
Parallel Electromagnetic Transient Simulation of Power Electronic Systems on
Advanced Digital Hardware

by

Bingrong Shang

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science
in

Energy Systems

Department of Electrical and Computer Engineering
University of Alberta

©Bingrong Shang, 2023



Abstract

Electromagnetic Transient (EMT) simulation is an essential tool for the analysis and de-

sign of power system components, such as power electronic converters, transformers, and

transmission lines. It enables investigation of the dynamic behavior of power systems and

power electronic converters under transient conditions, including circuit faults and inter-

ruptions in the system, as well as device stress and thermal behavior of power electronic

converters during switching events. This thesis presents two contributions toward the ef-

ficient simulation of power electronic systems at the device-level and at the system-level

based on the heterogeneous adaptive compute acceleration platform (ACAP) and graph-

ics processing unit (GPU). Both contributions were validated and compared against tra-

ditional simulation methods, providing effective and accurate means of simulating power

electronic systems, and paving the way for the efficient and reliable design of modern

energy systems.

First, the nonlinear high-order electro-thermal model of the Insulated-gate bipolar tran-

sistor (IGBT) is developed and then deployed onto the heterogeneous digital hardware for

real-time implementation. As the complexity of the nonlinear behavioral model (NBM)

of the IGBT poses a significant computational burden on real-time hardware emulation,

machine learning (ML) methodology is utilized so that the trained model can reproduce

the characteristics of its original counterpart as accurately as possible and then it is im-

plemented on the ACAP, which comprises of the processing system (PS), programmable

logic (PL), and Artificial Intelligent Engine (AIE). The vector multiplication feature of the

AIE caters to mathematical operations of the ML-based model particularly well and con-

sequently enables it to be executed in real-time with remarkable speedup over the original

model with which matrix inversion is otherwise mandatory. Finally, the validation for real-

time device-level results and system-level results of a multi-converter system is provided

by SaberRDr and MATLAB/Simulinkr.

Second, a high-voltage direct current (HVDC) link model based on the modular mul-

tilevel converter with embedded energy storage (MMC-EES) is proposed and, utilizing
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the massively parallel computing feature of the GPU, its efficacy in compensating a vary-

ing wind energy generation is studied. Constant power is oriented in the inverter control

by incorporating a DC-DC converter with EES into its submodules. High-fidelity EMT

modeling is conducted for insight into converter control and energy management. A fully

iterative solution is carried out for the nonlinear model for high accuracy. Since the sequen-

tial data processing manner of the central processing unit (CPU) is prone to an extremely

long simulation following an increase of component quantity with even one order of mag-

nitude, the massively concurrent threading of the GPU is exploited. The computational

challenges posed by the complexity of the MMC circuit are effectively tackled by circuit

partitioning which separates nonlinearities. In the meantime, components of an identical

attribute are designed as one kernel despite inhomogeneity. The proposed modeling and

computing method is applied to a multi-terminal DC system with wind farms, and the

accuracy is validated by offline simulation.
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1
Introduction

Electromagnetic transient (EMT) studies are a type of analysis in power systems used to

model and understand the behavior of electromagnetic phenomena that occur during tran-

sient events, such as switching operations, faults, and lightning strikes. During these

events, high levels of electromagnetic energy are generated and propagated throughout

the power system, resulting in voltage and current transients, oscillations, and other dis-

turbances that can lead to component damage, equipment failure, and even power out-

ages. By modeling the electromagnetic behavior of the power system under different con-

ditions, potential problems can be identified and strategies can be developed to mitigate

these problems. Therefore, in order to design and operate reliable, efficient and safe power

systems, electromagnetic transient simulation has become a powerful tool for studying the

dynamic behavior of power systems under various operating conditions.

The simulation of power systems using EMT presents several challenges due to the

high level of detail and complexity required to accurately model the behavior of power

system components. One of the main challenges arises from the nonlinear behavior exhib-

ited by many components, such as insulated gate bipolar transistors (IGBTs) and diodes.

EMT simulations must solve large systems of nonlinear differential equations, which can

be computationally intensive and time-consuming. To achieve accurate modeling of these

components, more complex mathematical models are needed, which further increase the

computational complexity of the simulation. Moreover, the traditional Newton-Raphson

method used for solving nonlinear problems involves repetitive computations for com-
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bining and decomposing large matrix systems. This approach requires solving a set of

high-order matrix equations at each iteration, which can be particularly computationally

intensive, especially for large-scale systems like Modular Multilevel Converters (MMC).

Another significant challenge in EMT simulation arises from the complex network topolo-

gies of modern power systems, such as multi-terminal high-voltage direct current (HVDC)

systems. To accurately model these systems and their corresponding control systems, ad-

vanced modeling techniques and software tools are necessary. Therefore, EMT simulations

require substantial computational resources and specialized software to provide accurate

results.

This chapter provides an introduction to EMT simulation, highlighting its significance

in the field of power systems, as well as the challenges it faces. To address these challenges,

research directions are identified for the development of EMT simulation at both the device

level and system level, along with corresponding model design methods and simulation

acceleration platforms. These efforts aim to solve the challenges associated with nonlinear

behavior, large-scale matrix computations, and complex network topologies. Finally, the

structure and components of the thesis are presented to give an overview of the subsequent

chapters.

1.1 IGBT Device-Level Modeling and Simulation

The focus of device-level electromagnetic transients is to analyze the behavior of elec-

tromagnetic phenomena that occur within individual electronic devices, such as voltage

spikes, electromagnetic interference, or thermal effects. Among the many power electronic

devices, IGBT is a power semiconductor device that is widely used in power systems due

to its high power handling capability, fast switching speed and low on-resistance.

For example, in motor drives and renewable energy systems, the high power handling

capability of IGBTs makes them ideal for high-power applications [1]. In addition, IG-

BTs have a low on-resistance, which means when they are operated at high current levels,

power losses can be reduced, thereby increasing the efficiency of the power system. In ap-

plications that require fast switching, such as motor control and power converters, IGBTs

can be turned on and off very quickly, allowing efficient and precise control of the power

flow in the system. IGBTs are also known for their high reliability and long operating life,

making them a popular choice for critical applications such as high-speed train traction

inverters [2] and HVDC transmission systems [3].
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Various device-level IGBT models have been developed and widely used, such as the

ideal model [4], the associated discrete circuit model [5], and the Thévenin equivalent

model [6]; previous studies have widely used these models to represent the switching

characteristics of IGBT. These models are simplistic and computationally efficient, how-

ever, they are not sufficient to describe realistic IGBT switching transients. Dynamic mod-

els based on the transient behavior of IGBT are necessary for high-accuracy device-level

simulations. There are several different dynamic models, compact model [7] and EMT

model, while EMT models are usually divided into physical-based models and behavioral

models.

Physical-based models are based on physical principles and nonlinear equations, which

account for the physical phenomena occurring inside the IGBT, such as carrier generation,

recombination, drift, and diffusion [8]. Although these models are highly accurate, they re-

quire significant computational resources and time to simulate due to their computational

intensity. Numerical solution methods usually involve finite element or finite difference

methods [9]. For the behavioral models based on empirical data and simplified equations

that capture the essential behavior of the IGBT during transient events, their faster and

more efficient simulation makes them a popular choice for power system simulations that

involve large numbers of IGBTs [10].

To improve the efficiency of EMT simulation, several approaches can be taken, such as

simplifying the models used in the simulation and employing computational technology

and hardware acceleration measures.

One method of simplifying the model is to reduce the number of elements or use more

approximate models, which can reduce the computational requirements and improve sim-

ulation performance. Machine learning (ML) algorithms such as offline training of artifi-

cial neural network (ANN) and recurrent neural network (RNN), can be used to develop

alternative models that approximate the behavior of complex power system components.

ANNs have been successfully employed in power electronic systems for system fault di-

agnosis [11], converter and controller modeling [12, 13], and predictive control for MMCs

emulation [14]. The required training data can be collected from an actual power electron-

ics device or system, or from a simulation model of the device or system. After training

and validation, the ML model will provide the desired output given the appropriate in-

puts during the simulation. Since ANN models involve only basic algebraic operations, a

well-trained ANN is able to optimize the simulation process to a large extent.

In addition to model simplification, measures in computational technology and hard-
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ware acceleration can also be employed. Parallel computing techniques can help distribute

the workload across multiple processors or computers, reducing the simulation time and

increasing the number of simulations performed. Another approach is to use hardware

acceleration techniques such as Field-Programmable Gate Arrays (FPGAs) [15] to accel-

erate the simulation process, which can provide significant performance improvements

over traditional CPU-based simulations. Compared to traditional FPGAs, Xilinxr Adap-

tive Compute Acceleration Platform (ACAP) has several notable advantages, for example,

ACAP provides higher computational performance and energy efficiency due to its hetero-

geneous architecture that combines the processing system (PS), programmable logic (PL),

and innovative AI Engine (AIE). Additionally, the availability of various optimized pro-

cessors and interfaces, such as the Single Instruction Multiple Data (SIMD) vector unit and

GMIO, helps to speed up data processing efficiency and maximize processing throughput.

This thesis employs a combination of these approaches to address the computational

complexity and resource requirements in IGBT EMT device-level simulations.

1.2 MMC-EES System-Level Modeling and Simulation

Modular Multilevel Converter (MMC) is a power electronic converter topology consisting

of multiple submodules (SMs), each containing a set of power electronic switches. The

structure of a common submodule can usually be divided into a half-bridge submodule

(HB-SM) consisting of two switches connected in series, or a submodule (FB-SM) consist-

ing of four switches arranged in a full-bridge structure. Compared to other converters

such as Voltage Source Converter (VSC), MMC has become a popular converter topology

for high-power and medium/high-voltage applications in the field of power systems [16],

The outstanding features of MMC include its modularity and scalability, making it suitable

for any voltage level, the superior harmonic performance due to stacking a large num-

ber of identical low-voltage-level SMs, and high power density, which is important for

high-voltage applications. These features make it suitable for applications such as HVDC

transmission systems [17], flexible AC transmission systems (FACTS) [18], and renewable

energy integration.

As power systems continue to transition towards more renewable energy sources to

reduce greenhouse gas emissions and combat climate change, MMC is playing an in-

creasingly important role in enabling efficient and reliable power delivery. Some of the

commonly used renewable energy sources in the MMC power system include wind farm
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power [19], solar photovoltaic (PV) [20], and hydroelectric power [21]. Wind power is one

of the most widely used renewable energy sources and can be harnessed through the use

of wind turbines to convert wind energy into electricity. In areas with high wind speeds,

such as offshore wind farms, wind energy has a huge potential for deployment.

The integration of renewable energy sources, such as wind power, into power grids

presents several challenges, one of which is the intermittent nature of wind energy. Since

wind energy is highly dependent on weather conditions and highly susceptible to changes

in wind speed and direction, power output is prone to fluctuations. In this case, energy

storage systems (ESS) can help mitigate the variability and uncertainty associated with

wind power as a valuable solution. MMC with energy storage system (MMC-ESS) has

been researched extensively as a means of integrating wind power into power grids, which

can help to smooth out these fluctuations and provide grid stability by storing excess wind

energy during periods of high output and releasing it during periods of low output or high

demand. Examples of MMC-ESS applied to HVDC wind farm systems can be found in [22]

and [23].

Simulation of MMC poses challenges due to its complex topology and control scheme,

requiring significant computational resources for the simulation of large-scale MMC sys-

tems with multiple submodules. In this thesis, Graphics Processing Unit (GPU) is uti-

lized as a hardware platform for simulating MMC-EES. Compared with the CPU, GPU

has much higher parallel processing capabilities, which enables it to perform thousands

of computations simultaneously, and a larger number of cores to handle more data in par-

allel, resulting in improved performance. GPU is also more cost-effective than FPGA due

to the fact that it is more flexible and can be easily programmed or modified, making it

a more readily available option. For example, an accurate electromagnetic-thermal simu-

lation of the multi-terminal DC (MTDC) grid is proposed on the architecture of the GPU

in [24], and a variable time-stepping MMC model was presented in [25] to accelerate the

parallel EMT simulation of a detailed MTDC grid on the GPU.

1.3 Motivation and Objectives of This Thesis

The field of power electronics is constantly evolving, driven by the growing demand for

high-performance, efficient, and reliable power electronic systems. In this context, the ac-

curate modeling and simulation of power electronic devices and systems is essential for

the design, analysis, and optimization of modern power electronics applications. How-
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ever, existing simulation tools often suffer from limitations in terms of accuracy, speed,

and flexibility, especially for nonlinear and time-varying systems. Therefore, there is a

need for advanced simulation techniques that can address these challenges and enable

more efficient and effective development of power electronics applications.

The motivation of this thesis is to develop advanced simulation techniques for power

electronics, with a focus on real-time, nonlinear behavioral electro-thermal device-level

emulation and high-fidelity parallel transient modeling of modular multilevel converters

with embedded energy storage.

The main objectives of this thesis are to:

• Propose a novel heterogeneous adaptive compute acceleration platform (ACAP) for

real-time, high-accuracy, and flexible device-level emulation of insulated gate bipolar

transistors (IGBTs) under nonlinear and thermal effects. Provide a detailed descrip-

tion of the proposed platform, including the hardware and software components and

the algorithms used for the IGBT emulation. Present the performance results of the

platform and compare them with other simulation tools.

• Develop a high-fidelity parallel transient model for MMC with embedded energy

storage, which can accurately capture the dynamic behavior of MMC systems under

various operating conditions. Provide a detailed description of the proposed model,

including the mathematical formulations, control strategies, and implementation on

the parallel computing platform GPU. Present the validation results of the model and

demonstrate the effectiveness and efficiency through the multi-terminal wind farm

system simulation.

1.4 Thesis Outline

This thesis contains 5 chapters. The rest of the chapters are outlined as follows:

• Chapter 2 - Introduces the background of the ACAP and GPU hardware architecture

used in this thesis and the programming languages of AI Engine and CUDA.

• Chapter 3 - The IGBT device-level nonlinear behavior electrothermal model is intro-

duced. Then, the implementation and performance of the IGBT NBM in the PS, PL,

and AIE domains of the VersalTM ACAP are presented. Machine learning models,

training methods, and vectorization implementations are also specified. Finally, the

verification and hardware simulation results of the ML model are shown.
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• Chapter 4 - This chapter first introduces the topology and control strategy of MMC

with embedded energy storage. After that, the EMT model of MMC-EES is presented

and the design of GPU parallelism is provided. The results of the implementation of

the four-terminal HVDC system are also given to verify the accuracy of the simula-

tion and the effectiveness of the embedded energy storage system in the MMC.

• Chapter 5 - The contributions and some future work of the thesis are given in this

chapter.
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2
Background on Adaptive Compute

Acceleration Platform and The GPU

The increasing demand for artificial intelligence, machine learning, and data-intensive ap-

plications has driven the development of powerful computing hardware such as Xilinxr

ACAPs and NVIDIAr GPUs. These platforms have become essential tools for implement-

ing high-performance computing tasks. This chapter provides a detailed overview of the

hardware platform architecture of the Xilinxr VersalTM ACAP VCK190 and NVIDIAr

GPU V100, as well as the programming features of the AI Engine and CUDA C++. The

characteristics of these two hardware platforms are compared in terms of implementing

power system simulation, which is the focus of this thesis.

2.1 Heterogeneous Adaptive Compute Acceleration Platform

2.1.1 Xilinxr VersalTM VCK190 Hardware Architecture

VersalTM devices are the first ACAPs based on the TSMC 7 nm FinFET process technology

developed by Xilinxr. Fig. 2.1 (a) depicts the architecture of ACAP, which consists of a

scalar engine (PS), an adaptable engine (PL), and an intelligent engine, all of which are

connected together via a series of high-speed and integrated horizontal and vertical paths

NoC to achieve remarkable performance and meet design timing, speed, and logic utiliza-

tion requirements. The ACAP can be divided into three specific components: AI Engine

(AIE), Processing System (PS) and Programmable Logic (PL), as described below.
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Figure 2.1: (a) Architecture of ACAP; (b) AI Engine array; (c) AI Engine tile; (d) AI Engine
architecture.

• AI Engine (AIE): As a key feature of the Xilinxr ACAP and a highly flexible and

efficient programmable engine, AIE provides the ability to implement customized,

high-performance machine learning and signal processing applications. As shown

in Fig. 2.1 (b), the AIE array is the top-level hierarchy of the AIE architecture, which

integrates a two-dimensional array of AIE tiles. The AIE array interface enables the

AIE to communicate with the rest of the VersalTM device through the NoC or directly

to the PL. The AIE tile architecture is shown in Fig. 2.1 (c), where each tile includes

one tile interconnect module which handles AXI4 input/output, a memory module,

and an engine, which can access up to 4 memory modules in four directions. The

AIE, shown in Fig. 2.1 (d), is a highly-optimized processor that supports both fixed-

point and floating-point precision and is organized as an array of AIE tiles, which

can contain up to 400 tiles on the VC1902 device used in this work. This architecture

9



enables highly parallel, pipelined, and streaming computation, making it ideal for

data-intensive applications.

• Processing System (PS): The ACAP features a versatile processing system that in-

cludes both an Arm processing unit (APU) and a real-time processing unit (RPU). As

shown in the scalar engine part of Fig. 2.1 (a), the APU is based on the ARM Cortex-

A72 processor core to provide general-purpose computing in a standard program-

ming environment [26], which offers higher capabilities and a high clock frequency

of up to 1700MHz. The RPU based on a custom microarchitecture ARM Cortex-R5

processor, on the other hand, is a real-time processing unit that is optimized for de-

terministic, low-latency processing, which is designed to handle time-critical tasks.

The OpenCL and the Xilinxr Runtime (XRT) methodology are adopted for software

programming, which enables multiple kernels to be executed concurrently with ini-

tialized command queue and thus is highly efficient in performance.

• Programmable Logic (PL): PL is an extensible structure that enables the creation

of a wide range of conceivable functions. It consists of DSP engines, configurable

logic blocks, Configuration RAM, and Block RAM (BRAM), which can be configured

together to create numerous types of hardware functionalities including accelera-

tors, processors, functional pipeline units, and peripherals [26]. As shown in the

left part of Fig. 3.3, PL establishes connections between PS, NoC, AIE, high-density

I/O buffers, and components instantiated within the PL. The GMIO port can be used

to connect external memory mapped to or from the global memory, which accesses

DDR memory directly with a bandwidth throughput of 3200 MB/s. The connections

and configuration of the PL elements are captured in the Vivador design suite and

the Vitisr unified software platform toolchain using a programmable device image.

2.1.2 AI Engine Programming

The Xilinxr AI Engine is a highly optimized hardware architecture. One of its key pro-

gramming features is the ability to define custom data flow graphs that map to the com-

putation engines in the array. The programming paradigm for AI Engine based on the

dataflow model only requires specifying data dependencies between computational blocks

rather than explicitly defining the order of operations. Customized and optimized data

flow graphs are typically created using the Xilinxr Vitis integrated design environment

(IDE) and then automatically compiled and optimized for the AI Engine hardware such
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as the VCK190. The Vitis IDE provides a unified platform for hardware and software de-

velopment and includes a set of tools and libraries for creating, debugging, and deploying

applications.

The AI Engine kernel is a basic building block for AI Engine programming. It is a

function that implements a specific operation or calculation using the AI Engine architec-

ture. AI Engine programming involves writing and optimizing kernels to perform specific

tasks, and then orchestrating these kernels to form a complete application. The program-

ming model is based on a dataflow graph, where kernels are connected to form the whole

graph, and data flows through the graph to perform computations. The AI Engine kernel

is a C/C++ program written in native C/C++ language with specialized intrinsic func-

tions [27] for the Very Long Instruction Word (VLIW) scalar and vector processors. AI

Engine kernel code is compiled using the AI Engine compiler (aiecompiler) included in

the Vitis IDE. The aiecompiler compiles the kernel to generate the ELF files that run on the

AI Engine processor [28].

One of the key features of the AI Engine kernel is its ability to execute a large number of

independent, pipelined compute operations in parallel, which makes it particularly well-

suited for accelerating complex machine learning and signal processing algorithms. The

kernel supports a range of data types and precision levels, including floating-point and

fixed-point arithmetic. AIE kernel programming is divided into two categories, scalars

and vectors. Scalar programming operates on individual data elements, while vector pro-

gramming operates on data in groups or vectors. Scalar programming is used when the

data is not aligned or the operations are conditional or iterative. Vector programming, on

the other hand, is used when the data is aligned and can be processed in parallel using vec-

tor instructions. By balancing the use of scalar and vector programming, the performance

and efficiency of AI Engine applications can be optimized.

Additionally, the AI Engine kernel is highly versatile and supports various memory

access patterns, including streaming, block, and gather/scatter access, which enables it

to efficiently access data from a variety of sources. In terms of data communication in

AI Engine, window mode represents a fixed-size block of data that is processed together,

while stream mode represents a continuous stream of data that is processed in a sequential

and non-blocking manner. The efficiency of window and stream processing modes can

be compared based on factors such as latency and throughput. In window mode, data

is processed in fixed-size chunks or windows, which can introduce a processing delay.

Stream mode, on the other hand, processes data continuously, resulting in lower latency.
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Throughput refers to the amount of data that can be processed in a given time frame,

which is also a factor to be considered, with stream mode being able to support higher

throughput due to processing data continuously.

Overall, AI Engine is a powerful and flexible compute engine that offers significant

performance and power efficiency benefits for a wide range of data-intensive applications,

the programming model for AI Engine is designed to provide a highly flexible and efficient

platform, with a particular focus on performance, scalability, and ease of use.

2.2 High-Performance GPU

2.2.1 NVIDIAr Tesla V100 Hardware Architecture

The NVIDIAr Tesla V100 [29] is a high-performance computing (HPC) hardware platform

as shown in Fig. 2.2.

The NVIDIAr V100 GPU consists of 84 Streaming Multiprocessors (SMs), which are

responsible for executing the actual computational workloads. Each SM in the V100 is

composed of 4 processing blocks, which are essentially smaller processing units that work

together to execute instructions in parallel. Each processing block in the V100 consists

of 16 FP32 cores, 16 INT32 cores, 8 FP64 cores and 2 Tensor cores. In addition to the

processing blocks, each SM also includes shared memory, which can be accessed by all of

the processing blocks within the SM. Global memory is used to store data that is shared

across all of the SMs in the GPU.

The main hardware features of V100 include:

• Volta architecture: The V100 is built on NVIDIA’s Volta architecture, which includes

innovations such as Tensor Cores, and enhancements to the CUDA programming

model for improved performance and ease of use.

• Large memory capacity: The V100 features a high-bandwidth memory (HBM2) ca-

pacity of up to 16GB, which delivers high performance for large-scale computing

workloads.

• High-speed interconnect: The NVIDIAr NVLinkTM interconnect enables quick and

efficient communication between GPUs and CPUs, delivering up to 300 GB/s of bi-

directional bandwidth.

• High memory bandwidth: The V100 is equipped with 900 GB/s of memory band-

width, making it capable of handling data-intensive applications quickly and effi-

12



Streaming 
Multiprocessor (SM)

×84

Shared Memory

Register File

FP64

INT

FP32

Tensor 
Core

Warp Scheduler

L0 Instruction Cache

L1 Instruction Cache

Processing
Block

×4

Processing
Block

×4

Global Memory

LD/ST

SFU

Figure 2.2: NVIDIAr Tesla V100 GPU streaming multiprocessor architecture

ciently.

2.2.2 CUDA Programming

CUDA programming is a high-level programming language that provides massive paral-

lelism and efficient memory management, making it a popular choice for harnessing the

computational power of GPU. CUDA C++ allows for the parallelization of code written in

C++ syntax, which facilitates the leveraging of existing C++ code and libraries.

One of the key features of CUDA C++ is SIMT (Single Instruction Multi-Threading).

Under this mode, multiple threads are grouped into blocks and scheduled to execute the

same instruction simultaneously, with each thread operating on a different set of data. This

allows the GPU to process a large number of power system simulation tasks in parallel,

resulting in faster and more efficient simulations.

The memory hierarchy in the GPU is designed to optimize the performance of each

memory type based on its characteristics. Global memory is accessible to all threads in the

GPU, but has higher latency and is more suitable for tasks that require large amounts of

data. Shared memory, on the other hand, is low-latency and high-bandwidth, and is only

be accessed by threads within the same thread block. Shared memory is used to optimize
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access to frequently accessed data within a block, while global memory is used to store

large arrays or matrices of data.

In CUDA C++, kernel functions are the code that can be executed in parallel by the

GPU’s threads. They are customized to perform computations on specific data and can

optimize performance by taking advantage of the GPU’s parallel processing capabilities.

Kernel functions are written in C++ and can take advantage of specialized syntax and func-

tionality specific to CUDA. When a kernel is launched on the GPU, threads are organized

into blocks and grids, with blocks being groups of threads that can cooperate through

shared memory and grids being groups of blocks that can execute independently.

There are two types of kernel launches in CUDA: global and device. Global kernels

can be invoked from the host and run on the device, while device kernel launches are

invoked from within another kernel on the same device. Global kernels can access both

global memory and shared memory, while device kernels can only access global memory.

Global memory is shared by all threads in a grid, while shared memory is local to each

block of threads. By specifying the size and layout of the grid and blocks of threads, the

host CPU can control how the kernel is executed on the device, allowing for fine-grained

control over the execution of the kernel.

For power system simulations that involve a large number of homogeneous modules,

the parallel processing capabilities of GPUs can provide significant acceleration compared

to traditional simulation tools. This is because power system simulation tasks can be ef-

ficiently executed on the massively parallel architecture of GPUs, thus benefiting greatly

from the SIMT feature. Alternatively, the memory hierarchy of the GPU can be leveraged

to optimize the performance of the simulation. The use of shared memory is particularly

effective in power system simulations, where there are often large amounts of data that are

frequently accessed by multiple threads such as system parameters or temporary results.

By storing this data in shared memory, it can be accessed more efficiently by the threads in

a block, reducing the overall simulation time. In contrast, large data arrays or input data

and output data are stored in global memory.

2.3 Summary

Xilinxr ACAP and NVIDIAr GPU are two powerful hardware platforms that offer unique

programming features for accelerating power electronics simulations. The ACAP AI En-

gine provides a scalable and versatile approach to simulation acceleration, with the sig-
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nificantly extended functionality of programmable logic and an easier and more efficient

programming flow compared to traditional and complex FPGA hardware flows. On the

other hand, the CUDA C++ programming model used by GPUs offers a way to exploit

massive parallelism, making it possible to accelerate complex simulations by several or-

ders of magnitude compared to CPU-based solutions. With its high parallel processing

power, the GPU can handle large-scale power system simulations that involve homoge-

neous modules more efficiently than traditional simulation tools. By leveraging the paral-

lel processing power of GPUs, simulations can be performed in a more efficient and timely

manner, which is crucial for the development of modern power systems.
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3
Real-Time Nonlinear Behavioral

Electrothermal Device-Level Emulation of
IGBT on Heterogeneous ACAP

3.1 Introduction

Power electronic converters have been playing a significant role in power supply systems

in many domains, such as rail transportation [30], electric vehicles [31], and ship power

systems [32]. The Insulated-gate bipolar transistor (IGBT) is now one of the most impor-

tant and extensively used power semiconductor switches in the aforementioned applica-

tions for its advantages and characteristics, such as large capacity, simple driving, easy

protection, and high switching frequency. There is a growing volume of literature that es-

tablishes the system-level simulation of these converter-based systems for their design and

performance evaluations [33–35], where most of them are based on detailed modeling or

average value modeling, which suffices for the testing and verification of system-level con-

verter functions such as frequency regulation and voltage adjustment. When an in-depth

study is required for a comprehensive electro-thermal transient analysis, the device-level

modeling is compulsory [36], as it reveals the transient performance of the power semicon-

ductor switch, so that the transient voltage, current, and thermal stresses can be monitored

accurately for real converter design evaluation [37].

Various device-level IGBT models have been developed and widely used in the past

for power converter simulation [38, 39], such as the analytical model, and the nonlinear
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behavioral model (NBM). However, the modeling complexity due to the inclusion of de-

vice transients poses a significant challenge accompanied by a high chance of numeri-

cal divergence. This often results in a short simulation duration that is even insufficient

for the system to reach its steady state, especially in commercial simulation tools such

as PSpicer, MultisimTM, and SaberRDr. Therefore, hardware acceleration using FPGA

has been adopted for medium-scale power converters where a dramatic speedup over

CPU was attained [40, 41]. In addition, [42] implements the device-level simulation of

the IGBT model using the parallel algorithm on GPU, which also significantly improves

the simulation efficiency. Real-time simulation [43] is playing an increasingly vital role

in the development and testing stages of power electronics and requires the model to be

updated strictly within the corresponding simulation time-step, but the nonlinear prop-

erty of the device model determines that real-time execution can hardly be met due to a

Newton-based iterative solution of a high-order matrix equation. As a result, both hard-

ware acceleration and algorithm optimization are necessary to achieve that goal.

Machine learning (ML) has begun to be employed in power systems and power con-

verters to reduce the computational burden of conventional models [44, 45], and various

neural networks (NNs) including gate recurrent unit (GRU) [46] and recurrent neural net-

works (RNN) [47] are utilized to train models and obtain accurate results and improve the

simulation efficiency. As a novel and time-saving approach, ML can also be applied to the

study of circuit transients by learning a specific dataset and configuring the NN to cre-

ate the design-compliant models [48]. However, this approach has yet to be explored for

power electronics device simulations. In this chapter, the ML methodology is adopted for

avoiding high-dimensional matrix equations that are challenging to solve by traditional

methods.

Compared to the conventional FPGA, the VersalTM ACAP from Xilinxr has an innova-

tive design in terms of hardware architecture, which combines Adaptable Engines, Scalar

Engines, Intelligent Engines, and Network on Chip (NoC) to provide powerful heteroge-

neous acceleration for a wide range of applications [49]. As the most critical and innova-

tive part of ACAP, the AI Engine (AIE) is a highly optimized processor with many features,

such as the Single Instruction Multiple Data (SIMD) vector unit, and Very Long Instruc-

tion Word (VLIW) function that can be used in the field of real-time emulation to solve the

data-intensive computing issues.

In this chapter, the IGBT electro-thermal NBM has been implemented and evaluated

on the VersalTM ACAP’s processing system (PS), programmable logic (PL), and AIE, sep-
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arately. The ML-based model is proposed to accommodate the SIMD vector processing

feature of the ACAP, specifically, the adoption of the NN enables faster matrix calculations

to replace the complex iterative matrix inversion in the transient simulation process. The

ML model is realized through learning from the dataset of IGBT NBM, and the AIE SIMD

vector unit provides intrinsics functions to make the model emulation more efficient be-

fore being implemented on the ACAP. Finally, the simulation results of a multi-converter

system are verified by MATLAB/Simulinkr.

This chapter is organized as follows: Section 3.2 introduces the IGBT device-level non-

linear behavioral electro-thermal model. In Section 3.3, the VersalTM ACAP architecture

including PS, PL, and AIE is introduced, and the implementation and performances of

the NBM in these three domains are also presented. The machine learning model, train-

ing methodology, and vectorized implementation are described in Section 3.4. Section 3.5

shows the validation of the ML model and hardware simulation results, and Section 3.6

provides the conclusion.

3.2 Nonlinear Behavioral Electro-Thermal Device-Level Model-
ing of IGBT

3.2.1 IGBT Nonlinear Behavioral Model

The nonlinear behavioral model [50] of an IGBT with its inherent anti-parallel diode is

shown in Fig. 3.1. According to the definition,

i(t) = C
dv(t)

dt
, (3.1)

a capacitor can be discretized by Backward Euler as:∫ t

t−∆t
i(t) dt = C[v(t)− v(t−∆t)], (3.2)

i(t) =
C

∆t
v(t)− C

∆t
v(t−∆t)

=
C

∆t
v(t) + Iceq ,

(3.3)

where ∆t is the time-step.

The equivalent conductance is defined as:

GCeq =
C

∆t
, (3.4)

and the equivalent current source:

Iceq = − C

∆t
v(t−∆t). (3.5)
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Figure 3.1: High-order nonlinear IGBT equivalent circuit.

Consequently, for capacitor Cge, the conductance GCge and current source iCgeeq are

given as:

GCge =
Cge

∆t
, (3.6)

iCgeeq = −GCge · vCge(t−∆t). (3.7)

The discretized forms of nonlinear capacitors Ccg and Cce are identical, for example:

Ccg =

{
(Ccgo · (1 +

vCcg
vCgo

)−m), vCcg > 0

Ccgo, vCcg ≤ 0.
(3.8)

where m is the Miller capacitance exponent coefficient, which is set to 0.5 by default, and

Ccgo is the fixed capacitance, given in Appendix.

Similar to Cge, the conductance could be calculated as GCcg = Ccg
∆t , and the equivalent

current source as:

iCcgeq =
qCcg(t)− qCcg(t−∆t)

∆t
−GCcg · vCcg(t), (3.9)

where qCcg is the charge.

Since the IGBT has three operating states: OFF state, linear, and saturation regions, the

metal-oxide-semiconductor field-effect transistor (MOSFET) is adopted for model descrip-

tion, and its equivalent current imos can be formulated by three segments, namely

imos =


0, (vCge < Vth) & (vd ≤ 0)

a2 · v(z+1)
d − b2 · v(z+2)

d , vd < (y ·∆vCge)
1
x

∆v2Cge
(a1+b1∆vCge ) , others,

(3.10)

19



where a1, a2, b1, b2, x, y and z are coefficients, vCge and vd are the voltages over capacitor

Cge and imos, respectively, Vth is the IGBT channel threshold voltage, and ∆VCge is defined

as

∆vCge = vCge − Vth. (3.11)

consequently, the conductance Gmosvd and transconductance Gmosvcge resulting from the

discretization of the component can be derived by taking partial derivatives of vd and vCge ,

respectively, and each operation state has a different form.

• ON state

Under ON state, i.e. vd is less than the value of (y · ∆vCge)
1
x , the conductance and

transconductance are expressed by the following equations

Gmosvd =
∂imos

∂vd
= a2(z + 1) · vzd − b2(z + 2) · v(z+1)

d , (3.12)

Gmosvcge =
∂imos

∂vCge
=

∂a2

∂vCge
· v(z+1)

d − ∂b2
∂vCge

· v(z+2)
d . (3.13)

• Transient state

Under the transient stage, the conductance Gmosvd is zero, and the transconductance

can be derived as

Gmosvcge =
2∆vCge

(a1 + b1∆vCge)
−

b1∆v2
Cge

(a1 + b1∆vCge)
2
. (3.14)

• OFF state

When the IGBT is OFF, both Gmosvd and Gmosvcge are zero.

Taking the different forms of Gmosvd into consideration, the companion current of imos can

be calculated by

Imoseq = imos −Gmosvd · vd −Gmosvcge · VCge . (3.15)

The tail current Itail occurs when the IGBT is being turned off, and it can be estimated

using the formula below

Itail =

{
0, Vtail

Rtail
< imos

( Vtail
Rtail

− imos) · irat, others,
(3.16)

where irat is a fixed current.

Finally, all subunits are combined and expressed as

GIGBT · vIGBT = IIGBTeq, (3.17)

where GIGBT is the 5×5 admittance matrix, vIGBT is the IGBT node voltage, and IIGBTeq

is the companion current.

20



C1 C2 C3 C4

R1 R2 R3 R4

Tj

Te

Ploss

Ici

Gci

Figure 3.2: Equivalent thermal network.

3.2.2 Diode Nonlinear Behavioral Model

The nonlinear behavioral power diode model is demonstrated in the right part of Fig. 3.1.

The relationship between diode static current Id and its junction voltage is expressed by

Id = Is · [e
(
Vj
Vb

) − 1], (3.18)

where Is is the leakage current, Vb is the junction barrier potential, and Vj is the static

junction voltage.

The nonlinear diode (NLD) conductance Gj and the companion current Ijeq are

Gj =
∂Id
∂Vj

=
Is
Vb
e
Vj
Vb , (3.19)

Ijeq = Id −Gj · Vj . (3.20)

3.2.3 Electro-Thermal Model

As given in Fig. 3.2, the process in which the power loss causes semiconductor junction

temperature rise can be modeled by the R-C pairs as an equivalent electro-thermal net-

work [51] which is generally expressed as

Zth =
N∑
i=1

Rth(i)(1− e
− t
τi ), (3.21)

Cth(i) =
τi

Rth(i)
, (3.22)

where Rth(i) and τi are constants. The power loss of the IGBT Ploss is numerically equal to

the input current of the transient thermal impedance equivalent circuit. On the other hand,
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the terminal voltage of the current source can be taken as the semiconductor’s junction

temperature Tj ,

Tj(t) =

4∑
i=1

Ploss(t) + Ici(t−∆t)

Gci +R−1
th(i)

+ Te, (3.23)

where Te stands for the ambient temperature, Gci=∆t/2Cth(i), and Ici is the capacitor his-

tory current.

3.3 IGBT NBM Implementation on ACAP

The ACAP consists of three distinct domains: processing system (PS), programmable logic

(PL), and AI Engine (AIE). Each domain has its own unique design flow and optimiza-

tion techniques for achieving high performance in simulation acceleration. The processing

system provides a standard CPU and peripherals, while the programmable logic offers a

flexible and customizable hardware fabric. The AI Engine is an innovative and specialized

domain that enables the design of data processing. This section describes the implementa-

tion of each domain and compares their simulation times and resource consumption.

3.3.1 IGBT Designs on ACAP

3.3.1.1 Processing System (PS)

The PS in ACAP is designed following a traditional software-based design flow, which

typically involves developing software applications using a high-level language C/C++,

and adopting development tools such as Xilinxr Vitis to compile, debug, and deploy. For

programming the compute units and executing programs on the target device VCK190,

OpenCL and Xilinxr Runtime (XRT) are utilized.

To design the IGBT NBM simulation, several steps are required. Firstly, the Arm

Cortex-A72 is chosen as the high-performance computing unit for developing the IGBT

NBM simulation algorithm, which includes calculating IGBT and diode parameters in

different states, as well as the matrix-solving process required for simulation. Next, use

C/C++ to write the OpenCL kernel, which enables the programs running on the ACAP’s

compute unit. The OpenCL application processing interface (API) can be used to create the

necessary OpenCL context, command queues, and memory buffers for executing the ker-

nel, and the OpenCL kernel is compiled to integrate the application in the device-specific

binary code with the processing system of the VCK190. Finally, the emulation is run on

the ACAP using an appropriate interface, such as Ethernet or USB. These steps allow for
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the efficient execution of the OpenCL kernel on the target device, with XRT providing the

necessary runtime infrastructure for the execution of the kernel.

3.3.1.2 Programmable Logic (PL)

On the other hand, the PL domain in ACAP uses a hardware-based design flow, where

the design could be described by using a hardware description language such as Ver-

ilog/VHDL, or converting C/C++ code to an FPGA-compatible format in Xilinxr Vitis

HLS. The design flow for the programmable logic includes developing, simulating and

verifying the design, as well as synthesizing it into a bitstream that can be loaded onto the

programmable logic fabric of the ACAP.

For the IGBT NBM simulation in the PL domain of the ACAP, the design specifica-

tion is first defined using C/C++, which includes the mathematical equations and matrix

solver for the device-level model. The design specification is then synthesized into RTL

(Register Transfer Level) code, a low-level hardware description language, and optimized

for the target platform and can be further optimized using directives and pragmas. Af-

ter the RTL code is implemented on the ACAP in Xilinxr Vitis, the implemented design

could be verified by emulation to ensure that it meets the design specifications and func-

tional requirements. Finally, the HLS tool generates reports with numerous metrics, such

as resource utilization and latency, for analyzing performance.

3.3.1.3 AI Engine (AIE)

The AIE programming flow is carried out in two phases with the Vitis IDE: kernel pro-

gramming and graph programming. A kernel describes a specific computing process run-

ning on a single AIE tile where C/C++ code is used for programming, and a C++ frame-

work is provided by Xilinxr to create graphs from kernels that contain declarations for

the graph nodes and connections. A graph will instantiate and connect the kernels using

buffers and streams, and also describe the data transfer between the AIE array and the rest

of the ACAP device.

Fig. 3.3 shows the dataflow graph and kernels of the NBM implementation, which is

achieved by 5 AIE kernels (pre cal, diode, igbt on, igbt off , and igbt transient), connec-

tions, and different types of buffer, where the data transfer between kernels is memory-

to-memory and the transmission of data between kernels and PL is stream-to-memory or

memory-to-stream. First, the node voltage of the IGBT is sent as input to the first kernel

pre cal for parameters precalculation, the second kernel diode computes the parameters of
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Figure 3.3: AI Engine data flow graph of IGBT NBM.
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Figure 3.4: Xilinxr VCK190 board setup.

the diode, and the third to fifth kernels igbt on, igbt off , and igbt transient are designed

to perform IGBT nonlinear functions in the ON state, OFF state, and transient state, re-

spectively, and finally, the outputs make up the admittance matrix in (3.17).

3.3.2 NBM Implementations Comparison on Three Domains

Fig. 3.4 shows the setup of the hardware platform Xilinxr VersalTM VCK190 board with

the ACAP device XCVC1902. The IGBT NBM is implemented on the PS, PL, and AIE of the

ACAP, respectively, for a comprehensive evaluation of different design schemes. When the

simulation duration is 0.05s, the actual execution time for the simulation is 0.042s on the

PS. Then the real-time ratio could be expressed as 0.05s
0.042s = 1.19, which indicates that for a

single IGBT, the simulation speed is slightly faster than real-time. However, the simulation

of a power converter with many IGBTs slows down significantly due to the inadequate

scalability of PS.

Table 3.1 lists the latency and resource utilization of NBM implementation on AIE and

PL. While the PL has the advantages of numerous resources and customizability to sup-

port the simulation of systems with multiple IGBTs, a heavy data dependency of the NBM

restricts parallelism and ultimately leads to high latency. The AIE has highly optimized

processors and a data stream frequency of 1GHz for efficient parallel processing. The

AIE scalar processor has an excellent performance on fixed-point data processing but is
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Table 3.1: NBM implementation in AIE and PL
Part Latency Resource Utilization

AIE Scalar Unit 10.946µs
AIE Tiles 5 1.25%
Kernels 5 -

PL 3.37µs

BRAM 28 1.45%
URAM 0 0.00%

DSP 252 12.80%
LUT 52230 5.80%
FF 21306 1.18%

not ideal for floating-point data required by NBM, as shown in Table 3.1. To accelerate

the computing process, the ML strategy and AIE Vector Unit are adopted, as the adapted

vectorized data type and SIMD features enable the IGBT NN model to be processed simul-

taneously.

3.4 Machine Learning-Based Modeling and Realization of NBM

Based on the NBM performance evaluation in the previous section, it can be seen that the

real-time performance is less than satisfactory. A machine learning-based co-simulation

technique is proposed to streamline the computational procedure while maintaining sim-

ulation accuracy.

3.4.1 Selection of Neural Network Topology

Different neural networks such as convolutional neural networks (CNN), recurrent neural

networks (RNN), and artificial neural networks (ANN) are novel trends in the realm of

machine learning, providing impetus for various applications. Similarly, the NN method-

ology can be valuable in the field of real-time simulation, as one of its benefits is that it can

take advantage of the numerical prediction property to derive the corresponding output

model by training on specific data, thus avoiding the extensive computations caused by

iterations during transient states.

In Fig. 3.5, an elementary version of the neural network is depicted, with a multilayer

structure formed by certain neurons, notably the input layer, the hidden layer, and the

output layer, each node in the upper layer is linked to all the nodes in the next layer. The

mathematical expression is

Y = f(X ·W + b) = f(
n∑

i=1

XiWi + b), (3.24)
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where X is the input, n is the number of neurons, Y is the output, W is the weight, and b

is the bias.

Fig. 3.6 represents the general mathematical model of NN, where the input variables

from x to xi are multiplied with the weight matrix W and summed with the bias value

b. Finally, the activation function serves as a nonlinear mapping, limiting the amplitude

of the output to a specific range. Common activation functions include Sigmoid, Tanh,

and rectified linear unit (ReLU) [52], of which ReLU is the most popular type in machine

learning compared to the Sigmoid and Tanh functions since ReLU has only a linear rela-

tionship and its computation is faster than the other, which needs to perform exponential

operations.

In this chapter, ANN is chosen as the IGBT NBM transient state machine learning

model because it has the feature of fitting the intermediate data curve by the first and last

data only, which avoids the problem of computational iterations in traditional EMT mod-

els, and its high parallelism and low execution delay can match the criteria of transient
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simulation.

3.4.2 Data Collection and Training Methodology

One crucial part of ML training of devices is the selection of the dataset since it will in-

fluence the accuracy of the training results and the generality of the model. For the IGBT

Siemens BSM300GA160D, rated 1600V, 300A in this chapter, where the parameters are

provided in Appendix, the dataset is extracted from the MATLAB simulation results of the

IGBT NBM, and both the turn-on and turn-off data during the transient state should be of

concern.

The corresponding IGBT NBM ANN model has 5 input variables including the initial

and last status of the transient state voltage Vstart, Vend, current Istart, Iend, and gate signal

Vg. All these data are normalized to (-1,1) using min-max normalization, which allows for

easier data processing and better training performance.

The mean absolute error (MAE) is used to measure the accuracy of the training model:

MAE =

n∑
i=1

|yprei − yi|
n

, (3.25)

where n is the total number of the output, yi is ith originate value from the dataset, and the

yprei is the corresponding output of the ANN model. The Adam optimization algorithm is

adopted as the training methodology to minimize the error [53]. Fig. 3.7 shows the MAE

of the IGBT ANN model, which presents the error reduction during the training process.

The training epoch is selected as 1000 to reduce error, and the hidden layer size is set to

32 to improve the efficiency of the AIE vector code since the size of the accumulator is a

multiple of 8-bit. Since the MAE of one hidden layer is not significantly distinct from that

of two hidden layers, it is used to achieve optimal performance.
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3.4.3 Matrix Multiplication Implementation with AIE

From the previous part of this section and the mathematical expression, the input variables

need to be multiplied by the weight and summed by bias, which could be seen as the

matrix multiplication and addition for the hidden layer and output layer. Some changes

are performed to the matrix size that has no impact on the outcome to make the operations

adaptable for the AIE vectorized code, for example, for the hidden layer, the size of the

weight matrix W is 32× 8, the input matrix X is 8× 1, and the bias matrix b is 32× 1.

The column-based matrix multiplication is implemented using vectorized AIE code,

where the vector data types pack multiple scalar data elements into a wider vector. In

this case, both the AIE API and intrinsics are employed to increase design productivity.

The AIE API, which is implemented as a C++ header-only library and offers types and

operations that are converted into effective low-level intrinsics, is a portable programming

interface for accelerators. In the meantime, the vector data types and the MAC intrin-

sics [27] are deployed for application-level programming. There are two solutions based

on AIE floating-point intrinsics to implement the matrix multiplication; the first strategy

is to perform the multiplication with fpmul and then add it with the bias matrix to the

accumulator using fpmac. Another methodology, the more efficient way presented in this

chapter, is to apply fpmac intrinsic only as shown in Fig. 3.8. Firstly, the bias matrix b is

loaded to the accumulator, then the weight matrix W is stored at several accumulators by
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Table 3.2: IGBT ANN model performance in AIE
Part Latency Size Resource

Hidden layer 136 ns [32× 8]× [8× 1]+ [32× 1] 0.5%
Output layer 1706 ns [80× 32]× [32× 1] + [80× 1] 0.5%

ReLU 68 ns [32× 1] 0.25%

column, and each column in the weight matrix is multiplied by the corresponding row of

the input matrix X, where the fpmac intrinsic is applied to perform both the matrix mul-

tiplication and addition, the full IGBT ANN AIE vectorized matrix calculation is shown in

Fig. 3.9.

3.5 Emulation Results and Discussion

3.5.1 IGBT ANN Model Validation and Performance

Fig. 3.10 gives the ANN model training results compared with the offline device-level

(100 ns time-step) simulation tool SaberRDr, where Fig. 3.10 (a) is the IGBT transient cur-

rent and voltage of the turn-on state and Fig. 3.10 (b) is the turn-off state. Fig. 3.10 (c)

and (d) show the IGBT junction temperature at 200 A and 333 A, where the latter needs

an additional cooling system. Table 3.2 shows the latency and resource consumption of

different parts of the ANN model implemented in AIE. A comparison of matrix multipli-

cation implementations on different hardware platforms is given in Table 3.3, for the same

size matrix multiplication, AIE is 2.6 times faster than CPU and more than 28 times faster

than FPGA.
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Table 3.3: Comparison of matrix multiplications on different hardware
Hardware Type Platform Size Latency

AI Engine VersalTM VCK190 [32× 8]× [8× 1]+ [32× 1] 136 ns
FPGA Zynqr ZCU106 [32× 8]× [8× 1]+ [32× 1] 3860 ns
CPU Intelr CoreTM i7 [32× 8]× [8× 1]+ [32× 1] 360 ns

3.5.2 Real-Time Emulation Results

The case study system is presented, where Fig. 3.11 shows the 2-level VSC converter.

For the DC side, as shown in Fig. 3.12, there are 4 kinds of load circuits, namely half-

bridge load, buck load, boost load, and full-bridge load, and Fig. 3.13 presents the control
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diagram. The system parameters are given in Appendix. The emulation of the system is

implemented on the Xilinxr VersalTM ACAP XCVC1902, where the time-step is 5 µs. Table

3.4 provides the hardware resources consumption and the latency of the different parts of

the system.

Table 3.4: Resources consumption of a VSC converter
Part Latency BRAM DSP FF LUT URAM

Control 4280 ns 0.21% 0.51% 0.20% 0.40% 0
Solver 8900 ns 0.10% 0.20% 0.28% 0.62% 0

Converter 1510 ns 0.41% 0.46% 0.24% 0.51% 0

Fig. 3.14 demonstrates the simulation results of the case study system with the AC side

fault F at 0.4 s. In Fig. 3.14 (a), before the AC side fault, the power of the grid varied in the
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range of approximately 600 kW to 900 kW; and it quickly drops to about 50 kW when the

fault occurs. Then after 0.1 s, the grid power is gradually restored. Fig. 3.14 (b) displays

the power of the full-bridge and half-bridge load, which both decrease from their original

power at fault, and increase to peak at 0.5 s, then reinstate at 0.6 s. Fig. 3.14 (c) is the power

of the buck load and has the same trend as the previous figures while the value drops to

0 when the fault happens. Fig. 3.14 (d) is the boost load power and the power remains

steady before the fault, and the value changes from about -124 kW to -110 kW between 0.4

s to 0.5 s, and recovery to the original value after 0.1 s. Fig. 3.14 (e) and (f) is the voltage

on the DC side and AC side. Fig. 3.15 gives the junction temperature of an IGBT in the

simulation of the whole system. In Fig. 3.15 (a), with Cooling System 1 which has the

insufficient capacity as given in Appendix, the junction temperature reaches about 220◦ at

the steady state. Fig. 3.15 (b) shows that with a decent capacity, such as Cooling System 2,

the temperature remains below 70◦ even though the fault occurred.

In Fig. 3.16, the simulation results of the system are presented with the DC side half-

bridge load circuit fault at 0.5 s and last for 2 seconds. Fig. 3.16 (a) shows the gird power

between 0 and 3.0 s, and it can be seen that the power increases to about 95 kW at 0.5 s, and

then returns to its original value at 2.5 s. Fig. 3.16 (b) is the power of the full-bridge and

buck load, both of which do not change considerably after the fault occurs. In Fig. 3.16 (c),

the power of the half-bridge load increases from its original value to 440 kW and becomes

stable in the range of 390 kW to 420 kW, then restored after the fault ends at 2.5 s. Fig. 3.16

(d) shows the DC side voltage, which originally varied between approximately 950 V and

1040 V, and changed to between 940 V and 1050 V after the fault occurred.
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Figure 3.14: System-level results with AC fault from offline simulation (top), and ML
model (bottom): (a)-(d) power of the grid, full-bridge and half-bridge loads, buck load,
and boost load; (e)-(f) voltage of DC side and AC side.

3.6 Summary

Real-time emulation of a device-level nonlinear behavioral model of IGBT is a challenging

task due to its high computation burden arising from the need for an iterative solution of

device equations to obtain a convergent solution of every nanosecond scale time-step. In

this chapter, a machine learning strategy is proposed to tackle the IGBT nonlinear behav-

ioral electro-thermal model and demonstrated in a multi-converter supply-load system

case study. The model is implemented on three main domains of a novel heterogeneous
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Figure 3.15: Device junction temperature with: (a) Cooling System 1; (b) Cooling System
2.

ACAP hardware: PS, PL, and AIE, which are introduced in detail in terms of functionality

and features. The performance evaluation results, covering latency and hardware resource

consumption, are provided separately. To make better utilization of the VCK190 hardware

platform and AIE characteristics to achieve the requirements of real-time simulation, the

IGBT ML-based model and NNs training methodology are proposed, where the ANN

model is adopted to convert the complex computational iterative process of the transient

state into the simpler matrix operations. From results comparisons with the conventional

model in device-level emulation, the error of the IGBT ML model is within 1%, and the

real-time requirement can be achieved with less resource consumption. The system-level

simulation results are given for two different fault scenarios on both AC and DC sides and

validated by MATLAB/Simulinkr. The proposed modeling and implementation strate-

gies can be applied in the future for real-time emulation of energy conversion systems in

various practical applications.
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4
EMT Modeling of Modular Multilevel

Converter with Embedded Energy Storage for
Wind Farm Grid Integration

4.1 Introduction

Wind has become a major resource for renewable energy generation because of ecological

and environmental benefits. As the technology is mature, a wind farm can be constructed

within a short cycle at a comparatively low cost [54]. However, wind power is unstable

because the strength and direction of the natural wind are stochastic, bringing dramatic

challenges to the stability of the power grid [55] when there is large-scale wind energy

penetration. In such cases, power electronics-based energy storage systems as a solution

can quickly provide a continuous and stable backup power supply to avoid economic

losses [56].

Energy storage systems can be deployed in a centralized or distributed form. The high

modularity and flexibility of the latter type make it more competitive than its centralized

counterpart [57], and thus increasingly utilized [58, 59]. As an alternative to lithium bat-

teries, energy storage based on supercapacitors has drawn attention in power apparatus,

such as the wind turbine [60], and the motor-driven system [61] for advantages such as

faster and safer charging, more eco-friendly raw materials, and longer lifetime. Super-

capacitors can also be adopted as split energy storage elements to AC-DC converters as

fault-resilient schemes [62]. In a simulated onboard network, they are also chosen to serve
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as storage systems due to their fast dynamics and decent efficiency [63].

The modular multilevel converter (MMC) has grown rapidly in recent years and is

widely adopted in high-voltage direct current (HVDC) for offshore wind farm integra-

tion [64,65]. An MMC with embedded energy storage (MMC-EES) allows the many batter-

ies or supercapacitors to be distributed among its submodules and therefore enables more

effective energy management. Electromagnetic transient (EMT) simulation plays an im-

portant role in the study of such kinds of power electronics apparatuses applied in power

systems prior to in-situ commissioning. To expedite the simulation, the average-value

models [66] and equivalent models [67] are adopted for MMC-EES. As a consequence, the

simulation omits transient electromagnetic details of individual components which are

crucial for a design evaluation.

The detailed model, on the other hand, can demonstrate the dynamics of each sub-

module (SM) accurately. For example, the detailed equivalent model of the MMC-EES

yields results that agree with the experiments [68]. For the simulation of massive MMC-

EES systems, practical challenges include a large time-varying admittance matrix brought

by the converter, a small step-size owing to the high switching frequency required by the

submodule with energy storage (SM-ES), and Newton-Raphson iterations demanded by

the nonlinear component insulated gate bipolar transistor (IGBT). The central processing

unit (CPU) will be easily overwhelmed by these factors if sequential processing is carried

out. Therefore, the extremely slow simulation speed prompts the exploration of hardware

parallelism, in which case the application of hardware computational acceleration such

as FPGA [69, 70] has a distinct effect. However, for multi-terminal complicated systems,

FPGA is deficient in terms of hardware resources to accommodate a practically large sys-

tem.

Attributing to its massive numbers of cores and efficient parallelism, the graphics pro-

cess unit (GPU) is promising in the high-performance computing of various electrical en-

ergy systems [71]. It provides satisfactory speedups over CPU and has been employed for

EMT simulation acceleration [72–74]. The single-instruction multiple-thread (SIMT) fea-

ture of GPU is particularly suitable for power systems that exhibit a dominant homogene-

ity. Through CUDA C++ programming, a substantial number of threads can be executed

in parallel, thus significantly reducing the simulation time. In this chapter, a detailed EMT

model of MMC-EES is proposed and high-performance transient simulation using a fully

iterative solution scheme is conducted on the GPU. The operation modes are analyzed

and the performance of the controller is demonstrated by MMCs with a proper voltage
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Figure 4.1: Topology of a three-phase modular multilevel converter.

level. As hundreds of submodules pose a dramatic computation burden, the nonlinearity

caused by power semiconductor switches is excluded from the MMC main circuit so that

both can be processed more efficiently. The parallelism is particularly enhanced for an

extra speedup although explicit inhomogeneity exists in the MMC submodules.

This chapter is organized as follows. Section 4.2 introduces the topology and control

strategy of the MMC with embedded energy storage. In Section 4.3, the EMT model of

the MMC-EES is presented. The design of the GPU parallelism is provided in Section 4.4.

Section 4.5 gives the implementation results and the validation, and conclusions are drawn

in Section 4.6.

4.2 MMC with Embedded Energy Storage

4.2.1 Topology of MMC-EES

The configuration of a 3-phase MMC is shown in Fig. 4.1, where each phase consists of

two bridge arms, both of which are composed of cascaded submodules in series with an

inductor denoted as Lu or Ld.

Fig. 4.2(a) shows the submodule structure of an MMC with embedded energy storage,
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Figure 4.2: (a) SM-ES topology; (b) supercapacitor equivalent circuit.

which is a combination of the conventional half-bridge submodule (HBSM) and a DC-DC

converter with an array of supercapacitors on the low voltage side. The HBSM consists of

two complementary power switches S1 and S2 and a capacitor Csm. The amount of energy

that can be stored inCsm is relatively small and insufficient to serve as a grid energy supply.

In contrast, the SM-ES has a number of energy storage units and a DC-DC converter

connected in parallel with the capacitor Csm. The bi-directional DC converter allows the

charge and discharge of supercapacitors. To be specific, the converter operates as a buck

converter when the supercapacitors are storing energy, while it turns into a boost circuit

to provide energy to the external system. Since all the energy storage units can be equally

distributed, the power rating of each SM-ES is significantly lower compared with the entire

MMC. This implies that a high switching frequency can be attained more easily to enhance

power density, and to reduce the volume of inductor Lsm, a high switching frequency is

particularly chosen for the two IGBTs S3 and S4.

The total amount of energy that three-phase MMC stores could be expressed as

W =
1

2
CESV

2
ES × 6N, (4.1)

whereCES and VES are the equivalent capacitance and voltage of the whole supercapacitor

array, respectively, andN is the number of SMs per arm. With a rated power Pr, the inertia

of the MMC [75] can be described as

H =
CESV

2
ES × 6N

2Pr
. (4.2)

To facilitate an energy management study in the high-fidelity EMT simulation, each su-

percapacitor is modeled. The Thévenin equivalent circuit for an individual supercapacitor
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is shown in Fig. 4.2(b), and the overall voltage of the array could be calculated as

VES =

Nsc∑
i=1

Vsci , (4.3)

whereNsc is the number of supercapacitors in series, and Vsc is the supercapacitor terminal

voltage [76]:

Vsc =
r

ε
+

2RT

F
sinh−1

(
QT√

8RTεc

)
−Rscisc, (4.4)

Rsc is the equivalent resistance, isc is the supercapacitor current,R is the ideal gas constant,

T is the operating temperature, F is the Faraday constant, r is the molecular radius, c is

the Molar concentration, ε is the permittivity of the material, and QT is the electric charge

which is determined by the supercapacitor current

QT =

∫ t

0
iscdt. (4.5)

The state of charge (SoC) of a supercapacitor is defined as the ratio between the remain-

ing capacity and the rated capacity. A zero SoC means the supercapacitor is completely

discharged while it is 100% for a fully charged supercapacitor. It is formulated as follows

SoC = (SoCinit −
QT

Q
)× 100%, (4.6)

where SoCinit is the initial SoC, and Q is the rated capacity of the supercapacitor.

Regardless of the energy flow direction, the continuous conduction mode (CCM) is al-

ways desired for energy storage units such as batteries and supercapacitors. Otherwise,

they will be subject to frequent charge and discharge if under the discontinuous conduc-

tion mode (DCM), which not only affects the efficiency but the lifetime of the energy stor-

age devices. To maintain the CCM, the critical value of the inductor needs to be deter-

mined. When the DC-DC converter operates under the boost mode, the current ripple of

the inductor ∆iL could be expressed as

∆iL =
VES

LsmfES
D (4.7)

where D is the duty cycle, and fES is the switching frequency of S3 and S4. Substituting

D with variables that can be monitored leads to

∆iL =
VES(VCsm − VES)

LsmfESVCsm
(4.8)

where VCsm is the instantaneous voltage of Csm.
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In the meantime, the DC component of the inductor IL can be determined from mea-

surable quantities including the power provided or consumed by the submodule Psm, i.e.,

IL =
Psm

VES
(4.9)

To maintain CCM, the peak-to-peak current ripple should be smaller than 2 times of

IL, which consequently yields the critical inductance

Lcrit =
V 2
ES(VCsm − VES)

2PsmfESVCsm
. (4.10)

Similarly, analysis of the ripple current under the buck mode yields the same critical

inductance. Then, the final value of Lcrit is chosen based on a number of factors, including

the operational voltage range of the supercapacitor array, the maximum allowed charging

or discharging power, as well as the submodule voltage scale. When Lsm>Lcrit, the su-

percapacitors will be charged or discharged continuously; otherwise, they will encounter

frequent interruptions that affect their capacity and lifetime.

4.2.2 MMC-EES Control

Fig. 4.3 shows the integration of two wind farms into a distribution network via the multi-

terminal DC grid. The MMC-EES is located at the grid side as an inverter, and the con-

ventional HBSM-based MMC operates as a grid-forming rectifier which provides a stable

voltage at the point of common coupling (PCC) for offshore wind farms. The wind farm

side and the AC grid side converters are linked by the transmission lines TL1 and TL2,

and TL3 connects the two grid-side MMCs to form a multi-terminal DC system.

For a lumped wind farm model that has Nwf wind turbines, its total output power Pwf

can be calculated as

Pwf =
1

2
Av3Cpρη ×Nwf . (4.11)

where A is the wind sweep area, v is the wind speed, Cp is the wind energy conversion

rate value, ρ is the air density, and η is the coefficient. As the power delivered from the

rectifier is not constant, the inverter MMC needs to supplement or absorb extra energy

to keep the desired import power into the distribution grid, i.e., the balance between the

power feeding into the grid and the power in the DC yard is maintained by the power of

the MMC-EES.

The two control methods of MMC-EES as an inverter and the grid-forming MMC as

a rectifier are shown in Fig. 4.4(a). The rectifier is expected to provide a stable voltage

for wind turbines. The PCC voltages after abc-dq transformation are compared with their
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Figure 4.3: Multi-terminal DC grid with MMC-EES for wind farm integration.

references v∗gd and v∗gq and then the errors are regulated by subsequent PI controllers to

yield the current references i∗d and i∗q . On the other hand, the inverters are in charge of

establishing the DC voltage, the d-axis reference current i∗d comes from regulation of the DC

voltage vdc, and the q-axis reference current i∗q is related to reactive power or bus voltage

control. The inner-loop current control remains identical regardless of converter types. The

modulation signalsm for 3 phases are generated after the dq-abc transformation. The angle

reference θ is predefined without the usage of a phase-locked loop for the grid-forming

MMC, whereas it is calculated based on the 3-phase grid voltage for an inverter.

Fig. 4.4(b) demonstrates the submodule internal controller, which includes regulations

of capacitor voltage and supercapacitor power, respectively. The control of capacitor Csm

voltage in an MMC SM is shown in the upper part of Fig. 4.4(b), which is divided into av-

erage control and balance control [77]. The actual capacitor voltage vc is compared with its

reference v∗c in the balance control, and the result is added up with that of average control

denoted by vau, as well as the phase reference signal which links the internal controller to

its outer-loop counterpart and takes the form of

urefp =
Vdc
2N
−m, (4.12)

where Vdc is the converter DC voltage. As can be seen, the first two switches denoted as

S1 and S2 are the objectives of the control scheme.

The second controller in Fig. 4.4(b) is designed for the DC-DC circuit with embed-

ded energy storage for power compensation at the converter level. Since it independently

controls the turn-on and turn-off of the remaining two switches S3 and S4, the switching
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Figure 4.4: MMC control scheme: (a) Outer loop control; (b) coordinated submodule dc
voltage and power control.

frequency, denoted as fES , can be much higher than that of the carrier in the first PWM

scheme. In the meantime, the switch ON and OFF commands for upper and lower IGBTs

are opposite to that of the MMC submodule. The set power reference of the entire MMC

P ∗ is distributed equally among the SMs with energy storage so that P ∗
sm, the reference

power for each SM, can be derived as

P ∗
sm =

P ∗ − (VdcIdc)

6N
, (4.13)

where Idc is the converter-side current.

When there is a power shortage or surplus due to disturbance in the wind farm, the

MMC-EES is able to provide stable power as a backup plant in this control strategy so
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long as the complement is within its capacity.

4.3 MMC EMT Model Optimization

The detailed electromagnetic transient modeling of the MMC-EES is essential for a com-

prehensive design evaluation since it provides insight into the converter operation sta-

tus. Tremendous computational resources are generally required when the simulation of

a grid-connected high-level MMC modeled in its full scale is carried out. The consequent

heavy computational burden is first tackled by circuit size reduction which results in the

separation of submodules from the MMC main circuit, as depicted on the left side of Fig.

4.5.

Since the frequency of the arm current is much lower than the EMT simulation fre-

quency, it can be considered as a constant for two adjacent time steps, and therefore the

SM can be separated from the arm and forms a single subsystem by inserting one step

latency between the voltage and current sources. The MMC main circuit becomes linear

since after the exclusion of all SMs, the arm is comprised of voltage sources vpn, where n is

from 1 to N , in addition to an inductor. On the nonlinear SM side, the current injected into

it is equal to the arm current in the previous time step.

4.3.1 Nonlinear Submodule Splitting

The Norton equivalent circuit of the submodule with energy storage is shown in Fig. 4.5,

where each nonlinear power switch is discretized and represented by a current source fi

(i=1 - 4) in parallel with conductance Gi.

To reflect an accurate performance of the IGBT, the intrinsic diode is normally taken

into consideration, which indicates the power semiconductor switch model is a combina-

tion of both. The gate signal g determines the switching state of this combination. When

the switch is turned on, the conductance is 1/ron and the voltage drop von which can be

reliant on the collector current. When the diode is under conduction, i.e., the ideal diode

D0 is on, the total voltage drop is induced by the p-n junction voltage Vj and the resistor

ron. The internal voltage drop of the IGBTs and diode device results in the companion

currents, i.e., f1, f2, f3, and f4.

Circuit partitioning of the MMC significantly reduces the number of nodes on both

sides, as the submodule only has 5 nodes. The node voltage vector vSM in SM-ES could
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be obtained by

vSM = G−1
SM · JSM. (4.14)

Since each submodule constitutes an independent circuit, an extra node can be omitted.

By taking Node 0 as a virtual ground, the original 5th-order matrix is reduced to 4th-order.

Then, the 4× 4 admittance matrix GSM can be organized as:
GC +G1 +G3 −G1 −G3 0

−G1 G1 +G2 0 0

−G3 0 GL +G3 +G4 −GL

0 0 −GL GL +Ges

 (4.15)

and the companion current vector is

JSM =


ICeq + f1 + f3

Js − f1 + f2

ILeq − f3 + f4

−ILeq + Ies

 (4.16)

In the matrices GSM and JSM, the transmission line model (TLM) technique [78] is de-

ployed to model the reactive component capacitor and inductor as transmission line stubs,

where the characteristic impedance are ZC = dt/(2C) and ZL = (2L)/dt, respectively, and
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equivalent current injection value in the SM-ES are

ICeq =
2viC
ZC

, ILeq =
2viL
ZL

, (4.17)

and Js is the arm current.

In order to improve the efficiency of circuit simulation, the supercapacitor units are

placed in a separate function to calculate the equivalent conductance Ges and equivalent

current source Ies before using them as elements of the matrix for the next step, where

Ges =
1∑Nsc

i=1 Rsc

, (4.18)

and

Ies = Ges

Nsc∑
i=1

(
r

ε
+

2RT

F
sinh−1

(
QT√

8RTεc

))
. (4.19)

The GSM and JSM, along with the input current source Js, are involved in the circuit

solution. The solution of (4.14) is iterative because of the diode nonlinearity, with the

history terms not updated until the solution converges.

4.3.2 MMC Constant Admittance Circuit

Following the splitting of submodules, each arm in the MMC main circuit only consists of

cascaded voltage sources vpi (i=1 to N ) along with an inductor, which takes the form of a

Thévenin equivalent circuit and therefore, can be transformed into its Norton counterpart.

The arm voltage could be derived as

varm(t) =

(
N∑
i=1

vpi(t−∆t) + 2viLu/d(t)

)
+(ZLu/d +Rarm)iarm(t),

(4.20)

where viLu/d and ZLu/d are the incident pulse and impedance of the inductor on the bridge

arm as the TLM stub model, respectively, and Rarm is the parasitic resistance of the induc-

tor.

The equivalent conductance and companion current of an arm can be expressed as

follows,

Geq =
1

ZLu/d +Rarm
, (4.21)

and

Ieq = (

N∑
i=1

vpi + 2viLu/d)Geq. (4.22)
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Depending on the role of the MMC, its AC side is connected to either a distribution

grid that has a stiff voltage or a wind farm that is modeled as a current source. The AC

side always accounts for 3 nodes irrespective of the converter function. Then, with the

transmission line on its DC side, one converter station can be separated from another and

a constant admittance matrix with a minimum dimension of 5 is formed. The arm current

Iarm, i.e., the terminal current of a submodule Js, is obtained after solving the correspond-

ing matrix equation of the MMC main circuit and is used for calculating the SM voltages

at the next time step.

4.4 GPU Parallel Design and Implementation

In this chapter, the NVIDIAr Tesla V100 GPU with 5120 CUDA cores and 16GB HBM2

memory [29] and 20-core Intelr Xeon E5-2698 v4 CPU are adopted for the high-performance

computing of the DC grid integrated with wind farms, with a simulation time-step of 2 µs.

A general CUDA program architecture that contains several stages is shown in Fig. 4.6.

1. Perform data initialization on the CPU termed as the host where global variables are

first defined and initialized.

2. Allocate memory for the GPU device to which data from the host are copied via

PCI-Express (PCIe).

3. Invoke kernels to perform operations on the device where the time-domain simula-

tion is conducted.

4. Copy the results to be analyzed from the device to the host.

5. Free the allocated memory.

Specifically, in the SM-ES kernel, the IGBT model is programmed as a device function

that is called four times, and its outputs are involved in forming (4.14), which is solved

after Newton-Raphson iterations to determine whether vsm converges. If the result con-

verges, the simulation proceeds to the next time step. Otherwise, the iterations will be

repeated.

When a GPU kernel is invoked, it automatically launches a few blocks, with each hav-

ing an identical number of threads that are specified in the CUDA C++ command. For

example, as depicted in Fig. 4.6, the SC kernel invokes a total number of x × y threads,

each corresponding to a physical component, i.e., a supercapacitor. The block number x
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Figure 4.6: GPU simulation process flow chart.

and the thread quantity per block y are determined based on the actual number of compo-

nents in the entire DC system.

Fig. 4.7 shows massively parallel implementation of various kernels that compose the

4-terminal DC grid integrated with wind farms. All the variables exchanged between ker-

nels are defined and stored in the global memory of the GPU device. Therefore, a global

variable is accessible by an arbitrary thread and can also be exported conveniently to the

host for further analysis and data processing.

The supercapacitor kernel SC is responsible for calculating the impedance and output

voltage of all supercapacitors. Then, the equivalent conductance and companion current

composing the Norton circuit of a supercapacitor array in an SM are derived by another

kernel SCsum. It is noticed that the former kernel has more threads than the latter and

their exact numbers could be respectively expressed as

NT
SC =

Nstn

2
× 6N ×Nsc, (4.23)

NT
SCsum =

Nstn

2
× 6N, (4.24)

where Nstn denotes the station number, which is 4 in this chapter. Once the SC kernel

completes the computation, its outputs Rsc and Vsc, both of which are NT
SC dimensional,

are assigned to NT
SCsum groups, in each of which Nsc elements are summed up.
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Figure 4.7: Overall GPU program architecture for the transient simulation of the MMC-EES
based multi-terminal DC grid.

Although the multi-terminal DC grid shown in Fig. 4.3 comprises two types of MMC

submodule structures, i.e., the HBSM and the SM-ES, they are written as one SM kernel

to improve the parallelism since under this circumstance, all submodules can be imple-

mented concurrently despite the inhomogeneity. The two main differences are: the admit-

tance matrix size of the HBSM is 2 × 2 while the SM-ES is 4 × 4, which can be solved by

invoking the corresponding device function, and the power control strategy for the energy

storage module is distinguished by the specific thread ID. Since not every SM kernel in

the GPU implementation needs the output from the SC kernel, memory needs to be allo-

cated reasonably during the GPU kernel programming. As shown at the bottom of Fig.

4.7, in the 4-terminal system, MMCs numbered 2 and 4 have embedded energy storage.

Therefore, in the SM kernel, the SC memory address needs to be biased accordingly by

the thread ID. The number of threads NT
SM is the same as in (4.24).

In the meantime, the application of circuit partitioning results in identical MMC main

circuits regardless of the roles these converters play in the DC grid because both the three-
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phase voltage and current sources can be represented by Norton equivalent circuits and all

the legs are structurally identical. The AC side can be appropriately differentiated between

wind farms and grids by their types, and the computation can be implemented in a SIMT

manner by the same kernel MMC which has Nstn threads.

Since a unified controller is available, the control process of the rectifier and inverter

MMCs can also be programmed into the same kernels. The inner loop phase-shift control

kernel PSC, which is in charge of SM capacitor voltages and does not need to branch off

the scheme internally, has a thread quantityNT
PSC equal to 3Nstn. In the outer-loop control

kernel PQ Ctrl, the MMC-EES is distinguished from a conventional MMC by its type to

maximize the efficiency of GPU implementation with a thread number of Nstn.

4.5 Results and Validation

The voltage level of a grid-connected MMC should be sufficiently high and therefore, var-

ious levels are simulated and the results of a 51-level MMC are provided. The simulation

results are compared with the PSCADTM/EMTDCTM results in a number of cases to verify

the accuracy and the GPU simulation speed is compared with the simulation on the CPU.

The GPU implementation results with the energy storage units being discharged are

shown in Fig. 4.8 and Fig. 4.9. Fig. 4.8(a) shows the power of the wind farm, MMC-EES,

grid, and transmission line, respectively. When t is 1.0 s, the output power of the wind

farm gradually decreases from 160 MW to approximately 100 MW to simulate the situation

where the wind speed slows down. In this case, the power on the DC transmission line

TL1 changes in the same trend as the wind farm, and the power provided by MMC-EES

increases from 140 MW to 200 MW so that the power on the grid side is able to remain

stable at 300 MW. Even during the 0.4 s period when the wind speed is quickly reducing,

the distribution grid is still provided a nearly constant 300 MW power attributing to a fast

converter response.

The DC voltages of both the inverter and rectifier are presented in Fig. 4.8(b), where

Vdc1 is the rectifier side voltage while Vdc2 is from the inverter side. Vdc1 drops from about

206 kV to 204 kV between 1.0 s and 1.4 s, while the grid side MMC DC voltage Vdc2 main-

tains at 200 kV because of its designed function. The voltage difference ∆V between the

two sides is reduced from about 6 kV to 4 kV due to the power reduction of the wind

farm. In Fig. 4.8(c), the 3-phase PCC voltage of the offshore wind farm is depicted, and the

maximum value of the voltage is maintained exactly at the expected 110 kV.
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Figure 4.8: PSCAD/EMTDC and CPU simulation results of discharging mode: (a) Power
of wind farm, MMC-EES, grid and transmission line; (b) DC voltages; (c) wind farm PCC
voltage.

Fig. 4.9(a) depicts the voltage of the capacitor VCsm and the voltage of the supercapac-

itor array VES in one of the SM-ES for 3 different arms. VCsm increases temporarily from

around 3.9 kV to 4.0 kV during the dynamic period, while the voltage of the energy storage

module VES gradually decreases from about 3.18 kV to 3.16 kV as a result of discharge. As

shown in Fig. 4.9(b), the current of the inductor in an arbitrary SM-ES maintains CCM. As

the MMC-EES provides more energy to the distribution grid, the current IL increases from

0.148 kA to 0.218 kA between 1.0 s and 1.4 s, and the ripple current ∆IL is about 0.007
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Figure 4.9: PSCAD/EMTDC and CPU simulation results of discharging mode: (a) Voltages
of capacitor and supercapacitor in SM-ES; (b) DC-DC converter inductor current; (c) SoC
of the supercapacitors.

kA. Fig. 4.9(c) illustrates the SoC of five supercapacitors with different initial voltages

in an SM-ES. The high-fidelity modeling of each individual supercapacitor can provide

more details of the behavior of all the supercapacitor components in the system, enabling

improved monitoring and energy management. As can be observed, the supercapacitors

discharge faster after t=1.0 s, so the slope becomes steeper and the overall SoC decreases

from 99% to 98.4%.

As a common operation scenario of the system, Fig. 4.10 and Fig. 4.11 demonstrate the

transition between the two states of charging and discharging. In Fig. 4.10(a), the initial

power of the wind farm is still 160 MW, and at 0.4 s, Pwf1 starts to progressively increase,
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Figure 4.10: GPU and PSCAD/EMTDC simulation results of mode transition: (a) Power
of wind farm, MMC-EES and grid; (b) DC voltages; (c) PCC voltage of wind farm.

reaching around 250 MW at 1.4 s. Since the grid-side reference power is set to 200 MW,

it can be seen that the output power of MMC-EES1 PMMC−EES1 decreased from its initial

value of 40 MW to -50 MW at t=1.4 s due to the energy storage system transitioning from

discharge mode to charge mode to store the additional amount of energy. Throughout

the process, Pgrid1 maintains a stable power level, proving the satisfactory performance of

the system in both dynamic and steady-state conditions. It can be seen from Fig. 4.10(b)

that Vdc1 keeps increasing from 206 kV at 0.4 s to about 209 kV at 1.4 s. The inverter side

DC voltage Vdc2 stabilizes at 200 kV as a result of DC voltage control of MMC-ES. The DC
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Figure 4.11: GPU and PSCAD/EMTDC simulation results of mode transition: (a) Voltages
of capacitor and supercapacitor in SM-ES; (b) DC-DC converter inductor current; (c) SoC
of the supercapacitors.

voltage on the rectifier side becomes larger at 1.4 seconds, i.e., ∆V2 is almost 4 kV greater

than ∆V1. The wind farm PCC voltages are provided in Fig. 4.10(c) with the peak value

remaining at 110 kV throughout.

The VCsm and VES in three different SM-ESs are presented in Fig. 4.11(a). VCsm drops

slightly until 1.4 s and then rises afterward, and its value keeps around 4.0 kV. VES de-

creases briefly until 0.4 s and gradually increases between 0.4 and 1.4 s, with a slower

rate of increase after 1.4 s. In Fig. 4.11(b), the variation of IL is shown. Before t= 0.4 s, it is

greater than 0, at approximately 0.04 kA, because the supercapacitors are being discharged

at this time. Later on, IL goes from positive to negative and remains at -0.04 kA at 1.4 s,
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Table 4.1: Four-terminal DC system simulation speed comparison
MMC
Level

Nsc = 2 Speedup Nsc = 20 Speedup
tCPU1(s) tCPU2(s) tGPU (s) S1 S2 tCPU1(s) tCPU2(s) tGPU (s) S1 S2

5 17.48 12.72 45.12 1.4 0.4 43.84 33.79 49.03 1.3 0.9
51 202.38 424.05 58.54 0.5 3.5 575.38 449.68 63.39 1.3 9.1

101 394.52 468.64 67.98 0.8 5.8 1126.73 517.63 75.83 2.2 14.9
201 743.16 567.49 89.23 1.3 8.3 2221.2 676.23 111.95 3.3 19.8
401 1522.66 705.96 143.3 2.2 10.6 4486.68 1052.73 196.82 4.3 22.8

indicating that the supercapacitor is under the charging state. The current ripple ∆IL is

about merely 0.004 kA which guarantees the CCM. Fig. 4.11(c) shows the trend of the SoC

of supercapacitors with several various initial conditions. The SoC decreases steadily from

the beginning to about 1.0 s and then starts to rise, indicating the transition of the energy

storage system from a discharging state to a charging state.

In Table 4.1, the execution times of GPU, single-core CPU and multi-core CPU are com-

pared for different levels of MMC systems. The speedups S1 and S2 are calculated as the

ratios of single-core CPU simulation time to the multi-core CPU and GPU simulation times,

respectively. Additionally, the speedup results are analyzed for two different amounts of

supercapacitors. For 2 supercapacitors in each SM-ES of a 401-level MMC, S1 is 2.2 and

S2 is 10.6, while for 20 supercapacitors in the same case, S2 exceeds 20 and S1 is 4.3. Due

to the optimization algorithm, speedups are obtained by both multi-core CPU and GPU.

It can be seen that the GPU as a parallel acceleration platform achieves an overall faster

simulation speed than the CPU, and a higher speedup is gained with either a higher MMC

level or more supercapacitor components in an array.

4.6 Summary

This chapter presented the parallel high-performance electromagnetic transient simula-

tion of MMC with embedded energy storage system for wind energy grid integration. By

absorbing or releasing an appropriate amount of power, the MMC which has embedded

energy storage in its sub-modules reduces the risk of grid stability arising from stochastic

wind power generation. Detailed modeling and control strategy design of the MMC-EES

is carried out and applied to a four-terminal HVDC system. The modeling approach as

detailed as individual supercapacitors allows their behavior to be monitored, thus provid-

ing more accurate information from system simulation for evaluation and energy man-
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agement. As the high fidelity induced a remarkable computational burden to sequential

processing on the CPU, the massively parallel computing advantage of GPU is exploited.

Structures with homogeneity are designed and programmed into a single kernel, and ma-

nipulation of inhomogeneity is investigated to obtain a more significant acceleration. Dif-

ferent operation scenarios were performed to demonstrate the promising characteristics

of the MMC-EES-based HVDC system from both dynamic and static perspectives. The

accuracy of the implementation as well as the computational advantages are verified by

comparing the results with off-line simulations on the CPU.
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5
Conclusions and Future Work

With the growing complexity of modern power systems, there is an increasing demand for

high-fidelity real-time power system simulations. To meet this demand, EMT simulation

has emerged as a powerful tool for studying the dynamic behavior of power systems under

various operating conditions. EMT simulation enables complex dynamic phenomena to be

studied such as switching transients and faults in power systems. The ability to accurately

simulate these transients is critical for designing and operating power systems that are

reliable, efficient, and safe.

In power electronic converter simulation, there are different emphases between device-

level and system-level simulations. Device-level models can provide a deep understand-

ing of device behavior in transient states, but they come with a high computational cost

due to the complexity of the system models. Machine learning techniques can be used to

train the device-level models and implement them on the AI Engine of the ACAP plat-

form, which can greatly improve simulation efficiency and meet real-time requirements.

For system-level simulation, the high-level embedded energy storage MMC with multiple

identical modules makes is well-suited for large-scale parallel implementation. Compared

to single-core and multi-core CPUs, the multi-core GPU architecture brings unique com-

putational capabilities for solving large-scale thread parallel problems while addressing

resource limitations.

This thesis introduces an innovative real-time simulation of the IGBT nonlinear be-

havioral electro-thermal model and the corresponding ANN model combined with ma-
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chine learning methodology on the ACAP platform’s AI Engine. Furthermore, due to the

resource-intensive nature of high-level MMC with embedded energy storage simulation, it

is simulated on the GPU platform with massive parallelism, and the accuracy is validated.

This chapter presents the contributions of this thesis and suggestions for future work.

5.1 Contributions

The main contributions of this thesis are summarized below:

• A comprehensive study of the cutting-edge ACAP, the high-performance GPU, as

well as their architectures and programming methods are conducted. The applica-

tion of ACAP and GPU as hardware platforms in the simulation of power electronic

devices and systems expands the scope and complexity of power simulation, and

provides a reference for exploring the potential of these platforms in power electron-

ics and power systems research.

• Introduces a nonlinear behavioral electro-thermal model for IGBT, and describes its

implementation in the processing system, programmable logic, and AI Engine do-

mains on the innovative ACAP, respectively, as well as a comparison of simulation

time and resource consumption. Machine learning techniques are adopted to train

the IGBT ANN model and then implement the model in the vector unit of the AIE,

which significantly improves the accuracy and efficiency of IGBT simulation. The

two-level VSC converter was chosen as a case study, and the requirement of real-

time simulation is met.

• The topology and control scheme of MMC with embedded energy storage for wind

farm grid integration are introduced in this thesis. The corresponding EMT model is

developed and the parallel implementation of the model on GPU is described. The

simulation results and the effectiveness of energy storage modules are verified in

a multi-terminal wind farm HVDC system. This modeling approach can diminish

the stress caused by resource limitations and also enable more accurate and efficient

simulations of MMC-based systems.

5.2 Future work

Several potential future research directions could be pursued:
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• In this thesis, the real-time simulation of a 2-level VSC converter has been imple-

mented. Future research could consider other complex power system structures as

case studies, such as the MMC on the ACAP architecture.

• This thesis shows how machine learning techniques can be used in conjunction with

the IGBT model to accelerate the simulation while maintaining accuracy. Future re-

search could explore other ways in which machine learning could be integrated with

power electronics, such as for control and fault detection.

• A modeling approach for MMC with embedded energy storage is presented and

verified by simulating an offshore wind farm system on a GPU platform. Future

research could focus on exploring its real-time simulation and hardware-in-the-loop

testing to improve accuracy and reliability.

• As the energy storage devices in MMC-EES, supercapacitors can deliver and absorb

charge quickly, making them suitable for high-power applications. However, they

have lower energy density than batteries, so they are typically used in conjunction

with batteries in hybrid energy storage systems. The combination of the two allows

for higher energy and power densities than could be achieved with either technology

alone.
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A
Parameters for Case Studies

A.1 Parameters of the IGBT in Chapter 3

The parameters of the IGBT Siemens BSM300GA160D, rated 1600V, 300A behavioral model:

Vt = 6.3 V, x = 0.974, y = 1.429, z = 0.369, a1 = 0.022, b1 = 0.004, a2 = 92.5129, b2 = 4.0188, rtail

= 1 µΩ , Ctail = 10 F, irat = 0.05, Cgeo = 40 nF, Ccgo = 110 nF.

Cooling System 1:

R1 = 2.1 K/kW, R2 = 9.2 K/kW, R3 = 42.6 K/kW, R4 = 6.3 K/kW, τ1 = 0.0008 s, τ2 = 0.013 s,

τ3 = 0.05 s, τ4 = 0.063 s.

Cooling System 2:

R1 = 1.33 K/kW, R2 = 7.05 K/kW, R3 = 5.23 K/kW, R4 = 2.8 K/kW, τ1 = 0.00147 s, τ2 =

0.034 s, τ3 = 0.168 s, τ4 = 1.11 s.

A.2 Parameters for Case Study in Chapter 3

The parameters of the case study system:

The grid voltage Vs = 490 V (L-L), 60 Hz; the transformer 1MVA, 25 kV /490 V ; Cdc =

0.0333 F ; the half-bridge load 400+j50 kV A; the buck load 250 kW , duty D = 0.55; the

boost supply Vboost = 500 V , duty D = 0.8; the full-bridge load 200+j50 kV A.
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A.3 Parameters for Case Study in Chapter 4

The MMC-EES submodule parameters:

Nsc = 2-20, Rsc = 2.1 mΩ, Csm = 10mF, Lsm = 0.03 H, Vdcref = 200 kV, fsm = 1 kHz, fES = 5

kHz.

The parameters of the 51 to 401-level MMC: Lu,d = 50 mH, Ldc = 200 mH.
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