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’ ABSTRACT / g \

{
' . N r
This thesis con51sts of “two falrly 1ndependent parts.

The first part cohtarne an ovelylew of what is known about the
Ising model anddother modeismfrom the exact solutions ahd
B e :

series expansiohé. h o N

In{Chaptér II we restrict ourselves to the Ising
model and~diseuss\the’}eries expansions,s exactpsolutiohs,

‘?critical’gehaVior% ahd'Several related topics. .

In Chapter III we dlscuss the thjprems on the mag-
. O

netlzatlon and the locatlon of the fugac1ty zeros given by

Lee’ and “Yang at some length Then we discuss fugacity zeros
4 \ ¢ :

distributions, some of. the~extensions'of the theorems}

h

Flsher s conjectures regardlng the temperature zeros, and

’

examples of zeros dlstrlbutlons in a temperature varlable

+ In Chaptef 'IV we discuss the analytlcal development

’

of StephensonamiCouzens near the critical p01nts in the

.

'

complex temperature plane. They found a varlable W, in
terms of which they were .able to extract thevden51ty of

" zZeros. Near -the critical points the distribution ofﬁieroe

is\proportional to |y|, the distance from the real axis. .-
For the antiferromagnetic‘lattice with the two weakest inter-
actions equal, zeros lie on oricbes Centered-on . w = -1,

'“approximately,-'Theudeneity of zeros varieS;as r,l; where



r is the radius of such a circle.

4

o. .
In"Chapter V we grite the square of the partition

ifunction as a éolynomial and.tompdte numerically some zero
:di%tffbugions in the complex temperatﬁre piane. All éistri—
R -
_butiﬁﬁs (quadratic aﬁq Eriangular) contain the unit circle-
e%_13~;he w-plane. For some lattiées‘the.éolyhomial contaiﬁq

evé}‘powers of -the z-variable only, giving rise to unphysical

real zeros in the w-plane. ©

-

Chapter 1 prcvides a general introduction.
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CHAPTER I
INTRODUCTION
When helium is cooled below 2.17K it separates into

two fluid phases. ©One is the normal fluid that also exists

above this temperature, and the other is a superfluid, which

has a vanishing viscOsity. The coexistence of water and ice

>~

at 0°C is well known. fhese substances are said to exhibit
> : -

a phase transition. Water and ice both consist of HZO

moleculeak but have very different features. The specific

volume of ice is much larger than that of water; ice has

-

a crystalline strEEtufe, etc.

| Some materials are ferrohagnetic. This means‘that
the microscopic magnetj moments do not average out to zero,
but tend to line up/An a certain direction. It may be f;ss
obvioué than for condéngatgon, but here, too, there is a
-itransition involved.‘ Below,the critical point there is
long-range order. This means that two magnetic moments far
apart know what the orientation of the other magnetic moment
is and will align in such a way as to minimize the free
energyi Above the Criticél.point this does not happen. The
reason some materials seém to be daturally'ferromagﬂetic is
that the critical Bgipfliszéuite high for these ma%é;ials.

By studying phase transitions‘one(hOPQS'to gain some

&\



knowledge concerning the mechanisms by which these transitions
take place. Above and below the critjcal point the physics

is not very interesting. Heating water from 30°C to 40°C

does not yield an undersggqﬁzhg\of the physical interactions.

//

0f course one can make a measurement of this type to obtain

the specific heat for a certain temperature'rangef and this,
may be of interest iﬁ én engineering situation. From the
boint of view of physics the in£eresting thing is that H20 _:
molecules can éither behave'as a fluid, or else as a solid,

" depending on the temperature .

The aim of statistical mechanics is, starting from
certain assumptions a?out the interatomic (or intermolecular)
intefactions, to predict the macroscopic behavior of a
material. To be gpecific, consider a lattice of N sites,
with anlatom ofvmagnetic moment m = gqu, where J is the
total angular momentum. According.to gquantum mechanics
this ﬁagneﬁic moment can be oriented in 2J + 1 directions in
space. The lattice as a whole tﬂén has. (2J + l)N‘distinct

gurations. With each configuration one assoclates an cnerqgy I
-thcp arises from the‘interactions bethen the atgmé, and of
Athe atoms with an external magnetic field. One could then
ca}cﬁlate the partitién functidn in'the canonicél epsemble,
and‘obtain‘the ﬁagngtization‘from the derivative of the free
'nené;gy with respect to the magnefic field. If one theén -

takes the limit H + 0 one could find, for & certain range of -

teﬁperatures, that M = M(H=0,T) # 0.



Unfortunately it is possible to calculate the par-

tition function exactly 'only for a much restricted class of

models, and one must resort to a more indirect approach.

One such approach is to expand the partition function in a

perturbation series, andobt$;% the desired information from

these series. This approach has been very - fruitful.
Detailed analysis near criticality has shown that

the critical exponents are independent;of the structure ofI

the lattice and depend only on its dimensions. It turns out

that one can also construct invariants of certain of the

critical amplitudes. These/results have led to the univer-

sality'hypothesis. Critical problems may be divided into '

classes which are differentiated by (a) the dimensionality

of the system, (b) the symmetry of the interactions, and

perhaps some other criteria. Within such a universality.
class the critical parameters are to be the same, oOr at =2
worst continuous functions of few parameters. If one com-
pares'the diagrams we show in Chapter V in the z- plane, one
observes the essentlal features are similar for quadratlc
and trlangular lattlces. .The crltlcal p01nts are at dlf—

ferent locatlons for different lattlcec and the 1nterac-

htlons can change the diagrams 51gn1f1cantly,0e g. when two

Qwof the 1nteractlons become equal

A-second result known‘frcm the analysis of series

and from the“exact'solutions'of the Ising médel'is the

, concept'of scaling. The scallng 1aws dlscussed in. Section

[

2. 6 arlse from thermodynamic scallng ;Because at the,,

AP



3

critical point fluctuations at ail lendth scaleﬁgare import-
aﬁﬁ'po the thermodynamic'functions, one might expéct in-
ﬂva#iénce under a scaling of the length. This'scaling of
the length will give scaling laws involving the ¢ritical
exponents of the ‘correlation function. . ‘

In Chapter I1 we give an ovérview of what is kpown
‘apout the Ising-model on the basis of seriés-expansions, not
incldding scaling and'universality.

»_;A second approach was'put forwardTby‘ﬁee and Yang,
and 1is reviewed in Chagter III. For a finitepiéttice ther
partition ﬁunction is a .polynomial. The analy;ic'struc£0re
of the par£ition function can then be discussed_inﬂtg;ms of
the roots of this polynomial. This approacﬂrdqeg not give
the partition funqtion, but it does give information rjggrd—
ing the.onset og a phase transition, and‘can be used to es-
timate the critical temperature and some Qf theﬁcritic&l

3

exponents independently of the series analysis.

In Chapters IV and V we then discuss some new results

regarding the temperature zeros.

. T
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CHAPTER 11

THE' ISING MODEL

2.1 Introduction

In this chapter we give an overview of what is known

about the Ising model on the basis of the exact solutionsl
and series expansions. This overview is a selectgve one,
But sufficient to pfo&ide\the content within which we can
discuss the partition funcﬁion Zeros. gExab.tly solved models
in statistical mechanics have beeﬁ treated by Baxter.l A
comprehensive review of the theory of critical phenomena

was edited in the 1970s by Domb and Green; it contains con-

N

tributions from many authors.a)
Following Pathria2 we. consider a lattice of N ;ites

with a gpin capable of two spatial orientations at each

site. Such a lattice‘has-ZN distinct Configurations. Let

us make the folloﬁing assumptipns: |

1. .Translationai invariance;

2. 'Only two-body.interaCtions4between.nearest eighbor

spins are important, ana{these inﬁerébﬁio s are suffir

ciently weak to be treated as perturbations.

, a)C. Domb and M.S. Green (eds.),.Phase Transitions and
Critical Phenomena, Academic Press. Reference.'will be made
to the individual contributions 1n thlS serles, as they are
_,needed in the text..- ' : . _

S

v
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ferromagnetlsm,- Con51der the expre551on

N

As a first approximation one can then treat the lattice as

a system of N non-interacting fermions, and obtain the wave-
. ,

function in terms of the Slater determinant involving the N

wavefunctions wi(;i),centered_on the sites i. The inter-
‘ . 4

-

action energy between the i-th site and the J-th site can
/

then be obtained using first order perturbation theory.

A
]

After integration over the N-2 irrelevant coordinates ‘there
are two situagions to consider: the spatial part of the
(remaining part of the) wavefunction can be odd or even.

) S . - . A / y .
The eveniistate is”a singlet and corresponds to two anti-
Rt £,

parallel spins; the odd state is a triplet and corresponds K
. . v '
to paralleluspins. The interaction energy reduces to

Kij * lj where the upper sign refers to the antlparallel
stateﬂ. Kij is the Coulomb energy and'Jij the quantum

mechanical exchange energy. If V(l;i'-§j|) is the inter-

- atomici\potential, N

o

' 3 3 FS -r‘ I —rﬁ_»v- -+ >
Ky Ja\x.}g_/x,j, By R vt ) VR Dy G G

)

and # , l\&\
J Jd3x. 3 *

(2.l)l

* MR ‘ - ’ -
i3 1 47y wiv(gi)wj‘(xj) Vo(]xg le)ui(xj)wj(xi).

&

(2 2).

‘Let e+; be the 1nteract10n energyiof a pair, of para"—

lefg spins and "s+_ of a pair of 'antlparallel_ splns. Algebralcally,

€++ = ‘E:+; = _2J13 . ' | . ) | | ‘ » (2/. 3) "

if J.. > 0, the parallel state 1s the energetlcally favored

. i]
one, and if-J.j < 0, the antlparallel state.‘_The-flrst sltuar :

tlon corresponds to ferromagnetlsm, and the last to anti-'“

\.



- s - 2.—72 —»2_ _
2Si.sj—(si+sj)_ si —sj —S(S+l)/ 25 +1).

If the spins are parallel S = 1 and this expression is posi- L .
)

tive; 1if they are antiparallel.s = 0 and it is negative-

Therefore the interaction energy dan be written in terms of
‘ I4

the spins as —2Jij§i -gj + const. The total interaction
enerqgy for a lattice of spin -4 particles is thereforeb)
" E=const ~ 23 J. .3 -3, . (2.4)

nn lJ‘l J

~

Th¢ mogel based on this interaction energy is known as the

Helsenberg model. If only the z-components of the spins are

kept the Ising model results. The'z-eomponent is the only’

one which is diégonal;_the x— and y—comoonents are given

\

in terms of the raising and lowering operators. Suppressing

the x- and y—components also- reduces the model to a classical

one. °
y

3 ' . .
Ising™ showed that the one-dimensional model does
not exhibit a spontaneous magnetization, but was not able to

obtain the par¢ition function in two dimensions. "

If the 1nteractlons between the spins are all chosen

v -

to be of the same strength say J, and perlodlc boundary

-

condltlons are emsloyed then: the hamlltonlan of the one-

dimen51onal Ising model is symmetrlc in the splns. If the

!

k 3 o -
»

'b)One can generallze for other values of the spin.
Instead of equ. (2 4) , Helsenberg wrote down the expre581on

/(: const = 2% & ¢ s, .
Ly ~ nmn

»
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. . L
spins int t with the magnetic field H, and the magnetic

moment is m, the hamiltonian is

~

N . 0;0441 4mH E {c. + 0 ) . {2.5)

:l i'

Here 04 is an eigenvalue of the Pauli matrix TZ for the

N

i-th spin. Introducing

K = J/KT and h = mH/kT ' (2.6)

the partition function is written as

))}

I~ 2

Bg(H;T) = Z ° " " Yexpl
. 9, ‘ %N i=1 )
, : : ' (2.7)

-~

(Ko, o,
i

1+

p tihlo; vy

This can be written as‘ﬁhe trace of a matrix. Let V be the

4
P

matrix whose elementsﬁvij are defineag@y .

Vij = <014V]oi> = exp{Koioj +/fh’(oi + Oj)}~' (2.8)

then

;f§¢<01|V’02><02tV!O3>

" <oy |V >
oN N

(2.9)

Let A; and 1, .be the eigenvalues of V. Then

el

ZN(H,T) = XlN +,X2N. Asymptotically the partition function

’

'ig obtained from the largest eigenvalue. In the present

.7-case one obtains for the free energy per spin
- ‘e . B

= miefcosh(gr) + fe ?F + e®Xsinn?(8u)11/2) . (2.10)

3l
3 Hh

It is easy to check that the magnetization vanishes when the



\dimit H - 0 is taken. -

’/; ‘In 1936, Peierls4 showed that the two-dimensional
Ising model does have a spontaneous magnetization, so that 1t
might be regarded as a valid model of ferremagnet;sm.
ijiffiths5 improved Peierls' argument slightly in 1964.

~_/ The solution of the~wo-dimensional Ising model
turned out to be much more difficult than the one-dimensiomnal
case. Onsager6 gave the -éxact solution onha‘finite quadratic
lattice, ;n the absence of a magnetic field, in 1944. j;he
exact solution with a magnetic field is still an open prob-°
lem. The finst major step toward the Onsager solutien was a
paper by Kramers and Wannier7'in 1941. They introduced the \
matrix method we already used in this section to solve the
one-dimensional problem. They were also abletto conjecture
the transition temperature of the Ising lattice, by realizing

that a certain dual relationship exists between lattices of .

the same dimensionality but otherwise different geometrical

I3

features. We will discuss the dual transformation they dis-

. coveged in Section 2.3.

o

“,Several authors, including ﬁethe, Braggs .and Williams, .
and Gugenhelm developed closed- form approx1matlons,8 -10 but _’lt
these were re]ected later, when it was clear they gave only
a few of the ‘terms of the series expans10ns correctly k&

. Series expan51ons had been obtalned by Kramers//va Wannler

to check these closed-fOrm'approximations, but in 1949 éé 15 -

suggested that these expan51ons could be used to determlne
N

the Cthlcal behav1or if suff1c1ently many terms are known.



In the next section we briefly discuss these series
. :
expansions. The calculations are gquite formidable, and for

a fuller discussion the reader is referred to the reviews by

Démblz’13 in Domb and Green. We want to discuss these

series here because they are an important tool in studying
N A
critical phenomena. Results from the partitition function

) )
zeros must be corroborated with_what is known from other

approaches. . ‘ ' .

2.2 Series Expansions

L]

At high temperatures B = 1/kT is a small parameter,
so we can expand the partition function in a perturbation

_series in terms of #. Let < - -> denote the trace over all

N

the configurations. Then

VA =‘<e_BH

- 1,2 2 Coe
N > = 1 - B<H> + 578 <A> - (2.11)

If gn Zy is expanded instead of 2 we obtain the so-called

NI

cumulant expansion

inzy = -g<h> + 8% (<BP> - <)

| S (2.12]
. \'n.Q’c .' . | ‘ ‘

- %83[<ﬁ3> - 3> g e oL L

.

A convenient form of this type*bfhséries isc)

k4 -

tnzZy = N&n(2coshh) + INg &n{cosh K) +
' : ‘r=1

with "

c)q‘is the cobrdinationrnumber; L Y ’ L

10

z‘wrwf(r),(2;13) o



w = tanh K , 1 = tanh h (2.14)

The wr(r) are polynomials of degre% r in 1, thch contain
only even powers of . The reason no odd powers occur is
that when the trace in equation (2.12) is taken, the con-
tributions arising from odd powers of h cancel.

/

To estimate the critical behavior from series of
this type, Domb and Sykesl4'15 assumed that the susceptibi-
lity has a branch point singularity at the critical point

of the form

X(T) nvoa(r -1 )Y, | (2.15)
which defines the critical susceptibility exponeht and the
critical‘amplitude A. When more terms ln the susceptibility
series became available; they modified this to a singularity

of the Darboux form;16

X(T) ~ (T = T) Y A(T) + B(T) , (2.16)
where A and B are analytic at TC.

Mathematically, no rigorOusiresults can be expected
if only a finite number of terms are éalculated Neverthe-
'_less the susceptibillty series is qulte smooth and a ~good
estimate of the susceptlbillty crltlcal exponent can be ob—
tained from a’ smallvnumber of its term54 in 1957, Domb
suggested a value for y of exaCtly 7/é for the simple qua?
dratic ahd plane-triahgular lattices., In 1959, iFisherl7

Justifled this value, hlS argiuments were made more rlgorous
18-22 ’

'by several authors R after the publlcatlon of the scallng

,equatlon of state in the crltlcal reglon 23 vDomb:and

11
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Sykes24 then suggested that Idr all three-dimenSional
lattices vy = 5/4. This was an rmportant step toward Kadanoff's .
universality hypothesis (see Chapter I}.

$ Besides the high temperature limit there are two

~

other sitjuations in which we can make perturbation expansions.
; v

Phyeicafﬁ ’ at high temperature, the lattice is oriented-at
random. (As the temperature is lowered slightly some of the
spins will align. ’ .

In a very strong magnetic field all the spins will
be aligned. 1If we -subsequently lower the‘field some of the

spins will turn over and form clusters of turned-over spins.

Now

; (2.17)
p :

is a small parameter, so anN can be expanded in terms of
' Y

) /1 . _ HN R o r ) . '
&nz Ninz Lnu + E z GI(U) . (2.18)

]

The function G (u) is related to the ciuster integral for

’

a cluster con51st1ng of r overturned splns, us is ‘an appro—h
prlate temperature Varlabbe_J For ‘the quadratic lattice wlth' ,

perlodlc boundary condltions u~¥ exp1—4K). *Thls klnd of-ex-_h

A

‘pansion is very similar to the cluster expan51ons used in

'Mayer s cluster integral theory of flu1ds.
At suff1c1ent1y low temperatures the splns w;ll

-

allgn even in the absence of a magnetic fleld Then one has;

h .
o \

the p0551bllity that some of~the splns turn over, ralslng _ i'fQu



o

L N : ) : (O) r &
Nin2 =9 tnu+ B ul . ; (2.19)
8 r=1 & . ‘

The%&erm Nin2ecarises from the high temperature limit.

*bu . .
téé‘ﬁn three dimensions the 51gns of the COfolClentS
Br(O) alternate, which means that :
- B (0) r 6 ¢ : (2.20)

r=1 © {P . i . 3 )

4

has a'singularlty on the negative real axis, corresponding

to an imaginary temperature.v'Generally thlS (unphysiecal)

P51ngular1ty makes it dlfflcult ‘to extract the crltlcal be~
< . . N

.l~° d)

havior ‘from®a finite number of terms.

2

- ¥ ,
- . a _
In'l961, 5'-Baxter ‘introduced the so-called Pade

approximant metﬁod'ﬁblthdse series’ to ebtain informatf%ﬁ
about the cfitieal behavior. He could bypass the siﬁéular4‘
itylbn the negative real axis, and was'able to estimate the
ekponent B of the spontaneous magnetization (see helow).

Since tﬁen~the'Padé'approximant has been a useful, taol in

analyzing series of the Ising model, and has al kf@een ‘
applied to other models. - B A "

The antlferromagnetlc latticO can in princ1p1e be
discussed by changing»J + =~J and theﬁ insisting that J > O.

. The last term in.the high temperature series is now an

-

d)

corresponds to a real temperature on the antlferromagnetlc
trlangular lattice.‘ _ .

8§

Note that imaginary 1nteract10ns on the hexagonal -

13
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alternating series. 1Instead of equation -(2.13), one has

QﬁZN = Nfn(2 cosh h) + iNg‘n(cosh K) + i (—1)rwrwr(1).
‘ r-1

- ) (2.21)

A

" The- high field series (2.17) remains valid but the range of

r

u.is different. Instead of the ferromagnetic range

o

0 <u <1, uis in 1 < u <« ~.

-

At low tempéfatures, the situation is more compli-
cated because the ground states change. We show the con-
jectured T-H diagram of the antiferromagnetic lattice in

M) .

Figure 2.1.

2.3 Transformations of Ising Lattices

#
o o . o
Since the matrix V in equation (2.8) is a 2xZ matrix,
it can be expressed in teérms of the Pauli matrices and the

unit matrix. If h =0, V|[1> = eK]l> + e—K|—1> and

- : \

vi-1> = e F[1> 4 =12, so A
vV = eKﬂ + e K X P | _ ’ (2.22)
with _ ot ;
¥ = (g é) and 1 = (é g) .
. | )
& ' . -
- Usually one deals with VN, where N is a large num-

~ber. The leading term of VN, with K > 0 is eNKH; this is a
very large numbér times the unit matrix. One could reduce
this number by writing K* = #n K, in which case the leading

14



N . . .
term becomes (K*) 1. Assuming that J is fixed, the lattice

has gone from one at a low temperature to one at a high tem-

*
perature when K +» K

If K* is defined by the relation

\

K" = 4¢n coth K = tanh—l(enzx) . (2.23)

instead, then, one can show that

sinh 2K sinh 2K* = 1. . (2.24)
Notice that this last equation is symmetric with respect to
K and K*.. In térms of K* the matrix V becomes

v = (2 sinh 2K) 12 exp (k*1%) | (2.25)

. Onsager6 used this form of V in calculating the
partition form of the finite, square Ising lattice, in }Qﬁ
absence of a macnetic field. The addition of one row of N

spins to®fthe lattice 1is represented by

N .
v, = (2 sinh xl)N/z Cexp(k* I %), (2.26)

where

o=l x 1l ox L ox N x T ox ... xT, (2.27)

and the Pauli matrix ¥ is in the J-th position. The
interaction energy within a row is expressed by

' z -z . v o

v T . T 4,.4) - 2.28

U3 T - a2

It ™2

5 = exp(K2j

. - ’
The partition function .is then obtained from the-

largest eigenvalue of VN, where

Yy

- (2.29)
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Onsager showed that asymtotically the partition functions

of a lattice with interactions (Kl*, Kz*) and a lattice with

interactions (Kl’Kz) are related by

* N/2

A (K. ,K.)

A (K max 1"72

*
nax (K1 K,") = (sinh 2K

1 Sinh 2K,)

. (2.30)

*

The lattice with interaction strengths (Kl*,K2 ) has
ferromagnetic short-range order, and the one with inter-
’ actioﬁ strengths (kl,Kz) lqng—range order. If the physical
lattice exhibits only these two phases, the phase boundary

must be given by the condition

(

sinh 2K, =1 , (2.31Y)

sinh 2K 2

1

- * X,
. since then )\max(Kl 'KZ,) = Amax (Kl'KZ)

The so-called dual transformation defined by equation

(2.21) was discovered by Kramers and Wannier7 in 1941, and
they used equation (2.31) to estimate the critical tempera-
ture. Their result is a precursor to the idea of the fixed

point.

Next we discuss the staf-triangle transformation.

We restrict our$elve§[ following SYozi‘52§ review, to tne

isotro;ic case. fThe more general, anisotropic case has beenv
.discussed'by Domb?’ in'196ofinlhié‘reviéw, and by Gre=n and
Hurst.28' | | -

. Suppose ény spin ¢ inqé;acts with ‘three surfounding
sﬁiné Gi, 02, and o4 wifh éqqalJintergction‘étrengths (see
Figure 2.2), and that H = 0. ’Thelpartit%ohffunction'contains

» @



factors

b exp(Ko(ol +02-+o3)) = 2 cosh [K(gl+-024-03)]

o=%1
(2.32)

We want to write this in terms of the sum of the interac-

tions between Ol’ Gy and O3 as follows:

2cosh(K(ol-+02-+03)) = Aexp{R(olo2 + 0,05 + 0301)}

(2.33)
Here 4 and R are to be determined.
If 0 = 0, = 04 = +1, equation (2.33) yields
3
2cosh 3K = e’R . ‘ (2.34)
On the othér hand, if Ol = 0, = 1 and 03 = ~1, or cyclic
permutations hereof, one obtains the expression
: -R’ o .
2cosh K = Ae . (2.35)
Dividing equation (2.34) by the last equation yields
e® = 2cosh 2k - 1, | “ (2.36)
and multiplying them, |
8% = 16 cosh 3K coshok = e?R(eR 4 3)2 (2.37)
The last two equations define the star-triangle transforma-
tion for this special case. .
. ' Because we have summed over ¢ = *1,0 no longer occurs
B . ..'

in the partition function. Cohsquentlyvthe star consisting
..0of o0 and the three Spins'ol, Oy an§‘03 has been‘reduced to
‘a triangle with Gy oé; and o3 at its-vertices. The inter-

actions R now correspond to the edges of this,triangle. If

17
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the star—trian;le transformation 1is applied to half of.the
spins on a hexagonal lattice, a triangular lattice results.

The dual and star-triangle transformations are use-
ful in reiating the partition functions of geometrically
different lattices. The square lattice is self-dual in the
sense that applying the dual-tfansformation to a square lat-
'tice results again in a square lattice. However,_;ﬁe
boundary conditions may change; not all square lattices arc
exactly self—duél. We have éeen that4the‘star—triangle
transfbrmation changés a hexagoﬁal lattice into a triangular
one. It can be shown that the dual transformation also
changes the'hexagonal lattice to a triangular lattice.

In order to estimate the critical teméeratureaof
the triangular lattice, one first applies thé star-triangle
transformation to the triéggular lattice to get“a_he#agonal
lattice, and subsequently applies.thef6£;£«2rahsformation‘
to get a triangular lattice. This succession of transformaP‘
"tions is called inve;sion. ?he two triangular lattices here
are not topologically equivalent, sincelthe triangles in the
final lattiée are upside down (see‘Figure 2.3). 1f the - o
original (tfiangular) lattiée is at high’teﬁperature the
"inverfed 1attice'is at low temperature. To obtain a trién—
\gular.lattice wh1ch:isthpoidgically equivalent'gé the ori-

ginal one, one must apply inversion twice.



2.4 Exact Solutions

Onsager obtained the partition function and boundary
tension of the anisotropic square lattice by calculating
the eigenvalues of the matrix V in equation (2.29). Fpom

"the largest eigenvalue of V he found that

N 2m2 :
2nZ = N&n 2 + 5 j J Qn(ClCZ-—Slcosw --Szcoswz)dwldw2
8m 070
. , (2.38)
where v .
Ci f cosh 2}(i and Si = sinh ZKi . : (2.39)
The boundary tension is given by
. * o
g = ?(KZ'-Klb) = 2J2‘— kTin(coth(Jl/kl)). (2.40).

: ~ .
- The detail#~of Onsager's soxution are rather formid-

P
[ . . 3

able! Several authors have attempted to elucidate his”
method. Kaufman29 considered a set of 2n 2"-dimensional

-matrices\fk obeying the cgmmutation rules
. Y S X 1 |
T} =2 B RN (2.41)

{ r 6 Q/k ’ \'\.\

QF
N
AN

and showed tﬁat-the‘dual transformation interchanges the
N
role of Kl and K2 (when applied to the square lattice) via.

‘a complex rotatioh in the 2n- -space spanned by the Fk
 Onsager had. obtalned the eigenvalues of V in terms of a
_product of the eigenvalues of the. rotatlon matrlx Kaufmanﬁ
also polnted\out that another representatlon of the algebra

{2, 40) is a rotatlon in 2" -dlmensional spin space ‘and dlS—‘

,cussed Onsager s work in the framework of this representatlon.
: ’ / ) .

s

19
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Green and Hurst28‘have aiso given a simplified
derivation of Onsager's solution, ané more recently Baxter
and Enting3ogave a derivation osing the star-triangle rota-
tion recursively.' For a more complete overview of the exact
solutions we refer the reader to the review article by
Temperley31 in Domb and Green. This article also contains
a discussion of the pfaffian method, in which the partition

function is expressed as a pfaffian.e)

" In 1964, Schultz,'Mattis, and Lieb32 gave a deriva-
tion of the partition function in the density matrix for- v
malism. Their derivation makes use of the_comﬁutation rela-
tions of the spin operators in a more natural way, and
elucidated why,Onsager's‘method cannot yield the partition
function'of a frnite lattice in a magnetic field. It is
already clear from the discussion in Section 2.1 that this
is because the hamiltonian cannot be separated if H # 0.
The methdd of Scholtzlgt al. is also likely to be more com-
prehensible to the modern student of the Ising model. In-
stead of Onsager's quaternion aigebra, one introduces second
quantlzation and creatlon and annihilétlon operators, a
procedure very famillar from the theory of superconduct1v1ty,
lattice vibratlons, and field theory

By the appllcatlon of W1ck 's theorem these authors -

" :

showed also that the two-spin correlat;ons on an ax1s can

be expresSed,in terms-of.a single;Toeplitz determinant,.

”e)A pfafflan is the analogous quantlty to the -

‘vdeterm1nant for a trlangular array.

h

20



Onsager and Kaufman obtained a dum of two Toeplitz deter-
minants, and Montroll, Potts and Ward33 sh9wed the equiva-
lence of these fresults only with Considerable effort.

Below we briefly discuss the derivation due toi
Schultz et all. A fuller‘discussion can be found in Calla-
way‘s34 book. Consider a lattice of N rows and M columns.
It is assumed'that‘the ends ;ﬁ tge vertical direction of tée
lattice are free. One may employ periodic boundary condi-
tions in the hor;zontal direction, but this is not neces-
sary. If N-;s large, it is reasonable to assume that the
probability of finding the N-th row in a certain configura-
‘tionk if one aVerages over the configuratiéns of the other
N-1 rows, is .independent of N. One may then look for a
recursion relation petween the probability of a given cén—
'figuration of the last row of lattices with N rows and N-1
rowé,hrespectively. |

Schultz et al. found that such a recursion relation
waé not possible as an operator equation, but was possible

if applied to a particular state. They chose the state [ 0>

in which all the spins point downwards. Let Xn denote a row

of spins and pN(ZN) the density matrix of the*latticé after

taking the trace over the configurations of-the‘first N-1 2

rows. Schultz gg‘al. call pN(ZN) the reduced dénsity‘matrix;

They show that

M o |
<Ofegtzyrfo> , - zaan

tf pN(ZN)7= 2"
so knowledge of thefaétion of the recursion relation on: |0>

is sufficient fbr\kﬁqw;eage of~thekpartition*function.

21
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4
Next they introduce fermion operators A‘m and Am

defined by
. m-1 + _ +
A = [exp(rm1 - o 3 ) j)]o m (2.43)
J=1
m-1 4 _ _ .
'Am = [exp(nlj;l o] 3 o j)] o Lo , (2.44)

LN
Here thé omi are raising and lowering opérators in one row.
The transformation from the omi to the ferhion operators
. leaves the parts in V due to the interactions between the
spins in a quadratic form, but the part due to the interac-

tion of the spins with the magnetic field is not left in
- - kg £

A

a simple form. It is this difficulty which prohibits the

solution of the Ising model in a magnetic field by this

method. 1In addition, if second nearest neighbor interactions

are allowed, V2 involves higher-order terms than quadratic,

. N\
preventing diagonalizatian of V.

Restricting themselves to nearest neighbor inter-

,

actions and H = 0, Schultz et al. were able to diagonalize

V and obtain the free enérgy per spin in one row:

' : ST I .
F = -kT 2n{(2sinh K )1/2 + ;L‘, e dq . ' (2.45)
- ) 1l 41 4 - .
. P . ~ .

. ! ‘ . } * ’ . ) IR
Here sq is a parameter which depends on Kl -and K2, masking
‘the dependence of F on K, slightly. e
| This method of obtaining the partition function is
in principle ndt réstricted to the twofdimensional,lattice.

To solve the three-dimensional lattice one would attempt to

cohstruct a recursion relation between the last'RlaneS of .

\
\

22



the lattices. However, no such attempts seem to have been

published.

2.5 Two-Spin Correlations

The correlation length is an interesting quantity
since it 1s a measure of the extent to which order exists in
the lattice. For future convenience, we briefly discuss the

two-spin correlations here.
Schultz et al. obtained the correlations between two
spins on the same row from Wick's theorem. The result can

be expressed in terms of a determinant as follows:

4

z z _ z z
<1 nm ¥ onm > = &i: <OIT nm ¥ nm [ 0> .
. P .
o £(=1) m,P(m) ° am-—l,P(ﬁ-—l)
~ an m \fm,m+l SRR S
N .
\ ¥
. = am+l,m . (2.46)
am'—'l,m. R am.__l’lmf__l
Hége, .
_ Yy X . : , _
a5 <o_|,1 A*, A j+1,l.°> SR | | (2.4"7)'.

If‘periodiciboundary'conditioﬁs are applied in the

horigoﬁial»direction, aij depenéglon i and j only thréugh.



R

i-j. 1In this case the determinant in equagiOn (2.460) is

called a Treplitz determinant. Below the critical .point the

asymptotic value o©of equation (2.46) was calculated by

Montroll, Potts, and Ward,38 and is given by~

-

2im 2im < Tznm Tznﬁ >
m-m->o M, N>w
AN \
(l—tanthl)(l—tanhzxz) 1/4 .
* = - 11 - 5 5 . (2.98)
K 16 tanh Kl tanh K2

Notice that this exg{ession is'completely symmetrical in

K, and K Consequently the two-spin correlations are

1 2°
asymptoticaily similar along‘the.lattice axes.» Above TC
they vanish asymptotically.

Stephenson35 classified the trianghlar lattices on
the bagsis of the correlation functions. Let Jlland J2 be
the interactions along the horizontal and vertical axesdggﬁv
a square lattice, and J3 along the diagonals. If Jj is‘tﬁgi
weékest interaction the Toeplitz determinant has the follow-

v
ing symmetry properties along this axis:

{ | La
~(—1)i j+1

i

aij(-Jl,Jz,—J3)3 M

S PR
(-l)i ? 1

1]

The subscript 3 referS’to‘the (3) axis. The correlations

‘along'this'axis are inariant under_the Changes Jl -+ —J1'

N

. and J2 > jJZ.‘

aij(Jl,-Jz,—J3)3b. .(2749)
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For the antiferromagnetic triangular lattice with

Jl'< J2 - J3 < 0, Stephenson found that there is a disorder
teémperature T < TN determined b the conaition

z, - 2.2, - 2.z, = -1 : ’ (2.50)

where‘z2 = exp(—ZJQ/kT). .

Domb30 has discussed that the Néel temperature Ty is

determined by

zZ, - 2,2, — z_z, = 1 (2.51) _

The ferromagnetic lattice with J, ? J2 > J3 > 0 has a Curie

point T, determined by .

+ zz, + z,z, = 1. . ‘ ' (2.52)

Notice that :;if the two weaker interactions are equal,

equation (2.51) has no real solution.

j;n\the ferromagnetic lattice the correlations are
similar/along‘all of the axes. Below"I’C there is ferromag—
netic long-range order, and above Tc_short—range order.'

‘To'discnss the antiferromagnetic‘1attice below TN
one needs to distinguish between the aXisIWith the weakest
interaction (J,) and the other two interactions. .Along the

{3) axis there is ferromagnetic long-range order. .This is

'ev1dent from the: first llne in equation (2. 49) Aiong'the
two axes with the stronger 1nteractlons the correlations
v'are 51milar to each other. and there is- antlferromagnetlc
long range order. | |
Above TNAthevcorrelatiOns are‘again sinilar‘along\

all axes. If’TN'< T°<UTD‘the:pair correlations decay



monotonically, giving rise to antiferromagnetic short-range
order. Above TD the gorrelations also decay exéonentially
but within this decaying enveldfe there aré oscillationé
which complicate the corrglatioﬁs slightly. Notice that

TD does not Separate regionsvof order and disorder, as do

Ty and TD;~it-separates two regiqns of disorder. The gxist-
ence of TD is related to th¢ fact that there are triangles
in the lattice. The antiferromagnétic quadratic latticg
aoes not have a disorder point, and_caﬁ be discussed by

» changing Jl - —Jl and J2 ~>'--J2. In this case the Néel tem~

perature is numerically equal to the Curie tempefature.

. 2.6 Critical Behavior

3

Finally we describe the analytical behavior~«of the

N A

'thermodynamic'functions near the critical point. The
critical behavior of a model is‘its most crucial test.
Mean field theory correctly predicts that the Ising Lattice
exhibits a phase transition, but it giVES:the critical
}exponents incortectly. The reason fo; this is that the
ffﬁctuations‘are ignéred in méan‘fieid.theOry, and they bé-
come'infinite ét the c:itical'ﬁdint, “'In the next chapters
we'wiil-séé7hd% the‘éeros'of the pértition:functioq'tam Yive |
information‘about the analytical stfﬁcture of the'pattition‘
functlon and the thermodynamlc functlégs,'so 1t wlll be use-
ful to know what crltical behav10r we should expect from the
‘ . D 4

zeros dlstrlbutions. L L o : ;g

[N o C [

At the critical point one usually asSumestthatuthe ,
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4 thermodynamic functions have a branch point, as we discussed

fok the susceptibility in Section 2.2. This assumption
allows one to introduce critical exponents and amplitudes.
If it happens that the thermodynamic function under can-—

sideration is known to have a.jump discontinuity at the

v _ .
.critical point (e.g. on the basis of experimental evidence)

s »

then one must at first assume different critical exponents
below and above TC. In Table 2.1 we list the definitions

of the critical exponents, their currently accepted valhes,

-

and the scaling relations between them.

The magnetization of the ferromggnetic lattice is

given, by

K = m[vl = 2N‘l

~18

2°G_ ()] . | | (2.53)

il

r=1

. . Here Gr(u)<is the Same asg in the high field series (2.18).

Evaluating M at the critical temperature defines the M-H
i ; . . .
relation along the critical isotherm.

A » .
: The terms of the series in equation (2.53) all have.

consistent signs, so there is a dominant singularity at
z2=4+1, or H=0. . The critical exponent .§ is then determﬂ%&épﬁ
by the anymptotic values of the coefffbients Gr(u). Gaunt,

Fisher, Sykes, and Essam36 obtained § = 15.00 * 0.08 in-
. “ . ,(';') * N ' .
two dimensions and § = 5.20 ¢ 0.15 in three dimensions.

They conjectured that § = 15 exactly for all two dimen-’

sional l%ﬁﬁiceé. N .
. .;,!," . o ) .:
T In view of the singularity in M at z:= +1, éhe‘T—H—

©

plane is cut along H =0 from T =A0‘tb'Tvﬁ‘T . Above,T_



all the thermodynamic funcfions are analytic. The spon-
taneous magnetization has been discussed in detail by
Griffiths,37 especially some difficulties with its defini-
tion. We show the T-H diégram in Figure 2.4.

On the basis of thermodynamics .alone, I.mshbrookc38

derived the inequality

a' 28+ vy o2, - (2.54)
vand Griffiths39’40
a' + B8 + 1) =z 2 . ) (2.595)

The - ' h%re indicates;that the significant critical exponent
igwihev%né for T <« fc. The last inequality was verified
experiméntally by Roach and Douglassﬂj’ The inequalities
(2.54) and (2.55) are véry general. Their derivation does
not require a lattice; it depends only on the requirement
that the- free energy is a convex function. For a particular
model the inequalities can bécome»equalities,‘as happens
with the Ising model;'

These relations suggest that the critical exponents
are not all independent. Widom42 fﬁund a homogeneous

equation of state from which such relations between the

critical exponents, and many others could_bevderived. Sub-

sequently these relations have been called scaling‘laﬁs
and thevequation Widom discovered the scaling equation of
state. Almost simultaneously Patashinskii and Pakrovskii

arrived at an equation of the same form by—introducing

coarse graining. In the critical région‘large blocks of

28



spins are then replaced by a single spin. Also simultaneously
with these developments, Domb and Hunter introduced the gap

exponent £~ in the even derivatives of the susceptibility.

Writing

2ri

+ -Yy- A
—— = C ,_ (1-t)" " 2rl (2.56)
at

d

where ;o = ka/m2 and H = BmH they derived an equation of
A
state of the same form as the one of Widom and Pataskinskii

and Pakrovskii:

et = xP@m T L 2 | " (2.57)

Here X+ is a power series containing only 6dd powers of its
argumené;‘\lt can be shown that y-4A = B. |

It should be emphasized that equation (2.57) is. only
valid in the crﬂicalxegﬁxh It depends on only two critical

’ + . . .
exponents and a single function X . A detailed discussion.

of this equation of state has been.given by Dombll and
others. This equation was derived from three very different
perspectives. It is remarkable that these three approaches

gave the same equation of"state, and this fact led Kadanoff

to his scaling hypothesis.
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(a) quadratic lattice (b) triangufgf lattice

Figure 2.1. H-T diagram for Ising antiferromagnet.

-
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(a)

Figure 2.2. The star-triahgle transformation.
 (a) definition.

(b) If this transformation is applied to the
black spins in this hexagqnal lattice, a
triangular lattice is obtained.
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- - B 3 . t
— o emm—

high T

Figure 2.3. Inversion of triangle.

The inversion takes the triangle at high
temperature to one which is upside down at
low temperature.

-

Figute 24 H-T diagram fof -Ising ferromagnet.
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CHAPTER I1I

(¢}

A REVIEW OF PARTITION FUNCTION ZEROS
IN STATISTICAL MECHANICS .

3.1 Introduction

In 1952, Yang and Leel showed hoﬁ, for the problem

of condensation, the analytic properties of the pressure

and density can be obtained from knowledge of the zeros of

.the partition funé{wAﬁ‘ In a separate papiar2 in the same
year, they showed that the problems:-of the iattice gas and
the Ising ferromagnet are mathematically equivalent. They
also obtained a theorem regarding the 1oéétions of these —
zeros in‘the complex‘fugacity plane (Theorem 3.2). 1In v
this chapter, we review the progress that has been made in
the theory of phasé transitions on-the basis of this work
of Lee and Yang.

Consider a monatomic gas which is contained in a
base of volume V and is kept at a fixed temperaturélf.
If the gas -is a;lowed.po ex;hange atoms with a reservoir-
which is at the chemigal'po#ential y, then ﬁhe pfobability

. : |

of having N atoms in thelcontainer as QNy 7N!. Here QN is
»‘the‘configurationai ?ért,of the partition function and
21rka)3/2

y o= ‘explu/kT), RS
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[y

If the volume V is finite, a maximum number of
atoms Nm can be packed into it. In this case the partition

function is a polynomial of degree N in y:

Z, = L NT Y (3.2)

~and can be factored 1in terms of its roots Yyt

2z

m

VA =

v (-y/y) - o : (3}3)

=

i=1

The pressure and density are detérmined by

P _ fim 1 ) ) E h .
KT = vow yRZy | ~ (3.4)
and ! ‘
£im ) 1 .
T V-e  3Rny (VQnZV) : : (3'5)

¢

Since all of the coefficients QN/N!_in equation:
(3.2) are positive, the,partition function does not have

any zeros on. the positive real axis. However, in the ther-

»

modynamic limit, zeros can@pigch’the positive real axis.

If the interatomic potential is sufffciently well~-behaved

@

the following theorem holds.

Theorem 3.1 (ang.and Lee)
If in the complex y-plane a region R containing a
segment of the positive real axis.is free of roots, then in

this region, when Vaw ,
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2
1 J g 3 1
=snZ —— —ynz — =inZ._ ,
rd V. .
Y v Jiny \Y ! (dlny)z \Y% \Y

approach limits which are analytic in y.
Suppose first that no zeros close into the positiVe
real axis as V-—+=», so that R contains the entire positive

redl axis. 1In that case everywhere 1in R one can interchange

the operations S iny and é&:"' and the .density is given by
_ 93 P |
° = 3y &7 - . (3.6)

The pressure and density are then mSQOtoniq'énd analytic

functions of y on the positive real af;s, and the gas exhi-

bié? a .single phase in R. ‘/) \g A =y
. Next, suppose that zeros do close\in on the positive

real axis at isolated points, say at y = tl\and Y —xt2,_as
V+=, Now there are three reglons Rl’ or an \R3 tQ be con-

‘sidered (see Flgure 3 l) In each of these reg%bns, it

‘follows by the above argument that the gas exhlbits a s&ngle

phase. At y = t1 and y = t2 P is contlnuous, but 1 is d%s—
'_continuousa As T varies, tl and t2 move along the real Y

 >éxié.‘ If at T =T, the roots no lenger close into one of
the points tl’ »i as T is lowered, éién T is called the
crltical temperature. - If there exists a tempereture for1f\i'
which“tl = tz} then at this temperature We.have a ﬁrlﬁie>
point. |
| 'Starﬁing frem'eguation'(3.3) one‘cen write
00—

Finz, = I b (yt, A T S
£=1 . ; : e ‘ ) : v : : h’
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where

. - T i— ;
bQ(V) = v : (Yj) . (3.8)

In Mayer's theory of condensation one considers the series
o

X(y) =1 b (=)yt o, S 3.9

L

(I el

1

and its analytic continuation along the‘positive real
y-axis. If the first singularity.of x{y) along this axis is

at y = t,, one can show that:

1. For op < Py » 0= fim - ¥y x (y) . (3.10)

e

Y’tl
The ' denotes differentiation with respect to y. The syetem

is in a single phase for -these values of o.
. . ‘

2, For p zhpl“ P is independent of p. The P-v diagram is
is flat for these values of b, so‘Mayer's'theory cannot
explain the existence of a liquid phase.

In thevéheqry of Yang and Lee, this difficulty_does

‘not arise. To . see this, draw a c1rcle C 1n51de Rl' centered

o

at y = 0. In c, the series (3 7) converges unlformly Slnce
for all the zeros y; |y ]3>o, where  is the radlus of c,
equatlon (3 8) yields | |

m 1 . : = 3

A

lb |
vaasev-rm,_Nm/V is bounded, one can conclude that in c,

©fim :

© PRI R . e o
Vew I DV) iyl = 2 @Q*Md;y co T Ban

2=1



One can now conclude tHat in C the cluster integrals bp(V)
givenhby"equation (3.8) are”identical yith the ones in
Mayer's theory, and that, x(y) = P/KkT. ‘By analytic continua-
tion this'is true everywhere in Rl' However, the series

x (y) cannot be analytically continued beyond iﬁs sihgularity

athy:=tl. The Yang-Lee theory is still correct here, but

Mayer's theory is not’ since the bf(V) cannot be replaced by

7 the bR(w).

4

Fof a further discussion of Theorém 3.1, we refér
the reééer to the review article by G-riffiths,3 in whic¢h a
proof based on the Hurwitz Theorem is given.
| Lee and Yangz.also showed that the lattice gaé and
ising.fer;omagnetnwith s=j§ are mathematically equivalent.
By a ;atgicé gas we mean the following. At ea%h site on a
lattice theretgs either‘one atom,‘o} else it is empty. Any
atom is assﬁmeq to interact only with its nearest neighbors

through an attractive, bounded interatomic potential. For

‘a real gas this is an approximation, but it is expected to

ER S

. be a good ébne if fhe,lattice spacing is small. Of course

¥

one must’ also take tﬁeikineticaenergy of the atoms into
aécount."ln #he S=14% Ising model, it is assuméd %Ha? there
- is afspin gapable‘of'tw0‘9rieﬁtations at each site{ For
the‘iattice g;svthere are two possiﬁilitiés at -a given
}attiée-éite; éithéf an‘atom‘is_preSent~there ér no atom is

: prgsent;-_The-co;reépondences,between the various thermo-

, Bypémic_functions in~these two models are-well known, and

can be\found'%n‘anyﬁtexg on statistical mechanics.

L]

3
®

41



42

In view of this equivalence of the S =14 Ising model
and the lattice gas, the previous discussion on the zeros of
the partition function can also be applied to the Ising

.model. Zeros of‘the partition”function now become very in-
teresting because the Ising model with a!finitc magnetic |
field has not bee solved exécfly, not even for the two-
dimensional lattices. For finité lattices the partition
function zeros approach is exact. It can providc a confir-~
mation of the scaling picture, independent of the series
expansions method, énd can be*used to Salculate some” of the

critical exponehts.

The partition function of the isotropic Ising®model

with a magnetic field H is

ZN(T,H) = 3 exp{K}aoioj + h; oi}‘. (3.13)
{o0.} ij i
1"
This expression is quite complicated. Usually one fixes

the temperature or the magnetic field. 1If ghe'temperature
F ]

is fixed, one obtains an expression of the form

Zy(h) = 2 (h=0) g(l—z/z\)) . (3.14)

where z = exp ( mH)'and the z, are roéts'of ZN(z)= 0.

The 2z here should be'identified with the yuin‘equation (3.1)
of the lattice gas. Tﬁus, strictly speaking'2 is propbr-
tional to the fugacity,‘but usualiy Qe_will not make the
distinction. | B

For these zeros in th z—ﬁlane Lge and Yang2 proved

7

the fdllowing theorem regarding their location in the z-plane.

'



Theorem 3.2 (Lee and Yang)

'If all the interactions Jij of the S=14 Ising model‘
gatisfy Jij » 0, then the roots Zv of ZN(z) = 0 lie on the
unit circle:

2] = Jz,] = . . . = |z | = 1.

The proof of this theorem is given in Appendix IT of
the original paper by Lee and Yang.2 Theorem 3.2 is a very
strong result. It can be extehded in a Varietf of ways

- -

(see below) and does not depend on the lattice.

3.2 Numerical Studies

o S
s ' A
In this section we review some studies motivated by

the ideas of the previous section. First we relate the
distribution of zeros to the thermodynamics.

If z, is a zero of the partition function, so is

zi*. Therefore; instead of (3.14) we write
. ) * ) ‘ '
Zy TKZN(h_O) g(l - z/zi)(l - z/z;7) . (3.15).

If the conditions of Theorem 3.2 are satisfied, one can
introduce the ohe—dimensional distribution of =zeros gXS,t);

the number of zeros between 6 and 6 + d6 is then g(8,t)de.

1

Here t = (T -T.)/T,. = Since we have accounted for z; and z, "

éeparately, it is now sufficient to keep 6 in" the range

‘

0 = 8 s m. Hence one can derive that

;li(z) =.9ﬂ + (" g(é t) Qn(z2 -2z + 1)de (3.16)
kT kT 0 ’ . . ) v
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thermodynamic functions. The zero-field susceptibility and

specific heat were calculated in this way by Suzuk1.6'7
Assuming that g(O,t)'has the properties

1. g(6,T=0) = 4n ; i

2. g(8,T»x) = &(06=-1) , (3.17)

Ono, Suzuki, Kawabata'and Karak18 showed that it is possible
to have a.critical'angle 6. above T., such that g(u,t) = 0
for |8] < 6.- Moreover if no such a critical angle exists,
g(b,t) = 0 above TC. Interpfeting g as the independent
variable they gerive a differentiai equation for ¢ in terms

of g. The.critical angle ec is then determined by setting

g=0 for t>0. We show g(0,t)  for several temperatures in

Figure 3.2. .
Yang9 proved in 1952 that the magnetic field zeros
of the oné-dimensional S =14 antiferromagnetic ising lattice
all lie on the negative’real axis, bzt noted that tnis is
not true in genefal for the Ising model. KatsuralO found
that zeros lie on the negative real axis forthe'lx6{Heisen—

berg antiferromagnet. Rather than going to larger lattices,

several authors'studied the antiferromagnetic Ising lattice -

with second nearest ne{ghbdr interactions. The nnn inter-
aétibns wg:e expéc£ed to be impoftant fdr the antiferrOmag—
. , . , ‘ e .
n?tic state.ll_lB

Katsura, Abe‘and‘Yam0m6t014bshowed fhat.the Ising

model with nnn interactions has three different gronnd

’ states:
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(A) Ferromagnetic, if J > 0 and J > -4J;

(B} Antiferromagnetic, if J < 0 and J > 3J;

’
\

(C) Super-antiferromagnetic, if J < 0 \9Qg J' o< 1J , or
| J >0 and J' < -iJ.
, b
Here J denotes the interaction energy between second nearest

i

neighbor spins. These authors galculated the partition
function for 4x4 and 4x6 lattices on the computer, using
periodic boundary conditions. The partition function of an

L M lattice 1s wrigten as

x Xy (3.18)

ZLXM(X'Y’ z) .= Zaﬁmn

where

X = exp(—%g) , Y = exp(—ZK') , and z'=exp(2h).(3.19)

When J > 0, J > 0 and when J > 0, J' > -4J, zeros
) _ ,
were found to lie on the unit circle. For high T zeros are
on part of the unit circle, but do not cross the positive

real axis. Note that this is in agreement with the work of

Ono, Suzukl, Kawabata anqugraki.8 For iow temperatures,

ﬁhe ééros are distributed ;niformly on the unit circle and

ég.crosé the positive real axis. J T
When J_<‘6 and J' > 0, zefosflie on‘two'conééhtric

circles'which cross thé positive real aXis at two p01n£s-F 

-and i/ic;- This suggests that phase transitions. occur at

Zg ’
the critical fields tH, .. If T » 0, H, tends to -2J/m.

Above ‘T, there is a singl¢ locus whidbldoes not cross the
- positive real axis, and at. T = TC there is one - locus which

crosses at z_ = +1.
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When J < 0 and.J' -« 0, these authors found that Gnost

of the zeros lie on the negative real axis.

We discuss the case J « 0 and J' - 0 in more detail.
At low temperatures, x ~>1 and y << 1. The leading terms of
4
the partition functionéare (N = LxM).
2, N N N2 N2 + 25Ny
- -N+
+ NxN 4 Yy N+4 (z + 1/zyr + . . . . . (3.20)

Zeros of the first two terms are locateéed by

ZN/2 = —x%N + x4N -1 , (3.21)
2N _ 2N R
or approximately -2x or " -1/2x’ . This yields the two
circles
_ 4 . 24 .
z, = X exp(21i/N) and z, =T X exp(2n1i¢/N).(3.22)

The power of 4 here reflects the fact that in a

two-dimensiongl lattice each spin has four nearest neigh-

bors. The neglected term in equation (3.20) is a factor of

~N(y/x)4 smaller than the term xNy—N

, and can be neglected
at low témperatures, To this approximatiOn, zefos of the
partition_function 1ie"on the E;rcles (3.22);

| " The magnefization is (at Léwa) |
- 1, -2J < mH
N2 N2 "

M= - — .
‘zN/z + 2x2N5+ z N/2_

-1, mH < 2J
~ L .

' So M is a stepfunction of the magnetic fie%d, and. the critical

g
.;{_!:\_-

= 0, 2J<mH<.-2J . (3.23)
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fields are HC = +2J/m.
The other cases above can be analyzed similarly.
We refer the reader to reference 8 for more details.

To conclude this section, we guote some.other
numerical results. Kawabaté;and Suzuki15 verified that
zeros lie on the unit circle for the ferromagnetic Ising
lattice‘with séins up to $=3/2. Katsura, Aﬁe and Ohkochi,
and otherslG—19 have obtained the partition function for
lattices, up to 6x6, of Lieb's and Wu's KDP models. These
models‘ére two-dimensional versions of Slater's model of
ferro- and antiferroelectricity. Zeros were found to lie
'bn the unit circle in the fugacity plane. This result was

proved by Suzuki and Fishér.zq

3.3 Further Rigorous Developments

In this section we discuss two important generaliza-

tions of the theorems of Lee and Yang. 1In 1968, AsanoZl'22

23524 proved the Yanﬁ-Lee theorem for the S=1 and

5

and Suzuki

Ising model. 1In 1969, Griffiths®> gave the proof for the

Ising model with general spin. ]

Griffiths considered particI®s with spin S which 1is

.

allowed to takévon the values’

-p, -P+2, . ;’.,vé, . . ., p-2, p. : (3.23)
The z—cbmpbnent of tHisrspin is p/2.i_He.assumédithat a
_partiéle»ofispin S i$'maae up of'a.clﬁster of s=14 éar—~‘

‘ticles:

ol . (3.24)
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Here Oj = t1, as usual. One can then express the hamil-
tonian either in terms of S, or in terms of {Oj} making up
such a cluster. 1In this‘way the problem of genefal spin S
vis reduced to that of the s=13% Ising model, for yhich
Theorems 3.1 and 3.2 have been proved by Lee and Yang.
Griffiths' proof is quite detailed, and will not be discussed
here. The essential feature is that the partition functions

are the same in the S and {oj} description of the problem.

Theorem 3.3 (Griffiths) .

(A) If all the interaction stgengths Jij in the hamil-
tonian
H=-7 J..S.S. - HIS. “satisfyP!
iy 37173 it

then the zeros of-the partition function lie on the unit

’

circle |z| = 1 in the z-plane, where z = exp(-28gH).
(B) If scaling‘facto;s ry and r, are intréduced, such
that Jij - rlJij and H‘»‘rzg, then the‘following inequality
holds:

iMp%ér1,§r2) ; Mo(ryery) £ My(r),ry) . .

If the s==§ Ising model has a spontaneous magnetization

_ o Plre s possible to extend Theorem 3.3 further, =
allowing Jij”= @ also. The restriction. i £ j in the first

.summation in the hamiltonian ensures that no,double-éounting
occurs. - ' o R S -



M, for temperatures T < Tc(l), then the‘spin—p/Z ferro-

magnet has a Curie point in the range
¥T_(1) £ T_(p) : T_(1) , : (3.25)

provided that the values of the Jij are the same in both -.

C

a .
cases.
21,22 A . -
Asano considered the Heiseénberg ferromagnetic

lattice consisting of n spins. The hamiltonian is

H = - J. . H. . (3.26)

1zizjzn  *J3.%J
with
z_ z d ' X X Y Y
Hij = i(ri Tj -1) + iYij(Ti Tj + Ty Tj | - (3.27)

The factors'yij introduce an anisotropy between the z-
component and the x- and y-components of the interaégions.

The magnetic field is put in the partition function expli-

‘citly through a factor zM, where M = Io, :
i

2(z) = % <o} ., .0

2™ exp(-Bﬁ)lol N
{o} _—

nl n

(3.28)

Asano was not able to extend Theorem 3.2'to the
: ' : F

rartition function (3.28) direétly?»gTherefore,'he considered
. "5 " , R

the expression -
. s ¢ : :
| - 1. n
¢({z}) = = zy - ..z <oy .. 9
{o} - ) -
' [exp(-BﬂHi)Icl c e o>

49



Let

= n 1 ‘
P (N) L exp (I JHy /N) (3.30

-

“then using the Trotter formula’

Tz = T Uz, (3.3
where
‘n o
e o({z}) = L 11z, ) <o 0
N {o?‘i=l 1 n
(3.32

For éN Asano was able to prove an extension of Theorem 3.2.

Theorem 3.4 (Asano)

If Jij z 0 and -1 « Yij < 1 in eguation (3.27), the
zeros z of @N({z}) = 0 all lie on the unit circle in the
complex z-plane for all N.

By this theorem zeros of ZN(Z) defined by

ZN(z) = ¢N(z, Z, « .,2) 4 : ‘ (3.33).

then all lie on the unit circle. When N - ©, %, and Zy

- approach ¢ and N respectively; therefore zeros of the parti

.

“tion function ¢ are expected to lie on the unit circle if +&

satisfies Theorem 3.4.

There are many‘éther iqterésting generalizations of
the.Lee—Yanglthéory, but a detailed discussion of them is
clearl§ beyond tﬁe scope "of thip‘thesis. for references
regarding these results, see the papers of Lieb-and Sokal,

and of Ruellé.27'28

)

)

)

n

50



&

51

3.4 Lee-Yang Edge-

S
In section 3.2, we briefly discussed the existence

of a critical angle such t?at no zeros in z = exp(-2H/kT)
occur for [0] - 6. above T;. This zero-free part of the unit
circle défines the Leé—Yang edge. The nature of this ed@e
was first inveétigated by Abe29%nd Suzuki6 (last paper in
this reference). G?llavotti, Miracle—Sole and Robinsoan f
proved the exisﬁence of such a region free of zeros near
z=1 for suffiéiently nigh temperatures for the iaquph:quahaticﬂ
lattices. ' o

It is sometimes convenient }o discuss magnetic flield
zeros in terms of H itself, rather‘ihan z. One then writes
H=H'+iH". The unit circle |z| =1 now corresponds to the
. imaginary axis in the complex H-plane. The width of the
Lee-Yang gap in this desériétion is ZHO(T);,the edges of this
gap are branch points of the.magnetization. The‘magnetizé—,
tidn has a jump-discontinuity of‘2Mo(T),6 which is propor-
tional to the density of zeros with H=0.

2M_(T) ~ g(0,T) . - o C(3.34)

Fish&{;; introduced an exponent g to describe the
P

~analytic propeXties of g(H",T) near the Lee-Yang .edge, in

the following way:

g’ ) ~ |87 - H (1) |7 . - . 3.35)
ThiS'gives rise to a bfaﬁch point of the form™m -~ h® for
the magnetization. (Here we set m = M-M(iH_,T) and

h = H«-iHO(T);)f Fisher suggested that the edge sihgularities



(Jare analogous to the usual critical exponent, and that the
exponent ¢ fits into the scaling picturé?\e.g.
+

d - 2 -
-2 ‘ (3.36)

n
Here d is the dimension of the lattice.

For d=1, o = -4 for all T. A consideration of mean
field or Landau thegfy indicates that the "critical point"
is associated with q,¢3—theory,'ihstead of a ¢4-theory.

It can be shown via the methods of the renormalization group
that this leads to a cross-over dimensionality a" = 6 above
which the mean field value o = +{ applies. |

'The first published numerical investigation of the
Lee—Yéng edge appears to be the one done by Kortman and
Griffiths32 in 1971. They used the high field series, of
which fourteen terms had beeh calculaﬁgd, to look for a g
divergence in the susceptibility. If one assumes a rela-
tion of the form (3.34), then at the Lee~YangAedge the sus-
ceptibility‘shodld diverge accérding to the relation

x = (5 =+ |n" - M&(T)]o;l . | . (3.37)
4 ) T _ - © - .
'Inithis way,'these autﬂors pbtained estimates of o as-
follows: o ='—0.léio.05 for the square lagtice, and

o : +&:12§0.05 forAthe threeFdimensional ISingﬂlattice.

Recently, Baker, Benofy and Eﬁting33 used the high field @

series to obtain a lower bound on“o of -0,232;..The_trﬁe , .
nature of the hranch point in equation (3.36):remains"an_

open problem.
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3.5 Temperature Zones

In 1964, Fisher>? suggested that the square of the

partition function can be replaced by one term of the Kaufman

solution,
4 (1) o
2. = z He chodse the term
N N : : -
i=1
2 2
(1)2 2mn m n l+vl l+v2 2V 2nr
VA = 2 n n { - cos
N r=1 s=1 1- 2 1-v 2 1-v 2
= V1 2 1
2v 21s : : ‘
- 5 COs~— b, P (3.38)
l—v2

where v, = taﬂh Ki. The other terms involve cos((Zr—l)n/m),
cos((2s-1)n/n), and mixed terms. Fisher conjectured that
when Jl=#J2 zeros éf.equation (3.37) lie on two cifclesvéen-
tered at Re v =121, of radius /2, that this is true for all
four of tﬁe terms and that]the'zerés of the sum ZN also lie

. s
.on -these zeros. , . ' , SN

N ~

"Fishér's conjectures were tested numericall\ by \\\\‘
35 ) .36 e o~
Katsura. Abe &nd Katsura found that asymptotically > S _

) : S , _ ;o
Fisher's conjecture was correct, by ‘numerically calculating

paititiOn function zéros of men infthg variable exp (-K) for

-
~

the special case Jiﬁ=J2 on 4x6, 6x6, 6x8, 8x8 and 10x10
lattices. .They chose the term with j' _ '
¢, = 2mr/n and ¢ = (2s-I)m/m ,  (3.39)

LT » - B - E o
' and,foundreas@ﬁ%ﬁfy~900d agreement with Fisher's conjectures.



We show the loci these authors obtained in Figure 3. 3.

Fisher's conjecture that zeros lie on zeros was

proved for special boundary conditions in 1974 by Brascamp

and Kunz.37 The result they proved is the following:

1.

&

For the lattices (A) and (B) defined below, temperature
zeros lie on the unit circle in the sinh 2K plane.
For the lattice (C) as defined below zeros lie asynpto—

tically on the Fisher loci

R I N P L o {3.40)

The lattices (A), (B) and (C) have the followlng

boundary conditions (see Figure 3.4):

(A)

(B)

(C)

Perlodlc in the horlzontal direction, with a row of

upward spins at the top of the resultlng cyllnder, and

"a row of alternating spiﬁ% at the bottom.

Perlodlc in a dlagonal dlrectlon, with a.row of upward

splns along the upper edge and free along the bottom of

the cylinder.

A *

Periodic boundary conditions in ©one direction and an

arbitrary honogenéouaN;%EneticvfieId along the lower

boundary.

Temperature zeros of the general quadratic lsing‘

lattice are not expected to lie-on lines, such as~the

‘Flshe; c1rcles, but should. flll two dimen51onal reglons in

1

‘the complex plane. van Saarloos-and~§urtze 8 wi/;e the

Jpartltion functlon of the anlsotroplc rattteecés

N

e
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- S, SRV
z (H=0,T) = 7 m_ (e 2Ky (e %%
N k )
s k’y ’
/\‘
\\
= omy (e 2Kk H (3.41)
K, %
‘k,;'
where
K, = K and K, = aK.

1 2
If « is not an integer, ZN(O,T)‘is not a polynomial in
exp(—ZK‘.‘ - Two parameters are then needed to describe the *

distribution of zeros.

N

3.6 Connection with Thermodynamics

In this section we show il the specific heat of the
K \

Ising model is obtained from the tempe Vturé zeros, and dis-

specific heat was

cuss some related numerical results. Th
. 1 * ‘ ; [
first discussed in the context of the temperature zeros by
39 ‘ )

Abe.

>

In th absence of a magnetic field, the partitioﬁ

\ L

- function for .the isotropic Ising lattice is

2z, (H=0,T) = 2V (cosh k)Na/?

(I-w/wy) = . (3.43)
. l

1

W= 2

~where the w, are the roots of the equation

v Fw) =Iaw =0. . o (3.44)
- |

$ » N i ' .
‘The coefficients ag are the number of closed graphs that:

s can be constructed'with n nearest neighbor bonds, andjare

“/‘ A ’ . . .
all positive. Hence there cannot be any roots W, on the

<

real, positive axis. However, it is possible that roots
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apgrogch the real, positive axis at certain points as N -«
In this limit the factorization-of the partition function,
as in equation (3.43), is no longer possibleﬂ but it‘gs
hoped that the zero distribution 6f the finite lattice, for
large N, yields thermodynamic behavior notf}oo different
from that of the infinite lattice.

/2

d @

The factors 2N(cosh K)Nq glVe a contribution

-4gJ to the internal energy per site, and will be ignored in

this section. If wi is a zero of equation (3.44), so is
wi*. Hence the singular part of the internal energy is
N ,
3 .
Esing = %% :']w];w M 3‘A—w) ) T 3.43)
‘ El ‘ i=1 i i

Near the critiéal point.zeros are gxpected to.
approach the real a%;s vertically, éo here one writes
Wy o= W, o+ iy and introduces the one—di@ensional distribu-
tion of zeros g(y). The density of ieros g({y) can be ex-
tracted from equation (3.38). In Sections 4.3.2 and 4.3.3 .,
we wiil show that near y = 0,}g(y) is proportional to .

|y|/27 for the quadratic Ising lattice. The singular part

of the .internal energy can now be written as

Yo gty dy : (3.46)

’

E

_ A ey
sing (aB)z(wc w) [

2 2
0 (w—wc) -hy

where yé is a cutioff parameter. With gly) - ly|/2n the

integration yields
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A\ e

Es,in.gd - (i:?)%(wc—w) {2rny® +in|l+ ( - )2|— 2m[wc—w|)
| (3.47)
The term proportional to ﬁnyO is constant and does
not contribute to the specific heat. The second term in the

braces can be expanded about W=W and yilelds

wW_o-w
( i’ )2, which can be neglected near the critical point.
O .

Hence the most singular part of the internal enerqgy is
independent of the cut-off parameter Yq
AW N

Esing - (TE) (wC—w)Qn|wC—w| . | . (3.48)

N

Differentiating with respect to the temperature, and neg-
.lecting terms not singular at QC,.the singular part of the
‘specific heat is .
EEEEE ow, 2

Nk ~——(B 7) inT—TC| . (3.49)

which diverges logarithmically near the critjical point.
The calculation of the density of zeros proved to be

a difficult problem. Abe considered the different possibili-
vties.near the Cfiéical point., If g(y) is assumed ‘constant,
it must’be discontlnuous at y -0 because there are no tem-
perature zeros on the positive, real axis. This‘situation
correeponds to a flrst-order phase tran51tlon. Alternatively,
if a term proportlonal to y2 is assumed, it can be shown
that the contribution to the spe01fic heat is proportlonal to

(w -w)Qn]w -w|, which vanishes near the"crltlcal point.



)

Hence one pould cénjecture that g(y) - !y| on the basis of
the expected thermodynamic behavior. Stephenson and
Couzens showed that the density of zeros can bé extracted
from equation (3.38) for quadratic and triangular lattices,
by choosing a suitable w-variable, in which equation (3.38)
is then a quadratic. We discuss their results in detail in
Chapter 1IV.

The specific heat (3.49) is symmetric about TC.
This is not expected to be true for the three-dimensional
lattice, because analysié of thé series expansions gives
an asymmetric specific heat. . The reason the specific heat
is symmetric in the two-dimensional case_is that the zeros
approach the real‘axis vertiﬁally-—theré is no distinctidn
between WSW and W W . Abe?;9 has shown that if one

. 0
assumes that near the critical point roots are located

i¢

asymmetrically by w==wc+-yé ' the specific heat behBves asc)

cos 2¢ zan-—Tcl + (1-¢)sin 2¢ , T~ T,

Nk ' ,
cos 2¢ Qn|T-—Tc] - ¢ sin 2¢ » T>T_. (3.50)

Ono, Suzuki, Kawabata, and Karaki?® established N

numerically that for the 3x3x3 and 3x3x2 cubic and the 3x3x3

bce lattices zeros cross the positive real axis at a certain

'angkL in the variablg z=3exp(-2K)} indicating an asf%metric

specific heat.

The distribution of temperature zeros can also be

“Here ¢ is ‘the angle which the locus of zeros near
wc makes with the positive real axis. o



used to determine the critical temperature: in the thermo-
dynamic limit zeros cross the positive real axis at z=2z_.
Ono et al. estimated T, in this way for several quadratic
and three-dimensional isotropic lattices. These authors
also found that there are zeros on the imaginary axis,
closer to whe origin than the value Z. ‘giving rise to a
radius Ofrconvergence of the series expansions less ‘than L
In figure 3.5, we show temperature .zeros of the
4~6 isotropic lattice, obtaingd by Ono et al.’ Figure 3.5(a)
shows zerds in the z-plane, which lie on the Fisher locii
discussed in the previous section. 1In flgure 3.5(b) we
show zerO'distributions in the zi—plane. Zeros appear to

a

lie on the square of side /5, the unit circle, and the re-

5

flection of this square in the unit circle. The square it-
self is notugmthentlc, but the fact that its reflection in
the unit circle is also a locus of zeros is. This symmetry

for the quadratic lattice results from the invariance of
. d . ( 7 d )
the partition function under the transformation z - 1/z,

A 9

and extends to the anisotropic quadrafic lattice  (see

Chapter V).
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w | e
t t >

Figure 3.1. Analytiéal structure of fugacity planec.

The regions Rl' R2, R3 are free of zeros.

g(t,t)

T=T

K}

Figure 3.2. Density of fugacity zeros on the unit circle.

‘(&) there exists a critical angle b_ above T, .

(b) no critical angle exists, but g(@,T) = 0
for T‘-Tc. ' .
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Figure 3.3 (left).

Figure 3.5 (right).

+ 4+ + +

+ -4 -

Figure 3.4.
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Zeros in the X = exp(-K) plane computed
by Abe and Katsura3®b.

(a) 6-6 lattice;

(b) 8x8;

(c) 10-10.

f

Temperature‘zeros obtained by Ono et al.
+for the 4 6 quadratic lattice.

(a) exp(-2K) plane;
{b) exp(~-K) plane.

Boundary conditions for lattices (A) and (B)

in Section 3.5. . . L0
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o . o :
- This term can be written in the form

CHAPTER 1V

SOME NEW ANALYTICAL RESULTS ON
THE TEMPERATURE ZEROS

O

4.1 Introduction

In the next two chapters we present some recently
obtaiped results regarding the temperature zeros of the
triﬁﬁgular Ising lattice; the quadratic lattice wiil‘be dis-
cussed as a special case, with the third interaction J, zero.

In this chapter we present the analytical development near

a

the critical points, reportedoby'Stephenébn and Couzénsl and

A

by Stephenson.2 In Chapter V we illustiate these results

with numerical results for a Variety of lattices.

2 - . . #

»

4.2 General Development Near the Curie Point

We approximate the square of the partigion'function
by one term, and choose the term which arises from the con-
tributions of the “odd" lattice point54with

(2r-1) n/m , r =1, @&, m; _
RS JJQ’J‘ o (4.1)

(2s-L)ﬂ/ﬁ' .s =1,/ n.

Ve

¢r

6,

: 'ig, ) » |
2 _ émm ‘nn ‘ . . - .
Py = 2770 M {C)CyCy #75:8,8; - 5,c0s¢, _
r=l S=l v . N ."' Co -
- Szfosq’s - _S3¢os(¢r +.!)} " : (4.2)
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where the meaning of Ci and Si is as in Chapter 111, and

i =1,2,3 for the horizontal, vertical, and diagonal inter-

dction strengths respectively.
>

C, = cosh 2K, S_ = sinh 2K, and similarly for k.

K K

- Using the identities

c,c, = C + S and

the first two terms of the vanishing expression {...}

in equation (4.2) become

S 2K C -2K
K 3 k 3
{...} = 8,C, —=— e + — e - C:
K7k Ck , SK +
e
e s S
S.C - s C

K7k K7k

In terms of the ¢complex variable

£
H

‘>_<+i.y=—c—§e ’
"k :

e 7 (1+ wl - C,w =~ R C_
+ R, (1 °,COS(§r'+ ¢)1) .

-

. The symmetry breaking factors Ry an’d'R2 are -given by

Define K = i(Kl + Kz), and k = i(Kl - K

[ - cos (¢r'+¢s)]ﬁ=0.

(4.3)

(4.4)

(4.i¥\
(4.6)

(4.7)

(4.8)



o L R+ ¢)

C denotes the Curie point value.

p
g B CKSk eZK3 B Sl-S2
1 2 S,+S, '
C\ 172
and
2K 2wS
3 2 3
R, = S.,e /C =
2 3 k Sl+S2
Notice that R, = 0 if Jl:=J2 and‘R2 = 0 if J2==O.
Next we expand Rl and R2 about w = +1:
Rl‘F RlC + RlC (w=-1) + ... ;
R2 = R2C + R.2C (w-1) + ...
) R LIS -
w = +1 whe ¢r': ¢S = 0. Approximating also C, near
. ) )
¢ =0 and ¢_ = 0 one obtains from the real partlef.

equation (4.8),.with”x = 1)

2 2 2 2 2

¥ =Y = Lo, + P iRlC(¢r - 0 )

. . 2
+ §R2C(¢r f ¢s) !

&

and from the imaginjgg parta)
2 o2 2
(1-x) = 3(6.° + 6.%) + 4R

X = s "1C 'r T s

L4

The ' denotes differentiation with respect to wi

Py

a)The"ch01ce X .

»

.

‘ 1 -~ x i5 more convenient than
X =2(1 - x) in the development near the ‘Néel point,;

';equg@gon 4. 73.

(4.9)

(4.10)

(4.11)

o5 @

(4.12)

S (4.13)
X and Y can be writteh

for
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as rea%, symmetric, quadratic forms:

X = (¢, A®): Y = (¢, Bog). . (4.14)
Here,
[) * 13 7
(‘br L+ Ryc + Ryp Roc
¢ = » A = 1% ' , and
L : Rye 1 =Ry +Rye
o ! )
- L+ Ry + Rye Rye
B = 4 ‘ (4.15)
Roc 1 = Ryc * Rye
b

It is possible to extract the density of zeros of
the partition function if these quadratic forms can be
diagonaliZeé simultaneously. This is guaranteed by the

following theorem.?’

Theorem 4.1 : .

Let (X,AX) and (X,BX) be real, quadratic forms.

If (X,BX),E 0, there exists a matrix C such that X = CY, and

,The‘xj are the solutions'of the secular equation |[AB-A| =0, .

~To apply thedrem:(4.l) bQ equations (4.14) and

-

‘(4f15); let -

"b)Stvdethes'ﬁhe-transpose'of‘s. -
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v = 5¢ . o ._,,//“-/(4.16)
The matrix S is determined by the conditions T
A, 0 R 1-0 |
stas =| ! and s'ss = : < (4.17)
0 >\2' 01 ’ <
In terms of the ﬁs&\gngles wl and wz ¢ne has
X Al A2 wlz : @
= > - Inverting this, one has
Y 1 1 vy
Ay = A )y, % =X = ALY ‘and - 0
1 2/ ¥ 2 an .
. (o8
2 ' ,
(Xl - Az)wz = =X + AlY . - (4.{8)
It is easy to compute the Jacobians &
a(wl, wz) - 1 ) ; “ 15)
3 (X, Y) " T .
VX =AY /A, Y - X o :
. 2 1 R
B |
3 y) Zy - o S (4.20)

The‘minus sign here is nog impqréaﬁt forvﬁhe dénsity 6f
Zeros; it.afiSes'because X déé?eases as“x‘;néreases.v

R  We have wIittén thékparﬁition function in}éefms‘of
the,anglés:¢rvénd‘¢s, butféant fo kﬁowﬁgh;_}oéations,of.the
1zero$‘in the w-plénei Hénce we need the Jacob;an,v

30y 8,0 /3 (x,y)

d(¢rl ¢S) = (.q’r’ ¢S) . 0 Nllrlbz)’ . 3(X,Y) .
_ ldet 5) y . ) L a2

o 32/)'(-‘}2’{;_@13{:_ X

e —

G



4

R

g

g ®
Recall from equation '(4.17) that det(StBS) = 1;

\
‘éoydet é = (det B)_l/z, and does not depend on the deriva-
tives of the symmetry breaking factors R, and R2.
L) ’
.

Therefore the number ol zeros in A¢£A®s is A¢rA¢S - mn/4n2

fBut we have four quadrants and hdve squared the partltlon

&dnctlon, 80 we have to multiply by 2. The number of zeros
Aﬁ\AXAy per lattlce site 1s g(x,y)AxAy, where g(x,y) is the

desired density of zeros. So

s

2 . 8(q)r'q)s) ; ‘
21 g(x,y}0xAy = A®£A¢S = -5T§—§7— AxAy , , v (4.22)
« . ) / )
and : ) H a,
g(XIY) = 2 l} l ‘ Tay -+ S e ) ‘ (4.23)
; (det B) A Y /%lY X ' .

: : ' TR Y
If X < A Y or X » AlY g(x,y)‘ls 1maglnary if

‘both of these 1nequa11¥1es are satlsfled g(x y) < O;'g ‘then

ﬂ»/\
) has no meanlng.v He\%@vzeros can be located only 1n reglons

det,:,erﬂfmed by Ll e : .,
R N S S TR LY
“the bouhdafies aré,gi?éh by’ ' 'f} 3
"k, =1 - A,y® and "x,t= 1~ @ y~2'-""' Vit £4.25)
1 Y ant Xy A

The cells of the lattice dre of size %g : %$<=4n2/mn.

-7
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and result from setting wl = 0 or Yy = 0 in equation
(4.18). |

Finally, we.must show that (¢,B¢) . 0.

13 .

ey S,S, + 5,5, + 5,5
}(14+2R. -R. 2 - 217277273 23 1
(S, +5,)

det B 2¢ le
2 ~

] “

L1
-1 . , (4.20)
S )

8

Here we have used the ferromagnetic critieal point condi-

tion
5152 + 5253 f SBSl'= 1 . ‘ ’ | (4.27)
. 2K3 2 v
rNot;ce that Sl.+ 82 = 2SKCk = 2(SKe ) , SG
‘ 2K .
(det B) 1/2 Z(SKe 3)2 . " ' o : (4.28)

4.3 Examples

{
H

4.3.1 Partly Isotropic Lattices with Jy = J,

!

When J, = J, equations. (4.12) and (4.13) reduce to
> N ) . *

2

. . ’ L4 2 ’ T
FL+Ry 0"+ HI+R, 0 "+ Rycdrds v

o2
i

2C

(4.29)

>
1t

. ' 2 . g ' 2 Y .
i(y*'ch)¢r -t '&(l+'R2C)¢s 4 Roctrds

.

. sd that
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l1 + R + R.' R - R

-1 1 . . 2C 2C 2C 2C
B A=2(2R2C+1) - R.' - R 1 + R + R
2C 2C 2C 2C
The secular equation |Xx - B—lA] = 0 has the solutions
A= 172,
Sy I (4.31)
PR A 7 U UL :
2C : _ A
. 1 1

The eigenvgctors are easily seen to be cl[—l] and C2[l] .

and form the columns of S. The normalization factors <1 and..

c, are obtained by employing equation (4.17). The result is

1

. 1 -1/2 11”.\ s
the basis { _1| e (2R2C + 1) |}. In this basis the

J

¢ - ¢
vector ¢ has the form 5[ o S-}f Herice,
i ,/ZRZC + 1 (¢ +\¢$X » ‘
ST R N

Wy = 3 V2R, 4 17(¢r * o). ' © (4232

S

The boundaries are obtained when y; = 0 or ‘@2 =0,
This means that the unit éi}cle‘is one
' Y ’

i.e. when .= e .
-~ whe ¢r ¢s >

~ of the boundaries. For .the quadratic Lattice‘Réé':vo, and

-8 correébonds‘simply-to a rotation through'ﬁ/4 of the anglesA .

(b and (t)s. c B ' ) . . . .

r ‘ . )
‘ - ‘o . . ’ .
o - P B o s : ‘
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4.3.2 Quadratic Lattice;

AW1th J3 = 0,

m n
p.2 = 22™ e

4 CcC, - S cos¢r - S Cos¢s} . (4.33)
r=1 s=1

172 1 2

Using hyperbolic identities, the vanishing terms can be

written as

S c, C.S,
(...} = chk[65 +-§5 -c, - 5565] ) (4.34)
K K >k Ck

Following section 4.2 we let

y = SK/Ck ' (4.35)"

o
and obtain

2.2 , ) :
{..i} = Ck [wo + 1 - C,w - Rl] , (4.36)
where
o - k% _ 517 5
1 kCk sl +&s
' — — [ - . - .
Putting J3 = g so RZC: ch 0 in equation
- . .‘ -
(4.15), one easily shows that ; . ' . »
o 1+ R, 1 =R, C
iy T ¥ 1C o 2 1c Cia mal -
o Mg end A b igEg ) - (838

1C e 1C

However, X ana~Y°a:e dfagonal in ¢ and ¢s” so we do not

N

need'févappfy_théofem 4.liﬂ»‘ ‘
. _ . »I . 2 2 »- ‘ \' " | 2 -‘.A 2 —' »2 ‘ . ‘ 2 | |
I R S TN L R ST

9 .



L2 -2 2 2 2
Y= e e %) v R0 - e h = Pras ? (a.39)
2 The density of zeros is
. g(x,y) = Ly . T (4.40)

Y-cX + aY /dX - bY

The boundaries are obtained by setting ¢r = 0 and ¢s = 0.

The ‘thermodynamic properties can be obtained from

the density of zeros integrated between. the bouhdaries,C)

*

keeptng y fixed.

T Sy .
gi{x,y)dx = [yl ‘ dax
. a7
X, | gy /-cax® + (bc +ad)X - aby?
, I ' ‘
. . = .
lyl/4n/cda ; ° | ' - o . (4.41)
L " . 2 : 4 ST
cd = 1/4(1 = RlE~) S5 where 'we have' used e
o " -5+ 8y S e
critical point condition, eqa?tion.(4,21), w_ithS3 = 0. .
,‘iti’ng Sl + S, = ZSRCk and using the definition of w, with
g L cl/2 2. h
w = +1, one finds that (cd)- = '2(sinh 2KC) .. Hence
RS S 2 f ' :
" J g(x,y)dx = >=|y| (sinh 2K,) 2. L (4.42)
. pYe : . <, ) ' . » oo
'2

- ne - integratlon can be carrled out SJ.mllarly for more
genera Mlattices; .the numerical values of the parameters are
then modlfled by the nature of the lattlce.

Ca

“-ﬁ&n‘s St .n’

-
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4.3.3 Isotropic Quadratic Lattice

With Jl = J2, the equation (4.33) reduces further to
m ' n -

2 - - .
P, = 2™ 1 1 {cosh’2Kk - sinh2K(cos¢ _ + cosé_)) . (4.43)

4 r=1 s=1l
The appropriate variable is now ~

W = sinh 2K. . ' (4.44)
Zeros in the w-plane are now located on the unit circle

WL exp(+i®), where ¢ is defined by -

- . - ’. ' 3 “'..
2cosd = cosc:)r + cosq>S . (4.45)

RN

The density of zeros is now one~dimensional, and is given

everywhere on the.unit circle by '
(4.46)

- N "

‘ P cos—l(Zicos¢| - 1) bd¢
. g(%) = (sin®/77) [ o N r
: 0

/1 - (2|cpé¢f'— cos¢;)2

\

2

Near ¢ =.17/2, g(® ~ - 1 gp|n/2 - @I; so § has a'logarlthmic
. _ - ‘

7singulari£y near w = ti. For smallvq_g(i);~ ¢/2m, whichais','

. \ . *
proportional to |y]. . TN
4.3.4  Partly Isotropic L'att'ices__"w.ith,J2 =J5.
s Wheanz.; J3'one caﬁfproceedvds'inrséct10h34:3.1.‘7
- e . ) v - . Lo P . » v"“_n
Let JE e T P I TN ‘
4 R i : - s DT L s
K=, Y KU k= Ky s xy), ama ,
;:.Cifﬁ;gongr.+ ¢g). % coso. . lfi"v;“%” f“‘f=v!‘ﬁ (?,47)\ N



Instead of equation (4.8),
“ v 2 =2K ~2 "=
{...}1 = C e 1 (1 +w wC,
f Rz[l - cos¢r] = 0.
Here,
- SK 2Kl
w = —.¢ ‘
k
« 2K, ) . S, - S._
Ry = 7CSp e /G0 = “l5 s
and .
2K
= 1 2
R2 = Sle /C_k =

“In the w-plane,

zero distribution, and arises from ¢r

critical inntfis at w = +1.

the unit circle is

- R,C_

(4.48)

(4.49)

¢ ; (4.50)

(4.51)

part of every

= 0; the ferremadnetic

The density of zeros 07n be extracted in the same

way as in Sectlon 4 3.1.
- )\1 = 1/2 ;
o © 2R, 41 -
- . AZ = . -&. (#"—T‘) . .
C 2R2 a+“l

- The elgenvalues of A are

Ar

. (4.52)

Note that thls descrlption (in terﬂs of w) results from the

_
,'one wlth Jl
) . ,o# e

5 ,'_4: ‘
Klﬁ+‘K3 and W(ﬁ}'KZ’

R IR

K3) =.w(K*

Jz‘under the transformqtlons ¢

2'K

T 0L+ by,

).
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.

4.4 Development Near the Néel Point

The antiferromagnetic critical point is at w = -1,

and is located by setting ¢ = ¢ _ = n. Let us therefore in-
9 ¢ s :

troduce the supplementary angles ¢ _*, ¢ * and the functions
PP Y, ang r .. %

C*, as follows: ' L
”»
¢)r* = 7 = V(I)r, ¢S‘*, =7 - (I)S, Ci* = COSLPI_* b COS\I»S*
(4.53)
L]
insteaq Ofiequatiop (4.8),_one‘now obtains
A ~-2K
2 3 2 ¥
{.. }—Cke \{1;_+w + Cy w + R/ C*
: ' - : ” * - ‘
4 + R2[l cos(¢r + ¢S Y11}, . (4;54)
L ) v e
. The strﬁéturg of this expression is ‘identical with
equation (4.8), provided that one changes ¢r*7: ¢S* énd
W T wWr = -w. 'Expanqing Rl ahd Rzgabout w* = +1, and C,*
Vlébquﬁﬂér* = 0 and ¢_* = 0,
‘ : . : 2 2, 2 .2
* = = * ok ' * - *
X* 2 (Lt x) = d(og*T 4 o)+ 4 Ry(e et
L L2 S %
. . . . X N * * g . i . ) L
e }‘L£; 3LR2N‘¢r + ¢s,)‘ - S : _ (4.55) -
and, TR
LRt G n e yie%? 4 %2 4 3R (o k2 - g 2
GRS 0T R0 RygleT - et
*ly © B )‘j ' :
. S e * . . *'
LT A Raylet e

e R I

Ry, is the valué of R; at the Néel point.



The development of theAdensity of zeros pfoceeds as

.
near the ferromagnetic critical paint, with the

that in order to prove that the matrix B is positive defini-

exception

tive, one employs the critical point condition for the Néel

point.

. 5,5, - 5283 ) Sl =

4.5 Temperature Zeros for Jl

< J2 = J3 < 0

; From eqdation “(4.28) it is clear that (det B)

when T = 0. Therefore on€” cannot obtain the density of zergs

Aas in'the last section when T

Y

is low.

(4.57)

-1/2 _

The antiferromagnetlc crltical p01nt is approached

when T is low and the 1nter9ctlon strengths are all negatlve.

From equat;on (4.7), we have
N : .
+ K,)
( w = e ! 2 1.
. 2(K, =--K,)

e ~‘b _ 25 4

2 (K,

- »

We neglect Ehe exponential in

with the one in the denominator

w Z,—l/(; +‘22/zl)'~
. o s e
To the same approximation,

<

. -Q
Lo T - z 2.,
f17% s a-2a+d -
o T
v‘aﬁngz'z‘Zwtw + 1). -Equétion

tirely in terms of w:

. T
W
, : . . .
. h 49

" (4.58)

SN

I "“‘ s > : R i PR .
theéﬁumgrator in "comparison

to obtain .

c Ak » o

. ot
—(ZW + l).\ :SGo Rl

&

(4.54) can..now bd
‘ . /e .

& .

Y —w(2w+ 1)

‘D.V v Q .“ V
[
o i

written en--' -

77
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[
{ bz C 2[1 + w2 + WwC . * - w{2w + 1)C *
bt 27k : + : -
_ * S . .
+ 2w(w + 1)1 -cos(®r ooy )] ) : -
2 ‘ Y. . Vs
= ZZCk {{1 + 2(cos¢£ + cosv)lw «+ 2cosiwtl ). (4.60)
where . .
- coss = 1 - coS@S - ,cos(¢>r + @S) ./f (4.61{
, \.’ - . -
Taking the real and. imaginary parts of equation.
) o 3 . ’ o
(4.60), one has ;o : g
) [1 + 2(cos¢_ + cos”j]x20+ 2cost +1
> 2 _ r : cos® x , . (4.63)
s Y 1v+ 2{cos¢_ + cos¢) )
. * r X
- l1
and o
. 4 - . 4 ’ .
l + 2(cos<br + cos&) = -cosv/x . (4.63)
COmbiﬁing thesé resulté_one obtains ' A\\
. 2(1 + cos¢_) :
2 2 r 2
* = . =
X Ty 1 + 2(cos¢, + cosi) ~ RO : (4'64)
‘Expanding R?.about ¢r =,n; keeping ¢s arbitrary, one obtains
the equation ¢f a circle centered on w = -1, with radius .
R : ,\' .
.‘*IZ . B 2 | ,) . ‘l ‘<(4.65)
N cos¢ =1 ",;;- e
: + 1 +'2(Cos¢r;+ Fose) (4.66)2f3:
i Expanding the RHSito sgéénﬂ”order“in ¢r*,. . RPN  ?*_'"

,“f* #:¢;*sln¢s +“(c052¢§ f;}éps¢s)¢f*%f,._ fqgﬂ' i4.67)



and

y [ ¢ fcoso . - (4.68)

»

The last two equationsAalldh’the interpretation of QS as

s

the angle which parameterizes the circle, equation (4.65).

L - >
If ¢S is also near 7, one expands equation (4.67) h
\
about ¢S = m to the lowest vanishing order to oqégin ,
q . ;
Toxx - kg : 3, #2 . (4.69) ’ o
. Ty (Ds 2¢)r ) . o ‘
If ¢ifv= 0, i e . ' )
8. - ~ oL
. i i N
Y . . o - .
w2,y , = .70}
. N l"; - . N ' ) s -
and zeros lie on a parabola for small Y. 1Q
Proceeding slightly differently, Stéphensonz ob- &
talned equatlons (4. 65) and ({iPB) to. (4.70). Approxi-
)

vmating the denomlnator in X* by unlty td flrst order in
[ .

¢r*, he arrived at
X* = (1 - cds¢ ) (2 COsém*) + sing* sing_* . (4&71}
If ¢ * - becones sllghtIY'larger, equatlon (4 63) is:

no longer correct. Let . : . o S e

= z(1~-'co£;r*>“;'_ Se/L-@ T2

1earranglng the RHS one obtalns o ’ )
o s) yi -4 B) T e 73; .
'Thls equatlon does not depend expllc1tly op ¢ and

*-descrlbes a famll of- le .' ch cirfe e e
, ___,_X. - c1rc s Eech‘c;ffle hes radius
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tn ‘ N
-
R = /@Qf + 8) and is centered at X* = -g.-
K . oL ) 3(X*,' ). )
A-trivial computatiof® shows that ——— X! _ $_* +
Lo ~ lepeeg) t

NS t . s )

g ““O(@ 2), So the leading term of -the density of zeros is
4 .

S givgfidy s w‘
. m? '.-’ “'.2112 e ) _ d((brl,(bs) ) 1 ] l . (ﬁ4.74)
il'3- - quf? ﬂ 3(x,y) BN D B
) . -, Circles centered on X* = -§ and spaced according to

t o .
equation (4.74)1are.111ustrated in Figure 4.1. Noticeé that
the - partltlon function has no real zeros away from the cri--

oW
tlcal 301nts, SO a. zero-free cusp is -expected to extend from

P

w £ -1 and w 2z -1. - ' . i ’ N
. S{ephenson2 has shown that the energy derived from

a -| @ o ’?
‘the ﬁensity of zeros, equation (4.74), agrees with the ther-

modynamlc derlvation, startlng from Houtappel s double- ;

d

o 1ntegral formula for the partltlon functlon. For the singu-

{ : . .

“1@r part of the energy per site, he obtains ] . :
¢ e 2 - P R '
N ¥ plJy = Jy)-exp 128(3, 'ﬂJz)l’ Jy < J, f.QT .14.75)

.N . 2 o
‘ / T _— ) ‘ . ) o T
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* CHAPTER V o s
‘o - h \.
SOME NEW NUMERICAL RESULTS -
‘ON THE TEMPERATURE ZEROS?2)

o
s

5.1 Location of the Temperature Zeros ®

¥ : . ) . )

In this ﬁﬁapter,wwe continue the study of the tem-

perature zeros of ‘the Ising model partition function which
we began in Chapter\IV reporting our numerical results.

-

/
One term of the square of the partltlon functlon 1s cast in

-

polynomial form; the roots of thlS fhnctlon are calculated

from which zeros .in the w- plane are constructed b)
‘_7 H 'In order‘to write eqhatiOn (4.2) in‘polynomial form,
we set = o

Jlﬂ;f;J, J?_“= bJ,_d. =-cJ - : (5.1)

3 . »

.ﬁor'the smalleet_possible‘integérs a,b,c with azbzcz0;

the .triple (a.bc) then-identifies the lattice under con-
'sideration. Next we put _ ’

z=e 8, K=J/KT . D o (5.2)

For real temperatures«ihe range 0 < z < 1 describes the

\

ferromagnec.J >.d and the range 1 <z < ® the” correspondlng

14

\

‘,,)A condensed version of this chapter\has been accepted
for publication. See J. Stephenson and J. Van Aalst, Physica
1986 ' C S . :

. b)All the qomputatlons were performed u51ng FORTRAN
The roots of P(z) were calculated using the rcutine ZRPOLY
- in *IMSLLIB, and the plottlng routlnes are‘ln *PLOTLIB

s . e
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antiferromagnet. The powers of z in equation (4.2) then
1 v
depend only on the combinatiens d,e,f ‘of <a,b,c as

follows:

d=a+b, e=a+c, f=Db+c L . ) (5.3)

‘"Notice that d e » £ 2 0 if & b 2 c'z 0.
The Vanishing factdrsdin_equation (4.2) become,

whén written 1n~dé$cehding order of pOwer of =z,

) = 12PN 22 e 2P 2% cosg o+ 728 Teos
e+f » : d ' ' N
+ 2z COS(QF + ¢S) 2z cos(¢r + ¢51 o
o ~m f‘\i- . df
- ZzecoscpS - 22‘C05¢r'+‘1]/42 *
= p(z) /429t (5.4)

¢ .
The polynomial which results when a I ¢ in

equation (5.1), so that d ¥ f, also written in ‘descénding
order of powers of 2z, is identical Qith:equation'(5.4), pro-

vided that also cos (¢, + ¢S)*2‘c05¢r.' Hence, distributions

N . . . . S

0of zeros in the z-plane of lattices related to eéch other in‘?

e ' ) ,
this @ay-have the same boundaries.  The locations of the,

zeros within these bpundaries will be Shifted'sligﬁtly be-
cauée; unlike ¢ bt ¢s'does_not locate a:lattiée,bOint in
the (¢r,¢s) diagram.:

~ N - o -

.

§ As in Chaptér 1V, we choose the "odd" term with
¢, = (2r - L)n/m ~ r =1, ..., m,
¢ = (25 - Lym/n - .s%1, ...,m . (5.5)

and choose m = n = 24 for ail.latticés to.be\conSidered."l

84
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. y@',, N : ) .

Hegce the Eégggce spacing is always the same, although the,
Y ' o

amount of computation will differ from one lattice to

o

_anogher. A reduction in the.amount of calculation is pro-

~,
-

vided by the following lemma.
. Lemma 5.1

If z is a zero of the partition function, so is —zﬁ
Proof. If‘al b, and ¢ are all odd, 4, e, and f are all
eveﬁ.‘ In this case the poiynomial is onefﬁﬁ 22, and ghe
1eﬁma is tfiviélly trué. "All terms- which can be odd.éfe pro- ’

_Qggggpnal to the cosine Of one of ¢£, ¢ , or ¢r + ¢ . A

S S

change z + .-z can then be compensated“by adding m to one or
?ch of ¢r and ¢s. : /

b All possible polynomials fall into four classes

. (1) - (ivL according(to the required transformation of ¢r and
¢_. In Table S.Ier list the#e classes, the corresponding

) transtrmations,/énd the minimum ranges Of‘¢r and ¢S suf -

S

ficient for compietg knowledge of all..of the roots o

i

P(z) = 0. The roots of P(-z) aré-then put in automa" 1ly.

‘ These regionsfaré easily deduced frgg‘symmetry argu nts.

;

o in'#;rms of z the ferromagnetic (Curie) critical
.point is.iﬁcated by fhe_conéition
- 2 428 4qu’; 1, N - ' . " (5.6)

which has‘one real, posifive-rbot zn in 0 < z < 1, and

-

> oécurs When ¢r = ¢s = 0. The corresponding antiferromagnet

LS
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?

/ . . -

.

with J3*weakest has a Néel point located by the réal, posi-

tive root z, of -

/

N
R P - (5.7)
which occurs when ¢_ = ¢ =-71. If e gnd f are odd and 4 is

r S

' ‘ N
even, there are non-physical, real, negative roots of

- equations (5.6) and (5.7) at “2y and‘—zc, respectively.

In the partlf isotropié case with b = ¢, J2 = J3, sod=e
and f = 2c, ﬁhere is no longer a proper antifer%omagnetig .
criticalhppint; equation (5.7) yields 22c = -1, so z = #i if
c is odd. Numerical vélues of z, and zC.aré liStéd in

Table 5.2. - .

In germs of z, equation (4.7) is

1 -z"'7 1 - z. - " (5.8)

z (za + gb) z  + z

which also depends only on the combingkioqs d, &, and f in
ééuation (5.3).  An unfortunate feature of using W for
locaﬁing Zeros awgy‘from the crigical point(s) is that there
can be‘uhphysiéal, spurious, real zeros, which arise from

negative values -z, and -z, of z.

C N °% ,

" When ¢, = “¢4, zeros lie on the unit circle in the

w-plane, so the unit circle is part of every zero distribu-

tion in the w-plaﬂe. Furthermore, there are always zeros at =

z ='#i, which‘arise frbm-¢r'ﬁ“-¢s m/2.  These zerds_fre-_
quently map into w = i, as listed ih_Table S;Z;ﬂ

Zero distributiohé are always symmetrical under sign



reversal of z by Lémma 5.1, but in’general symmetry under
w - -w arises from thevtransformation z » -z only in those
cases (iv) 1in whichve and f are.odd, but d is even. In
the;e cases the hnphysical} real w zeros no-.longer occur at
distinct locations, since‘now w(—zc) = -1 and w(—ﬁ@ = +1
- (when present). Examples are (221), (332), and "(421).

]

5.2 Anisotropic Quadratic Lattices o _»"VIQ

$E
Ry
o

In this section, we look at lattices with J %jOw

3
¢ =0, so that d = e + f. Deplacing z by;l/z and;hﬁltiply;
ing through by iQd in equation (5.4), we ob;éinx'“ '
L. T
{...} = Lz%d + sz + zze —‘22d+fcos¢s5¥_22d+¢cbs¢%l
+ 2z cos¢g + 2z cos¢. + 1] . o » - 5.9}

. \g . v,
Changing ¢r'+ ¢r + 7w and ¢S - ¢S + n, it is clear ‘that the

distribution of .zeros in the z-plane is invariént &nder
z +1/z. It is also easy té check'ghat under z ; 1/2
w ; -w, SO zero»distributions in the w-plane are~symme£rical
in both the.real’and imaginary a#es. | v
In Figures 5.1 to 5.3, we show the zero distribu— 

tions of the quadrétic lattiéei\(3lQEf (320);ﬁand (210),
reépéétively, in ‘the ﬁ-plane, and iﬁ,Figdrest5‘4”to 5.6 the
cdr:espdnding distributions in the w—p}ane;‘:

| Dividing the férromagneﬁic éri£ica1 point.condition}

+b

equation (5,6) with c =:0;.by za oy and.rea::angghg, one

obtéins



i S e e . (5.10)

This is the condition for the corresponding antiferromag-
netic ‘critical point. - Hence, for theyquadratic lattice
ZCZN = 1,  the physical critical Roints are et h.; tl:. Un—.
physical‘roots\—zC ahd —ZN map to_symmetrical\positione on
the real axis in w, since under z + 1/z, w - -w. For the
isotropic, quadratic lattices (110) and zleL& w( z ) = -1
and w(—cN)F; +1. For (320) and (210),:realﬁw zeros_arising
from w(—zC)"and'w(—zNi'are at w = 24.678574 and w = $7.942920
%espéctively. ,.
. ~ - ‘
Notifg‘thatvc = 0, so that at least one of a and b.
must be odd, it is ‘obvious that z = i maps into w = %i with
the-following exception: if both a and h are odd, and their
sum“d-QSAa muitipigzof 4, then the transformation to w,

equation (5.8), contains a vanishing numerator and deno-

minator at z = ti, the limiting form of%the map as z > +i is
w(i) = a+b)1 : | S | . (5.11)

Examples are (310) and (530) ia Table 5.2.

5.3 Class (i) Lattices

,flﬁ':_’;\y v -

If a, b, and c are all odd the polynomlal P(z) is

one in zz,v Ih this case, ta’ reduce the amount of calcula—

v

tlon, roots in the zz-plane are calculatedfyfrom whlch

:roots in the z- plane are constructed ertlng z2 =€ + iz

K
' énd?z ='u + iv, one easily-show§ that

88



X
u = /el g 12 {
/2 ,
v= s (sign ) (-« 2 4 M2 ,(5.12)
/2 : . ‘ i
B T ‘ 2 2 . 2
The factor sign £ -in v ensures that u= - v© + 2iuv = 2z

To obtain all thedzexosraf-the partition function in the
z-plane, it is‘eeffieieht“te construct z from s = f + i|c]-
instead‘ofizz,vand thenfhse'equatien (5.12) to construct z.
Diagrams obteined in th;s way were checked against diagrams

. for which the,roete;ziwere calculated directly'from the poly-

‘}nomlal

[
s

. . We illustrate zero dlstribution%/;f class (i) lat-
tices w1th (331)/ (113), (311), and the cempletely iso-
troplc lattlce (lll) - In Figures 5.7 to 5.10 we shq@ the
z-plane distributions;'in Figﬁfe 5.11 the w-plane aistri—
bution of (331); in Figures 5.12 and 5.13 the w-plane of
(113) aha“thegﬁfplane.of (311) respectlvely, in Figure 5.14
the Q—plane of (ilﬁ) Observe that the w-plane dlstrlbd-‘
tion- of (113) ‘has the same boundarles as 'the w- plane dlStrl*‘
bution of (311), bututheazeros are Shlfted slightly in p051—

tions. - This shlftlng in p051tlons is somewhat more evident

the z- plane dlstrlbutlons of (113) and (311) Thelcomdh ‘
isotrOpic lattlce (lll) ‘has relatively %1mple zero‘
?7dlstr1butlons, and is 1ncluded here only ‘in thevlnterest of
.'completeness. ‘:;‘i'hif .; . {: o _i‘ Y

| ' All of the z- plane dlstributlons considered here

haye_a,line ofymmaglnaryvzeros,.whlch arise from realy

89
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2 ) .
-neagative roots z , say z2 = -r. The range of r can be deter-

o £

mined directly from thq polynomial. For (331) the poly-
. - - .

} nomial in r reduces to
g o . .
L o

- 0”.. # P(r) = 41‘3(1' .+ "l)COS'Zq)l - 4r2(r3 + l)cosq)zCOS(bl N
, - o . I
(- 1), - : (5313)
where .

Q
¢ = §(¢r + ¢,) and ¢2‘= 5(¢r -0 ) - (5.14)

14

P(r) may be regarded as a quadratic in cos¢l. In order for
cos¢1 to be real, in the range (-1,1], we require that,

3 | .

)//Tfﬁ—i—%)z.[l + 1/r] < éo??¢2 <1 . ¥. . (5.15)

This inequality restricts r to the range !

r

0

A

r } (/5 - 1) = 0.618034 ...

1

=

-

S T, = 2.205569 ... . . (5.18)

Here ry and r,. are the pogitive, real roots of the factbrs .

24 r-1andrd - 2% -1 respectively, which occur i

YN

P(r) when extreme equality‘holds in equation (5.15) . .The

gqrréspondinngalue of w obtained from 2
o 6 g 1 : | 4 |
w = 1.-42 =.l +2r C . . (5.17)
2z, 2r R : ’
are;?f' . , |
*w;(;A;(rl.= 45+ 1) =f1.61§034-.;.';_

Wy = Ty - 1= 1.205569 ... .



~ w -
i ’ N

~ / : o
r/
¥

W, 9ives the upper end of'thékline ofbreal w zeros, but the

.lower end comes not from W, but r = 21/3, where w attains'its
minimum value’ 533 = 0.94491 in equation (5.17).
oy ? ‘ , ' ,
»

~ For (113) the polynomial in r reduces to

- P(r) = 4r(r3 + l)cosz¢l - 4r2(r + 1)cos¢»2 cos@i

»
-

, -
+ (r - 1) . (5.18)
InAbrder for cos¢l to be {sal, in the range [-1,1], we

requir§ that

r- 12 3
1 (1_+ l/; ]

( COS2¢2 1., ' (5.19)

This ihequality restricts r to the range
ry = 1/2 s r < » ; - (5.20)
the corresponding range of w is

- \ .
0. <w £ 3 . . (5.21)

The lattices (113) and (311) are related to each
other by a Z ¢, so inequality (5.20) also holds for (311); the
range of w in the latter case is S *w

-3 s w< 1. I - | (5.22)

-

5.4‘ Partly Anisotropic Ferromagnetic Lattices

. L ¢ . oy -
1 The .partly anisotropic cases a = b > c = 0 also have
distinct ferro- and anti-ferromagnetic ¢ritical .points. For

. ‘ \ )
la%tices with Jl ='J2,.in the vicinity of the crit}caiwpoint
in,thé w-plane?® the cusp-like region cdntainipg zeros has

L , ' . . S .
the unit circle as one of its boundary lines. Moreover,

.

£
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zéros'near w = +1 lie inside (outside) the unit circle when

J3 is the strongest (weakest) interaction; cross-over occurs

i

at the completely isotropic lattice. -

) In Figures 5.15 and 5.16, we show the z-plane dis-
S ‘ .

tributions of (221) and (llZ)lresbectively, and in Figures
'5.17 and 5.18 the corrfsponding w-plane distributions;fin
Figures 5.19 and 5.20 the’z—plane distributions of (332) and

(223), and in Figures. 5.21 and 5.22 the corresponding w-plane

distributions.’
| 2Ky 1
For the lattice (331) R2 = 83e = §(—§ - 1), and
. ‘ z . -
2K3 1 2 -
w o= Sye T o= }(=; =-z"). Using the critical value z, from
z . T
< ' 3 -./5 /5 - 1 \
Table 5.8, wg obtain R = ~—— , R, = ——= , and
: - B A 2/5 -
‘ ™
" Rpe * 1 KB |
Ao, = ddg7——3) = 0.34714 ... < 1/2(=1y).. The boundaries
2 RZC + 1 . 1
/
are given by
= 1-ay? and x, =1 - Ay (5.23)<
Xy = 1Y n X, = SALSY N (5. 3%

One of the boundaries is the unit circle; the other oneWiies
odtside the unit circle., Hence zeros lie exterior o the

unit éircle,,as is evident from Figure ’.l2.

For the lattice (113) we have R, = 1.618034 .T., .

C 2

'Ryl = 2.1708205 ..., and A, = 0.630495 ... .

“

and zerosﬁz;e interior to the unit cirecle. -~ . .~ . =



N

S.S’L%artlxiAnisotrOpic Antiferromagnetic Lattices‘ , -

Interest in the class of lattices with the two

weaker interactions equal arises from ‘the need to,check‘;hé
. . >

—

theoretical result near the antiferromagnetic zero point, -

which is at z = +=», see also Section 4.5. The predicted cir-
. .

cular distributions around w = -1 can be seen in the w-plane

Il

distributions of the lattices (211), (322), and (311) in

Figures 5.23, 5.24, anq 5»14, respectively. Thes§ examples
exh;bit a zero-free cuép, extending from w = -1 along the
real axis for w > -1, although with somé difficulty for (311)
(see insert).: The«iattér lattice also has a non—phyéical
real zero at w(xi) = -2/ |

The z-plane distributions of (211) and (322) are
shown in Fiures 5.25 and 5.26:

The reverse latfice (112) has a symmétrical distribu—

tion in the w—pléne. Here w = 0 corresponds to both zero’

: , , A ,
and infiﬁitg temperatures. On the negative, real axis, the
physical range of w is in the subinterval (—wO,O) of (-1,0). =

The expression for w reduces to’

S 2K, o
w = sinh 2K1 - e . _ e .. A5.24)
wﬁere Jy = J, = aJl,Tand Jy = ¢J with ¢ > a, is the strongest

;:interaction. _Tﬂe pinimum.valpe of w fgrlocated,by qw/dg = 0,
. . - : . . ' “a'/
or . : o e [N
‘tanh 2K, = -a/c . - | o .t (5.25)

which has a negative real solution for K,, and 'can be

93



rearranged to give

o
7 & . _ ' :
zy = (g__}g)l/za,,- and w, = a .'(g - :)C/Za .(5.261
| Sz 2
For (112) z, = /3, wy = -1/3/3 = -0.192450 ...; for (223)
. L '/
20 = 51/4 = 1.495349 ..., wO = -0.267496 ...; and for:(113)
. | . o ,
= /2, Wy = -1/8. There do not 'seem to be aqy partition

2y

function zeros close to z, or w, in the diagrams.

58

—

5.6 Coﬁpletely¥Anisotr9pic Lattices

Finally we consider the completely anisotropic
létticess‘ Generally z = +i maés into w = ti, except:
N 1
a) when a and % are both odd, but their sum d is a multiple

of‘4,fas for the quadratic %attices:

(3_* b, a-c , e.g. (311); or ' oy (5.27)

a-b s

-

w(i) =

b) when both a and b are even, C now being'OQd, so that
o if @ is a multiple of 44,_ e.g. (221)

w(i) = . ‘
iiw; if 4 is not a mult@pleIOf'4, e;g.'(421). o

.

Q>

We ill&strate zero. dlstrlbutlons OE completely anlso—v

tropic lattices w1th the example Wthh has ‘the - polynomlal of.

0
lowest degree, (321).' Flgure 5. 27 shows the z-plane dlstrl—

(8
L]

bution, and Flgure 5.28 the w-plane.

-

(5.28)
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Zero distribution for (210) in
the z-plane. ‘
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CHAPTER V1 -

DISCUSSION AND CONCLUSIONS

For a finite lattice consisting of N spins, the
pértitiongfunction can be written as‘a polynomiel. Usually
one fixes the temperature or magnetic field, and discusses
zeros of this polynomial in terms of the remaining variable.
The coefficients of the remaining variable are always
positive. This means that in the exp(-2h) plane there are
no zeros on the positive real axis; in the exp(-éK) plane
there are no zeros on the entire real axis in view of

Lemma 5.1. In the thermodynamic limit zeros can approach

the real axis, and one can discuss the occurxence of a
e

phase transition. .

Wejhave seen that in the e¥p( 2h) plane zeros of

\

the ferromagnetlc 151ng lattlce lle on the uniticircle. 1In
Chapter III we discussed that.this‘result can be extended
. f s

-

to the Heisenberg model, the Ising mégel cffgeneral spin,
- - ;

and several other situatJQns:
For the temperature zeros we do not Have a theorem

regarding their locations. For the isotropic quadratic

,lattlce zeros. 11e on the unit c1rcle in the 51nh 2K plane, .

or on two c1rcles of radlus /2 centered on 1 in the tanh K -

vplan'e;'. For the isotroplc quad.r@tlc and triangular 1attices Zeros’ lie



on lines, and for the anisotropic triéngﬁfar lattices they
cover two-dimensional regions. ’

In Chapter‘IV we showed thaf»if the square of one
term of the partition function is writéen in terms of an
appropriately'chosen variable w, then it is possible to ex-
traét the density of zeros near the critical points in the
w-plane. In the w-plane, the unit circle is part of every
zero distribution. Unfortunately, the mapping‘from the
exp (-2K) to the w-pigges can introduce reai zeros in the
w-plane. ‘These zeros. are genuine; but they do not lead to
the conclusion that a phase tranpsition occurs. Since the
completion of the work discussed ;n Chapter V, Stephenson
has obtained an equation - for the location of the boundary

zeros everywhere in the exp(-2K) plane, and has shown that

the density of zeros is infinite everywhere on the boun-

daries.
The partition function zero approach to phase

. T
transitipns is exact for finite lattices. 1In Chapter III

. X
'i- was shown that this approach leads to a 'logarithmic
:éingularitylin the specific heat for the Isfng,model, in.
agreemen£ with éﬁe,specific~heat knowﬁ from theibn§é§er
solutiqﬁland fhe éeries éxpansions. This justifies cal~ -
culatingfﬁhe zeros of a finite ;attice, éndlthen passing

‘to the thermodynamic limit to discuss the Qnsét of a phase ’

tranéition;
N ‘ )

a)J.‘'Stephens_on,‘i._n preparation- for publication.
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Thevpartition function zero distributions fit into
‘the scaling theory. Fisher anﬁ Barber1 have discussed
finite size scaling, and ItsyKson, Pearson, and Zuber2 used
the finite s&zé scaling theory to discugs the Lee-Yang edge
in the context of scaling. Stephenson and Couzens3 have
also related the density of zeros in terms of the w-variable
to scaling theory by scaling the real and imaginary parts of
w separately. Finally, we mention that Derrida, De Seze,
and Itzykson %ave shown that for a diamond hierarchical
lattice the zeros of the partition function in the thermo-
aynamic limit are contained in the so-called Julia set of

the renormalization transformation. It }s-not known if

this alsoc holds for other lattices. ' Much remains to be

\

done in this area.
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