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Abstract—Data centers are notorious energy consumers. In
fact, studies have shown that for every $1 spent on hardware in
the datacenter, $0.50 is spent on powering this hardware over
its lifetime. Data centers host real or virtual (i.e., cloud) clusters
that often execute large compute jobs using MapReduce, of which
Hadoop is a popular implementation. Like other successful open
source projects, Hadoop has been maintained and evolved over
time with new resource management features being added over
time in an effort to improve performance, raising questions as to
whether such architectural evolution has achieved its goal, and
if so, at what cost. In this work we apply Green Mining to find
out that later versions of Hadoop — who exhibit more dynamic
resource control — can suffer from serious energy consumption
performance regressions.

I. INTRODUCTION

Apache Hadoop is an open-source, Java-based framework
for distributed storage and computing that has quickly gained
popularity for “big data” analytics applications in its 10-year
history. It consists of a distributed file system (HDFS) and an
implementation of Google’s Map-Reduce [2] programming
paradigm. Although hard statistics are hard to obtain, the
number of commercial users of Hadoop is certainly in the
thousands: mid-to-large size deployments typically have a few
thousand compute nodes and storage capacity measured in
petabytes1. Alone, IDC estimates that the Hadoop software
market will be worth $813 million by 20162.

As most other highly successful open-source projects,
Hadoop has been actively maintained and improved, and already
has a quite extensive genealogy tree (Figure 1). Over time, a
large number of features have been introduced and deprecated,
resulting in three active development branches with several
releases.

In this paper, we study the impact of such feature evolution
w.r.t. resource usage and adoption by practitioners. More pre-
cisely, we deploy several representative and judiciously chosen
versions of Hadoop on the same cluster, run a representative
workload, and measure performance (execution time) and
resource usage (power). Our results help clarify the cost-benefit
trade-offs of the various versions of Hadoop.

Moreover, we mine the StackOverflow question/answer
website to gather which versions of Hadoop are most frequently

1http://www.enterprisetech.com/2013/11/08/cluster-sizes-reveal-hadoop-
maturity-curve/

2http://gigaom.com/2013/03/04/the-history-of-hadoop-from-4-nodes-to-
the-future-of-data/

discussed. Using this measure as a proxy for feature adoption,
and contrasting that with the corresponding cost-benefit trade-
off, we arrive at some surprising observations. Most notably,
our resource usage data shows that the recently “promoted”3

YARN resource manager leads to higher energy consumption
and worse performance, while we find that that users rarely
mention or discuss it.

In parallel and distributed computing, resource usage is the
key to achieve a well-balanced trade-off between performance
increases and energy savings. Furthermore, resource usage
can be closely related to the software architecture, since the
latter determines how computation will be accomplished. Thus,
changes in the software architecture during development —
adding or removing features and components, modifications
in classes, methods, and attributes — directly affects energy
consumption.

Hadoop fits exactly this context. Over the last decade,
Hadoop had more than 60 releases. Hadoop 1.x releases
remained strictly correlated to MapReduce use, while 0.23.x
and 2.x branches introduced critical architectural modifications,
adding new components and changing the project architecture.
Although these Hadoop releases became more flexible, the in-
fluence of such modifications on Hadoop’s energy consumption
was never fully analyzed in research.

Currently, these changes to the project’s architecture have
been overlooked by service providers — including cloud,
storage, and elastic infrastructures. Therefore, the real impact of
architectural changes on performance and energy consumption
in frameworks such as Hadoop is unknown or ignored without
further investigation. As the results of our investigation on
Hadoop, our contributions include an energy consumption
analysis of the Hadoop framework. We present the impact
of architectural modifications in performance losses and on
energy consumption increases.

II. PRIOR WORK

Concerning Hadoop, a large portion of the recent studies
is dedicated to modify and adapt Hadoop to solve a specific
class of problems or to achieve better performance, generally
by lowering the job makespan. Most of these adaptations are
tied to specific Hadoop releases and require significant effort
to work on later Hadoop releases. Most publications from

3http://adtmag.com/blogs/watersworks/2012/08/apache-yarn-promotion.
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Figure 1. Hadoop Versions Genealogy Tree

2008 to 2013 covering the contributions to the framework were
analyzed and described in a systematic literature review [8].

Although there is a constant concern with performance
improvement, research on the energy impact of these modifica-
tions, especially in parallel and distributed platforms are rare.
An example of a multi-version study of performance analysis
was conducted on Hadoop by Shang et al. [9]. They studied
Hadoop execution logs and their evolution over time.

Our work is motivated by the green mining methodology [5],
[4], the study of energy consumption over multiple versions
of a software system, in the area of energy-aware mining of
Mining Software Repositories research [3]. The study presented
here is a form of green mining applied to various versions of
the Hadoop framework.

Multi-version energy consumption analysis has been applied
by Hindle et al. [5] on numerous products. Others have tried
to help energy driven UI refactorings: Li et al. [7] discuss
optimization techniques to optimize UI colours for energy
consumption.

III. EVIDENCE OF CHANGES IN HADOOP’S PERFORMANCE

Hadoop evolved rapidly between 2011 and 2012. Architec-
tural changes were introduced, bringing new components and
consolidating flexibility into the framework. Behind the novelty
from 0.23.x and 2.x branch releases hides a controversial
dilemma in software engineering: performance versus flexibility.
Is the loss in Hadoop’s performance related to the architectural
change necessary to implement YARN? Is it clear that the
YARN resource manager has a direct negative impact on the
Hadoop’s performance?

Even though this issue can be confirmed by deploying
releases from different branches, these questions remain vir-
tually unanswered since the Hadoop community may have
overlooked the impact of these modifications. The number of
downloads and contributions to each branch releases can serve
of evidence of emphasis or concern regarding this degradation
in performance. At present, by browsing the source control
history it is evident that branch 2.x receives the majority of
source code commits, and new versions are released constantly.
The other two branches, although active, receive much less
attention from Hadoop developers.

A. Mining mentions of Hadoop Performance
To determine if the community noticed this change in

performance we mined StackOverflow questions that asked
about it and the bugtracker for Hadoop Common, Hadoop
MapReduce, Hadoop Yarn and Hadoop HDFS.

StackOverflow is a question and answers website that
programmers use for general support. Sometimes project
specific questions appear on the StackOverflow site. From
StackOverflow, we retrieved the database dump and parsed
through all of the available questions tagged with hadoop,
yarn and mapreduce.

Hadoop performance is a common topic found within
StackOverflow posts made by users when deploying a particular
release. Most posts regarding Hadoop performance promote the
fine-tuning of configurations files, and using the infrastructure
characteristics to achieve better performance. Hardware, Operat-
ing System, and Java characteristics are commonly addressed as
the source of Hadoop performance problems, often overlooking
the behaviour of internal framework components.

As we can observe in Figure 2, YARN is not an uncommon
topic, especially on the subject of messages. Although the
YARN performance was hinted at, it was not specifically
addressed by users. Questions regarding general Hadoop
performance are more far common, and in general, do not
associate YARN issues with Hadoop performance.
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Figure 2. Hadoop mentions on StackOverflow

IV. METHODOLOGY

In this study, we tested 12 Hadoop releases from the current
development branches to analyze the performance and energy
consumption differences. Each release was tested using the Sort
(I/O-bound) benchmark, across different dataset sizes, on our
9-node cluster infrastructure. Each Hadoop job was configured
to run with the same configuration across the different tested
releases, including the MapReduce parameters and number of
job tasks. The cluster is also instrumented with 4 Watts Up?
Pro4 power meters. We generated datasets with different sizes
for the experiments: 10, 48, and 256GB datasets. For the 10GB
dataset, the benchmarks ran 10 times for each release/dataset.
These experiments ran using the head node and only four
DataNodes. For the larger datasets each the benchmarks ran 5
times for each release/dataset using all the 8 DataNodes.

We analyzed three Hadoop development branches to identify
reasons for their different performance and energy needs.
Initially we mapped the releases of the Hadoop project to
develop a genealogy tree of the project. Using the release logs
and commit information, we were able to outline the project
release dependency, showing which releases were used for each
branch. Figure 1 presents the Hadoop development history and
the selected releases for our study (the 12 highlighted ones).

Our selection includes releases from 1.x branch (1.0.0, 1.0.3,
1.1.1, and 1.2.1), supported before the YARN development.

4http://www.wattsupmeters.com/



The other releases are from 0.23.x (0.23.3, 0.23.6, 0.23.8,
and 0.23.10) and 2.x (2.1.0, 2.2.0, 2.3.0, and 2.4.0) branches.
These two branches are responsible for major architectural
modifications in the project, including the YARN resource
manager, which was developed as Hadoop evolved in order to
promote flexibility.

V. ENERGY PERFORMANCE RESULTS

Our experiments show large differences in energy con-
sumption between multiple tested Hadoop releases. With the
evolution in Hadoop branches, releases that included the YARN
resource manager performed worse and consumed more energy
when compared to the 1.x releases. The differences between the
three branches are easily identified. Releases 0.23.x consumed
on average 39% more energy than releases 1.x, releases 2.x
consumed on average 60% more energy when compared with
the 1.x releases. The larger datasets also corroborate the results:
the 48GB Sort showed that the energy consumption on 0.23.x
and 2.x releases is still higher than releases 1.x, although
proportionally lower when compared to the 10GB Sort; the
256GB Sort results show the same pattern again, with releases
1.x saving considerably more when compared to the other
releases.

VI. ANALYSIS

To understand what affected Hadoop’s performance we
investigated the correlation of several factors with the energy
consumption such as the software size versus time and energy,
and a set of object-oriented metrics.

A. Size and Time versus Power
One confounding factor of any analysis of software and met-

rics is the size of the software versus metrics and performance.
The Lines of Code (LOC) will correlate linearly with many
features of the source code. Thus we ask, “Does Hadoop size
correlate with energy?”. We define size as the number of Java
lines of code counted by David Wheeler’s SLOCCount program
for that version of Hadoop. For all tests of all sort tasks, for all
Hadoop version (0.23.3, 0.23.6, 0.23.8, 0.23.10, 1.0.0, 1.0.3,
1.1.1, 1.2.1, 2.1.0, 2.2.0 2.3.0 2.4.0) the Pearson correlation
is 0.1496, which is a very weak to negligible correlation. The
problem is that this measurement mixes tasks of different sizes.
Pearson linear correlation values, evaluated per sort task, were
between 0.8345 and 0.9018 with a median of 0.8770. We argue
that size does indeed correlate with energy, but if we control
for other factors, such as version we might find that it is not
as important.

On a single computer typically time and energy are related
as energy is defined as the integration of power over time
(e = p · t). Yet the Hadoop task runs on multiple computers,
thus we ask “Does energy correlate with Hadoop run-time?”
Regardless of the sort task size or configuration, over all tests,
a Pearson correlation of 0.9880 was achieved, indicating high
linear correlation between time and energy, as expected. Yet
when analyzed per sort configuration, described previously, the
range of correlation per task varies between 0.5927 to 0.9648
with a median of 0.6797. This implies that in general time is
linearly correlated to power, but within a test configuration it
has a medium to high strength correlation. Thus time acts as a
medium to high accuracy proxy for energy.

The relationship between energy and time is established,
and the medium to strong relationship between size and energy

is established. Thus we want to know, “Does Hadoop Size
correlate with run-time?”. Regardless of sort configuration a
low Pearson correlation of 0.1240 between Java LOC and
run-time was achieved, indicating that code size and run-time
were not related. Per each sort configuration the correlation was
higher between low correlation of 0.2710 to a strong correlation
of 0.7552, with a median correlation of 0.5285. Thus code size
had a weak to medium strength relationship depending on the
task.

If code size mattered, and code size increased over time,
perhaps the release order, the version number, matters. Thus we
ask the question, “If we order the Hadoop releases by release
date, does the rank of the release (first, second, third, etc.)
correlate with energy?” Regardless of the sort configuration, a
low Pearson correlation of 0.1133 was measured. When broken
up per sort configuration task the correlations were still quite
low from 0.0046 to 0.2736. If sorted lexicographicaly, the range
of correlations improves from 0.1349 to 0.3611. If ordered
from 1.0.0 to 0.23.3 to 2.1.0 to 2.4.0 — 1.0.0, 1.0.3, 1.1.1,
1.2.1, 0.23.3, 0.23.6, 0.23.8, 0.23.10, 2.1.0, 2.2.0, 2.3.0, 2.4.0
— we find a weak general correlation (0.1700) and a strong
per sort correlations ranging from 0.7814 to 0.8799. Using
this ordering, the Pearson correlation between version and size
is 0.9614 in general, and from 0.9572 to 0.9944 correlation
per sort configuration. Thus we find that Hadoop versions
can correlate heavily with energy consumption, but it depends
on how the versions are ranked. Furthermore the date of the
Hadoop release is not correlated with energy consumption. This
indicates that the branch matters, and so do the design choices
in them.

In summary, we found that time and energy had a general
medium-strength correlation, while Hadoop version number
(i.e., branch), not release date, had a strong correlation with
energy consumption. We also found while size was strongly
correlated with energy consumption, the version was an equally
strong predictor of energy consumption, as both are correlated
with each other. Thus we argue that while LOC looks strong,
it is the version and revisions to the code which truly affect
energy consumption.

B. CKJM Versus Hadoop
Most of Hadoop is written in Java, an Object Oriented

language. The CKJM-extended suite [6] measures a variety
of object-oriented metrics for Java. These metrics were first
proposed by Chidamber and Kemerer [1]. Many of the CKJM
metrics we investigate are averaged over all classes.

Some of the metrics we measured are described by Jureczko
et al. [6]: data access metric (DAM) — a ratio of private
and protected attributes to total attributes per class; Afferent
couplings (Ca) — how many other classes use a specific class;
number of children (NOC) — the number of direct children
of a class; response for a class (RFC) the number of possible
methods that a class could call; weighted methods per class
(WMC) — the number of methods per class; number of public
methods (NPM); measure of functional abstraction (MFA) —
a ratio of inherited methods over the total number of methods;
Lines of Code (LOC) CKJM’s binary version of LOC, it sums
the number of fields, methods and the number of instructions
per method in a class; lack of cohesion of methods (LCOM
and LCOM3) — counts methods who don’t share attributes or
fields; and finally cohesion among methods of class (CAM) —



measures whether or not methods of a class share the same
types of parameters or not.

Per each version of Hadoop we ran the CKJM extended suite
on the Hadoop java jar files. The bytecode of each class was
analyzed and metrics produced. Then we averaged the metrics
over the entire product. Once this is done, one can compare
the benchmarked energy measurements and time measurements
against the extracted CKJM metrics. 1 version of Hadoop will
have 1 set of average CKJM metrics.

To investigate if CKJM metrics were related to Hadoop
performance we produced thousands of linear models and
evaluated them, keeping only 415 of those that met a stringent
criteria. This kind of multiple regression analysis is similar
to ANOVA. All combinations of CKJM metrics, java LOC,
and version (ranked from 1.x to 0.23.x to 2.x) features were
evaluated, but if they were not linearly independent (correlation
of 0.75 or less) the model was not evaluated. If a model was
produced and all independent variables were not significant
(α ≤ 0.05) then the model was not kept.

The linear models per sort configuration were successful as
the R2 range was between 0.9035 and 0.9998 for the top 10
performing models of each configuration where all variables
were significant. A linear model of e ∼ NOC+Ca+DAM +
version was the top model for 48GB Sort and 256GB Sort
experiments, while a similar model of e ∼ RFC + Ca +
DAM + LOC was the top model for 10GB Sort. Version
or average size (LOC) appeared in some of the top models,
demonstrating the power of size or version awareness.

For each Sort experiment, given the top 10 performing
models of each configuration, the number of occurrences of a
metric in the top 10 models were counted. Version numbers
appear in 4/5 of the task’s top 10 models, while size (java
LOC) does not appear in the top 10 models of any of the tasks.
Another form of size, average binary size (CKJM-extended’s
LOC metric, not to be confused with source LOC) does appear
in many of the top 10s. Yet the most dominant metrics are
DAM and NOC followed by Ca, RFC, WMC, NPM, MFA,
LOC, LCOM3, LCOM, CAM and version. Out of 50 models,
version appears in 9 of them while NOC appears in 30/50 and
DAM appears in 24/50.

Models consisting solely of NOC and DAM were in the top
10 models of 4/5 jobs. Both NOC and DAM negatively correlate
with the number of lines of Java. Furthermore NOC, number of
children, likely negatively correlates with the age and evolution
of the product as more classes are added, there are less children.
If a child class is added, average NOC should decrease. NOC
increased from version 1 to the 0.23 versions and then dropped
significantly from 0.3074 to 0.2592 for version 2.1.0 and later.
DAM was higher for the version 1 branch than for the 0.23
branch and increased again after 2.1.0, but version 1 had higher
DAM than later versions. Thus there’s no strong correlation
between the successful OO metrics, such as DAM or NOC,
and the version number or the lines of java code. This indicates
that perhaps there is some relationship between the general
structure of the code and its final performance in terms of
energy, but size and version awareness still play a factor. DAM
and NOC were also correlated with energy consumption in
prior studies [4].

VII. CONCLUSIONS

In this paper, we presented our investigation of the Apache
Hadoop project, its branches and releases, regarding energy
consumption and performance. Analyzing 4 releases of each
of the 3 current branches — 1.x, 0.23.x, and 2.x — we
demonstrated through experimentation that there is a significant
difference in energy consumption between the framework
development branches.

The 1.x releases had better performance and lower energy
consumption than all the other tested releases. Releases 1.1.1
and 1.2.1, which did not incorporate the new resource manager
of the framework, YARN, demonstrated to be the more energy
efficient in the experiments. We acknowledge that the evolution
of the framework brought desirable characteristics to the
platform, but we argue that the same evolution, through the
development of the YARN resource manager, included in 0.23.x
and 2.x releases, caused significant loss in performance, and
consequently, increases in job energy consumption. As shown
in subsection VI-A, the version and release have a strong
correlation with the energy consumption in Hadoop.

Therefore, unless users need such features presented in
the latter development branches, they should select Hadoop
releases from 1.x branch, especially 1.2.1 and later, and apply
the compatible patches for upgrades and stability. Furthermore,
anecdotal evidence from an analysis of StackOverflow questions
about Hadoop support the hypothesis that users are not aware
of such new features, and, by extension, the performance and
energy penalties they incur.
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