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Abstract

Simultaneous localization and mapping (SLAM) in an unknown environment is a

prerequisite to have a truly autonomous mobile robot. In this thesis, we focus on

appearance-based visual SLAM, for which we develop a graph-based

nearest-neighbor search algorithm to speed up bag-of-words (BoW) image

retrieval. In appearance-based SLAM, the robot uses the visual appearance of the

locations taken along its route to build the map of the environment and localizes

itself within this map by recognizing places it has visited before. To solve the

challenging problem of appearance-based place recognition (a.k.a. loop closure

detection in the context of SLAM) in large-scale environments, we employ the

bag-of-words model, because of its efficiency in image representation and

retrieval. Moreover, because the complexity of BoW does not grow with the size

of the dataset, as much as that of other search techniques (e.g. direct feature

matching) do, it can be employed for large-scale image search applications.

Although BoW provides an efficient search technique, its vector-quantization

(VQ) step can be computationally expensive in order to provide sufficient

discriminating power for image matching.

In order to speed up the VQ process, we propose a graph-based nearest

neighbor search method (GNNS) that builds a k-NN graph index, and is efficiently

integrated into the SLAM system. The k-NN graph is constructed over the visual

words of the vocabulary. At search time, the standard GNNS algorithm starts from

a randomly sampled node in the graph and performs hill-climbing until reaching a
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local minimum which is then an approximate nearest neighbor of the queried

feature. We modify the GNNS algorithm to be initialized judiciously by exploiting

the following properties of SLAM and BoW model: (1) the sequential property of

images acquired in appearance-based SLAM, (2) the perceptual aliasing problem

inherent to BoW. This smart initialization of GNNS improves the speedup of the

vector-quantization considerably. We experimentally show that our search method

outperforms the popular KD-trees and hierarchical k-means algorithms.

Furthermore, we develop a SLAM system by integrating the BoW’s loop closure

detection in a Bayesian filtering framework. This probabilistic framework then

discards false loop closures by enforcing the temporal coherency of estimation.

We run our SLAM system on different datasets to test our loop closure detection

in challenging environments. The system successfully detects loop closures with

100% precision and high recall rates in real-time.
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Chapter 1

Introduction

1.1 Motivation and Problem Statement

Autonomous mobile robots that can navigate over long periods of time will help in

the automation of tasks operated by humans. Working in hazardous environments or

places out of range of human operators, such as underground and on other planets,

can benefit from autonomous mobile robotics.

In many environments, robots have no prior knowledge about their

surroundings or any external infrastructure like Global Positioning System (GPS)

to assist them localize themselves reliably. In underwater, underground or even

indoor environments, GPS is not available or reliable. The navigation problem in

unknown environments without any external assistance is known as Simultaneous

Localization and Mapping (SLAM). The SLAM problem has been investigated for

several decades in mobile robot research field and many developments have been

made. Several solutions have been proposed for long-term SLAMs in small-scale

environments. Working in a large-scale environment is challenging and has

remained unsolved. Solving the SLAM problem for large-scale environments with

real-time performance is the purpose of our research.
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Autonomous navigation can benefit better from the schemes that work based on

the visual appearance of locations rather than geometric information about them.

When the robot gets lost or the metric information about its position is erroneous,

the robot can still recognize the places through their appearances, and therefore

localize itself. This can be achieved by mapping the area based on the appearance

of distinct locations. In this research, we employ appearance-based schemes to

design our SLAM algorithm.

Place recognition in the context of SLAM is known as loop closure detection,

which is a fundamental problem in SLAM. All SLAM algorithms, including ours,

aim to solve the loop closure detection problem. The problem that is addressed in

this thesis is therefore summarized by the following: in large-scale environments,

where the map is large, how can we efficiently determine whether the new

observation of the robot matches one of the previously visited locations?

The problems that loop closure detection faces are typically due to the dynamic

changes in environment which are caused by changes in illumination, viewpoint

or moving objects, or due to the repetitive structures in the environment that make

different locations look similar (perceptual aliasing). Many SLAM solutions have

been proposed to tackle these problems. However, they are mostly successful in

small-scale environments but not efficient for long-term large-scale operations. The

largest appearance-based navigation system that we are aware of is the FAB-MAP

by Cummins and Newman [2011]. Although they have tried to make different

parts of their system scalable, they achieved low recall rates at high precision. We

suspect that the degradation in their performance on large datasets might be due to

inefficiency in the search index they use for the vector-quantization process and also

their handling of perceptual aliasing using Chow Liu trees. A Chow Liu tree is a

data structure used to improve the observation model by capturing the correlations

among visual words. However, Cummins and Newman [2011] demonstrate that in
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large-scale datasets, when the size of the vocabulary is larger, using a Chow Liu

tree worsens the likelihood estimates in some fraction of datasets and it is no longer

more effective than naı̈ve Bayes at high precision. To address these issues, we

propose to use an efficient search structure that can be utilized by a bag-of-words

(BoW) model to benefit SLAM. Moreover, we improve BoW’s search performance

by integrating it with a probabilistic particle filtering scheme. A more detailed

overview of our solution is discussed in the next section.

1.2 Solution Overview

The bag-of-words (BoW) method was originally proposed for document retrieval

[Jones 1972, Salton and Buckley 1988]. In recent years, the method has been

successfully applied to image retrieval tasks in computer vision community [Sivic

and Zisserman 2003] and has been extensively used in appearance-based SLAM as

a standard method for loop closure detection due to its computational efficiency.

BoW represents an image as a sparse vector of visual words, and thus images can

be searched efficiently using an inverted index file system [Witten et al. 1999].

Moreover, because the complexity of BoW does not grow with the size of the

dataset as much as that of other search techniques (e.g. direct feature matching)

do, it can be employed for large-scale image search applications.

In large-scale environments, SLAM maps contain a large number of images

to match in order to solve the loop closure detection problem. The image search

in such large maps is challenging and still an open problem. One problem with

BoW-based SLAM in large-scale environments is the size of the vocabulary. Larger

vocabularies improve the performance of BoW matching and are essential for large-

scale environments. However, the larger the vocabulary, the more expensive the

vector-quantization process of the BoW retrieval. A vector-quantization process
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finds the nearest neighbor visual word to each image feature. Typically hundreds to

thousands of features are extracted from an image and need to be matched against

tens or hundreds of thousands of visual words.

Approximate nearest neighbor (NN) search methods such as KD-trees [Bentley

1980], hierarchical k-means (HKM) [Fukunaga and Narendra 1975] and hashing

techniques [Indyk and Motwani 1998] have been used to speed up the search, but at

the expense of search accuracy. In spite of extensive and continuing research on the

NN-search problem, finding a practical solution that works well in high dimensional

spaces is still an open problem. In this thesis, we propose a graph-based k-nearest

neighbor search algorithm, called GNNS, that outperforms the popular NN-search

methods: randomized KD-trees, Locality Sensitive Hashing (LSH) and HKM that

are widely used in SLAM systems.

We show how nicely our graph search structure can be integrated into our

SLAM system, as it allows us to easily implement methods such as soft

quantization [Philbin et al. 2008] or take advantage of the sequential property of

SLAM data to speed up the vector-quantization process.

We also develop a SLAM framework which integrates the BoW model with a

particle filtering scheme to estimate the likelihood of loop closures by exploiting

the temporal coherence between sequential images. We experimentally show that

we can successfully detect loop closures with high precision and recall values in

real-time and in different challenging environments.

1.3 Thesis Contributions

This section presents the main contributions of this thesis:

– We propose to use a graph-based nearest neighbor search algorithm (GNNS)

for visual search in BoW-based appearance SLAM. We empirically show
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that GNNS can be used as an effective approximate NN search method and

outperforms popular NN search algorithms on real-world and synthetic

datasets [Hajebi et al. 2011].

– We provide theoretical guarantees for the accuracy and computational

complexity of GNNS algorithm [Hajebi et al. 2011].

– We propose Sequential GNNS (SGNNS) to improve the performance of

GNNS for BoW’s vector-quantization in SLAM [Hajebi and Zhang 2014].

SGNNS exploits the sequential property of SLAM data and the perceptual

aliasing problem in BoW. We show SGNNS outperforms GNNS and the

state-of-the-art NN search algorithms. SGNNS can also be used in similar

applications that run feature tracking or registration-based tracking [Roy

2015].

– We develop a probabilistic SLAM framework to work with our GNNS-based

visual search for efficient loop closure detection. We validate our system by

testing on challenging datasets.

1.4 Thesis Outline

The remainder of the thesis is organized as follows. Chapter 2 provides

background and literature review on SLAM, BoW image retrieval and nearest

neighbor search algorithms. Chapter 3 describes our graph-based search algorithm

(GNNS) and evaluates its performance as a stand-alone method. In Chapter 4, we

utilize GNNS presented in Chapter 3 in BoW’s vector-quantization and provide

experimental evaluation. Chapter 5 integrates all components of our new SLAM

system and presents the SLAM framework. In Chapter 6, we evaluate our SLAM

system on different datasets and finally Chapter 7 concludes the thesis and

discusses future directions.
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Chapter 2

Background

This chapter provides the background and literature review relevant to our research

work. We will review three strands of literature in the following sections: the work

on SLAM and specifically appearance-based SLAM, bag-of-words image retrieval

and nearest neighbor search.

2.1 Visual SLAM

Simultaneous localization and mapping (SLAM) is a fundamental problem in

mobile robotics in which a robot navigates in the environment, builds the map of

the environment and at the same time uses the map to localize itself [Smith and

Cheeseman 1986]. It is a challenging problem as the robot does not have any prior

knowledge about the environment or its pose. It is only given the sensor data, a

motion model, and an observation model.

Vision sensors for the SLAM algorithm have been a strong focus of SLAM

research. Vision sensors such as cameras have advantages over laser, ultrasonic and

sonar range-finders, as they are relatively cheap and easily available and moreover

provide a good source of visual information which allows for more meaningful

representations of the environment.
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Localization and mapping are challenging problems. There is always

uncertainty about the robot’s actual pose. Sensor readings are noisy, motion

models are approximations, and robot actuation is subject to the noise of

controllers. A Bayesian inference framework has been proposed to to deal with the

uncertainty in SLAM. Various Bayes filters have been proposed, depending on

how the environment is represented. The Extended Kalman filter (EKF) and

Rao-Blackwellized particle filter are the ones that have extensively been used in

SLAM algorithms.

Visual SLAM methods can be categorised into metric/geometric landmarks

based and topological appearance-based, which will be described in the next

section.

2.1.1 Metric SLAM

Metric or landmark-based SLAM methods represent the map of the environment

by 3D-point landmarks which are obtained from the interesting features extracted

from sensor readings. The pose of the robot (2D position + heading) is computed

with respect to a global reference frame, and is tracked along with the landmarks’

positions.

EKF-SLAM

EKF-SLAM, the earliest SLAM algorithm that was introduced by Smith and

Cheeseman [1986], applies an extended Kalman filter to the SLAM problem. In

EKF-SLAM, a map is composed of point landmarks. The observed landmarks are

used to update the mean and covariance of the state vector (i.e. the robot pose and

the map), which is approximated by Gaussian distributions.

EKF-SLAM has been widely used in SLAM systems. However, there are

limitations to EKF-SLAM. It cannot tolerate a high amount of uncertainty.
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Because of the linearization technique used in EKF, the filter might diverge if the

posterior is highly uncertain. EKF-SLAM needs sufficiently distinct landmarks to

approximate the posterior well. If the landmarks are ambiguous or sparse,

EKF-SLAM performs poorly in data association. The other drawback is the update

time of the state vector, which is quadratic in the number of map landmarks.

FastSLAM

FastSLAM is another SLAM algorithm that is based on Rao-Blackwellized

particle filters and was introduced by Montemerlo et al. [2002]. It represents the

robot’s state-space using a set of particles. Weighted particles then provide a

sample-based representation of the PDF (probability density function) over the

state of the robot. Each particle contains an estimated robot pose and set of EKFs,

one for each landmark in the map, to track the landmarks independently. This is

more efficient than EKF-SLAM which maintains only one Gaussian to estimate

the location of all landmarks jointly. Using low-dimensional separate EKFs on

individual landmarks allows the update time of the filter to be logarithmic in the

number of landmarks, unlike EKF-SLAM complexity which was quadratic.

Instead of tracking the most likely data association, FastSLAM maintains a

posterior over multiple data associations. This makes FastSLAM more robust to

data association problems than other algorithms. FastSLAM does not depend on

the assumption of Gaussianness, which is another advantage over EKF-SLAM, as

FastSLAM can cope with non-linear robot kinematics as well as highly uncertain

robot poses.

Problems of Metric SLAM Approaches

Metric visual SLAM methods suffer from the complexity bottleneck when

handling a large number of state variables in large-scale environments. In EKF,
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this complexity is due to the increase in the number of landmarks that have to

maintain their correlations; while in FastSLAM, it is caused by updating multiple

maps. Another limitation observed in metric SLAM is the data loss due to image

projections, when the 3D environment is mapped to 2D images. 2D landmarks are

then processed to construct a 3D map, and the 3D map is again re-projected into

2D image frames for the purpose of data association.

2.1.2 Appearance-Based SLAM

Although research in metric SLAM has been active and has made improvements,

appearance-based SLAM (aSLAM) showed better performance in a variety of

indoor and outdoor environments, and has been of more interest during the past

decade. In appearance-based SLAM, the environment is modeled topologically

using a graph whose nodes are associated with the visual appearance of the

locations that have been visited by the robot. The links between nodes represent

whether two nodes are accessible from one another. Mapping is done by adding

new nodes to the graph. The localization is carried out by matching the current

view of the robot to the previously visited map locations. If a match is found, a

connection will be established between the new node and its matching node.

The 3D information of locations is not accounted for in aSLAM, as it only works

in appearance space and it avoids the hassle of 3D to 2D and 2D to 3D projections

of metric SLAMs1. Another advantage over metric SLAM is that in aSLAM only

the robot poses are estimated along the trajectory, not the landmarks!

1However, there are hybrid SLAM algorithms which incorporate metric data into the appearance-
based SLAM.
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2.1.3 Loop Closure Detection

Loop closure detection (LCD) is a classic problem and the core of a SLAM

system, which decides whether the current view of the robot matches one of the

previously visited locations (closes a loop) or is a new location. In this thesis, we

focus on loop closure detection in appearance SLAM. LCD in aSLAM is

addressed as an image retrieval task which is performed by matching the new

observation to the existing map that contains the images of the previously visited

locations. False positive loop closures might happen when the robot associates the

current view with a previous location in the map incorrectly, and thereby makes

one node in the graph map represent two distinct locations. Falsely connecting

unrelated areas is catastrophic and results in inconsistent maps. Perceptual aliasing

also generates false positives. When environments are highly self-similar, as with

floor tiles or corridors in indoor environments, distinct places look similar. If the

SLAM algorithm does not handle this problem properly, false positive loop

closures occur.

If robot does not detect a true loop closure (false negative), then there will be

two nodes in the map that represent the same location. This is not as catastrophic

as wrong loop closures and can be recovered by their neighboring loop closures.

False positive loop closures are usually eliminated in a post-processing step

using multi-view geometric verification.

2.1.4 Multi-View Geometric (MVG) Verification

In order to handle wrong loop closures, a post verification step is applied to the

result of image matching. After the image search process, a list of matching

candidates that have high similarity to the query image is retrieved. The MVG

verification step re-ranks the candidates based on their geometric consistency to

the query and hence reduces the number of false positive loop closures.
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MVG is performed by first identifying the corresponding features between two

images (using direct feature matching), and then filtering out the putative matches

that do not satisfy the geometric constraints (called epipolar constraints). 2D

feature points x in the first and x′ in the second image, that are the projections of

the same 3D point X , should satisfy the relation xFx′ = 0. F is the Fundamental

matrix that describes the epipolar geometry between two views. RANSAC

(random sample consensus) [Fischler and Bolles 1981], as a fast and robust

estimation algorithm, is used to fit a Fundamental matrix to the corresponding

points and identify the inliers/outliers. Images that contain a higher percentage of

inliers are geometrically more consistent with the query image.

Although in a large-scale navigation system, the MVG step is inevitable as it

improves the performance noticeably [Cummins and Newman 2009], it can be a

costly process when the number of matching candidates is high.

2.1.5 Optimization-Based SLAM Back-ends

Filter-based approaches to SLAM (such as EKF-SLAM and FastSLAM) achieve

fast estimation results as they only estimate the current/recent state of the robot

and marginalize out the previous ones. However, these approaches introduce

linearization errors that accumulate over time and might result in SLAM drifts. In

contrast, graph-based SLAM algorithms (called graphSLAM in [Thrun and

Montemerlo 2006]) have been introduced to solve the full SLAM problem, which

is an offline problem defined over all robot poses and map features. GraphSLAMs

find the optimal solution over the entire past trajectory of the robot and thereby are

not suffering from linearization errors. The posterior of the full graph SLAM is

formulated as a sparse graph. The graph nodes are robot’s poses (and/or map
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landmarks2) and the edges are the spatial constraints between nodes that can be the

odometric data between poses or loop closure constraints. These constraints are

generally non-linear (due to the effect of the orientation of the robot) and are

resolved using non-linear least squares optimization techniques into a globally

consistent estimate of the robot trajectory. This category of SLAM algorithms that

are solved using graph optimization techniques and are applied to the offline

SLAM problem (where the robot states at all time-steps and all measurements are

available), is referred to as SLAM back-end. SLAM front-end, in contrast, is

involved with online map building and loop closure detection and generating the

graph structure of poses.

Pose graph SLAM, formulated as a non-linear least square problem, can be

solved efficiently because of the sparsity inherent in the graph structure. However,

the optimization can be difficult because of its dependence on the initial estimate

of the map. Noisy odometry data can accumulate the error of the global structure

of the map over time and make the odometry-based constraints erroneous. Loop

closure constraints can be affected by wrong data associations as well, leading to

poor initial estimates.

Lu and Milios [1997] first proposed the graph-based formulation for offline

SLAM algorithms and performed global relaxation on the map from laser range

scan and odometry based constraints. Their method is computationally expensive,

as it requires the inversion of a large matrix for a large environment. Duckett et al.

[2000] formulate the relaxation problem as energy minimization of a spring-mass

system. They simplify and linearize the problem by assuming absolute knowledge

of the robot’s orientation. Frese et al. [2005] improve the previous work by

introducing a multi-level relaxation (MLR) method, that applies Gauss-Seidel

relaxation at different levels of map resolution and offers less computational time.

2When the nodes represent only poses not landmarks, the graph representation is referred to as
pose graph
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Thrun and Montemerlo [2006] and Folkesson and Christensen [2004] speed up the

convergence by graph reduction and perform the linear approximation only on

some sections of the graph. Olson et al. [2006] apply a variant of Stochastic

Gradient Descent that recovers the robot trajectory even with poor initial estimates.

Kaess et al. [2007] propose incremental smoothing and mapping (iSAM) that,

unlike full graph SLAM problem that needs to be solved in batch mode, performs

incremental smoothing in which a new observation or pose variable is added to the

system without the need to re-build or re-calculate everything from scratch.

The work by [Kümmerle et al. 2011] presents a general framework, called g2o

(“general graph optimization”), to perform optimization for non-linear least square

problems like SLAM and BA (bundle adjustment [Triggs et al. 2000]). Similar

to [Kaess et al. 2007], g2o supports incremental optimization. It also exploits the

sparsity of the information matrix and therefore can be used to solve large-scale

SLAM problems containing around 10K variables (poses + map landmarks).

Although online solutions for pose graph SLAM have been presented, they are

not reliable for long-term mapping as the graph grows unbounded in time [Biber

and Duckett 2009]. Johannsson et al. [2013] propose a reduced pose graph

approach that does not grow with the duration of travel. It only scales with the size

of the environment. Although it is efficient for long-term operation in an indoor

environment of limited size, it is not suitable for large-scale environments.

In this research, we mainly focus on the SLAM front-end. However, the

integration of a back-end would be possible to run in parallel to the front-end, with

the addition of inter-frame motion information to our appearance-only based

system.
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2.2 BoW Image Retrieval

Bag-of-words is a popular model that has been used in image classification,

objection recognition, and appearance-based navigation. Because of its simplicity

and search efficiency it has been used as a successful method in Web search

engines for large-scale image and document retrieval [Sivic and Zisserman 2003,

Nister and Stewenius 2006, Philbin et al. 2007].

The bag-of-words model represents an image by a sparse vector of visual

words. Image features, such as SIFTs [Lowe 2004], are sampled and clustered

(e.g. using k-means) in order to quantize the space into a discrete set of visual

words. The centroid of clusters are then considered as visual words which form

the visual vocabulary. Once a new image arrives, its local features are extracted

and vector-quantized into the visual words. Each word might be weighed by some

score which is either the word frequency in the image (i.e. “term frequency” or tf )

or the “term frequency-inverse document frequency” or tf-idf [Sivic and

Zisserman 2003]. A histogram of weighted visual words, which is typically sparse,

is then built and used to represent the image.

An inverted index file, used in the BoW framework, is an efficient image search

tool in which the visual words are mapped to the database images. Each visual word

serves as a table index and points to the indices of the database images in which the

word occurs. Since not every image contains every word and also each word does

not occur in every image, the retrieval through inverted-index file is fast.

2.2.1 Visual Vocabulary Construction and Vector-Quantization

A visual vocabulary is required to vector-quantize image descriptors into sparse

representations. Vocabulary is typically built in an offline processing from a

training dataset. The sampled feature descriptors from training data are clustered
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and the cluster centroids are considered as visual words. The set of visual words

form the visual vocabulary. The clustering is usually done through k-means [Sivic

and Zisserman 2003] or variations [Philbin et al. 2007, Nister and Stewenius

2006]. K-means has the time complexity O(kN) per iteration, where N and k are

the number of data points and clusters, respectively, and thus it is not feasible for

large vocabularies (k >10K). Nister and Stewenius [2006] have reduced this time

complexity to O(N logk) by using hierarchic k-means (HKM) approach [Gersho

and Gray 1991] to create vocabulary trees. Other approaches replace the nearest

neighbor search of k-means by approximate search algorithms, such as KD-trees,

to reduce the time complexity. Philbin et al. [2007; 2008] and Cummins and

Newman [2009] demonstrate that this approach has similar complexity to

vocabulary trees but has far better performance.

Vector-quantization as a nearest-neighbor classification maps the

high-dimensional feature descriptors into visual words. When the vocabulary is

large, the vector-quantization process can be computationally expensive for

real-time search. An efficient approximate nearest-neighbor search method is

therefore required to speed up the search while maintaining the accuracy.

2.2.2 Perceptual Aliasing and BoW

Perceptual aliasing occurs when different places in the environment are perceived

as identical. In this thesis, two types of perceptual aliasing (PA) are referred to.

The first type is the natural perceptual aliasing that is caused by the environment,

e.g. due to repetitive structure that make different locations look similar and thus

the place recognition difficult. Figure 2.1 illustrates an example of this type of

PA. Down-weighing the words that repeat often in the dataset, by using an inverse-

document-frequency (idf) weighting scheme [Sivic and Zisserman 2003], can help

to reduce this perceptual aliasing.
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Figure 2.1: An example of perceptual aliasing

The other type is the “artificial” perceptual aliasing inherent in the BoW model

—the error caused by the vector-quantization process in which feature descriptors

are mapped to visual words of the vocabulary. This PA happens when two

descriptors from different objects in the scene fall into the same cluster (i.e. map to

the same visual word), and therefore are forced to match. This problem can be

overcome by increasing the size of the vocabulary or by a soft quantization scheme

(see Section 2.2.3).

2.2.3 BoW for Large-Scale Image Retrieval

Most state-of-the-art large-scale image retrieval systems rely on the BoW

model [Sivic and Zisserman 2003, Nister and Stewenius 2006, Philbin et al. 2007,

Zhang et al. 2010b, Philbin et al. 2008, Wu et al. 2009, Jegou et al. 2008; 2007,

Wang et al. 2011, Zhou et al. 2013, Zhang et al. 2011, Zhou et al. 2011, Wang

et al. 2013a, Zhou et al. 2010, Zheng et al. 2013]. However, the traditional BoW

generates many inaccurate matches because of the error in the vector-quantization

process where visual features are mapped to visual words, which diminishes the

discriminative power of the local descriptors. Two types of solutions have been

proposed to tackle this problem. One type tries to improve the discriminative

ability of local features. Soft quantization [Philbin et al. 2008, Jegou et al. 2007] is

an example in which each local descriptor is mapped to a weighted set of visual
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words, i.e. its k nearest words, to improve the matching between images. This is in

contrast to “hard-assignment” that maps the local descriptor to only one visual

word. Hamming embedding by Jegou et al. [2008] is another approach, that

attaches to each quantized descriptor a binary signature that encodes the

localization of that descriptor within its Voronoi cell. Building high-order features

has also been proposed to boost the discriminative power of local features. [Wu

et al. 2009] bundle SIFT image features within local MSER regions, while [Zhang

et al. 2010b] group the co-occurring features within a certain spatial distance

threshold so that the local feature group is scale invariant and repeatable.

The other type of approaches utilize spatial information among features/words

in the BoW model. Some methods work as a post-processing step in which the

geometric consistency among matched features are verified and the matches that

do not satisfy the geometric constraints are discarded. One popular approach is

RANSAC [Fischler and Bolles 1981] which is usually utilized to improve the result

of BoW [Philbin et al. 2007].

Since the global geometric verification is computationally expensive, it is

usually applied only to the top-ranked images obtained after the searching step.

Sivic and Zisserman [2003] propose geometric verification by checking the

neighboring feature consistency. However, this approach can be sensitive to the

background noise. Jegou et al. [2008] integrate weak geometric consistency

(WGC) into the inverted index, enforcing descriptors to agree on the scale and

orientation. They exploit partial geometrical information without explicitly

estimating the full transformation mapping the features from one image to another.

There are other approaches that encode the spatial relationships among

features into image representation or an inverted index. Zhang et al. [2011]

introduce the geometry-preserving visual phrase (GVP), a set of words in a

particular spatial layout, to encode the spatial information among words in an
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image into the BoW representation and inverted index. Using GVPs they capture

only translation invariance. While it is possible to add more invariance such as

scale and rotation, but that increases the dimension of offset space and incurs more

computational cost and memory usage. Wang et al. [2011] try to enhance the

discriminative power of visual words using the spatial context that is obtained

from the statistics in a local neighborhood of invariant features. Cao et al. [2010]

propose ordered bag-of-features that are obtained by projecting local image

features into certain lines and circles to capture some basic geometric information

in images. However, when there are too many image features, encoding such

geometric relationships can be expensive.

In summary, utilizing geometric information among visual features to improve

the performance of BoW’s search has been studied in many ways. The methods

that perform geometric verification (using RANSAC) in a post-processing step can

be very expensive in large-scale applications, as retrieved images are too many to

process and RANSAC estimation can be expensive. Other methods that encode the

spatial relationships among visual words into the image representation, make the

image representation very complex, which increases the image matching time.

2.3 Related Work on Appearance-based SLAM

Appearance-based SLAM (aSLAM) has been gaining more popularity in the past

decade. The method makes use of rich appearance information from vision sensors

to handle loop closure detections. In this section, we will describe the major

research that has been done in this field.

Kuipers [1978] pioneered the concept of topological maps for mobile robotics.

Much research has been done in the context of appearance-based localization and

SLAM using topological maps. Among the works that have studied the issues
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relevant to appearance-based loop closure detection, there has been extensive

research towards making image representations and image search more efficient.

Many methods employ global features to describe the entire image. Ulrich and

Nourbakhsh [2000] propose to use color histograms as compact image

representations that exhibit some invariance properties to rotation and translation

changes. Sünderhauf and Protzel [2011] propose an appearance-based place

recognition system that can simply implement the image descriptors. They use

BRIEF-Gist descriptors, inspired by the work in [Oliva and Torralba 2006; 2001]

that examines holistic descriptors and introduces Gist.

Compared to local descriptors, global ones are not very robust to illumination

and perspective changes. Wang et al. [2005] propose a global localization strategy

that uses SIFT descriptors to represent local features. They build a visual

vocabulary upon the features, and images are represented by visual words that are

the indices of an inverted index system. They employ RANSAC for geometric

verification to confirm putative matches. Many other works have proposed

extensions to this basic approach. Newman et al. [2006] use BoW representation

for images, where the vocabulary is built using agglomerative clustering. They

combine a 3D laser ranging sensor with vision, for loop closure detection. They

use vision for loop closure detection and laser readings for geometric map

building. They construct a similarity matrix that shows the similarity between all

images and then detect loop closures as off-diagonal stripes in the similarity

matrix. They try to remove the effects of repetitive features (perceptual aliasing) in

the similarity matrix by a rank reduction technique. Filliat [2007] proposes a new

approach that builds the visual vocabulary online and incrementally.

Other works have also tried to remove the effect of perceptual aliasing, by

representing images using discriminant local features instead of visual words. Li

and Kosecka [2006] and Zhang [2011] propose reducing the number of features in

19



each image. They keep track of the local features that are repeatable over time.

However, these approaches are more specific to the navigation problems where the

data is sequential and there exists considerable overlap between consecutive

images. Kawewong et al. [2011] use position-invariant robust features (PIRFs) to

preserve the distinctive power of local features. PIRFs are detected incrementally

and despite their simplicity they are robust against dynamic changes. These

approaches use direct feature matching between locations of the map and the

query image. Although such matching methods are reliable, they are not efficient

for large-scale environments.

Probabilistic frameworks have shown the most suitable solutions to deal with

uncertainties in mapping and localization. Kröse and Bunschoten [1999] were the

first to propose a probabilistic framework for appearance-based localization. They

use Principal Component Analysis (PCA) to reduce the dimensionality of images.

Linear PCA is invariant to rotation, scale and translation but not illumination.

The work by Angeli et al. [2008] and Cummins and Newman [2008; 2009]

addresses SLAM issues more properly. They both use BoW representations,

however their systems differ in several aspects. Angeli et al. [2008] use a Bayesian

filtering framework to compute the likelihoods of loop closure candidates. They

use SIFT features and local color histograms to provide more distinct image

representations. They then build two visual vocabularies incrementally, without

any prior information on the environment and use two BoW representations as an

input of a Bayesian filtering framework to estimate the likelihood of loop closures.

FAB-MAP [Cummins and Newman 2008; 2011] is another major work in

appearance-based SLAM that proposes a probabilistic framework over the

bag-of-words representation of locations for estimating loop closure likelihoods.

Along with the visual vocabulary they learn a Chow Liu tree as an offline process

to capture the co-occurrences of visual words. Therefore they can handle the
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perceptual aliasing problem more properly.

Maddern et al. [2011; 2012] use particle filters in combination with FAB-MAP.

They incorporate odometric information into the place recognition process to

improve the robustness of FAB-MAP.

Milford and Wyeth [2012] proposed a SeqSLAM approach, to tackle the

problem of perceptual aliasing on long-term datasets. Their datasets comprise two

runs along the same route, taken at different times of the day and under severe

weather conditions with a changing environment. Instead of feature-based image

matching methods, they use whole image template matching for the scene

recognition. They divide each image into normalized patches and calculate the

distance between two images by the Sum of Absolute Differences. A matrix of

differences between all images is stored to find the best matching sequence of

images to the query at search time. Experiments on two datasets show that their

method outperforms FAB-MAP when tackling extreme perceptual aliasing.

However, their image representation and matching approach is not suitable for

navigation in large-scale environments. Sünderhauf et al. [2013] run their own

implementation of SeqSLAM on a dataset taken four times, once in every season

on the same route of 728km. They show that the good matching performance of

SeqSLAM highly depends on the stability and repeatability of viewpoints in the

different traversals of the environment. With mild shifts in viewpoints the

performance drops dramatically.

2.3.1 Large-Scale SLAM

In spite of the considerable amount of work on SLAM, research in large-scale

environments is not extensive and not yet sufficiently well-developed. When the

size of the map increases, handling the map and localization become major

problems. Many appearance-based navigation methods for large-scale
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environments have been proposed, however most of them are only demonstrated to

operate on image datasets of up to 30,000 images [Milford and Wyeth 2008; 2012,

Schindler et al. 2007]. The largest experiment that we are aware of is the work by

Sünderhauf and Protzel [2011] and FAB-MAP by Cummins and Newman [2009].

Sünderhauf and Protzel [2011] propose a pose graph SLAM system that is

evaluated with a dataset containing 58,758 images collected from a 66km

trajectory. Although the dataset has several loops, its traversal direction does not

change, which is suitable to evaluate their place recognition system. The

appearance-based place recognition systems that use the appearance of whole

scenes (a.k.a. holistic descriptors) for place recognition might fail to recognize the

places revisited from different directions.

Cummins and Newman [2009] with FAB-MAP2 have conducted the largest

experiment, on a dataset of 103,000 images captured from a 1,000km trajectory.

They built FAB-MAP2 upon the basic FAB-MAP system proposed in [Cummins

and Newman 2008]. Their basic FAB-MAP model had two drawbacks: first, it was

not scalable to large datasets and second, it was not suitable for real-time SLAM.

Because of the high computational cost of their SLAM algorithm, it was only

applicable to maps up to around 1,000 locations. They tried to improve their basic

algorithm in a number of ways to deal with large-scale environments. In

[Cummins and Newman 2009], they tried to make their system scalable by

introducing sparse approximations to their FAB-MAP model and hence

accommodating inverted index approaches into their probabilistic framework to

speed up the search. Moreover, they added a geometric post-processing

verification stage to discard the false loop closure candidates. They also reduced

the construction time of the visual vocabulary by using approximate nearest

neighbor search algorithms for k-means, and learned an approximate version of a

Chow Liu tree to reduce its memory usage and computational complexity
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Chow-Liu tree. They demonstrate that in large-scale datasets, when the size of the

vocabulary is larger, using a Chow Liu tree worsens the likelihood estimates in

some fraction of the dataset and it is no longer more effective than naı̈ve Bayes at

high precision. FAB-MAP2 achieved a recall rate of 3.1% at 100% precision and

14.3% at 90% precision. It can be observed from their low recall rate that the

large-scale problem is very challenging and is not considered solved.

2.4 Nearest-Neighbor Search

Bag-of-words image search plays a key role in large-scale appearance-based

navigation and is one focus of this research. For search in a very large collection of

images, a vocabulary of hundreds of thousands or even millions of visual words is

required. Vector-quantization with such large vocabularies is an expensive

nearest-neighbor (NN) search process that affects the computational time of BoW

search dramatically. In this section, we briefly review the background of

nearest-neighbor search and the relevant related work.

Nearest neighbor search, also known as similarity search or proximity search,

can be defined as one of the following problems:

– k-Nearest Neighbor Search (kNN): Given a set D ⊂ U of n objects (points in

vector space Rd), and a query Q⊂U , construct a data structure that efficiently

returns the closest k objects in D to the query Q. 1NN search is the special

case of kNN that returns the single nearest neighbor to the query.

– Range Search: Given a setD⊂U of n objects (points in vector space Rd), and

a query Q ⊂ U , construct a data structure that efficiently returns the objects

X that are within a given distance r from the query: {X ⊂D | ρ(X ,Q)≤ r},

where ρ is a distance measure.
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The naı̈ve solution to find the nearest neighbor is to compare the query to every

point in the dataset (linear search). This approach is very inefficient, as the search

time increases linearly with the size of the dataset. Other search algorithms

pre-process the data into a structure or index so as to reduce the number of

distance computations at search time [Bentley 1980]. However, these methods are

only efficient for low dimensions (d < 10). Many of the current algorithms still

suffer from a search time/space complexity that is exponential in dimensionality d;

as the dimensionality grows, the search time complexity gets close to the

complexity of the linear search. This is called the curse of dimensionality. In order

to improve the time complexity in high-dimensional spaces, approximate

algorithms can be used. In many applications, a fast approximate nearest neighbor

solution is more desirable than an exact but slow solution. Approximate nearest

neighbor (ANN) search algorithms are sometimes formulated as c-approximate

NN search methods that return an approximate nearest neighbor Xc, such that

ρ(Xc,Q)≤ cρ(X∗,Q), where X∗ is the closest point to the query Q.

In the following, we present an overview of the literature on nearest neighbor

search algorithms.

2.4.1 Space partitioning algorithms

Space partitioning algorithms have been utilized for NN search since the 1970s.

These methods mostly use tree-based index structures and apply branch and bound

techniques to prune the tree at search time. Search structures that have been

developed for vector spaces are also called spatial access or spatial index methods.

KD-trees, quad-trees, R-trees and X-trees are popular choices.

The classical KD-tree algorithm [Bentley 1975, Friedman et al. 1977, Bentley

1980] partitions the space by hyper-planes that are perpendicular to coordinate

axes. At the root of the tree a hyperplane orthogonal to one of the dimensions
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splits the data into two halves according to some splitting value, which is usually

the median or mean of the data to be partitioned. Each half is recursively

partitioned into two halves with a hyperplane through a different dimension.

Partitioning stops after logn levels, where n is the total number of data points, so

that at the bottom of the tree each leaf node corresponds to one data point. The

splitting values at each level are stored in the nodes. The query point is then

compared to the splitting value at each node while traversing the tree from root to

leaf to find the nearest neighbor. Since the leaf point is not necessarily the nearest

neighbor, to find approximate nearest neighbors, a backtrack step from the leaf

node is performed and the points that are closer to the query point in the tree are

examined. Instead of simple backtracking, Arya and Mount [1993] and Beis and

Lowe [1997] propose to use a Best-Bin-First (BBF) heuristic to perform the search

faster. BBF maintains a sorted queue of nodes that have been visited and expands

the bins in the order of their distance to the query point (priority search).

Silpa-Anan and Hartley [2008] proposed randomized KD-trees as an

improvement over the original KD-trees. A set of KD-trees is created and queried

instead of a single tree. In each random KD-tree, the data points are rotated

randomly, so that the initial choice of axes does not affect the points that are

retrieved. At query time, the same rotation is applied to the query point before

searching each tree. The union of the points returned by all KD-trees is the

candidate list. The best nearest neighbors are selected using linear search over the

candidate list.

Quad-trees [Samet 1984] recursively partition the space into quadrants. In R-

trees [Guttman 1984] data points are grouped into hyper-rectangles. The input to

the search is also a hyper-rectangle. These methods are inspired by the fact that

spatial data cannot be well-represented by point locations and rather needs to be

presented by multi-dimensional areas. A dynamic index structure is also used to
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efficiently update the tree. X-trees [Berchtold et al. 1996] has been proposed to

tackle a problem of R-tree-based structures: the overlap of bounding rectangles that

grows with increasing dimension. In X-trees, this overlap is minimized with a new

splitting strategy.

Hierarchical k-means trees (HKM), proposed by Fukunaga and Narendra

[1975], are another type of partitioning trees based on k-means clustering. The tree

is built by running k-means clustering recursively. k is called the branching factor.

Data points are first partitioned into k distinct clusters to form the nodes of the first

layer of the tree. Each cluster is recursively partitioned into k clusters and this

process continues until there are no more than k data points in each node. A

depth-first search is a common tree traversal approach for searching the tree. Muja

and Lowe [2009; 2014] propose to use priority queues to search the tree more

efficiently. Similar to the Best-Bin-First approach [Beis and Lowe 1997], when

traversing the tree, the unvisited branches of the nodes along the path are added to

the priority queue. When backtracking, the branches are extracted and expanded in

the order of the distance of their cluster centroid to the query.

Brin [1995] generalized Fukunaga and Narendra’s method to generic metric

space, by removing the cluster mean computation step and using some of the data

points as cluster centers.

2.4.2 Mapping-based techniques

Random projections [Kleinberg 1997, Kushilevitz et al. 2000] and

locality-sensitive hashing [Indyk and Motwani 1998, Indyk 2000] are popular

mapping-based techniques for c-approximate NN search. They have been

developed for high-dimensional approximate nearest neighbor search. These

techniques use random projections for dimensionality reduction. Kleinberg [1997]

first introduced the idea of random projections for NN search. His idea was later
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improved by Indyk and Motwani [1998] and Indyk [2000] who used non-linear

mapping based on Locality-Sensitive Hashing (LSH). LSH uses a family of hash

functions of the same type to create a hash value for each point of the dataset.

Each function reduces the dimensionality of the data by projection onto random

vectors. The data is then partitioned into bins by a uniform grid. Since the number

of bins can be still too large, a second hashing step is performed to obtain a smaller

hash value. At query time, the query point is mapped using the hash functions and

all the data points that are in the same bin as the query point are returned as

candidates. The final nearest neighbors are selected by a linear search through

candidate data points.

2.4.3 Graph-based search algorithms

Papadias [2000] constructs a graph over data points. He assumes that each data

point (e.g. an image configuration) is specified as a collection of components (e.g.

objects). Each point has the form of Xi = (V1, . . . ,Vm), where each Vj is an object

and can take values from a finite set (e.g. a set of squares of different sizes). The

objective is to find the point in the dataset that has the closest configuration to the

query Q. Papadias [2000] defines Xi and X j as neighbors if one can be converted to

the other by changing the value of one of its variables. Several heuristics to perform

hill-climbing on such a graph are proposed [Papadias 2000].

Paredes and Chávez [2005] aim at minimizing the number of distance

computations during the nearest neighbor search. A k-NN graph is built from

dataset points and when queried with a new point, the graph is used to estimate the

distance of all points to the query, using the fact that the shortest path between two

nodes is an upper bound on the distance between them. Using the upper and lower

bound estimates, Paredes and Chávez [2005] eliminate points that are far away

from the query point and exhaustively search in the remaining dataset.
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Lifshits and Zhang [2009] define a visibility graph and then perform nearest

neighbor search by a greedy routing over the graph. They make strong assumption

about the dataset.
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Chapter 3

The Graph Nearest Neighbor Search

(GNNS)

In this chapter, we present a graph-based approximate nearest neighbor search

algorithm (GNNS) and study the complexity and efficiency of the algorithm when

compared to widely-used NN search methods. GNNS builds a k-nearest neighbor

graph in an offline phase and when queried with a new point, it performs a greedy

search on the graph structure.

A background review on widely-used nearest neighbor search algorithms and

search indices was provided in the previous chapter. In the first section of this

chapter, we extend the review to previous research on k-NN graph construction

and graph-based search algorithms. In the second section, we first describe our

GNNS search algorithm and then provide theoretical guarantees for the accuracy

and computational complexity of the algorithm. Finally, we show the effectiveness

of this algorithm empirically.
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3.1 Related Work

3.1.1 k-Nearest-Neighbor Graph Construction

k-NN graphs are widely used in many applications of machine learning, data

mining, computer graphics, bio-informatics and others. A k-NN graph is a directed

graph G = (D,E), where D is the set of nodes (i.e. data points) and E is the set of

links. Node Xi is connected to node X j if X j is one of the k-NNs of Xi.

The naı̈ve construction of k-NN graph takes θ(dn2) time, where n is the

number of datapoints and d is the dimensionality. However, this solution is not

practical for large-scale applications. Earlier research on the exact construction of

k-NN graphs [Bentley 1980, Clarkson 1983, Vaidya 1989, Dickerson and

Eppstein 1996, Paredes et al. 2006] has tried to make the graph construction more

efficient computationally. Bentley [1980] proposed a multi-dimensional

divide-and-conquer method for the nearest-neighbor problem which takes

O(n logd−1 n) time in the worst case. Clarkson [1983] introduced a NN algorithm

with expected running time of O(cdn logn) for some constant c. Vaidya [1989]

also proposed an alternate approach using a modified form of quad-trees with a

worst case O((cd)dn logn) time for some constant c.

Alternative methods to solve the k-NN graph problem take advantage of the

proximity properties of the Voronoi diagram or its dual, Delaunay triangulation

(DT). Using an order (k+1) Voronoi diagram, for each point p in the dataset the

other k points lying in the same Voronoi region are chosen as the nearest neighbors

of p. Lee [1982] and Aggarwal et al. [1987] showed how to efficiently construct an

order k Voronoi diagram in O(k2n logn) and O(k2n+ n logn) time, respectively.

However, these methods are only efficient for small values of k in the plane.

Dickerson et al. [1992] and Eppstein and Erickson [1993] presented faster

algorithms that search a Delaunay triangulation. The former requires
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O(kn logk+n logn) time for the planar case and the latter O(kn+n logn) time for

the simpler L∞ metric. However, these approaches are not still efficient in high

dimensions. For higher dimensions, Dickerson and Eppstein [1996] make use of

the linear-sized Delaunay triangulation of [Bern et al. 1994] and propose a more

efficient search method using the higher dimensional Delaunay triangulation,

which is also called Steiner Delaunay triangulation. In Steiner DT extra points are

added at construction time to keep the triangles well-shaped and maximum vertex

degree of nodes bounded by a constant. For each point p in the dataset, a

breath-first search (by distance) on the Stiener DT finds the k nearest neighbors.

With an amortized analysis, Dickerson and Eppstein showed that the running time

of enumerating k nearest neighbors to each point of the dataset, in order, is

O(kn logn) and O(n logn+ kn) when order is not required. The preprocessing time

of Steiner DT construction is O(n logn). Although the method is theoretically

optimal, it has not been used in practice so far, perhaps because of the large hidden

constants involved in theoretical algorithms. Also since the Delaunay triangulation

is not unique, the result of construction is sensitive to the triangulation.

Paredes et al. [2006] developed a k-NN graph construction algorithm for a

general metric space where coordinate information is not necessarily available.

Their algorithm works well for low dimensions but is not efficient on high

dimensions. The authors empirically estimate the computational cost of O(c1n1.27)

(distance evaluations) for low and medium dimensions (d ≤ 16) and O(c2n1.90) for

higher dimensional space (d ' 24). They removed k from complexity

computations as based on their experiments k has only a mild impact on the

computational cost.

Since there is still no exact k-NN graph construction method that works well

in high dimensions, some effort has gone into building approximate k-NN graphs

[Chen et al. 2009, Dong et al. 2011, Wang et al. 2012]. A straightforward solution is
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employing an approximate nearest neighbor search algorithm, such as KD-trees and

locality sensitive hashing, to build a search index over data points and then using

the index structure to find the k-nearest neighbors of each point. One drawback of

this approach is that these nearest neighbor search methods have been developed

for the general NN-search problem in which the query points are not necessarily

inside the dataset. For the problem of k-NN graph construction the query points are

in the dataset and this approach might not be efficient because of the extra effort

that is made to produce better results for general queries.

Chen et al. [2009] proposed an approximate method which employs a

divide-and-conquer method and has been developed specifically for the l2 metric.

Datapoints are divided into possibly overlapping subsets, and the approximate

k-NN graph of subsets is recursively computed. The division part uses a spectral

bisection technique: a hyperplane bisects the datapoints according to the direction

of largest singular value. The paper proposes two ways to perform the divide step;

overlap and glue. In overlap, two overlapping subsets are generated and a

parameter α is tuned to change the size of the overlap area. In glue, another

separate area is used to merge the two disjoint subsets. In the conquer phase, if a

datapoint belongs to more than one subset (the points in the overlap or merging

zone), its k-nearest neighbors are selected based on its neighbors in each subset.

The time complexity of the algorithm is θ(dnt) for high dimensional data, where

t ∈ (1,2) is a function of the internal parameter α which is used to control the size

of the overlap area in the divide phase. k is removed from the complexity

computation assuming d, the dimensionality, dominates k.

Another recent work on approximate k-NN graph construction is an algorithm

by Dong et al. [2011], called NN-DESCENT. This simple method is based on the

principle that a neighbor of a neighbor is also likely to be a neighbor: If we start

with an approximation of a k-NN graph (can be a random graph) we can improve the
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approximation of the k-nearest neighbors of each datapoint by searching through the

neighbors of neighbors of each point. The authors quantify this observation with a

heuristic argument that suggests the algorithm works under some assumptions. The

computational complexity of the algorithm that has been computed empirically is

O(n1.14). One advantage of NN-DESCENT over the algorithm of [Chen et al. 2009]

is that it can work with arbitrary similarity measures.

Wang et al. [2012] and Wang et al. [2013b] proposed a divide-and-conquer

method to build an approximate graph for large-scale data. The method divides the

data-points into subsets, hierarchically and randomly. It builds an exact k-NN

graph over each subset and repeats the process until the multiple graphs can be

combined into a relatively accurate approximate k-NN graph. The authors

experimentally show considerable speedup over large datasets, compared to some

other similar methods.

3.1.2 k-NN Graph-based Search Algorithms

In this section, we review the related work on nearest neighbor search algorithms

that employ k-NN or a neighborhood graph as a search index.

Arya and Mount [1993] build a neighborhood graph as follows: for each point

p in the dataset D, they maintain the list of other points sorted by distance to p. The

closest point r in the list has a direct link to p. The other points whose distance to r is

less than the distance from p are removed from the list and a directed link between

p and any remaining point in the list is created. The graph search is performed

using a best-first strategy. The starting point is chosen by constructing a KD-tree

on the dataset (in a pre-processing phase) and searching the leaf node that contains

the query. That node will then be considered as the starting point for the graph

search. A heap is used to maintain the nearest neighbor candidates which are the

visited nodes (initially the starting point) and their neighbors, sorted based on their
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distance to the query. The closest candidate to the query that is retrieved from the

heap is the next node to expand. The method reduced the degree of the graph but at

the expense of increasing the number of search steps.

Sebastian and Kimia [2002] build a neighborhood graph for shape-based

indexing and search in a metric space. They use k-NN graph as a local

approximation to Delaunay graph that is used for Euclidean space. The search

strategy is best-first and starts from a few well-separated seeds. At each step the

search moves towards the extended-neighbors of the current node p and add them

to a priority queue. The extended-neighbors are the immediate neighbors of p as

well as the neighbors of neighbors of p that are τ-closer to the query with respect

to p, where τ is a fixed threshold (≥ 1.0). A neighbor of p, pnn, is called τ-closer

to query q w.r.t. p if d(pnn,q)≤ τd(p,q). The front element in the queue, that has

the smallest distance to the query, is then chosen to proceed the search from. If the

front element is not τ-closer to the query than the current node, the search will

stop and return the current node as the nearest neighbor.

Similarly and independently in [Hajebi et al. 2011], we proposed a

graph-based nearest neighbor search algorithm. We construct a k-NN graph and

when queried with a new point, perform hill climbing starting from a randomly

sampled node of the graph. The distance of the neighbors of the chosen seed from

the query is calculated and the closest neighbor to the query is chosen to proceed

the search from. If no neighbor is closer than the parent node, the search stops and

the parent node is returned as the approximate nearest neighbor. The paper

compares the method with randomized KD-trees and LSH and empirically shows

the effectiveness of our algorithm. We also provide theoretical guarantees for the

accuracy and computational complexity of the algorithm.

More recently, Aoyama et al. [2011], Wang and Li [2012] and Wang et al.

[2013b] have used similar greedy search strategies but with differently constructed
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neighborhood graphs. Aoyama et al. [2011] propose an undirected degree-reduced

k-nearest neighbor graph. The graph is constructed with an incremental procedure:

it starts with k′ = 1 and builds a k′-NN graph, it increments k′ and links the k′th

neighbor y to node x, only if node x is not reachable through the existing edges

when the search starts from y. This procedure continues until k′ = k. The number

of edges of each node is thereby reduced and is less than or equal to k. Wang et al.

[2013b] develop an effective data structure by combining a neighborhood graph

with a bridge graph to boost the performance of approximate NN search. The

authors demonstrate the effectiveness of their approach on a dataset of one billion

SIFT descriptors.

3.2 The Graph Nearest Neighbor Search Algorithm

(GNNS)

Our graph nearest neighbor search (GNNS) algorithm, described in this section,

builds a k-NN graph as the search structure, and when queried with a new point, it

performs hill-climbing starting from a randomly sampled node of the graph

[Hajebi et al. 2011]. In the following subsections, we explain the graph index

construction and the search algorithm in more detail. We also analyze the

complexity of GNNS and provide experimental results to demonstrate the

performance of GNNS compared to other search algorithms.

3.2.1 k-NN Graph Search Index

k-NN graph for the set of data-pointsD= {X1, . . . ,Xn} ∈Rd is a directed graph G =

(V,E), where V = D is the set of nodes and E ⊂ {〈Xi,X j〉 : i, j ∈ {1, . . . ,n}} is the

set of links. Node Xi is connected to node X j if X j is one of the k nearest neighbors

of Xi. The k nearest neighbors of node Xi are sorted and ranked based on their
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increasing distance to Xi. The computational complexity of the naı̈ve construction

of this graph is O(dn2), where n is the size of the dataset and d is the dimensionality.

In our application, the graph is constructed in an offline phase, so the cost of the

graph construction is not our concern.

The choice of k is crucial to have a good performance. A small k makes the

graph too sparse or disconnected so that the hill-climbing method frequently gets

stuck in local minima. Choosing a big k gives more flexibility during the run-

time, but consumes more memory and makes the offline graph construction more

expensive.

3.2.2 Algorithm Description

The GNNS Algorithm, which is basically a best-first search method to solve the K-

nearest neighbor search problem, is shown in Algorithm 1. Throughout this section,

we use capital K to indicate the number of queried neighbors, and small k to indicate

the number of neighbors to each point in the k-nearest neighbor graph. Starting from

a randomly chosen node in the k-NN graph, the algorithm replaces the current node

Yt−1 by the neighbor that is closest to the query:

Yt = argmin
Y∈N(Yt−1,E,G)

ρ(Y,Q),

where N(Y,E,G) returns the first E ≤ k neighbors of Y in G, and ρ is a distance

measure (we use Euclidean distance in our experiments). The algorithm terminates

after a fixed number of greedy moves T . If K = 1, we can alternatively terminate

when the algorithm reaches a node that is closer to the query than its best neighbor.

At termination, the closest K visited nodes to the query are returned as the K-nearest

neighbors. Figure 3.1 illustrates the algorithm on a simple nearest neighbor graph

with query Q, K = 1 and E = 3.
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Figure 3.1: The GNNS Algorithm on a simple nearest neighbor graph.

Algorithm 1 The Graph Nearest Neighbor Search (GNNS) algorithm for K-NN
Search Problems.
Input: A k-NN graph G = (D,E), a query point Q, the number of required nearest
neighbors K, the number of random restarts R, the number of greedy steps T , and
the number of expansions E.
Output: The K nearest approximate neighbors to Q

ρ is a distance function. N(Y,E,G) returns the first E neighbors of node Y in G.
W = {}.
U = {}.
for r = 1, . . . ,R do

Y0: a point drawn randomly from a uniform distribution over D.
for t = 1, . . . ,T do

Yt = argminY∈N(Yt−1,E,G)ρ(Y,Q).
W =W

⋃
N(Yt−1,E,G).

U = U
⋃
{ρ(Y,Q) : Y ∈ N(Yt−1,E,G)}.

end for
end for
Sort U , pick the first K elements, and return the corresponding elements inW .

Parameters R, T , and E specify the computational budget of the algorithm. By

increasing each of them, the algorithm spends more time in search and returns a

more accurate result. The difference between E and k and K should be noted. E and

K are two input parameters to the search algorithm (online), while k is a parameter

of the k-NN tree construction algorithm (offline). Given a query point Q, the search

algorithm has to find the K-nearest neighbors of Q. The algorithm, in each greedy

step, examines only E out of k neighbors (of the current node) to choose the next

node. Hence, it effectively works on an E-NN graph.
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Next, we analyze the performance of the GNNS algorithm for the nearest

neighbor search problem (K = 1).

3.2.3 Theoretical Analysis

Theorem 1. Consider the version of the GNNS algorithm that terminates when the

greedy procedure terminates in a local minimum. Assume that the n data points

are drawn uniformly randomly from a d-dimensional hypercube of volume 1. Let

0 < δ < 1. Choose M such that

n≥ (Md−1)(d logM+ log1/δ ). (3.1)

Partition the unit hypercube into hypercubical cells of side equal to 1/M.

Denote the set of cubical cells by {A1, . . . ,AMd}. Construct a k-NN graph G by

connecting each point X ∈ Ai to k ≥ 2d arbitrary points (if exist) each in a

neighboring cell of Ai. The set of neighboring cells of Ai is denoted by

Vi = {A j :
∥∥Ai−A j

∥∥
1 = 1/M}, where the

∥∥Ai−A j
∥∥

1 is the L1 distance between

the center of two cells, Ai and A j. For a cell Ai there would be at most two

immediate neighbors on either side and in each dimension, thus |Vi| ≤ 2d.

Then with probability at least 1− δ , for any query point Q and any starting

point Y0, the GNNS algorithm returns an approximate nearest neighbor to Q, whose

distance from the exact nearest neighbor is no more than
√

d
M , and its computational

cost is bounded by

min{nd, Md2}.

Proof. As we discretize each hypercube edge into M equal intervals, the unit

hypercube is partitioned into Md cube cells of volume (1/M)d , {A1, . . . ,AMd}. We
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compute the probability that there exists at least one point in each cell.

P
(
∀ j, ∃i, Xi ∈ A j

)
= 1−P

(
∃ j, ∀i, Xi /∈ A j

)
= 1−P

Md⋃
j=1

∀i, Xi /∈ A j


≥ 1−

Md

∑
j=1

P
(
∀i, Xi /∈ A j

)
= 1−Md

(
1− 1

Md

)n

.

Let Md
(

1− 1
Md

)n
≤ δ . After reordering, we get

n≥ d logM+ log1/δ

log
(

1+ 1
Md−1

) .

Because log(1+ 1
Md−1)≤

1
Md−1 , we get

n≥ (Md−1)(d logM+ log1/δ ).

In summary, we have shown that for any 0 < δ < 1, if Inequality (3.1) holds,

then P
(
∀ j, ∃i, Xi ∈ A j

)
≥ 1− δ . Thus, with probability 1− δ all cells contain at

least one data point.

Now let X ∈ Ai be an arbitrary point in D, and Q ∈ Aq be a query point that

is not necessarily in D. There are at most 2d cells in Vi. Under the condition that

all cells contain at least one data point, there is at least one cell Ak in Vi such that∥∥Ak−Aq
∥∥

1 <
∥∥Ai−Aq

∥∥
1, which is easy to see because we use L1 norm. Thus, the

greedy approach makes progress. Further, recall that each axis is partitioned into

M intervals. Hence, the algorithm takes at most Md steps, and in each step, an

arbitrary point from the closest cell, Ak, to the query is chosen to proceed the search

from. Therefore, at most Md×2d distance computations are needed until we get to

the query cell, Aq. The number of points in Aq is unknown. An exact solution will

require to compute the distance of all points in Aq to Q. An approximate solution
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will return an arbitrary point from Aq as an approximate nearest neighbor to Q,

whose distance from the exact nearest neighbor is no more than
√

d
M . Thus, the

computational complexity for an approximate solution will be min{nd, 2Md2}.

Remark. Because M = O(n1/d), the computational cost is min{nd, n1/dd2}. As

a data point is not visited more than once during the graph search, n1/dd2 ≤ nd.

The theorem can be proven for other distributions. The crucial assumption is the

assumption on the independence of the data points. The uniformity assumption is

made to simplify the presentation.

3.3 Experiments

To validate our method GNNS, we compared the performance of our algorithm

with state-of-the-art nearest neighbor search techniques: randomized KD-trees with

the best-bin-first search heuristic and LSH1. The experiments are carried out on

a real-world publicly available image dataset [Howard and Roy 2003] as well as

our synthetically generated dataset. We compare the methods in terms of both the

speedup over the linear search and the number of Euclidean distance computations.

First, we explain the experiments with the real-world datasets. We generated

five datasets of 17,000, 50,000, 118,000 and 204,000 (128-dimensional) SIFT

descriptors2 [Lowe 2004]. For each dataset, the query set containing 500 SIFT

descriptors is sampled from different images than the ones used to create the

dataset. The experiments are performed for K = 1 and 30. The accuracy is

measured by first computing the percentage of the K nearest neighbors reported

correctly, and then averaging over 500 queries.

1We used the publicly available implementations of KD-trees [http://www.cs.ubc.ca/
˜mariusm/index.php/FLANN/FLANN] and LSH [http://www.mit.edu/˜andoni/
LSH/]

2We used SIFT descriptors due to their popularity in feature matching applications.
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For each dataset, instead of building a new graph for each value of E, we

constructed a single large graph with k = 1000, and re-used it in all experiments.

We exhaustively tried LSH and KD-trees with different values of parameters and

chose combinations that result in better speedup and precision (parameter sweep).

In Figures 3.2, 3.3 and 3.5, K, the number of NNs returned by algorithms, is set

to 1; and in Figure 3.4, K is set to 30. These figures are produced by varying the

number of node expansions E; The other parameter R is fixed and set to 1 and T is

not used as we alternatively terminated the search when it reached the node which

is better than its neighbors.

Figures 3.2 and 3.4 compare different search methods in terms of their speedup

over linear search, while Figure 3.3 compares the methods in terms of the number of

distance computations that they perform (normalized by dividing over the number

of distance computations that the linear search performs). The experiments have

been performed on datasets of different sizes. The error bars, shown in all figures,

are standard deviations over 500 queries. As can be seen in these figures, the GNNS

method outperforms both the KD-trees and LSH algorithms. The figures also show

how the performance improves with the size of the dataset.

The second set of experiments were performed on synthetically generated

datasets of different dimensions to show how the performances of different

methods degrade as dimensionality increases. To construct a dataset of dimension

d, we sampled 50,000 vectors from the uniform distribution over [0,1]d . We also

sampled 500 query vectors from the same distribution. Figure 3.5 show the results

for the randomly generated datasets. Figure 3.5(a) compares GNNS and

randomized KD-trees. The GNNS method outperforms the KD-trees.

Figure 3.5(b) shows the results for the LSH method, which is much inferior to the

two other methods. The figures also show how the speedup of different algorithms

with respect to the linear search degrades as we increase the dimensionality and

41



the precision.

3.4 Summary

In this chapter, we present a graph-based approximate NN-search algorithm, called

GNNS. We analyze GNNS and obtain upper bounds on the number of iterations

before the algorithm finds an approximate nearest neighbor. We also discuss that

the k-NN graph index used in our algorithm has an expensive construction; however

there is a large amount of research to improve the computational complexity of

graph construction.

We evaluate the performance of GNNS by comparing it with popular NN

search methods, randomized KD-trees and LSH, in terms of the search precision

and speedup over the baseline (linear search). We also examine and compare the

performance of all algorithms when the size of datasets and data dimensionality

change. Our experiments show the superior performance and effectiveness of

GNNS on high dimensional real-world datasets as well as synthetically generated

datasets.
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Figure 3.2: Performance comparison of GNNS, KD-trees and LSH on datasets of
(a) 17K, (b) 50K, (c) 118K and (d) 204K points for 1-NN search problem (K = 1).
The gray dashed line indicates the speedup of 1.
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Figure 3.3: Performance comparison of GNNS, KD-trees and LSH on datasets of
(a) 17K, (b) 50K, (c) 118K and (d) 204K points for 1-NN search problem (K = 1).
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Figure 3.4: Performance comparison of GNNS, KD-trees and LSH on datasets of
(a) 17K, (b) 50K, (c) 118K and (d) 204K points for 30-NN search problem (K = 30).
The gray dashed line indicates the speedup of 1.
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Figure 3.5: Search speedup and precision for data of varying dimensionality (1-NN
search). GNNS is compared with KD-trees (a) and LSH (b). Datasets have 50k
points. The gray dashed line indicates the speedup of 1.
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Chapter 4

Vector Quantization for SLAM

In large-scale environments, SLAM maps contain a large number of images to

match in order to solve the loop closure detection problem. The image search in

such large maps is challenging and still an open problem. Although BoW is an

efficient search technique, its vector-quantization (VQ) step can be

computationally expensive. Vector-quantization maps the image feature

descriptors to the words in a visual vocabulary. Typically hundreds to thousands of

features are extracted from an image and need to be matched against tens or

hundreds of thousands of visual words. Approximate nearest neighbor search

algorithms, such as hierarchical k-means tree [Nister and Stewenius 2006] and

randomized KD-trees [Silpa-Anan and Hartley 2008], have been used to speed up

the quantization process, however at the cost of search accuracy.

In this chapter, we propose an efficient search algorithm to improve the

performance of vector-quantization in a BoW-based appearance SLAM, which is

another main contribution of this thesis. We employ the approximate nearest

neighbor search algorithm (GNNS) presented in the previous chapter to solve the

VQ. We show that the graph-based search structure used in GNNS can efficiently

be integrated into the BoW model and the SLAM framework and that we can

exploit their properties to increase the efficiency of the system. As these properties
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are difficult to exploit by other search indices, this motivates the use of GNNS

rather than other search algorithms in solving the loop closure detection problem.

We experimentally show that GNNS, when applied to solve the

vector-quantization problem, outperforms the state-of-the-art search methods in

terms of search precision and speedup over the baseline linear search.

This chapter is organized as follows. In Section 4.1, we describe the

construction of BoW’s vocabulary and the graph structure as part of the offline

pre-processing of our system and also discuss their space and time complexity. In

Sections 4.2 and 4.3, we show how GNNS can exploit the sequential dependency

in SLAM data as well as the perceptual aliasing in BoW to improve the search.

Finally, we provide experimental results in Section 4.4 to demonstrate the

effectiveness of our vector-quantization method.

4.1 Graph Vocabulary Construction

In the BoW model, the vocabulary is usually constructed using k-means clustering.

In an offline phase, the feature descriptors extracted from a training dataset are

clustered and the centroids of clusters are used to represent the visual words of the

vocabulary. The standard k-means clustering using linear search is expensive and

therefore not practical for building large vocabularies. The hierarchical k-means

method (HKM) [Nister and Stewenius 2006] has been proposed to reduce the

computational cost of k-means. Philbin et al. [2008] also propose a modification of

k-means where the exact nearest neighbor search is replaced by an approximate

NN-search algorithm, such as KD-trees. They show that this modification achieves

the complexity of HKM, and demonstrate that approximate k-means (AKM)

outperforms HKM when applied to the vector-quantization problem.

Once the vocabulary is built, we can construct the k-NN graph over the visual
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words, such that each node of the graph corresponds to a visual word in the

vocabulary. However, the graph construction is also a computationally expensive

process especially when the dataset is large. Even though this search index is

constructed only once offline, it is still desirable to minimize its computational

cost. Similar to AKM [Philbin et al. 2008], an approximate NN-search method can

be adopted to speed up the k-NN graph construction. Such other approximation

methods have been studied in Section 3.1.1.

The time complexity of graph construction is negligible with respect to the

time complexity of the k-means clustering and we can show that it can be

considered as a small additional cost to the last iteration of k-means: In every

iteration of k-means, the distance of data points to each cluster centroid is

computed to update their membership in the new clusters, and this continues until

convergence. Given n data points and C clusters’ centroids1, the complexity of

each iteration is then O(nC). The k-NN graph construction, can be embedded into

k-means processing as follows: in the last iteration, in addition to other data

points, the distance of each centroid from the other centroids is computed and the

nearest neighbors are used to build the k-NN graph. The additional computational

cost is negligible, as C� n. The complexity of the last iteration will then change

to O((n + C)C) which is slightly higher than O(nC). This shows that the

complexity of graph construction is comparable to the complexity of one iteration

of k-means clustering and in applications where k-means clustering is performed

(like in vocabulary construction for BoW), the construction time of the

graph-based index is absorbed by the k-means algorithm.

A k-NN graph has space complexity of O(nk). As the memory increases

linearly with the size of the vocabulary, the k-NN graph might not be as scalable as

1The number of clusters generated by k-means is generally denoted by “k”, however to avoid
confusion with other k and K notations we use for k-NN graph and K-NN search, we use C to
denote the number of cluster centroids.
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KD-trees and HKM structures. However, as shown in [Cummins and Newman

2009], for a large-scale SLAM application (∼1000km trajectory) a vocabulary of

100,000 words suffices. The memory consumption of a k-NN graph built over a

vocabulary of this size is not major practical problem for our algorithm. For

example, a 1000-NN graph built over a 100,000-word vocabulary requires

100,000×1000×4Bytes∼381M of memory. Later in this chapter, we

experimentally show that reducing the size of a k-NN graph by half, which can be

obtained by changing the branching factor k to k/2, decreases the accuracy of VQ

by only 2 to 7%. This degradation has a negligible effect on the result of image

matching and loop closure detection.

4.2 Exploiting Sequential Dependencies in Data

The sequential property of data can be utilized to the advantage of image retrieval.

Unlike many image retrieval and classification applications that search in a pool

of unordered images, in appearance-based SLAM we can take advantage of the

temporal coherency of images to make the image search for loop closure detection

efficient. We propose to use GNNS for vector-quantization. In standard GNNS,

search is initiated from a random node. By taking the sequential property of images

into account, we can replace the random initiation of GNNS by a smarter method:

sequential images usually have some overlap with their neighboring images and

hence share a certain amount of features and visual words. This property can reduce

the amount of computations required for the vector-quantization step, as we can

quantize a feature once in the image where it is first observed, and use its visual

word in subsequent images as long as the feature is observed. This requires us

to match each new frame to the previous frame(s) to find the repeatable features.

This step does not incur a significant cost as feature matching in two images can
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be performed efficiently and can in fact incur no additional cost if the matching

between consequent frames is already done in the process of key-frame detection: a

new frame is matched against the previous key-frame in order to decide whether it

is sufficiently different from the previous key-frame, in terms of appearance, to be

considered a new location in the map. This process is done through direct feature

matching between images [Zhang et al. 2010a].

Our approach works as follows: once a new image is captured, the features are

extracted. Each feature is vector-quantized through GNNS. Let f be a feature in

the current image that has a match f ′ in the previous key-frame. Let the visual

word assigned to f ′ be w′. Intuitively, there is a good chance that the visual word

w′ is also the word or one of the neighbors of the word corresponding to feature

f . Therefore we start the GNNS search from w′, rather than a random node (see

Figure 4.1 and Algorithms 2 and 3). This can significantly reduce the number of

iterations and distance computations in the GNNS search. This is an advantage of

the graph-based index over other search indices when images to be processed are

temporally dependent as in visual SLAM, as it is not trivial to employ such prior

knowledge in other search indices. Experimental results are shown in the following

section.

4.3 Exploiting the Perceptual Aliasing Problem in

BoW

As described in the last section, the sequential dependencies in data can improve

the speedup of VQ on the features that have a match in the previous key-frame. For

each feature in the current frame, we find the first nearest neighbor (1-NN) feature

in the previous frame. The 1-NN is then verified as a true match if it passes the

distance-ratio test (where the ratio between the distances of the closest and second

51



  

f' f

Im
i-1

Im
i

w
2

w
1

w
5

w
4

w
3

w
2

w
1

w
5

w
4

w
3

Current 
image i

Vocabulary Graph index

Retrieve the word 
assigned to f'

Start GNNS from w
2

match

(a)

(b) (c)

Figure 4.1: Vector-quantization with GNNS. (a) The match to the given feature, f ,
is found in the previous image; (b) The corresponding word to the matched feature
is retrieved (w2 in this example); (c) The word is used to start the GNNS from. The
result of GNNS is the word that will be assigned to f .
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closest neighbor from the query feature is below some threshold [Lowe 2004]).

However, for features that do not have a true match, GNNS will normally start the

search from a random node. In this section, we explain how we can improve the

VQ speedup on non-matched features by taking advantage of the perceptual aliasing

problem in BoW.

Perceptual aliasing (identifying two different locations as similar) is a

well-known problem associated with the bag-of-words model, and is caused by the

vector-quantization process in BoW: two features that are not verified as matches

by the distance-ratio test might be mapped to the same visual word and hence

considered as a match by BoW. Although this VQ error is inevitable, we can

exploit it to improve the performance of GNNS on non-matched features as

follows.

Let f be a feature in the current frame and f ′′ be its 1-NN, but not its true

match (i.e. not verified by distance-ratio test), in the previous frame. Because of

the vector-quantization error inherent to BoW, f and f ′′ might fall into the same

cluster and thereby map to the same visual word. Taking this chance into account,

choosing the visual word assigned to f ′′, rather than a randomly sampled node, to

initiate GNNS, will be judicious. Our experimental results, in the following section,

show the effectiveness of our algorithm.

We call our proposed method sequential GNNS, or SGNNS, in the rest of the

thesis.

4.4 Vector-Quantization Performance Evaluation

In this section, we first describe the datasets and evaluation metrics we use in our

experiments in this Chapter. In Section 4.4.2, we investigate the performance of

sequential GNNS (SGNNS) while varying k in the k-NN graph and compare it to
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Algorithm 2 VQ with Sequential GNNS
Input: Fcurr: features in current image, Flast : features in the last key-frame, Wlast :
visual words assigned to Flast , M: maps the index of a feature in current image to
its 1NN feature in the last key-frame, G: k-NN graph index
Output: Wcurr: visual words corresponding to the features in
Fcurr

for i = 1 . . . |Fcurr| do
j = M(i).
seed =Wlast( j).
query = Fcurr(i).
Wcurr(i) = SGNNS(G,seed,query).

end for

Algorithm 3 SGNNS
Input: G: k-NN graph index, Q: query point, Y0: the seed to start the search from.
Output: The first nearest approximate neighbor to Q

ρ is a distance function. N(Y,G) returns the neighbors of node Y in G.
W = {}.
U = {}.
t = 1.
Yt = argminY∈N(Y0,G)ρ(Y,Q).
while ρ(Yt ,Q)< ρ(Yt−1,Q) do
W =W

⋃
Yt .

U = U
⋃

ρ(Yt ,Q).
t = t +1.
Yt = argminY∈N(Yt−1,G)ρ(Y,Q).

end while
Sort U , pick the first element, and return the corresponding element inW .

54



GNNS when applied to the problem of vector-quantization in SLAM. In

Section 4.4.3, we study how a k-NN graph constructed using approximate methods

can affect the performance of SGNNS on vector-quantization. And finally in

Section 4.4.4, we evaluate the performance of our method (SGNNS) by comparing

to hierarchical k-means (HKM) and randomized KD-trees, when applied to the

problem of vector-quantization in the context of visual SLAM.

4.4.1 Datasets and Evaluation Metric

We performed our experiments on two datasets: an outdoor and an indoor dataset.

The outdoor dataset is the City Center dataset2 (right-side sequence) from

[Cummins and Newman 2008] that contains 1237 images. The indoor dataset is a

lab dataset3 that has been taken inside a research laboratory using an ActivMedia

Pioneer P3-AT mobile robot equipped with a Dragonfly IEEE-1394 camera, and

contains 384 images. Different vocabularies with different sizes, 5000-word,

100,000-word and 204,000-word, have been used in our study, that have been

constructed using k-means clustering. We clustered 128-dimensional SIFT [Lowe

2004] feature descriptors extracted from different datasets than the

above-mentioned. The 100K and 204K-word vocabularies are used to evaluate the

performance of our method on large-scale data.

Our performance evaluation metric is the speedup over linear search while

fixing the search accuracy in terms of the true nearest neighbors found. We select

the parameters in KD-trees, HKM and GNNS/SGNNS such that we can obtain a

fixed accuracy and then calculate the speedup of the algorithms over the linear

search at the same accuracy. The speedup over linear search is computed as the

ratio of the query time by the ANN algorithm over the query time by linear search.

2http://www.robots.ox.ac.uk/˜mobile/IJRR_2008_Dataset/
3Dataset #8 (lab2) at http://webdocs.cs.ualberta.ca/˜hajebi/datasets/
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4.4.2 Accuracy vs. Speedup

In this section, we investigate how the performance of SGNNS and GNNS change

by varying k, the branching factor of the k-NN graph. Each row ((a), (b) and (c))

in Figure 4.2 shows the trade-off between the speedup (top row) and the accuracy

(bottom row) of GNNS versus SGNNS for vector-quantization on matched features

and all features.

The first two rows use the 5000-word vocabulary. Figure 4.2(a) and 4.2(b) show

the results on the Lab and City Center datasets, respectively. Figure 4.2(c) shows

the results of the City Center dataset with the 100K-word vocabulary.

Within all rows, increasing the branching factor k increases the accuracy of the

search at the expense of speedup. Increasing the branching factor increases memory

and construction time for the graph, as shown in Table 4.1.

In the experiments shown in Figure 4.2, GNNS search starts from randomly

chosen nodes for vector-quantization on all features. SGNNS1, exploiting the

sequential property of data (see Section 4.2) chooses better initiation seeds for VQ

on matched features. For non-matched features, the search is similar to GNNS.

SGNNS is similar to SGNNS1 for VQ on matched-features; however, it replaces

the random initiation of search on non-matched features with a smarter one, by

exploiting the perceptual aliasing problem (see Section 4.3). This improvement

over SGNNS1, both in terms of VQ accuracy and speedup, can be seen in

Figure 4.2.

Since in GNNS, the search starts from a random node for every feature,

matched or non-matched, the performance of the GNNS on “all features” is very

close to the one on “matched features”; therefore, we represent only the result for

“all features”. However, in SGNNS the search initiation is smarter, which results

in better performance over GNNS.

The better performance of SGNNS on “matched features” against “all
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Table 4.1: Construction time and memory usage of k-NN graphs with different
branching factors

5K Vocabulary

Branching factor 50 100 200 250 300

Build time (sec) 5.25 5.40 5.92 6.03 6.04

Memory (MB) 0.95 1.91 3.81 4.77 5.72

100K Vocabulary

Branching factor 50 100 200 300 400 500 1000

Build time (min) 25.30 25.88 25.64 24.80 25.96 26.17 27.13

Memory (MB) 19.07 38.15 76.29 114.44 152.58 190.73 381.47

features” curve can be explained as the result of choosing the initiation seeds for

the graph search more wisely for matched features than for non-matched features

(1-NNs verified by distance-ratio test versus 1-NNs that are not); and because the

number of non-matched features are higher than the number of matched features,

in our experiments, the performance on “all features” is slightly worse than that on

“matched features”.

We also observe from our experiments in Figure 4.2(b) and (c), that by

increasing the size of the vocabulary from 5K to 100K, the performance on all

features (with SGNNS) reduces and the curve gets closer to the GNNS curve. This

can be explained by the fact that increasing the size of the vocabulary decreases

the vector-quantization error in BoW, which is the property we were exploiting to

improve the performance on non-matched features. With a larger vocabulary, the

non-matched features and their 1-NNs (in the previous frame) are less likely to

share the same or a neighboring visual word.
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Figure 4.2: Accuracy and speedup of GNNS and SGNNS for different branching
factors
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4.4.3 Approximate Graph Construction

In this section, we investigate how the accuracy of vector-quantization with

SGNNS degrades by using an approximate graph instead of an exact one. When

the graph construction time is a concern, especially when the vocabulary is large,

an approximate graph, constructed more quickly, can be a good replacement for an

exact graph, at the expense of small reduction in VQ accuracy.

In order to build such an approximate k-NN graph we can use an approximate

nearest neighbor search algorithm. In these experiments, we use hierarchical k-

means (HKM). We calculate the accuracy of an approximate graph G′, with respect

to the exact graph G that is built using the brute-force method, as:

1
n

n

∑
i=1

|N(i,G)∩N(i,G′)|
|N(i,G)|

, (4.1)

where n is the number of nodes, N(i,G) denotes the neighbors of node i in graph G,

and |·| denotes the cardinality of a set. A graph with higher accuracy is closer to the

exact graph.

Experimental results are shown in Tables 4.2 and 4.3. In Table 4.2, the k-NN

graphs are built over the 5K vocabulary and the queries are from the Lab dataset

while in Table 4.3, the vocabulary and query set are the 100K-word vocabulary and

the City Center datasets, respectively. Corresponding to each branching factor k,

one exact and two approximate graphs are constructed. We adjust the parameters

of HKM to obtain accuracies of ∼ 80% and ∼ 52% for each branching factor. The

reported accuracies are in the range of [0,1]. The accuracy of the exact graph is 1.

The accuracy and speedup of vector-quantization with SGNNS using each graph

is shown in the third to sixth columns of each table. The third and forth columns

report the results of VQ on all image features and the fifth and sixth columns report

the results on only matched features. The last two columns of each table, show the
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construction time of the graphs and HKM indices. To construct the exact graph we

do not build any search index. All experiments were executed single-threaded with

a 2.5GHz Intel Core i5 processor.

By reducing the degree of accuracy of the graph to 80% in Table 4.2, we can

observe a reduction in graph construction time by 23 to 29%, while the accuracy

of VQ on “all features” is slightly decreased by 1 to 2%. Also, when the graph

accuracy is decreased to 52%, the graph construction time is decreased by 29 to

35%, while the VQ accuracy is decreased by 4 to 6%.

However in Table 4.3, we can observe more reduction in the construction time

of approximate graphs, as they are built on a larger vocabulary. On approximate

graphs of accuracy 80%, we observe a build time reduction by 80 to 86%, over the

decreasing branching factor of 1000 to 300. The slight accuracy reduction of VQ

on “all features” is by 1 to 2%. When the accuracy of the graph changes to 52%,

the construction time is reduced by 88 to 92%, while the VQ accuracy decreases by

5 to 9%.

4.4.4 Comparison with Other Methods

We compare the performance of four methods for vector-quantization: randomized

KD-trees, hierarchical k-means tree (HKM), GNNS and our proposed method,

Sequential GNNS (SGNNS). For KD-trees and HKM we used the FLANN

library4 implementations.

The only parameter in GNNS and SGNNS is k, the branching factor of the k-NN

graph index. For SGNNS we choose the same k as the one we selected for GNNS

to obtain the given accuracy. E, the number of expansions in GNNS, is set to k in

our experiments.

We choose the version of GNNS in which the search terminates at local minima,
4http://www.cs.ubc.ca/˜mariusm/index.php/FLANN/FLANN
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Table 4.2: Performance of SGNNS with approximate k-NN graphs. 5K vocab., Lab
queryset

k-nn Graph VQ on all fts VQ on matched fts Graph build Index build
Graph build Acc. Acc. Speedup Acc. Speedup time (s) time (s)

250 -nn
1 0.9932 16.5914 0.9954 18.1087 6.0371 -

0.7974 0.9833 16.6233 0.9887 18.1512 4.6241 0.1555
0.5340 0.9501 16.7422 0.9662 18.3078 4.0165 0.1348

200-nn
1 0.9897 20.6957 0.9929 22.6258 5.9244 -

0.7929 0.9781 20.7491 0.9853 22.6901 4.4108 0.1550
0.5120 0.9373 20.9509 0.9581 22.9337 3.8690 0.1367

100-nn
1 0.9701 41.1416 0.9797 45.2212 5.4035 -

0.8098 0.9566 41.2879 0.9717 45.3728 4.0763 0.1541
0.5204 0.9153 41.7084 0.9456 45.8251 3.8615 0.1047

50-nn
1 0.9364 81.7385 0.9598 90.2351 5.2541 -

0.8089 0.9196 82.0912 0.9509 90.5401 3.7507 0.1307
0.5183 0.8714 83.4794 0.9222 91.7453 3.6036 0.1565

Table 4.3: Performance of SGNNS with approximate k-NN graphs. 100K vocab.,
City Center queryset

k-nn Graph VQ on all fts VQ on matched fts Graph build Index build
Graph build Acc. Acc. speedup Acc. speedup time (s) time (s)

1000-nn
1 0.9487 48.4465 0.9671 62.0685 1628.0 -

0.8078 0.9356 48.4215 0.9559 62.0835 311.1534 3.3799
0.5146 0.8907 48.3039 0.9185 62.2296 186.4528 3.4921

500-nn
1 0.8931 93.8105 0.9315 123.6187 1570.2 -

0.8079 0.8769 93.9168 0.9167 123.9136 279.7694 3.8644
0.5212 0.8195 94.5834 0.8646 125.1055 175.9058 3.7626

400-nn
1 0.8689 116.2389 0.9149 154.6434 1557.8 -

0.8031 0.8512 116.4652 0.8975 155.1761 219.8821 3.9417
0.5158 0.7896 117.5713 0.8424 156.8864 137.1464 3.9472

300-nn
1 0.8321 153.4519 0.8919 206.4186 1488.2 -

0.8001 0.8128 153.9414 0.8718 207.3598 210.7279 4.0707
0.5120 0.7458 156.1846 0.8108 210.7741 128.4566 4.0361
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instead of having T greedy moves. Note that improving the speedup is not possible

if we always make a fixed number of greedy moves.

In the case of KD-trees, the FLANN parameters that we set include trees, the

number of randomized KD-trees, and checks, the number of leaf nodes to check in

one search. In the case of HKM, the parameter set includes iterations, the maximum

number of iterations to perform in one k-means clustering, branching, which is the

branching factor of the tree, and checks, the number of leaf nodes to check.

Tables 4.4-4.7 compare the performance of the four search algorithms on vector-

quantization. The first two columns show the results when all image features are

quantized, and the last two columns show the results when only matched features

(i.e. the features in current image whose 1-NNs in the previous key-frame have

passed the distance-ratio test) are quantized. In SGNNS, for each feature the search

starts from the visual word assigned to their 1-NN feature in the previous frame.

GNNS starts the search from a random node for each feature.

Tables 4.4-4.6 show the experiments on the City Center dataset. The average

number of SIFT features extracted from each image is 300 and the average number

of matched features is 63, which is roughly 25% of all features. The speedups for

accuracies of ∼91% and ∼99% are shown in the first two tables. The first two

experiments use the 5000-word vocabulary.

In Table 4.4, we used a 100-NN graph for GNNS and SGNNS. For KD-trees,

we set trees and checks to 4 and 140, respectively. For HKM, we set iterations,

branching and checks to 4, 8 and 50, respectively.

In Table 4.5, we used a 300-NN graph for GNNS and SGNNS. For KD-trees,

we set trees and checks to 4 and 2200, respectively. For HKM, we set iterations,

branching and checks to 7, 8 and 600, respectively.

In Table 4.6, we show the vector-quantization results when a 204,000-word

vocabulary is used. We used a 300-NN graph for GNNS and SGNNS. For
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KD-trees, we set trees and checks to 4 and 2200, respectively. For HKM, we set

iterations, branching and checks to 7, 8 and 500, respectively.

The last part of experiments has been done on an indoor dataset (Table 4.7)

where the overlap between images is larger —around 82% of features are matched.

We used the 5000-word vocabulary for this experiment and the average number

of SIFT features extracted from each image in the dataset is 98. For GNNS and

SGNNS we used a 250-NN graph and for KD-trees, we set trees and checks to 6

and 400, respectively. For HKM, we set iterations, branching and checks to 3, 8

and 160, respectively.

As can be seen in all experiments, both GNNS and HKM outperform KD-trees.

SGNNS outperforms HKM by as much as 250% for the case of vector-quantizing

all features, and as much as 400% if only matched features are used in creating the

BoW representation of an image. This superior performance is due to two factors:

first, the efficiency of graph-based search (GNNS) —as indicated by the third row of

each table, over the first two rows of each table —and second, by the exploitation of

the perceptual aliasing of BoW along with the sequential property of images whose

features are to be vector-quantized, as indicated by the last row (SGNNS) of each

table over the third row (GNNS).

Note that in each table, GNNS and SGNNS share the same branching factor.

The branching factor of k-NN graph has been chosen such that GNNS, KD-trees

and HKM achieve a fixed accuracy. However, SGNNS achieves higher accuracy

than GNNS given the same branching factor.

We also observed that the features that are matched between two images do

not share common visual words, necessarily. On average, 41% of corresponding

features share the same visual words in the experiments presented in Tables 4.4-

4.5. This amount was reduced to 24%, with the 204K vocabulary (Table 4.6).
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Table 4.4: Comparison of different search algorithms on Vector-Quantization - City
Center dataset, Accuracy fixed at ∼91%, 5000-word vocab., 100-NN graph

VQ of all features VQ of matched features
Accuracy Speedup Accuracy Speedup

KD 0.9164 6.6826 0.9339 6.6866
HKM 0.9078 10.4415 0.9202 10.4477
GNNS 0.9149 10.0432 0.9313 10.0070

SGNNS 0.9579 23.2553 0.9717 29.9503

Table 4.5: Comparison of different search algorithms on Vector-Quantization - City
Center dataset, Accuracy fixed at ∼99%, 5000-word vocab., 300-NN graph

VQ of all features VQ of matched features
Accuracy Speedup Accuracy Speedup

KD 0.9951 1.2449 0.9962 1.2452
HKM 0.9938 3.4861 0.9955 3.4871
GNNS 0.9909 4.0868 0.9924 4.0809

SGNNS 0.9942 8.0012 0.9954 9.9273

Table 4.6: Comparison of different search algorithms on Vector-Quantization - City
Center dataset, Accuracy fixed at ∼92%, 204K-word vocab., 300-NN Graph

VQ of all features VQ of matched features
Accuracy Speedup Accuracy Speedup

KD 0.9364 16.6498 0.9485 16.6489
HKM 0.9185 35.6192 0.9205 35.6177
GNNS 0.9297 59.9617 0.9457 59.0481

SGNNS 0.9343 129.2809 0.9512 172.7866

Table 4.7: Comparison of different search algorithms on Vector-Quantization - Lab
dataset, Accuracy fixed at ∼98%, 5000-word vocab., 250-NN graph

VQ of all features VQ of matched features
Accuracy Speedup Accuracy Speedup

KD 0.9815 2.5448 0.9821 2.5432
HKM 0.9843 3.9291 0.9839 3.9283
GNNS 0.9813 4.6228 0.9825 4.6279

SGNNS 0.9931 13.4739 0.9954 14.6996
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4.5 Summary

In this chapter, we propose to use the graph nearest neighbor search (GNNS)

algorithm to speed up the vector-quantization task in BoW. We show how GNNS

can be integrated into the BoW and SLAM framework and thus improve the

performance of the vector-quantization by taking advantage of their properties.

The first property is that the images in SLAM are acquired sequentially. This

reduces the cost of vector-quantization on the features that are repeated over

subsequent frames. The other property that is inherent to the standard BoW model

is the perceptual aliasing problem (i.e. forcing dissimilar visual features to map to

similar visual words). This property allows GNNS to improve the speedup and

search precision of VQ on non-matched features.

Our experiments validate the effectiveness of our algorithm and its superior

performance over state-of-the-art algorithms.
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Chapter 5

Integrated SLAM System

In this chapter, we contribute by developing a SLAM system that integrates the

proposed algorithms in the previous chapters. We present a detailed description of

different parts of the SLAM system and how they are integrated, in the following

subsections. In the next chapter, we will evaluate the performance of our integrated

system.

5.1 SLAM framework

In an appearance-based SLAM, the loop closure detection, as the main part, is

addressed as an image retrieval task. Because the bag-of-words model has been a

successful approach for image search in large datasets in vision and robotics

community, we also employ BoW in our SLAM system. However, the BoW

model has some deficiencies and needs to be improved based on the application it

is utilized for (mentioned in Section 2.2.3). Search in large vocabularies and

challenging dynamic environments and perceptual aliasing are the major issues

that need to be tackled. We propose an efficient search index to speed-up the

vector-quantization process in SLAM and at the same time reduce the error of

vector-quantization in BoW that causes perceptual aliasing. Further, we present a
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SLAM framework, integrating the improved BoW model with a particle filtering

scheme to estimate the likelihood of loop closures exploiting the temporal

coherence between sequential images.

An overview of the system is illustrated in the diagram of Figure 5.1. In an

offline processing, the visual vocabulary from the training data and the graph

search index over the visual words of the vocabulary are constructed. When a

robot observes a new image, the interesting features are identified and their

descriptors are computed. The image is matched to the previous key-frame (map

location), using feature matching, to see if it is sufficiently different to be

considered as a new node in the map. Using our graph index and the

soft-quantization technique, the features are vector quantized. New word entries

are inserted/updated into the inverted index file. In the search step, the BoW’s

voting system is used to calculate the likelihood of the map locations which are

then plugged into a particle filtering scheme to update the loop closure likelihoods.

The most likely loop closure locations are then considered for a post verification

step. Based on the result we decide whether there is a loop closure.

In the following sections, we describe the components of our SLAM framework

in more detail.

5.2 Key-frame Detection

In appearance-based SLAM, the map of the environment is topologically modeled

using a graph whose nodes represent the distinct places viewed by the robot. The

edges of the graph show the connectivity relationships between physical locations.

Key-frame detection, as an important component of SLAM, is required in order to

decide when to add a new node to the map. There should be sufficient appearance

change between subsequent frames to prevent over-sampling the environment.
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Figure 5.1: An overview of our appearance-only SLAM framework
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This allows the map representation to be computationally efficient for loop closure

detection and at the same time, provide good visual coverage of the surroundings.

For appearance-based key-frame selection we require an approach to measure

the similarity between images. If the similarity is lower than some threshold, we

introduce the new observation as a new key-frame to the map. Different image

similarity measures have been studied and compared in [Zhang et al. 2010a],

among which feature matching performs the best. Visual features of two images

are extracted and their descriptors are matched. The similarity score between

images can then be computed as:

Sim f m =
Nm

min(Nim1,Nim2)
, (5.1)

where, Nim1 and Nim2 are the number of features in the first and second image,

respectively and Nm is the number of matched features between two images. A

feature f1 and its corresponding descriptor d1 in the first image will be a match

to f2 and d2 in second image, if they pass the distance-ratio test: dist(d1,d2) ≤

ratio th ∗ dist(d1,d22); where, d2 is the first and d22 is the second nearest neighbor

to d1. We set ratio th = 0.6 in our experiments. The distance-ratio test is used to

reject ambiguous and false matches.

5.3 BoW’s Image Representation

We use the BoW model to represent images. Image features are extracted using

SIFT [Lowe 1999] or SURF [Bay et al. 2008] detectors/descriptors, as they have

proven highly successful in SLAM systems. Features are then mapped to the visual

words of the vocabulary. We build the vocabulary using offline processing from a

training dataset. An image can then be represented by the set of visual words that

occur in that image. As this representation is very sparse, it is stored in an inverted
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index data structure to speed-up the image search in large-scale retrieval.

5.3.1 Vector-Quantization

As described above, in the BoW model an image is represented using visual

words. This is performed by vector-quantization task. Vector-quantization maps

the visual feature descriptors extracted from an image to the visual words of the

vocabulary. When the vocabulary is large, vector-quantization process can be

computationally expensive. In Chapter 4, we proposed to use a graph-based search

algorithm (GNNS) for the search in vocabularies and we showed how efficient our

method is against popular search indices. We integrate our method into the SLAM

framework to perform vector-quantization. In the next chapter, we will

experimentally show the computational cost of loop closure detection can be

improved using our search method.

5.3.2 Soft Quantization

Vector-quantization is typically performed as an assignment of one visual word

to each visual feature, i.e. hard assignment. The discriminative power of feature

descriptors is reduced in the quantization process. Two descriptors that match might

fall into different clusters and then be considered as different visual words. This is

called the effect of fine quantization. Conversely, different descriptors might fall

into the same cluster due to coarse quantization.

Philbin et al. [2008] propose a soft assignment approach to assign a feature

descriptor to a weighted combination of visual words and hence reduce the error of

the quantization process. The method is shown to be more effective than the hard

assignment for large scale image datasets ([Philbin et al. 2008]). As we will explain,

the soft assignment method can be easily integrated into our graph-based search

index. Thus, we aim to employ it to improve the efficiency of the quantization and
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retrieval tasks.

In soft assignment, a weight is assigned to each visual word based on the

distance of the feature descriptor to the centroid of clusters. This weight is

exponential in the distance to the cluster centroid and computed as exp(− d2

2σ2 ),

where d is the distance from the descriptor to the cluster centroid and σ is a spatial

scale. The smaller σ is, the fewer clusters get a substantial weight. σ and r are the

main parameters. r is the number of nearest neighbor clusters to which the distance

of the feature descriptor is computed. Each feature descriptor is then defined by an

r-vector. In experiments in [Philbin et al. 2008], r = 3 showed the best results.

Some features are close in descriptor-space, however, the quantization process

puts them in different clusters and assigns them different words. Soft assignment

gives such close descriptors another chance to match after quantization.

To perform soft assignment, we need to search for the r nearest neighbor

clusters to each feature fi, a process that is computationally costly. However, in the

process of vector-quantization(VQ) through our k-NN graph index to find the

nearest cluster wi for feature fi, we have already computed the distance of wi to its

k nearest neighbors, and the r nearest neighbor clusters to fi are most likely among

the k nearest neighbor clusters to wi (assuming k > r). Thus, performing soft

assignment adds no additional cost to our system.

5.4 BoW’s Image Matching

Once a new key-frame is acquired by the robot, its visual features are mapped to

visual words using SGNNS. The words are then weighed according to the tf-idf

statistics ([Sivic and Zisserman 2003]) that show how important a visual word is

to an image in the dataset. tf or term frequency is the number of times a word

appears in an image, and is normalized by dividing by the total number of words in
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the image. idf or inverse-document-frequency measures how common or rare the

visual word is across images in the dataset, so that it down-weighs or up-weighs the

words, accordingly. The tf-idf weight of word i in image t, is therefore computed

as follows:

tf it idf it =
nit

nt
log

N
ni
, (5.2)

where, nit is the frequency of word i and nt represent the total number of words in

image t, respectively. N represents the total number of images in the dataset. ni is

the number of images in which word i has occurred.

An inverted index is then constructed/updated to store the mapping from visual

words to the images in which the words have appeared. Beside the index of an

image, for each word the tf-idf weight computed with respect to that image, is also

stored and updated in the index. Once a new image is captured, N and ni change

and therefore for each word in the index, the idf score should be updated.

At image retrieval stage, each word of the query image is looked up in the

inverted index and its the associated image indices and tf-idf weights are retrieved.

The weights are then used to contribute to the score of retrieved images. A

histogram of image scores is formed once all words in query image contributed.

5.5 Loop Closure Detection using Particle Filtering

In the previous sections, we described how images, i.e. loop closure candidates, are

scored through our BoW voting scheme, once a new frame is captured. Next we

explain how loop closures are detected.

Image scores are plugged into a particle filtering framework to estimate the

likelihood of loop closure hypotheses. In SLAM systems built on particle filter, the

map locations are represented by particles. The set of weighted particles provide a

sample-based representation of the PDF distributed over the possible locations of
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the robot. Each particle k can then be considered as a loop closure candidate and the

loop closure detection problem can be formulated as estimating the full posterior:

p(x(k)t |Z0:t) = w(k)
t ∝ w(k)

t−1 p(zt |x(k)t ,Z0:t−1) p(x(k)t |x
(k)
t−1) (5.3)

where w(k)
t is the weight of the particle k at time t. Z0:t denotes the observations

up to time t, zt is the current observation at time t, and xt is the robot’s state in

appearance space at time t.

Motion model: The prediction step of a particle filter is performed through a

motion model that comprises the state transition probability p(xt |xt−1). The motion

model assumes that if the robot is currently at location xt−1, it is likely to move to

one of its neighboring locations (nodes) in the topological map at the next time step

t. Similar to [Angeli et al. 2008], we choose p to be a Gaussian that has a significant

amount of mass on four immediate neighbors of the mean, xt−1 (two previous and

two next neighbors of xt−1). Motion model enforces the temporal coherence of

likelihood updates.

Observation Likelihood: p(zt |x(k)t ,Z0:t−1) denotes the observation likelihoods

that are obtained by BoW’s voting scheme.

The new weights of particles at time t are then calculated using the motion

model and the observations likelihoods and the previous weights. A particle

resampling scheme will be adopted to give the particles with higher weights a

chance to propagate.

5.6 New Location Detection

Once the full posterior over loop closure hypotheses is updated, we need to decide

whether a loop closure has occurred. One approach can be picking the hypothesis

that has the highest probability and check if its probability is above some threshold,
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then consider it as a loop closure. However the loop closure might not be among the

single peaks of the posterior and might rather be diffused over a set of neighboring

hypotheses. Similar to [Angeli et al. 2008], we look for the hypotheses for which the

sum of the probabilities of their neighboring hypotheses are above some threshold.

Once the candidate hypotheses are identified, we verify their geometric consistency

with the current observation, as described in the next section.

5.7 Geometric Verification

In order to improve the performance of loop closure detection and maintaining a

satisfactory recall rate while improving precision, a post-verification stage is

required (especially for large datasets [Cummins and Newman 2008]), to check

whether the putative matched locations to the current observation satisfy the

geometric constraints. The geometric verification step consists of two parts. First,

the N most likely loop closure hypotheses, identified in the previous section, are

shortlisted. The similarity of each candidate to the current view is then measured

by the ratio of the number of matched features to the minimum number of features

between two images. The candidates with similarity above a certain threshold

(called match th in our experiments), are passed to the next step of verification

which is RANSAC (see Section 2.1.4). RANSAC identifies a set of inliers

between each candidate key-frame and the current view. The candidates whose

ratio of inliers to matched features is above some threshold (called inlier th in

our experiments) are then accepted as correct loop closures.

5.8 Map Optimization with g2o

This thesis is mainly focused on the SLAM front-end in which the loop closure

detection is performed using appearance, and a topological map is constructed.
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However, a practical SLAM system can considerably benefit from the use of

metric data such as odometry data.

Odometry metrical data can be integrated into the topological map, such that

the nodes of map graph represent the robot poses, xi = (x,y,θ)T , and the edges

represent the spatial constraints between poses. Such a graph is referred to as pose

graph in the literature (see Section 2.1.5). However, the uncertainty in odometry

pose estimate accumulates over time, and it can lead to map drift. In order to

recover the global structure of the map, a global optimization back-end is suggested

for SLAM system. This optimization can be formulated as a nonlinear least squares

problem to relax the pose graph. In our experiments, we use the g2o implementation

[Kümmerle et al. 2011]1 for SLAM to create a globally consistent trajectory of the

robot. Once a new frame is acquired, the odometry constraints and loop closure

constraints are fed into the optimizer as its inputs, and the final trajectory estimate

is returned. Because of the sparsity of pose graph constraints, g2o can provide real-

time performance. Section 6.4 shows our experiments on the integration of loop

closure detection, odometry data and the g2o map optimization.

5.9 Summary

In this chapter, we describe the components of our appearance-based SLAM

framework. We use BoW image representation and inverted index retrieval along

with a particle filtering framework for efficient loop closure detection. The particle

filter is used to exploit the temporal coherence of sequential images and BoW

model improves the scalability of the system. We also show that the search

structure of SGNNS, that is employed for vector-quantization in BoW, allows us to

easily implement soft quantization to reduce the vector-quantization error.

1http://openslam.org/g2o.html
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Chapter 6

SLAM Evaluation and Experimental

Results

In the previous chapters, we explained our proposed methods for different parts

of a large-scale SLAM system, and verified the effectiveness of the proposed sub-

components of the system on stand-alone problems. In this chapter, we evaluate the

performance of the overall SLAM system with all sub-components integrated.

6.1 Datasets

In order to evaluate the feasibility of our system, we use different types of datasets

that have been mostly used as benchmarks in SLAM publications before. We

describe each dataset in the following. Some sample images of each dataset are

shown in Figure 6.1.

Oxford City Center1 [Cummins and Newman 2008]: this dataset has been taken

along roads near city center, with pedestrians and traffic to test the robustness in

dynamic environments and against scene changes. The dataset contains two sets

of image sequences. One sequence is taken from the right camera and the other

1http://www.robots.ox.ac.uk/˜mobile/IJRR_2008_Dataset/data.html
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from the left camera mounted on the robot. Each sequence of the City Center

dataset contains 1237 images and the resolution of images is 640×480. The Oxford

City Center dataset has been used as the benchmark for localization and SLAM

evaluations. The ground truth data is also publicly available for this dataset.

New College1 [Cummins and Newman 2008]: this dataset has been taken from

large areas of a university campus with repetitive structures to test the robustness

against strong perceptual aliasing. The dataset contains two sets of image

sequences. One sequence is taken from the right camera and the other from the left

camera mounted on the robot. Each sequence of the New College dataset contains

1073 images with a resolution of 640×480. The New College dataset has been

used as the benchmark for localization and SLAM evaluations. The ground truth

data is also publicly available for this dataset.

Google Street View2: this dataset has been collected by a Point Grey Ladybug

camera mounted on a moving vehicle, from the streets of Pittsburgh. The dataset

contains 12,556 Google street view panoramas of a 13 mile-long run. Each

panoramic image is 640×320 pixels, down-sampled from higher resolution

images, and is the concatenation of four sub-views taken by front, rear, left and

right side cameras. GPS coordinates have also been provided for each location.

This dataset has been also used as benchmark in SLAM and image retrieval

applications [Singh 2010].

UofA Quad: this dataset is taken from the quad of the University of Alberta

campus, using an Xtion Kinect camera mounted on a Clearpath Robotics Husky

UGV. The dataset contains 1129 images of resolution 640×480.

Shopping Mall: this dataset is an indoor dataset that has been taken in Alexis Nihon

Plaza in Montreal, using a Husky robot, equipped with a Xtion Kinect camera. The

dataset contains 484 images of resolution 640×480.

2Dataset provided by Google for research purposes.
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(a)

(b)

(c)

(d)

(e)

Figure 6.1: Sample images from (a) City Center (right sequence), (b) New College
(left sequence), (c) Google Street View, (d) UofA Quad, and (e) Mall datasets.
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6.2 Performance Metrics

We quantitatively evaluate the performance of loop closure detection (LCD) as the

main part of the SLAM system, using precision-recall curves when the ground truth

is available. Precision and recall are defined as:

Precision =
TP

TP+FP
, (6.1)

Recall =
TP

TP+FN
, (6.2)

where, TP are the true-positive LCDs that have a match in ground truth. FP or

false-positive is generated when the detected loop closure is not among the true

LCs for the current view, or the current view does not have any loop closure at

all. Precision is then defined as the ratio of the true-positive detections to the total

number of detections. FN or false-negative means that the robot does not detect any

loop closure and reports the current location as a new location. Recall is defined

as the ratio of the true-positive detections to the number of loop closures in ground

truth. It is desirable for a SLAM system to detect loop closures without any false-

positives as they will lead to filter divergence.

6.3 Loop Closure Detection Performance

In this section, we discuss the performance of loop closure detection on different

datasets. We use different types of datasets to demonstrate that our SLAM system

can work in real-time with sufficient accuracy, under perceptual aliasing and large

changes in appearances, in dynamic environments, with large-scale datasets and

can detect different types of loop closures.

We also demonstrate, in sections 6.3.1 and 6.3.2, the significance of our search

algorithm SGNNS for the speed improvement of the vector-quantization task, as
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it is a computationally expensive task for a real-time system when dealing with

large-scale data.

We used 500 particles for the particle filter, in all the following experiments.

6.3.1 City Center Dataset

The City center dataset has been taken along a 2km path as the robot traverses one

big loop twice. We used only the right sequence of the dataset in our experiment to

evaluate the loop closure detection performance. We used the left sequence of

images (which contains different images from the test dataset - right sequence) to

build the visual vocabulary for BoW. A 2000-word vocabulary was constructed

offline using k-means clustering. We used 128-dimensional SIFT feature

descriptors as the input to the clustering.

Precision-recall

We evaluate the performance of our loop closure detection using precision and

recall metrics explained in Section 6.2. Figure 6.2 shows the precision-recall

curves when a different number of N top loop closure candidates are retrieved, for

N = 1, 2, 3, 5, and 10. Each curve has been generated by varying the verification

threshold, match th (explained in Section 5.7). We used a 300-NN graph, built

over the vocabulary, as the VQ search index.

Processing Time

Below, we compare the computational costs of different components of SLAM for

processing a new observation. Table 6.1 presents the timing performance of the

most time-consuming parts: the SIFT feature extraction, key-frame detection,

vector-quantization and geometric verification (MVG) including feature matching,

distance-ratio test and RANSAC. We set N = 10 for MVG. The times are the
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Figure 6.2: Precision-recall curves for the City Center (right sequence) dataset.
Each curve shows the precision vs. recall after verification on different number of
candidates (N =1, 2, 3, 5 and 10).

average over all 1237 dataset images. Images contain 358 SIFT features on

average. The processing times of VQ using linear search and VQ using SGNNS

are shown in columns four and five of the table. For SGNNS, we chose the

branching factor of k-NN graph so that we can achieve approximately 99%

accuracy on vector-quantization with respect to linear search (as the baseline).

When the size of vocabulary increases, the vector-quantization using linear search

becomes the computationally dominant part in a real-time system. The SGNNS

algorithm is very effective in reducing this time.

The times in Table 6.1, have been obtained on a single core of a 2.5GHz Intel

Core i5 processor. As our implementation is not optimized, the execution times

reported serve mainly to show how the speedup of VQ over linear search changes

as vocabulary grows. We believe the times can still be improved by optimizing the

implementation.

The total time of other main components, including updating the inverted index,
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Table 6.1: Time of different components of SLAM (in sec.) - City Center
Vocabulary Feature Key-frame VQ with VQ with

MVG Others
size detection detection linear search SGNNS

C = 2K

0.1000 0.0242

0.2098 0.0690

0.2924 0.05
C = 5K 0.5477 0.0948
C = 10K 1.0947 0.1539

C = 100K 11.0027 1.4654

inverted index search (i.e. BoW voting) and particle filter update and re-sampling

of 500 particles is approximately 0.05 second. The average processing time of each

frame on our current system is therefore be less than one second with the 2K-,

5K- and 10K-word vocabularies, and less than two seconds when the 100K-word

vocabulary is used. As the robot collected images approximately every two seconds

[Cummins and Newman 2008], we achieved the desired real-time performance.

In the following, we demonstrate that we can reduce the processing time of VQ

with SGNNS substantially, while the degradation in the performance of BoW-based

loop closure detection is insignificant. In Table 6.2 and Figure 6.3, we use k-NN

graphs with different branching factors in the VQ process. We can observe, in Table

6.2, that by decreasing the branching factor k from 300 to 30, the processing time of

VQ decreases by∼ 94%. Although the accuracy of VQ with respect to the baseline

degrades by ∼ 13%, this change does not affect the precision and recall values of

loop closure detection much. Figure 6.3 also shows that the precision and recall

values of LCD, when SGNNS with different graphs is used for vector-quantization,

are very close to the result of linear search.

The results shown in Table 6.2 and Figure 6.3 have been produced by a BoW-

based LCD and no particle filter is involved. Verification has been performed using

distance-ratio based feature matching over the top N=5 loop closure candidates. No

RANSAC has been performed.
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Figure 6.3: Precision-recall curves for the City Center dataset, comparing the
performance of BoW-based LCD when linear search is used for vector-quantization
vs. when SGNNS is used. Different curves show the results when SGNNS is run on
k-NN graphs with different branching factors (k = 30, 50, 100, 200, 250, and 300).

Table 6.2: LCD results on City Center dataset, with VQ using linear search vs
SGNNS (2K vocabulary is used)

Linear 300nn 250nn 200nn 100nn 50nn 30nn
search graph graph graph graph graph graph

VQ Time(s) 0.2960 0.0987 0.0706 0.0608 0.0404 0.0224 0.0175
VQ Acc. 1 0.9985 0.9975 0.9956 0.9809 0.9376 0.8679

LCD recall 0.6104 0.6104 0.6104 0.6085 0.6030 0.6178 0.6085
LCD precision 0.8797 0.8820 0.8820 0.8817 0.8929 0.8904 0.8794
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6.3.2 New College Dataset

The New College dataset has been taken along a 1.9km path and contains several

loops. We used the left sequence of the dataset in our experiment to evaluate the

loop closure detection performance. We use a different dataset to build the visual

vocabulary for BoW. A 5000-word vocabulary was constructed offline using

k-means clustering. We used 128-dimensional SIFT feature descriptors as the

input to the clustering.

Precision-recall

Similar to the previous section, we evaluate the performance of our loop closure

detection using precision and recall metrics explained in Section 6.2. Figure 6.4

shows the precision-recall curves when different number of top loop closure

candidates are retrieved, N = 1, 2, 3, 5, and 10. Each curve has been also

generated by varying the verification threshold, match th (explained in Section

5.7). We also used a 300-NN graph, built over the vocabulary, as the VQ search

index.

Processing Time

Below, we compare the computational costs of different components of SLAM.

Similar to Section 6.3.1, we present the run time of the most time-consuming parts

in Table 6.3. The times are the average over 1073 images, and each image contains

510 SIFT features on average. With growing size of the vocabulary the vector-

quantization becomes expensive and can be speeded-up using SGNNS.

As the number of features per frame has been increased compared to the City

Center dataset, we can expect a higher execution time in key-frame detection and

MVG (for N=10). However, we can reduce the MVG time by choosing smaller
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Figure 6.4: Precision-recall curves for the New College (left sequence) dataset.
Each curve shows the precision vs. recall after verification on different number of
candidates (N =1, 2, 3, 5 and 10).

number of candidates. As can be seen in Figure 6.4, with N = 5, we can achieve a

similar performance to N = 10. As the number of matching candidates are reduced

by half, we can expect a reduction in running time by half, as well. The total time

of other main components has been measured at 0.08 second.

As in previous experiment, another approach to reduce the total processing

time is speeding up the SGNNS-based vector-quantization by choosing graphs

with smaller branching factors. Table 6.4 and Figure 6.5 show the results for

different sizes of graphs. A 50-NN graph with VQ accuracy of 86% gives a 83%

decrease in the processing time of VQ, while maintaining the same precision and

recall in LCD.
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Table 6.3: Time of different components of SLAM (in sec.) - New College
Vocabulary Feature Key-frame VQ with VQ with

MVG Others
size detection detection linear search SGNNS

C = 2K

0.1 0.0521

0.3327 0.1073

0.7678 0.08
C = 5K 0.8934 0.1423
C = 10K 1.6946 0.1990

C = 100K 15.7361 1.6358

6.3.3 Google Street View Dataset

In order to evaluate the performance of LCD on a large dataset, we used the

Google street view dataset with 12,556 images. We built a 10K-word vocabulary

on a different dataset and a 400-NN graph over the vocabulary in an offline phase.

Since the ground truth was not provided along with the dataset, we did not

evaluate the LCD quantitatively. Based on GPS data and visual inspection, Liu and

Zhang [2013] identified 2941 loop closure locations that are shown by green dots

in Figure 6.6(b). We also visualize the 2611 loop closures that we detected

correctly by red in Figure 6.6(a).

The processing times of different components of SLAM, when using 10K- and

100K-word vocabularies, are presented in Table 6.5. The average number of

sampled SIFT features in each image is 257.

Figure 6.7 and 6.8 show some examples of the detected loop closures in the

presence of appearance change, like lighting conditions and moved vehicles. Figure

6.7 shows a loop closure when the traversal direction of the vehicle was the same

and Figure 6.8 shows one when the vehicle passes an intersection with the road it

traversed before.
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Figure 6.5: Precision-recall curves for the New College dataset, comparing the
performance of BoW-based LCD when linear search is used for vector-quantization
vs. when SGNNS is used. Different curves show the results when SGNNS is run
on k-NN graphs with different branching factors (k = 50, 100, 200, 250, and 300).

Table 6.4: LCD results on New College dataset, with VQ using linear search vs
SGNNS (5K vocabulary is used)

Linear 300nn 250nn 200nn 100nn 50nn
search graph graph graph graph graph

VQ Time(s) 1.2621 0.2073 0.1664 0.1396 0.0774 0.0455
VQ Acc. 1 0.9925 0.9890 0.9831 0.9452 0.8606

LCD recall 0.7090 0.7115 0.7115 0.7115 0.7090 0.7090
LCD precision 0.9966 0.9966 0.9966 0.9966 0.9966 0.9966
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Table 6.5: Time of different components of SLAM (in sec.) - Google Street View
Vocabulary Feature Key-frame VQ with VQ with

MVG Others
size detection detection linear search SGNNS

C = 10K
0.1 0.0104

0.7907 0.1171
0.2336 0.06

C = 100K 7.7493 1.2740

6.4 Map Optimization with g2o

The intention of this section is to show that given odometry (metric) data and the

detected loop closures from our SLAM front-end, we can optimize the map by using

an optimizer like g2o [Kümmerle et al. 2011]. We run experiments on one outdoor

and one indoor dataset, as follows.

6.4.1 UofA Quad Dataset

This dataset contains 1129 images. We extracted 451 SIFT features on average from

each image. We also built a a 2000-word vocabulary on a training set and a 300-NN

graph over the vocabulary in offline pre-processing. Based on our knowledge from

the robot trajectory and visual inspection, we identified 465 loop closure locations,

among which our SLAM system detected 300 correctly.

Figure 6.9 illustrates the general layout of the trajectory, manually marked over

the aerial photo of the environment. The yellow lines show the trajectory while the

red ones indicate areas with loop closure events. In the green area the robot traverses

the path twice in opposite directions, and was not able to match the locations based

on their appearance.

Figure 6.10(a) shows the robot trajectory based on odometry along with the loop

closure constraints (matched locations are linked by purple lines). Figure 6.10(b)

shows the trajectory optimized by g2o. As the ground truth is not available, we

can only provide a qualitative comparison of the maps. It is apparent that the map
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(a)

(b)

Figure 6.6: Visualization of (a) detected loop closures, (b) correct loop closures -
Google Street View Dataset
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Figure 6.7: Loop closure at the same traversal direction

Figure 6.8: Loop closure at an intersection
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Figure 6.9: The sketched (non-exact) robot trajectory overlaid on the aerial photo
of the UofA Quad. Yellow lines show the robot path; the red lines show the area of
loop closures where the robot traversed twice in the same direction, and the green
line shows the path the robot traversed twice but in opposite directions.
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Figure 6.10: UofA Quad dataset. (a) Original odometry with loop closures; (b) final
trajectory estimation after relaxation. Axes units are in meters.
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Figure 6.11: Mall dataset. (a) Original odometry with loop closures; (b) final
trajectory estimation after relaxation. Axes units are in meters.

optimization correctly captures the general structure of the environment.

6.4.2 Mall Dataset

The Mall dataset contains 484 images. We extracted 399 SIFT features on average

from each image. We built a a 2000-word vocabulary on a training set and a 300-

NN graph over the vocabulary in offline pre-processing. The trajectory of the robot

contains one big and one small loop. Visually inspecting the dataset, we identified

131 loop closure locations, among which our SLAM system detected 106 correctly.

Figure 6.11(a) shows the robot trajectory based on odometry along with the loop

closure constraints. Matched locations are linked by purple lines. Figure 6.11(b)

shows how the map is refined after relaxation by g2o.

6.5 Summary

In this chapter, we evaluate the performance of our loop closure detection (LCD)

method with different datasets and evaluation metrics, while using dissimilar

training datasets. We use the City Center and New College datasets to test the
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robustness of the system against strong perceptual aliasing and in dynamic

environments. As the ground truth is available we are able to compute the

precision and recall rates of the loop closure detection. We show that we can

achieve high recall rates at 100% precision in real-time. We also compare the

computational costs of different parts of our SLAM system and show that the

vector-quantization is the computationally dominant part of the system when the

size of the vocabulary increases. We demonstrate that our SGNNS algorithm can

make VQ efficient and scalable. In another experiment, we study the impact of

using smaller graphs, i.e. graphs with smaller branching factors, on the

performance of our BoW-based loop closure detection method. We observe that by

reducing the degree of the graph, we can substantially reduce the time of the VQ,

while the degradation in the performance of LCD is insignificant.

We also use the Google street view dataset to test the robustness of the LCD in

large-scale environments and show that we can successfully detect a high

percentage of loop closures.

In the last part of experiments on UofA quad and shopping mall datasets, we

integrate the metric data, e.g. odometry, into our appearance-based SLAM system

and we optimize the metric map of the robot. As the ground truth is not available

we could only qualitatively analyze the results. We show that resulting maps can

capture the structure of the environment correctly.
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Chapter 7

Conclusions and Future Directions

7.1 Conclusions

In this thesis, we developed an appearance-based SLAM framework that can

efficiently work in visually challenging environments. The key to our system’s

efficiency is the development and selection of schemes which are robust to

changes in the environment and scalable to large maps. We first present a

graph-based approximate nearest neighbor algorithm (GNNS) in Chapter 3, and

experimentally show that it outperforms widely-used NN search algorithms such

as KD-trees and LSH. GNNS constructs a k-NN graph as the search index and

performs hill climbing starting from random node(s) at search time. The drawback

of this method is the expensive construction time of the k-NN graph. However, in

our application the graph build time is acceptable, as we construct the index in an

offline pre-processing phase. Memory usage might be a concern in applications

with limited memory.

The search index of GNNS has advantages over space partitioning tree

structures which are used in KD-trees or HKM, and hash tables used in LSH. The

complexity of accessing a new nearest neighbor candidate in k-NN graph is O(1),

while in tree structures, a sub-tree needs to be traversed to reach a NN candidate in
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a leaf node. This leads to more time overhead for searching in trees. Another

advantage is that the potential NN candidates are readily ordered as the neighbors

of the current returned node. In neighborhood graphs, when a node is returned as a

matching candidate to query, its nearest neighbors have a high probability of being

good NN candidates to the query as well. In hashing based methods, the query

point should be matched to the bucket with corresponding hash code, which

contains a large number of matching candidates not ordered in an efficient way for

searching. In trees, traversing potential candidates in depth-first or best-first search

order is not as effective as that in k-NN graphs to guide the search toward true

nearest neighbors. We verified the efficiency of GNNS as a standalone algorithm

by running experiments on datasets of different sizes and dimensionality.

The bag-of-words method provides efficient image representation and retrieval

in large-scale datasets, and we employed it in our SLAM framework. We

demonstrated that vector-quantization of BoW can be a computationally expensive

part of loop closure detection when the vocabulary is very large. We proposed to

use the graph nearest neighbor search (GNNS) algorithm to speed up the

vector-quantization task in BoW. We showed how GNNS can be integrated into the

BoW and SLAM framework and improve the performance of vector-quantization

by taking advantage of their properties. The first property is that the images in

SLAM are acquired sequentially. This property can be exploited to reduce the cost

of vector-quantization on the features that are repeated over subsequent frames.

The other property that is inherent to the standard BoW model is the perceptual

aliasing problem, forcing dissimilar visual features to map to similar visual words.

This property allows GNNS to improve the speedup and search precision of VQ on

“non-matched” features. Our experiments validated the effectiveness of our GNNS

algorithm when applied to the problem of vector-quantization in the context of

SLAM and its superior performance over the state-of-the-art algorithms.
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As the graph construction of GNNS is computationally expensive, we

investigated whether we can benefit from approximate methods. We observed that

while using approximate k-NN graphs in GNNS might lower the accuracy of

feature matching in vector-quantization, its impact on the accuracy of image

matching in BoW is not noticeable. This allows using approximate methods to

speed up the process of graph construction.

We finally presented our SLAM framework in Chapter 5, integrating the BoW

model with a particle filtering scheme to estimate the likelihood of loop closures by

exploiting the temporal coherence between sequential images. We experimentally

showed that we can successfully detect loop closures with high precision and recall

in real-time in different challenging environments.

7.2 Future Directions

There are several potential future research directions that can be explored to build

upon the contributions in this thesis. We describe some of them below:

– GNNS parameter tuning. A future direction to our work can be parameter

tuning for our graph search algorithm. The only parameter that we tune for

VQ in the SLAM application is the branching factor of the k-NN graph. An

optimum branching factor can depend on the desired accuracy and constraints

on the graph construction time and memory usage. The size of the vocabulary

and the query set can also influence the branching factor. As shown in Figures

4.2(b) and (c), by increasing the size of the vocabulary, a higher branching

factor is required to maintain high accuracy and speedup. Figures 4.2(a) and

(b) imply the dependence of the branching factor on the type of the query set.

One can investigate how much each of these factors impact the branching

factor of the graph.
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– GNNS search optimization. The k-NN graph might experience

dis-connectivity and sparsity when k, the branching factor, is small. This can

make the hill-climbing on graph get stuck in a local minimum and lead to

sub-optimal solutions. One potential solution to this problem is the addition

of a small fraction of random edges to the k-NN graph that is used as the

search index.

– GNNS seed selection. Standard GNNS initiates the search from a random

node in the graph. In this thesis, we showed that by exploiting the sequential

property of SLAM data we can select the starting seed more wisely in

sequential GNNS and speed up the feature quantization process. However,

we would like to remove the dependency of seed selection on the sequential

assumption while maintaining the speedup of SGNNS. One approach can be

choosing a random set of nodes in the graph and finding their nearest

neighbor to the query feature. The 1NN node can then serve as the starting

seed for GNNS. However, there is a trade-off between the number of seed

candidates and the search time overhead.

– Improving the theoretical analysis of GNNS. The state-of-the-art

theoretical results for KD-trees and LSH algorithms avoid the curse of

dimensionality when the dataset is generated randomly. Theorem 1 is

weaker in the sense that a term exponential in dimensionality appears in the

bound. Improving Theorem 1 in this sense can be considered as future work.

Much of the modern theoretical work on the KD-trees and LSH algorithms

focuses on binary data, as it allows simpler analysis. We would like to

follow the same approach and focus our theoretical work on binary data.

– Bail-out strategies for vector-quantization. It is always desirable to speed

up the vector-quantization process. Although our proposed approximate NN
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search algorithm can be efficiently employed in SLAM and provides

sufficient speedup for VQ when large vocabularies are used, there are other

approaches that can be utilized and combined with an efficient ANN search

method to accelerate VQ. In [Hajebi and Zhang 2013], we proposed bail-out

strategies for VQ in the appearance-based localization problem. We defined

a hardness criterion for image search, considering how distinctive the query

image is among all images in the dataset. Given this criterion, we show that

the BoW search can be terminated earlier for easier queries. This means

that, in such queries, mapping only a portion of features to visual words can

be sufficient to yield a relatively good result, while saving a considerable

amount of computational resources. Employing such bail-out strategies in

BoW-based appearance SLAM can be investigated as future work.
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