speed, each goes from one vertex to the next in exactly one time step. 

The principal performance measure used is success rate — the percentage of runs in which the 

pursuers capture the target. There is one run for every possible joint state on each map. The optimal 

pursuer always has a success rate of 100%, as expected (Figure 4.1), and the optimal target has 

the highest escape rate (lowest success rate for the pursuers), in most cases. It can happen that a 

non-optimal target has a higher escape rate than the optimal target with a sub-optimal pursuer (as 

happens on the maze map for CRA chasing TGC) because the optimal target is optimized for the 
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Figure 4.1: The success rate on five different maps of several pursuer algorithms after several target 
algorithms. 
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optimal pursuer; if the pursuer is sub-optimal the optimal target is not necessarily the best target 

algorithm. 

Figure 4.1 shows that CRA has a success rate rate of 100% on all maps except the maze and the 

dodecahedron on which the success rate is slightly smaller against some targets. Compare this to 

MTS whose success rate is as low as 2.6% on the round-table map when chasing an optimal target. 

MTS is successful when the distance heuristic gives good results, like on an empty map, and when 

no coordination is needed, like on the hexagonal grid where there is only one pursuer. Even on 

these situations the performance of MTS is below CRA. This is true for PRA* as well, but notice 

that PRA* does better than MTS when no coordination is necessary. These results highlight the 

importance of having a heuristic that can help coordinate multiple agents. 

Also, it is important to note that the performance of the target that uses cover is close to the 

performance of the optimal target. By contrast, Simple Flee has very low escape rate (very high 

success rate for the pursuers). For instance, Simple Flee never escapes in the dodecahedron map. 

These results are another manifestation of the adequacy of the cover heuristic for both pursuers and 

targets. 

While the most important performance measure is success rate, it is also useful to measure time 

to capture. The capture time is considered to be infinite for problems on which the pursuers did not 

capture the target, we therefore take the average only for the problems where the pursuers succeeded. 

Unfortunately, this filtered measure biases the result because low success algorithms are more likely 

to solve the easy problems than the hard ones. For this reason, to have a meaningful comparison, 

we also compute the average capture time for the optimal pursuer in the subset of problems that a 

given pursuit algorithm solved. Table 4.3 shows the optimal capture time for the subset of problems 

solved by each algorithm and the capture time for the algorithm over that same subset when chasing 

an optimal target. 

We see that low success algorithms are solving easy problems because the average optimal cap­

ture time for that subset of problems is smaller than the average optimal capture time for all the 

problems. This is especially true for the round table map: here the optimal capture time on the 

problems that MTS solved is half of the optimal capture time for all problems. The hexagonal grid 

is interesting because all optimal capture times are nearly the same. While CRA is optimal (see 

Section 3.5), the other algorithms also have a very high success rate. On this map the capture time 

for the MTS algorithm is more than double the optimal, showing that MTS can take a long time to 

capture even when there is no coordination involved. 

To have more reference points, lets compare the minimax algorithm guided by both distance 

(MMX) and cover (MMC) heuristics for both pursuers and targets. For the pursuers MMC is not 

as effective as CRA, using depths up to 5 plies. Looking back at Section 3.2, this can be readily 

explained: the cover heuristic, by its own, has some drawbacks. But even then, MMC is much better 

than MMX, for the same depth. For instance, when running on the maze map against an optimal 
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Map Algorithm 

OPT 
CRA 
PRA* 
MTS 
OPT 
CRA 
PRA* 
MTS 

iT t i ' r l l 

s4a 

OPT 
CRA 
PRA* 
MTS 
OPT 
CRA 
PRA* 
MTS 
OPT 
CRA 
PRA* 
MTS 

Success (%) Opt. time Time 

100.0 
100.0 
72.8 
92.4 

4.993 
4.993 
4.896 
4.963 

4.993 
5.670 
13.22 
14.69 

100.0 
100.0 
3.7 
2.6 

15.52 
15.52 
7.757 
5.155 

15.52 
17.89 
8.775 
6.190 

100.0 
100.0 
14.8 
8.2 

19.14 
19.14 
12.68 
9.646 

19.14 
21.27 
24.81 
12.20 

100.0 
94.6 
14.6 
8.4 

3.309 
3.300 
2.652 
2.273 

3.309 
4.351 
3.777 
6.533 

100.0 
100.0 
99.4 
34.5 

4.351 
4.351 
4.347 
4.331 

4.351 
4.351 
10.60 
7.441 

Table 4.3: The optimal time for the subset of the problems solved by each algorithm and the time 
the algorithm took to solve them. 

target MMC(3) has a success rate of 42.8% while MMX(3) has a success rate of only 5.5%. This is 

because of the advantages of using cover instead of distance, as explained in Chapter 3. 

When using MMC(o? > 1) as a target algorithm we find that: it is more effective than TGC. This 

is easily explained as TGC is basically a depth 1 minimax search. A target using MMC is still much 

more efficient than one using MMX, for the same reasons as in the pursuit case. While it could be 

advantageous to use minimax with cover heuristic as a target algorithm, the gains in performance do 

not justify the increment in run time. For instance MMC(5) has an escape success rate against MTS 

of 82.2% which is comparable to the 80.0% success rate for TGC. 

This demonstrates that the plain minimax algorithm is not a good contestant when using small 

depth values. While this algorithm is better for larger depth values, it then becomes so slow as to 

be impractical. For these reasons we do not use these algorithms in the remainder of the empirical 

evaluation. 

4.2 Coordination 

To explore the coordination capabilities of CRA, we choose a map on which both MTS and PRA* 

fare well: an empty 20 x 20 grid. Notice that, in this map, 20 pursuers could sweep the map and 

always capture the target, regardless of their speed. The target algorithm is fixed to TGC. The speed 

of the target is fixed to 1.0 while the speed of the pursuers varies from 0.2 to 1.0 in increments of 0.2. 

One hundred runs are executed with random starting locations for all agents, using the same starting 
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Figure 4.2: A hand-made map with obstacles 

locations across problem instances. The extended Wald method is used to determine the confidence 

intervals of the results, with 95% confidence [1]. This test gives the binomial proportion confidence 

interval and is more accurate that the "exact" method by Clopper and Pearson [12]. Figure 4.3 shows 

the results. As the number of pursuers increases, the success rate of all the algorithms increases. 

CRA has the most pronounced increase, being able to capture the target more often than not with 50 

pursuers having a speed that is one fifth of the target's speed, while MTS never achieves a success 

rate of even 5% with such speed. This result is very statistically significant. Here PRA* does 

considerably better than MTS, especially with low speeds. 

We use a more involved map to see the advantages of coordinated cooperation when there are 

obstacles that can be used to help surround the target: the map in Figure 4.2. The conditions are the 

same: 100 runs in random starting locations with a TGC target. The results are shown in Figure 4.4. 

This problem is evidently more difficult because the target can run around obstacles to avoid capture. 

Here the difference between CRA and the other pursuit algorithms is more pronounced because the 

target has more chances of running in circles if the pursuers are not coordinated. We again see the 

advantages of having coordinated agents. 

As the speed decreases the number of pursuers necessary for capture increases super-linearly. 

The exact relation between speed and number of pursuers is hard to establish as it depends on the 

map and, because with more than a few pursuers it is not viable to calculate the optimal strategy, 

we cannot compute the optimal solution. Nonetheless, given that both CRA and TGC are good 

approximations of the optimal strategies, it can be conjectured that the increase shown is close to 

the real relation. 

4.3 Abstraction 

Until now, the experiments focused on the effectiveness of the algorithms, without regard to the 

computation time needed to achieve those results. We now compare the computation times. It is 
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Figure 4.3: The success rate as a function of the number of pursuers on an empty 20 x 20 grid for 
different speeds (s). The pursuer algorithms are CRA (top right), MTS (bottom left), and PRA* (bot­
tom right). The target algorithm is TGC in all cases. The confidence intervals for 95% confidence 
are shown. 
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Figure 4.4: The success rate as a function of the number of pursuers on a grid-world with obsta­
cles for different speeds (s). The pursuer algorithms are CRA (top right), MTS (bottom left), and 
PRA* (bottom right). The target algorithm is TGC in all cases. The confidence intervals for 95% 
confidence are shown. 
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Figure 4.5: A map from a commercial video game. 

clear that CRA with no abstraction is too slow on big maps, see Section 3.3. For this reason we will 

now consider abstraction and compare the computation time to the degradation in solution quality. 

This is done using a commercial-game map with nearly twenty thousand states, as shown in 

Figure 4.5. Unlike to the grid maps considered so far, this map is eight-connected and therefore 

the number of pursuers necessairy is larger. For this particular map three pursuers are necessary and 

sufficient to capture the target. The results are presented for both two and three pursuers. 

First, we compare the run time per move, per agent for the pursuit algorithms. Figure 4.6 shows 

that, with at level of abstraction of 5, the run time per move, per agent of CRA is comparable to 

that of PRA*, while MTS is more than one order of magnitude faster. The fact that MTS is faster 

is expected because MTS is a constant-time algorithm, while PRA* and CRA are not. Nonetheless, 

CRA has a reasonable run time per move, of only 0.64 milliseconds, which is a small price to pay for 

the improved success rate. Note that the run time per move, per agent remains constant regardless 

of the target algorithm or the number of pursuers as it depends only on the size of the map. The 

variance for the results shown in Figure 4.6 is too small to be noticeable in the graph — the results 

have little noise. 

CD > o 
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E 
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Figure 4.6: The run time per move, per agent for the pursuit algorithms. For CRA the time is shown 
for different levels of abstraction. 
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Now we consider the decrease in success rate. Depending on the situation, there may be a 

decrease in success rate when the level of abstraction is increased, as can be seen in Figure 4.7. 

Here two pursuers are chasing one target and the pursuers and target have the same speed. For this 

map, two pursuers cannot capture an optimal target; the pursuers have to rely on the target making 

mistakes. For DAM and SFL targets the decrease in success rate for CRA is small and goes below 

the success rate of MTS only for abstraction levels 4 or above. TGC, being a much better target 

algorithm, manages to escape most of the time, in this case CRA stays above the other pursuers for 

all levels of abstraction. The extended Wald method is used to determine the confidence intervals, as 

shown. For SFL the results are not statistically significant and only the confidence interval for CRA 

is shown. 

When there are three pursuers there is a winning strategy. Figure 4.8 shows that in this case the 

decrease in success rate due to abstraction is much more pronounced when chasing TGC. Nonethe­

less, the success rate of CRA stays above the success rate of both MTS and PRA* for all levels of 

abstraction below 6 when chasing TGC and DAM. When chasing SFL the success rate of CRA is 

the same as MTS above level 4. Again, the results fro SFL are not statistically significant and only 

the confidence interval for CRA is shown. 

We see that abstraction does affect the solution quality, by an amount that depends on the situa­

tion. The worst case for this map (Figure 4.5) happens when three pursuers are chasing TGC, but the 

success rate of MTS and PRA* is so low that, even with the big penalty of abstraction, CRA comes 

out on top. There is a trade-off between how long CRA takes to run and how well it does. Therefore, 

for each particular application, we need to empirically determine the appropriate abstraction level. 

4.4 Risk 

The success rate of CRA can be increased even further in some situations with the use of the risk 

parameter, p. For example, in the map shown in Figure 4.5 with two pursuers chasing a TGC target, 

the success rate with p = 0 is higher than MTS and PRA* (Figure 4.7). It is even higher with 

p = 0.1, as shown in Figure 4.9. However, increasing risk is not always beneficial, for instance 

when chasing SFL (Figure 4.9). 

The specific situations in which increasing risk may help have to be empirically determined. 

Nonetheless, from the experiments conducted we find that risk helps in situations in which the 

pursuers do not have a winning strategy, for example in the situation just mentioned. The fewer 

chances the pursuers have of capturing the target the more gains in taking risks. For instance, SFL 

is an easy target and therefore being risky may not be advantageous. On the other hand, TGC is a 

hard target and therefore we need to take risks to increase the chance of success. 

This can be explained looking back at Section 3.3.1: the cover heuristic is conservative. If the 

pursuers realize that they do not have a clear winning strategy they stand back and cover a large 

region instead of rushing in. Therefore, taking risks is better when the pursuers have a disadvantage. 
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Figure 4.7: The success rate of the pursuit algorithms using two pursuers and chasing TGC (top 
right), DAM (bottom left) and SFL (bottom right). For CRA the success rate is shown for different 
levels of abstraction. 
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Figure 4.8: The success rate of the pursuit algorithms using three pursuers and chasing TGC (top 
right), DAM (bottom left) and SFL (bottom right). For CRA the success rate is shown for different 
levels of abstraction. 
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Figure 4.9: The success rate of the pursuit algorithms when chasing TGC (top right), DAM (bottom 
left) and SFL (bottom right). For CRA the success rate is shown for different values of risk. 
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Conclusions 

Single-agent and multi-agent moving-target search problems are common in real-life situations. 

They are interesting problems because of their complexity and their applicability in military simula­

tions, video games and law enforcement, to name a few. Previous approaches to the moving-target 

search problem treat it as a single-agent search problem — they use single-agent search algorithms 

with single-agent search heuristics. Because of this, previous approaches do not try to minimize the 

target's mobility or to coordinate multiple pursuers and therefore they have a low success rate. 

This dissertation demonstrated that, on the maps used, an effective and efficient solution to the 

multi-agent moving-target search problem can be achieved using the information given by the cover 

heuristic. The cover heuristic is used in the CRA and TGC algorithms, which improve the state of the 

art for pursuers and targets, respectively. Some theoretical results were given about the algorithms 

and in general about the moving-target problem. 

The theoretical results developed here (Section 2.1) showed that two pursuers are necessary and 

sufficient in an empty grid and that, in general, two pursuers are not sufficient in grid-worlds. With 

a new variable-speed framework we found that the theory from the uniform speed problem does not 

generalize to the variable-speed problem. This gives insight into the complexity of having arbitrary 

speeds, which makes the problem more interesting. 

We explored the need to have a better heuristic than geometric distance by showing that the 

geometric distance heuristic is unsuitable for the moving-target problem, which explains the main 

drawback of previous approaches. We then introduced the cover heuristic motivating it and showed 

that it gives optimal results in some cases: in graphs for which one pursuer has a winning strategy 

and in Euclidean space against a target of the same speed. Cover is straight-forward to calculate both 

in arbitrary graphs and in Euclidean space. Based on this, we developed a new algorithm, CRA, and 

incorporated methods to address each of the drawbacks of using only cover. Experimental results 

showed that CRA is within 10% of optimal in all the problems for which the optimal strategy was 

calculated. Likewise, when compared to the optimal target, TGC has a very high escape rate. The 

results show how CRA can effectively use multiple slow pursuers to capture a fast target, in contrast 

to previous approaches that need many more pursuers to achieve a reasonable success rate. This 

demonstrates how the pursuers guided by cover can exploit the target's weaknesses. We also showed 

that sometimes taking risks can be rewarding, especially when the pursuers have a disadvantage. 
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These experiments were run on hand-made and commercial-game maps, which is a subset of graphs 

that have some real-life applications, it remains to be seen if these results hold for arbitrary graphs. 

Overall, the results presented highlight the importance of, first, reducing the mobility of the 

target and, second, coordinating multiple pursuers. Likewise, they shed light on the target's strategy: 

preserve mobility instead of simply running away and perhaps cornering itself. The round-table 

example illustrates this (the map is shown in Figure 3.1 and the example is developed throughout 

Chapter 3). 

The biggest drawback of the cover-based approach is its run time. Although the run time per 

move can be below one millisecond for a relatively large map, CRA is not constant-time, it depends 

on the size of the graph. Abstraction tries to mitigate this problem but a constant-time solution would 

be desirable; it is important in real-time situations like video games. Even with this drawback, the 

cover-based algorithm improves in success rate and capture time compared with previous state-of-

the-art algorithms, showing that the cover heuristic is an effective solution to moving-target search 

problems. 

Future work 

The work presented here can be extended in several interesting directions. For instance, it can be 

extended to work in Euclidean space in both two and three dimensions. Section 3.2 presents the base 

cover calculation for a plane, it needs to be extended to be able to deal with obstacles, if required, so 

that it can be used with a continuous planning algorithm. This has applications in robotics and can 

lead to interesting coordinated behavior. 

Another extension is to find other ways to speed up the cover computation without much loss 

in success rate. We analyzed abstraction methods but they have drawbacks because the abstractions 

are not explicitly designed for cover computations. If the abstraction is specifically tailored for 

cover then perhaps the cover computation can be sped up. Furthermore, it would be ideal to have a 

constant-time algorithm based on cover, perhaps by calculating cover only on a subset of states. 

A disadvantage of CRA is that it has the risk parameter, p, whose best value may be hard to 

determine. By incorporating a dynamic risk policy, the algorithm could automatically determine the 

risk value. Section 4.4 gives an outline of the situations in which an increase in risk is advantageous 

but further study of this subject: is necessary. An idea that was investigated briefly is using weighted 

cover — instead of using the number of covered states as the heuristic estimate we can give more 

weight to vertices that are close to the target. Preliminary results show that this can increase the 

success rate of CRA even further. 

Another point worth considering is using TGC with abstraction. This idea was mentioned in 

Section 3.4 but the preliminary empirical studies determined that its performance decreases too 

much because of the refinement process. An adequate refinement process for targets needs to be 

determined and applied to TGC. 
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This thesis establishes a baseline for a new generation of pursuit and evasion algorithms. Hope­

fully this will serve as a motivation for the development of improved methods. 
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