A Sweet Regulatory Landscape Of The Glycome

by Thu Chu

A thesis submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Department of Chemistry

University of Alberta

 $\ensuremath{\mathbb{C}}$ Thu Chu, 2023

ABSTRACT

Events happening in cellular systems are regulated in an orchestrated and coordinated manner. To truly understand the cellular processes, it requires a precise knowledge of their components (DNA, RNA, proteins, carbohydrates, lipids, and metabolites) and their dynamic interactions. With the rapid development of technology, the template-encoded natural molecules (DNA, RNA and proteins) are more efficient and accessible to study. However, carbohydrates and lipids are generally understudied and underrepresented despite their crucial and significant biological roles mainly due to their non-template encoded nature, structural complexity and heterogeneity. Carbohydrates, known as glycans or oligosaccharides, are the products of multiple glycosyltransferases and glycosidases to synthesize structures appended to proteins and/or lipids. Glycans are one of the most abundant and diverse biomolecules on cells. The glycome is the complete pattern of glycan modifications in a cellular system. This pattern is generated by the synchronised and coordinated action of various glycosylation enzymes. These enzymes, including glycosyltransferases and glycosidases, work coordinately to create a highly sophisticated and dynamic network which is adaptive to environmental variations and changes. Aberrant glycosylation plays a fundamental role in key pathological steps of cancer, host-pathogen interactions, tumour cell development and progression, metastasis and immune modulation. However, it remains technically challenging to detect, characterize and quantify glycans. Previous work has identified miRNAs as key regulators of glycosylation, thus, we could utilize miRNAs as proxy to study glycosylation, which is termed "miRNA proxy approach". The lack of complete understanding of how miR interacts with mRNA under crowded cellular environment and inducing the down biological impacts postpones our capacity to use this powerful hypothesis. Furthermore, we predominantly relied on prediction algorithms to identify miR-target interactomes. However,

the low accuracy and sensitivity of miR target prediction tools hindered our ability to create reliable miR-target networks. The algorithms became worse for low abundance genes including glycosylation enzymes and protein membranes. The current high-throughput identification of miR-target interactions are not reliable and high-throughput enough for identifying miR-glycogene interactomes. There is a need to develop a better high-throughput experimental method for the creation of an accurate miR-target database with validated interactions. Herein, we created a high-throughput experimental platform, miRFluR, for mapping miR target.

With the development of this high-throughput miRFluR platform, we were able to obtain a comprehensive dataset of miRNA regulatory networks for glycosylation enzymes including B3GLCT, OGT and OGA. In the work of miR-B3GLCT interaction network, we successfully utilized downregulatory miR network to predict B3GLCT biological functions as supporting evidence for our miRNA proxy hypothesis. In addition, we not only identified miR impacting in the 3' untranslated region (3'UTR) but also expanding our platform to the 5'UTR. In summary, this work contributed to decipher the glycosylation code and understanding biological functions of certain regulatory networks

Preface

Sections of Chapter 1 of this thesis have been published as **Thu, C.T.**, and Mahal, L.K. Sweet Control: MicroRNA Regulation of the Glycome. Biochemistry. *Biochemistry*, **2020**, 59, 34, 3098–3110.

The majority of Chapter 3 were published as **Thu, C.T.**, Chung, J. Y., Dhawan, D., Vaiana, C. A., and Mahal, L. K. High-Throughput miRFluR Platform Identifies miRNA Regulating B3GLCT That Predict Peters' Plus Syndrome Phenotype, Supporting the miRNA Proxy Hypothesis. *ACS Chemical Biology*, **2021**, *16*, 1900-1907. Most of experiments and data analyses were performed by myself. The aliquoting of human miRNA mimic library and collecting 1 out of 27 384 well plates was performed by 2 technicians, Jonathan and Deepika.

Chapter 2 and 4 remain unpublished and some work is still ongoing. The research on Chapter 2 was conducted by myself with the initial testing of miRfect system was done by David Christian. I performed the majority of the work in Chapter 4 with the assistance of Dr. MacDonald on aliquoting the human miRNA mimic library.

DEDICATION

This dissertation is dedicated to my family for all your love and support along the way.

ACKNOWLEDGMENTS

First of all, I would like to express my great gratitude to my teacher, advisor and mentor, Prof. Lara K. Mahal, for her guidance and support during my time in graduate school. I still remember vividly the first day I met her in the Molecular Biology class and the day I decided to join her lab. She always patiently explained and answered my questions which was always encouraging and inspiring. I am very grateful to her empathy with my emotional intensity. I know it's not so easy. I also would like to acknowledge my committee members (Prof. Christopher W. Cairo, Prof. Matthew S. Macauley, Prof. Sheref Mansy and Prof. Yael David) for their valuable time, help, suggestions and comments on my work. I'm very grateful to Prof. Daniela Buccella and Prof. James Canary for all the guidance, assistance and collaborative work.

Secondly, I would like to thank all my beloved family and friends who were always there for me. My mom, my dad and 4 siblings (Vinh, Thuy, Huong, Hanh) mean the world to me. They just unconditionally love me for who I am, not what I do for them or anything. They just want me to be happy but little do they know, I love and value them so much and would sacrifice anything for their lives and well-beings. Linh, Jocelyn, Chris, Cherry, Tigist, Amaani, Helia, Fatema, and Guanmin showed me that not only we can talk passionately about science but also I don't have to be afraid opening up myself or be vulnerable with them. I hope you all know that I would always treasure our time together. I also remember how fun it was to play board games and puzzles with whom I not only considered as my colleagues but now and forever my friends (Jocelyn, Tigist, Helia, Amaani, Fatema, and Ric). I also appreciate all my friends and classmates (Shiyu, Chris, Johannes, Martin, Jocelyn, Jimmy, Shuhui, Nynkes, Julius, Tommy, Belinda, Jonathan, Deepika, James, and Mirat) to whom I really enjoyed their company and missed our science and research conversations together. There are many more people who helped me along the way, I hope you know that I always remember and be grateful for you.

I also would like to acknowledge the path that I was walking and all experiences it brought me, both positive and negative. Sometimes, I realized that in order to gain something, it might also takes away something important. That was the feeling of losing part of myself in the process. It was painful, yes, but it helped me to grow and explore a different side of me that I never experienced before. So I wanted to acknowledge both the darkness and light that I went through:

What make a person who they are? What is the meaning of it all? When I am just a parasite for feeling Relying on something so unstable to ever survive And when it collapses My whole belief system crashes "Did I ever actually happy?" Or am I just a borrower And when it turned to dust I left with a void of feeling I made you my muse My reason to survive Just to realize

We don't share the same languages

We don't have similar frequencies We just live in two different worlds In my world *Everything covers in darkness* Now I'm learning to let go of things That I once treasured (I always imagined if I hold something so closely and tightly, I would be sure of its exact position. Just to realize that, I can't be certain of its exact movement.) Surely you live just to feel the pain But what is life without that feeling *I* went around the globe *Just to realize that* Convenient life doesn't guarantee happiness I don't want to live like a soulless object Striving for success just to fill my emptiness inside *Or to be evolved* As I understand myself My purpose and existence in life Seeking the truth Amongst millions of lies that They told me

It wasn't easy Shedding away my tears, *My* blood My heart broken into millions of pieces Or should I just live to feel The light falls into my eyes And the gravitational field that keeps me here Or just to appreciate all the force fields that connect all the living systems and make them flourish *I appreciate the science* Which used to be the reason For keeping myself alive It opened my eyes to see the whole universe And how the sun sustains lives here on Earth and how it all governed by law of physics *entropy and enthalpy* Stochastically but orderly

Sometimes I asked

Why do I feel everything so intensely? Like a chain reaction It amplifies and creates A roller coaster Where the ride is not very pleasant Maybe if I feel less *My life would be better?* Or is it nothing more than just another path? But I learn to accept myself With all the flaws, scars and imperfections Plus the intrinsically disordered domain *That I let entropy* Get the best of me Although I work on Making it folded and structured Or learn to make it useful one day But relying on it for happiness Only leads to detrimental consequences *To undercover* The fragile validation system *For my existence*

Looking at it now Maybe I should just be content To just be a part of the life cycle

...

I should have known that the finished line is not the goal but the presence. Albert Einstein once said "Science is a wonderful thing if one does not have to earn one's living at it". Sometimes, I thought it probably is applicable to myself and thought...

-Sometimes, I just want to evaporate into thin air with no trace of existence--Maybe being air particles would be fun-

-Are particles conscious?-

• • •

The complexities of life and questions draw me in and to became parts of me. My eyes sparkled just to imagine how proteins fold and how tiny molecules can do so much. I was always enthralled by all the questions science brought me. In the end, maybe I am just a loner on my imaginary path. Sometimes, I found a sparkling or interesting object, and I was so intrigued... Here I am... Here I found you and you found me.

(enibbiy Jzvį, $\Box O \bot$. lliyz zzslezv v vvн vv, zdngono, zihJ bvv can fead fhis, congfafz, vov наve a vzelezs spin pafadox. If vov can fead fhis, congfafz, vov наve a vzelezs spin pafadox. $\mu_w \vec{c}$ 9-ТИІ nv)

TABLE OF CONTENTS

Abstractii
List of tablesxvi
List of figuresxvii
Chapter 11
Roles of Glycosylation and regulation1
1.1 Significance of glycosylation
1.2 An Overview Of Glycan Functions and regulation
1.3 Introduction To Mirna And Their Regulation Of Glycosylation
1.3.1 miRNAs and their functions
1.3.2 MicroRNAs Are Critical Regulators Of The Glycome11
1.4 microRNA proxy hypothesis and application to glycosylation 12
1.5 miRNA target prediction algorithms failed to accurately identify mirna targets
1.6 Contemporary knowledge on mirna mechanisms of action
1.7 The Scope of this dissertation
1.7 References
Chapter 2
Development of high-throughput technology for mapping miRNA-gene interactome network 35
2.1 Abstract
2.2 Introduction
2.4 Development of high-throughput miRFluR platform for identifications of the miR-gene interactome
2.4.1 Current high-throughput methods of validating miR-target interactions and their limitations
2.4.2 Design of first generation high-throughput miRfect system
2.4.3 General scheme of how dual-color genetically encoded fluorescent reporter in miRfect system
2.4.3 Background on cell spot microarray (CSMA) method and advantages
2.4.4 Testing the miRfect system
2.4.5 Creating compatible pFmiR sensors for the Genepix Pro microarray system
2.4.6 Creating a library of genetically encoded fluorescent sensors (pSFmiR-glycogene 3'UTR) for high-throughput mapping of miR:glycogene interactions

2.4.7 Optimization of reagents in miRfect System.	47
2.4.8 Optimization of the miRfect system	50
2.5 Comparison B3GLCT data from miRfect system to miRFluR platform	58
2.6 Conclusion	59
2.7 Materials and Experimental Methods	60
2.7.1 Cloning of pSFmiR-empty and a library of genetically-encoded fluorescent sensors for high-throughput mapping of miR-target interactions	60
2.7.2 miRfect high-throughput system.	61
2.7.3 Data Processing	62
Appendix 2A. Plasmid maps and sequences	76
Sequence 1. Plasmid Map of pFmiR-empty and sequence	78
Appendix 2B. pSFmiR-gene-3'UTR plasmid map and gene 3'UTR sequences	78
Sequence 2. Plasmid Map of pSFmiR-gene-3'UTR and sequence of 3'-UTR of different	
glycosylation genes	92
References	92
Chapter 3	94
Development of mirflur high-throughput platform for mapping mirnas-gene interactome netwo	rk
	94
3.1 Abstract	95
3.2 Introduction	96
3.3 B3GLCT gene and biological functions	97
3.4 Development of high-throughput miRFluR platform for identifications of the miR-gene interactome	00
3.4.1 Development of high-throughput fluorescent ratiometric assay to identify miR:3'UTR interaction (miRFluR) platform	00
3.5 Comparison to bioinformatics tools showed too many false targets for miRs 1	13
3.6 miRNA hits can predict the biological functions of B3GLCT and the support for miRNA proxy hypothesis	18
3.7 Conclusion	21
3.8 Materials and Experimental Methods	22
3.8.1 Cloning of pFmiR-B3GLCT-3'UTR1	22
3.8.2 MiRFluR High-throughput Assay1	22
3.8.3 Data Processing	23
3.8.4 Microscopy imaging	23

3.8.5 Western Blot
3.8.6 RT-PCR
3.8.7 Network Analysis Using miRNet
Appendix 3A. Plasmid maps and sequences
Sequence 1. Plasmid Map of pFmiR-empty and sequence
Appendix 3B. pFmiR-B3GLCT-3'UTR plasmid map and 3'UTR sequence
Sequence 2. Plasmid Map of pFmiR-B3GLCT-3'UTR and sequence of 3'-UTR of B3GLCT. 127
3.9 References
Chapter 4
Investigating the miRNA regulatory landscape of OGT and OGA via the 3'UTR and 5'UTR regions
4.1 Abstract
4.2 Introduction
4.3 Roles of 5'UTR in gene regulation
4.4 Generating the ratiometric fluorescent reporters for mapping miR-target in the 3'UTR and 5'UTR regions of OGT and OGA
4.5 General miRFluR assay for pFmiR reporters
4.6 Investigation of OGT regulation via 5'UTR and 3'UTR regions utilizing miRFluR platform
4.6.1 Comprehensive mapping of miR-target regulatory network via 3'UTR and 5'UTR of OGT
4.7 Investigation of OGA regulation via 5'UTR and 3'UTR regions utilizing miRFluR platform
4.7.1 Generating the ratiometric fluorescent reporter data for mapping miR-target in the 3'UTR and 5'UTR regions
4.8 Post-transcriptional co-regulation of OGT and OGA by miRNAs 160
4.8.1 Transcriptional co-regulation of OGT, OGA and O-GlcNAc homeostasis 160
4.8.2 Translational co-regulation of OGT and OGA by miRNAs
4.9 Generating the ratiometric fluorescent reporter for mapping miR-target in the coding region for ncOGT
4.10 Conclusions
4.11 Materials and Experimental Methods
4.11.1 Cloning of pFmiR-OGT-3'UTR, pFmiR-OGT-5'UTR, pFmiR-OGT-3+5'UTR, pFmiR-OGA-3'UTR, pFmiR-OGA-5'UTR, pFmiR-OGA-3+5'UTR

4.11.2 FluoRmiR High-throughput Assay.	
4.11.3 Data Processing	
4.11.4 Western Blot	
Appendix 4A. OGT Western Blot	
Appendix 4B-D. OGA Western Blot	
Appendix 4E. 5 Plasmid maps and sequences	
4.12 References	
Bibliography	

LIST OF TABLES

Table 1.1. List of known miR regulators for human glycogenes organized by pathway 17
Table 2.1 List of miR hits for B3GLCT 53
Table 2.2 Comparison of the results for B3GLCT from miRfect system and miRFluR platform 58
Table 2.3. List of primers for 114 glycogene 3'UTR
Table 3.2. Identification of downregulatory and upregulatory miRs for B3GLCT from miRFluR
assay
Table 3.3. Disease enrichment analysis of 27 downregulatory miRs for B3GLCT in miRNet . 129
Table 3.4 RT-PCR with 3 biological replicates 131
Table 3.5. Quantification of 3 RT-PCR replicates
Table 4.1 Quantification of OGA with 3 replicates associated with Figure 4.15 179
Table 4.2 Quantification of OGA associated with Figure 4.16 179
Table 4.3. Analysis of downregulatory miR binding seed sites in OGT 3'UTR regions
Table 4.4. Analysis of downregulatory miR binding seed sites in OGT 5'UTR regions
Table 4.5. Analysis of downregulatory miR binding seed sites in OGT 3+5'UTR regions 184
Table 4.6. Analysis of downregulatory miR binding seed sites in OGA 3'UTR regions
Table 4.7. Analysis of downregulatory miR binding seed sites in OGA 3+5'UTR regions 192
Table 4.8. Analysis of upregulatory miR binding seed sites in OGA 3' UTR regions 194
Table 4.9. Analysis of upregulatory miR binding seed sites in OGT 3+5' UTR regions 194
Table 4.10. Analysis of upregulatory miR binding seed sites in OGT 3' UTR regions 195
Table 4.11. Analysis of upregulatory miR binding seed sites in OGT 3' UTR regions

LIST OF FIGURES

Figure 1.1. Glycan diversity on different cellular compartments: N-linked, O-linked, or GPI anchor
processing enzymes
Figure 1.2. Diversity and classification of glycosylation
Figure 1.3. miR biogenesis and their functions (adopted from BioRender)
Figure 1.4. miRs are loaded into RISC complexes and inhibit protein expression through
translational repression or mRNA degradation9
Figure 1.5. miRs can regulate multiple glycogenes in a network, modulating glycan structures. 10
Figure 1.6. miRNA proxy approach
Figure 1.7. Three currently known mechanisms of miRNA-mediated repression
Figure 2.1. General scheme of miRfect high-throughput assay
Figure 2.2. Schematic representation of high-throughput assay of miR-target interactomes 42
Figure 2.3. General scheme of cell spot microarray (CSMA) method and reverse transfection 43
Figure 2.4. Microscopic imaging of miRfect microarray
Figure 2.5. Laser settings and corresponding emission filters on our scanner
Figure 2.6. Schematic of Gibson Assembly procedure for construction of pFMiR2-glycogene
library
Figure 2.7. miRfect system
Figure 2.8. Spot morphology after cell adhesion on the slide
Figure 2.9. Hsa-miR-200b-3p downregulates B3GLCT in comparison to negative control (NTC)
and another negative control, hsa-miR-200a-3p in miRfect assay
Figure 2.10. Identification and validation of hits for B3GLCT. Spot morphology and bar graph of
ratiometric data for miRs indicated in A. Error bars represent propagated error

Figure 2.11. Highly variable spot morphologies were observed after cell adhesion on the new
polystyrene slide. miRfect slide is represented using mClover3 channels
Figure 2.12. Optimizing transfection reagents for pSFmiR-B3GLCT 3UTR sensor transfection on
<i>HeLa</i>
Figure 2.13. MiRfect system using <i>HeLa</i> cells
Figure 2.14. MiRfect system using <i>LNCap</i> cells
Figure 3.1. Biosynthesis pathways for TSRs: B3GLCT adds glucose to O-linked fucosylglycans
occurring on TSRs
Figure 3.2. B3GLCT mutations and Peters' Plus syndrome
Figure 3.3. Schematic illustration of the miRFluR high-throughput assay 101
Figure 3.5. Reproducibility of the miRFluR high-throughput analysis system
Figure 3.6. Identification and validation of hits for B3GLCT108
Figure 3.7. Small scale validation of miR subsets
Figure. 3.8. Fluorescence microscopy images of co-transfection of pMIR-B3GLCT with miRs
Figure 3.9. (A-C) B3GLCT Western blot analysis and accompanying Ponceau S stain for the 3
biological replicates
Figure 3.10. Validation of hits for B3GLCT
Figure 3.11. Identification and validation of hits for B3GLCT
Figure 3.13. Comparison of experimental results to prediction algorithms
Figure 3.14. Phenotypic network analysis of miRs downregulating B3GLCT
Figure 4.1. O-GlcNAcylation and functions
Figure 4.2. Regulatory network of OGA and OGA by miRNAs

Figure 4.3. Roles of the 5'UTR and 3'UTR in translational regulation
Figure 4.4. miRNA impacts RNA binding protein (HuD) to upregulate mRNA expression 143
Figure 4.5. MiRFluR platform extending to the 5'UTR. (A) Plasmid maps for mapping miRs with
the 3'UTR and 5'UTR regulatory regions. (B) Schematic illustration of miRFluR platform 145
Figure 4.6. Identification and validation of hits for OGT 3'UTR
Figure 4.7. Identification and validation of hits for OGT 5'UTR
Figure 4.8. Identification and validation of hits for OGT 3+5'UTR
Figure 4.9. miRs were chosen for OGT validation150
Figure 4.9. Validation of hits for OGT 151
Figure 4.10. Comparison between OGT 3'UTR and OGT 5'UTR 152
Figure 4.11. Correlation between two negative controls, (A) miR-200a-3p and (B) NTC, with the
median of each plate for B3GLCT
Figure 4.12. Identification and validation of hits for OGA 3'UTR
Figure 4.13. Identification and validation of hits for OGA 5'UTR
Figure 4.14. Identification and validation of hits for OGA 3+5'UTR
Figure 4.15. miRs were chosen for OGA validation
Figure 4.16. Validation of hits for OGA 158
Figure 4.17. Comparison between OGA 3'UTR and OGA 5'UTR. Color code represents
regulation by the OGA 3'+5'UTR dataset
Figure 4.19. Pearson's correlation of OGT and OGA (data from 3+5'UTR reporters)
Figure 4.20. Pearson's correlation of OGT and OGA with B3GLCT (data from 3'UTR reporters).

Figure 4.20. Downregulatory and upregulatory miRs co-regulate OGT and OGA to maintain O-
GlcNAc homeostasis?
Figure 4.21. MiRFluR platform extending to the coding region
Appendix 4A. OGT Western blot analysis and accompanying Ponceau S stain for the 3 biological
replicates in MDA-MB-231169
Appendix 4B. OGA Western blot analysis and accompanying Ponceau S stain for the 3 biological
replicates in <i>HeLa</i> 170
Appendix 4C. OGA Western blot analysis and accompanying Ponceau S stain for the 3 biological
replicates in <i>HeLa</i> 171
Appendix 4D. OGA Western blot analysis and accompanying Ponceau S stain for the 3 biological
replicates in <i>MDA-MB-231</i>

LIST OF ABBREVIATIONS

ATP	Adenosine triphosphate
B3GLCT	Beta 3-glucosyltransferase
CLIP	Cross-linking and immunoprecipitation
CMV	Cytomegalovirus
CSMA	Cell spot microarray
DMEM	Dulbecco's modified Eagle's medium
DNA	Deoxyribonucleic Acid
EMT	Epithelial to mesenchymal transition
ER	Endoplasmic reticulum
FBS	Fetal bovine serum
GALNT	N-Acetylgalactosaminyltransferases
GFP	Green fluorescent protein
GPI	Glycosylphosphatidylinositol
GWAS	Genome-Wide Association Studies
HBP	Hexosamine biosynthetic pathway
HBSS	Hanks' balanced salt solution
HGNC	HUGO Gene Nomenclature Committee

miR/miRNA	microRNA
NTC	Non-targeting control
OGA	O-GlcNAcase
O-GlcNAc	N-Acetylglucosamine
OGT	O-GlcNAc transferase
Opti-MEM	Opti-modified Eagle's medium
ORF	Open reading frame
OSER	Organized smooth endoplasmic reticulum
PCR	Polymerase chain reaction
РСТ	Probability of conserved targeting
PPS	Peters plus syndrome
RISC	RNA-induced silencing complex
RNA	Ribonucleic acid
RT-qPCR	Real-time quantitative polymerase chain reaction
SNFG	Symbol Nomenclature for Glycans
TDMD	Target RNA-Directed MicroRNA Degradation
TSR	Thrombospondin type-1 repeat
UDP	Uridine diphosphate

UTR	Untranslated region

UV Ultra-violet

CHAPTER 1

ROLES OF GLYCOSYLATION AND REGULATION

This chapter contains content published in **Thu**, **C.T**., and Mahal, L.K. Sweet Control:

MicroRNA Regulation of the Glycome. Biochemistry. Biochemistry, 2020, 59, 34, 3098-3110.

1.1 SIGNIFICANCE OF GLYCOSYLATION

The central dogma is a simplified explanation for the flow of genetic information coded in DNA. The transfer of information described by the central dogma, from DNA transcribed to RNA translated to protein, fails to account for properties inherent to biological systems on a cellular level.¹ The missing regulatory features, epigenetics, protein splicing or the mismatch between RNA and DNA, and RNA and protein, call the validity of the central dogma into question and challenge our current understanding of the big picture of how genes work together to produce living cells and organisms.

Carbohydrates and lipids underlie many essential biological functions, yet remain an understudied area of biology when compared to DNA, RNA and proteins. Indeed, both glycans and lipids have been shown to be key regulators of cellular activity and signal transduction that control nearly all aspects of cellular function^{2, 3}. Despite the significance and prevalence of glycans, their study has been less accessible and is underrepresented compared to central dogmatic biomolecules mainly due to their non-template encoded nature, structural complexity and heterogeneity. Glycans remain neglected and poorly understood in the context of biology. This dissertation aims to address the current issues and challenges in glycosylation field by developing a new platform for researching the regulatory landscape and underlying biological functions of glycan biosynthetic networks.

1.2 AN OVERVIEW OF GLYCAN FUNCTIONS AND REGULATION

Carbohydrates, also known as glycans or oligosaccharides, are the products of multiple glycosyltransferases and glycosidases working in a coordinated and integrated manner to synthesize structures appended to proteins and/or lipids. Glycans are one of the most abundant and diverse biomolecules on cells (Figure 1.1). Given the dense coating of glycans on the cell surface, they are crucial in facilitating host-pathogen interactions and the host response ⁴. They are also known to participate in various key biological functions and processes including protein homeostasis, immunity, cell adhesion, endocytosis, exocytosis, molecular trafficking and signal transduction^{5, 6}. Glycosylation occurs in mainly in the endoplasmic reticulum (ER) and Golgi, with the exception of O-GlcNAcylation which takes place in the nucleus and cytoplasm. The covalent linkage of glycans to the polypeptide, lipid or other molecular backbones, determines its classification (Figure 1.1 and Figure 1.2). These classifications include O-linked (a bond via the hydroxyl group of serine, threonine or collagen hydroxylysine⁷), N-linked (a bond via the amide group of asparagine), or, less commonly, C-linked (to tryptophan). Canonical N-linked glycoproteins tend to be more complex and highly branched structures. N-linked glycans bear a common branched core of the glycan, initiating with N-acetylglucosamine (GlcNAc) attached to asparagine residue by the anomeric carbon, followed by the second GlcNAc and the tri-mannose structure. Glycosylation gene defects, defined as congenital disorders of glycosylation, are often lethal, indicating vital roles of glycans. Dysfunctions of glycosylation also lead to development of diseases, cancer and pathogenesis of infectious diseases.

Figure 1.1. Glycan diversity on different cellular compartments: N-linked, O-linked, or GPI anchor processing enzymes.

O-Man

Figure 1.2. Diversity and classification of glycosylation. Illustration of the critical components of the cellular glycome, highlighting different types of glycosylation that are specific to protein classes or domains. The glycans represent examples of glycan structures that can be synthesized by the different types of glycosylation pathways. While N-glycans and most O-GalNAc types are commonly found on most trafficking proteins in cellular secretory pathway, the occurrence of domain-specific glycans is limited to specific protein domains. Glycan symbols are drawn according to the Symbol Nomenclature for Glycans (SNFG) format.

The importance of glycosylation is perhaps most apparent from the ever increasing number of genetic disorders and genome-wide association studies (GWAS) that point to glycosylation enzymes as causative agents of disease. In recent work, Joshi et al found that glycosylation enzymes implicated in complex diseases by GWAS are highly regulated, arguing that precise control over specific glycans is necessary⁸. The regulation of glycoprotein is complex and under multiple regulatory levels ⁹. It not only involves regulation of the protein scaffold, but also glycan biosynthesis which is driven by around 500 glycosylation enzymes including glycosyltransferases, glycosydases and enzymes involved in metabolism, sulfation and transport. These scaffolds and enzymes are, in turn, regulated at transcriptional, translational and post-translational levels. At the transcriptional regulation, all glycosylation enzymes are controlled not only by transcription factors, but also by other epigenetic factors (ATP-dependent remodelers, histone modifying complexes, DNA methylation, etc...). Although transcriptional regulation is important in controlling the glycogene transcripts, the change in glycan structures are not quite well correlated with measurable glycogene transcript levels ¹⁰ ¹¹ ¹². This could partially due to the less accurate measurement of low abundance glycogene mRNA levels. Since glycan structure patterns and levels are not correlated with the measurable glycogene transcripts, study of post-transcriptional regulation may play an important role in regulatory mechanisms of carbohydrate structure.

1.3 INTRODUCTION TO MIRNA AND THEIR REGULATION OF GLYCOSYLATION

1.3.1 miRNAs and their functions

MicroRNAs have emerged as critical regulators of the glycome over the last decade¹³⁻¹⁵. microRNAs (miRNAs, miRs) are small, non-coding RNAs that bind to messenger RNAs (mRNAs) and regulate mRNA translation into proteins. miRs possess distinctive and diverse expression patterns which impact various cellular processes and developmental pathways. They are known to target networks of numerous genes that regulate specific biological processes, tightening their expression window and dampening noisy expression ^{16, 17}. Most miRNA genes are transcribed into long primary transcripts, termed pri-miRNAs with typical hairpin structures (Figure 1.2). The pri-miRs are then processed by a microprocessor, consisting of protein DiGeorge Syndrome Critical Region 8 (DGCR8) and an RNase III enzyme, DROSHA, to produce ~70 nt stem-loop precursor miRs, termed pre-miRs. pre-miRs exit the nucleus as hairpin structures with a 2 nt 3' overhang, which are then exported to the cytoplasm by an exportin 5 (XPO5)/RanGTP complex. In the cytoplasm, pre-miRs are cut to remove the terminal loops in form mature miR duplex including the 5p miR (which comes from the 5' end, miR-5p) and the 3p miR (which is derived from the 3' end, miR-3p) (Figure 1.2 and Figure 1.3). This process is catalyzed by another RNase III, DICER. The human immunodeficiency virus transactivating response RNA-binding protein (TRBP), then recruits the Dicer containing complex to the Argonaute protein to form RNAinduced silencing complex (RISC).¹⁸ One miR strand is selected to become the mature miR and one strand is the passenger strand which is then degraded or stored for further usage.¹⁹. The mature strand is selected partially based on thermodynamic stability at the 5' ends of miR duplex or a 5'

U at the nucleotide position 1.²⁰ The RISC complex is loaded with a mRNA which is then inhibited or degraded.

Figure 1.3. miR biogenesis and their functions (adopted from BioRender).

A single miR can have hundreds of targets. If a glycosylation enzyme or other glycan related protein (e.g. transporters, metabolic enzymes, etc.; with glycosylation enzymes, collectively known as glycogenes) is regulated by a miR, a loss of the associated glycan epitope is then observed (**Figure 1.3**). The function of miRs is not to turn a gene on or off but rather to tune

protein expression, unlike transcriptional regulators ¹⁶. Thus, miRs provide a mechanism to maintain tight regulation of protein levels within a specific window¹⁶. This control is dependent on the precise and specific mRNA transcript. Many genes have multiple transcripts that differ only in their 3'-UTRs but get translated into identical proteins.

Figure 1.4. miRs are loaded into RISC complexes and inhibit protein expression through translational repression or mRNA degradation. This impacts glycosylation through repression of glycogenes such as FUT4. Lowered expression of the biosynthetic enzyme would shift the expression of the corresponding glycan epitope, as shown above.

Because networks of miRs act in concert, the biosynthesis of a glycan epitope may be regulated by multiple miRs, which simultaneously govern the expression of multiple glycogenes (**Figure 1.4**). The predicted glycogene targets of miRs are unevenly distributed. An analysis of miR:mRNA interactions predicted by the miRANDA algorithm identified some glycogene transcripts as highly-regulated, with multiple miR target sites, while others had few predicted sites¹⁵. Several glycogenes known to be involved in complex diseases (e.g. FUT8²¹⁻²³, GALNT7²⁴⁻³³, and GALNT1³⁴⁻³⁶) were predicted to have highly-regulated transcripts, implying that miRs may play a direct role in dysregulation of these enzymes¹⁵. Enzymes previously believed to be "functionally redundant" such as the 20-member GALNT family, show large differences in potential miR regulation, suggesting that they control different biology. This argument against "redundancy" from the regulatory perspective, is borne out by new work showing that the GALNTs do indeed have distinct functions^{37, 38}.

Figure 1.5. miRs can regulate multiple glycogenes in a network, modulating glycan structures.

1.3.2 MicroRNAs Are Critical Regulators Of The Glycome

A study in *Caenorhabditis elegans (C. elegans)* by Han and coworkers in 2009 was one of the earliest to show glycosylation as a major target of miRs³⁹. In this work, they characterized the miRs found in RISC complexes during worm development. They found that miR targets were enriched in signaling proteins, while housekeeping genes were underrepresented. In addition, gene transcripts involved in glycosylation pathways were highly enriched in the pool of strong miR targets. They demonstrated that appending the 3'-UTR of one of the enriched glycogenes, *sqv-3*, was enough to repress expression of GFP in larval stages where this transcript was observed in the RISC complexes. To our knowledge, this work was the first example of glycogene regulation by a miR and supported a major role for miRs in the regulation of glycan biosynthesis.

In 2014, work from our laboratory directly demonstrated a critical role for miRs in the regulation of glycosylation in human cells¹⁴. Using bioinformatic methods we integrated miR profiles of the NCI-60, a 59 human cancer cell line panel, with glycomic analysis obtained using our lectin microarray approach^{40, 41}. We identified multiple miRs that correlated with specific glycosylation patterns. These miRs directly targeted the transcripts of glycogenes underlying the observed glycans and were able to alter the glycosylation of cells. Our work underscored the important role of miRs in controlling the glycome. At the time of this publication in 2014, only 10 glycogenes were known targets of miRs. In the past 5 years, there has been an explosion of interest in miR regulation of glycogenes and over 80 glycogenes are currently known miR targets (**Table 1.1**).

1.4 MICRORNA PROXY HYPOTHESIS AND APPLICATION TO GLYCOSYLATION

In one of the earliest examples of glycan regulation by miRs, Hernando and coworkers identified the GALNT7 as a target for miR-30d, a microRNA that promoted melanoma metastasis in patients and mouse models. Downregulation of GALNT7 was found to phenocopy miR-30d, increasing metastasis as a result of inhibiting O-glycosylation²⁴. This showcases a common theme in miR biology, namely that downregulation of the targets of a miR phenocopies the effects of miR expression. This observation led us to propose the microRNA proxy hypothesis. Our hypothesis states that the regulation of protein expression by changes in the expression levels of miRs identifies proteins holding a privileged position in driving the underlying biology. In other words, if a miR drives a specific biological phenotype, such as migration or metastasis, the targets of that miR will drive the same biological phenotype. Thus, miRs can be used to identify (by proxy) the biological functions of specific glycosylation enzymes (or other proteins). We first formulated and tested this powerful hypothesis in a publication in 2015¹³. In that work, we examined the targets of miR-200b-3p, a miR that controls epithelial to mesenchymal transition (EMT). This miR is high in epithelial cells and low in mesenchymal cells. We identified 5 targets of miR-200b-3p and tested 3 of them to see whether inhibiting the expression of these enzymes would phenocopy overexpression of the miR. In all 3 cases (B3GLCT, ST3GAL5 and ST6GALNAC5), mesenchymal cells reverted to an epithelial state upon repression of these glycosylation enzymes. This phenotype was not transduced by repression of the transcription factor ZEB1, another target of miR-200b-3p commonly thought to be responsible for the EMT phenotype. Instead knockdown of all 3 glycogenes caused increases in ZEB1 levels, arguing that inhibiting glycosylation can alter EMT independent of the transcription factor. This provided evidence that miRs target key hubs

driving the biological phenotypes that they regulate, in line with our hypothesis. Further evidence was in a later on MGAT4A regulation which identified a role for this gene in cell-cycle regulation.

Figure 1.6. miRNA proxy approach: the regulation of protein expression by changes in the expression levels of miRs identifies proteins holding a privileged position in driving the underlying biology.

1.5 MIRNA TARGET PREDICTION ALGORITHMS FAILED TO ACCURATELY IDENTIFY MIRNA TARGETS

Currently, our understanding of miRNA-targets relies mainly on prediction algorithms to identify interactions. Predicted target are then experimentally validated. To date, only 0.01% of predictions have been validated⁴². The accuracy and sensitivity of the prediction tools are also highly questionable (20-60% accuracy⁴³⁻⁴⁵) with high false negatives and positives even for canonical miR-target interactions with conserved seed regions⁴⁶. Canonically, miRNAs target
mRNA in metazoans via interaction between the 5'-end bases position from 2 to 7 of the miRNA, designated the miRNA "seed region," and the 3' untranslated region (3'-UTR) of the target mRNA. Recently, the 3' half of miR has gained more attention in directing miR target specificity and regulation. Additional sites in the 3' of miRs compensate for "seed" mismatches and, although more rarely, the "centered" miRNA sites can also participated in base-pairing between miRs and mRNAs. In addition, the pairing to the miR 3' end can impact the stability of miR, termed targetdirected miRNA degradation (TDMD), in which the mRNA promotes the degradation of its miRNA binding partner via specific complementary binding patterns in both miR 3' and 5' end 47 ⁴⁸ ⁴⁹ ⁵⁰. Those findings highlight the significance of miR sequences beyond the seed region in modulating the existence and functions of miRs and also enhancing the regulatory complexity in mammalian cells⁵¹. Therefore, relying solely on seed regions in miR target prediction tools is detrimental to the accuracy and sensitivity of the algorithms. Other features beside the seed regions are utilized in miR target bioinformatics tools including free energy of miR-mRNA pairing, accessibility of the binding sites, AU rich elements in mRNA and the evolutionary conservation of sequences amongst species.

Despite continuous effort, experimental evidence still indicates high false positive and negative rates for prediction tools. This failure to accurately identify miR targets *in silico* is likely attributable to the simplified rules used to predict interactions and functions. Furthermore, the interior of the cells is a densely crowded environment which alters the binding properties and macromolecular interactions. Thus, the underlying biological mechanisms driving biologically relevant actions and functions of miRs remain largely enigmatic.

The prediction accuracy and sensitivity is exacerbated for low abundance gene including most of glycosylation enzymes and membrane receptor proteins. The current high-throughput experimental methods of identifying miRNA targets (transcriptomic analysis and crosslinking assay) failed to pinpoint the real miRNA targets for low abundance gene and the actual biological impacts of miRNAs on protein levels. It has also been shown that mRNA and protein level are not highly correlated and in many cases, miRs have of completely different impacts on the mRNA and protein levels^{44, 52}. An analysis of the agreement between protein expression and mRNA expression levels using data from the Human Proteome Map and Genotype-Tissue expression project found strong concordance in the expression levels for only 6.1% of genes⁵³. Other studies indicated that mRNA and protein level correlation largely varies between 20-40% depending on genes and biological systems studied ^{54 55 56 57}. For low abundance proteins, such as glycogenes, it is known that transcription levels are not accurate to protein abundance ⁵⁸. All miR interactions impact translation, and at best only ~80% of interactions impact the transcriptome⁵⁹. This may be lower for low abundance genes, where transcriptional data is inherently more noisy. Thus, reliance on the transcriptome may bias current algorithms.

1.6 CONTEMPORARY KNOWLEDGE ON MIRNA MECHANISMS OF ACTION

miRs can have distinct and diverse mRNA targets within the cell. The binding is often, but not exclusively, to the 3'-untranslated region (3'-UTR) and leads to translational repression^{60, 61}. There are currently three currently known mechanisms of miRNA-mediated repression (**Figure 1.7**). The first mechanism involves inhibition of the translation initiation complexes (eIF4F complexes). The second one is blocking translation via polysome elongation, leading to ribosomal stalling. The third mechanism is miRNA-mediated deadenylation and decapping via the CAF1/CCR4 deadenylase complex and Dcp1/2 decapping complex. In this case, mRNA degradation also occurs. We have yet to understand the miR-mRNA binding rules that corresponds to each mechanism and when cells utilized each mechanism and which factors are important in regulating them. More research is needed to clarify how miRNAs function and their relevant impacts.

Figure 1.7. Three currently known mechanisms of miRNA-mediated repression.

1.7 THE SCOPE OF THIS DISSERTATION

Glycosylation enzymes that are more tightly regulated appear to be more prevalent in controlling underlying complex disease states. Study of carbohydrates requires developing and utilizing novel chemical biological tools to decipher the language of the "glycocode" or "sugar code" ⁶²- the concept that the specific glycan structure conveys biological information to cells. Dysregulation of glycosylation may underlie some of the most complex and common diseases of the modern era. MicroRNA is an emerging regulator of glycosylation, tuning low abundance glycan biosynthetic enzymes. Given the emerging importance of miRs in disease and their potential to identify genes that underlie specific biological function, it is clear that more attention should be paid to miR:glycogene interactions and further technological advancements are needed to study miR regulation of glycosylation.

Our current view relies mainly on prediction algorithms to identify miR:target interactions. Predicted target are then experimentally validated. However, to date, only 0.01% of predictions were validated⁴². The accuracy and sensitivity of the prediction tools are also highly questionable (20-60% accuracy⁴³⁻⁴⁵) with high false negatives and positives. This could stem our lack of understanding of the mechanisms and rules of miR interactions with mRNA targets and their relevant impacts. At present, studies into accurate miR:mRNA interactions requires that each interaction be experimentally validated by luciferase assay. If one were to study multiple miRs that co-regulate a biological phenotype, this would then require tens to hundreds of luciferase assays to validate interactions and identify a common target set. However, luciferase assays require the lysis of cells, expensive reagents and only in moderate throughput. My thesis focuses on the development of a high-throughput experimental platform to map miR-target interactions and application of this technology to understand regulatory networks and functions of genes particularly glycosylation enzymes.

TABLE 1.1. List of known miR regulators for human glycogenes organized by pathway. The

HUGO Genome Nomenclature Committee (HGNC) symbol is given for each gene along with the nomenclature used in the accompanying literature cited. For the miRs, Designations for -5p and-3p are noted where specified in reference.

Pathway	Gene Symbol (HGNC)	Alternative symbols used in literature	miRNAs
O-GlcNAc	OGT	O-GLCNAC, HRNT1, MGC22921, FLJ23071, OGT1	hsa-miR-485-5p ^{63, 64} , hsa-miR-101 ⁶⁵ , hsa- miR-483 ⁶⁶ , hsa-miR-200a/200b-3p ⁶⁷ , hsa- miR-24-1 ⁶⁸ , hsa-miR-424 ⁶⁹ , hsa-miR-423- 5p ⁷⁰ , hsa-miR-7 ⁷¹
	OGA	MGEA5, MEA5, NCOAT	hsa-miR-539 ⁷²

N-linked pathway			
Glycosyltransferases	RPN2	SWP1, RPNII, RIBIIR, RPN-II	hsa-miR-128 ⁷³ , hsa-miR-378 ⁷⁴
	ALG3	NOT56L, Not56, CDGS4, D16Ertd36e	hsa-miR-342 ⁷⁵
	ALG12	ECM39, CDG1G	hsa-miR-147a ⁷⁶
	ALG13	GLT28D1, CXorf45, CDG1S	hsa-miR-34a ⁷⁷
	FUT8		hsa-miR-122 ²³ , hsa-miR-34a ²³ , hsa-miR-26a ⁷⁸ , has-miR-26b ⁷⁸ , hsa-miR-146a ²² , hsa-miR-198 ⁷⁹
	MGAT3	GNT-III	hsa-miR-23a ⁸⁰
	MGAT4A	GnT-Iva, GnT-4a	hsa-miR-424 ⁶⁹ , hsa-let-7c ⁸¹
Glycosidases	EDEM1	KIAA0212, EDEM	hsa-miR-211 ⁸² , hsa-miR-581 ^{83, 84} , hsa-miR- 204 ^{83, 84}
	MAN1A2	MAN1B	hsa-miR-30c, hsa-miR-361 ¹⁴
	MAN1B1		hsa-miR-125b ^{85, 86}
	MANEA	FLJ12838	hsa-miR-1202 ⁸⁷
O-linked pathway			
Initiation	GALNT1	GalNAc-T1	hsa-miR-216b ³⁵ , hsa-miR-30b/30d ²⁴ , hsa- miR-10a ⁸⁸ , hsa-miR-129 ³⁴
	GALNT2	GalNAc-T2	hsa-let-7b ⁸⁹
	GALNT3	GalNAc-T3, HHS, HFTC	hsa-miR-26a ⁹⁰ , hsa-miR-17-3p and hsa- miR-221 ⁹¹
	GALNT4	GalNAc-T4	hsa-miR-4262 ⁹² , hsa-miR-9 ⁹³ , hsa-miR- 365 ⁹⁴
	GALNT5	GalNAc-T5	hsa-miR-196b-5p ⁹⁵
	GALNT7	GalNAc-T7	hsa-miR-154 ³² , hsa-miR-214 ^{25, 31} , hsa-miR- 30a-5p ³⁰ , hsa-miR-494 ^{28, 29} , hsa-miR- 34a/c ²⁷ , hsa-miR-17-3p/5p ²⁶ , hsa-miR-214 ^{25, 31} , hsa-miR-30b/30d ²⁴ , hsa-miR-378 ²⁴⁻³³
	GALNT10	GalNAc-T10	hsa-miR-122 ⁹⁶
	GALNT13	GalNAc-T13, KIAA1918	hsa-miR-424 ⁶⁹

	GALNT14	GalNAc-T14, FLJ12691	hsa-miR-125a ⁹⁷
	TMTC2	DKFZp762A217	hsa-miR-142 ⁹⁸
	POGLUT1	KDELCL1, MDS010, MDS010, MGC32995, 9630046K23Rik, MDSRP, hCLP46, Rumi	hsa-miR-134 ⁹⁹ , hsa-miR-142 ^{99, 100}
Elongation and Branching	B3GAT3	GlcAT-I	hsa-miR-23b ¹⁰¹
	B3GLCT	B3GALTL	hsa-miR-200b, hsa-miR-200c, hsa-miR- 429 ¹³
	B3GNT5	B3GN-T5, beta3Gn-T5	hsa-miR-203 ¹⁰²
	C1GALT1	C1GALT, T-synthase	hsa-miR-148b ¹⁰³
	C1GALT1C1	COSMC, C1GALT2	hsa-miR-320 ¹⁰⁴ , hsa-miR-155 ¹⁰⁵ , hsa-miR- 374b ¹⁰⁶
	GCNT2	NACGT1, II, GCNT5,	hsa-miR-199a/b-5p ¹⁰⁷
		CCAT, IGNT, NAGCT1,	
		bA421M1.1, bA360O19.2,	
		ULG3	
	GCNT3	C2GnT-M, C2/4GnT, C2GnT2	hsa-miR-302b-3p ¹⁰⁸ , hsa-miR-15b ¹⁰⁹
	LFNG	SCDO3	hsa-miR-200f ¹¹⁰ , hsa-miR-125a-5p ^{111, 112} , hsa-miR-146a ¹¹³
Capping			
PolyLacNAc	B3GALT5	beta3Gal-T5, B3GalT-V, GLCT5, B3T5	hsa-miR-203 ¹¹⁴
	B4GALT1	GGTB2	hsa-miR-124-3p ¹¹⁵
Sialylation	ST3GAL3	ST3Gal III, SIAT6, MRT12	hsa-miR-200a ¹¹⁶
	ST3GAL4	STZ, SAT3, FLJ11867, CGS23, SIAT4, NANTA3, SIAT4C	hsa-miR-200a ¹¹⁶ , hsa-miR-370 ¹¹³
	ST3GAL5	SIAT9, ST3GalV, SIATGM3S	hsa-miR-26a ¹¹⁷ , hsa-miR-548l ¹¹⁷ , hsa-miR- 34a ¹¹⁷ , hsa-miR-200b ¹³ , hsa-miR-200c ¹³ , hsa-miR-429 ¹³
	ST3GAL6	SIAT10, ST3GALVI	hsa-miR-26a ^{118, 119}
	ST6GAL1	SIAT1, ST6Gal I	hsa-miR-9 ¹²⁰
	ST6GALNAC1	SIAT7A, ST6GalNAcI	hsa-miR-30d-5p ¹²¹

	ST6GALNAC2	SIAT7, SIAT7B, SIATL1	hsa-miR-182 ^{122, 123} , hsa-miR-135b ^{122, 123}
	ST6GALNAC4	SIAT7D, ST6GALNACIV, SIAT3C	hsa-miR-4299 ¹²⁴
	ST6GALNAC5	SIAT7E, MGC3184, ST6GalNAcV	hsa-miR-200b, hsa-miR-200c, hsa-miR- 429 ¹³
	ST8SIA1	SIAT8, SIAT8A	hsa-miR-33a,hsa- let-7e ¹²⁵
	ST8SIA2	SIAT8B, STX, ST8SIA-II, HsT19690	hsa-miR-3099 ¹²⁶
	ST8SIA4	SIAT8D, ST8Sia IV	hsa-miR-26a/26b ¹²⁷ , hsa-miR-146a/146b ¹²⁸ , hsa-miR-181c ¹²⁸
Fucosylation	FUT1	H, HSC	hsa-miR-140-5p ¹²⁹ , hsa-miR-149 ¹²⁹ , hsa- miR-34a ¹³⁰
	FUT2	SE, sej, Se2, SEC2	hsa-miR-15b ¹³¹
	FUT4	CD15, FUC-TIV, FCT3A, ELFT	hsa-miR-125a-5p ¹²⁹ , hsa-miR-26a/26b ⁷⁸ , ¹³² , hsa-miR-200c ¹³³ , hsa-miR-200b ¹³³ , hsa- miR-493-5p ¹³⁴ , hsa-miR-224-3p ¹³⁵
	FUT5	FUC-TV	hsa-miR-125a-3p ¹³⁶
	FUT6	FT1A, FCT3A, FucT-VI, FLJ40754	hsa-miR-326 ¹³⁷ , hsa-miR-125a-3p ¹³⁶ , hsa- miR-106b ¹³⁷
	FUT8*	See above in <i>N</i> -linked pathway	
GAG related enzymes			
Chondroitin Sulfate Synthetases	CHSY1	KIAA0990, CSS1	has-miR-194, hsa-miR-515 ¹³⁸
	CHPF	CSS2, CHSY2	has-miR-194, hsa-miR-515 ¹³⁸
	CHSY3	CSS3, CHSY-2	has-miR-194, hsa-miR-515 ¹³⁸
Glucuronyl acid epimerase	GLCE	KIAA0836, HSEPI	hsa-miR-218 ¹³⁹
Sulfotransferases/sulfatases	CHST3	C6ST, C6ST1	hsa-miR-513a-5p ¹⁴⁰
	HS3ST2	3OST2	hsa-miR-100 141
	HS6ST2		hsa-miR-141-3p, hsa-miR-145-5p ¹⁴²
	NDST1	HSST, NST1	hsa-miR-149 ¹⁴³ , hsa-miR-24 ¹⁴³ , hsa-miR- 191 ¹⁴³
	SULF1	KIAA1077, SULF-1, hSulf-1	hsa-miR-21 ¹⁴⁴

Hyaluronan synthetases	HAS1	HAS	hsa-miR-125a ¹⁴⁵ , hsa-miR-214 ¹⁴⁵
	HAS2		hsa-miR-410 (up-regulating) ¹⁴⁶ , hsa-miR- 7 ¹⁴⁷ , hsa-miR-26b ¹⁴⁸ , hsa-miR-378 ¹⁴⁸ , hsa- miR-23a-3p ¹⁴⁹ , hsa-miR-424/424* ¹⁵⁰ , hsa- miR-23 ¹⁵¹ , hsa-miR-574 ¹⁵¹ , hsa-miR-101- 3p ¹⁵²
	HAS3		hsa-miR-26a-5p ¹⁵³ , hsa-miR-29a-3p ¹⁵⁴
Others			
Glycosidases	FUCA2	MGC1314, dJ20N2.5	hsa-miR-145 ¹⁵⁵ , hsa-miR-200b, hsa-miR-200c, hsa-miR-429 ¹⁴
	GALC		hsa-miR-140-5p ¹⁵⁶
	GBA	GLUC, GBA1	hsa-miR-22-3p ¹⁵⁷
	NEU1	NEU	hsa-miR-125b ¹⁵⁸
	HEXB		hsa-miR-207, hsa-miR-352 ¹⁵⁹
Nucleotide Sugar Metabolism	PMM2	CDG1, CDGS, CDG1a, PMI, PMI1	hsa-miR-451a ^{160, 161}
	TSTA3	FX, P35B, SDR4E1	hsa-miR-125a-5p, hsa-miR-125b ¹⁶²
	СМАНР	СМАН	hsa-miR-155-5p, hsa-miR-425-5p, hsa-miR- 15a-5p, hsa-miR-503-5p, hsa-miR-16-5p, hsa-miR-29a-3p, and hsa-miR-29b-3p ¹⁶³
	UAP1	SPAG2, AGX1, AgX	hsa-miR-224-5p ¹⁶⁴
Nucleotide sugar transporters	SLC35B2	PAPST1, UGTrel4	hsa-miR-22 ¹⁶⁵
i unsportors	SLC35B4	FLJ14697, YEA4	hsa-miR-1764, hsa-miR-1700 ¹⁶⁶
	SLC35F5	FLJ22004	hsa-miR-369-3p ¹⁶⁷
UDP- Glucuronyltransferases (involved in Drug Metabolism)	UGT2B15	UGT2B8	hsa-miR-331-5p ^{168, 169} , hsa-miR-376c ¹⁷⁰ , hsa-miR-770-5p ¹⁶⁹ , hsa-miR-103b ¹⁶⁹ , hsa- miR-3924 ¹⁶⁹ , hsa-miR-376b-3p ¹⁶⁹ , hsa- miR-455-5p, ¹⁶⁹ hsa-miR-605 ¹⁶⁹ , hsa-miR- 624-3p ¹⁶⁹ , hsa-miR-4712-5p ¹⁶⁹ , hsa-miR- 3675-3p ¹⁶⁹ , hsa-miR-6500-5p ¹⁶⁹ , hsa-miR- 548as-3p ¹⁶⁹ , hsa-miR-4292 ¹⁶⁹
	UGT2B17		hsa-miR-376c ¹⁷⁰
	UGT2B7	UGT2B9	hsa-miR-1293, hsa-miR-3664-3p, hsa-miR-4317, hsa-miR-513c-3p, hsa-miR-4483, and hsa-miR-142-3p ^{168, 171}
	COG6	COD2, KIAA1134	hsa-miR-1 ¹⁷²

Other Glycosylation Related Proteins	KL (Klotho)		hsa-miR-34a ¹⁷³ , hsa-miR-199b-5p ^{174, 175} , hsa-miR-504 ¹⁷⁶ , hsa-miR-339 ¹⁷⁶ , hsa-miR- 556 ¹⁷⁷
	SPOCK1	TIC1, SPOCK, testican-1	hsa-miR-150-3p/5p ^{178, 179} , hsa-miR-129-5p ¹⁷⁸ , hsa-miR-585 ¹⁷⁹
	SPOCK3	testican-3	hsa-miR-145 ¹⁸⁰

1.7 REFERENCES

1. Piras, V.; Tomita, M.; Selvarajoo, K., Is central dogma a global property of cellular information flow? *Front Physiol* **2012**, *3*, 439.

2. Wymann, M. P.; Schneiter, R., Lipid signalling in disease. *Nat Rev Mol Cell Biol* **2008**, *9* (2), 162-76.

3. Sasisekharan, R.; Shriver, Z.; Venkataraman, G.; Narayanasami, U., Roles of heparansulphate glycosaminoglycans in cancer. *Nat Rev Cancer* **2002**, *2* (7), 521-8.

4. Heindel, D. W.; Koppolu, S.; Zhang, Y.; Kasper, B.; Meche, L.; Vaiana, C. A.; Bissel, S. J.; Carter, C. E.; Kelvin, A. A.; Elaish, M.; Lopez-Orozco, J.; Zhang, B.; Zhou, B.; Chou, T. W.; Lashua, L.; Hobman, T. C.; Ross, T. M.; Ghedin, E.; Mahal, L. K., Glycomic analysis of host response reveals high mannose as a key mediator of influenza severity. *Proc Natl Acad Sci U S A* **2020**, *117* (43), 26926-26935.

5. Amon, R.; Reuven, E. M.; Leviatan Ben-Arye, S.; Padler-Karavani, V., Glycans in immune recognition and response. *Carbohydr Res* **2014**, *389*, 115-22.

6. van den Berg, T. K.; Honing, H.; Franke, N.; van Remoortere, A.; Schiphorst, W. E.; Liu, F. T.; Deelder, A. M.; Cummings, R. D.; Hokke, C. H.; van Die, I., LacdiNAc-glycans constitute a parasite pattern for galectin-3-mediated immune recognition. *J Immunol* **2004**, *173* (3), 1902-7.

7. De Giorgi, F.; Fumagalli, M.; Scietti, L.; Forneris, F., Collagen hydroxylysine glycosylation: non-conventional substrates for atypical glycosyltransferase enzymes. *Biochem Soc Trans* **2021**, *49* (2), 855-866.

8. Joshi, H. J.; Hansen, L.; Narimatsu, Y.; Freeze, H. H.; Henrissat, B.; Bennett, E.; Wandall, H. H.; Clausen, H.; Schjoldager, K. T., Glycosyltransferase genes that cause monogenic congenital disorders of glycosylation are distinct from glycosyltransferase genes associated with complex diseases. *Glycobiology* **2018**, *28* (5), 284-294.

9. Neelamegham, S.; Mahal, L. K., Multi-level regulation of cellular glycosylation: from genes to transcript to enzyme to structure. *Curr Opin Struct Biol* **2016**, *40*, 145-152.

10. Anugraham, M.; Jacob, F.; Nixdorf, S.; Everest-Dass, A. V.; Heinzelmann-Schwarz, V.; Packer, N. H., Specific glycosylation of membrane proteins in epithelial ovarian cancer cell lines: glycan structures reflect gene expression and DNA methylation status. *Mol Cell Proteomics* **2014**, *13* (9), 2213-32.

11. Nairn, A. V.; York, W. S.; Harris, K.; Hall, E. M.; Pierce, J. M.; Moremen, K. W., Regulation of glycan structures in animal tissues: transcript profiling of glycan-related genes. *J Biol Chem* **2008**, *283* (25), 17298-313.

12. Liu, G.; Marathe, D. D.; Matta, K. L.; Neelamegham, S., Systems-level modeling of cellular glycosylation reaction networks: O-linked glycan formation on natural selectin ligands. *Bioinformatics* **2008**, *24* (23), 2740-7.

13. Kurcon, T.; Liu, Z.; Paradkar, A. V.; Vaiana, C. A.; Koppolu, S.; Agrawal, P.; Mahal, L. K., miRNA proxy approach reveals hidden functions of glycosylation. *Proc Natl Acad Sci U S A* **2015**, *112* (23), 7327-32.

14. Agrawal, P.; Kurcon, T.; Pilobello, K. T.; Rakus, J. F.; Koppolu, S.; Liu, Z.; Batista, B. S.; Eng, W. S.; Hsu, K. L.; Liang, Y.; Mahal, L. K., Mapping posttranscriptional regulation of the human glycome uncovers microRNA defining the glycocode. *Proc Natl Acad Sci U S A* **2014**, *111* (11), 4338-43.

15. Kasper, B. T.; Koppolu, S.; Mahal, L. K., Insights into miRNA regulation of the human glycome. *Biochem Biophys Res Commun* **2014**, *445* (4), 774-9.

16. Schmiedel, J. M.; Klemm, S. L.; Zheng, Y.; Sahay, A.; Bluthgen, N.; Marks, D. S.; van Oudenaarden, A., Gene expression. MicroRNA control of protein expression noise. *Science* **2015**, *348* (6230), 128-32.

17. Liu, B.; Li, J.; Cairns, M. J., Identifying miRNAs, targets and functions. *Brief Bioinform* **2014**, *15* (1), 1-19.

18. Chendrimada, T. P.; Gregory, R. I.; Kumaraswamy, E.; Norman, J.; Cooch, N.; Nishikura, K.; Shiekhattar, R., TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. *Nature* **2005**, *436* (7051), 740-4.

19. Michlewski, G.; Caceres, J. F., Post-transcriptional control of miRNA biogenesis. *RNA* **2019**, *25* (1), 1-16.

20. Khvorova, A.; Reynolds, A.; Jayasena, S. D., Functional siRNAs and miRNAs exhibit strand bias. *Cell* **2003**, *115* (2), 209-16.

21. Agrawal, P.; Fontanals-Cirera, B.; Sokolova, E.; Jacob, S.; Vaiana, C. A.; Argibay, D.; Davalos, V.; McDermott, M.; Nayak, S.; Darvishian, F.; Castillo, M.; Ueberheide, B.; Osman, I.; Fenyo, D.; Mahal, L. K.; Hernando, E., A Systems Biology Approach Identifies FUT8 as a Driver of Melanoma Metastasis. *Cancer Cell* **2017**, *31* (6), 804-819 e7.

22. Cheng, L.; Gao, S.; Song, X.; Dong, W.; Zhou, H.; Zhao, L.; Jia, L., Comprehensive N-glycan profiles of hepatocellular carcinoma reveal association of fucosylation with tumor progression and regulation of FUT8 by microRNAs. *Oncotarget* **2016**, *7* (38), 61199-61214.

23. Bernardi, C.; Soffientini, U.; Piacente, F.; Tonetti, M. G., Effects of microRNAs on fucosyltransferase 8 (FUT8) expression in hepatocarcinoma cells. *PLoS One* 2013, 8 (10), e76540.
24. Gaziel-Sovran, A.; Segura, M. F.; Di Micco, R.; Collins, M. K.; Hanniford, D.; Vega-

Saenz de Miera, E.; Rakus, J. F.; Dankert, J. F.; Shang, S.; Kerbel, R. S.; Bhardwaj, N.; Shao, Y.; Darvishian, F.; Zavadil, J.; Erlebacher, A.; Mahal, L. K.; Osman, I.; Hernando, E., miR-30b/30d regulation of GalNAc transferases enhances invasion and immunosuppression during metastasis. *Cancer Cell* **2011**, *20* (1), 104-18.

25. Peng, R. Q.; Wan, H. Y.; Li, H. F.; Liu, M.; Li, X.; Tang, H., MicroRNA-214 suppresses growth and invasiveness of cervical cancer cells by targeting UDP-N-acetyl-alpha-D-galactosamine:polypeptide N-acetylgalactosaminyltransferase 7. *J Biol Chem* **2012**, *287* (17), 14301-9.

26. Shan, S. W.; Fang, L.; Shatseva, T.; Rutnam, Z. J.; Yang, X.; Du, W.; Lu, W. Y.; Xuan, J. W.; Deng, Z.; Yang, B. B., Mature miR-17-5p and passenger miR-17-3p induce hepatocellular carcinoma by targeting PTEN, GalNT7 and vimentin in different signal pathways. *J Cell Sci* **2013**, *126* (Pt 6), 1517-30.

27. Li, W.; Ma, H.; Sun, J., MicroRNA34a/c function as tumor suppressors in Hep2 laryngeal carcinoma cells and may reduce GALNT7 expression. *Mol Med Rep* **2014**, *9* (4), 1293-8.

28. Duan, H. F.; Li, X. Q.; Hu, H. Y.; Li, Y. C.; Cai, Z.; Mei, X. S.; Yu, P.; Nie, L. P.; Zhang, W.; Yu, Z. D.; Nie, G. H., Functional elucidation of miR-494 in the tumorigenesis of nasopharyngeal carcinoma. *Tumour Biol* **2015**, *36* (9), 6679-89.

29. Nie, G. H.; Luo, L.; Duan, H. F.; Li, X. Q.; Yin, M. J.; Li, Z.; Zhang, W., GALNT7, a target of miR-494, participates in the oncogenesis of nasopharyngeal carcinoma. *Tumour Biol* **2016**, *37* (4), 4559-67.

30. Li, Y.; Li, Y.; Chen, D.; Jin, L.; Su, Z.; Liu, J.; Duan, H.; Li, X.; Qi, Z.; Shi, M.; Ni, L.; Yang, S.; Gui, Y.; Mao, X.; Chen, Y.; Lai, Y., miR30a5p in the tumorigenesis of renal cell carcinoma: A tumor suppressive microRNA. *Mol Med Rep* **2016**, *13* (5), 4085-94.

31. Lu, Q.; Xu, L.; Li, C.; Yuan, Y.; Huang, S.; Chen, H., miR-214 inhibits invasion and migration via downregulating GALNT7 in esophageal squamous cell cancer. *Tumour Biol* **2016**, *37* (11), 14605-14614.

32. Niu, J. T.; Zhang, L. J.; Huang, Y. W.; Li, C.; Jiang, N.; Niu, Y. J., MiR-154 inhibits the growth of laryngeal squamous cell carcinoma by targeting GALNT7. *Biochem Cell Biol* **2018**, *96* (6), 752-760.

33. Kahai, S.; Lee, S. C.; Lee, D. Y.; Yang, J.; Li, M.; Wang, C. H.; Jiang, Z.; Zhang, Y.; Peng, C.; Yang, B. B., MicroRNA miR-378 regulates nephronectin expression modulating osteoblast differentiation by targeting GalNT-7. *PLoS One* **2009**, *4* (10), e7535.

34. Dyrskjot, L.; Ostenfeld, M. S.; Bramsen, J. B.; Silahtaroglu, A. N.; Lamy, P.; Ramanathan, R.; Fristrup, N.; Jensen, J. L.; Andersen, C. L.; Zieger, K.; Kauppinen, S.; Ulhoi, B. P.; Kjems, J.; Borre, M.; Orntoft, T. F., Genomic profiling of microRNAs in bladder cancer: miR-129 is associated with poor outcome and promotes cell death in vitro. *Cancer Res* **2009**, *69* (11), 4851-60.

35. Shan, Y.; Ma, J.; Pan, Y.; Hu, J.; Liu, B.; Jia, L., LncRNA SNHG7 sponges miR-216b to promote proliferation and liver metastasis of colorectal cancer through upregulating GALNT1. *Cell Death Dis* **2018**, *9* (7), 722.

36. Nakagawa, Y.; Nishikimi, T.; Kuwahara, K.; Fujishima, A.; Oka, S.; Tsutamoto, T.; Kinoshita, H.; Nakao, K.; Cho, K.; Inazumi, H.; Okamoto, H.; Nishida, M.; Kato, T.; Fukushima, H.; Yamashita, J. K.; Wijnen, W. J.; Creemers, E. E.; Kangawa, K.; Minamino, N.; Nakao, K.; Kimura, T., MiR30-GALNT1/2 Axis-Mediated Glycosylation Contributes to the Increased Secretion of Inactive Human Prohormone for Brain Natriuretic Peptide (proBNP) From Failing Hearts. *J Am Heart Assoc* **2017**, *6* (2).

37. Schjoldager, K. T.; Joshi, H. J.; Kong, Y.; Goth, C. K.; King, S. L.; Wandall, H. H.; Bennett, E. P.; Vakhrushev, S. Y.; Clausen, H., Deconstruction of O-glycosylation--GalNAc-T isoforms direct distinct subsets of the O-glycoproteome. *EMBO Rep* **2015**, *16* (12), 1713-22.

38. Hintze, J.; Ye, Z.; Narimatsu, Y.; Madsen, T. D.; Joshi, H. J.; Goth, C. K.; Linstedt, A.; Bachert, C.; Mandel, U.; Bennett, E. P.; Vakhrushev, S. Y.; Schjoldager, K. T., Probing the contribution of individual polypeptide GalNAc-transferase isoforms to the O-glycoproteome by inducible expression in isogenic cell lines. *J Biol Chem* **2018**, *293* (49), 19064-19077.

39. Zhang, L.; Hammell, M.; Kudlow, B. A.; Ambros, V.; Han, M., Systematic analysis of dynamic miRNA-target interactions during C. elegans development. *Development* **2009**, *136* (18), 3043-55.

40. Pilobello, K. T.; Krishnamoorthy, L.; Slawek, D.; Mahal, L. K., Development of a lectin microarray for the rapid analysis of protein glycopatterns. *Chembiochem* **2005**, *6* (6), 985-9.

 Pilobello, K. T.; Slawek, D. E.; Mahal, L. K., A ratiometric lectin microarray approach to analysis of the dynamic mammalian glycome. *Proc Natl Acad Sci U S A* 2007, *104* (28), 11534-9.
 Hsu, S. D.; Lin, F. M.; Wu, W. Y.; Liang, C.; Huang, W. C.; Chan, W. L.; Tsai, W. T.; Chen, G. Z.; Lee, C. J.; Chiu, C. M.; Chien, C. H.; Wu, M. C.; Huang, C. Y.; Tsou, A. P.; Huang, H. D., miRTarBase: a database curates experimentally validated microRNA-target interactions. *Nucleic Acids Res* 2011, *39* (Database issue), D163-9.

43. Lee, T.; Wang, N.; Houel, S.; Couts, K.; Old, W.; Ahn, N., Dosage and temporal thresholds in microRNA proteomics. *Mol Cell Proteomics* **2015**, *14* (2), 289-302.

44. Wolter, J. M.; Kotagama, K.; Pierre-Bez, A. C.; Firago, M.; Mangone, M., 3'LIFE: a functional assay to detect miRNA targets in high-throughput. *Nucleic Acids Res* **2014**, *42* (17), e132.

45. Zhou, P.; Xu, W.; Peng, X.; Luo, Z.; Xing, Q.; Chen, X.; Hou, C.; Liang, W.; Zhou, J.; Wu, X.; Songyang, Z.; Jiang, S., Large-scale screens of miRNA-mRNA interactions unveiled that the 3'UTR of a gene is targeted by multiple miRNAs. *PLoS One* **2013**, *8* (7), e68204.

46. Liu, W.; Wang, X., Prediction of functional microRNA targets by integrative modeling of microRNA binding and target expression data. *Genome Biol* **2019**, *20* (1), 18.

47. Ameres, S. L.; Horwich, M. D.; Hung, J. H.; Xu, J.; Ghildiyal, M.; Weng, Z.; Zamore, P. D., Target RNA-directed trimming and tailing of small silencing RNAs. *Science* **2010**, *328* (5985), 1534-9.

48. Ameres, S. L.; Hung, J. H.; Xu, J.; Weng, Z.; Zamore, P. D., Target RNA-directed tailing and trimming purifies the sorting of endo-siRNAs between the two Drosophila Argonaute proteins. *RNA* **2011**, *17* (1), 54-63.

49. Cazalla, D.; Yario, T.; Steitz, J. A., Down-regulation of a host microRNA by a Herpesvirus saimiri noncoding RNA. *Science* **2010**, *328* (5985), 1563-6.

50. Baccarini, A.; Chauhan, H.; Gardner, T. J.; Jayaprakash, A. D.; Sachidanandam, R.; Brown, B. D., Kinetic analysis reveals the fate of a microRNA following target regulation in mammalian cells. *Curr Biol* **2011**, *21* (5), 369-76.

51. Chipman, L. B.; Pasquinelli, A. E., miRNA Targeting: Growing beyond the Seed. *Trends Genet* **2019**, *35* (3), 215-222.

52. Vogel, C.; Marcotte, E. M., Insights into the regulation of protein abundance from proteomic and transcriptomic analyses. *Nat Rev Genet* **2012**, *13* (4), 227-32.

53. Kosti, I.; Jain, N.; Aran, D.; Butte, A. J.; Sirota, M., Cross-tissue Analysis of Gene and Protein Expression in Normal and Cancer Tissues. *Sci. Rep.* **2016**, *6*, 24799.

54. Buccitelli, C.; Selbach, M., mRNAs, proteins and the emerging principles of gene expression control. *Nat Rev Genet* **2020**, *21* (10), 630-644.

55. Pascal, L. E.; True, L. D.; Campbell, D. S.; Deutsch, E. W.; Risk, M.; Coleman, I. M.; Eichner, L. J.; Nelson, P. S.; Liu, A. Y., Correlation of mRNA and protein levels: cell type-specific gene expression of cluster designation antigens in the prostate. *BMC Genomics* **2008**, *9*, 246.

56. Maier, T.; Guell, M.; Serrano, L., Correlation of mRNA and protein in complex biological samples. *FEBS Lett* **2009**, *583* (24), 3966-73.

57. Koussounadis, A.; Langdon, S. P.; Um, I. H.; Harrison, D. J.; Smith, V. A., Relationship between differentially expressed mRNA and mRNA-protein correlations in a xenograft model system. *Sci Rep* **2015**, *5*, 10775.

58. Ostlund, G.; Sonnhammer, E. L., Quality criteria for finding genes with high mRNA-protein expression correlation and coexpression correlation. *Gene* **2012**, *497* (2), 228-36.

59. Eichhorn, S. W.; Guo, H.; McGeary, S. E.; Rodriguez-Mias, R. A.; Shin, C.; Baek, D.; Hsu, S. H.; Ghoshal, K.; Villen, J.; Bartel, D. P., mRNA destabilization is the dominant effect of mammalian microRNAs by the time substantial repression ensues. *Mol Cell* **2014**, *56* (1), 104-15. 60. Zhang, X.; Zuo, X.; Yang, B.; Li, Z.; Xue, Y.; Zhou, Y.; Huang, J.; Zhao, X.; Zhou, J.; Yan, Y.; Zhang, H.; Guo, P.; Sun, H.; Guo, L.; Zhang, Y.; Fu, X. D., MicroRNA directly enhances mitochondrial translation during muscle differentiation. *Cell* **2014**, *158* (3), 607-19.

61. Panda, A. C.; Sahu, I.; Kulkarni, S. D.; Martindale, J. L.; Abdelmohsen, K.; Vindu, A.; Joseph, J.; Gorospe, M.; Seshadri, V., miR-196b-mediated translation regulation of mouse insulin2 via the 5'UTR. *PLoS One* **2014**, *9* (7), e101084.

62. Gabius, H. J.; Andre, S.; Jimenez-Barbero, J.; Romero, A.; Solis, D., From lectin structure to functional glycomics: principles of the sugar code. *Trends Biochem Sci* **2011**, *36* (6), 298-313.

63. Chai, Y.; Du, Y.; Zhang, S.; Xiao, J.; Luo, Z.; He, F.; Huang, K., MicroRNA-485-5p reduces O-GlcNAcylation of Bmi-1 and inhibits colorectal cancer proliferation. *Exp Cell Res* **2018**, *368* (1), 111-118.

64. Han, D. L.; Wang, L. L.; Zhang, G. F.; Yang, W. F.; Chai, J.; Lin, H. M.; Fu, Z.; Yu, J. M., MiRNA-485-5p, inhibits esophageal cancer cells proliferation and invasion by down-regulating O-linked N-acetylglucosamine transferase. *Eur Rev Med Pharmacol Sci* **2019**, *23* (7), 2809-2816.

65. Jiang, M.; Xu, B.; Li, X.; Shang, Y.; Chu, Y.; Wang, W.; Chen, D.; Wu, N.; Hu, S.; Zhang, S.; Li, M.; Wu, K.; Yang, X.; Liang, J.; Nie, Y.; Fan, D., O-GlcNAcylation promotes colorectal cancer metastasis via the miR-101-O-GlcNAc/EZH2 regulatory feedback circuit. *Oncogene* **2019**, *38* (3), 301-316.

66. Yu, F. Y.; Zhou, C. Y.; Liu, Y. B.; Wang, B.; Mao, L.; Li, Y., miR-483 is down-regulated in gastric cancer and suppresses cell proliferation, invasion and protein O-GlcNAcylation by targeting OGT. *Neoplasma* **2018**, *65* (3), 406-414.

67. Lo, W. Y.; Yang, W. K.; Peng, C. T.; Pai, W. Y.; Wang, H. J., MicroRNA-200a/200b Modulate High Glucose-Induced Endothelial Inflammation by Targeting O-linked N-Acetylglucosamine Transferase Expression. *Front Physiol* **2018**, *9*, 355.

68. Liu, Y.; Huang, H.; Liu, M.; Wu, Q.; Li, W.; Zhang, J., MicroRNA-24-1 suppresses mouse hepatoma cell invasion and metastasis via directly targeting O-GlcNAc transferase. *Biomed Pharmacother* **2017**, *91*, 731-738.

69. Vaiana, C. A.; Kurcon, T.; Mahal, L. K., MicroRNA-424 Predicts a Role for beta-1,4 Branched Glycosylation in Cell Cycle Progression. *J Biol Chem* **2016**, *291* (3), 1529-37.

70. Luo, P.; He, T.; Jiang, R.; Li, G., MicroRNA-423-5p targets O-GlcNAc transferase to induce apoptosis in cardiomyocytes. *Mol Med Rep* **2015**, *12* (1), 1163-8.

71. Babae, N.; Bourajjaj, M.; Liu, Y.; Van Beijnum, J. R.; Cerisoli, F.; Scaria, P. V.; Verheul, M.; Van Berkel, M. P.; Pieters, E. H.; Van Haastert, R. J.; Yousefi, A.; Mastrobattista, E.; Storm, G.; Berezikov, E.; Cuppen, E.; Woodle, M.; Schaapveld, R. Q.; Prevost, G. P.; Griffioen, A. W.; Van Noort, P. I.; Schiffelers, R. M., Systemic miRNA-7 delivery inhibits tumor angiogenesis and growth in murine xenograft glioblastoma. *Oncotarget* **2014**, *5* (16), 6687-700.

72. Muthusamy, S.; DeMartino, A. M.; Watson, L. J.; Brittian, K. R.; Zafir, A.; Dassanayaka, S.; Hong, K. U.; Jones, S. P., MicroRNA-539 is up-regulated in failing heart, and suppresses O-GlcNAcase expression. *J Biol Chem* **2014**, *289* (43), 29665-76.

73. Ghahramani Seno, M. M.; Gwadry, F. G.; Hu, P.; Scherer, S. W., Neuregulin 1-alpha regulates phosphorylation, acetylation, and alternative splicing in lymphoblastoid cells. *Genome* **2013**, *56* (10), 619-25.

74. Chan, J. K.; Kiet, T. K.; Blansit, K.; Ramasubbaiah, R.; Hilton, J. F.; Kapp, D. S.; Matei, D., MiR-378 as a biomarker for response to anti-angiogenic treatment in ovarian cancer. *Gynecol Oncol* **2014**, *133* (3), 568-74.

75. Liu, B.; Ma, X.; Liu, Q.; Xiao, Y.; Pan, S.; Jia, L., Aberrant mannosylation profile and FTX/miR-342/ALG3-axis contribute to development of drug resistance in acute myeloid leukemia. *Cell Death Dis* **2018**, *9* (6), 688.

76. Tatura, R.; Buchholz, M.; Dickson, D. W.; van Swieten, J.; McLean, C.; Hoglinger, G.; Muller, U., microRNA profiling: increased expression of miR-147a and miR-518e in progressive supranuclear palsy (PSP). *Neurogenetics* **2016**, *17* (3), 165-71.

77. De Antonellis, P.; Carotenuto, M.; Vandenbussche, J.; De Vita, G.; Ferrucci, V.; Medaglia, C.; Boffa, I.; Galiero, A.; Di Somma, S.; Magliulo, D.; Aiese, N.; Alonzi, A.; Spano, D.; Liguori, L.; Chiarolla, C.; Verrico, A.; Schulte, J. H.; Mestdagh, P.; Vandesompele, J.; Gevaert, K.; Zollo, M., Early targets of miR-34a in neuroblastoma. *Mol Cell Proteomics* **2014**, *13* (8), 2114-31.

78. Li, Y.; Sun, Z.; Liu, B.; Shan, Y.; Zhao, L.; Jia, L., Tumor-suppressive miR-26a and miR-26b inhibit cell aggressiveness by regulating FUT4 in colorectal cancer. *Cell Death Dis* **2017**, *8* (6), e2892.

79. Wang, M.; Wang, J.; Kong, X.; Chen, H.; Wang, Y.; Qin, M.; Lin, Y.; Chen, H.; Xu, J.; Hong, J.; Chen, Y. X.; Zou, W.; Fang, J. Y., MiR-198 represses tumor growth and metastasis in colorectal cancer by targeting fucosyl transferase 8. *Sci Rep* **2014**, *4*, 6145.

80. Huang, H.; Liu, Y.; Yu, P.; Qu, J.; Guo, Y.; Li, W.; Wang, S.; Zhang, J., MiR-23a transcriptional activated by Runx2 increases metastatic potential of mouse hepatoma cell via directly targeting Mgat3. *Sci Rep* **2018**, *8* (1), 7366.

81. Guo, Y.; Li, S.; Qu, J.; Ye, L.; Wang, S.; Fan, J.; Wang, Q.; Zhang, J., Let-7c inhibits metastatic ability of mouse hepatocarcinoma cells via targeting mannoside acetylglucosaminyltransferase 4 isoenzyme A. *Int J Biochem Cell Biol* **2014**, *53*, 1-8.

82. Wang, Y. Q.; Ren, Y. F.; Song, Y. J.; Xue, Y. F.; Zhang, X. J.; Cao, S. T.; Deng, Z. J.; Wu, J.; Chen, L.; Li, G.; Shi, K. Q.; Chen, Y. P.; Ren, H.; Huang, A. L.; Tang, K. F., MicroRNA-581 promotes hepatitis B virus surface antigen expression by targeting Dicer and EDEM1. *Carcinogenesis* **2014**, *35* (9), 2127-33.

83. Li, G.; Luna, C.; Qiu, J.; Epstein, D. L.; Gonzalez, P., Role of miR-204 in the regulation of apoptosis, endoplasmic reticulum stress response, and inflammation in human trabecular meshwork cells. *Invest Ophthalmol Vis Sci* **2011**, *52* (6), 2999-3007.

84. Vitiello, M.; Tuccoli, A.; D'Aurizio, R.; Sarti, S.; Giannecchini, L.; Lubrano, S.; Marranci, A.; Evangelista, M.; Peppicelli, S.; Ippolito, C.; Barravecchia, I.; Guzzolino, E.; Montagnani, V.; Gowen, M.; Mercoledi, E.; Mercatanti, A.; Comelli, L.; Gurrieri, S.; Wu, L. W.; Ope, O.; Flaherty, K.; Boland, G. M.; Hammond, M. R.; Kwong, L.; Chiariello, M.; Stecca, B.; Zhang, G.; Salvetti, A.; Angeloni, D.; Pitto, L.; Calorini, L.; Chiorino, G.; Pellegrini, M.; Herlyn, M.; Osman, I.; Poliseno, L., Context-dependent miR-204 and miR-211 affect the biological properties of amelanotic and melanotic melanoma cells. *Oncotarget* **2017**, *8* (15), 25395-25417.

85. Lim, S. M.; Park, S. H.; Lee, J. H.; Kim, S. H.; Kim, J. Y.; Min, J. K.; Lee, G. M.; Kim, Y. G., Differential expression of microRNAs in recombinant Chinese hamster ovary cells treated with sodium butyrate using digital RNA counting. *J Biotechnol* **2018**, *283*, 37-42.

86. Pan, S.; Cheng, X.; Chen, H.; Castro, P. D.; Ittmann, M. M.; Hutson, A. W.; Zapata, S. K.; Sifers, R. N., ERManI is a target of miR-125b and promotes transformation phenotypes in hepatocellular carcinoma (HCC). *PLoS One* **2013**, *8* (8), e72829.

87. Adhikari, S.; Mandal, P., Integrated analysis of global gene and microRNA expression profiling associated with aplastic anaemia. *Life Sci* **2019**, *228*, 47-52.

88. Bhise, N. S.; Chauhan, L.; Shin, M.; Cao, X.; Pounds, S.; Lamba, V.; Lamba, J. K., MicroRNA-mRNA Pairs Associated with Outcome in AML: From In Vitro Cell-Based Studies to AML Patients. *Front Pharmacol* **2015**, *6*, 324.

89. Serino, G.; Sallustio, F.; Curci, C.; Cox, S. N.; Pesce, F.; De Palma, G.; Schena, F. P., Role of let-7b in the regulation of N-acetylgalactosaminyltransferase 2 in IgA nephropathy. *Nephrol Dial Transplant* **2015**, *30* (7), 1132-9.

90. Liu, B.; Pan, S.; Xiao, Y.; Liu, Q.; Xu, J.; Jia, L., LINC01296/miR-26a/GALNT3 axis contributes to colorectal cancer progression by regulating O-glycosylated MUC1 via PI3K/AKT pathway. *J Exp Clin Cancer Res* **2018**, *37* (1), 316.

91. Nakamura, S.; Horie, M.; Daidoji, T.; Honda, T.; Yasugi, M.; Kuno, A.; Komori, T.; Okuzaki, D.; Narimatsu, H.; Nakaya, T.; Tomonaga, K., Influenza A Virus-Induced Expression of a GalNAc Transferase, GALNT3, via MicroRNAs Is Required for Enhanced Viral Replication. *J Virol* **2016**, *90* (4), 1788-801.

92. Qu, J. J.; Qu, X. Y.; Zhou, D. Z., miR4262 inhibits colon cancer cell proliferation via targeting of GALNT4. *Mol Med Rep* **2017**, *16* (4), 3731-3736.

93. Liu, Y.; Liu, H.; Yang, L.; Wu, Q.; Liu, W.; Fu, Q.; Zhang, W.; Zhang, H.; Xu, J.; Gu, J., Loss of N-Acetylgalactosaminyltransferase-4 Orchestrates Oncogenic MicroRNA-9 in Hepatocellular Carcinoma. *J Biol Chem* **2017**, *292* (8), 3186-3200.

94. Zhang, J.; Zhang, Z.; Wang, Q.; Xing, X. J.; Zhao, Y., Overexpression of microRNA-365 inhibits breast cancer cell growth and chemo-resistance through GALNT4. *Eur Rev Med Pharmacol Sci* **2016**, *20* (22), 4710-4718.

95. Stiegelbauer, V.; Vychytilova-Faltejskova, P.; Karbiener, M.; Pehserl, A. M.; Reicher, A.; Resel, M.; Heitzer, E.; Ivan, C.; Bullock, M.; Ling, H.; Deutsch, A.; Wulf-Goldenberg, A.; Adiprasito, J. B.; Stoeger, H.; Haybaeck, J.; Svoboda, M.; Stotz, M.; Hoefler, G.; Slaby, O.; Calin, G. A.; Gerger, A.; Pichler, M., miR-196b-5p Regulates Colorectal Cancer Cell Migration and Metastases through Interaction with HOXB7 and GALNT5. *Clin Cancer Res* **2017**, *23* (17), 5255-5266.

96. Wu, Q.; Liu, H. O.; Liu, Y. D.; Liu, W. S.; Pan, D.; Zhang, W. J.; Yang, L.; Fu, Q.; Xu, J. J.; Gu, J. X., Decreased expression of hepatocyte nuclear factor 4alpha (Hnf4alpha)/microRNA-122 (miR-122) axis in hepatitis B virus-associated hepatocellular carcinoma enhances potential oncogenic GALNT10 protein activity. *J Biol Chem* **2015**, *290* (2), 1170-85.

97. Yang, J.; Li, G.; Zhang, K., MiR-125a regulates ovarian cancer proliferation and invasion by repressing GALNT14 expression. *Biomed Pharmacother* **2016**, *80*, 381-387.

98. Liu, X.; Chen, J.; Guan, T.; Yao, H.; Zhang, W.; Guan, Z.; Wang, Y., miRNAs and target genes in the blood as biomarkers for the early diagnosis of Parkinson's disease. *BMC Syst Biol* **2019**, *13* (1), 10.

99. Gao, Y.; Liu, T.; Huang, Y., MicroRNA-134 suppresses endometrial cancer stem cells by targeting POGLUT1 and Notch pathway proteins. *FEBS Lett* **2015**, *589* (2), 207-14.

100. Thapa, I.; Fox, H. S.; Bastola, D., Coexpression Network Analysis of miRNA-142 Overexpression in Neuronal Cells. *Biomed Res Int* **2015**, *2015*, 921517.

101. Metzler-Guillemain, C.; Victorero, G.; Lepoivre, C.; Bergon, A.; Yammine, M.; Perrin, J.; Sari-Minodier, I.; Boulanger, N.; Rihet, P.; Nguyen, C., Sperm mRNAs and microRNAs as candidate markers for the impact of toxicants on human spermatogenesis: an application to tobacco smoking. *Syst Biol Reprod Med* **2015**, *61* (3), 139-49.

102. Wang, R.; Fang, J.; Ma, H.; Feng, L.; Lian, M.; Yang, F.; Wang, H.; Wang, Q.; Chen, X., Effect of microRNA-203 on tumor growth in human hypopharyngeal squamous cell carcinoma. *Mol Cell Biochem* **2015**, *405* (1-2), 97-104.

103. Serino, G.; Sallustio, F.; Cox, S. N.; Pesce, F.; Schena, F. P., Abnormal miR-148b expression promotes aberrant glycosylation of IgA1 in IgA nephropathy. *J Am Soc Nephrol* **2012**, *23* (5), 814-24.

104. Li, C.; Shi, J.; Zhao, Y., MiR-320 promotes B cell proliferation and the production of aberrant glycosylated IgA1 in IgA nephropathy. *J Cell Biochem* **2018**, *119* (6), 4607-4614.

105. Yang, L.; Zhang, X.; Peng, W.; Wei, M.; Qin, W., MicroRNA-155-induced T lymphocyte subgroup drifting in IgA nephropathy. *Int Urol Nephrol* **2017**, *49* (2), 353-361.

106. Hu, S.; Bao, H.; Xu, X.; Zhou, X.; Qin, W.; Zeng, C.; Liu, Z., Increased miR-374b promotes cell proliferation and the production of aberrant glycosylated IgA1 in B cells of IgA nephropathy. *FEBS Lett* **2015**, *589* (24 Pt B), 4019-25.

107. Chao, C. C.; Wu, P. H.; Huang, H. C.; Chung, H. Y.; Chou, Y. C.; Cai, B. H.; Kannagi, R., Downregulation of miR-199a/b-5p is associated with GCNT2 induction upon epithelial-mesenchymal transition in colon cancer. *FEBS Lett* **2017**, *591* (13), 1902-1917.

108. Li, Q.; Ran, P.; Zhang, X.; Guo, X.; Yuan, Y.; Dong, T.; Zhu, B.; Zheng, S.; Xiao, C., Downregulation of N-Acetylglucosaminyltransferase GCNT3 by miR-302b-3p Decreases Non-Small Cell Lung Cancer (NSCLC) Cell Proliferation, Migration and Invasion. *Cell Physiol Biochem* **2018**, *50* (3), 987-1004.

109. Gonzalez-Vallinas, M.; Molina, S.; Vicente, G.; Zarza, V.; Martin-Hernandez, R.; Garcia-Risco, M. R.; Fornari, T.; Reglero, G.; Ramirez de Molina, A., Expression of microRNA-15b and the glycosyltransferase GCNT3 correlates with antitumor efficacy of Rosemary diterpenes in colon and pancreatic cancer. *PLoS One* **2014**, *9* (6), e98556.

110. He, X. J.; Xiao, Y.; Zhang, Q.; Ma, L. P.; Li, N.; Yang, J., Detection and functional annotation of misregulated microRNAs in the brain of the Ts65Dn mouse model of Down syndrome. *Chin Med J (Engl)* **2013**, *126* (1), 108-13.

111. Riley, M. F.; Bochter, M. S.; Wahi, K.; Nuovo, G. J.; Cole, S. E., Mir-125a-5p-mediated regulation of Lfng is essential for the avian segmentation clock. *Dev Cell* **2013**, *24* (5), 554-61.

112. Wahi, K.; Friesen, S.; Coppola, V.; Cole, S. E., Putative binding sites for mir-125 family miRNAs in the mouse Lfng 3'UTR affect transcript expression in the segmentation clock, but mir-125a-5p is dispensable for normal somitogenesis. *Dev Dyn* **2017**, *246* (10), 740-748.

113. Raimo, M.; Orso, F.; Grassi, E.; Cimino, D.; Penna, E.; De Pitta, C.; Stadler, M. B.; Primo, L.; Calautti, E.; Quaglino, P.; Provero, P.; Taverna, D., miR-146a Exerts Differential Effects on Melanoma Growth and Metastatization. *Mol Cancer Res* **2016**, *14* (6), 548-62.

114. Wang, L.; Wei, Z.; Wu, K.; Dai, W.; Zhang, C.; Peng, J.; He, Y., Long noncoding RNA B3GALT5-AS1 suppresses colon cancer liver metastasis via repressing microRNA-203. *Aging (Albany NY)* **2018**, *10* (12), 3662-3682.

115. Liu, Y. X.; Wang, L.; Liu, W. J.; Zhang, H. T.; Xue, J. H.; Zhang, Z. W.; Gao, C. J., MiR-124-3p/B4GALT1 axis plays an important role in SOCS3-regulated growth and chemosensitivity of CML. *J Hematol Oncol* **2016**, *9* (1), 69.

116. Teruel, R.; Martinez-Martinez, I.; Guerrero, J. A.; Gonzalez-Conejero, R.; de la Morena-Barrio, M. E.; Salloum-Asfar, S.; Arroyo, A. B.; Aguila, S.; Garcia-Barbera, N.; Minano, A.; Vicente, V.; Corral, J.; Martinez, C., Control of post-translational modifications in antithrombin during murine post-natal development by miR-200a. *J Biomed Sci* **2013**, *20*, 29.

117. Cai, H.; Zhou, H.; Miao, Y.; Li, N.; Zhao, L.; Jia, L., MiRNA expression profiles reveal the involvement of miR-26a, miR-5481 and miR-34a in hepatocellular carcinoma progression through regulation of ST3GAL5. *Lab Invest* **2017**, *97* (5), 530-542.

118. Tonevitsky, A. G.; Maltseva, D. V.; Abbasi, A.; Samatov, T. R.; Sakharov, D. A.; Shkurnikov, M. U.; Lebedev, A. E.; Galatenko, V. V.; Grigoriev, A. I.; Northoff, H., Dynamically regulated miRNA-mRNA networks revealed by exercise. *BMC Physiol* **2013**, *13*, 9.

119. Sun, M.; Zhao, X.; Liang, L.; Pan, X.; Lv, H.; Zhao, Y., Sialyltransferase ST3GAL6 mediates the effect of microRNA-26a on cell growth, migration, and invasion in hepatocellular carcinoma through the protein kinase B/mammalian target of rapamycin pathway. *Cancer Sci* **2017**, *108* (2), 267-276.

120. Han, Y.; Liu, Y.; Fu, X.; Zhang, Q.; Huang, H.; Zhang, C.; Li, W.; Zhang, J., miR-9 inhibits the metastatic ability of hepatocellular carcinoma via targeting beta galactoside alpha-2,6-sialyltransferase 1. *J Physiol Biochem* **2018**, *74* (3), 491-501.

121. Gao, L.; He, R. Q.; Wu, H. Y.; Zhang, T. T.; Liang, H. W.; Ye, Z. H.; Li, Z. Y.; Xie, T. T.; Shi, Q.; Ma, J.; Hu, X. H.; Chen, G., Expression Signature and Role of miR-30d-5p in Non-Small Cell Lung Cancer: a Comprehensive Study Based on in Silico Analysis of Public Databases and in Vitro Experiments. *Cell Physiol Biochem* **2018**, *50* (5), 1964-1987.

122. Liu, B.; Liu, Y.; Zhao, L.; Pan, Y.; Shan, Y.; Li, Y.; Jia, L., Upregulation of microRNA-135b and microRNA-182 promotes chemoresistance of colorectal cancer by targeting ST6GALNAC2 via PI3K/AKT pathway. *Mol Carcinog* **2017**, *56* (12), 2669-2680.

123. Jia, L.; Luo, S.; Ren, X.; Li, Y.; Hu, J.; Liu, B.; Zhao, L.; Shan, Y.; Zhou, H., miR-182 and miR-135b Mediate the Tumorigenesis and Invasiveness of Colorectal Cancer Cells via Targeting ST6GALNAC2 and PI3K/AKT Pathway. *Dig Dis Sci* **2017**, *62* (12), 3447-3459.

124. Miao, X.; Jia, L.; Zhou, H.; Song, X.; Zhou, M.; Xu, J.; Zhao, L.; Feng, X.; Zhao, Y., miR-4299 mediates the invasive properties and tumorigenicity of human follicular thyroid carcinoma by targeting ST6GALNAC4. *IUBMB Life* **2016**, *68* (2), 136-44.

125. Shan, Y.; Liu, Y.; Zhao, L.; Liu, B.; Li, Y.; Jia, L., MicroRNA-33a and let-7e inhibit human colorectal cancer progression by targeting ST8SIA1. *Int J Biochem Cell Biol* **2017**, *90*, 48-58.

126. Liu, Q. Y.; Miao, Y.; Wang, X. H.; Wang, P.; Cheng, Z. C.; Qian, T. M., Increased levels of miR-3099 induced by peripheral nerve injury promote Schwann cell proliferation and migration. *Neural Regen Res* **2019**, *14* (3), 525-531.

127. Ma, X.; Dong, W.; Su, Z.; Zhao, L.; Miao, Y.; Li, N.; Zhou, H.; Jia, L., Functional roles of sialylation in breast cancer progression through miR-26a/26b targeting ST8SIA4. *Cell Death Dis* **2016**, *7* (12), e2561.

128. Zhao, L.; Li, Y.; Song, X.; Zhou, H.; Li, N.; Miao, Y.; Jia, L., Upregulation of miR-181c inhibits chemoresistance by targeting ST8SIA4 in chronic myelocytic leukemia. *Oncotarget* **2016**, 7 (37), 60074-60086.

129. Wang, Z.; Hu, J.; Pan, Y.; Shan, Y.; Jiang, L.; Qi, X.; Jia, L., miR-140-5p/miR-149 Affects Chondrocyte Proliferation, Apoptosis, and Autophagy by Targeting FUT1 in Osteoarthritis. *Inflammation* **2018**, *41* (3), 959-971. 130. Wang, Y.; Chen, J.; Chen, X.; Jiang, F.; Sun, Y.; Pan, Y.; Zhang, W.; Zhang, J., MiR-34a suppresses HNSCC growth through modulating cell cycle arrest and senescence. *Neoplasma* **2017**, *64* (4), 543-553.

131. Wu, C. S.; Yen, C. J.; Chou, R. H.; Chen, J. N.; Huang, W. C.; Wu, C. Y.; Yu, Y. L., Downregulation of microRNA-15b by hepatitis B virus X enhances hepatocellular carcinoma proliferation via fucosyltransferase 2-induced Globo H expression. *Int J Cancer* **2014**, *134* (7), 1638-47.

132. Hu, J.; Wang, Z.; Pan, Y.; Ma, J.; Miao, X.; Qi, X.; Zhou, H.; Jia, L., MiR-26a and miR-26b mediate osteoarthritis progression by targeting FUT4 via NF-kappaB signaling pathway. *Int J Biochem Cell Biol* **2018**, *94*, 79-88.

133. Zheng, Q.; Zhang, D.; Yang, Y. U.; Cui, X.; Sun, J.; Liang, C.; Qin, H.; Yang, X.; Liu, S.; Yan, Q., MicroRNA-200c impairs uterine receptivity formation by targeting FUT4 and alpha1,3-fucosylation. *Cell Death Differ* **2017**, *24* (12), 2161-2172.

134. Zhao, L.; Feng, X.; Song, X.; Zhou, H.; Zhao, Y.; Cheng, L.; Jia, L., miR-493-5p attenuates the invasiveness and tumorigenicity in human breast cancer by targeting FUT4. *Oncol Rep* **2016**, *36* (2), 1007-15.

135. Feng, X.; Zhao, L.; Gao, S.; Song, X.; Dong, W.; Zhao, Y.; Zhou, H.; Cheng, L.; Miao, X.; Jia, L., Increased fucosylation has a pivotal role in multidrug resistance of breast cancer cells through miR-224-3p targeting FUT4. *Gene* **2016**, *578* (2), 232-41.

136. Liang, L.; Gao, C.; Li, Y.; Sun, M.; Xu, J.; Li, H.; Jia, L.; Zhao, Y., miR-125a-3p/FUT5-FUT6 axis mediates colorectal cancer cell proliferation, migration, invasion and pathological angiogenesis via PI3K-Akt pathway. *Cell Death Dis* **2017**, *8* (8), e2968.

137. Li, N.; Liu, Y.; Miao, Y.; Zhao, L.; Zhou, H.; Jia, L., MicroRNA-106b targets FUT6 to promote cell migration, invasion, and proliferation in human breast cancer. *IUBMB Life* **2016**, *68* (9), 764-75.

138. Hu, B.; Xu, C.; Tian, Y.; Shi, C.; Zhang, Y.; Deng, L.; Zhou, H.; Cao, P.; Chen, H.; Yuan, W., Inflammatory microRNA-194 and -515 attenuate the biosynthesis of chondroitin sulfate during human intervertebral disc degeneration. *Oncotarget* **2017**, *8* (30), 49303-49317.

139. Prudnikova, T. Y.; Mostovich, L. A.; Kashuba, V. I.; Ernberg, I.; Zabarovsky, E. R.; Grigorieva, E. V., miRNA-218 contributes to the regulation of D-glucuronyl C5-epimerase expression in normal and tumor breast tissues. *Epigenetics* **2012**, *7* (10), 1109-14.

140. Song, Y. Q.; Karasugi, T.; Cheung, K. M.; Chiba, K.; Ho, D. W.; Miyake, A.; Kao, P. Y.; Sze, K. L.; Yee, A.; Takahashi, A.; Kawaguchi, Y.; Mikami, Y.; Matsumoto, M.; Togawa, D.; Kanayama, M.; Shi, D.; Dai, J.; Jiang, Q.; Wu, C.; Tian, W.; Wang, N.; Leong, J. C.; Luk, K. D.; Yip, S. P.; Cherny, S. S.; Wang, J.; Mundlos, S.; Kelempisioti, A.; Eskola, P. J.; Mannikko, M.; Makela, P.; Karppinen, J.; Jarvelin, M. R.; O'Reilly, P. F.; Kubo, M.; Kimura, T.; Kubo, T.; Toyama, Y.; Mizuta, H.; Cheah, K. S.; Tsunoda, T.; Sham, P. C.; Ikegawa, S.; Chan, D., Lumbar disc degeneration is linked to a carbohydrate sulfotransferase 3 variant. *J Clin Invest* **2013**, *123* (11), 4909-17.

141. Yang, G.; Gong, Y.; Wang, Q.; Wang, Y.; Zhang, X., The role of miR-100-mediated Notch pathway in apoptosis of gastric tumor cells. *Cell Signal* **2015**, *27* (6), 1087-101.

142. Liep, J.; Kilic, E.; Meyer, H. A.; Busch, J.; Jung, K.; Rabien, A., Cooperative Effect of miR-141-3p and miR-145-5p in the Regulation of Targets in Clear Cell Renal Cell Carcinoma. *PLoS One* **2016**, *11* (6), e0157801.

143. Shi, X.; Su, S.; Long, J.; Mei, B.; Chen, Y., MicroRNA-191 targets N-deacetylase/N-sulfotransferase 1 and promotes cell growth in human gastric carcinoma cell line MGC803. *Acta Biochim Biophys Sin (Shanghai)* **2011**, *43* (11), 849-56.

144. Bao, L.; Yan, Y.; Xu, C.; Ji, W.; Shen, S.; Xu, G.; Zeng, Y.; Sun, B.; Qian, H.; Chen, L.; Wu, M.; Su, C.; Chen, J., MicroRNA-21 suppresses PTEN and hSulf-1 expression and promotes hepatocellular carcinoma progression through AKT/ERK pathways. *Cancer Lett* **2013**, *337* (2), 226-36.

145. Yang, L.; Zhang, S.; Guo, K.; Huang, H.; Qi, S.; Yao, J.; Zhang, Z., miR-125a restrains cell migration and invasion by targeting STAT3 in gastric cancer cells. *Onco Targets Ther* **2019**, *12*, 205-215.

146. Wang, G.; Zhao, W.; Gao, X.; Zhang, D.; Li, Y.; Zhang, Y.; Li, W., HNF1AAS1 promotes growth and metastasis of esophageal squamous cell carcinoma by sponging miR214 to upregulate the expression of SOX-4. *Int J Oncol* **2017**, *51* (2), 657-667.

147. Midgley, A. C.; Morris, G.; Phillips, A. O.; Steadman, R., 17beta-estradiol ameliorates age-associated loss of fibroblast function by attenuating IFN-gamma/STAT1-dependent miR-7 upregulation. *Aging Cell* **2016**, *15* (3), 531-41.

148. Pan, B.; Toms, D.; Shen, W.; Li, J., MicroRNA-378 regulates oocyte maturation via the suppression of aromatase in porcine cumulus cells. *Am J Physiol Endocrinol Metab* **2015**, *308* (6), E525-34.

149. Rock, K.; Tigges, J.; Sass, S.; Schutze, A.; Florea, A. M.; Fender, A. C.; Theis, F. J.; Krutmann, J.; Boege, F.; Fritsche, E.; Reifenberger, G.; Fischer, J. W., miR-23a-3p causes cellular senescence by targeting hyaluronan synthase 2: possible implication for skin aging. *J Invest Dermatol* **2015**, *135* (2), 369-377.

150. Zhang, J.; Chang, J. J.; Xu, F.; Ma, X. J.; Wu, Y.; Li, W. C.; Wang, H. J.; Huang, G. Y.; Ma, D., MicroRNA deregulation in right ventricular outflow tract myocardium in nonsyndromic tetralogy of fallot. *Can J Cardiol* **2013**, *29* (12), 1695-703.

151. Lagendijk, A. K.; Goumans, M. J.; Burkhard, S. B.; Bakkers, J., MicroRNA-23 restricts cardiac valve formation by inhibiting Has2 and extracellular hyaluronic acid production. *Circ Res* **2011**, *109* (6), 649-57.

152. Pan, B.; Toms, D.; Li, J., MicroRNA-574 suppresses oocyte maturation via targeting hyaluronan synthase 2 in porcine cumulus cells. *Am J Physiol Cell Physiol* **2018**, *314* (3), C268-C277.

153. Li, H. M.; Xiao, Y. J.; Min, Z. S.; Tan, C., Identification and interaction analysis of key genes and microRNAs in atopic dermatitis by bioinformatics analysis. *Clin Exp Dermatol* **2019**, *44* (3), 257-264.

154. Bai, F.; Jiu, M.; You, Y.; Feng, Y.; Xin, R.; Liu, X.; Mo, L.; Nie, Y., miR29a3p represses proliferation and metastasis of gastric cancer cells via attenuating HAS3 levels. *Mol Med Rep* **2018**, *17* (6), 8145-8152.

155. Pashaei, E.; Guzel, E.; Ozgurses, M. E.; Demirel, G.; Aydin, N.; Ozen, M., A Meta-Analysis: Identification of Common Mir-145 Target Genes that have Similar Behavior in Different GEO Datasets. *PLoS One* **2016**, *11* (9), e0161491.

156. Barter, M. J.; Tselepi, M.; Gomez, R.; Woods, S.; Hui, W.; Smith, G. R.; Shanley, D. P.; Clark, I. M.; Young, D. A., Genome-Wide MicroRNA and Gene Analysis of Mesenchymal Stem Cell Chondrogenesis Identifies an Essential Role and Multiple Targets for miR-140-5p. *Stem Cells* **2015**, *33* (11), 3266-80.

157. Straniero, L.; Rimoldi, V.; Samarani, M.; Goldwurm, S.; Di Fonzo, A.; Kruger, R.; Deleidi, M.; Aureli, M.; Solda, G.; Duga, S.; Asselta, R., The GBAP1 pseudogene acts as a ceRNA for the glucocerebrosidase gene GBA by sponging miR-22-3p. *Sci Rep* **2017**, *7*(1), 12702. 158. Chang, S.; He, S.; Qiu, G.; Lu, J.; Wang, J.; Liu, J.; Fan, L.; Zhao, W.; Che, X., MicroRNA-125b promotes invasion and metastasis of gastric cancer by targeting STARD13 and NEU1. *Tumour Biol* **2016**, *37*(9), 12141-12151.

159. Tao, J.; Liu, W.; Shang, G.; Zheng, Y.; Huang, J.; Lin, R.; Chen, L., MiR-207/352 regulate lysosomal-associated membrane proteins and enzymes following ischemic stroke. *Neuroscience* **2015**, *305*, 1-14.

160. Yang, C.; Ren, J.; Li, B.; Zhang, D.; Ma, C.; Cheng, C.; Sun, Y.; Fu, L.; Shi, X., Identification of clinical tumor stages related mRNAs and miRNAs in cervical squamous cell carcinoma. *Pathol Res Pract* **2018**, *214* (10), 1638-1647.

161. Yamada, Y.; Arai, T.; Sugawara, S.; Okato, A.; Kato, M.; Kojima, S.; Yamazaki, K.; Naya, Y.; Ichikawa, T.; Seki, N., Impact of novel oncogenic pathways regulated by antitumor miR-451a in renal cell carcinoma. *Cancer Sci* **2018**, *109* (4), 1239-1253.

162. Sun, Y.; Liu, X.; Zhang, Q.; Mao, X.; Feng, L.; Su, P.; Chen, H.; Guo, Y.; Jin, F., Oncogenic potential of TSTA3 in breast cancer and its regulation by the tumor suppressors miR-125a-5p and miR-125b. *Tumour Biol* **2016**, *37* (4), 4963-72.

163. Kwon, D. N.; Chang, B. S.; Kim, J. H., MicroRNA dysregulation in liver and pancreas of CMP-Neu5Ac hydroxylase null mice disrupts insulin/PI3K-AKT signaling. *Biomed Res Int* **2014**, *2014*, 236385.

164. Gan, B. L.; Zhang, L. J.; Gao, L.; Ma, F. C.; He, R. Q.; Chen, G.; Ma, J.; Zhong, J. C.; Hu, X. H., Downregulation of miR2245p in prostate cancer and its relevant molecular mechanism via TCGA, GEO database and in silico analyses. *Oncol Rep* **2018**, *40* (6), 3171-3188.

165. Xu, Q. F.; Pan, Y. W.; Li, L. C.; Zhou, Z.; Huang, Q. L.; Pang, J. C.; Zhu, X. P.; Ren, Y.; Yang, H.; Ohgaki, H.; Lv, S. Q., MiR-22 is frequently downregulated in medulloblastomas and inhibits cell proliferation via the novel target PAPST1. *Brain Pathol* **2014**, *24* (6), 568-83.

166. Lim, C. H.; Jeong, W.; Lim, W.; Kim, J.; Song, G.; Bazer, F. W., Differential expression of select members of the SLC family of genes and regulation of expression by microRNAs in the chicken oviduct. *Biol Reprod* **2012**, *87* (6), 145.

167. Hao, G. J.; Ding, Y. H.; Wen, H.; Li, X. F.; Zhang, W.; Su, H. Y.; Liu, D. M.; Xie, N. L., Attenuation of deregulated miR-369-3p expression sensitizes non-small cell lung cancer cells to cisplatin via modulation of the nucleotide sugar transporter SLC35F5. *Biochem Biophys Res Commun* **2017**, *488* (3), 501-508.

168. Wijayakumara, D. D.; Mackenzie, P. I.; McKinnon, R. A.; Hu, D. G.; Meech, R., Regulation of UDP-Glucuronosyltransferase 2B15 by miR-331-5p in Prostate Cancer Cells Involves Canonical and Noncanonical Target Sites. *J Pharmacol Exp Ther* **2018**, *365* (1), 48-59.

169. Margaillan, G.; Levesque, E.; Guillemette, C., Epigenetic regulation of steroid inactivating UDP-glucuronosyltransferases by microRNAs in prostate cancer. *J Steroid Biochem Mol Biol* **2016**, *155* (Pt A), 85-93.

170. Wijayakumara, D. D.; Hu, D. G.; Meech, R.; McKinnon, R. A.; Mackenzie, P. I., Regulation of Human UGT2B15 and UGT2B17 by miR-376c in Prostate Cancer Cell Lines. *J Pharmacol Exp Ther* **2015**, *354* (3), 417-25.

171. Papageorgiou, I.; Court, M. H., Identification and validation of the microRNA response elements in the 3'-untranslated region of the UDP glucuronosyltransferase (UGT) 2B7 and 2B15 genes by a functional genomics approach. *Biochem Pharmacol* **2017**, *146*, 199-213.

172. Zhang, J. J.; Wang, L. N.; Feng, Y.; Zhi, H.; Ma, G. S.; Ye, X. Z.; Qian, S. S.; Wang, B., [Association study on the microRNA-1 target gene polymorphism and the risk of premature coronary artery disease]. *Zhonghua Xin Xue Guan Bing Za Zhi* **2012**, *40* (5), 386-91.

173. Fu, T.; Kemper, J. K., MicroRNA-34a and Impaired FGF19/21 Signaling in Obesity. *Vitam Horm* **2016**, *101*, 175-96.

174. Kang, W. L.; Xu, G. S., Atrasentan increased the expression of klotho by mediating miR-199b-5p and prevented renal tubular injury in diabetic nephropathy. *Sci Rep* **2016**, *6*, 19979.

175. He, X. J.; Ma, Y. Y.; Yu, S.; Jiang, X. T.; Lu, Y. D.; Tao, L.; Wang, H. P.; Hu, Z. M.; Tao, H. Q., Up-regulated miR-199a-5p in gastric cancer functions as an oncogene and targets klotho. *BMC Cancer* **2014**, *14*, 218.

176. Jiang, B.; Gu, Y.; Chen, Y., Identification of novel predictive markers for the prognosis of pancreatic ductal adenocarcinoma. *Cancer Invest* **2014**, *32* (6), 218-25.

177. Mehi, S. J.; Maltare, A.; Abraham, C. R.; King, G. D., MicroRNA-339 and microRNA-556 regulate Klotho expression in vitro. *Age (Dordr)* **2014**, *36* (1), 141-9.

178. Koshizuka, K.; Hanazawa, T.; Kikkawa, N.; Katada, K.; Okato, A.; Arai, T.; Idichi, T.; Osako, Y.; Okamoto, Y.; Seki, N., Antitumor miR-150-5p and miR-150-3p inhibit cancer cell aggressiveness by targeting SPOCK1 in head and neck squamous cell carcinoma. *Auris Nasus Larynx* **2018**, *45* (4), 854-865.

179. Osako, Y.; Seki, N.; Koshizuka, K.; Okato, A.; Idichi, T.; Arai, T.; Omoto, I.; Sasaki, K.; Uchikado, Y.; Kita, Y.; Kurahara, H.; Maemura, K.; Natsugoe, S., Regulation of SPOCK1 by dual strands of pre-miR-150 inhibit cancer cell migration and invasion in esophageal squamous cell carcinoma. *J Hum Genet* **2017**, *62* (11), 935-944.

180. Lee, S. J.; Kim, S. J.; Seo, H. H.; Shin, S. P.; Kim, D.; Park, C. S.; Kim, K. T.; Kim, Y. H.; Jeong, J. S.; Kim, I. H., Over-expression of miR-145 enhances the effectiveness of HSVtk gene therapy for malignant glioma. *Cancer Lett* **2012**, *320* (1), 72-80.

CHAPTER 2

DEVELOPMENT OF HIGH-THROUGHPUT TECHNOLOGY FOR MAPPING MIRNA-GENE INTERACTOME NETWORK

2.1 ABSTRACT

MicroRNAs are a class of small endogenous non-coding RNAs that act as rheostats and coordinately fine-tune gene expression, dampening translational noise by targeting a vast number of messenger RNA (mRNA). miRs are primarily known to interact with the 3'-unstranslated region (3'UTR) of mRNA targets to impact protein translational expression. As mentioned in the previous chapter, miR target prediction algorithms fail to accurately identify miR targets. The work in this chapter describes the initial development of a high-throughput experimental platform to analyze miR:mRNA interaction to identify miR target space.

2.2 INTRODUCTION

MiRNAs (miRs) perform their biological function by guiding the RNAi-induced silencing complex (RISC) to modulate gene expression via partial complementary interactions with the 5'UTR, coding region, gene promoter or predominately, the 3'UTR of mRNAs^{1,2}. Within the RISC complex, miRNAs bind to mRNAs through imperfect Watson-Crick base pairing, ultimately leading to repression of gene expression primarily by mRNA decay and, to a lesser extent, translational repression^{3, 4}. Deciphering the roles of individual miR depends upon identifying their targets and downstream effects to reveal the mechanistic context of their cellular functions.

Contemporary identification of miR:target interactomes is hindered by three issues. First, the low accuracy and sensitivity of prediction (17-66%) which was discussed in detail in chapter 1 ⁵. Second, the low expression of subset of genes, such as glycogenes, resulting in technical challenges including complications in transcriptomic analysis and RISC complex pulldown ^{6, 7}. Third, the suboptimal throughput of more direct miR:mRNA validations (e.g. luciferase assay) and the inappropriate use of transcriptomic profiling to understand the protein regulatory network of miRNAs.

All commonly used target prediction algorithms were improved using high-throughput profiling data. Most use transcriptomic profiling data to map miRNA and mRNA interactions ^{8, 9} which fails to take into account the disconnect between the mRNA and protein levels, especially for low abundance genes including glycosylation enzymes and membrane proteins ¹⁰. It is known that the measurable transcriptome levels do not accurately reflect the proteome levels¹¹. This low correlation could stem from the detection methods or the underlying biological mechanisms. More recently, crosslinking and immunoprecipitation (CLIP) sequencing data was utilized to identify transcript targets associated with the functional miRNA-RNA-induced silencing complex (RISC) complex^{12-14 15, 16}. This method, which mostly focuses on a specific miR and is cell-type dependent, is also less accurate when considering low abundance genes like glycogenes or receptor genes ^{6, 7}. The gold-standard experimental analyses of miR-mRNA interactions have focused on the use of either luciferase assays ⁵. However, even in 96 well format, luciferase assays require the lysis of cells, expensive reagents, and longer processing time thus lowering throughput.

We wanted to create a platform that would enable collection of a high-throughput dataset equivalent to the gold-standard luciferase assay to address these issues and limitations of current technology. A high-throughput cell spot microarray system, miRfect, is described in this chapter as the initial step for the development of a platform to accurately pinpoint miR-target interaction network.

37

2.4 DEVELOPMENT OF HIGH-THROUGHPUT MIRFLUR PLATFORM FOR IDENTIFICATIONS OF THE MIR-GENE INTERACTOME

2.4.1 Current high-throughput methods of validating miR-target interactions and their limitations

Current high-throughput mapping of miR-target interactions rely on three methods. The first method is high-throughput transcriptomic profiling upon miR perturbation to identify mRNA targets ¹⁷. This method assumes that the biological effect of miR on mRNA is the same as on the protein expression level. Previous studies shown that mRNA and protein levels are not highly correlated and in many cases, miRs have different impacts on the mRNA and protein levels⁵. Furthermore, low abundance transcripts are often missed in many of the transcriptomic-based profiling methods to determine miRNA targets. In addition, transcriptomic profiling upon miR perturbation does not differentiate direct from indirect effects of the miR. Thus, transcriptomic analysis displays an incomplete picture of actual miR biological impacts and failed to accurately identify impacts on low abundance transcripts like glycogenes. The second method is the crosslinking and immunoprecipitation (CLIP) assay. Covalent cross-linking is performed by using formaldehyde or UV light, and followed by partial RNA digestion to create RNA fragments which are subjected to high-throughput sequencing. CLIP reads reflect short-lived interactions and do not separate functional and non-functional biological impacts. For glycogenes, the low abundance of transcripts significantly reduces the accuracy of this method. Comparison of published data for HIT-CLIP analysis of the interactions of miR-200b with its targets in MDA-MB-231 cells failed to observe any of the three glycogenes previously identified as targets of miR-200b-3p in the same cell line (B3GLCT, ST6GALNAC5, ST3GAL5)⁷. B3GLCT catalyzes for the, ST6GALNAC5 predominantly catalyzes the transfer of sialyl group (N-acetyl-alpha-neuraminyl or NeuAc) from CMP-NeuAc to the GalNAc residue on specific glycans, and ST3GAL5 catalyzes the formation of GM3 using lactosylceramide as the substrate. The biological impact and interaction of miR-200b-3p with the 3 genes above were validated using multiple methods following the standards of the field including transcriptomics and Western blot analysis of the glycosylation enzymes upon miR transfection however CLIP assay failed to identify this interaction. Transcriptomic validation usually uses quantitative real-time polymerase chain reaction (RT-qPCR), which enables the detection and measurement of mRNA levels through reverse transcription to cDNA and qPCR reaction. In the Western blot validation method, protein levels are detected and quantified upon miR transfection. The third "high-throughput" method of mapping miR:target interactions is luciferase-based assays which is currently the gold-standard assay to identify direct functional miR-target interactions. This method utilizes a luciferase plasmid reporter with the 3'UTR of a gene of interest co-tranfected with miR to determine their interactions. The limitation of this method is the requirement for cell lysis and expensive reagents. Additionally, it is only considered as moderate throughput due to the inherent time requirements.

In summary, none of the three available methods were optimal for the high-throughput identifications of miR-glycogene interactomes. Thus, there was a need to develop a better high-throughput experimental assay and create an accurate miR-target database based on validated interactions.

2.4.2 Design of first generation high-throughput miRfect system

Our ideal high-throughput assay would be simple, not require extra lysis steps and reagents but still follow the principles of the gold-standard of luciferase assay to identify more direct binders. Previous work had shown fluorescent protein-based probes could substitute for luciferase in standard assays. While both single and dual-color genetically encoded fluorescent reporters have been used to study miRs in live cells, their use has been limited to examining single miR:mRNA interactions by microscopy or flow cytometry ^{18, 19}. In preliminary work, Chris Vaiana in our lab had created a sensor for miR analysis used Cerulean and mCherry fluorescent probes. To adapt this to a high-throughput format, we initially envisioned using a microarray approach, as our lab specialized in this field.

The general idea of the assay was to have a whole human miR library printed on a slide (miR chip), which would then be incubated with cells to induce transfection with miRs within specific spots (miRfect slide, **Figure 2.1**). Transfection of the dual-color genetically encoded fluorescent reporter into cells on miRfect slide provides the fluorescence readout which indicates the extent of miR-target regulation.

Figure 2.1. General scheme of miRfect high-throughput assay. miRNA mimic library and matrices are printed on a polystyrene slide. Cells are then adhered to specific miRNA spots and non-adherent cells are washed and removed. This specific cell spot microarray are then co-transfected with a pFmiR sensor to identify the miR-mRNA interaction network.

2.4.3 General scheme of how dual-color genetically encoded fluorescent reporter in miRfect system

In the fluorescent reporter, the 3'UTR of a gene of interest is cloned downstream of a fluorescent protein (**Figure 2.2**, Fluorophore 2, F1), our reporter protein. A second fluorescent protein (**Figure 2.2**, Fluorophore 1, F1), is incorporated into the same plasmid, to control for transfection efficiency and any non-specific effects of the miR on the transfected cells, thus making possible quantitative analysis. When reporter and miR mimics are co-transfected into mammalian cells, the readout of ratio of F2/F1 fluorescence in miR transfected cells, is normalized to the data from a non-targeting control (NTC), reflects the extent of miR-target regulation (**Figure 2.2**). For miRs that repress protein expression via binding to the 3'UTR in the sensor, a loss of F2 fluorescence is expected, with a concomitant reduction in the normalized fluorescence ratio. Our ratiometric fluorescent-based reporter system is highly compatible with high-throughput downstream applications for mapping miR-target interactions.

Figure 2.2. Schematic representation of high-throughput assay of miR-target interactomes. The ratio of Fluorophore 1/Fluorophore 2 fluorescence signal in miR transfected cells is normalized to the data from a non-targeting control (NTC) and reflects the extent of miR-target regulation. For miRs that repress protein expression via gene 3'UTR, a loss of fluorophore 2 expression is expected, with a corresponding reduction in the normalized fluorescence ratio.

2.4.3 Background on cell spot microarray (CSMA) method and advantages

Reverse transfection cell microarrays are a high-throughput system used to explore the role of DNA or siRNAs for functional analysis in mammalian cells (**Figure 2.3**)²⁰⁻²⁸. The first report

of this technology was initiated in the Sabatini lab using the lipid-DNA method ²⁰. In reversetransfection cell microarrays, genetic materials (i.e. DNA, siRNA, miR mimics) are arrayed with transfection reagents and a matrix printed on a solid support. The slide is then briefly incubated with mammalian cells to facilitate the cell adhesion specifically on the spots containing the matrix. The choice of matrix are based on the surface properties (i.e. functional group modifications), hydrophobicity, hydrophilicity of the solid support material and the choice of mammalian cells. The most commonly used matrices are fibronectin, matrigel (laminin, collagen, entactin and heparin sulfate proteoglycan perlecan), poly-L-lysine (PLL) and gelatin. The cell spot microarray is then transfected with the reagent. The output readout is dependent on the experimental designs to investigate phenotypic changes or activation of cellular pathways post-transfection using a fluorescence-based assay. This method is highly advantageous for reduced screening time, rapid readout, and visualisation of cell phenotypes and morphology.

Figure 2.3. General scheme of cell spot microarray (CSMA) method and reverse transfection. In current literature, DNA or siRNA are printed on slide to produce specific cell microarray. Adherent cells in specific spots were reverse-transfected to generate stable cell lines.

2.4.4 Testing the miRfect system

In previous work, miR-200b-3p was identified as a regulator of this enzyme and demonstrated a role for B3GLCT in epithelial to mesenchymal transition (EMT)⁷. Bioinformatics analysis of miRNA predictions identified this glycogene as a highly regulated target ⁷. Thus, we anticipated that a large number of miRs would downregulate this enzyme, making it a good choice for assay development. The miRfect system was initially tested by David Christian, a technician in the lab, using pMIR-B3GLCT with Cerulean and mCherry fluorescent reporters. Cells were adhered to the miRfect specific spots containing NTC and miR-200b-3p. They were then transfected with pMIR-B3GLCT. miRfect spots were imaged and analyzed 48h post-transfection. Well and clear defined spots were observed with high transfection efficiency. We found 17% inhibition was observed for Cer/mCherry in miR-200b in normalization to NTC (**Figure 2.4**). Whereas, 40% inhibition was observed with the luciferase assay. These results indicated further improvement of the assay was needed.

Figure 2.4. (A) Microscopic imaging of miRfect microarray printed with NTC (non targeting control or scramble) or miR-200b-3p mimics with *HEK293T* attachment, followed by transfection with pFMiR-B3GLCT. (B) Quantitation of data from A presented as ratio of Cerulean/mCherry normalized to NTC.

2.4.5 Creating compatible pFmiR sensors for the Genepix Pro microarray system

Our lab specializes in microarray technology and the Genepix microarray system that we currently use is designed for high-throughput fluorescent-based applications. However, it has only 4 built-in lasers (488nm, 532nm, 594nm, 635nm) and corresponding emission filters (blue: 513-555nm, green: 562-596nm, yellow: 619-641nm, red: 661-690nm) (**Figure 2.5**). The fluorophores of the sensors must be chosen to match the instrument for better quantitative analysis and higher sensitivity.

Figure 2.5. Laser settings and corresponding emission filters on our scanner. 4 built-in lasers (488nm, 532nm, 594nm, 635nm) and corresponding emission filters (blue: 513-555nm, green: 562-596nm, yellow: 619-641nm, red: 661-690nm).

The original pSFmiR sensor with used the fluorescent proteins Cerulean and mCherry as fluorophores, created by Chris Vaiana, was not compatible with our scanner due to the far excitation of cerulean in comparison to the Alexa488 laser. Thus, we created different versions of the sensors for testing. Version 2 used the mClover3-mRuby3 pair (pSFmiR-mClover3-mRuby3). These fluorophores could be observed with our Genepix and had improved brightness and photostability ²⁹. However, we observed bleed-through between the mClover3 and mRuby3 channels. We then replaced mRuby3 with mCherry but the fluorescence crossover was still observable. Thus, we generated the fourth generation of our sensor (pSFmiR) which utilises mClover3 as the control fluorophore and miRFP670 as the reporter. miRFP670 is a near IR fluorescent protein with excitation/emission of 642/670 which is matched with the red laser and filter in the scanner.

2.4.6 Creating a library of genetically encoded fluorescent sensors (pSFmiR-glycogene 3'UTR) for high-throughput mapping of miR:glycogene interactions.

With the use of Gibson assembly, we constructed a library of around 100 glycogene 3'UTR inserted downstream of the miRFP670 stop codon in pSFmiR sensor (**Figure 2.6**). Briefly, pSFmiR-empty plasmid is amplified and served as a linear vector fragment using appropriate primer set and the polymerase chain reaction (PCR). This universal backbone is used to construct the whole library of pSFmiR-3'UTR. The 3'UTR of glycosylation enzymes is amplified from genomic DNA with overlapping regions to pSFmiR linearized fragment and then assembled with the backbone. With the high efficiency of this method, to date, around 100 pSFmiR-3'UTR were created (see **Table 2** and **Methods**).

Figure 2.6. Schematic of Gibson Assembly procedure for construction of pFMiR2-glycogene library. The universal pFmiR backbone vector was amplified by PCR. Genomic DNAs were extracted from various cell lines (*MCF7*, *HEK293T* and *A549*). Specific primers were designed to amplify a specific 3'UTR of gene of interest with the overlapping region with the backbone. This 3'UTR was then inserted into the linearized backbone vector through Gibson Assembly. Gibson Assembly utilized the T5 Exonuclease to create sticky end and Phusion polymerase Taq ligase for ligation of the 3'UTR insert and backbone.

2.4.7 Optimization of reagents in miRfect System.

The miRfect system utilizes a highly efficient miRNA reverse-transfection cell microarray in tandem with a transiently transfected reporter (pSFmiR-3'UTR) to provide comprehensive information on the miR-target interactions. Although cell microarray technology has been developed for a while, its applications were not widely spread and often used to mainly study functional cellular impacts including cell morphology, migration or proliferation. To date there have been no studies that use this technique to directly study the miR-protein interactome. Thus, we designed and developed the miRfect system to optimize gathering large datasets to identify

miR-target networks (Figure 2.7). miRfect is produced by growing cells on small (~200 mm diameter) spots on a untreated polystyrene slide with each spot carrying a miR with transfection reagent, sucrose and fibronectin as a cell adherence aiding matrix proteins. The untreated polystyrene slide is hydrophobic with a non-treated surface (not presenting hydrophilic functional groups) therefore preventing the non-specific cell adherence in other area in the slide besides the spots. The addition of sucrose to the matrix is to maintain the integrity and transfectibility of miR transfected complexes for long-term storage. Fibronectin was used as the supporting matrix instead of gelatin or matrigel to aid cell adhesion because of its hydrophobic and hydrophilic properties and ability to adsorb to a hydrophobic surface (untreated polystyrene slide). Gelatin has abundant hydrophilic properties so it is usually used with glass surfaces. Matrigel forms different networks depending heavily on the surface properties ³⁰. Specifically, it forms globular network on hydrophobic surfaces or fibrillar network on hydrophilic surfaces. It was also shown that cells attach and grow poorly on Matrigel adsorbed onto polystyrene. Thus, fibronectin matrix was used. For transfection reagents, we used lipofectamine 2000 for co-transfection of miRs from the bottom and plasmid reporter on top.

Figure 2.7. miRfect system: Hydrophobic slides are printed with human miRNA library, fibronectin matrix and transfection reagent (miRfect slides). They are then incubated briefly with mammalian cells, washed and cells are transfected with pFMiR-glycogene sensors. After 48h, slides are rinsed with buffer, cells are fixed and imaged using a microarray scanner and the fluorescence analyzed. If a miR targets a glycogene through its 3'-UTR, it will repress the red fluorescent signal (with 3'UTR inserted downstream) in comparison to the green fluorescent signal (as control).
The visualization of the cell spot microarray is shown in Figure 2.8.

After 48h of transfection with pSFmiR-gene 3'UTR sensor

Figure 2.8. Spot morphology after cell adhesion on the slide.

2.4.8 Optimization of the miRfect system.

To optimize the miRfect system, various concentrations of miR, pFSmiR-B3GLCT and lipofectamine 2000 were using and the optimized protocol was established (see Method section). To test that our miRfect worked as expected, we compared the miRFP670/mClover3 fluorescence ratios upon co-transfection of pSFmiR-B3GLCT 3'UTR with either NTC, the positive control miR-200b-3p or the known negative control miR-200a-3p in the replicate of spot format (**Figure. 2.9**). We observed well defined cell spots and a good transfection efficiency represented by the mClover3 control channel. We also saw a clear loss (~50%) of miRFP670 signal in comparison to mClover3 in the hsa-miR-200b-3p spots when normalized to the NTC which is not seen in hsa-miR-200a-3p. This result indicates the validity of miRfect system to experimentally identify miR hits for B3GLCT.

Figure 2.9. Hsa-miR-200b-3p downregulates B3GLCT in comparison to negative control (NTC) and another negative control, hsa-miR-200a-3p in miRfect assay. Hydrophobic slides are printed with different miRs (NTC, miR-200a, miR-200b with the concentration of 1.5 μ M), fibronectin matrix and lipofectamine-2000 reagent (miRfect slides). They are then incubated briefly with *HEK293T* cells, washed and cells are transfected with pSFMiR-glycogene sensors. After 48h,

slides are rinsed with buffer, cells are fixed and imaged using a microarray scanner and the fluorescence analyzed. Error bars represent standard deviations. P-values were calculated using the two-tailed unpaired Student's t-test with equal variances for comparison to scramble control, *P < 0.05.

We next performed a larger scale microarray with around 1/8 of the MISSION miR mimic library and analyzed data for B3GLCT (**Figure 2.10**). We identified 30 downregulatory miRs for B3GLCT (**Table 2.1**). This was not a comprehensive dataset of miR-B3GLCT interactomes due to problems with slide manufacture. Thus, we wanted to gather a complete interaction network for the whole human miRome and B3GLCT before validating smaller subset of miRs regulating B3GLCT in protein and mRNA levels using Western Blot and RT-PCR respectively.

Figure 2.10. Identification and validation of hits for B3GLCT. Spot morphology and bar graph

of ratiometric data for miRs.

miRNA	%NTC
miR-1266-5p	75.1749714
miR-6780a-5p	75.0801662
miR-1272	74.4128117
miR-1908-5p	73.8551339
miR-10b-5p	72.5724749
miR-526a	72.2504097
miR-1301-3p	71.9613529
miR-1293	71.1708446
miR-124-3p	68.6111034
miR-151a-3p	66.4361598
miR-6796-3p	63.9019114
miR-182-5p	62.8363494
miR-195-5p	62.5017427
miR-146b-5p	62.4180911
miR-181a-5p	60.7868834
miR-193b-3p	59.4540334
miR-1224-5p	58.584056
miR-15b-3p	58.5561721
miR-6776-5p	57.5314391
miR-6761-5p	55.4238816
miR-129-5p	53.3140005
miR-6782-3p	49.319633
miR-6783-5p	46.8821162
miR-1226-3p	46.5884059
miR-1291	45.7714079
miR-194-5p	45.4897806
miR-146a-3p	41.0520592
miR-6782-5p	40.9544656
miR-128-3p**	38.8608501
miR-130a-3p	35.4218368

Table 2.1 List of miR hits for B3GLCT

Although our initial system appeared successful, we were unable to use it due to the manufacture of untreated polystyrene slides. The company (EMS) changed the slide properties and

surface treatment of the slides which induces heterogeneity of surface functional groups. As a result, more non-specific adherence and varying spot morphologies were observed across the slide (**Figure 2.11**).

Figure 2.11. Highly variable spot morphologies were observed after cell adhesion on the new polystyrene slide. miRfect slide is represented using mClover3 channels.

Since the defined cell spots depend on multiple factors including the surface properties (i.e. functional group modifications), hydrophobicity, hydrophilicity of the solid support material and the choice of mammalian cells. We tried other cell lines and different transfection reagents to attempt to re-optimize the system and transfection efficiency with the new slide material and surface properties. This is important since the transfection efficiency on top (with plasmid sensor) and on bottom (with miRs) impacts the population of cells with both plasmid sensor and miR for accurately identifying interactions. We want to increase population of cells with both plasmid sensor. I first examined the use of *HeLa* cells (**Figure 2.12**) and found Xfect transfection reagent (0.0375%) to perform best in term of cell health and transfection efficiency.

Figure 2.12. Optimizing transfection reagents for pSFmiR-B3GLCT 3UTR sensor transfection on *HeLa*. *HeLa* cells were transfected with pSFmiR-B3GLCT 3'UTR sensor (time indicates the hours of transfection before changing the transfection media into fresh media)

MiRfect was then performed using *HeLa* cells and Xfect transfection reagent. Unfortunately, the obtained spot morphologies from the microarray were not so well defined and miR-200b-3p did not inhibit the sensor as expected (**Figure 2.13**). This result is due to the nonspecific adherence of *HeLa* cells to other areas of a specific spot (smear morphology) or poor transfection of Xfect to *HeLa* within the slide format. In addition, *HeLa* cells adhere to the spot fibronectin matrix and the reverse miRNA transfection from the bottom which can impact the transfection efficiency of pSFmiR-B3GLCT 3'UTR on top.

Figure 2.13. MiRfect system using *HeLa* cells. Hydrophobic slides were printed with different miRs (NTC, miR-200a, miR-200b with various concentrations), fibronectin matrix and lipofectamine-2000 reagent (miRfect slides). They are then incubated briefly with *HeLa* cells, washed and cells are transfected with pSFMiR-B3GLCT sensors. After 48h, slides are rinsed with buffer, cells are fixed and imaged using a microarray scanner and the fluorescence analyzed. Error bars represent standard deviations.

After testing few other cell lines, *LNCap* cells produced the best spot morphologies and transfection efficiency using viromer blue (**Figure 2.14**). The transfection condition and inhibition optimization were also conducted (optimized miR concentration is 1 µl). However, we were unable

to stabilize the transfection complexes on the slide and it was impractical to print prior to each experiment. Thus, we had to rethink our strategy for further development of a platform for highthroughput experimental identifications of miR-target interactions.

Figure 2.14. MiRfect system using *LNCap* cells. Hydrophobic slides were printed with different miRs (NTC, miR-200a, miR-200b with various concentrations), fibronectin matrix and lipofectamine-2000 reagent (miRfect slides). They are then incubated briefly with *LNCap* cells, washed and cells are transfected with pSFMiR-B3GLCT sensors. After 48h, slides are rinsed with buffer, cells are fixed and imaged using a microarray scanner and the fluorescence analyzed. Error bars represent standard deviations.

2.5 COMPARISON B3GLCT DATA FROM MIRFECT SYSTEM TO MIRFLUR PLATFORM

The details of miRFluR platform, our alternative system for high-throughput analysis, will be discussed in chapter 3. However, we were interested to compare our miRfect result for B3GLCT to our miRFluR result for B3GLCT (**Table 2.2**). I did the comparison and found that their results did not match. The reasons for this misalignment will be discussed further in chapter 3, but are most likely due to normalization issues.

miRNA	miRFluR_normalization	miRfect_normalization
miR-130a-3p	0.99	0.35
miR-6782-5p	0.87	0.41
miR-146a-3p	0.91	0.41
miR-194-5p	0.95	0.45
miR-194-5p	0.93	0.45
miR-6783-5p	0.88	0.47
miR-6782-3p	0.83	0.49
miR-6761-5p	0.86	0.55
miR-6776-5p	0.87	0.58
miR-15b-3p	0.96	0.59
miR-146b-5p	0.87	0.62
miR-195-5p	0.94	0.63
miR-182-5p	0.93	0.63
miR-6796-3p	0.93	0.64
miR-151a-3p	1.02	0.66
miR-526a	0.90	0.72
miR-1908-5p	1.25	0.74
miR-6780a-5p	0.92	0.75

Table 2.2 Comparison of the results for B3GLCT from miRfect system and miRFluR platform

2.6 CONCLUSION

miRNAs have been shown to be key regulators of glycosylation and the utilization of miRNAs could be the open door to understand complexity of glycosylation and functions. Our understanding relies mainly on prediction algorithms to identify miR:target interactions which is prone to high false positive and negative rates. This failure to accurately identify miR targets *in silico* is likely attributable to the oversimplified rules used to predict interactions and functions which could be biologically irrelevant and variable in different biological systems. Thus, the underlying biological mechanisms driving biologically relevant actions and functions of miRs remain largely enigmatic. The current methods to identify miR-target interactions (transcriptomic profiling and cross-linking assay) failed to pinpoint the real miRNA targets for low abundance gene and the actual biological impacts of miRNAs on protein levels and luciferase assay exhibits only moderate through-put in term of identifying miRNA targets.

In our effort to address these issues and limitations of current technology, we developed the miRfect system which utilizes a highly efficient miRNA reverse-transfection cell microarray in tandem with a transiently transfected reporter (pSFmiR-3'UTR) to provide comprehensive information on the miR-target interactions. Although miRfect cell spot microarray is a potential application for mapping miR-target interaction network experimentally, there are different factors that could impact the reproducibility and reliability of the miRfect system including non-specific cell adherence, spreading phenomenon in microarray since miRNAs and matrix are not covalently linked to the slide surface, slide material and surface alteration, stability of transfection, etc. Although our miRfect system was ultimately not usable, it provided the initial step for the development of a high-throughput miRFluR platform (as discussed in chapter 3).

2.7 MATERIALS AND EXPERIMENTAL METHODS

2.7.1 Cloning of pSFmiR-empty and a library of genetically-encoded fluorescent sensors for high-throughput mapping of miR-target interactions

The mClover3 fragment was amplified from pKanCMV-mClover3-mRuby3 (Addgene, plasmid #74252) by the PCR using primers mClover3_fwd and mClover3_rev with HindIII and NheI restriction sites. It was then subcloned to the commercially available plasmid (pSF-CMV-CMV-Sblf, Oxford Genetics) with the sites of HinIII and NheI to make pSF-mClover3.

mClover3_fwd: CGTCTCGTCGACCTAGCGCTACCGGTCGC

mClover3_rev: GGTACAACTAGTGCCTTTGCTCACCATCGGATC

The miRFP670 fragment was amplified from pmiRFP670-N1 (Addgene, plasmid #79987) by the PCR using primers miRFP670_fwd and miRFP670_rev with AcII and SpeI restriction sites. It was then inserted to the pSF-mClover3 with the restriction sites of AcII and SpeI to create pSFmiR-empty sensor.

miRFP670_fwd: CGTCTAACGTTATGGTAGCAGGTCATGC

miRFP670_rev: GGTACACTAGTTTAGCTCTCAAGCGCG

The pSFmiR linearized backbone fragment was amplified by PCR using pSFmiR_fwd and pSFmiR_rev below. Library of glycogene 3'UTR was cloned from cDNA using primers in the **Table. 2** using standard PCR conditions with the 5' overhangs compatible with the pSFmiR backbone. The DNA fragment of gene 3'UTR was cloned into our pSFmiR-empty backbone using the forward and reverse primers downstream of miRFP670 utilizing a standard Gibson assembly protocol. Plasmid maps and sequences for pSFmiR and gene 3'UTR can be found in **Plasmid maps and sequences**.

pSFmiR_fwd: AGCCTGTGCCTTCTAGTTG

pSFmiR_rev: CTAGTTTAGCTCTCAAGCG And 5' overhangs for gene 3'UTR primers Forward overhang: CGCTTGAGAGCTAAACTAG Reverse overhang: CAACTAGAAGGCACAGGCT

2.7.2 miRfect high-throughput system.

The human MISSION miRNA mimics (Sigma, for small scale) and the miR mimic library (MISSION, Sigma) were resuspended in nuclease-free water and aliquoted into 384-well plate with the concentration of miRNA varying for optimization (1.5 μ M, 2 μ M, 2.5 μ M and 3 μ M) including controls (NTC and others for different sensors). Preparing the Opti-MEM (Gibco) with sucrose to obtain the final concentration of 100mM (OMEM-S media).

To each well in the plate was added 2 μ l lipofectamine 2000 (Invitrogen) and OMEM-S media. The solution was allowed to incubate at room temperature for 25 min. Then, 4 μ l of fibronectin (Sigma Aldrich, 1 μ g/ml) was added to each well and mixed by pipetting gently. This miRNA transfection mixture was printed on hydrophobic polystyrene slides (Electron Microscopic Science, EMS using a piezoelectric tip and a nanoplotter II (GeSim, with set voltage is 75-90V and aspiration volume was set to 1.5 μ l) at 4 °C and 55–60% relative humidity to prevent the evaporation of samples. Printed spots were 150–250 μ m in diameter (around 0.1-0.2 nl of sample pipetted) with a 700 μ m spot-to-spot interval. The prepared miRfect slides were allowed to dry in the printing chamber for around 1h, and then stored at -80 °C in an air-free sealer bag until further use.

Acquiring miRfect slide and cell-defined attachment and miRNA reverse transfection were induced as following: HEK293T cells were trypsinized, counted and diluted to 5.6 x 10⁵ cells/mL

in 7.7 mL DMEM w/ 10% FBS and 3.3 mL OMEM. 5.5 mL of this mixture were added to the miRfect slide in a well of Nunc 4-well rectangular chamber (Thermofisher). Cell adhesion was facilitated by incubating the slide incubated at 37°C, 5% CO₂ for 15-20 minutes (depending on the cell lines). After that, wells were aspirated and washed with 6 ml of HBSS (Corning) 2-3 times to obtain miRfect cell-defined pattern slides.

Preparing the plasmid transfection mixture for top-layer transfection simultaneously with the above procedure as follows: 16.5 μ l of lipofectamine 2000 was added to 2.5 ml of Opti-MEM and incubated for 5 minutes. pSF-B3GLCT 3'UTR (15 μ g) were diluted to 2.5 ml of Opti-MEM, then added to the lipofectamine 2000 mixture for 25 minutes. After 25 minutes, 5.5 μ l penicillinstreptomycin (Sigma, 100x) was added. This plasmid transfection mixture was then loaded to the Nunc rectangular well containing miRfect cell-defined pattern slides. This transfection media was then removed after 24 hours and replaced by normal media (DMEM with 10%FBS).

After 48h post-transfection, cells are fixed at room temperature using 4% paraformaldehyde solution (diluted with HBSS from 20% paraformaldehyde solution (EMS)) for 30 minutes. The paraformaldehyde was aspirated and slides were washed with HBSS. Slides were imaged with the Genepix 4300A scanner in the miRFP670 (3'UTR, 635 nm) and mClover (control, 488 nm) channels. The mClover3 channel was used to determine spot morphology and features were extracted.

2.7.3 Data Processing

The median of ratios for miRFP670/mClover3 signal (mR/mC) was extracted for each spot. The median is considered more accurate for microarray analysis, as the mean is more sensitive to spot morphology and distribution of signals. The mR/mC for each spot was normalized to the average mR/mC for non-targeting control spots (NTC) to give a ratiometric signal (Rs= $(mR/mC)mir \div (mR/mC)NTC$ -ave) to eliminate both pSFmiR-3'UTR and miR effects on general protein translation/cell health. The average ratiometric signal for 4-replicate spots (AR) is calculated for each miR-target interaction, those for which the AR is <80% of the mean AR across the array (i.e. ~20% repression) and that are statistically significant (Student's t-test, p<0.05, compared to NTC) will be defined as positive hits. Data analysis was automated using Genepix Pro analysis software and the R statistical environment.

List of primers for 114 glycogene 3'UTR

Adding 5' overhangs for gene 3'UTR primers in Table 2.3

Forward overhang: CGCTTGAGAGCTAAACTAG

Reverse overhang: CAACTAGAAGGCACAGGCT

For example:

PIGA_fwd: CGCTTGAGAGCTAAACTAGAAGGAAGCCTAGATTGTAAGAT

PIGA_rev: CAACTAGAAGGCACAGGCTGAAAATTATCAAAATGTCATTCTGGTC

Table 2.3 List of primers for 114 glycogene 3'UTR (without the overhangs).

Category	RefSeq	Gene	Forward Primer (5'-3')	Reverse Primer (5'-3')
GPI Anchor	NM_002	PIGA	AAGGAAGCCTAGAT	GAAAATTATCAAAATGTCATTC
Biosynthesis	641		TGTAAGAT	TGGTC
GPI Anchor	NM 145	PIGM	CCTGACAGAGAGAA	TTGAAGGTGTTATTAAAGGATT
	_			
Biosynthesis	167		TCAAATATG	AAAAAG
GPI Anchor	NM 005	PIGK	GACTTGATGATGAAT	TTCCATGTTTGGAGTAAATAAA
	_			
Biosynthesis	482		GAAGAATG	TTTTTAATAAC

GPI Anchor	NM_012	PIGN	GTATGTTCCACACCC	TAAAATTTGAAGGTGTTATTAA
Biosynthesis	327		TCTG	AGGATTAAAAAG
Galactosyltransfera	AK2944	UGT8	CAACAGCCCAGGTG	CTATTTTAAATCATGTTTATTAT
ses	38		АТА	TTAAGTTTTTATC
Galactosyltransfera	NM_004	B4GAL	GAGTACTGAGAGGA	TTTGGTTCTTGAATATGTATTTT
ses	776	Т5	GAGAATG	TTACTG
Galactosyltransfera	NM_004	B4GAL	CAGAGTTAGCTCCAA	TAATTTGCATTTGCAATGTATTT
ses	775	Т6	TCGAAG	GTTAATC
N-	NM_033	B3GAL	CATGCTAAGGAACA	TTATAAAAAGTAAATACACAAA
Acetylgalactosami	169	NT1	CCACAT	CCGGTG
nyltransferases				
N-	NM_032	B3GNT5	CTTGTAGGGCTGCGT	TCATGATAATTTTTCAGTTGTTT
Acetylglucosaminy	047		TTATC	ATTGG
ltransferases				
N-Glycan	NM_019	ALG1	CCTTTGGTTATGGAC	TCATGGGAAGAATTTTTATATG
Precursor	109		ACATAAC	GG
Biosynthesis, en-				
bloc Transfer and				
Processing				
N-Glycan	NM_033	ALG2	CGATATGTTACCAAA	TTTATGATAAACACCTTTTATTA
Precursor	087		CTGCTG	TATCTCAG
Biosynthesis, en-				
bloc Transfer and				
Processing				
N-Glycan	AK2977	ALG3	CAACACAGCAAGAA	TTGAGTGAATTCTTTATCTGCTC
Precursor	01		AGCC	
Biosynthesis, en-				

bloc Transfer and				
Processing				
Transferase Donor	NM_013	ALG5	GCTTGAGCAAACTCG	AAAAGGCAGACAATGACAAG
Substrate	338		GAAA	
Biosynthesis and				
Related Reactions				
N-Glycan	CR61854	ALG6	GCTTGAACTTCCTGT	TCAGGTGCATTTCATTTTAC
Precursor	3		ТСТТС	
Biosynthesis, en-				
bloc Transfer and				
Processing				
N-Glycan	AK2988	ALG9	CAGGAAGAAAAGTG	ACTAGCCCAGAGCACC
Precursor	11		GAGG	
Biosynthesis, en-				
bloc Transfer and				
Processing				
N-Glycan	NM_032	ALG10	CAGTGGCCAAATAGT	TTTGAGGTGATGGATAGATTAG
Precursor	834		CAG	С
Biosynthesis, en-				
bloc Transfer and				
Processing				
N-Glycan	NM_001	ALG11	GTGACATTCCTATCA	TTTTCAATTTTTTCCATTTCTTCC
Precursor	004127		TCTGTG	AG
Biosynthesis, en-				
bloc Transfer and				
Processing				
N-Glycan	NM_024	ALG12	GTGTGAGTCTGAACC	CAATTTTTTCCATTTCTTCCAGT
Precursor	105		TGAC	G

Biosynthesis, en-				
bloc Transfer and				
Processing				
N-Glycan	NM_018	ALG13	CCAGCTTCTCATTAT	TTTTGGCAATTTTAAATGCTAAT
Precursor	466		GTACC	ТТТТАТТ
Biosynthesis, en-				
bloc Transfer and				
Processing				
N-Glycan	NM_144	ALG14	CGAATTGTTTGACAA	CTGTTTAAATGCTCAAGTTTATT
Precursor	988		ATGGC	AGAG
Biosynthesis, en-				
bloc Transfer and				
Processing				
Oligosacharyltransf	NM_152	STT3A	GCTTGTCAAGGACAT	TTTTTTGAGACAGTCTTGCTCTG
erase	713		AAATGTC	
Oligosacharyltransf	CR62001	STT3B	GAAGAGCAGAGAGC	TTAACACAAAATTTGAATTAAC
erase	5		ТТАСТАА	TTTATTTCC
N-	NM_002	MGAT1	GCTATGATCCTAGCT	ATGTATGAATTTTATTTTCCTTT
Acetylglucosaminy	406		GGAATTAG	TATTTTTC
ltransferases				
Fucosyltransferases	BC14295	FUT8	GAGCTCAGATGGAA	TTTGTTTCAAATGACTTTTATTT
	8		GAGATAAA	GTACC
N-	NM_002	MGAT2	GTTTACTGTGGTAGC	TGCATTGTCATAAGCTGG
Acetylglucosaminy	408		CATTTC	
ltransferases				

N-	NM_001	MGAT3	CCAAGTACCTGCTGA	CAGACTTTGTAGCTGTTTTTATT
Acetylglucosaminy	098270		AGAAC	ΑΤΤΑΑΤΑΤ
ltransferases				
N-	NM_001	MGAT4	CACCAACTGATCATC	GTTTCACCTATTTTTATTAGAAG
Acetylglucosaminy	160154	А	TGAGAAAC	GAATC
ltransferases				
N-	NM_014	MGAT4	GCTCTTCCAGATCTT	TTTGAGGCACACACTTCATTAA
Acetylglucosaminy	275	В	CCTG	С
ltransferases				
N-	NM_013	MGAT4	GCAAACAAAGGAGA	TCACCTACACAAAAAATTATGT
Acetylglucosaminy	244	С	CAATGTTC	AAAGAC
ltransferases				
N-	NA	MGAT5	CCTATAGCAGCTACC	TCACACAAGAAAAGTTTATTGA
Acetylglucosaminy			TGC	ААААТ
ltransferases				
N-	NM_020	GALNT	CAGCATTAGAGACTG	TATTCAGGAATATTTTGTATTTT
Acetylgalactosami	474	1	CAATGG	CAAAG
nyltransferase				
N-	AK3040	GALNT	GAAGTTCACGCTCAA	TATCTAGAAAGTATCTTCTCTTT
Acetylgalactosami	29	2	ССТ	ATTTAAG
nyltransferase				
N-	NM_004	GALNT	AGTGTTCCTTAAAAT	GATGCTTAAGGAACTTTATCAG
Acetylgalactosami	482	3	TAAGTTGA	
nyltransferase				
N-	NM_003	GALNT	GGAGTTTTGAGAAAT	AAAACATCATTCAGAAGAGATT
Acetylgalactosami	774	4	AGAGCAC	AATCTGAA
nyltransferase				

N-	BC14421	GALNT	GAAGCCTGAAGTGT	GTAAAGGCAATGACCTAAGCTA
Acetylgalactosami	1	5	AACTGA	AT
nyltransferase				
N-	NM_007	GALNT	GTGGCTCTTTGTCTA	GAGACAGAGTCTTACCTGTTG
Acetylgalactosami	210	6	GGAC	
nyltransferase				
N-	NM_017	GALNT	CATCCATAGTGTTTA	TGAATTAAAATACAATATTTTA
Acetylgalactosami	423	7	GAGAGAA	TTTTTGTCA
nyltransferase				
N-	NM_017	GALNT	CCTCAGATGGTGCTG	CCACCTGAAGTCGCCATA
Acetylgalactosami	417	8	GAT	
nyltransferase				
N-	NM_001	GALNT	CTGGATCAAACACGC	GCTGCCTAATCCTCTCTTTATTT
Acetylgalactosami	122636	9	ACG	G
nyltransferase				
N-	NM_198	GALNT	CAGTCTTGGAAAAAT	TTTAGAGAAAGTCTGGAGGTTT
Acetylgalactosami	321	10	TCAATAGG	AC
nyltransferase				
N-	AK1285	GALNT	GTGGACCTTTGGGAA	CAAAAGGATTCTTTATTATGTA
Acetylgalactosami	45	11	AAAC	GATTG
nyltransferase				
N-	NM_024	GALNT	AGCCTCGTGTATCAA	CAAAATCTCAGGGTTGGTCTG
Acetylgalactosami	642	12	GGAG	
nyltransferase				
N-	NM_052	GALNT	AGATCATGTCCTCCA	CACTTAGCAACTTTAACACAC
Acetylgalactosami	917	13	AGC	
nyltransferase				

N-	NM_024	GALNT	GAGGACAGAGGAAA	CCAGAGACAACTTCTAAGTTTC
Acetylgalactosami	572	14	ACATCAC	
nyltransferase				
Galactosyltransfera	NM_020	C1GAL	GTGAAGTTAGGAAA	ATATTGGTTAAAAATAATCAGA
ses	156	T1	TCCTTGAAAG	TGAAACAAC
N-	NM_001	GCNT1	CCATTACGGGCAATT	GGTTTCTGAATGGATGATTTTA
Acetylglucosaminy	097633		TTATGAAC	ATGG
ltransferases				
N-	NM_004	GCNT3	GACACACTATGAGA	CTTTGAATCAGGAGCTATTTATT
Acetylglucosaminy	751		GCGTTG	TTTAAG
ltransferases				
N-	NM_138	B3GNT6	CTACGAGATGCTGCT	TTTTTTGAGATGCAGTCTTGCTC
Acetylglucosaminy	706		CATG	
ltransferases				
Glucosyltransferas	NA	B3GLCT	CTAGCATCAGGGTGA	GATCCTTTTCATTACATAATAA
es			CCTG	AG
N-	NM_144	MGAT5	GGCTGTCTGTGAATC	CACATCCCAATAAAATATTTAT
Acetylglucosaminy	677	В	CG	TATTTCAAG
ltransferases				
N-	NM_152	B3GAL	CGATGTCAAGCAAG	TCAGGATTTAGAAATATTTTTTC
Acetylgalactosami	490	NT2	ATAACAG	TTTTATAAA
nyltransferases				
Glucosyltransferas	NA	POGLU	GGAGAACCTCTTGAG	TTTGTGTTATGCAAGTATCCC
es		T1	TGAAT	
Xylosyltransferase	NM_173	GXYLT	GATCGTTATGCCAGA	TTTGAGGAAATAAAACGTTTAT
	601	1	TCAC	TGAG

Galactosyltransfera	NM_007	B4GAL	GCACTGTCCTCAACA	TTTTGTCTGGCCTGCCATAC
ses	255	Τ7	TCATG	
Galactosyltransfera	NM_080	B3GAL	GAGGACATGCTGGA	TTTGTTCTGATATGAAATTTAAT
ses	605	Т6	GAAG	GTCTTAGG
GAG Polymerase	NM_018	CSGAL	CATGAACTCCCAGAG	TCATATCCACAAATCATATTTTA
and Related	371	NACT1	AAG	TTAGC
Enzymes				
GAG Polymerase	NM_018	CSGAL	CATACAGGACAAAC	CATTTAACTTTTGGTAATAAAA
and Related	590	NACT2	AGTGAAG	TACTTTATTGG
Enzymes				
GAG Polymerase	NM_014	CHSY1	GCAATAATAATGGCT	TGAATCGTGTTTAAGTTTTTTAC
and Related	918		CAGTGAG	TCTC
Enzymes				
N-	NM_181	OGT	CACATGATTAAGCCT	GATCCCCGTATTAAAGGGAAAT
Acetylglucosaminy	672		GTTGAAGTCAC	CATTC
ltransferases				
Galactosyltransfera	NM_003	B3GAL	GCCACCGTAAACTAC	TAAAGTTTTTTGTTTTCCTTTAT
ses	783	T2	ATTAG	TTTTAAAAAC
Galactosyltransfera	NM_003	B3GAL	GCTTCAGAGCTGAGA	GAAGTGGAGACAAGTTTATTGG
ses	782	T4	GTG	AG
N-	NM_006	B3GNT2	GCAGAGTGCTCATTT	TTAAAAATACAGTGGCTTTATT
Acetylglucosaminy	577		AAAATG	TCC
ltransferases				
N-	NM_014	B3GNT3	GCAATCAGACACAG	TCCAAGTCTTCACAAAATTTTAT
Acetylglucosaminy	256		ATCTAC	ATTC
ltransferases				

N-	NM_145	B3GNT7	GATCGACGACGTCTT	TTAAAGAAGGAAGAGGTTTTTA
Acetylglucosaminy	236		TCTG	TTCG
ltransferases				
N-	NM_033	B3GNT9	GTGAGCTGGTTGTAG	AATTTTATCCCATTTTTAATATT
Acetylglucosaminy	309		TGC	TTGGTCTAGC
ltransferases				
Galactosyltransfera	NM_001	B4GAL	GAGCTAGCGTTTTGG	TGCAGTTACAAAGATAGGGTC
ses	497	T1	TACAC	
Galactosyltransfera	NM_001	B4GAL	GCTGACACTAATGGA	GCTCCATTCACGTTTTTTACTAA
ses	005417	T2	CAGAG	AG
Galactosyltransfera	NM_003	B4GAL	CTCTATCTACTGCCA	GCGAGACAAAGTCCTTTATTAG
ses	779	Т3	ACCAC	
Galactosyltransfera	NM_003	B4GAL	CAACATCACAGTGG	GCTTTTTCACATTTTACTACAGA
ses	778	T4	ATTTCTG	GG
N-	AL83271	GCNT2	GCTATTCATGAGCTA	TGGAAAACAATATATTAATTTA
Acetylglucosaminy	4		CTCATGAC	TTCCCAAG
ltransferases				
N-	NM_004	GCNT3	GACACACTATGAGA	CTTTGAATCAGGAGCTATTTATT
Acetylglucosaminy	751		GCGTTG	TTTAAG
ltransferases				
Sialyltransferases	NM_173	ST3GAL	GCAGACTTTGAGTCT	AACAATAAAATAGCTCTTTGTT
	344	1	AACG	TATTCAC
Sialyltransferases	NM_005	ST8SIA4	GACAACAGGAAAGT	TCACTTGTGAAATACTTTATTCC
	668		GTGTAAAG	С
Fucosyltransferases	NM_000	FUT1	GTCTCCACTCTGGAC	GTGCTGTAGACTTTTAATTCATA
	148		ATTG	СС

Fucosyltransferases	NM_000	FUT2	CCTTTCCTCAAAATC	CCATCCGCAAAGTCATAATTG
	511		TTTAAGC	
Fucosyltransferases	NM_001	FUT3	GCTACCTGAGCTACT	CTGGCCGGCCTATTATTTTTAT
	097641		TTCG	
Fucosyltransferases	NM_002	FUT4	CCAAGAGCATACGG	CATTTTCCATCTCATTATTTTAA
	033		AACTTG	TCATTTTGTC
Fucosyltransferases	NM_002	FUT5	GCAGGAATCTAGGT	TGAAAATGTTAACAGCATTATC
	034		ACCAG	TG
Fucosyltransferases	NM_004	FUT7	GAAGTCTATGAGGA	TCACTGCTCAGATGTTTATTGT
	479		CCTTGAG	
N-	NM_020	ABO	CTGAGGAAGCTGAG	GTGTCTTTCTGTGTGTGTGTCTG
Acetylglucosaminy	469		GTTCA	
ltransferases				
N-	NM_016	A4GNT	CTGTGATTAGAGGAA	CTCAGTTAATATTTATTGACTGA
Acetylglucosaminy	161		GCAAC	ATGC
ltransferases				
GAG Polymerase	NM_005	HAS2	TCTTCCATGTTTTGA	СТТАТСАААААТАТТТТАТТТАС
and Related	328		CGTTTG	AAAAAATTAATTATAC
Enzymes				
GAG Polymerase	NM_005	HAS3	CAGTACAGCTTGGCT	TTCGAGATAACCGGCATATG
and Related	329		TTTG	
Enzymes				
Sulfotransferases	NM_005	UST	GTGATGTGACTGTGT	TCAAACACAGATTGCTTTTATTT
	715		TGC	TAGC
Sulfotransferases	715 NM_012	HS2ST1	TGC CGAACTGAGTATAA	TAGC GGAATGTATGATCTTTATTAATT

Sulfotransferases	NM_005	HS3ST1	GCAATAAGCTAAGCT	TTAGTTCTAAGTGGAATATTTAT
	114		CAGAAA	CAAAC
Sulfotransferases	NM_153	HS3ST5	GCTACCAGAGGGTTT	GAGGGGAAAGGGCTATTTATTT
	612		ТАСТ	AG
Sulfotransferases	NM_004	NDST3	GCACTGAGAGAAAA	CCAGGTCCAAACTCTTCAT
	784		CTTGAG	
N-Glycan	AK0951	DPAGT	GCTCGTTCGACTCTT	TAAACAATAAGAAAAAGACAA
Precursor	22	1	CTATG	CACTTTATTG
Biosynthesis, en-				
bloc Transfer and				
Processing				
N-Glycan	AK3046	MOGS	GCTACAATGTCTTCT	TGTTTTTTCCAATTTATTTAGAA
Precursor	55		GGAC	AAATAGACTC
Biosynthesis, en-				
bloc Transfer and				
Processing				
N-Glycan	NM_198	GANAB	GCATCAATGTGGCAT	TGATTTCTCCATCTTAAGTGC
Precursor	335		CTG	
Biosynthesis, en-				
bloc Transfer and				
Processing				
N-Glycan	NM_002	PRKCS	GGAAAGAGACCATG	CGAGTCACCAAGGTGG
Precursor	743	Н	GTGAC	
Biosynthesis, en-				
bloc Transfer and				
Processing				

N-Glycan	NM_006	MAN1A	GCTAGCTTCAGGTAA	CTCGAGAAATGTGCAACC
Precursor	699	2	TCCTG	
Biosynthesis, en-				
bloc Transfer and				
Processing				
N-Glycan	AK3157	MAN1B	GATGCCTACGTGTTC	GCGGTTAGAGCAAATCAAC
Precursor	97	1	AACA	
Biosynthesis, en-				
bloc Transfer and				
Processing				
Nucleotide Sugar	NM_001	SLC35A	CAAAGTCAGTGCTGG	CAAGATACACAACACATTTTAT
Transporter	042498	2	TGA	TTGC
Nucleotide Sugar	BC00513	SLC35A	GAGCCATCCTTGTAA	TTGTATAGAGTTCTTTATGAAA
Transporter	6	3	TAACAG	ΑΤΑΑΤCTATTTC
Nucleotide Sugar	NM_080	SLC35A	GTCCCTGACAACTTC	TGGCTGTGGTTGTAGGAA
Transporter	670	4	CAC	
Nucleotide Sugar	NM_015	SLC35D	CAGAGGATTGCTTCA	TCTGGATTAGTCTCTGTATGC
Transporter	139	1	TCTG	
Nucleotide Sugar	NM_001	SLC35D	GAAGGAGGTGCATG	TTTAATAGTTAGACTCATACTTT
Transporter	008783	3	TAC	ATTTTGAC
Nucleotide Sugar	BX6407	SLC35F	GAACCCTCAGTCACC	TTCGGTGCTTTCATAAAGCAT
Transporter	61	1	TAC	
Nucleotide Sugar	AL83396	SLC35F	CCACTCTGCTGTCTT	TGTATTTCCATGAATTCAAAGC
Transporter	9	2	GTAG	С
Nucleotide Sugar	NM_173	SLC35F	CACCACTCCTCTAGA	AACGCTTCTTTTTCAAATATTTT
Transporter	508	3	ACTC	АТТААТС

Nucleotide Sugar	NM_025	SLC35F	GCTGTCTGTTGTCTG	GATATCAGAAATTTCTATTTGTT
Transporter	181	5	TAGG	TTTAGATTC
Nucleotide Sugar	CR59705	SLC35D	CTGTTTGGATTTGAA	TACATAGAAATGATTTTTTATTT
Transporter	8	2	GAGC	ACTTTGA
Transferase Donor	NM_003	UGDH	GAAACCTAAAGTGT	TAGTTGTTGATGGAGAATGTTT
Substrate	359		AGAGATTGC	TATTTATG
Biosynthesis and				
Related Reactions				
Transferase Donor	NM_001	GNE	CCTCCAGGAACAGA	TTTCAACAAGGAAATGTATTTA
Substrate	128227		CATG	ТТТТТТС
Biosynthesis and				
Related Reactions				
Transferase Donor	NM_003	FPGT	GCAGTTTGATGTAGA	TAACAAAAAAAGCAGTGTCATG
Substrate	838		GATATTTTAA	
Biosynthesis and				
Related Reactions				
Mannosidase	NM_014	EDEM1	CAGATGGTTGGTTTG	GAAATCTTTTAATAAAAATTAC
	674		ATTTG	ТСАТАААААТСС
Mannosidase	NM_025	EDEM3	GCTATGACTTGCTAA	CATAATTTATACACAATTCTAG
	191		ACAATCTG	AGTTTTATTCAC
Glucosidase	NM_000	AGL	GCTACTATTCTTGAG	GACCTTTAGAAAATATTTTTATT
	642		ACACTTTA	TTCTTAACAC
Hyaluronidase	NM_012	MGEA5	CTGTGACATTTGTTG	ACAAGCATTCACTTCAAGTTTT
	215		ACACTG	ATTTTG
Glucosaminidase	NM_000	AGA	TCCATCTTTACTGTC	AAAGTTTGAATATCGTACATGT
	027		AACATC	AC

Arylsulfatase	NM_000	ARSB	GATTTCAGGGAGGCT	GTAAAAATTTTAGAACTAAAAA
	046		AGAA	АА
N-	NM_001	B3GNT	GACTTCCTTCACTTC	GGTTGGAATAAAATATTTAAAT
Acetylglucosaminy	009905	L1	AGCT	СТССТААААА
ltransferases				

Appendix 2A. Plasmid maps and sequences

List of features:

mClover3 (896..1600) CMV promoter 1 (238..810) CMV promoter 2 (2139..2711) miRFP670 (2779..3716) SV40 polyA (1660..1851) BGH polyA (3737..3961)

Sequence 1 pSFmiR-empty:

CATCGAGCTGAAGGGCATCGACTTCAAGGAGGACGGCAACATCCTGGGGCACAAGCTGGAGTACAACTTCAACAGCCACTACGT CTATATCACGGCCGACAAGCAGAAGAACTGCATCAAGGCTAACTTCAAGATCCGCCACAACGTTGAGGACGGCAGCGTGCAGCT CGCCGACCACCAGCAGCAGCACCACCCCCATCGGCGACGGCCCCGTGCTGCCGCGACCACCACCACCTGAGCCATCAGTCCAAG CTGAGCAAAGACCCCAACGAGAAGCGCGATCACATGGTCCTGCTGGAGTTCGTGACCGCCGCCTAATCTAGAGCTCGCTGATCAG GCTAGCTTGACTGACTGAGATACAGCGTACCTTCAGCTCACAGACATGATAAGATACATTGATGAGTTTGGACAAAACCACAACTA GAATGCAGTGAAAAAAATGCTTTATTTGTGAAAATTTGTGATGCTATTGCTTTATTTGTAACCATTATAAGCTGCAATAAACAAGTT GTGGTATTGGCCCATCTCTATCGGTATCGTAGCATAACCCCTTGGGGGCCTCTAAACGGGTCTTGAGGGGTTTTTTGTGCCCCTCGG GCCGGATTGCTATCTACCGGCATTGGCGCAGAAAAAAATGCCTGATGCGACGCTGCGCGCTCTTATACTCCCACATATGCCAGATT ${\tt CAGCAACGGATACGGCTTCCCCAACTTGCCCACTTCCATACGTGTCCTCCTTACCAGAAATTTATCCTTAAGGTCGTCAGCTATCC}$ TGCAGGAGTAATCAATTACGGGGGTCATTAGTTCATAGCCCATATATGGAGTTCCGCGTTACATAACTTACGGTAAATGGCCCGCCT GGCTGACCGCCCAACGACCCCCGCCCATTGACGTCAATAATGACGTATGTTCCCATAGTAACGCCAATAGGGACTTTCCATTGAC GTCAATGGGTGGAGTATTTACGGTAAACTGCCCACTTGGCAGTACATCAAGTGTATCATATGCCAAGTACGCCCCCTATTGACGTC AATGACGGTAAATGGCCCGCCTGGCATTATGCCCAGTACATGACCTTATGGGACTTTCCTACTTGGCAGTACATCTACGTATTAGT ${\tt CATCGCTATTACCATGCTGATGCGGTTTTGGCAGTACATCAATGGGCGTGGATAGCGGTTTGACTCACGGGGATTTCCAAGTCTCCCAGTCTCCAGTCCAGTCTCCCAGTCTCCAGTCCCAGTCTCCAGTCTCCAGTCTCCAGTCTCCAGTCTCCAGTCTCCAGTCTCCAGTCTCCAGTCCAGTCTCCAGTCCAGTCTCCAGTCTCCAGTCTCCAGTCTCCAGTCTCCAGTCCAGTCCAGTCCAGTCTCCAGTCCAGTCCAGTCCAGTCCAGTCCAGTCCAGT$ ACCCCATTGACGTCAATGGGAGTTTGTTTTGGCACCAAAATCAACGGGACTTTCCAAAATGTCGTAACAACTCCGCCCCATTGACG ACCGCCTCTCATTCGAATTGCGAACATGAAGAGATCCACCTCGCCGGCTCGATCCAGCCGCATGGCGCGCTCTCGGTCGTCAGCG AACATGATCATCGCGTCATCCAGGCCAACGCCCAACGCCGCGGAATTTCTGAATCTCGGAAGCGTACTCGGCGTTCCGCTCGCCGA GATCGACGGCGATCTGTTGATCAAGATCCTGCCGCGCATCTCGATCCCACCGCCGAAGGCATGCCGGTCGCGGTGCGCTGCCGGATC GGCAATCCCTCTACGGAGTACTGCGGTCTGATGCATCGGCCTCCGGAAGGCGGGCTGATCATCGAACTCGAACGTGCCGGCCCGT GCTGCTGTTTCAGCAGTGCACCGGCTACGACCGGGTGATGGTGTATCGTTTCGATGAGCAAGGCCACGGCCTGGTATTCTCCGAGT GCCATGTGCCTGGGCTCGAATCCTATTTCGGCAACCGCTATCCGTCGTCGACTGTCCCGCAGATGGCGCGGCAGCTGTACGTGCGG ${\tt CAGCGCGTCGCGTGGTGGTCGACGTCACCTATCAGCCGGTGCCGCTGGAGCCGCGGCTGTCGCCGCTGACCGGGCGCGATCTCG}$ ACATGTCGGGCTGCTTCCTGCGCTCGATGTCGCCGTGCCATCTGCAGTTCCTGAAGGACATGGGCGTGCGCGCCACCCTGGCGGTG CTGCAAACGGCTCGCCGAAAGGATCGCGACGCGGATCACCGCGCTTGAGAGCTAAACTAGTTAGCCTGTGCCTTCTAGTTGCCAGCCATCTGTTGTTGCCCCTCCCCGTGCCTTCCTTGACCCTGGAAGGTGCCACTCCCACTGTCCTTTCCTAATAAAATGAGGAAATTAGCAGGCATGCTGGGGATGCGGTGGGGCTCTATGGCCTGCAGGCGATCTCTCGATTTCGATCAAGACATTCCTTTAATGGTCTTTTCCTTGCTATTGCACCCGTTCTCCGATTACGAGTTTCATTTAAATCATGTGAGCAAAAGGCCAGCAAAAGGCCAGGAACCGTAAAAA GGCCGCGTTGCTGGCGTTTTTCCATAGGCTCCGCCCCCTGACGAGCATCACAAAAATCGACGCTCAAGTCAGAGGTGGCGAAAC ${\tt CCTGTCCGCCTTTCTCCGGGAAGCGTGGCGCTTTCTCATAGCTCACGCTGTAGGTATCTCAGTTCGGTGTAGGTCGTTCGCTC}$ CAAGCTGGGCTGTGTGCACGAACCCCCCGTTCAGCCCGACCGCTGCGCCTTATCCGGTAACTATCGTCTTGAGTCCAACCCGGTAA GTGGTGGCCTAACTACGGCTACACTAGAAGAACAGTATTTGGTATCTGCGCTCTGCTGAAGCCAGTTACCTTCGGAAAAAGAGTT GATCTCAAGAAGATCCTTTGATCTTTTCTACGGGGTCTGACGCTCAGTGGAACGAAAACTCACGTTAAGGGATTTTGGTCATGAGA TGACAGTTACCAATGCTTAATCAGTGAGGCACCTATCTCAGCGATCTGTCTATTTCGTTCATCCATAGTTGCATTTAAATTTCCGAA ${\tt CTTGGCCGGCCTTGGCCTTGGCTATTGCTTGGCAGCGCCTATCGCCAGGTATTACTCCAATCCCGAATATCCGAGATCGGGATCA}$ AGAACGATCCTCTCAGTGCGAGTCTCGACGATCCATATCGTTGCTTGGCAGTCAGCCAGTCGGAATCCAGCTTGGGACCCAGGAA GTCCAATCGTCAGATATTGTACTCAAGCCTGGTCACGGCAGCGTACCGATCTGTTTAAACCTAGATATTGATAGTCTGATCGGTCA ACGTATAATCGAGTCCTAGCTTTTGCAAACATCTATCAAGAGACAGGATCAGCAGGAGGCTTTCGCATGATTGAACAAGATGGAT TGCACGCAGGTTCTCCGGCGGCTTGGGTGGAGAGGCTATTCGGCTATGACTGGGCACAACAGACAATCGGCTGCTCTGATGCCGC GCAGCGCGGCTATCGTGGCTGGCGACGACGGCGGTTCCTTGCGCGGCTGTGCTCGACGTTGTCACTGAAGCGGGAAGGGACTGGC TGCTATTGGGCGAAGTGCCGGGGCAGGATCTCCTGTCATCTCACCTTGCTCCTGCCGAGAAAGTATCCATCATGGCTGATGCAATG AAGCCGGTCTTGTCGATCAGGATGATCTGGACGAAGAGCATCAGGGGCTCGCGCCAGCCGAACTGTTCGCCAGGCTCAAGGCGTC TATGCCCGACGGCGAGGATCTCGTCGTCGTCGACCCACGGCGATGCCTGCTGCCGAATATCATGGTGGAAAAATGGCCGCTTTTCTGGAT TCATCGACTGTGGCCGTCTGGGTGTGGCGGACCGCTATCAGGACATAGCGTTGGCTACCCGTGATATTGCTGAAGAGCTTGGCGG CGAATGGGCTGACCGCTTCCTTGTGCTTTACGGTATCGCCGCGCCCGATTCGCAGCGCATCGCCTTCTATCGCCTTCTTGACGAGTT AGCAACGGATACGGCTTCCCCAACTTGCCCACTTCCATACGTGTCCTCCTTACCAGAAATTTATCCTTAAGGTCGTTTAAACTCGA CTATCGTCAGCTTACCTTTTTGGCA

With the insertion into downstream of miRFP670

. cgcggatcaccgcgcttgagagctaaACTAGTTAGCCTGTGCCTTCTAGTTGCCAGCCATCTGTTGTTT

miRFP670 forward primer

reverse primer

polyA

GCCCCTCCCCGTGCCTT....

Sequence 1. Plasmid Map of pFmiR-empty and sequence.

Appendix 2B. pSFmiR-gene-3'UTR plasmid map and gene 3'UTR sequences

B3GLCT 3'UTR sequence:

GCTAGCATCAGGGTGACCTGTGCGCCTAGCCTGCTCAGGGAGTGAACTGGAGACTGTGGCCTCATCCCACTGTGCTGTGCTCACA GGGGTCACAGGAGAAACATTTTTTTTTCTGGGAAAAATCACTTGCTTTTGACTTATGCAGTTGTTTTAACACTTAGTGATGACTGTG ${\tt CATTGTAATGGAAGTTTCAGTTGGGCATGAGCCTGGAGAGATGTGACTGTCTACAGTTCTATTTGTATATAAAAAGAAGAACTG}$ AAAGTCTTTTGACATGGATATTGTGAATGGTATGGAACTTTTAAACCATATTATTGATGATGAAAAATTATTTCCTGGGAACTCAGTA **GGAATAATACCGTATTAAGGAATAATACTGTACATAAAACATCATGAAACCCTAGATATGAAATCCCCTGAAGTCTGTAATCATG** GTGGTTATGTTTTGTCTATTCTTTTGCTGTTTGTGCCTCATAAAAAGAGAATGAGGTCTTCTGCTAGAGCTTCGTATTGCTTTGGAA GTTCATCTGTGTTTTATTTCTCCCTGAAGCCCTATCTTTATGGCTTACTTGTAACATGAAAGTAGTAGATGCTGCCAGAAAATAGTG TCCTCAATATTTTAAAACAATGTTGACATGTTTTGTTCAAGTCAGCAAGCTCTATGTGAGTCTCAGGAAGTGAATTAAATTTGGAC CAGCATGGTGATCAGGCAATTTCTCTGGGTTCCCAAAGAATGACATTTGAACACAGTATTTTGAAAACAGCTCTAGTTTTCAAATTA TATCTTTAATATATAGTAATGTAACATATTCAGTATTAATGTATAAAAAAGCACTCTAATTATAATTCAGTTTTTGTAAAGGTATT AGATTGACTATTTGCAATAGTATTAGTATTTACCATTTTTCCAAATTAGCAACTACCAGACCTCACGTGTTGCAGTGATAACACAA TGCATTGGATTCAGTTTTGTGAAAATGGATTCTGTGGCCATCCAAGGGATGTATCAGGGATGATCAGCTGATGAGAGGGCTCCAGA AGGATTTCTAGATCGCTTCAAGCCTATACTGATGGCCTTAGCTTTGTTCAGTCATTGTAACTGGGATTGTTGTCATTGCTACCGTGGTAGTCACCTTCATGTCATCTATAATAGTACTCCTGGAGAGCCCTGGCTGCCTACACCAGTGGAAAAGAGTCTCCAGTTCTGCTCTG GCCTACTAACTGTTACCACTGAGAGAACAACATGTTCATTTGACATGATGAAGCTGGCATCCGTATATGAAGATCCTTGTCAAGC TTTCTTCTGTGGTCTGATTAGTGCCTTCTACTGATACCGGGGCACCTCCTCTGGTACTTTAAGTGTTTTGTTAATTATATTTACTTT TTGGAATGGTGTAAGCCTAACCACAAGTAAAAGATCTTTGCCTAAGTTTTTGATTTCTCAAATATTGTGTTCATTAGTCTAGACTG GGAATGGGGAGGGGAAATGGGGAAAATGAATGAATGAAATCAGAAAAAAGTCAGCGGCTCAGTAAATACAGTTTAAAGAGAGA

OGT 3'UTR sequence:

TCTGGGGGAAAGGGAACTAGATAACATACTTCTTACTTGTCTGTACAGTACCTTGTTGCAGATGGGTGATATAAATGGTAATAGA TTTTGCGGCGACCAGATGGTGCATAGGTCTGGAAGGTCTGATCTCCCTTGGTCTTCCATGGGATGGTTAGTGTGGAGGGGAGATAT AATGTTTGGTTTCAGGTATTTTTATTCATGTGAAGTGTATATGATTCTCTTGAGATAAGGTTTTAAGCTAAAATGTTACTCCCTGTT TTAGTTTCTGAACTCTGACAGATTGACAGGGACTTTGCTGGTGTAGTCTTTTTATAGGTTTTATAAACCACTTGAGCCTATATCAGT TTCCTTTTCTTCCCTGACCCCCATACCCTCACCCTTAAAATTCTCCCTGTAACTCAACAAAATCAAGCCTGATTCAAAAACATCC ${\sf TAGGGTGTTTTAAACACACCATCTGGTGCCAAATGAAGATTTTTAGGAGTGATTACTAATTATCAAGGGCACAGTTGTGGTACTGT$ ${\tt TCAGCAGAAATGAAATCCCAGGTAAGTATAAGTATTCAAGTATTTGATCAGTAAGTCACAGTTATCTCCAGTGCATTAAATAACCT}$ TCATCAAGAAATAGGTTATAGGTAAAAATCTCTGAAGGATCATCTATGTATTCAAGTAATTATTTTTTAGATAATAACTGTCTTCTG GACTTGGTCTTGAAGTCTGTACAGATTCAGCCTCAGTAGTAGCGAACTGCACTGCTGTTTGGTTTGGAGTACAAATTAGACTTATA GTCCTCCTGGAACTTGAGTTATTAAAATCATAGGAATAAAATTATGGGATCTCAACAAAGGGTCGAGGGTTTGAGGCTTAAACAA AGATTATGTCTTTCCAAAGCGCTGAGGCTGTGCACCTATTCTGTAGTTGCAGCTGATGCCTGAATGTATCCTAGCTGACAAATTAT TGATTAATAAGAACTTGAATTTCTGGAAGATTCTTACTGTTAACCAAATTTTGAGCAAGGAGTCTCAAAGGTAATTCTGAACCAGA GATTGAAATATCAGTTAAAGGTTGCCAGCATGGTTGCAGATAAACTGATGTTTGAAATTCGCTGAAATACTTAATGTGGAAATAGG ATAATATACTTCCAATGCCCTCAAGGCTGTGACCTTACAGCCATTTTACATAGCACATCATTCCTCCTATAGGGATGAACTTTTTCC TGGCACGAAAAGTAGCCGCTCTGGTTGAAGCTTTGCTTATTGTAACAGGCTTTTATTTCCAGGTAATATGTCTTGGAAGACTTAAT

OGA 3'UTR sequence:

CTGTGACATTTGTTGACACTGTGAACTGTCCAAAAGTCTCTTAACTGCACCTTGTGAATGGTAGTTGAGGTCTTCATACAGTTCAGCCTCTAGAATGGTAACAAATCAGCCAATTGGATTCGAAACAAAGAAGAAGACTATGTAAAACTCACCCATCACACTTTGAGACTACTC GACCTTTTACATGGGCTTATACAGGGAGAGAGTCTTCAATAAATGTAGTCAGCACTATTTTCTGCATCCAGTGTGGTTGCGTTTCT CACCTGAGAGTAATCAAGATAACATCTGTCATCTTCCTTGGTTTATTGAGTGAAATGCCTCTCAGTCTTAGGGGGACATGGCAGAGA TGAAAGAAAGAAAGAGTGGGTTTCAGAAGTGTCAGGGTGGAGTGATTCCAAGTGGGATGGTTGTGGCATTAGTTTAAGCTGAATA AATAATTTCAATTTGGGGCAGTTATTCTGCTTTTTGTAAAGCCGTGGCCAATTGTCTCCTGTAATGACTGTTGGTTCAGGCATGTTG TACTTTGTAGGGACAAATGTGCATTTGTTGTGGCAAAAGCCTACAATTGACAAACTTGTAAATTTCTTTGTATATAAACTAGCTG ${\sf TAACCTGACTATCCTTTGTGTTTACTGTTTTTGTAAATTTTTTTCCTCTATAAATGAAAGGGTGTTGGTTCAGAATGGCACTTTGAA$ AAAGTGCCTCCCACCTAGGCGTAGGCCATGACCATTTGGGGGTACGAGAGCCTAATTTTGTAGGACTTAATCTGTTGAAAAGTGCA GTTACTTCTGGAAATTAACCTCAATATTAGGTCAGCATGTGAAATGTTGGATTTGACATGTCAGGTAGGGTTCAGGGACTGATTGG TCCCATTTGCCCTCAGGTCAGTTGTTTAATCTCAAGACCTGTTACTACTGATTTTATTAAATCAGAGTCTTTAATTCTTGCATGTTTG TATCTAATTTCTGAATGAATGAGCACACTTTAACCAGTTATTTACAGTTACCTTTTTCCTTTAACCGGATTGTGAAAGCTTCATGTA GAGAGGGGTAAAGAGAAAGAAACTTAAGTTTTCTTTCACAGAACTCCACCATTGTGGGCTTTGAGAGAGCCCTAAAGCATTGTAC CTAGTGGTACCTAGTGACTTCCAACCAAAGCCTTTGAGTATGCACTAAATAGGTGAGAAGAAAGGAGAGAAGGATTTTTAGGTTAG AAACCTTTAACCGATAGAAGGATATGGTATGTTGTAAAGCTGGAACCAAGTTTGCATTTTTGAGGGGCTTGAGATGAAGGGAAGAC ${\sf TCAGAGTTAACCTCATGGAATTCAGGATTTTTTAGCAAGTTTGCTTTTGGTTTTATCTTGGCTTTTAGTAATCATGTTGGCTGGTCT$ **GGTCACAGGTGACTGTGAAACAGATGCCCTGGTCTTGCTTTCATCACTCTAGGATCATGAAGTGCTATGCTATTTCCTGGTTATGA**

FUT1 3'UTR sequence:

 ${\tt GAGCCAGGGAGACTTTCTGAAGTAGCCTGATCTTTCTAGAGCCAGCAGTACGTGGCTTCAGAGGCCTGGCATCTTCTGGAGAAGC}$ TTGTGGTGTTCCTGAAGCAAATGGGTGCCCGTATCCAGAGTGATTCTAGTTGGGAGAGATTGGAGAGAGGGGGACGTTTCTGGAA ATTCTAGAGGGAGACTTGTTCTAGAGAGGACCAGGTTTGATGCCTGTGAAGAACCCTGCAGGGCCCTTATGGACAGGATGGGGTT GGAGTGCAGTGGCGTGATCTTGGCTCACTGCAACTTCCGCCTCCTGTGTTCAAGCGATTCTCCTGTCTCAGCCTCCTGAGTAGATG ${\tt GGACTACAGGCACAGGCCATTATGCCTGGCTAATTTTTGTATTTTTAGTAGAGACAGGGTTTCACCATGTTGGCCAGGATGGTCTC}$ GATCTCCTGACCTTGTCATCCACCTGTCTTGGCCTCCCAAAGTGCTGGGATTACTGGCATGAGCCACTGTGCCCAGCCCGGATATT TTTTTTTAATTATTTATTTATTTATTTATTTATTGAGACGGAGTCTTGCTCTGTAGCCCAGGCCAGAGTGCAGTGGCGCGATCTCA ${\tt CCGGCTAATTTTTTTGTATTTTTAGTAGAGAGAGGGGGTTTCATCGTGTTAACCAGGATGGTCTCGATCTCCTGACCTCGTGATCTGC$ AGGTCTTGTGATATTGCCCAGGCTGTTCTTCAACTCCTGGGCTCAAGCAGTCCTCCCACCTTGGCCTCCCAGAATGCTGGGTTTATA ${\tt TGGAAAAATTGAGATGGAAAAACAAACCATCTCTAGTTGGCCAGCGTCTTGCTCTGTTCACAGTCTCTGGAAAAGCTGGGGTAGTT$ TGAACGTGGGGTGAGGGATCACTGCCAAAATGGTACAGCTTCTGGAGCAGAACTTTCCAGGGATCCAGGGACACTTTTTTTAAA ${\tt GGGCTGCTGAGGGTCTGGGATCTGTTTTCTGGAAGTGTGCAGGTATAAACACACCCTCTGTGCTTGTGACAAACTGGCAGGTACC}$ GTGCTCATTGCTAACCACTGTCTGTCCCTGAACTCCCAGAACCACTACATCTGGCTTTGGGCAGGTCTGAGATAAAACGATCTAAA GGTAGGCAGACCCTGGACCCAGCCTCAGATCCAGGCAGGAGCACGAGGTCTGGCCAAGGTGGACGGGGTTGTCGAGATCTCAGG AGCCCCTTGCTGTTTTTTGGAGGGTGAAAGAAGAAGAAACCTTAAACATAGTCAGCTCTGATCACATCCCCTGTCTACTCATCCAGACC AGGTATGAATTAAAAGTCTACAGCAC

FUT2 3'UTR sequence:

 ${\sf CAGGACCCATCTCTCTGTGAAGAAGATGCGTTGGGCTGCAAGTAACAGAAATCTCAGTGAACAGTGGCCTGGCGTGGTGGCTCAT}$ AACCCCATCTCGACTAAAAATACAAAAATTAGCCAGGCGTGGTGGTGGTGCACACCTGTAATCCCAGCTACTCGGGAGGCTGAGGCAA GAGAATCACTTGAACCCAGGAGGCGGAGGTTGCAGTGAGCCAAGATGGTGCCGCTGCACTCCAGTCTGGGTGACACAGCAAGAC CTGTGCTACCATTTCTTAGCTGTATCATCCCATGGTCCCAAAAAGGGCTGCTACAAACATCCAGCCATCACATGCAGATAATTCCTTTCCAACTCCGATGGGTAGGAATTGTCACATACCCATGTGACCCGATAGGAGGCAAAAGAAATGAGACTTCTGGGATTAGTTTAGCCTCAGATTCTGCAGCTGAGAAGTTGATCAGCCACCTCTGAAGGACATGCAGCTTGCAGAAAATTAGGGTGGTGTTACCAAGGTGAAAAGGGGAAATGGCTTTAGAGTAGACAACAGAGATGCCCTGAGGGGTTGTGTAGGTTGTTCACTGCAGGAAGTCCCCTGGTTAAGAA GGCAAGTGGGGTTTAAACAGACCCACAGTCTACTCATCAAACCAGGTGTCCTTGGCATTGTGTCCACCCAGAGAGCTCACTGTTTT ${\tt CCAGCTAATTTTTAATGTTTAGTGGAAATGGAGTTTCACCATGTTGGTCAGGCTGGTCTCAAACTCCTGACCTCATGATCCGCCTT}$ ATCCTGGCTTTCTAGGGCCTGGGATGATCATTGCTAGAACTGAGAGACCAGCCTGGCTCAGTGAACTTCAGGGCGTTCCGTTCATT CTTTCAGTAAATGTTTGCAGCACATGTGTTACATGTCAGGCAGTGAAACCCCCCACAGCAGCCTTCCCTCTCAGAGGATACATTTGTAACCATTACACAGTCATCAAAGGAATAATTTTTTTTAATCACCAGTGTGCATACAGTCATGGAGTTGGGTATTCCCAGCTACCAG GGAGGCTGAGGTGGGAGGATTGCTTGATGCCAGGAGTTAGGGAATATAGTGCACCGTGATTGGACTTGCGAATAGCCACTGCACT

FUT3 3'UTR sequence:

FUT4 3'UTR sequence:

CCAAGAGCATACGGAACTTGGCCAGCTGGTTCGAGCGGTGAAGCCGCGCTCCCCTGGAAGCGACCCAGGGGAGGCCAAGTTGTC AGCTTTTTGATCCTCTACTGTGCATCTCCTTGACTGCCGCATCATGGGAGTAAGTTCTTCAAACACCCATTTTTGCTCTATGGGAAA AAAACGATTTACCAATTAATATTACTCAGCACAGAGATGGGGGGCCCGGTTTCCATATTTTTTGCACAGCTAGCAATTGGGCTCCCT TTGCTGCTGATGGGCATCATTGTTTAGGGGTGAAGGAGGGGGGTTCTTCCTCACCTTGTAACCAGTGCAGAAATGAAATAGCTTAGC GGCAAGAAGCCGTTGAGGCGGTTTCCTGAATTTCCCCATCTGCCACAGGCCATATTTGTGGCCCGTGCAGCTTCCAAATCTCATAC ACAACTGTTCCCGATTCACGTTTTTCTGGACCAAGGTGAAGCAAATTTGTGGTTGTAGAAGGAGCCTTGTTGGTGGAGAGTGGAA GGACTGTGGCTGCAGGTGGGACTTTGTTGTTTGGATTCCTCACAGCCTTGGCTCCTGAGAAAGGTGAGGAGGGCAGTCCAAGAGG GGCCGCTGACTTCTTTCACAAGTACTATCTGTTCCCCTGTCCTGTGAATGGAAGCAAAGTGCTGGATTGTCCTTGGAGGAAACTTA AGATGAATACATGCGTGTACCTCACTTTACATAAGAAATGTATTCCTGAAAAGCTGCATTTAAATCAAGTCCCCAAATTCATTGACT TAGGGGAGTTCAGTATTTAATGAAACCCTATGGAGAATTTATCCCTTTACAATGTGAATAGTCATCTCCTAATTTGTTTCTTCTGTC TTTATGTTTTTCTATAACCTGGATTTTTTAAAATCATATTAAAATTACAGATGTGAAAATAAAGCAGAAGCAACCTTTTTCCCTCTTC GACCTGAAATTTAAACTGCAATGCCAGTCCTGCAGGAGTGCTGGCATTACCCTCTGCAGAACAGTGAAAGGTATTGCACTACATT ATGGAATCATGCAAAAAGGAAAAAAAGTTTCATGATATCTGTTGTTGGCAGTTTTTGTTTATCTCTGACAGTTTTTAGTTAAATGTTT AGATCCTCAGAACTACATTAGTGCCTACTATTAACTTACTCTGTCTCTTGTTAAAGGCTAAATCTGCGCTTCTCCCTGGTGCCAGCA ${\tt GGTTCCCCTCACAGTCAATGCAGTGGTATAGCATATCCTCACATTTCTAGTGCCCTTGAGACTGTGCTATGGAACCAATCTTGAAC}$ ATACATGCATTGACTTGACAAGTTACTGAGTAAGCAGCATATTCAGCAGGTGCCACTACATGCCTACTCTGCCAGACACTGAGCTT GGGGCCCTAGGGAAGATAGAGAATTATACAAGGCAAAGTCCTTCTCTTTAGGGCTCTTACAATCTATCACTTCCAAAAAGTAAAT ${\tt GGTGACTGATAAAAACAATTGGCAGAACCTGTTTGATTACTGTGACAGTCTTAATGATACCATAAATCAATATTAGAAAGCTAGTT$ GACTTAAAGCCTGAAATAATGGGAGTTTTCTCCCCCCCTTATTAGAATAAGGACCCTCAGTGACTAATTATTGTGGGTAGGGTCAA GATTAACTAGTTTTATACAGAGTTCTGCTGTAAATAGTCATTTTGCATTTGGATTAGTGCAGTTCTCTGAATCATAAAGCAAGTTTTA CCTCTCTGTACATGTTTTTGCAGACATACTTGAAAAGCTCACTTAAATCTAGGTGCTTCAATTCACTTTCTTGAGAGGACAAATGAAGAGTTCAGGTTTTGAAGGTAACCTAGTTTAGATTTGAATTCCAGCTATGTGACATTGGGTAAATTAGTAGTAGTCCTGAGCCTCA TTATATCTTAAGGTATGTTGTAGAATAAATTAAAAGGATAATCTAAATCACCATTTAGATTAAGCTTGACTTGCAAACTAGGAAGA AGCACCTAGGCTTTCTTTGAAAATATTTTTTTGGTTCGTTTTGGTAAAGCTCTATAAATTGGTATCTATTATTTTACCAATTTTTTT CGGAGTCTTGCACTGTAGCCCCAGCTGGACTGCAGTGGCGTGATCTTGGCTCACTGCAACCTCCGCCTCCCAGGTTCAAGCGATTC TCCTGCCTCAGCCTCCCGAGCAGCTGAGACTACAGGCGCCTGCCACCACGCCTGGCCAATTTTTTGTATTTTAGTAGAGACTGCG TTTCACCATGTTGGGCAGGCTGGTCTTGAACTCCTGACCTTGTGATCCACCTGCCTCGGCCTCTCAGAGAGCTGGGATTACAGGTG TGAGCCGCCGTGCCCAGCCATTGCATTTTATTCACATACACATTGTTAATGTGGAACAATTTAACACTAATCTCATCAGAGAGCG AGATGAATGTGGCAATTGCTCATTTTATTTTGCATATATTAAATTGAGTAGGTTCAGCTCTAACATACCTTAAGAAAAATGCATAT TATTTTTAGTACTTGATGACTCTAATTACATGAATGCACCTGGAATGACATTTGTAACAGAAGACGGTCTGACTTGCTTTCAGTATT ${\sf CACAAGTTCTTTCCAAGTCTTTTCCTAGCAGTAATTTAGGGGAGACAGAGGAGTTTCATGTAAAGAGCATGCAGTTTGG}$ AGTCAGAACCTGGGTATGACTCTGTGGCCTTGATGAAGCAAGTTACTTAAACTCTTGAGTTTTAGCTTTCTCCTTTACAATGCATG AATGCCTATCCCCCTACAAAACAAAGATTAAATGTGATGATGATGTATGCCAAGGTGCTTTGTATATTGTAAAGTGCTATAATTATA AGATGTTCTAAATTTTCAAGGATCTAAACCAGGGATTGGCAAACGTTTTTCCAGGGAGTAAATATTTTACGCTTTGCATATAAT TTATGGAGGTGTTGAGAGGATAGATTAGACACTTGAAGTACTCAGGATAGTGCCTGGCATGTAGGAAGCACCTGGAAAATATTCG CTGTGATTACCATCAGTCCATTTTACCGAGGAAGGAGCCAAGGTCCAGGCCCACTGAAGGACTTGCATAACATTACAATAGCAGT GGCAGAACCAGCCATGCTTCTGCAAATCACAACCTCTTTGAGCCTCTGTCACCTGAACTGCAAAATGAGTGGGTTAGACAAAATC ATCTGTTGGGACCTCCTAGTTCCACGTGCTATCATTCTACTAACTGGCACCCTAAGGTTGAAAGTGCTTATCTGCTTTCCAATGTGG

FUT5 3'UTR sequence:

FUT7 3'UTR sequence:

FUT8 3'UTR sequence:

AGCTCAGATGGAAGAGATAAACGACCAAACTCAGTTCGACCAAACTCAGTTCAAACCATTTCAGCCAAACTGTAGATGAAGAGG GCTCTGATCTAACAAAATAAGGTTATATGAGTAGATACTCTCAGCACCAAGAGCAGCTGGGAACTGACATAGGCTTCAATTGGTG GAATTCCTCTTTAACAAGGGCTGCAATGCCCTCATACCCATGCACAGTACAATAATGTACTCACATATAACATGCAAACAGGTTGT TTTCTACTTTGCCCCTTTCAGTATGTCCCCCATAAGACAAACACTGCCATATTGTGTAATTTAAGTGACACAGACATTTTGTGTGAGA ${\tt CTTAAAACATGGTGCCTATATCTGAGAGAGCCTGTGTGAACTATTGAGAAGATCGGAACAGCTCCTTACTCTGAGGAAGTTGATTCT}$ TATTTGATGGTGGTATTGTGACCACTGAATTCACTCCAGTCAACAGATTCAGAATGAGAATGGACGTTTGGTTTTTTTGTTTTTG ATACATCAGAAAAATAAAATATTCACTCTCCATTAGAAAAATTTTGTAAAAACAATGCCATGAACAAATTCTTTAGTACTCAATGTTTC TGGACATTCTCTTTGATAACAAAAAAAAAATTTTAAAAAGGAATTTTGTAAAGTTTCTAGAATTTTAATATCATTGGATGATATGTT ATAGTAACTAATTCTTAACTCAGAGACATTGGTCCATTTTAATACTGAAAAACCAATTTTCATTGGTACACATTACAAAATTGCTAA GAACACTGTTTGGGAGCTTTCATTCTCATATTTTGGACATTGTTTTAATTGAGTGAAATAATCATAACTCCTTGCTCCCAGAGAAGC ${\sf TCAGAAGTATATGTCTCATAGTGTGCAGAACTTGGTGACCAAGTGAGAAGCGGGACCAATGGGAGACTCACAATGGACTGAGTCT}$ ${\tt TGGGATTATCTTTTCCAAATTCTTCCATGTTAGAATCACTTCAGAAAATAAGACTTTGATGCTTTGTCTCTGAGCATCATTTTTTCTC}$ CTCATAAAAACACTTCCTTATTGTATGTAGCCTGCCTCCTACAGAGGCCTGGTAGGTGTTACTGCATTCTAAAAGAAAAATGTCAT CTCTGTAGGAGCGACTATCAGGCCTAGTGTGAAATATTAGGGATCCTAGGCAGAAGAGCTATTAGTCCTGGCCTTCATATCTTCACCAAATGAAAATACTGTATATAAAATTTCACCACCAAACTTAACTAAATTCTTTTTCTCAAGTCAAGCCTCCCAAAGAAAAAAGAA ATTAACTTCCTACAGTGTCAGCAAGCAATTTTCCATTTAGTTTTGGTACAAATAAAAGTCATTTGAAACAA

FUT10 3'UTR sequence:

GGTTTCCAGGGATGTAAGTGAGTAATAAAAGCTGTTTCAAGTTTATCCACTATCCACTCTTCAAGTGAAAAGAACTTATGTGTGTC ATGTCTTGTAAAGACACAGTAACTCCTGTGTGTTTTTGATTAGTGAGATGTTACCACTTACCCCTTCTGCTGCGCAGAATAATATTA AGAATTGCTATGCTTATGATTCAGGCTGGACAGCCTGGACATTTTGAGCAGCGCGAGAGTAGAAGTGAATACCCCCCAGGAACTCC AATTGTGCTGAAGCTGATTTGTCTGTTCGTAGGATGATGATGTGCAGCCTGTCACAGTGGCAGCCACAGGCATTCAGTTTGTGGGCATT AAACACTGGCTCATGTTTTCTTTCCATGTGAGGGAGGGGAGGGGAGGGTTTCTAGATGATACTAAAAGCCTGTTGCCACTGTTGTGTCATGA TTTCCATTCTTCATCGAAAGCCACAAGCCTCAGAAGGCAGCCAGAGGACAGGAAGAGTCTGTGATGCTCATGTCTGTGTCAT GGCATGAGGGGGAATTGACGAGTGCTTGCTTAGCATCAGCTCTCATTGTATTGAAGGCTGTGCCCTTGGTGTGCTCTAGCAGTGAGC CCAGAAGGATCACATTGGATGAGAGAGGAGGTGTCTATAACTGGGTTCTTCCCAATCCCAGCTCTTTCATTAACTAAATATGATCTTGTCCCCTGTGTAACATTCTTCATTGTTCATCAACATTTAAGAAATTTAATTTTGTAGATGTTTTTACTAAAGAGGGTAACAAACTATT TGCATATAAAA

GALNT1 3'UTR sequence:

AGCATTAGAGACTGCAATGGAAGTCGGTCCCAGCAGTGGCTTCTTCGAAACGTCACCCTGCCAGAAATATTCTGAGACCAAATTT ACAAAAAAACGAAAAAAATAAGGATTGACTGGGCTACCTCAGCATACATTTCTGCCACATTCTTAAGTAGCAAAAAAGGAAAAG TGCTTTCCTCCTCTGCAGGATGTAAGGTTTATCAGCCATTAAAACTTAGACTTCTCTAGCTTTTCACTAGCTGTGAACCAGCCTTCC ${\tt TGTCCATGGACGTGAAAACTGCATAGTAATGAGACTGTGCACACTGATGTTTACAAGATTGAAAGAGTCTTTCTCCGAAAATCATG}$ TAGTTTCTGCTGAACGTGCTGTCATAATGAAGAGATTTCCAAGATTTTTTTCCTGATTAGAACTGGTAGCCAGTATATTAAATATT GTTTAAAGGAAATTAAAACAGAACTATGAGAAGTACAATTTGTTATAGTATAGTATCAAATTTCTATATAGATTTTATACCTCAGT ${\tt GGGGAAAAATAACTGATTCCAATGACATTCATTTTGTTTTCATCTGTGATAGTCATGGATGCTTTTATTTTCCTTGGGGTGCTGAAA$ AATTTTTAATTGCCTTCTAAAAAATGGAAATTTAACAATGTCTGATCTCAGCTGAACAAATTAGATGTTTCAGTTGCTCTTGGGTCAACTGGCTTACAGATTTACATGTGCACACACACACACAAATTTCTTATCACATTTTCGACTTCTTCACTTGACCTAACTGATTATGCGA AATACCCAAGATTCATGCTACTGTACCACAGATTTGTTTTCACAGCAATAAATCTTCAGTTCTTTGTTTATGATTCCACTTAACAAA AGGCCTGCAGAAGTGATTTATTATTTGGGTATTTGGAGAGATAATACATTTGATGGTTTTTTGGAAAAACCTTTTTCACTCCATACTCAG AAATGTTTAATTGGCATTTTTTAATGACTTAGCCAAAGAAGTGCAGCTATTATTCCATATTAATAGGCTTGCATTTCTTTTCCTAAA TCTTATTTAGGCTAAATCAGTTTTATTTTTCTCTGATTTTTTTAATACCACAGAATCACCTGAGTGTCAATTGAAAGTTGTCAATTA AAAGGTAACCTTTTAATCTCGTAGGAGGAATCTCATTAAGACATTTTTCCTGATATGTAGAGCAGTCTGTTGGCAAAAATGCATAT ${\tt TGCCTAAGAATGTTTCCAAAAGTCGCATCGCTAATGATATTTGCCAAGTTGAGTGTACACAAAGTTTCTCATATCCTGTTCAAGTT}$ AATCAACATCAAGCACATGGGGGATGCTTTAGGGTGAGTCTATAGTACAAAATGCATAAACCATGTCCCCAGGAAATTTGAAAGGA AGCAGGTGCTGAATGGAATTTTTTTTCCTTTTCCATGAGCTGTGTTAATTCTATCTCCAGTAGGCCTAATGCTTGAATAAGCAAGATGTCTAATCAATAAATTATTTTCATGCTCAGAATTTCAGGTTTTTGTACTCCAGCATAGCTTGGTCTTATTTCTTACTGTATGAAAGCTCCCATTGCCTTTATTTTCTAATTAAAGAATTCCTAAATACTTTGAAAAATACAAAAATATTCCTGAATA

GALNT3 3'UTR sequence:

GALNT7 3'UTR sequence:

AGAGAAAAAAAAAAAAACCAATAACCTACCTACTGACAAGTAAATTTATACAGGACTGAAAACCGCCTGAAAACCTGCTGCAACTATT GTTATTAACTCTGTATAGCTCCAAACCTGGAACCTCCTGATCAGTTTGAAGGACATTGATAAACTGTGATTTACAATAACATTAT AATTTGTGCCTTTAGCTCTGTTTTATTAGACAGAGTTAAAGCATGTTGTCTTCTTTGGGATTACACTCAGGGGTCTGAAAGGCAGTT TGATTTTTATTTTTAACACACTTGAAAAAAGGTTGGAGTAGCCAGACTTTCATATAAACTTGGTGATTATCAACCTGTTGTGTCTT TATTTAATTTTACATCTTTTTGAAGCACTGCCACAGGTTATTAGCCAAGGTGGCCTTCCTCACAGTCATGCTGCTTTTTTGAAAGG TGAATTTCAACACATTTAGTGCCTCTTTCATTTCTCAGTATATATTTCAAGAGCTTGTGATGAAATCTATAGGATGGTAATGATGGA CTTGTCACCTGTATGGGGGAATACTTTTACTACTCAGAAATGAATTTATGTGCTGCCATTTGCTATAAAGTTGAACTTTGTATGGCTTGAAAAAGAAATGACAATATGGAACATCCCAAGGCTGTCCCATAGGGTTGGAAGTTGTGTAGCATTCACTCCCTTACCTACTGGCA TTCCCAGTGCCCTCTGTCCATACCTACTTCTAGGATTGCAAAGGAGTCTTCCAACTAGAGAAAAATTGTCCACTGACATTTGGGAT TTACTTTTCTCCAATACCTGCCAATACAGAAAACTATTATCAGTTGTTATTGTTATCCCTTGAAAGCGAGGGTGACAAAAACAACA TGTGCATTATAACCTAAGCTGTGCAACCTGTGAAGCCAAGAGTGAACTGATGTTTCATTTATATTTTCATCCAAATGACATTATCT ${\tt GCACGTTTTTAAAAATTTAAAAACAAAGGACTATTTAAAAAATACAGTTTATTAACAAACGTGAACTACTTTCTGTTACAATAGGTGT$ TACTAAGACAGTACCTATTAGGAAAAACCAAATATTGCAAATGGTCAATTCGATTTTAATTTCTCAAAAGATACTCTGTTATCCAGA TTTTGAATTGTCAATTTGTATTTTGCTACTGATCTGTGATCAACCATTTTAACTTTCATCTCTAGGGATGTTTAACATTTATAATTGC AAAATAAACCAACTATAAAAAAAAAAAAAGAAACTAAGAGAGAAATTGGTACTTTAATTACTTGTGTGTTTGCAAAATAGGCTCCATTTTCCA TGTTGAGTAGATTATAACCTTATTAACTATGCATAGGCCTAAGAAAGGTGGCAATGAACTGTGCATGTAAATTTTAAATGGGTACT GCTGCTGCCATAATGACTATTTTCTACTGTAGGCTGCTTTGGAAATAATTCCCATATCCTTGCTTTGTAAGTTGGTAATATCACTAT **GCATTTCTACACATTTTATAAATTTGATTATGCAGATTTTGATACACTGTATGTTTCTGTAGAAATTGTATAAATATTCAAAATTT** TATTAGGATAAATTTGAGAAAACTTACGTATATCTTAATTCTGGGTTGCTTGTTTTTTAGGTGACAAAAAATAAAATATTGTATTTTAA TTCA

MGAT1 3'UTR sequence:

 ${\tt CCAGGCTGCATCGGCCTGCCTGTGTTTTCCCTCTTAGGTGCATTTATCTTTTTGATTTTTCCGAGTGGCATTTAAGTGCACAAATGAT$ ${\sf CACTGTGTGGGGGGGGGCACTGGGCTTGTTGGGGGCCAGAAATGTCCACGTCCTGAGCTTTCTCCTGGAGCATGTGCAGAGAGTTT}$ GCCTGGTGGAGTTGGTGGGTCATCGGGGCTCACTGCCTCCTGCCCTTCTCTCCTGTCTGACCCCCACTTAGCCCTTCTCCTTGCA GGTTTGACACAGGCTCCTCTCAGCATGAGGTGGAGCAGTGACCAGGTGGAGCAGTGACCAGGACGCCTCTGGCCCAGTGCTGC CCAGCCTCCCGCCCGCTCCCAGGCGCCCCATGTCCTCACAGGCCAGGACGCCATGGCAGGATGGAGAGGACTTGGTGGATTTTTGTTTCTTGCCTGACCTCAGTTTCATGAAAGAAAGTGGAAGCTACAGAATTATTTTCTAAAATAAAGGCTGAATTGTCTGAAAAATA CAGGTGGGAAAGGAAGTCCAGGCCACAAGGTGGAGAGGAGCCCCGGACTGTGCTCCTGCTGATCGTCCTGTAGAGCCAGGAGGC ATCAGGGTGGTCCCTGAGTGGTGCTTTGTGCCCGGTGCCCTCTGCTGGCCCAGGCAGTGCTTATTGAGTGCCCTTTATGACGTGCC GGGGAGCCTCAGGGTACACAGCTGATACCAGGGTTGGCCTCACAGTGGCGCCTTGGACTCCCAAACGCAACCCCAGTGAGAGTGC CTGTTTTGCTAATACCCAGAACACAGACAGACAGACTGTTACCTCTGCATATCACGTGCAACATTCTGAGAGTTTCTGTTCTCCACTAATT GAAGTCAGGAGTTCGGGACCATCCTGGCCAACATGGTGAAACCTAAAAATACTACTAAAAATACAAAAACTTGCTGGGCATGG TGGCACACCTGTAATCCCAGCTACTCAGGAAGCTGAGGCTGGAGAATCACTTGAACCCGGGAGGCAGAGGTTGCAGTAATCC AAGATCATACCACTGCACTCCAGCCTGGGCGACAGAGCAAGACTCTGTCTCGGAAAAACAAAACGCTTTTTGTGACTCACGAACT TGATTTCATGAGTGGGTTTGAAAACCCTGGGCTAGTCCAGGCGCGGTGGCTCACGCCTGTAATCCCAGTACTTTGGGAGGCTGAG GCGGGTGGATCACTTCAGGAGTTTGAGACCAGCCTGGCTAACATGGTGAAACCCCATCTCTACTAAAAATACAAAAATTAGCTGG GTGTGGTGGCACATGCCTGTAATTCCAGCTACTTGGGAGGCTGAGGCAGGAGAATTGCTTGAACCCGGGACGGGGTGGTTGCAGT ${\tt CTAGGCAAACTTTCTTGGCAGAAACTACTTTGGAGGCTCGACACCAGATGGTGGCAGAGTTGTCTGGGGAGCTGTGTCGAGGGCCGT}$ GGCCTTGGGAGCAGCTCCAACCTCCCATCTGGGCTCAGAAACCAGTGTCAGACATTGGTTTTATTTTAACCTTTGAGATTTGTGTG TTCAGACGTGGAATCGGCCCGGCGATAGCTGCATTGTGCCCTTTCCGGTGGAGCCAGGAGGAGTTTGGCCGCCACGCTCCATGCG

ACTTACTTAGTGCTCCAGGATAAGTACCAACTTACTTGATCCTCAGAGCAAGCCTAGGCGGTGGGTACTGTTTTGCTCCTGTTTTA TGCTGTTAGCCACTGTGTGAGGCTGGACTGTTCCATTCCAGCCTTTACGGCCTCTTCCAGGCCATTCCCCAGCTGCACTTGGATTCT GAGGAGTAGAGTTTGGGGCCTGCGGTGCCAGAGGACCCCCTTACAAGACGAAAGACTGGGTTCTCAGGCTCCTGAAGCAAGGAG CACCTTCAGGGGGTCTCCTGGTATTCACCCATCAAGGCTTGCTCAGGTGGCATGCGTGTGTGCGTGGCGGCGGCTGCCCCGGGCCCGGAGTTTGCAGGTTTACAGAGCTGCCTTGCGCCTGGCTGCTGCTGCTGCATTCCTGCTTCTGCCTCCAGCTGTGACCACCTCCTGCC ACTCCTGCTCTCACTGTGGGTTCCTGCTCACTCTGTCTCCAGGACAGACTGCCTTCCGGGCAGCCTTCCCTCCTCAAGCCTCTTGGC TGGCCAAGGCCTCCTGAGCCTTCACTGGGCCCTGCATGAGAAGCCTGCCAAGGCTGAGGGGCCAGGGAAACGGAGACGAAGCC CTCAGAGCAGGCCAAGAGGGTGGGAGGTGGGGGGGGCATTTAGAGGGTTAGATACAGAGCACCCCTTTACAAATACCAGCTACTGGGACGTCTTCCTCACATCTATACATAATATGCATAGATAAAACATTTACCACCAAAACCCATAGTGTTATGTACATATTTGTCTGGC TGTGTAACTTTAAATAACATACAAATGTATAGAACAGAAGCTTGCCCTCTTTCTGAAATATCTAACGTGGGATTTCAGGCTTTCTGATGAGACCTCTGTAGAGGTCAGTGTTTTGCCACCAGAGGTCCTTCAGCCTCCATCTGTTCTCCCACCTACCCACATTCTGGCCCCTG GCAATTCACAGGGAGTTTAGGAAGTAGACACCAGGGCCCTATTTCCTGGAGACCAGCCTGGTGGCCGATGTCATAGAGTGCGGTG GGCCTGGGCCGGCCCTGCTCTGGGCCCGTGACCTGCGTGTCTGACTCGGGTCCAGCTGTTCTTCCTGCCAGAGCCTCTTCCTGTGA ${\tt GGCGGGGGTAACACAACCTTCTGTGGTGGCTGTGGGATTAATCCGTATGGCTGCATTGTGAGTAAAGCCTGGTGGAAATCTCTGT}$ CTCCACTGCTTTCCTGCTGTTCACCTTGGCTCCCCCGACACTTAATCCCCCTCCACATGTGTCTGGAGCGGGCAGAGCGGGGGCAGTTGATAGAAAGGGGGGCCGGGTAGTGCCAAGGCTGTTACTTTCCCCCACTGCCTCCCTTGGCTAACTTGAAGTCTGACCCTT AGGTCGATGGTGCAGGCTGGTGGGGGGTTCCTCCACCGTCAGGGCCCAGGCTCCTTCTCAGGTCTCAGTCTCACTCTTCTTAGCA GGATGGCAGCTGCCTCCTCCTCTTGGAAGCTCACAGAGCGCTGGGTCACAATTCCCTGGGTAGAACTGGATCACACAGGCACC ${\tt CCTGTCAGCAAAAGAGGCTGGAAAAAGTATTTCTGAAGCTGAATCAAATTAAGATTCCTGTTACTAAGAAGGGAGTGATTGTATG$ GGCGACTACAGGGACCACGGCCATACACGGTGCCTGGAAGACCAAGCTTGTGACAGTGACGAGGATTTGGAGAGGGCAGGGTGA TGGGGAGCTTTGGGGGGGAGTGCATTAGGAACCCTGACCTGGAGAGGGGCAGAATGAAACCTGCGGGCCCCTAACCCTAGTGGGT ACACATGGCTCCCAGCTCACAGCAAATGCTGCCCTGGTTCAGCTACCAGGAAGCAGGAGGGGAAGGGAAGGGAAGCCTCATT GTGGGATGCACCCTCAGTGCAGCAGCCCTGCCCCAGCCAAAAACGTCTCAGCACGGCTGTAAGAAGAGGAAGATGGCTAGAGAC AGGCAGCCTTCCCTGCAAGGGCAATGAGGCAAGCCTGCCAAAAGCCTCCTTTGGAAATACTGTTTGATTACTTTTCAGAGTTTCCA TTTAGGAAAAGGGCAAAACCTTTCAGGATCAGGAGTAGGTGAGCGGCGATCAGGCCTCACTCTTCACCGAGGGCCTTCCCTGAGG AGGGGCCTGCAGGACGCTGGCAGCGGAATGGGGCTGTGTGGCTGCTAGATTAGGTCATGGCAGGGAGACAGCCTCTTCCTGGTTC ${\tt TTGCTAGAACAGGCACACTTGGGGGCCTTGAGCTCCAGGGAGTTCATGGAAGACATCTGACTACCCTGAGCCCCTTGCTGGAGGGGT$ TCTGGGGAGTGGCCCACGGCCACCGTCACCCATGGCCACCGTCACCCACAGGGGCCGTGAGGACATCCCTGGCCAGCATCTAACA CAACCACATGGGATGCCCTAAGCAACTACTGCCCAGCCGAGGGCTGCCTGAATTTCTGACTCACAAATGGTGGGCAATGTGAAAC GGGTATTTTAAGCTGCTGAGTTCTGCGGGAGGTTTGCTGAGCAACAGTAGAAACCAGAACTCTCGGATACTGTGTTCTGTCCTTGAA ACGGTGGAAGATTTTATGTGACCAGAATGGAATGGTTTGAACAAATATTTTGAGAATAGAATTTTAAAAACATTTACTCATCAGCATC CAAGGGTGGGGGGGGGGGGGGGTGTCATCTAGGAGACTGGTTCTATTATTTACGTAGATGTTCTTGAATTAAAGGATGGGAATATTTTTTCCTTCCAAAACTTTTTTTCAATTTTATATTCTGTTTTTCAAGTTTTTATTATGAAAATATTCAAACTCACAGGGAAGTTGAAAGACTAA TACAAAGAAGAACCATACTCTTTCCACTGACATGATCCAACGAGGAATATTTTGCCACACGGCAAATATATACCGTATAATTTTCT GTACCACTTGATAGAAAGGTAAAGAATGAATATTGTTTTTTAAATAACTTTTTTCGTATATAAGTAATATGTGCTTATCGTGTAACT ACCTAAAAACATTGAAAAAATAAAAGGAAAATAAAATTCATACAT

MGAT2 3'UTR sequence:

MGAT3 3'UTR sequence:
GGGTCAGGCCTTTGAGCTCAGAAAATATCCCTCCTGTTGGGAGAGGGCGCAGGCCGTGACGTCTGGGTGGCCCTTATGACTGCCA AGCCTGCAGGATCTCACCAGGCAGCCTCTGGGGGGGTGGCCAGGCCGGGAAAAAGCCCACCATTTGGCATCCCTGGGCCTTGGGCT ${\tt CCGTGTGGGAGACCGGCCTGCCAGGAGGACCCAGGGCTCTGTAAGTAGATGCATTTGGGTCCAGGAGGAAGCGTGGACACCTCG}$ TAGGGAAGAGATGAAAAAGCCACATCCTACCAAGAGGAGGTGCTGAGGGATGCTTTGCAGTGTAGTCAGAAGTGCTGGGCCAGA CTCAGGCTGTCGTGAGCCAACACAGGGGCCTGGAGAACCCTGAGGAGCTTTCCTTTTGGTTCTAAACCCGGCGTTGACGTTCCTTC ${\tt TCCCTTTCACATTGCTGTCTTGTGGACTGTGCACTCAGTCCTTGCAAGGCCAAGAGTCCAGTTGTAGGTGTGGCCTTGAGGGGGGAA}$ TTGGGCCCAAAAAGGGACAATAAGGCCAGTTGTATGCTTCCTGTTCCTCATAGCTTGCCTTGGTGGGGATGTCTTTGTTGGAGTTG ATTCTGAGCTGCTGTGATTAGGAGACCCTGAAATACAGTGGTTTAAGCAAGATGGAAGCTTGTTTCTAATTAGTCTAGATTGAGAT GGCCCAGAGCTGGTAGGGCAGCTCTGCGTTTCTTCATACGCACCTTCCAATTCTGGGTACACAGCGGCTGCTCCAGCGCCCACCCT ${\tt cctgtgtgcatccaagcctgggggaagcagaaatagacaagagggcacaccccactttttgctaaaggcatgagccagaattggc}$ AGGCTCACCTCTGCTGGCCTCTCATTGGCTGGGACTCAGTCACATGGCCACAAGCAGCTGCTAGGGAACCTGGGAAGTGTAGTCT TCAGCGGGGCCGCCATGTGCCTGGCCTCACCTTGGGAGTTATCTTATTGATGGAGGAGAAGAGAATGGATATGGGGGGACCAGTAG GCCAGGCCCAGGCCTGGCCTCTTCCTCGGGCCTGTGGCCACACCTCCTGCAGCTCCCCAAAATGACTGAGGCAGAAAGCCCTTGG AGTGGGGCTTTCTCCAGATGTCTTATGGTTGGGGGGTTTCCTGATGGGCCAGGAGGAGGGGCATCTTCTTGCGACAGCACTGTCTG GGTTAAGTGCCCAGTGAGGGCATGGTGTGGGGAGCTGGCCTCAGAGGAGCCGCTGGTGGGCAAGCGTGAAGTGGGCTGAGGGGC GGCTGAGAGGTGGCTCAAACACTCGGGGTCCCTATGGCTCTGGGTCAATCTAGGCCAGGCTGCACCCCATGGACAGGGAGTCTCA GGGGCCAGGGCACAGGATTGAAGAGTTTCACATATCATCACAGCATACACTGGGAATTTGGTGGGGGCAGAAGAACCCAGGGCC ACTCCCTCAATATGAAGGGAAACCAAGCTGAATGTGACCACCGGCACACTGCTGCCATGTCCCATGTCCACCTTTCTCCCCGGGA AGAAGGCAGGACCCTGGGAAATGCATAATGTAAGGACATCAATAATAGTATTATTTTTTTGTAAGGGAAAATCAATATGTACAT TCTGAAATCATTTTCTCTGTAAATGGTTGGATTTCATTTCACCCTTAAAGGGATGCTTAAAGGAGAAGATAATAATAATAATAAAA ACAGCTACAAAGTCTG

MGAT4B 3'UTR sequence:

MGAT5B 3'UTR sequence:

ALG1 3'UTR sequence:

CCTTTGGTTATGGACACATAACTCCTGGGCCAGAGGCTAAAACCCCAGGACCCCTGCTGTCCTTCCCGCAGCTTCTTCTTGGAGTC TCAGGGCAAACCCTTTCGAGCAGCACCTCCCAGTGGCCAGAAGCTGAAATGACAGCAGTGGTACTGCCTGGTAAAAGAATTGGTT CTGTGACCCGGGAAGCTTTGGTTGGCCTTGATTTCTTCTCGGAGGCCTGGAAACGCTTCCTCTCTTCTTCTGTTCTTCACGCCCA TGCCCCTGCTAGCGTATTACTGTTCTGTGACTTCCCTGTGACCTCTGCAGAACTCCTCATCCTGCGTTTGGTCTCCAGGTGTCCCCT TTCTGCCGTGTTCCTAACATTTTGATTCCTGTCTTGAAAAAAAGCACCTGCTGCACCGTAAGCCCAGGGATGTGGCAGCTGCAGTGG GCTTGGCTTTGTGAGGAACTGAGTGTGTCCACGTTGGGGGGAACATCATACTTGATACACACGTTTTTATTTGCACAAAGAAAATGC TATTTTTGGAGCCAGAACTGATGTCTGATTTATGGTGATTTCTTAAGAACCAGAACTGCTGGCAGAAAAGGGGGCACCCACACG CTTAGATAGCCGATGTCTTATTAGAGGGCAGTTTGTGGTTCCTGATTTGGAAATTAACATTCTCCAAACATTCCAGTCCAATGAAA GTTTTATCCGCTTTCCCATATAAAAATTCTTCCCATGA

ALG2 3'UTR sequence:

ALG3 3'UTR sequence:

ALG5 3'UTR sequence:

 ${\tt GCTTGAGCAAACTCGGAAAATGAATTAGGTTGTTTGCAGTCTTCAGTTGTGTTCTTATGCTTCAGTGTCACATTTCATTTCATTTGAAACTAAAATTTTAAGTAAAGCTGAAATAAACTTCTTGTCATTGTCTGCCTTTT$

ALG11 3'UTR sequence:

ALG13 3'UTR sequence:

B3GALNT1 3'UTR sequence:

CATGCTAAGGAACACCACATGCCATTATTAACTTCACATTCTACAAAAAGCCTAGAAGGACAGGATACTTTGTGGAAAGTGTTAA GACTGGAGGGTTACACTTGTGATTTATTAGTCAGGCCCTTCAAAGATGATATGTGGAGGAATTAAATATAAAGGAATTGGAGGTT TTTGCTAAAGAAATTAATAGGACCAAACAATTTGGACATGTCATTCTGTAGACTAGAATTTCTTAAAAGGGTGTTACTGAGTTATA ${\tt TGGATTACCAATTTAAAAATATATGTAGTTCTGTGTCAAAAAAACTTCTTCACTGAAGTTATACTGAACAAAATTTTACCTGTTTTTG$ GTCATTTATAAAGTACTTCAAGATGTTGCAGTATTTCACAGTTATTATTATTATTAAAATTACTTCAACTTTGTGTTTTTAAAATGTTTTG ACGATTTCAATACAAGATAAAAAGGATAGTGAATCATTCTTTACATGCAAACATTTTCCAGTTACTTAACTGATCAGTTTATTATT GATACATCACTCCATTAATGTAAAGTCATAGGTCATTATTGCATATCAGTAATCTCTTGGACTTTGTTAAATATTTTACTGTGGTAA TATAGAGAAGAATTAAAGCAAGAAAATCTGAAGTATTGTCTTGTTTTTAAAAAATACAGTTCCTAGTGTTTTTAGAAGTCACTTAA TTTGTCTCATTTTTCCACCTGGAAAATTAGGAATAATGTAGAATGCAAGGCAGTAATTTCCTTTTGGAAAGGACTCTGAAGGCAGAA ${\tt TCCAAGTTGCATTATTAATCTGCCCTGTGTTTTTTCCTTTTAACAATCAGTTTGAGCTGCTGCTGTTATGAGTTTCTCATCAAGATGA$ TGTTGGACCTGCTAATAGTAGGTCAAAGGGGAGCACTCCTTGCCCCCTGTTCCTGGGTTTATGCAGTTTTCTTTTTAGAGTTTATAT AGGGCAAGTGGTTCTTTTTCTCTGAATTACAGGATGGAAAAAGGTCATATCCTTTGTCAGGAAATATAAACTTGAAAGTATGTAGT ${\tt CAGCTCTTGTAATACTCATATTTATGATTGTCCTATATGAAAAAACAACTTCAGTTAAAAACTATAATGTGTGATTCTGTATAACAAG$ GTGATGTCTGTTTCCCAGGGCTCAGACCTAATCCAGTTATAATAAAATCAATTAAATGAAATATTCTATAGAATCGATCTATGCCC TTGTTAATCTCCATCCATATAGGAGTCACGTTCTTTAAGACAGATGGTGGTAGTTATTTTTGTGGCATGGTTAGATTTGACTGGTTT TGCAGAAGATTACAGTTATGTACTGCATAATGACATATACAATAGTGGTCCCATAAAATTATAATGGAGCAGAAAATCTATTGCC TTACTTTTTATAA

B3GALNT2 3'UTR sequence:

B3GNT3 3'UTR sequence:

B3GNT5 3'UTR sequence:

AAGGTCTTATAAACCACAGCACTTTGTTCCAAGTTCAGAGTTTTAAATTGAGAGCATTAAACATCAAAGTTATAATATCTAAAACA ATTTATTTTCATCAATAACTGTCAGAGGTGATCTTTATTTTCTAAATATTTCAAACTTGAAAACAGAGTAAAAAAGTGATAGAAA AGTTGCCAGTTTGGGGGTTAAAGCATTTTTAAAGCTGCATGTTCCTTGTAATCAAAGAGATGTGTCTGAGATCTAATAGAGTAAGTT TGTTAGGGAAAATCAGATGTCTCATATAATAAGGTGATGTCGGAAACACGCAAAACAAAACGAAAAAAGATTTCTCAGTATACA GCTTGTTTACATTGCTTAGATAATTTAGAATTTTTAACTAATGTCAAAACTACAGTGTCAAACATTCTAGGTTGTAGTTACTTTCAG AGTAGATACAGGGTTTTAGATCATTACAGTTTTAAGTTTTCTGACCAATTAAAAAAACATAGAGAACAAAAGCATATTTGACCAAG AAGTGTTTAAGGTTGCCATTGGTTGAAAAACATAAGTGTCTCTGGCCATCAAAGTGATCTTGTTTACAGCAGTGCTTTTGTGAAAACA ATTATTTATTTGCTGAAAGAGCTCTTCTGAACTGTGTCCTTTTAATTTTTGCTTAGAATAGAATGGAACAAGTTTAAATTTCAAGGA CTGTAAATAAAAGGGTTCCAACCTTTTAAAAAAGAAGGAAAAAACTTTTTGGTGCTCCAGTGTAGGGCTATCTTTTTAAAAAATGT**GCAAAATAATTAGTGAGTTTAAAAAAAATCTATAGTTTCCAATAAACAACTGAAAAATTATCATGA**

B4GALT1 3'UTR sequence:

GAGCTAGCGTTTTGGTACACGGATAAGAGACCTGAAATTAGCCAGGGACCTCTGCTGTGTGTCTCTGCCAATCTGCTGGGCTGGTC ${\tt CCTCTCATTTTTACCAGTCTGAGTGACAGGTCCCCTTCGCTCATCATTCAGATGGCTTTCCAGATGACCAGGACGAGTGGGATATT}$ TTGCCCCCAACTTGGCTCGGCATGTGAATTCTTAGCTCTGCAAGGTGTTTATGCCTTTGCGGGGTTTCTTGATGTGTTCGCAGTGTCA CCCCAGAGTCAGAACTGTACACATCCCAAAATTTGGTGGCCGTGGAACACATTCCCGGTGATAGAATTGCTAAATTGTCGTGAAA ${\tt GGTAGTTGTAATTTAACAGAAAAAACACAAAAATTTCAACCATTCTTAATGTTACGTCCTCCCCCCACCCCCTTCTTTCAGTGGTATGC$ ${\tt TTCCAGGGCAACTCTAGCATCAGAGCAAAAGCCTTGGGTTTCTCGCATTCAGTGGCCTATCTCCAGATTGTCTGATTTCTGAATGT}$ AAAGTTGTTGTGTTTTTTTTAAATAGTAGTTTGTAGTATTTTAAAGAAAGAACAGATCGAGTTCTAATTATGATCTAGCTTGATTT AAATAGGCCTATGATTTAGCTGGCAGGCCAGGTTTTCTCAAGAGCAAAATCACCCTCTGGCCCCTTGGCAGGTAAGGCCTCCCGG TCAGCATTATCCTGCCAGACCTCGGGGGGGGGGATACCTGGGGGGGACAGAAGCCTCTGCACCTACTGTGCAGAACTCTCCACTTCCCCA ACCCTCCCCAGGTGGGCAGGGCGGAGGGAGGCCTCAGCCTCCTTAGACTGACCCCTCAGGCCCCTAGGCTGGGGGGGTTGTAAATAA CCTTTTTGTTCCTTTGCCTCTTGCCTGTCCCCTAAAACTTGACTGTGGCACTCAGGGTCAAACAGACTATCCATTCCCCAGCATGAA TGTGCCTTTTAATTAGTGATCTAGAAAGAAGTTCAGCCGAACCCACACCCCAACTCCCCCAAGAACTTCGGTGCCTAAAGCCTC GGGAGCTATTGAGCCACCTGGGATGAGATGACACAAGGCACTCCTACCACTGAGCGCCTTTGCCAGGTCCAGCCTGGGCTCAGGT TCCAAGACTCAGCTGCCTAATCCCAGGGTTGAGCCTTGTGCTCGTGGCGGACCCCAAACCACTGCCCTCCTGGGTACCAGCCCTCA GTGTGGAGGCTGAGCTGGTGCCTGGCCCCAGTCTTATCTGTGCCTTTACTGCTTTGCGCATCTCAGATGCTAACTTGGTTCTTTTTC TCTATACCAAGGATATTATTAAAACTAGAAATGACTGCATTGAGAGGGAGTTGTGGGAAATAAGAAGAATGAAAGCCTCTCTTTC TGTCCGCAGATCCTGACTTTTCCAAAGTGCCTTAAAAGAAATCAGACAAATGCCCTGAGTGGTAACTTCTGTGTTATTTTACTCTT TTCTTAGAACCAAGGGAAATACTGCTCCCCCCATTTGCTGACGTAGTGCTCTCATGGGCTCACCTGGGCCCAAGGCACAGCCAGG GCACAGTTAGGCCTGGATGTTTGCCTGGTCCGTGAGATGCCGCGGGTCCTGTTTCCTTACTGGGGATTTCAGGGCTGGGGGTTCAG GGAGCATTTCCTTTTCCTGGGAGTTATGACCGCGAAGTTGTCATGTGCCGTGCCCTTTTCTGTTTCTGTGTATCCTATTGCTGGTGA CTCTGTGTGAACTGGCCTTTGGGAAAGATCAGAGAGGGGCAGAGGTGGCACAGGACAGTAAAGGAGATGCTGTGCTGGCCTTCAG ${\tt CTGTGTATTTTGATTTCCTGTGTATGCAAATGTGTGTGTATTTACCATTGTGTAGGGGGGCTGTGTCTGATCTTGGTGTTCAAAACAGAA$ CTGTATTTTTGCCTTTAAAATTAAAATAAATAAACGTGAATAAATGACCCTATCTTTGTAACTGCA

B4GALT3 3'UTR sequence:

B4GALT4 3'UTR sequence:

B4GALT5 3'UTR sequence:

GGGTCTACACAGCAAGAACAGAAATACTGTGTCTCATGAAGGATCACAGAGTTCAGGGGGGAAAATGTGACAGCACACGCACA CAGACGTCTGTCCCGCTGCTCTCCCCATCTCCCACACCCCACATCCTGTCTTAGCCGCAGTCTCCAGAACCCATGATGAACTGTGAT ${\tt CTGCCGTGGTCCTGCCGTGGTCCTGCCGTGGAGCCTGTCCCTACACATGACCTTGGAGCCTCTGGCCTTCAGAGCAGAGGCAAAC}$ CCACCACAGGGCAGCTGCGTTTTAGGAAGAGCAAATGAAACTCCACACCATTCTTCTAGATCTCTGGTGTTCTCTTTGGTTTCATTTATCACTTCTTGAAGAAGTATAATTGTAAATAAGCCATGTAAAATGCCTTTTTAAAATTTAATTTTCTAGCTGGCTCCAATTCAAATT GAGGATTTATGTATTAGGCCACTTACTTGGTTGGCAAGTGCAGGAACTCAGTTAAAATGCAGTTGAAGAATGTCATCTCCCGAATT GCTGTCACTTTGGCGAGGGGAGTGGATATAGGGCATGTCACAAAAGAACAAAATAACCCGACCTTTATTGCTGGGAGCTGGCTTCTGTCCCTTTCTTCCCCCCCCCCCGAGTCTTGCCCTTGACTTCTGCTCTGGATTCACTCTTCCCTGTCGGCCGCGCGCATGTGCTCATCCCA ${\tt CCTCTTACTTTTTCTCTTGTGGAACTTGGCCACAGTTTCTGAACAATGTGCCTACATTACCAGCTGGCTTCAGTGATTCCTCTGTGT$ CCAGGGAGCTGGTGACACTTGTGTGCTGTGGGGGCAGCTGGGATCCAGGTAAGACCGGATTGAAGCTTTGAAATTAGACTAACAAA GCTCCAGACAGCAAGAGCCCAGGTGCACTGCTCACACCCCCACCTGCATTTTGAAGTCATATTATTTTTTGTTTTGTTTTTAAGAC GGTCTGGCTCTGTCGCCTAAGCTGGAGTGGGGGGGCACGATCACAGCTCACTGCAGCCTCCATCTCCTAGGCTCAAGCCATTTTCC ${\tt CACCTCAGCCTCCCGAGTAGCTGGGACTACAGGTGCACACCACCACCACCACCTGGCTAATTTTTTGTATTTTTAGTAGAGACAGGGGTT$ TCTTCCATGTTGCCCAGGCTGGTCTCGAACTCCTGGACTCAAGCAATCCGCCCACCTTGACTTCCCAAAGTGCTGGGATTATGGGC GGGTGTGAGCCATTGCGCCCAGCCTTGAAGTCATGTTCTAAATTGTATTTGAATTTGTGCCTCTTTGTTTTTCCCCAAACCAAAGCC CTCAAATTGTAGTCTCTGTCGGCTTCTGCAGAATTCTGGAAAATGCCAGTTTTCCTCCCCCGCCCTTGTTTTCCATAAAACATATTTGTATTTAGAAAATAAATTGCATTGCAAAGCTCTTATCGGCTCATATGAGAGAGCAGGTTCCTGCCCTTGAAAATGCCGGTAAGCT ATAGCATATGTTTTTTAAGACTTAAGCATTTCATGCTTTAAAAATACCTTCACAAGTGAACATTACACAGAAGATTCATTTGGTTTT CCTTTGTTTTATGGTGCATATAGCAATAAAGACCCCCCTCCACCCTGCAACCCCCATCCCCCACCGGGCCTTTGTCCCTGCCTTGGC TTTTCTCCCCTTCTCATTCTCCCCCTTTCCTCACTGAAGGCTGTGAGTTGCTTTCAATGTGACAACACTATGATGTCATTTGGA AGGATTTGCCAGGACAGACTGATTCTGAGTCCTGGGTGCCGTATGTGTATGCGGCAGTGTTGTCAGGCGATCTTGTTTGAAGCTCT ATGTTGCCATAATTACCATCAAGTACACACTGTTGGCAAAAGGCTAACACCTGACTTTAGAAAATGCTGATTTGAGAACAAAAGG AAAGGTCTTTTTTCACTGCTTAAAGTGGGGTCACTTTGATACCTTTGCGGTCATGTCTGTGTCTGATGAGTGTAGAATCTCTGGATG TGCACTGTCAGTCATGTGTCCACCAGGCCTCGAATATCATATGGGAAATGTCATAGTTAAAAACGTACAGCCAGGCCCGTGTGCT GTGGGGGGGGTATTTGCAAGAATACTCATTTTGACATAATAGGTCCTCTTGTCAGAGATCCTCTACCACAGACATTAATAGCTGAGC AGCTTGCTCTTACGTTTTAAGAGGGGGCCAGGGGGTACATTTTTGCACTGAAAATCTAAAGATGTTTTAAAAAAACACTTTTCACAAAAA TTCAAGAACCAAA

PIGA 3'UTR sequence:

AAGGAAGCCTAGATTGTAAGATTTTAAACATTTGTAATAGTTCTATAAAGACTATGGAAAATAACCTTGCTTTTGGGGGGGTTTTTG TTTTTTAGAGTTAATTTAGTAAGTTATGCTACCTCTATATCATTCAATATTTTCTGTTGAGGAAAGATAAAAATGTATGCAATTCC TGAGTGTAGAAACTTCTTGCACTTATTTAAAATTTAGGAGAGAACATTTAAGCCACTCAGGTATGCAATTTTCAGACTACTGAAA TCCCTGTAGCAGAGATGTTTTAACATTATATTTTGAGAGGCTTTGGGTGCTGAAGGGCCAAACGTTTTCTGGGCATTTTTTGGCCAGT TTTTAATGTAACACCATTAGACACTCACCAGATGTTTACAAGTTTTCTTTAGGGGAACTACAACAATTATATGAACTGTTTTATATC ATGTTCATATACATTATATTAGGAATCTAAATCATGTCTTTGAACATTTATTAGGGTGCTCAGTAGGGTGTTACATGTAACTAGATCAGG TTCCTTGAGTAAGATAGTCCATCAGTTACCAGCACATTTTGAACCCCTGCTCGTGTAGAATGTTGAACTAGATGCTTCCCGCCATT AAGGACCAGGGGTGCATTCACTCTTTGTTTACCATCCAAATGGCTTACTTCATAATTGTGGTTGATATGAGATCAATATCCAA CATGCCAAAAATGCTCATGCCAGTTAATGCCAGGAAAAAAATCACCGGACACACTACTAGTACTTTGTTCCTGTTGTATGCATTCC

PIGK 3'UTR sequence:

GACTTGATGATGAATGAAGAATGCATGGAGGACTGCAAACTTGGATAATAATTTATGTCATTATATATTTTTAAAAATGTGTTTCT AACTGCTTAATGGCACTAAATATATTCCAGTTTTGTATTTTGTGTATTATAAAAGCGAATGAGACAGAGATCAGAATACATTGACT GTTTTTGAAAATAGTAATTTCCCCTTATCCCCTTTTCATTTGGAAAAGAAACAATTGTGAAGACATTAAATTCTCACTAACAGAAG TAACTTTGGTTAATTATTTTTGTATATCCTCCCAATCTTTTGACTTATGCACATATTTTTTCCCAATATGGAGATCATATGGAATGT ACTATTTTGTAATGTCTTTTTCATTTTACAATGTATTATCAACCTTTTCCCCTCTCAAAAATACATTGTGAATGACTGCATAGTATTC ACTTTATGAATATTTAATTCATTTCACAGTCTTCTATTGTTGGACCACTTACATTGTACCAAATGTTTTCCTTTGGTTTATTCTTTAAAAGAGAGAGCCAACAAGGACTTTATTTCATTCTGTTTTAGGTAAACCTCCTTGCCCACTGGCTGTATCTATACTTTCCTTGAGAAA AATCCCATAAAGTGGATGGACCTGTGAAGAAAATGTATGCTTATGGCCTAGCCTTCATGTCTGGCTGATGTATCCTATAAGGCAGT AAGCCCCTTTTCTAGTCTCTGGTAAGATGCAAGAGCTCATATCCCCATCACTGACATTTTAGTTTGGAAATAATATTGAGACTGTG GGGGGGATACCTTCAGGTGTCTTATCTGTTTTATGCAAGAATTTATGTGTTCATCTTTATTCAGTGCAAAGATTTTTTTAAATTTTG TTTATAATTGTAGGTAACATTAAGACAACTCTTCCTCCACAAGAAAACCTCCTAAAATTAATATTCCTTAAGATTTGTTTTTCCTTT TGCACTTATAATATTACCTTTTAATTGCATGCAAGATTGTCATACTTTTCAAAAGGCAAAGGATTGACTGTGTTATCTCCCTAGTTA ${\tt GAACAAATGATATTGAGGCTTTTTTGCCAGCTCTGAATCTTTATTTTAATTGATCTTTTTATTGATGTGTTATATAAATGAGGAAGAA$ AAATTTTGTCTGATTATGTGAAGGATCTTTCTGTACATGAAAAGAAGGAAAATAAACTTGCAATTGAATAGACTGATTATAGTA GCACTGAGACACAAAAAGATTGACCATGTTGCCCTCCAGACACTCATACAAGGTCGTGGACACCACGGTGAGGCGGAGCTATTTA GGGTGGTAAAGGAATTATGATTGTTCTTGAGCCAAAGTAATTTAGTTTGAATATAATGAAACATACCCTGTAAAGACTGCTAGAA AGTAAAAGGATTCGTCTTCAGAGGTTGTAGAAGGTGCCCTTCTTAGTTAAAACCAAACTGGGAAAAGTAATACTGGATAAAATAT ${\sf TCAGGATAAATTTTGCCTCAGCAGAATTTCAAAGGGCAGTTGTTCCTCTGTTTCATTATTGAATCTTCAGAATATAGTTAAAGCCA}$ AAAGCTTAAAATATGTTAAATGTTTCACTTATAACCATAATCTTTTTACATAGAGCATACTCTGCCTTCATAATAACTAAAATCCTCT GCATGTGGTAGATGAGTACGTTTAGGAAATATTGTCAGTGCAATTAAATGGCCTACACTTTAAACAGTATCATAAAAAACAAATCC TTAAATATATTCTACTTGAGTCACAAAAGCTGAACAACAGAAAGGTGTTTTGTTTTTGCCTTTCTCACAGTGTTGTGGTGAGAATC AGATGAGATAGTATTTTGACTAAACACTTCTGAAATTGTAAATATATGGTGGCATTATTGTTCTTATGTCGGCTTAGGAGGATACCAAAGGGGAAGTTAATGGTCACAGTGCACTTATGTAGCTTTCTAAGCTACTCAATGTGATTCTTGTTCTCTTTGCTGTTCTTTTTCTC GGTATAATGATGCCATCCTGCAAAGGCAGCCTGTGTGAGAAAAAGAAATCAAATAATGTGGATTTTAAAATTACGAAAGACATTC ATTTGCAGTTTATGAAAGGAAAATGTAGTTTGGATACAAAGCTGATTAAATTGGATCAAGAAATATTAGAATTAAATGCAAAAAA TAATCCATGCATTTATGGTTTTGATTTTTATATATTCCCAGCTAGTTGAAAATGATGATGCCACAAGAAGCATAACTCAGCTTGTT ${\tt GGAATCATAATTTGAAATTTTGACTCCTGTGTTTCTGGAATCTTTACAACAAATGTTGCATTAACATATAACTTTTTTCAGTTGACT$ AAACAATGAGATCAGTATCCATTTTTGCTTTAAAGAATTGGCCTTATTGCTTCAGTGTCACATCTCATACTCAAGGGCATTTACTAC GCTGTGAAATATTAGGTTTAACTGTGTAGATCCTAGAATAAGGGGATTTATATAGATGAAGTTGTAACCAAGAAACTGGTTATTATAGGTGAAGTTGTAACCAAGAAACTGGTTATTATAGGTGAAGTTGTAACCAAGAAACTGGTTATTATAGGTGAAGTTGTAACCAAGAAACTGGTTATTATAGGTGAAGTTGTAACCAAGAAACTGGTTATTATAGGGGATTTATATAGATGAAGTTGTAACCAAGAAACTGGTTATTATAGGTGAAGTGAAGTTGTAACCAAGAAACTGGTTATTATAGGGGATTTATATAGATGAAGTTGTAACCAAGAAACTGGTTATTATAGGTGAAGTTGTAACCAAGAAACTGGTTATTATAGGGGATTTATATAGATGAAGTTGTAACCAAGAAACTGGTTATTATAGGTGAAGTTGTAACCAAGAAACTGGTTATTATAGGATGAAGTTGTAACCAAGAAACTGGTTATTATAGATGAAGTGGATTTATAGATGAAGTTGTAACCAAGAAACTGGTTATTATAGATGAAGTTGTAACCAAGAAACTGGTTATTATAGATGAAGTTGAAGTTGTAACCAAGAAACTGGTTATTATAGATGAAGATGAAGTTGTAACCAAGAAACTGGTTATTATAGATGAAGTTGAAGTGAAGTTGTAACCAAGAAACTGGTTATTATAGATGAAGTGAAGTTGTAACCAAGAAACTGGTTATTATAGATGAAGTGAAGTTGTAACCAAGAAACTGGTTATTAAAAATTTATTTACTCCAAACATGGAA

Sequence 2. Plasmid Map of pSFmiR-gene-3'UTR and sequence of 3'-UTR of different glycosylation genes.

References

1. Schmiedel, J. M.; Klemm, S. L.; Zheng, Y.; Sahay, A.; Bluthgen, N.; Marks, D. S.; van Oudenaarden, A., Gene expression. MicroRNA control of protein expression noise. *Science* **2015**, *348* (6230), 128-32.

2. Liu, B.; Li, J.; Cairns, M. J., Identifying miRNAs, targets and functions. *Brief Bioinform* **2014**, *15* (1), 1-19.

3. Paul, P.; Chakraborty, A.; Sarkar, D.; Langthasa, M.; Rahman, M.; Bari, M.; Singha, R. S.; Malakar, A. K.; Chakraborty, S., Interplay between miRNAs and human diseases. *J Cell Physiol* **2018**, *233* (3), 2007-2018.

4. Bartel, D. P., Metazoan MicroRNAs. Cell **2018**, 173 (1), 20-51.

5. Wolter, J. M.; Kotagama, K.; Pierre-Bez, A. C.; Firago, M.; Mangone, M., 3'LIFE: a functional assay to detect miRNA targets in high-throughput. *Nucleic Acids Res* **2014**, *42* (17), e132.

6. Bracken, C. P.; Li, X.; Wright, J. A.; Lawrence, D. M.; Pillman, K. A.; Salmanidis, M.; Anderson, M. A.; Dredge, B. K.; Gregory, P. A.; Tsykin, A.; Neilsen, C.; Thomson, D. W.; Bert, A. G.; Leerberg, J. M.; Yap, A. S.; Jensen, K. B.; Khew-Goodall, Y.; Goodall, G. J., Genome-wide identification of miR-200 targets reveals a regulatory network controlling cell invasion. *EMBO J* **2014**, *33* (18), 2040-56.

7. Kurcon, T.; Liu, Z.; Paradkar, A. V.; Vaiana, C. A.; Koppolu, S.; Agrawal, P.; Mahal, L. K., miRNA proxy approach reveals hidden functions of glycosylation. *Proc Natl Acad Sci U S A* **2015**, *112* (23), 7327-32.

8. Agarwal, V.; Bell, G. W.; Nam, J. W.; Bartel, D. P., Predicting effective microRNA target sites in mammalian mRNAs. *Elife* **2015**, *4*.

9. Betel, D.; Koppal, A.; Agius, P.; Sander, C.; Leslie, C., Comprehensive modeling of microRNA targets predicts functional non-conserved and non-canonical sites. *Genome Biol* **2010**, *11* (8), R90.

10. Vogel, C.; Marcotte, E. M., Insights into the regulation of protein abundance from proteomic and transcriptomic analyses. *Nat Rev Genet* **2012**, *13* (4), 227-32.

11. Ostlund, G.; Sonnhammer, E. L., Quality criteria for finding genes with high mRNAprotein expression correlation and coexpression correlation. *Gene* **2012**, *497* (2), 228-36.

12. Gumienny, R.; Zavolan, M., Accurate transcriptome-wide prediction of microRNA targets and small interfering RNA off-targets with MIRZA-G. *Nucleic Acids Res* **2015**, *43* (18), 9095.

13. Reczko, M.; Maragkakis, M.; Alexiou, P.; Grosse, I.; Hatzigeorgiou, A. G., Functional microRNA targets in protein coding sequences. *Bioinformatics* **2012**, *28* (6), 771-6.

14. Wang, X., Improving microRNA target prediction by modeling with unambiguously identified microRNA-target pairs from CLIP-ligation studies. *Bioinformatics* **2016**, *32* (9), 1316-22.

15. Chi, S. W.; Zang, J. B.; Mele, A.; Darnell, R. B., Argonaute HITS-CLIP decodes microRNA-mRNA interaction maps. *Nature* **2009**, *460* (7254), 479-86.

16. Hafner, M.; Landthaler, M.; Burger, L.; Khorshid, M.; Hausser, J.; Berninger, P.; Rothballer, A.; Ascano, M., Jr.; Jungkamp, A. C.; Munschauer, M.; Ulrich, A.; Wardle, G. S.; Dewell, S.; Zavolan, M.; Tuschl, T., Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP. *Cell* **2010**, *141* (1), 129-41.

17. Eichhorn, S. W.; Guo, H.; McGeary, S. E.; Rodriguez-Mias, R. A.; Shin, C.; Baek, D.; Hsu, S. H.; Ghoshal, K.; Villen, J.; Bartel, D. P., mRNA destabilization is the dominant effect of mammalian microRNAs by the time substantial repression ensues. *Mol Cell* **2014**, *56* (1), 104-15.

18. Mukherji, S.; Ebert, M. S.; Zheng, G. X.; Tsang, J. S.; Sharp, P. A.; van Oudenaarden, A., MicroRNAs can generate thresholds in target gene expression. *Nat Genet* **2011**, *43* (9), 854-9.

19. Lemus-Diaz, N.; Boker, K. O.; Rodriguez-Polo, I.; Mitter, M.; Preis, J.; Arlt, M.; Gruber, J., Dissecting miRNA gene repression on single cell level with an advanced fluorescent reporter system. *Sci Rep* **2017**, *7*, 45197.

20. Ziauddin, J.; Sabatini, D. M., Microarrays of cells expressing defined cDNAs. *Nature* **2001**, *411* (6833), 107-10.

21. Wheeler, D. B.; Carpenter, A. E.; Sabatini, D. M., Cell microarrays and RNA interference chip away at gene function. *Nat Genet* **2005**, *37 Suppl*, S25-30.

22. Kittler, R.; Pelletier, L.; Heninger, A. K.; Slabicki, M.; Theis, M.; Miroslaw, L.; Poser, I.; Lawo, S.; Grabner, H.; Kozak, K.; Wagner, J.; Surendranath, V.; Richter, C.; Bowen, W.; Jackson, A. L.; Habermann, B.; Hyman, A. A.; Buchholz, F., Genome-scale RNAi profiling of cell division in human tissue culture cells. *Nat Cell Biol* **2007**, *9* (12), 1401-12.

23. Genovesio, A.; Giardini, M. A.; Kwon, Y. J.; de Macedo Dossin, F.; Choi, S. Y.; Kim, N. Y.; Kim, H. C.; Jung, S. Y.; Schenkman, S.; Almeida, I. C.; Emans, N.; Freitas-Junior, L. H., Visual genome-wide RNAi screening to identify human host factors required for Trypanosoma cruzi infection. *PLoS One* **2011**, *6* (5), e19733.

24. Castel, D.; Pitaval, A.; Debily, M. A.; Gidrol, X., Cell microarrays in drug discovery. *Drug Discov Today* **2006**, *11* (13-14), 616-22.

25. Erfle, H.; Neumann, B.; Liebel, U.; Rogers, P.; Held, M.; Walter, T.; Ellenberg, J.; Pepperkok, R., Reverse transfection on cell arrays for high content screening microscopy. *Nat Protoc* **2007**, *2* (2), 392-9.

26. Sturzl, M.; Konrad, A.; Sander, G.; Wies, E.; Neipel, F.; Naschberger, E.; Reipschlager, S.; Gonin-Laurent, N.; Horch, R. E.; Kneser, U.; Hohenberger, W.; Erfle, H.; Thurau, M., High throughput screening of gene functions in mammalian cells using reversely transfected cell arrays: review and protocol. *Comb Chem High Throughput Screen* **2008**, *11* (2), 159-72.

27. Rantala, J. K.; Makela, R.; Aaltola, A. R.; Laasola, P.; Mpindi, J. P.; Nees, M.; Saviranta, P.; Kallioniemi, O., A cell spot microarray method for production of high density siRNA transfection microarrays. *BMC Genomics* **2011**, *12*, 162.

28. Kim, H. C.; Kim, G. H.; Cho, S. G.; Lee, E. J.; Kwon, Y. J., Development of a celldefined siRNA microarray for analysis of gene function in human bone marrow stromal cells. *Stem Cell Res* **2016**, *16* (2), 365-76.

29. Bajar, B. T.; Wang, E. S.; Lam, A. J.; Kim, B. B.; Jacobs, C. L.; Howe, E. S.; Davidson, M. W.; Lin, M. Z.; Chu, J., Improving brightness and photostability of green and red fluorescent proteins for live cell imaging and FRET reporting. *Sci Rep* **2016**, *6*, 20889.

30. Kohen, N. T.; Little, L. E.; Healy, K. E., Characterization of Matrigel interfaces during defined human embryonic stem cell culture. *Biointerphases* **2009**, *4* (4), 69-79.

CHAPTER 3

DEVELOPMENT OF MIRFLUR HIGH-THROUGHPUT PLATFORM FOR MAPPING MIRNAS-GENE INTERACTOME NETWORK

This chapter contains content published in **Thu, C.T.**, Chung, J. Y., Dhawan, D., Vaiana, C. A., and Mahal, L. K. High-Throughput miRFluR Platform Identifies miRNA Regulating B3GLCT That Predict Peters' Plus Syndrome Phenotype, Supporting the miRNA Proxy Hypothesis. *ACS Chemical Biology*, **2021**, *16*, 1900-1907.

3.1 ABSTRACT

MicroRNAs (miRNAs, miRs) are small endogenous non-coding RNAs that finely tune protein expression at the posttranscriptional level. Each miR has the capacity to potentially regulate several hundreds of mRNAs, thus creating a large and complex regulatory network to control specific biological processes. It was clearly established that miRs significantly modulate numerous pathophysiological processes including proliferation, differentiation, metabolism and apoptosis. Through their interactions with mRNAs, they can regulate both mRNA and protein levels by impacting the translational process and/or stability of mRNA. They are critical regulators of glycosylation, one of the most diverse and abundant posttranslational modifications. miRs have predicted the biological functions of glycosylation enzymes, leading to the "miRNA proxy hypothesis" which states, "if a miR drives a specific biological phenotype..., the targets of that miR will drive the same biological phenotype." The capacity to test this powerful hypothesis is hampered by our lack of understanding of miR target. Computational tools to identify miR targets usually suffer from low accuracy and a high false prediction rate.

This chapter focuses on the development of a high-throughput experimental platform to analyze miR-target interactions, miRFluR. We utilized this system to analyze the interactions of the entire human miRNAome with beta-3-glucosyltransferase (B3GLCT), a glycosylation enzyme whose loss underpins the congenital disorder Peters' Plus Syndrome. Although this enzyme is predicted by multiple prediction algorithms to be highly targeted by miRs, only 27 miRs downregulate B3GLCT leading to a >96% false positive rate for prediction. Functional enrichment analysis of these validated miR networks predicts phenotypes associated with Peters' Plus Syndrome, although B3GLCT is not in their known target network. Thus, the biological functions

of B3GLCT can be predicted by the miRNA network that regulate B3GLCT, providing support for the miRNA Proxy Hypothesis.

3.2 INTRODUCTION

miRs are emerging as critical regulators of the glycome ¹⁻⁴. Glycosylation is one of the most abundant and diverse post-translational modifications with roles in almost every disease state ⁵. However, identifying which glycosylation enzyme underlies which glycan epitope and concordant biology is still a barrier to our understanding of the glycome. Previous work from our laboratory integrated a public gene and miR expression dataset from the National Cancer Institue, NCI60 cancer cell line, with glycomic lectin array data to identify miR regulatory networks that control glycosylation to argue that miRs are key regulators of the glycome². Downregulation of miR targets often recapitulates the phenotype induced by a miR. Our laboratory realized that this might enable us to identify biological phenotypes of specific glycogenes, a point we demonstrated in work by Kurcon et al.³. In this work, it was shown that the currently used methods (transcriptomic profiling and crosslinking assay) to identify miRNA targets failed to observe any actual glycosylation enzyme targets (B3GLCT, ST3Gal5 and ST6GALNAC5) of hsa-miR-200b-3p because of their low abundance. This work also pinpointed that glycosylation enzymes targeted by the miR-200 family, which controls epithelia to mesenchymal transition (EMT) and migration, also regulate EMT and migration. This led us to the formulation of the "miRNA proxy hypothesis" which states, "if a miR drives a specific biological phenotype..., the targets of that miR will drive the same biological phenotype. Thus, miRs can be used to identify (by proxy) the biological functions of specific glycosylation enzymes (or other proteins)." ¹ The lab used this approach to identify glycosylation enzymes controlling cell cycle, providing additional evidence for our hypothesis ⁴. Testing of this hypothesis and utilization of this approach to identify the biological

functions of glycosylation enzymes requires a thorough knowledge of miR:target interactions. However, in the original work, only 3 out of the 11 miR:target interactions identified by prediction were accurate, and 4 unpredicted interactions were discovered ². The high false positive rates of prediction observed, coupled with significant false negatives, points to the need for more accurate data on miR regulation of glycosylation enzymes the hypothesis can be tested.

Herein, I discuss the creation of our second generation high-throughput platform, miRFluR. As discussed, this technology grew from previous work (Chapter 2).

3.3 B3GLCT GENE AND BIOLOGICAL FUNCTIONS

The B3GLCT gene encodes the beta-1,3-glucosyltransferase that mediates the transfer of glucose into O-linked fucosylglycans on proteins with thrombospondin type-1 repeats (TSRs). The biosynthesis of glucosyl- $\beta(1\rightarrow 3)$ -fucose disaccharide on a TSR is initiated by the enzyme *O*-fucosyltransferase-2 (POFUT2), which transfers fucose to serine or threonine residues within the TSR. B3GLCT subsequently attaches a glucosyl residue to the O-linked fucosylglycan product (**Figure 3.1**).

Figure 3.1. Biosynthesis pathways for TSRs: B3GLCT adds glucose to O-linked fucosylglycans occurring on TSRs.

The ER has a canonical quality-control system to identify, proof-read and tag improperlyfolded proteins. POFUT2 and B3GLCT are found to mediate a non-canonical ER quality-control mechanism that recognizes folded TSRs and stabilizes them further by glycosylation ⁶ ⁷. Vasudevan *et al* demonstrated that the addition of fucosyl groups by POFUT2 enzyme sequentially stabilized TSRs in model substrates ⁶. The subsequent attachment of a glucosyl residue by B3GLCT further stabilizes the folded TSRs in an additive manner and promoted ER exit. Both Ofucosylation and O-glucosylation occur co-translationally in the ER. While POFUT2 is required for the proper secretion of all targets containing TSRs, B3GLCT only impacts a subset of targets.

Mutations in the coding region of B3GLCT results in Peter Plus syndrome (PPS) with the c.660+1G>A being the most common mutation identified ^{8 9 10}. PPS is a rare, autosomal-recessive

congenial disorder characterized by anterior segment dysgenesis of the eye, dysmorphic facial features, and variable other systemic anomalies. Patients with classic PPS display eye and ear abnormalities, short stature, cleft lip, cleft palate, distinctive facial features, intellectual disability, and developmental delay (**Figure. 3.2**).

Figure 3.2. B3GLCT mutations and Peters' Plus syndrome: B3GLCT mutations or B3GLCT knockdown resulted in the loss of B3GLCT functions leading to Peters's Plus syndrome characterized by eye and ear abnormalities, short stature, cleft lip, cleft palate, distinctive facial features, and intellectual disability.

3.4 DEVELOPMENT OF HIGH-THROUGHPUT MIRFLUR PLATFORM FOR IDENTIFICATIONS OF THE MIR-GENE INTERACTOME

3.4.1 Development of high-throughput fluorescent ratiometric assay to identify miR:3'UTR interaction (miRFluR) platform

In my previous chapter, I created pSFmiR-3'UTR sensors with miRFP670 and mClover3 as our reporters based on the original sensor, pFMIR-B3GLCT that our previous lab member, Dr. Chris Vaiana created. This pSFmiR version is adapted to be compatible with our Genepix scanner system for the miRfect cell microarray platform. However, due to the technical issues with the miRfect system, I adapted our assay into a 384-well plate platform using fluorescent plate reader, to create a more robust and accurate method to identify miR:3'UTR interactions. At first, I tested the pSFmiR-B3GLCT in this new platform. However, the fluorescence signals of miRFP670 were too low when measured by the fluorescent reader. We then tested another sensor that I created with the mClover3-mRuby3 pair, pSFmiRv2-mClover3-mRuby3. However, the fluorescent signal readout are not consistent with multiple replicates in the plate. From literature, we found that the cellular endoplasmic reticulum (ER) became abnormal and acquired a low organized smooth ER (OSER) score compared to normal cells after transfection. mRuby3 which has a tendency to oligomerize under physiologic conditions. As a result, we decided to test the original sensors, pFMIR-B3GLCT, in the 384 well plate. We obtained good fluorescent signals from both Cerulean and mCherry and proceed to the optimization of the assay.

Principles of miRFluR platform: In pFmiR (pFmiR-3'UTR, **Figure 3.3, Sequence 1**), the 3'UTR of a gene of interest is cloned downstream of Cerulean, our reporter protein. A second fluorescent protein, mCherry, is incorporated into the same plasmid, to control for transfection

efficiency and any non-specific effects of the miR on the transfected cells. The pFmiR plasmid and the miR mimics are co-transfected into Hek-293T cells in a 384-well plate assay. The ratio of Cerulean/mCherry fluorescence in miR transfected cells is normalized to the data from a nontargeting control (NTC) and reflects the extent of miR-target regulation (**Figure 3.3**). For miRs that repress protein expression, a loss of Cerulean fluorescence is expected, with a concomitant reduction in the normalized fluorescence ratio. Our miRFluR assay enables rapid analysis of miR libraries without the need for additional manipulation and reagents post-transfection.

Figure 3.3. Schematic illustration of the miRFluR high-throughput assay.

Comparison of 384 well plate platform and miRfect system:

	miRfect system	384 well plate
Advantages	• Higher-throughput platform:	• More accurate and reliable
	miR-lipofectamine complexes	results: miRs and reagents
	spots (around 150-200 nm in	are separated by wells.
	diameter) are simultaneously	

	printed in multiples slides for	• Cells do not need to be fixed
	subsequent transfection with	post-transfection.
	different plasmid sensors.	
	• Less reagents and consumables	
	are required.	
Disadvantages	• MiR-matrix spots are in the	• Lower throughput than
	same slide which is prone to	miRfect platform.
	cross-contamination. Thus,	• More reagents and
	this impacts the accuracy and	consumables are needed.
	reproducibility of the assay.	
	• Spot morphology can impact	
	the results.	
	• Cells are required to be fixed	
	post-transfection and before	
	fluorescent readout.	
	• Cells could get detached from	
	the slide surface during	
	handling processes especially	
	with less adherent cell lines.	
	• Slides could not be stored and	
	used for long time since the	
	transfectibility and stability of	

miR transfected complexes	
reduces.	

Establishment of miRFluR platform

To establish that our sensor worked as expected, I compared the Cerulean/mCherry fluorescence ratios upon co-transfection of our sensor with either NTC, the positive control miR-200b-3p or the known negative control miR-200a-3p (Figure 3.4)³. I observed a clear downregulation of Cerulean, but not mCherry, by miR-200b-3p but not NTC1 or miR-200a-3p. I next analyzed our sensor using the Mission miRNA mimic library v.21 (Sigma), which contained all human miRs included in miRbase version 21. This library has 2,754 miR mimics. These mimics were aliquoted into 384-well plates in triplicate, for a total of 32 plates. Each plate contained NTC, miR-200b-3p and miR-200a-3p as controls. miRs were co-transfected with pFmiR plasmid into Hek-293T cells using lipofectamine 2000. After 48 h, plates were read by a fluorescence plate reader. For each plate, the average ratiometric data for each miR was normalized to the average ratiometric data for the NTC in that plate. Higher error measurements were observed in 5 plates, and these were omitted from further analysis. Comparison of the miR-200a-3p and miR-200b-3p data for the remaining 27 plates showed high reproducibility in the data, with significant repression of B3GLCT observed for miR-200b-3p as compared to miR-200a-3p, in line with our previous work (Figure 3.5). Upon co-transfection of pMIR-B3GLCT with miRs to cells, if a miR regulates that gene of interest via binding to the 3'UTR, a loss or gain of fluorescence should be observed for Cerulean in comparison to the signal from mCherry. Ratiometric analysis of Cerulean/mCherry fluorescence reports the extent of miR:target regulation. The fluorescence signals were measured by using a microplate reader. This allows the production of highly quantitative, high-throughput screening data to experimentally identify miR hits for a specific gene. (Figure 3.3)

After optimization for the transfection condition (plasmid amount, miRNA concentration and lipofectamine 2000), the co-transfection of pMIR-B3GLCT and miRNA mimic with lipofectamine 2000 was performed directly in 384 well-plates containing 2754 human miRNA mimics (total of 32 384-well plates). Microscopic images of the transfections were captured for the controls (**Figure 3.4**). We indeed observed a significant decrease of Cerulean signal in comparison to mCherry in the case of miR-200b-3p. Meanwhile, the ratio of Cerulean signal to mCherry of miR-200a-3p was similar to NTC1. This indicated that the sensor is working properly with our assay and also allowed us to identify the effect of miR on protein expression as the result of changing fluorescence response.

To increase the throughput of our assay, fluorescence signals are measured by microplate reader instead of microscopic imaging. This not only provides a platform for faster measurement but also does not required image analysis. The question was whether the result from reading fluorescence in microplate reader could recapitulate what we saw from microscopic imaging. To examine this point, we did multiple control assay with NTC1, miR-200a-3p and miR-200b-3p. The results confirmed the decrease of miR-200b-3p in comparison to NTC1 and miR-200a-3p negative controls. All data were obtained for B3GLCT from 32 384-well miR plates. We omitted 5 plates due to the high measurement errors. We then examined plate to plate variations. After analyzing the data for NTC1, miR-200a-3p and miR-200b-3p within each plate, the effects of miR-200b-3p are consistent across all plates in comparison to NTC1 and miR-200a-3p. (Figure 3.5A, B and C)

Figure 3.4. Fluorescence microscopy images of *HEK-293T* cells co-transfected with pFmiR-B3GLCT and either NTC, miR-200a-3p or miR-200b-3p, 48 h post-transfection. Images shown are representative of n=3 replicates.

А

miR-200b-3p			
	Normalization	Error propagation	%error
miR-200b-3p	0.767048598	0.014137905	1.843156374
miR-200b	0.676551902	0.031326854	4.630369725
miR-200b	0.713829821	0.035631635	4.991614864
miR-200b	0.669219212	0.026358103	3.938635136
miR-200b	0.672992456	0.02059831	3.060704395
miR-200b	0.699464173	0.038214279	5.463364749
miR-200b	0.718240277	0.072391696	10.07903606
miR-200b	0.64356795	0.031839783	4.947384801
miR-200b	0.646406619	0.037396326	5.785263533
miR-200b	0.662219997	0.030781561	4.648237993
miR-200b	0.719738924	0.05243425	7.285176409
miR-200b	0.709599104	0.043369307	6.111804088
miR-200b	0.735768007	0.043649855	5.93255679
miR-200b	0.666840152	0.02310209	3.464411911
miR-200b	0.768685844	0.066576748	8.661112851
miR-200b	0.755783405	0.07470162	9.883998402
miR-200b	0.739645717	0.075075554	10.15020469
miR-200b	0.638166899	0.047116447	7.383091616
miR-200b	0.708659151	0.065076343	9.18302437
miR-200b	0.661266394	0.025064195	3.790332517
miR-200b	0.689017251	0.066826737	9.698848139
miR-200b	0.7393283	0.034425117	4.656269351
miR-200b	0.70026707	0.038629613	5.516411472
miR-200b	0.785476645	0.035890433	4.569255308
miR-200b	0.737934828	0.06388929	8.657849987
miR-200b	0.696491419	0.03178056	4.562950668
miR-200b	0.654762617	0.031589121	4.824515103
Moon	0 703950943		
Std	0.702850842		
9/5	0.04143727		
%Error	5.895599396		

В

miR-200a-3p				
	Normalization	Error propagation	%error	
miR-200a-3p	0.947124211	0.026486147	2.796480801	
miR-200a	0.939230496	0.040182151	4.278199097	
miR-200a	0.982178462	0.064678495	6.585208069	
miR-200a	0.933873215	0.023811672	2.549775659	
miR-200a	0.941848343	0.019081983	2.026014444	
miR-200a	0.930808362	0.034008023	3.653600978	
miR-200a	0.908982787	0.036401727	4.004666261	
miR-200a	0.905344453	0.044684118	4.935593056	
miR-200a	0.961996483	0.055940062	5.814996552	
miR-200a	0.953781912	0.027272032	2.859357174	
miR-200a	0.934837632	0.023642711	2.529071426	
miR-200a	0.901809435	0.030817419	3.417287275	
miR-200a	0.960293889	0.045865886	4.776234311	
miR-200a	0.938272869	0.030964305	3.300138556	
miR-200a	0.914919478	0.0620637	6.783514998	
miR-200a	0.929329977	0.070187238	7.552456074	
miR-200a	0.87424585	0.04614545	5.278315077	
miR-200a	0.911154901	0.054828775	6.017503212	
miR-200a	0.940868696	0.053513721	5.687692841	
miR-200a	0.932056153	0.048062303	5.156588787	
miR-200a	0.977233858	0.049461106	5.061337705	
miR-200a	0.931733133	0.045221201	4.853449966	
miR-200a	0.969747681	0.060388311	6.227218917	
miR-200a	0.904708055	0.027015463	2.986097358	
miR-200a	0.930560668	0.022670768	2.436248278	
miR-200a	0.888243546	0.043537581	4.901536426	
200a	0.857118061	0.045275602	5.28230642	
Mean	0.929714911			
Std	0.029756257			
%Error	3 200578657			

Figure 3.5. Reproducibility of the miRFluR high-throughput analysis system. Normalization data and quantitative analysis of miR-200b-3p (A) and miR-200a-3p (B) normalized to NTC1 with triplicates for each data point over 27 384 well-plates. (C) Bar graph represented the reproducibility of the assay. Unpaired Student's t test; *****p << 0.0001.

I next analyzed the remaining miR data for B3GLCT. I first removed any miRs that had high errors in the measurement (median error +2 standard deviation (S.D.) across all plates), leaving us with data for 2,071 miRs. We calculated Z-scores using the remaining NTC normalized ratiometric data. In line with previous work by Wolter et al using luciferase assays¹¹, we set the threshold for hits at 20% change (either up or down) and a Z-score of +/-1.960, which corresponds to the 95% confidence interval. Using these thresholds, I identified 27 miRs that downregulated expression, all of which met the 20% threshold. To our surprise, we also identified 11 miRs that were potential upregulators (**Figure 3.6 and Table 3.2**). Although a few upregulatory miRs have been described in the literature^{12, 13}, most are thought to activate expression in senescent cells^{14, 15}. To validate our findings, I first rescreened a small set of 12 miRs (**Figure 3.7 and 3.8**). All miRs are found to recapitulate the findings observed in the library screen.

Figure 3.6. Identification and validation of hits for B3GLCT. (A) Plot of Z-score versus log2(fold change) for 2074 miRs against the 3'-UTR of B3GLCT. miRs within the 95 % confidence interval and with a minimum impact of +/- 20 % are labeled (red: downregulatory, grey: controls (NTC and hsa-miR-200a-3p), blue: upregulatory). (B) Bar graph of ratiometric data for miRs indicated in A. Error bars represent propagated error.

Figure 3.7. Small scale validation of miR subsets. Cells were co-transfected with pFmiR-B3GLCT and indicated miRs. Data shown is from 3 biological replicates. Error bars represent standard deviations. Statistical analysis was done against NTC1. Student's t-test for comparing the means between a miR and the negative control (miR-200a-3p); *p<0.05, ** p <0.01, *** p <0.001 and **** p <0.0001.

Figure. 3.8. Fluorescence microscopy images of co-transfection of pMIR-B3GLCT with NTC1, miR-891b, miR-4725-5p and miR-504 48 hours post-transfection. Data is representative of n=3 experiments.

I next performed Western blot analysis for the protein levels of B3GLCT in HEK-293T transfected with the subset of downregulatory (miR-200b-3p, miR-504, miR-4504, miR-4649-3p, miR-4725-5p) and upregulatory (miR-891b and miR-4470-5p) miRs that passed our secondary screen. I used miR-200a-3p and NTC as negative controls (**Figure 3.9, Figure 3.10 and Table 3.1**). In general, the B3GLCT protein levels followed the expected results from our sensor assay, with one exception (miR-4649-3p). The downregulatory miR-4649-3p did not show significant inhibition. I tested whether the mRNA levels of B3GLCT changed with miR transfection (**Figure 3.11, Table 3.4 and Table 3.5**). Although generally mRNA levels are thought to correspond to protein expression, the correlation is not absolute and miRs have been shown to impact mRNA in ways not reflected in the protein levels¹¹. For all inhibitory miRs, I observed a clear loss of mRNA

expression for B3GLCT. Conversely, the upregulatory miR, miR-891b, elevated mRNA expression in line with its impact on the protein. Interestingly, miR-4470-5p, which up-regulated both protein and sensor expression, clearly repressed mRNA levels for B3GLCT. This argues for multiple pathways to protein regulation through differential mRNA regulation by miRNA.

Figure 3.9. (A-C) B3GLCT Western blot analysis and accompanying Ponceau S stain for the 3 biological replicates.

	Relative expression of B3GLCT				
	Replicate 1	Replicate 2	Replicate 3	Mean	Standard error
NTC	1.000000	1.000000	1.000000	1.000000	0.000000
miR-200a-3p	1.094828	1.086474	1.044100	1.075134	0.027199
miR-200b-3p	0.624814	0.537807	0.547072	0.569898	0.047784
miR-504	0.717978	0.974680	0.733903	0.808854	0.143830
miR-4504	0.830806	0.862380	0.793719	0.828968	0.034368
miR-4649-3p	0.962720	0.941172	1.064173	0.989355	0.065684
miR-4725-5p	0.609225	0.579229	0.725140	0.637865	0.077057
miR-891b	1.501843	1.582876	1.774619	1.619779	0.140082
miR-4470-5p	1.437434	1.170618	1.410259	1.339437	0.146832

Table 3.1. Quantification of Western blot (n=3). 1,2 and 3 correspond to A, B and C in **Figure 3.10**.

Figure 3.10. Validation of hits for B3GLCT. (A) Western blot analysis of B3GLCT in HEK273T transfected with 50 nM miR mimics or NTC, 48 hours post-transfection. (B) Quantification of Western blot analysis for three independent experiments. B3GLCT expression was normalized to total protein levels from Ponceau staining and set over normalized NTC for each blot. Statistical analysis was done against miR-200a-3p as a negative control. Ponceau and whole Westerns corresponding to the data are shown in **Figure 3.9**. Error bars represent standard deviations.

Student's t-test for comparing the means between a miR and the negative control (miR-200a-3p); *p<0.05, ** p <0.01, *** p <0.001 and **** p <0.0001. n=3 indicates the biological replicates.

Figure 3.11. Identification and validation of hits for B3GLCT. (E) RT-qPCR analysis for relative B3GLCT mRNA expression levels. All samples are normalized to GAPDH within the sample and then to NTC for that run. Results shown are from three independent experiments. Statistical analysis was done against miR-200a-3p as a negative control. Error bars represent standard deviations. Student's t-test; *p<0.05, ** p <0.01, *** p <0.001 and **** p <0.001.

3.5 COMPARISON TO BIOINFORMATICS TOOLS SHOWED TOO MANY FALSE TARGETS FOR MIRS

Identification of miRs that target a specific protein is heavily based on prediction from algorithms. I tested how accurately two of the most popular miR prediction programs, Targetscan 7.2 ¹⁶ and miRwalk 3.0 ¹⁷⁻¹⁹, predicted B3GLCT regulators. For both algorithms, we only examined miR predictions for miR within our final dataset. Targetscan 7.2 predicted 480 unique miR interactions with the 3'-UTR of B3GLCT (**Figure 3.13A**). Of those, only 17 (3.5%) were identified as hits within our screen. All 17 were repressors. Of the repressors, 17/27 (~2/3) were identified

by Targetscan. Overall, there was a weak but significant correlation between the Targetscan score, where available, and the level of protein repression observed for miRNAs where a score existed (Figure 3.13D, R = 0.25, $p = 1 \times 10^{-9}$). It should be noted, that although Targetscan 7.2 analyzes the miRs from miRbase v 21, only 559 of the 2,071 miRs from our analysis even have a context score in Targetscan. Scores were not available for the 10 non-predicted downregulatory miRs or the 10 upregulatory miRs. Among the unpredicted downregulators were miR-504-5p, miR-4649-3p and miR-4725-5p, all of which showed clear repression of B3GLCT in our assays (Figure 3.6 and 3.8). Thus, the actual correlation is far lower. For miRwalk 3.0, 781 unique miR interactions were predicted. Of these, only 13 were observed (1.7%, Figure 3.13B). In this case, 1 of the upregulators (miR-6792-5p) was among the predicted hits. No correlation was observed between the score in miRwalk 3.0 and miR regulation of the sensor (Figure 3.13E). Only 9 of the hits were predicted by both algorithms, which only predicted 185 miRs in common between the two (Figure **3.13C**). In previous work, a higher concordance between prediction and testing (~ 16^{20} -63 %¹¹) was observed. However in these analyses, multiple 3'-UTRs were tested against a selected set of miRs skewed towards highly abundant miRs and cancer-related genes. Although the majority of repressor miRs were predicted by both algorithms (63%-Targetscan, ~41%-miRwalk), there is a high rate of false positives.

In order to understand why most miR prediction algorithms do not perform well in predicting miR targets, the underlying features and statistical modeling should be examined. Targetscan relied heavily on the conservation of binding sites with canonical seed regions. The rational for that is although non-canonical interactions are observed in both in vivo UVcrosslinking and computational approaches, the mRNA repression was not mediated by these interactions. However, no effect on mRNA was observed with non-canonical sites even with

observable interactions. Thus, they concluded the functional sites are mostly canonical to control protein production. This approach assumes that protein abundance is reflected in the transcriptome. However, this has proven to be incorrect²¹. For low abundance genes, which include glycogenes (e.g. B3GLCT) and most cell surface receptors, it is known that measurable transcript levels are not accurate to protein abundance ²². Indeed the concordance between changes in measurable transcript and protein levels in response to miRs is far lower for low abundance transcripts ²¹. The context score (++) for specific sites in Targetscan is the sum of the contribution of 14 features (site type, supplementary pairing, local AU, minimum distance, sRNA1A*, sRNA1C*, sRNA1G*, sRNA8A*, sRNA8C*, sRNA8G*, site8A*, site8C*, site8G*, 3' UTR length*, SA*, ORF length*, ORF 8mer count*, 3' UTR offset 6mer count*, TA (target site abundance), SPS (seed-pairing stability), PCT (probability of conserved targeting)*). These features are chosen based on the seed site efficacy and structural accessibility for the strongest overall targeting efficacy. However, it was observed that canonical sites are not necessarily those with the highest affinity in comparison to non-canonical sites ²³⁻²⁶ and other biological factors (like RNA binding proteins, transcriptional machinery...) could impact miRNA targeting efficacy, Targetscan fails to take into consideration.

For miRwalk, it integrates Targetscan (context scores), miRDB and validated miRTarBase in its algorithm framework, then implements a random-forest based learning approach (TarPmiR) to predict miR target sites. miRDB performs using MirTarget2 algorithm, which models only site context and ignores the multiple binding site properties or cooperative interactions between them. This algorithm also ignores some important canonical sites in the miR:target interactions. The utilization of diverse algorithms in miRwalk increases the number of possible miR: target interactions with the expansion to both 5'UTR and coding region. However, this combination does not improve its performance since all of its components possess low accuracy and sensitivity to predict miR target sites. This indicates that widening criteria and features to build prediction algorithms does not necessarily improve performance and the correct identification of miR targets, especially when the underlying biological mechanisms driving biologically relevant actions and functions of miRs remain largely unknown. Thus, prediction algorithms still possess low sensitivity and accuracy to predict miR target interactions. Our analysis here is the first to test a broad swath of the human miRome against a single gene using a protein-based outcome. More such datasets will be essential to advance our knowledge or miRNA regulation and create more accurate prediction algorithms.

Interestingly, targets resulting from the intersection of two lists of predictions (176 targets) are not more likely to be present in the intersection of two other lists (9 out of 176; 5%). Thus, intersecting results do not improve the probability of predicting true positives and it may lead to declined sensitivity because of possibly omitting valid interactions.

Figure 3.13. Comparison of experimental results to prediction datasets from TargetScan (A) or miRWalk (B). (C) Overlap of experimental results and predictions from both Targetscan and miRWalk. (D) Correlation between Targetscan context++ score percentile and our experimental results. A significant but small negative correlation was observed (R = -0.25, p~10-9) with data for which Targetscan context scores++ exist. (E) Correlation between miRWalk score and our experimental results. No correlation was observed.

3.6 MIRNA HITS CAN PREDICT THE BIOLOGICAL FUNCTIONS OF B3GLCT AND THE SUPPORT FOR MIRNA PROXY HYPOTHESIS

We next tested whether miRs that downregulate B3GLCT can predict the phenotypic outcome of losing this enzyme (i.e. Peters' Plus Syndrome) through analysis of their other protein targets in line with our miRNA proxy hypothesis. To this end, I analyzed the gene target network, and enrichment in associated disease phenotypes, of the 27 validated downregulatory miRs using miRNet ^{27, 28}. miRNet is a platform for building and analyzing miRNA networks that integrates information from multiple databases. For my analysis, I configured miRNet to only consider validated miR-target interactions from miRTarbase. Interactions in this database are experimentally confirmed by reporter assays, western blot, or microarray experiments ^{29, 30}. None of the 27 miRs fed into the system were known in miRTarbase to target B3GLCT. The resulting gene target network for our downregulatory miRs was analyzed using miRNet for disease associations found in DisGeNET³¹. The network was functionally enriched in phenotypes associated with features of Peters' Plus Syndrome (Figure 3.14, Table 3.3). The only non-Peters' plus phenotype observed in the predicted set were a subset of cancer phenotypes. Whether this is due to a real role for B3GLCT in these specific cancers, or is an outcome of the bias of the current datasets towards cancer genes is unknown. Overall, my analysis supports the miRNA proxy hypothesis, predicting a role for B3GLCT in the disease outcomes related to Peters' Plus Syndrome through the miRs that downregulate this enzyme.

Previous reports documented patients with classic PPS phenotypes had B3GLCT mutations in the coding region, but also found cases where patients affected with PPS-like phenotypes had no mutations in B3GLCT ⁸. The molecular mechanisms for those cases are still awaiting discovery and our analysis of B3GLCT here may help to explain this phenomenon. The miRNA network regulating B3GLCT and their gene target regulatory network, when disturbed, may give rise to an outcome that recapitulates the B3GLCT loss of function.

Figure 3.14. Phenotypic network analysis of miRs downregulating B3GLCT. (A) Table of enriched disease phenotypes resulting from miRNet analysis of B3GLCT downregulatory miRs. Table is color coded to phenotypes seen in Peter's Plus Syndrome as in (B). (B) Schematic of B3GLCT downregulating miR-mRNA target network as it applies to identification of disease

phenotypes observed in Peters' Plus Syndrome. miRs that downregulate B3GLCT target the mRNA of genes enriched in the disease networks (circled in corresponding colors) shown in (A).

3.7 CONCLUSION

Our current understanding of miR regulation of protein expression has been hampered by limited data on miR:mRNA target interactions. Herein, we created a high-throughput experimental platform, miRFluR, to rapidly analyze miR interactions with the 3'-UTR of a gene of interest. We used this dual fluorescence platform to perform the first comprehensive analysis of miR regulation of a gene, B3GLCT, through its 3'-UTR. Our analysis found both downregulatory and upregulatory miRs for B3GLCT, which we validated at the protein and mRNA levels. We anticipated that this gene would be highly regulated, based on the predictions from multiple algorithms ^{3, 16, 32}. However, we found a wide discrepancy between prediction and our assay, with < 4% of predicted miRs targeting this enzyme (>96 % false positive rate). Although it is widely held that miRs target hundreds to thousands of genes, our results would argue that prediction algorithms vastly overstate miR regulation. This low performance of prediction algorithms stems from the chosen features, which do not reflect the correct biological impacts of miRs in specific contexts. Functional enrichment analysis of miRs downregulating B3GLCT identified disease phenotypes included in Peters' Plus Syndrome, the known disorder caused by mutation of this gene, in line with our miRNA Proxy hypothesis. One limitation of this analysis is that the dataset underpinning miRNet and other such network analysis algorithms has a lack of validated interactions^{29, 30}. As our information on true miR:target interactions grow, our ability to harness this data to understand the biological functions of the glycome and other genes will improve. Furthermore, our analysis on B3GLCT may help to explain PPS-like phenotypes with no genetic mutation on B3GLCT. MiRNA network regulates B3GLCT and their gene target regulatory network, when disturbed, can give rise to the outcome that recapitulates B3GLCT loss of function.
With this system biology approach, our capacity to understand different layers of regulation and how they balance or compensate each other will advance.

3.8 MATERIALS AND EXPERIMENTAL METHODS

3.8.1 Cloning of pFmiR-B3GLCT-3'UTR

B3GLCT 3'UTR was cloned from cDNA using primers:

B3GLCTc_fwd: CTAGCATCAGGGTGACCTG

B3GLCT_rev: GATCCTTTTCATTACATAATAAAG

and standard PCR conditions. The DNA fragment was cloned using the NheI and BamHI sites downstream of Cerulean in our pFmiR-empty backbone using standard ligation protocols. Plasmid maps and sequences for pFmiR and pFmiR-B3GLCT-3'-UTR can be found in **Figure S1** and **Figure S2**, respectively.

3.8.2 MiRFluR High-throughput Assay.

The Human miRNA Mimic library version 21 (MISSION, Sigma) was resuspended in nuclease-free water and aliquoted into black 384-well, clear optical bottom tissue-culture treated plates (Nunc). Each plate contained 3 replicates of every miRNA (1.8 pmol/well). Including controls (NTC, miR-200a-3p, miR-200b-3p).

To each well in the plate was added 25 ng of pMIR-B3GLCT plasmid in 5 μ l Opti-MEM (Gibco) and 0.11 μ l lipofectamine 2000 (Invitrogen) in 5 μ l Opti-MEM (Gibco). The solution was allowed to incubate at room temperature for 25 min. Then, *HEK293T* cells (25 μ l per well, 400 cells/ μ l in non-phenol red Dulbecco's Modified Eagle Medium (DMEM) with FBS 10%) were added to the plate. Plates were then incubated at 37°C, 5% CO₂. After 48 hours, the fluorescence

signals of Cerulean (excitation: 433 nm; emission: 475 nm) and mCherry (excitation: 587 nm; emission: 610 nm) were measured using the bottom read option in a FlexStation 3 Multi-mode microplate reader (Molecular Devices).

3.8.3 Data Processing

We calculated the ratio Cerulean fluorescence (Cer) over mCherry fluorescence (Cer/mCh) for each well in each plate. For each miR, triplicate values were averaged and the standard deviation (S.D.) obtained. We calculated a % error for each miR as 100 x S.D./mean. . As a quality control measure, we removed any plates or miRs that had high errors in the measurement (median error +2 S.D. across all plates). This left us with data for 2,071 miRs. The Cer/mCh ratio for each miR was then normalized to the Cer/mCh ratio for the NTC within that plate and error was propagated. Data from all plates was then combined and Z-scores were calculated. A Z-score of +/-1.960, corresponding to a 2-tailed p-value of 0.05, was used as a threshold for significance. In addition, we set a second threshold of +/- 20% impact by the miR, in line with previous work ¹¹, ²⁰.

3.8.4 Microscopy imaging

HEK293T cells were seeded in 35 mm glass-bottom dishes (80,000 cells per well), cultured for 24 h, and co-transfected with pFmiR-B3GLCT-3'UTR and miRNA mimics (50 nM, Sigma MISSION) using Lipofectamine 2000 (Life Technologies). After 48 h, cells were imaged in the mCherry and Cerulean channels using the 20x lens on a Zeiss LSM 980 miscroscope. All experiments were done in biological triplicate.

3.8.5 Western Blot

HEK293T cells were seeded in six-well plates (80,000 cells per well), cultured for 24 h, and transfected with miRNA mimics (50 nM, Sigma MISSION) using Lipofectamine 2000 (Life Technologies). Cells were washed and harvested 48 hours post-transfection. Cells were then lysed in cold RIPA buffer supplemented with protease inhibitors and 50 μ g of protein were run on SDS-PAGE. Standard Western Blot analysis using α -B3GLCT (IHC-plus antihuman B3GALTL antibody, 1:500) and α -rabbit-HRP (2°, 1:5,000, Abcam)] was performed ². Blots were developed using Clarity and Clarity Max Western ECL substrate (Bio-Rad).

3.8.6 RT-PCR

Total RNA was isolated using RNeasy kit (Qiagen) according to the manufacturer's instructions. RNA concentrations were measured using NanoDrop, and isolated RNA was reverse-transcribed (Applied Biosystems Power SYBR Green PCR). Real-time quantitative PCR (qPCR) was performed using the SYBR Green method and cycle threshold values (Ct) were obtained using an Applied Biosystem (ABI) 7500 Real-Time PCR machine and normalized to GAPDH.

Primer	Sequence $(5' \rightarrow 3')$
B3GLCT-qRT-F	GGTCTGATTAGTGCCTTCTACTG
B3GLCT-qRT-R	TGGTTAGGCTTACACCATTCC
GAPDH-qRT-F	GGTGTGAACCATGAGAAGTATGA
GAPDH-qRT-R	GAGTCCTTCCACGATACCAAAG

[i] B3GLCT, beta 3-glucosyltransferase; GAPDH, glyceraldehyle-3-phosphate dehydrogenase; RT-qPCR, Reverse transcription quantitative polymerase chain reaction; F, forward; R, reverse.

3.8.7 Network Analysis Using miRNet.

Downregulatory miRs (27 miRs, **Figure 2B**) were input into miRNet (www.mirnet.ca) ^{26,27} using the following parameters: Organism: human miRs, ID type: miRbase ID, Targets: Genes(miRTarbase v 8.0). The Diseases Phenotype Enrichment function was used for **Figure 4**.

Appendix 3A. Plasmid maps and sequences

List of features:

mCherry (2539..3249) CMV promoter 1 (236..852) CMV promoter 2 (1916..2532) Cerulean (918..1637) polyA_1 (1688..1914) polyA_2 (3272..3498)

Sequence 1_pFmiR-empty:

GACGGATCGGGAGATCTCCCGATCCCCTATGGTCGACTCTCAGTACAATCTGCTCTGATGCCGCATAGTTAAGCCAGTATCTGCTC ${\tt cctgcttgtgtgtggaggtcgctgagtagtgcgccgagcaaaatttaagctacaacaaggcaaggcttgaccgacaattgcatgabaccgaccgacaattgcatgabaccgaccgacgabaccgaccgacaattgcatgabaccgaccgacgabaccgacaattgcatgab$ TAATAGTAATCAATTACGGGGTCATTAGTTCATAGCCCATATATGGAGTTCCGCGTTACATAACTTACGGTAAATGGCCCGCCTGG CTGACCGCCCAACGACCCCCGCCCATTGACGTCAATAATGACGTATGTTCCCATAGTAACGCCAATAGGGACTTTCCATTGACGTC AATGGGTGGACTATTTACGGTAAACTGCCCACTTGGCAGTACATCAAGTGTATCATATGCCAAGTACGCCCCCTATTGACGTCAAT GACGGTAAATGGCCCGCCTGGCATTATGCCCAGTACATGACCTTATGGGACTTTCCTACTTGGCAGTACATCTACGTATTAGTCAT ${\tt CGCTATTACCATGGTGATGCGGTTTTGGCAGTACATCAATGGGCGTGGATAGCGGTTTGACTCACGGGGATTTCCAAGTCTCCACC}$ CCATTGACGTCAATGGGAGTTTGTTTTGGCACCAAAATCAACGGGACTTTCCAAAATGTCGTAACAACTCCGCCCCATTGACGCAAATGGGCGGTAGGCGTGTACGGTGGGAGGTCTATATAAGCAGAGCTCTCTGGCTAACTAGAGAACCCACTGCTTACTGGCTTATCG AAATTAATACGACTCACTATAGGGAGACCCCAAGCTTGGTACCGAGCTCGGATCGATATCATGGTGAGCAAGGGCGAGGAGCTGTT CACCGGGGTGGTGCCCATCCTGGTCGAGCTGGACGGCGACGTAAACGGCCACAAGTTCAGCGTGTCCGGCGAGGGCGAGGGCGA TGCCACCTACGGCAAGCTGACCCTGAAGTTCATCTGCACCACCGGCAAGCTGCCCGTGCCCTGGCCCACCCTCGTGACCACCCTG ACCTGGGGCGTGCAGTGCTTCGCCCGCTACCCCGACCACATGAAGCAGCACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACG ACCGCATCGAGCTGAAGGGCATCGACTTCAAGGAGGACGGCAACATCCTGGGGCACAAGCTGGAGTACAACGCCATCAGCGACA ACGTCTATATCACCGCCGACAAGCAGAAGAACGGCATCAAGGCCAACTTCAAGATCCGCCACAACATCGAGGACGGCAGCGTGC AGCTCGCCGACCACTACCAGCAGAACACCCCCATCGGCGACGGCCCCGTGCTGCCGGACAACCACTACCTGAGCACCCAGTC CGCCCTGAGCAAAGACCCCAACGAGAAGCGCGATCACATGGTCCTGCTGGAGTTCGTGACCGCCGCGGGATCACTCTCGGCATG TGCCAGCCATCTGTTGTTGCCCCTCCCCGTGCCTTCCTTGACCCTGGAAGGTGCCACTCCCACTGTCCTTTCCTAATAAAATGAG ${\tt GACAATAGCAGGCATGCTGGGGATGCGGTGGGCTCTATGGACATTGATTATTGACTAGTTATTAATAGTAATCAATTACGGGGTC}$ ATTAGTTCATAGCCCATATATGGAGTTCCGCGTTACATAACTTACGGTAAATGGCCCGCCTGGCTGACCGCCCAACGACCCCCGCC ${\tt CATTGACGTCAATAATGACGTATGTTCCCATAGTAACGCCAATAGGGACTTTCCATTGACGTCAATGGGTGGACTATTTACGGTAATGTCCCATAGTAACGCCAATAGGGACTTTCCCATTGACGTCAATGGGTGGACTATTTACGGTAATGTCCCATAGTAACGCCAATAGGGACTTTCCCATTGACGTCAATGGGTGGACTATTTACGGTAATGTCCCATAGTAACGCCAATAGGGACTTTCCCATTGACGTCAATGGGTGGACTATTTACGGTAATGTCCATTGACGTCAATGGTGGACTATTTACGGTAATGTCCATTGACGTCAATGGGTGGACTATTTACGGTAATGTCCATTGACGTCAATGGGTGGACTATTTACGGTAATGTCCATTGACGTCAATGGGTGGACTATTTACGGTAATGTCAATGGGTGGACTATTTACGGTAATGTCAATGGGTGGACTATTTACGGTAATGTCATTGACGTCAATGGGTGGACTATTTACGGTAATGTCATTGACGTCAATGGGTGGACTATTTACGGTAATGTCATTGACGTCAATGGGTGGACTATTTACGGTAATGTCATTGACGTCAATGGTGGACTATTTACGGTAATGTCATTGACGTCAATGGTGGACTATTTACGGTAATGTCATGTCATTGACGTCAATGTCAATGGTGGACTATTTACGGTAATGTCATTGTCATTGACGTCAATGGTGGACTATTTTACGGTAATGTCATGTCATTGACGTCAATGTCATGTCATGTCATTGACGTCAATGTCATGTCATGTCATGTCATGTGACGTCAT$ ACTGCCCACTTGGCAGTACATCAAGTGTATCATATGCCAAGTACGCCCCCTATTGACGTCAATGACGGTAAATGGCCCGCCTGGC ATTATGCCCAGTACATGACCTTATGGGACTTTCCTACTTGGCAGTACATCTACGTATTAGTCATCGCTATTACCATGGTGATGCGGT TTTGGCAGTACATCAATGGGCGTGGATAGCGGTTTGACTCACGGGGATTTCCAAGTCTCCACCCCATTGACGTCAATGGGAGTTTG TTTTGGCACCAAAATCAACGGGACTTTCCAAAATGTCGTAACAACTCCGCCCCATTGACGCAAATGGGCGGTAGGCGTGTACGGT GGGAGGTCTATATAAGCAGAGCTCTCTGGCTAACTAGAGAACCCACTGCTTACTGGCCCCGGGATGGTGAGCAAGGGCGAGGAG GATAACATGGCCATCATCAAGGAGTTCATGCGCTTCAAGGTGCACATGGAGGGCTCCGTGAACGGCCACGAGTTCGAGATCGAGG GCGAGGGCGAGGGCCGCCCTACGAGGGCACCCAGACCGCCAAGCTGAAGGTGACCAAGGGTGGCCCCCTGCCCTTCGCCTGGG ACATCCTGTCCCCTCAGTTCATGTACGGCTCCAAGGCCTACGTGAAGCACCCCGGCCGACATCCCCGACTACTTGAAGCTGTCCTTC

GGCGAGTTCATCTACAAGGTGAAGCTGCGCGGCACCAACTTCCCCTCCGACGGCCCCGTAATGCAGAAGAAGAACATGGGCTGG GAGGCCTCCTCCGAGCGGATGTACCCCGAGGACGGCGCCCTGAAGGGCGAGATCAAGCAGAGGCTGAAGCTGAAGGACGGCGGC ${\sf CACTACGACGCTGAGGTCAAGACCACCTACAAGGCCAAGAAGCCCGTGCAGCTGCCCGGCGCCTACAACGTCAACATCAAGTTG}$ GACATCACCTCCCACAACGAGGACTACACCATCGTGGAACAGTACGAACGCGCCGAGGGCCGCCACTCCACCGGCGGCATGGAC GCCTTCCTTGACCCTGGAAGGTGCCACTCCCACTGTCCTTTCCTAATAAAATGAGGAAATTGCATCGCATTGTCTGAGTAGGTGTC GCTCTATGGCTTCTGAGGCGGAAAGAACCAGCTGGGGCTCGAGTGCATTCTAGTTGTGGTTTGTCCAAACTCATCAATGTATCTTA TCATGTCTGTATACCGTCGACCTCTAGCTAGAGCTTGGCGTAATCATGGTCATAGCTGTTTCCTGTGTGAAATTGTTATCCGCTCAC ${\tt CGCTCACTGCCCGCTTTCCAGTCGGGAAAACCTGTCGTGCCAGCTGCATTAATGAATCGGCCAACGCGCGGGGAGAGGCGGTTTGC}$ GCGGTAATACGGTTATCCACAGAATCAGGGGGATAACGCAGGAAAGAACATGTGAGCAAAAGGCCAGCAAAAGGCCAGGAACCG TAAAAAGGCCGCGTTGCTGGCGTTTTTCCATAGGCTCCGCCCCCTGACGAGCATCACAAAAATCGACGCTCAAGTCAGAGGTGG ${\tt CGGATACCTGTCCGCCTTTCTCCGGGAAGCGTGGCGCCTTTCTCAATGCTCACGCTGTAGGTATCTCAGTTCGGTGTAGGTCGT}$ TCGCTCCAAGCTGGGCTGTGTGCACGAACCCCCCGTTCAGCCCGACCGCTGCGCCTTATCCGGTAACTATCGTCTTGAGTCCAACC TCTTGAAGTGGTGGCCTAACTACGGCTACACTAGAAGGACAGTATTTGGTATCTGCGCTCTGCTGAAGCCAGTTACCTTCGGAAAA AAAAAGGATCTCAAGAAGATCCTTTGATCTTTTCTACGGGGTCTGACGCTCAGTGGAACGAAAACTCACGTTAAGGGATTTTGGT ${\tt CTTGGTCTGACAGTTACCAATGCTTAATCAGTGAGGCACCTATCTCAGCGATCTGTCTATTTCGTTCATCCATAGTTGCCTGACTCC}$ CCGTCGTGTAGATAACTACGATACGGGAGGGCTTACCATCTGGCCCCAGTGCTGCAATGATACCGCGAGACCCACGCTCACCGGC ATTAATTGTTGCCGGGAAGCTAGAGTAAGTAGTTCGCCAGTTAATAGTTTGCGCAACGTTGTTGCCATTGCTACAGGCATCGTGGT GTCACGCTCGTCGTTTGGTATGGCTTCATTCAGCTCCGGTTCCCAACGATCAAGGCGAGTTACATGATCCCCCATGTTGTGCAAAA AATTCTCTTACTGTCATGCCATCCGTAAGATGCTTTTCTGTGACTGGTGAGTACTCAACCAAGTCATTCTGAGAATAGTGTATGCG GCGACCGAGTTGCTCTTGCCCGGCGTCAATACGGGATAATACCGCGCCACATAGCAGAACTTTAAAAGTGCTCATCATTGGAAAA ${\tt CGTTCTTCGGGGGCGAAAAACTCTCAAGGATCTTACCGCTGTTGAGATCCAGTTCGATGTAACCCACTCGTGCACCCAACTGATCTTC}$ AGCATCTTTTACTTTCACCAGCGTTTCTGGGTGAGCAAAAACAGGAAGGCAAAATGCCGCAAAAAAGGGAATAAGGGCGACACG GAAATGTTGAATACTCATACTCTTTCCATATTTCAATATTGAAGCATTTATCAGGGTTATTGTCTCATGAGCGGATACATATTTGA ATGTATTTAGAAAAATAAACAAATAGGGGTTCCGCGCACATTTCCCCGAAAAGTGCCACCTGACGTC

With the multiple cloning sites

...ACAAGTAATAA<mark>GCTAGC</mark>ACACCGGTCGTCTAGCAATGCGATCCA<mark>CGTACG</mark>TAGGA TCCC

Cerulean NheI

BamHI

BsiWI

GACTGTG....

Sequence 1. Plasmid Map of pFmiR-empty and sequence.

AgeI

Appendix 3B. pFmiR-B3GLCT-3'UTR plasmid map and 3'UTR sequence

3'UTR sequence:

GCTAGCATCAGGGTGACCTGTGCGCCTAGCCTGCTCAGGGAGTGAACTGGAGACTGTGGCCTCATCCCACTGTGCTGTGCTCACA GGGGTCACAGGAGAAACATTTTTTTTTCTGGGAAAAATCACTTGCTTTTGACTTATGCAGTTGTTTTAACACTTAGTGATGACTGTG ${\tt CATTGTAATGGAAGTTTCAGTTGGGCATGAGCCTGGAGAGATGTGACTGTCTACAGTTCTATTTGTATATAAAAAGAAGAAGACTG$ AAAGTCTTTTGACATGGATATTGTGAATGGTATGAACTTTTAAACCATATTATTGATGATGAAAAATTATTTCCTGGGAACTCAGTA **GGAATAATACCGTATTAAGGAATAATACTGTACATAAAACATCATGAAACCCTAGATATGAAATCCCCTGAAGTCTGTAATCATG** GTGGTTATGTTTTGTCTATTCTTTTGCTGTTTGTGCCTCATAAAAAGAGAATGAGGTCTTCTGCTAGAGCTTCGTATTGCTTTGGAAGTTCATCTGTGTTTTATTTCTCCCTGAAGCCCTATCTTTATGGCTTACTTGTAACATGAAAGTAGTAGATGCTGCCAGAAAATAGTG ${\sf CAGCATGGTGATCAGGCAATTTCTCTGGGTTCCCAAAGAATGACATTTGAAACAGGTATTTTGAAACAGCTCTAGTTTTCAAATTA$ TATCTTTAATATATAGTAATGTAACATATTCAGTATTAATGTATAAAAAAGCACTCTAATTATATAAATTCAGTTTTTGTAAAAGGTATT AGATTGACTATTTGCAATAGTATTAGTATTTACCATTTTTCCAAATTAGCAACTACCAGACCTCACGTGTTGCAGTGATAACACAA TGCATTGGATTCAGTTTTGTGAAAATGGATTCTGTGGCCATCCAAGGGATGTATCAGGGATGATCAGCTGATGAGAGGGCTCCAGA AGGATTTCTAGATCGCTTCAAGCCTATACTGATGGCCTTAGCTTTGTTCAGTCATTGTAACTGGGATTGTTGTCATTGCTACCGTGGTAGTCACCTTCATGTCATCTATAATAGTACTCCTGGAGAGAGCCCTGGCTGCCTACACCAGTGGAAAAGAGTCTCCAGTTCTGCTCTG GCCTACTAACTGTTACCACTGAGAGAACAACATGTTCATTTGACATGATTGAAGCTGGCATCCGTATATGAAGATCCTTGTCAAGC TTTCTTCTGTGGTCTGATTAGTGCCTTCTACTGATACCGGGGCACCTCCTCTGGTACTTTAAGTGTTTTGTTAATTATATTTACTTT TTGGAATGGTGTAAGCCTAACCACAAGTAAAAGATCTTTGCCTAAGTTTTTGATTTCTCAAATATTGTGTTCATTAGTCTAGACTG GGAATGGGGAGGGGAAATGGGGAAAATGAATGAATGAAATCAGAAAAAAGTCAGCGGCTCAGTAAATACAGTTTAAAGAGAGA ATAATTACTTCAGAGCTACCCTTTTAAGAGAAAACCATCAGAAATTGATAATGTTTATATAAAGTTTATAAAGCCATTGTGTTTTG TTATATAACAAATCAGAGATGTTATTTTAGAATCGATTCCCATCTAAAGAACTCAATTTTGAGTCTGACATTTCCAGGACCAGATA TTTTACATCTTGAAACTAAATCAGAAAATCCAGACATGAAAATAACCTTTCTAGAATGCCTAGGAGCAGAAAACAATAATAGCATG ${\tt CTAAATCACAAATGATGCTATGTATGGGTATGTAAATATCAGTGCTGTCTGCATTTCTGGGTTTATTGAAGACCTCTTGTTGTATAT$ ATCCTCAAAAATTAATGTAATTGACATCTTCAAGAATGTTTCTATTGTCTTCCATTCATAATCAGAGATGTAATTTGTATGGACTAA ATAAAAACTTTATTATGTAATGAAAAG

Sequence 2. Plasmid Map of pFmiR-B3GLCT-3'UTR and sequence of 3'-UTR of B3GLCT.

Table 3.2. Identification of downregulatory and upregulatory miRs for B3GLCT from miRFluR assay.

miRNAs	Normalization	Error prop	%error	Z-score
miR-4446-5p	0.547	0.040	7.244	-4.952
miR-670-5p	0.633	0.029	4.548	-3.892
miR-4504	0.700	0.034	4.836	-3.062
miR-200b	0.703	0.039	5.496	-3.025
miR-4725-5p	0.718	0.032	4.485	-2.835
miR-5583-3p	0.725	0.019	2.584	-2.756
miR-6846-3p	0.730	0.074	10.185	-2.684
miR-6764-5p	0.733	0.054	7.394	-2.656
miR-504-5p	0.736	0.013	1.802	-2.618
miR-4635	0.738	0.044	5.935	-2.587
miR-4450	0.742	0.056	7.529	-2.545
miR-6776-3p	0.745	0.034	4.518	-2.503
miR-4716-5p	0.749	0.023	3.103	-2.450
miR-8052	0.755	0.016	2.160	-2.378
miR-4649-3p	0.759	0.039	5.082	-2.327
miR-542-3p	0.765	0.039	5.105	-2.259
miR-5681b	0.767	0.018	2.396	-2.227
miR-4524a-3p	0.768	0.052	6.781	-2.225
miR-429	0.777	0.029	3.750	-2.111
miR-6889-3p	0.778	0.047	6.032	-2.099
miR-544b	0.780	0.032	4.078	-2.076
miR-1270	0.780	0.029	3.745	-2.076
miR-4423-3p	0.782	0.075	9.595	-2.051
miR-6888-3p	0.785	0.039	4.976	-2.015
NTC1	1.000	0.009	0.876	
miR-7843-3p	1.201	0.062	5.154	3.122
miR-4526	1.202	0.059	4.919	3.135
miR-23b-5p	1.203	0.068	5.648	3.151
miR-1827	1.203	0.102	8.504	3.152
miR-1911-3p	1.205	0.133	11.068	3.174
miR-450a-5p	1.207	0.041	3.408	3.207
miR-1911-5p	1.208	0.124	10.265	3.211
miR-181c-5p	1.216	0.148	12.175	3.313

miR-583	1.218	0.149	12.274	3.336
miR-7151-3p	1.224	0.028	2.302	3.414
miR-590-5p	1.226	0.139	11.329	3.438
miR-506-3p	1.229	0.022	1.780	3.471
miR-1908-5p	1.249	0.095	7.582	3.724
miR-187-5p	1.259	0.153	12.119	3.842
miR-6855-5p	1.270	0.111	8.763	3.977
miR-17-5p	1.279	0.112	8.779	4.093
miR-188-5p	1.310	0.161	12.271	4.474
miR-6895-5p	1.313	0.142	10.850	4.512
miR-183-3p	1.319	0.109	8.257	4.590
miR-6792-5p	1.325	0.051	3.848	4.659
miR-187-3p	1.328	0.137	10.279	4.702
miR-6856-3p	1.330	0.113	8.491	4.725
miR-3619-5p	1.336	0.070	5.223	4.800
miR-582-3p	1.338	0.145	10.816	4.820
miR-4430	1.360	0.146	10.709	5.087
miR-183-5p	1.393	0.292	20.961	5.501
miR-6878-3p	1.443	0.154	10.683	6.112
miR-891b	1.463	0.018	1.254	6.365
miR-4470	1.499	0.091	6.042	6.803

Table 3.3. Disease enrichment analysis of 27 downregulatory miRs for B3GLCT in miRNet

Pathway	Total	Expected	Hits	Pval
Preauricular dimple	17	2.15	9	7.49E-05
Preauricular sinus	17	2.15	9	7.49E-05
Malignant mesothelioma	70	8.87	21	9.22E-05
Adult onset	33	4.18	13	9.65E-05
Cleft Palate	107	13.6	28	0.000101
Acquired scoliosis	153	19.4	36	0.000122
Preauricular Fistulae, Congenital	18	2.28	9	0.000133
Curvature of spine	155	19.6	36	0.000162
Uranostaphyloschisis	86	10.9	23	0.000296
Frontal bossing	82	10.4	22	0.00038
Flatfoot	33	4.18	12	0.000432
Congenital small ears	29	3.67	11	0.000492

Hemangiosarcoma	11	1.39	6	0.00106
Acquired flat foot	32	4.05	11	0.00128
Muscle Cramp	32	4.05	11	0.00128
Adenoma	19	2.41	8	0.00133
Micrognathism	160	20.3	34	0.00136
Mandibular hypoplasia	160	20.3	34	0.00136
Hypoplastic mandible condyle	160	20.3	34	0.00136
Lymphoma, Follicular	12	1.52	6	0.00189
Intellectual Disability	378	47.9	67	0.00195
Sezary Syndrome	20	2.53	8	0.00197
Dull intelligence	330	41.8	59	0.00296
Orbital separation excessive	131	16.6	28	0.00321
Low intelligence	326	41.3	58	0.00359
Mental deficiency	326	41.3	58	0.00359
Colonic Neoplasms	79	10	19	0.00371
Poor school performance	327	41.4	58	0.00385
Ventricular Septal Defects	63	7.98	16	0.00424
Aplasia/Hypoplasia of the lungs	10	1.27	5	0.00468
Mental Retardation	330	41.8	58	0.00473
Small head	192	24.3	37	0.00511
Liver neoplasms	70	8.87	17	0.00532
Gastroesophageal reflux disease	43	5.45	12	0.00565
Global developmental delay	313	39.6	55	0.00592
Byzanthine arch palate	113	14.3	24	0.00667
Cognitive delay	315	39.9	55	0.00677
Squamous cell carcinoma	66	8.36	16	0.00688
Mental and motor retardation	316	40	55	0.00724
Heartburn	39	4.94	11	0.00728
Low posterior hairline	34	4.31	10	0.00753
Distal amyotrophy	29	3.67	9	0.00756
Bladder Neoplasm	50	6.33	13	0.00774
Muscle hypotonia	311	39.4	54	0.00814
Neoplastic Cell Transformation	57	7.22	14	0.00988
Precancerous Conditions	46	5.83	12	0.01
Renal Insufficiency	46	5.83	12	0.01
Alcoholic Intoxication	16	2.03	6	0.0105
Abnormally-shaped vertebrae	16	2.03	6	0.0105
Renal failure in adulthood	41	5.19	11	0.0108
Isolated cases	36	4.56	10	0.0115
Bilateral fifth finger clinodactyly	58	7.35	14	0.0116
Curvature of little finger	58	7.35	14	0.0116
Proximal muscle weakness	26	3.29	8	0.0123
Dilated ventricles (finding)	65	8.23	15	0.0139

Diffuse Large B-Cell Lymphoma	17	2.15	6	0.0145
Broad thumbs	17	2.15	6	0.0145
Cataract	121	15.3	24	0.0156
Liver carcinoma	121	15.3	24	0.0156
Downward slant of palpebral fissure	90	11.4	19	0.0158
Prostatic Neoplasms	260	32.9	45	0.0159

Table 3.4 RT-PCR with 3 biological replicates

		Error prop (delta		Error prop (2^delta		
Replicate 1	Delta Ct	Ct)	2^-delta Ct	ct)	relative (/ref.)	Error prop.
NTC1	7.358854294	0.058438507	0.006092059	0.000246768	1	0.057284822
miR-200a-3p	7.162140846	0.038838774	0.006982015	0.000187963	1.146084524	0.055741609
miR-200b-3p	7.901312828	0.091189692	0.004182807	0.000264386	0.686599859	0.051545367
miR-504	7.806370735	0.093613745	0.004467332	0.000289877	0.733304124	0.056092931
miR-4504	7.650029182	0.076310553	0.004978652	0.000263343	0.817236254	0.054446569
miR-4649-3p	7.519591331	0.085243231	0.005449761	0.000322005	0.894567941	0.064084685
miR-4725-5p	7.651560783	0.092579754	0.004973369	0.000319148	0.816369116	0.061951301
miR-891b	6.491556168	0.060372043	0.011113398	0.000465059	1.824243263	0.106244321
miR-4470-5p	7.56333828	0.043874601	0.005286988	0.000160786	0.867849038	0.043958401
Doplicato 2	Delta Ct	Error prop (delta	2^ delta Ct	Error prop (2^delta	relative (/ref)	Error prop
NTC1	6 6 6 6 6 6 5 1 0 9	0.057404844		0.000201650		0.056271566
miR 200a 2m	6.540061244	0.000244484	0.009843144	0.000391039	1 08425475	0.0302/1300
in 2001-3p	0.349901344	0.090344484	0.0106/24/3	0.000668332	 1.08423473	0.080445291
miR-2006-3p	7.222418736	0.031457839	0.006696306	0.000146012	0.680301593	0.03086/24/
m1R-504	7.046149775	0.077890451	0.007566544	0.000408514	0.768712127	0.05155598
miR-4504	6.980326325	0.032778975	0.007919767	0.000179942	0.804597289	0.03686665
miR-4649-3p	6.805610943	0.106756282	0.008939371	0.000661494	 0.908182514	0.076303122
miR-4725-5p	7.009653091	0.072323683	0.007760401	0.000389036	 0.788406741	0.050460233
miR-891b	5.874842408	0.047618897	0.017041045	0.000562472	1.731260354	0.089502985
miR-4470-5p	6.918618787	0.09709403	0.008265863	0.000556296	0.839758455	0.065654911
Replicate 3	Delta Ct	Error prop (delta Ct)	2^-delta Ct	Error prop (2 ^d elta ct)	relative (/ref.)	Error prop.
NTC1	7.006746292	0.081765842	0.007776053	0.000440714	1	0.080151632
miR-200a-3p	6.906258583	0.102561345	0.008336985	0.000592677	1.072135841	0.097475637
miR-200b-3p	7.454258919	0.055236301	0.005702227	0.000218321	0.733306063	0.050155281
miR-504	7.318007469	0.097732428	0.006267008	0.000424546	0.805936916	0.071184126
miR-4504	7.193367004	0.098582405	0.006832518	0.00046688	0.87866144	0.078005246
miR-4649-3p	7.025995255	0.026451112	0.007672991	0.000140681	0.986746251	0.058778085
miR-4725-5p	7.137515068	0.099496382	0.007102216	0.000489809	0.913344622	0.081530531
miR-891b	6.037761688	0.032019563	0.015221331	0.000337826	1.957462411	0.119143835
miR-4470-5p	7.24985218	0.058105494	0.006570176	0.000264618	0.844924368	0.058746679

	Repli	cate 1	Repli	cate 2	Repli	cate 3	Mean of 3	Error prop	Std error of mean
	Mean	Error prop	Mean	Error prop	Mean	Error prop	rep.	Enor prop	
NTC	1	0.057284822	1	0.056271566	1	0.080151632	1	0.03781876	0
miR-200a-3p	1.146084524	0.055741609	1.08425475	0.080445291	1.072135841	0.097475637	1.100825038	0.04604354	0.039661477
miR-200b-3p	0.686599859	0.051545367	0.680301593	0.030867247	0.733306063	0.050155281	0.700069172	0.02608802	0.028955747
miR-504	0.733304124	0.056092931	0.768712127	0.05155598	0.805936916	0.071184126	0.769317722	0.03475568	0.036320183
miR-4504	0.817236254	0.054446569	0.804597289	0.03686665	0.87866144	0.078005246	0.833498328	0.03400718	0.03961964
miR-4649-3p	0.894567941	0.064084685	0.908182514	0.076303122	0.986746251	0.058778085	0.929832235	0.0385629	0.049756839
miR-4725-5p	0.816369116	0.061951301	0.788406741	0.050460233	0.913344622	0.081530531	0.839373493	0.03805176	0.065568816
miR-891b	1.824243263	0.106244321	1.731260354	0.089502985	1.957462411	0.119143835	1.837655343	0.06100446	0.113695891
miR-4470-5p	0.867849038	0.043958401	0.839758455	0.065654911	0.844924368	0.058746679	0.850843954	0.03281951	0.014951634

 Table 3.5. Quantification of 3 RT-PCR replicates

3.9 REFERENCES

1. Thu, C. T.; Mahal, L. K., Sweet Control: MicroRNA Regulation of the Glycome. *Biochemistry* **2020**, *59* (34), 3098-3110.

2. Agrawal, P.; Kurcon, T.; Pilobello, K. T.; Rakus, J. F.; Koppolu, S.; Liu, Z.; Batista, B. S.; Eng, W. S.; Hsu, K. L.; Liang, Y.; Mahal, L. K., Mapping posttranscriptional regulation of the human glycome uncovers microRNA defining the glycocode. *Proc Natl Acad Sci U S A* **2014**, *111* (11), 4338-43.

3. Kurcon, T.; Liu, Z.; Paradkar, A. V.; Vaiana, C. A.; Koppolu, S.; Agrawal, P.; Mahal, L. K., miRNA proxy approach reveals hidden functions of glycosylation. *Proc Natl Acad Sci U S A* **2015**, *112* (23), 7327-32.

4. Vaiana, C. A.; Kurcon, T.; Mahal, L. K., MicroRNA-424 Predicts a Role for beta-1,4 Branched Glycosylation in Cell Cycle Progression. *J Biol Chem* **2016**, *291* (3), 1529-37.

5. Varki, A., Biological roles of glycans. *Glycobiology* **2017**, *27* (1), 3-49.

6. Vasudevan, D.; Takeuchi, H.; Johar, S. S.; Majerus, E.; Haltiwanger, R. S., Peters plus syndrome mutations disrupt a noncanonical ER quality-control mechanism. *Curr Biol* **2015**, *25* (3), 286-295.

7. Holdener, B. C.; Percival, C. J.; Grady, R. C.; Cameron, D. C.; Berardinelli, S. J.; Zhang, A.; Neupane, S.; Takeuchi, M.; Jimenez-Vega, J. C.; Uddin, S. M. Z.; Komatsu, D. E.; Honkanen, R.; Dubail, J.; Apte, S. S.; Sato, T.; Narimatsu, H.; McClain, S. A.; Haltiwanger, R. S., ADAMTS9 and ADAMTS20 are differentially affected by loss of B3GLCT in mouse model of Peters plus syndrome. *Hum Mol Genet* **2019**, *28* (24), 4053-4066.

8. Weh, E.; Reis, L. M.; Tyler, R. C.; Bick, D.; Rhead, W. J.; Wallace, S.; McGregor, T. L.; Dills, S. K.; Chao, M. C.; Murray, J. C.; Semina, E. V., Novel B3GALTL mutations in classic Peters plus syndrome and lack of mutations in a large cohort of patients with similar phenotypes. *Clin Genet* **2014**, *86* (2), 142-8.

9. Maillette de Buy Wenniger-Prick, L. J.; Hennekam, R. C., The Peters' plus syndrome: a review. *Ann Genet* **2002**, *45* (2), 97-103.

10. Hennekam, R. C.; Van Schooneveld, M. J.; Ardinger, H. H.; Van Den Boogaard, M. J.; Friedburg, D.; Rudnik-Schoneborn, S.; Seguin, J. H.; Weatherstone, K. B.; Wittebol-Post, D.; Meinecke, P., The Peters'-Plus syndrome: description of 16 patients and review of the literature. *Clin Dysmorphol* **1993**, *2* (4), 283-300.

11. Wolter, J. M.; Kotagama, K.; Pierre-Bez, A. C.; Firago, M.; Mangone, M., 3'LIFE: a functional assay to detect miRNA targets in high-throughput. *Nucleic Acids Res* **2014**, *42* (17), e132.

12. Liu, J.; Li, Y.; Chen, X.; Xu, X.; Zhao, H.; Wang, S.; Hao, J.; He, B.; Liu, S.; Wang, J., Upregulation of miR-205 induces CHN1 expression, which is associated with the aggressive behaviour of cervical cancer cells and correlated with lymph node metastasis. *BMC Cancer* **2020**, *20* (1), 1029.

13. Wang, L.; Zhang, S.; Zhang, W.; Cheng, G.; Khan, R.; Junjvlieke, Z.; Li, S.; Zan, L., miR-424 Promotes Bovine Adipogenesis Through an Unconventional Post-Transcriptional Regulation of STK11. *Front Genet* **2020**, *11*, 145.

14. Vasudevan, S.; Tong, Y.; Steitz, J. A., Switching from repression to activation: microRNAs can up-regulate translation. *Science* **2007**, *318* (5858), 1931-4.

15. Valinezhad Orang, A.; Safaralizadeh, R.; Kazemzadeh-Bavili, M., Mechanisms of miRNA-Mediated Gene Regulation from Common Downregulation to mRNA-Specific Upregulation. *Int J Genomics* **2014**, *2014*, 970607.

16. Agarwal, V.; Bell, G. W.; Nam, J. W.; Bartel, D. P., Predicting effective microRNA target sites in mammalian mRNAs. *Elife* **2015**, *4*.

17. Dweep, H.; Sticht, C.; Pandey, P.; Gretz, N., miRWalk--database: prediction of possible miRNA binding sites by "walking" the genes of three genomes. *J Biomed Inform* **2011**, *44* (5), 839-47.

18. Dweep, H.; Gretz, N.; Sticht, C., miRWalk database for miRNA-target interactions. *Methods Mol Biol* **2014**, *1182*, 289-305.

19. Sticht, C.; De La Torre, C.; Parveen, A.; Gretz, N., miRWalk: An online resource for prediction of microRNA binding sites. *PLoS One* **2018**, *13* (10), e0206239.

20. Zhou, P.; Xu, W.; Peng, X.; Luo, Z.; Xing, Q.; Chen, X.; Hou, C.; Liang, W.; Zhou, J.; Wu, X.; Songyang, Z.; Jiang, S., Large-scale screens of miRNA-mRNA interactions unveiled that the 3'UTR of a gene is targeted by multiple miRNAs. *PLoS One* **2013**, *8* (7), e68204.

21. Baek, D.; Villen, J.; Shin, C.; Camargo, F. D.; Gygi, S. P.; Bartel, D. P., The impact of microRNAs on protein output. *Nature* **2008**, *455* (7209), 64-71.

22. Ostlund, G.; Sonnhammer, E. L., Quality criteria for finding genes with high mRNAprotein expression correlation and coexpression correlation. *Gene* **2012**, *497* (2), 228-36.

23. Didiano, D.; Hobert, O., Perfect seed pairing is not a generally reliable predictor for miRNA-target interactions. *Nat Struct Mol Biol* **2006**, *13* (9), 849-51.

24. Lal, A.; Navarro, F.; Maher, C. A.; Maliszewski, L. E.; Yan, N.; O'Day, E.; Chowdhury, D.; Dykxhoorn, D. M.; Tsai, P.; Hofmann, O.; Becker, K. G.; Gorospe, M.; Hide, W.; Lieberman, J., miR-24 Inhibits cell proliferation by targeting E2F2, MYC, and other cell-cycle genes via binding to "seedless" 3'UTR microRNA recognition elements. *Mol Cell* **2009**, *35* (5), 610-25.

25. Chi, S. W.; Zang, J. B.; Mele, A.; Darnell, R. B., Argonaute HITS-CLIP decodes microRNA-mRNA interaction maps. *Nature* **2009**, *460* (7254), 479-86.

26. Hafner, M.; Landthaler, M.; Burger, L.; Khorshid, M.; Hausser, J.; Berninger, P.; Rothballer, A.; Ascano, M., Jr.; Jungkamp, A. C.; Munschauer, M.; Ulrich, A.; Wardle, G. S.; Dewell, S.; Zavolan, M.; Tuschl, T., Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP. *Cell* **2010**, *141* (1), 129-41.

27. Fan, Y.; Siklenka, K.; Arora, S. K.; Ribeiro, P.; Kimmins, S.; Xia, J., miRNet - dissecting miRNA-target interactions and functional associations through network-based visual analysis. *Nucleic Acids Res* **2016**, *44* (W1), W135-41.

28. Chang, L.; Zhou, G.; Soufan, O.; Xia, J., miRNet 2.0: network-based visual analytics for miRNA functional analysis and systems biology. *Nucleic Acids Res* **2020**, *48* (W1), W244-W251. 29. Hsu, S. D.; Lin, F. M.; Wu, W. Y.; Liang, C.; Huang, W. C.; Chan, W. L.; Tsai, W. T.; Chen, G. Z.; Lee, C. J.; Chiu, C. M.; Chien, C. H.; Wu, M. C.; Huang, C. Y.; Tsou, A. P.; Huang, H. D., miRTarBase: a database curates experimentally validated microRNA-target interactions. *Nucleic Acids Res* **2011**, *39* (Database issue), D163-9.

30. Huang, H. Y.; Lin, Y. C.; Li, J.; Huang, K. Y.; Shrestha, S.; Hong, H. C.; Tang, Y.; Chen, Y. G.; Jin, C. N.; Yu, Y.; Xu, J. T.; Li, Y. M.; Cai, X. X.; Zhou, Z. Y.; Chen, X. H.; Pei, Y. Y.; Hu, L.; Su, J. J.; Cui, S. D.; Wang, F.; Xie, Y. Y.; Ding, S. Y.; Luo, M. F.; Chou, C. H.; Chang, N. W.; Chen, K. W.; Cheng, Y. H.; Wan, X. H.; Hsu, W. L.; Lee, T. Y.; Wei, F. X.; Huang, H. D., miRTarBase 2020: updates to the experimentally validated microRNA-target interaction database. *Nucleic Acids Res* **2020**, *48* (D1), D148-D154.

31. Pinero, J.; Ramirez-Anguita, J. M.; Sauch-Pitarch, J.; Ronzano, F.; Centeno, E.; Sanz, F.; Furlong, L. I., The DisGeNET knowledge platform for disease genomics: 2019 update. *Nucleic Acids Res* **2020**, *48* (D1), D845-D855.

32. Dweep, H.; Gretz, N., miRWalk2.0: a comprehensive atlas of microRNA-target interactions. *Nat Methods* **2015**, *12* (8), 697.

CHAPTER 4

INVESTIGATING THE MIRNA REGULATORY LANDSCAPE OF

OGT AND OGA VIA THE 3'UTR AND 5'UTR REGIONS

4.1 ABSTRACT

The addition of a single β-D-N-acetylglucosamine to serine or threonine residues on thousands of intracellular proteins is called O-linked GlcNAcylation (O-GlcNAcylation). O-GlcNAc occurs in diverse organisms including bacteria, protozoans and metazoans. This dynamic posttranslational modification contributes to cellular processes including epigenetic modifications, transcription, metabolism, and cell signaling that play significant roles in development and normal physiology. O-GlcNAcylation is catalyzed by O-GlcNAc transferase (OGT) and the modification is removed by O-GlcNAcase (OGA). These enzymes are highly regulated at multiple levels, but little is known about their regulation by microRNAs (miRs). In this work, we built a comprehensive dataset of OGT and OGA regulation via both their 3'UTR and 5'UTRs. Downregulation was almost exclusively mediated through binding to the 3'UTR. While the majority of miRNA regulators of OGT and OGA showed no overlap, we observed significant coregulation of OGT and OGA by a subset of miRs.

In summary, this work provides a better understanding of OGT and OGA regulation through miRNA binding via both the 3'UTR and 5'UTR regions and compares the impact of miRNA regulation via these regions.

4.2 INTRODUCTION

A myriad of cytoplasmic, nuclear and mitochondrial proteins are reversibly modified by O-GlcNAc on serine or threonine residues. Unlike canonical O-glycosylation, O-GlcNAc is a dynamic glycan modification found on cytoplasmic, mitochondrial and nuclear proteins¹. O-GlcNAcylation is dynamically cycled by only two proteins: O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA), which catalyze the addition and removal of O-GlcNAc respectively (**Figure 4.1**). O-GlcNAcylation is often compared to phosphorylation since they both dynamically modify the serine/threonine residues of thousands of proteins. However, unlike phosphorylation, O-GlcNAcylation utilizes just two enzymes instead of hundreds of phosphatases and kinases with their own substrate specificity and selectivity. Thus, OGT and OGA must display complex mechanisms of regulation and substrate selection.

O-GlcNAcylation is highly dependent on the availability of UDP-GlcNAc, which is generated from the hexosamine biosynthesis pathway (HBP). Thus, O-GlcNAcylation is considered a nutrient sensor of cell metabolic status that is highly regulated and responsive to environmental factors. This modification dynamically regulates all fundamental and developmental processes in the cell including stress response, epigenetics, signal transduction, cell proliferation, transcription, metabolism and proteostasis¹⁻¹³ (**Figure. 4.1**). Previously, studies have indicated that this modification has significant impacts on protein functions including cellular localization, stability, protein-protein interactions and has an extensive and intricate crosstalk with phosphorylation to modulate cellular signaling¹⁴. Due to the prevalence of O-GlcNAc, dysregulation of O-GlcNAcylation is associated with a diverse set of diseases including cancer, neurodegeneration, cardiovascular diseases, immunity and diabetes³⁻¹³.

Figure 4.1. O-GlcNAcylation and functions. O-GlcNAc transferase (OGT) catalyzes the transfer of an N-acetylglucosamine (GlcNAc) from UDP-GlcNAc to a serine or threonine residue on a protein substrate (gray). O-GlcNAcase (OGA) catalyzes the removal of O-GlcNAc from protein substrates. This modification occurs mainly in the nucleus, cytoplasm and mitochondria.

Despite the significance and ubiquitous nature of O-GlcNAc, the study of this modification remains challenging due to technical difficulties in its detection and quantification. OGT is alternatively spliced to produce 3 isoforms: nuclear cytoplasmic OGT (ncOGT, 116 kDa, 13 TPRs), mitochondrial isoform (mOGT, 103 kDa, 9 TPRs), and a short OGT (sOGT, 70 kDa, 2-3 TPR)^{15, 16}. The number of TPRs depends on the species and the type of alternatively spliced isoforms. Recently, studies have shown alternative splicing further regulates OGT expression in response to changes in O-GlcNAc levels through intron retention¹⁷. OGA is a 130 kDa protein with an N-terminal glycoside hydrolase (GH) catalytic domain, a stalk domain and C-terminal histone acetyltransferase (pseudoHAT) domain. OGA mRNA also undergoes alternative splicing in the HAT domain to produce a shorter form of OGA (sOGA) that only contains N-terminal O-GlcNAcase domains. Full length OGA localizes in the cytoplasm and nucleus while sOGA targets to the ER and nascent lipid droplets¹⁸.

OGT and OGA expression levels are known to change O-GlcNAc homeostasis and lead to numerous human diseases. However, how OGT and OGA expression levels are regulated is a fundamental question that requires further investigation and study. In the effort to address that question, previous studies demonstrated that OGT and OGA are regulated at both transcriptional and post-transcriptional levels via CREB/P300 transcription factors and intron retention respectively^{17, 19}. However, regulation of OGT/OGA by miRNA has been little explored. In recent years, 10 miR:mRNA interactions have been identified for the main transcript of OGT, regulating the enzyme in a variety of diseases from cancer to cardiovascular disease ^{2, 20-30}. Several of the miRs identified to hit OGT directly impact cell proliferation and are involved in cancer progression. Examples include miR-483 in gastric cancer and miR-485-5p in esophageal and colorectal cancers^{20, 21}. Other identified functions of miRs targeting OGT include reducing tumor angiogenesis (miR-7³⁰), inhibiting cell invasion (miR-24²⁵), and modulating glucose-induced inflammation (miR-200a/b²²).

In contrast to OGT, OGA is not predicted to be a highly regulated gene. To date, only one miR-mRNA interaction has been identified for this glycogene. miR-539 is up-regulated in the failing heart, and targets OGA, increasing O-GlcNAcylation during heart failure³¹. O-GlcNAcylation is highly dynamic in the heart, as are the transcript levels of both OGT and OGA. miR-24, which is involved in cardiovascular function has also been shown to modulate OGT³², although not in the context of cardiovascular disease. Currently we still have a limited understanding of the regulation of OGT and OGA, but it is increasingly clear that miRs may play a strong role in the dynamic expression of these enzymes and the resulting O-GlcNAcylation levels. Given the critical importance of O-GlcNAcylation to a wide variety of diseases, miR regulation of these enzymes warrants a more thorough examination.

In my previous chapters, I have discussed the significance and development of miRFluR high-throughput platform to map miR:target interactomes. My exploration of the regulatory network of miRs via the 3'UTR region of B3GLCT opened up many questions. Is the 3'UTR a dominant and prevalent domain when considering miR regulation? What about the coding and 5'UTR regions? What is the interplay between the 3'UTR and 5'UTR? How do miRs regulate OGT and OGA to control O-GlcNAc levels? Herein, we investigate the miRNA regulatory network of OGT and OGA by miRs via both the 3'UTR and 5'UTR regions.

Figure 4.2. Regulatory network of OGA and OGA by miRNAs.

4.3 ROLES OF 5'UTR IN GENE REGULATION

mRNAs have both 5' and 3'-untranslated regions (5'UTR and 3'UTR). The 5'UTR is important in regulating gene expression as it is the translational initiation site. The 5'UTR consists of multiple components including the 5'cap, several open reading frames (ORFs), multiple AUGs start sites and internal ribosomal entry sites (IRESs) (**Figure 4.3**)³³. All these features are important in regulating mRNA translation via altering mRNA stability, ribosomal accessibility, mRNA circularization or interacting with translational machinery. The 5'UTR typically possess a high GC content and a higher degree of secondary structure, which consequently influences the rate of mRNA translation. Additionally, both the 5'UTR and 3'UTR harbor numerous binding sites for RNA binding proteins that either suppress or enhance translation.

Figure 4.3. Roles of the 5'UTR and 3'UTR in translational regulation.

Contemporary studies demonstrated that miRNA targeting in mammalian cells occurs chiefly through pairing with the typically unstructured and AU-rich elements in the 3'UTR ^{34 35}. However, translational repression through targeting the 5'UTR has been demonstrated, at least in the context of an artificially genetic-encoded reporter construct, which indicated that miRNA targeting of the 5'UTR is feasible ³⁶. Although the interaction between miRNA and the 5'UTR remains largely unexplored, several studies found upregulation upon miRNA binding. For

instance, miR-10a induces upregulation of several ribosomal protein (Rps16, Rps6, and Rpl9)³⁷. Another example is the upregulation of insulin expression through competitive binding of miR-196b to the same RNA element in the 5'UTR as HuD, a repressor, leading to de-repression (**Figure 4.4**)³⁸. In addition, the interaction of the liver specific miRNA, miR-122, to the 5'UTR of Hepatitis C (HCV) RNA is required for viral replication ³⁹. These studies suggest a paradigm in which binding to the 5'UTR could result in mechanistic effects divergent from 3'UTR binding.

Figure 4.4. miRNA impacts RNA binding protein (HuD) to upregulate mRNA expression.

4.4 GENERATING THE RATIOMETRIC FLUORESCENT REPORTERS FOR MAPPING MIR-TARGET IN THE 3'UTR AND 5'UTR REGIONS OF OGT AND OGA

OGT has 3 isoforms (ncOGT, mOGT and sOGT) with 7 known transcripts. They contain identical catalytic regions but different TPR motif numbers. ncOGT is the major form of OGT. It is currently most studied and considered as most important functionally. Previous reports showed the absence of mOGT in multiple biological systems and ncOGT was found to be necessary and sufficient for O-GlcNAcylation of mitochondrial proteins ⁴⁰. The ncOGT transcript (1046 amino acids) contains the longest 3'UTR region. The mOGT 3'UTR is shorter and identical to 5'part of

the ncOGT 3'UTR. Thus, a subset of miR regulating the ncOGT 3'UTR potentially also regulates the mOGT 3'UTR. sOGT transcript does not contain 3'UTR region. The 5'UTR regions of ncOGT, mOGT and sOGT are not homologous, which indicates possibly distinct regulatory patterns. Thus, I also generated pFmiR-mOGT 5'UTR and pFmiR-sOGT 5'UTR reporters. However, we mainly focus on ncOGT due to its prevalence and containing longest 3'UTR.

As discussion in Chapter 3, the pFmiR-3'UTR sensor is a dual color genetically-encoded fluorescent reporter for identification of miR targets⁴¹. In brief, the 3'UTR of the gene of interest is inserted downstream after the stop codon of Cerulean under the first CMV promoter to create pFmiR-ncOGT and OGA 3'UTR (**Figure 4.5, see Plasmid maps and sequences**). mCherry serves as a reference for transfection efficiency and any non-specific effects for a more reliable and accurate quantitative approach.

For our 5'UTR reporter, we still utilized Cerulean as the sensing module and mCherry as the control but instead of the 3'UTR domain, the 5'UTR of OGT or OGA was inserted upstream of the Cerulean start codon (pFmiR-OGT 5'UTR and pFmiR-OGA 5'UTR, Figure 4.5, see Plasmid maps and sequences).

I also generated a full version of both the 5'UTR and 3'UTR of OGT and OGA cloned into the reporter (pFmiR-OGT 3+5'UTR and pFmiR-OGA 3+5'UTR, **Figure 4.5, see Plasmid maps and sequences**). I next utilized our miRFluR platform to identify miR hits for each reporter. In brief, the specific pFmiR reporter is co-transfected with miR mimics into *HEK293T* cells in 384well plate format. The fluorescent ratio of Cerulean/mCherry was then normalized to the nontargeting control (NTC) which is indicative of the extent of miR-target regulation. (**Figure 4.5B**).

Figure 4.5. MiRFluR platform extending to the 5'UTR. (A) Plasmid maps for mapping miRs with the 3'UTR and 5'UTR regulatory regions. (B) Schematic illustration of miRFluR platform.

4.5 GENERAL MIRFLUR ASSAY FOR PFMIR REPORTERS

The miRFluR assay was performed for 6 pFmiR reporters (pFmiR-OGT 3'UTR, pFmiR-OGA 3'UTR, pFmiR-OGT 5'UTR, pFmiR-OGA 5'UTR, pFmiR-OGT 3+5'UTR and pFmiR-OGA 3+5'UTR) using miR mimic library v.21 (2601 miRs, miRIDIAN, Horizon Discovery) aliquoted in 24 384 well plates. Briefly, the reporter was transfected into HEK-293T cells along with miRs in a 384 well format. The data was then collected in triplicate, filtered and analysed as described in Chapter 3. In brief, we first omitted any data with high errors of measurement (median error \pm

2 S. D. across all plates). Z-scores were then calculated for the remaining ratiometric normalized data for the reporters.

4.6 INVESTIGATION OF OGT REGULATION VIA 5'UTR AND 3'UTR REGIONS UTILIZING MIRFLUR PLATFORM

4.6.1 Comprehensive mapping of miR-target regulatory network via 3'UTR and 5'UTR of OGT

In Chapter 3, we set the threshold for hits at 20% change for downregulatory miRs and 95% confidence interval for upregulatory miRs. With that threshold, we found a high number of hits for OGT 3'UTR (160 downregulatory miRs and 67 upregulatory miRs out of 2080 data points, 11% hits) (**Figure 4.6**). Consistent with our miRFluR assay result, miR-7-5p, miR-101-5p, miR-15b-3p, miR-483-3p and miR-24-3p were found to regulate OGT. A dominant number of downregulatory miRs were identified in comparison to upregulators for the 3'UTR (70% downregulators). In contrast, regulation in the 5'UTR of OGT is heavily skewed towards the upregulatory miRs, in contrast to the 3'UTR (**Figure 4.7**). For the reporters with both the 5'UTR and 3'UTR domains, a dominant impact of 3'UTR was clearly observed, as most of the downregulatory miRs from the 3'UTR were detected (**Figure 4.8**).

Figure 4.6. Identification and validation of hits for OGT 3'UTR. Pie graphs represent hit miR versus non hit miR percentages and downregulatory versus upregulatory miRs. Bar graph indicates the ratiometric data for miRs. Error bars represent propagated error.

Figure 4.7. Identification and validation of hits for OGT 5'UTR. Pie graphs represent hit miR versus non hit miR percentages and downregulatory versus upregulatory miRs. Bar graph indicates the ratiometric data for miRs. Error bars represent propagated error.

Figure 4.8. Identification and validation of hits for OGT 3+5'UTR. Pie graphs represent hit miR versus non hit miR percentages and downregulatory versus upregulatory miRs. Bar graph indicates the ratiometric data for miRs. Error bars represent propagated error.

I then performed Western blot analysis for the protein levels of OGT in *MDA-MB-231* transfected with the subset of downregulatory miRs from the 3'UTR dataset (miR-7-5p, miR-200a-3p, let-7g-3p, miR-95) and in the 5'UTR dataset (miR-196b-5p, miR-4639-5p, miR-196a-5p, miR-449c-3p and miR-4713-3p), and upregulatory miRs from the 3+5'UTR (miR-20a-3p, miR-30c-2-3p, miR-134-3p, miR-135b, miR-576 and miR-765) dataset that passed our threshold. I used NTC as a negative control (**Figure 4.9, Figure 4.10, Figure 4.11 and Table 3.1**). The protein levels followed the expected results from our sensor assay for miR-20a-3p, miR-30c-2-3p, miR-576 and miR-765 for upregulation. miR-7-5p, miR-200a-3p, let-7g-3p, miR-95 all repressed OGT, especially let-7g-3p. The downregulatory miR-4713 did not show significant inhibition.

Figure 4.9. miRs were chosen for OGT validation.

Figure 4.10. Validation of hits for OGT. (A), (B), (C) Western blot analysis of OGT in *MDA-MB-231* transfected with 50 nM miR mimics or NTC, 48 hours post-transfection and quantification of Western blot analysis for three independent experiments. OGT expression was normalized to total protein levels from Ponceau staining and set over normalized NTC for each blot. Ponceau and whole Westerns corresponding to the data are shown in **Appendix 4A**.

I also plotted OGT 3'UTR and 5'UTR data to compare. The graph represents data available for both 3'UTR and 5'UTR reporters. The OGT 3+5'UTR dataset was used to define downregulators and upregulators. Most of downregulatory miRs shown dowregulation in the 3'UTR region but not the 5'UTR. Only let-7g-3p repressed OGT in both 3'UTR and 5'UTR. For upregulation, most of the miRs indicated protein enhancement in both 3'UTR and 5'UTR.

Figure 4.11. Comparison between OGT 3'UTR and OGT 5'UTR. Color code represents regulation by the OGT 3'+5'UTR dataset.

4.7 INVESTIGATION OF OGA REGULATION VIA 5'UTR AND 3'UTR REGIONS UTILIZING MIRFLUR PLATFORM

4.7.1 Generating the ratiometric fluorescent reporter data for mapping miR-target in the 3'UTR and 5'UTR regions

The miRFluR assay was performed for 3 pFmiR reporters (pFmiR-OGA 3'UTR, pFmiR-OGA 5'UTR, and pFmiR-OGA 3+5'UTR). I found a high fluctuation in NTC in the plates for

OGA and NTC repressed the reporter thus the dataset was normalized to the median of each plate. To validate this, I used the B3GLCT dataset in previous chapter. I plotted the correlation between the negative controls for B3GLCT, miR-200a-3p and NTC, with the median of each plate. High correlation was found between the negative controls and the median of each plate.

Figure 4.12. Correlation between two negative controls, (A) miR-200a-3p and (B) NTC, with the median of each plate for B3GLCT.

For the OGA 3'UTR, data for 1291 miRs was acquired after filter (**Figure 4.12**). Downregulatory miRs were dominant in comparison to upregulators for 3'UTR region. More upregulators were identified in comparison to OGT but the observed trend was similar to OGT. Similarly, most miR hits were found to upregulate OGA in the 5'UTR domain (**Figure 4.13**). The dominant impact of 3'UTR was detected in the OGA 3+5'UTR repression dataset. Thus, the 3'UTR is the more dominant domain in regulating both OGT and OGA repression by miRNAs.

Figure 4.13. Identification and validation of hits for OGA 3'UTR. Pie graphs represent hit miR versus non hit miR percentages and downregulatory versus upregulatory miRs. Bar graph indicates the ratiometric data for miRs. Error bars represent propagated error.

Figure 4.14. Identification and validation of hits for OGA 5'UTR. Pie graphs represent hit miR versus non hit miR percentages and downregulatory versus upregulatory miRs. Bar graph indicates the ratiometric data for miRs. Error bars represent propagated error.

Figure 4.15. Identification and validation of hits for OGA 3+5'UTR. Pie graphs represent hit miR versus non hit miR percentages and downregulatory versus upregulatory miRs. Bar graph indicates the ratiometric data for miRs. Error bars represent propagated error.

I next performed Western Blot analysis for the protein expression of OGA in *HeLa* and *MDA-MB-231* cell lines for validation (**Figure 4.16, Figure 4.17, Table 4.1, Appendix 4B-D**). Briefly, cells were transfected with 3 downregulatory miRs for the 3'UTR region (miR-27a, miR-520d-5p and miR-524-5p), 3 downregulatory miRs for the 5'UTR (miR-140, miR-3655 and miR-3127), 10 upregulatory miRs (for both the 5'UTR and 3'UTR) and NTC as the negative control. The OGA protein levels generally followed the anticipated results from the reporter data with the exception of miR-3655. The result was also consistent with *MDA-MB-231* cell lines (**Appendix 4D**).

Figure 4.16. miRs were chosen for OGA validation.

Figure 4.17. Validation of hits for OGA. Western blot analysis of OGA in *HeLa* transfected with 50 nM miR mimics or NTC, 48 hours post-transfection. Quantification of Western blot analysis were shown for three independent experiments. OGA expression was normalized to total protein levels from Ponceau staining and set over normalized NTC for each blot. Ponceau and whole Westerns corresponding to the data are shown in **Appendix 4B-D**.

Similarly to OGT, the OGA 3'UTR and 5'UTR data were also compared. The graph regpresents data available on both 3'UTR, 5'UTR and 3'+5'UTR (**Figure 4.18**). The downregulatory and upregulatory miRs were labeled by using the OGA 3+5'UTR dataset. Most

of downregulatory miRs shown dowregulation in the 3'UTR region. The downregulatory miRs showed more scattered ratios than OGT but were still predominantly observed in the OGA 3'UTR dataset. For upregulation, higher condordance of upregulation between 3'UTR and 5'UTR was observed than in OGT datasets. This observation indicates a possible synergy between 3'UTR and 5'UTR and 5'UTR in protein upregulation.

Figure 4.18. Comparison between OGA 3'UTR and OGA 5'UTR. Color code represents regulation by the OGA 3'+5'UTR dataset.

I also analyzed the binding sites of miRs in the 3'UTR and 5'UTR of both OGT and OGA by RNAhybrid algorithm (**Figure 4.19**, **Table 4.3-4.11**) and found that the "seed" binding sites were primarily present in the downregulatory miRs but not upregulatory miRs. The seed sites

found in upregulators are also weaker, mostly 6mer instead of 8mer or 7mer. Thus, current miR target prediction algorithms (TargetScan, miRwalk,...), which utilize "seed" as a significant criteria, would predominantly identify downregulatory miRs.

Possible seed sites in OGT and OGT down- and up-regulators

Figure 4.19. Possible seed sites analysis for OGT and OGA.

4.8 POST-TRANSCRIPTIONAL CO-REGULATION OF OGT AND OGA BY MIRNAS

4.8.1 Transcriptional co-regulation of OGT, OGA and O-GlcNAc homeostasis

In previous studies, accumulated evidence indicated that OGT and OGA are highly regulated at both the transcriptional and translational stages. Transcription is regulated by limiting the amount of mRNA produced via transcription factors (activators or repressors) or premature termination of transcription. Post-transcriptional regulation allows for more rapid and dynamic changes in cellular concentrations of encoded proteins. Thus, this regulation is crucial in maintaining cellular homeostasis and executing proper environmental responses. Since O-GlcNAc is significant in controlling the environmental responses of the cell, we would expect a high degree

of transcriptional and post-transcriptional regulation of OGT and OGA. Previous studies have shown that OGT and OGA are highly correlated at the transcriptional level in different human cancers especially pancreatic adenocarcinoma (PDAC)¹⁹. OGT and OGA are known to be linked through transcriptional regulation. Specifically, OGA enhances *ogt* transcription via histone acetyltransferase p300 and C/EBP β cooperative interactions. Furthermore, OGA, C/EBP β and ERK signaling are found to regulate *ogt* expression in PDAC.

4.8.2 Translational co-regulation of OGT and OGA by miRNAs

We utilized the ratiometic fluorescent signals which indicated the level of regulation by miRs for both OGT and OGA to reveal the relationship between their regulatory networks. Interestingly, I found a high level of correlation between OGT and OGA after plotting 3'+5'UTR OGT versus 3'+5'UTR OGA data (**Figure 4.20**). To validate this finding, the dataset for B3GLCT regulation was plotted against OGT and OGA as a control (**Figure 4.21**). Their correlations were not significant.

Figure 4.20. Pearson's correlation of OGT and OGA (data from 3+5'UTR reporters).

Figure 4.21. Pearson's correlation of OGT and OGA with B3GLCT (data from 3'UTR reporters).

In summary, OGT and OGA are highly co-regulated in both a transcriptional and posttranscriptional manner. While the transcriptional mechanism is known via CREB/P300 transcription factors, the exact mechanism behind the co-regulation of OGT and OGA by miRs requires further investigation. Could these miRs target a protein subset to cooperatively repress or enhance the translation of OGT and OGA or impact splicing factors to regulate OGT and OGA productive forms? In addition, the mutual regulation of OGA and OGT could also contribute to the maintenance of O-GlcNAc homeostasis (**Figure 4.22**).

Figure 4.22. Downregulatory and upregulatory miRs co-regulate OGT and OGA to maintain O-GlcNAc homeostasis?

4.9 GENERATING THE RATIOMETRIC FLUORESCENT REPORTER FOR MAPPING MIR-TARGET IN THE CODING REGION FOR ncOGT

Functional miR-binding sites are mainly focused in the 3'UTR regions meanwhile the coding and 5'UTR regions are largely unexplored. Thus, I also generated pFmiR sensors to investigate miR regulation of the OGT coding region (**Figure 4.21**). The reporter was cloned by fusing the nucleocytoplasmic OGT coding sequence with Cerulean sensing module with a known linker

peptide to maintain biological integrity and aid protein folding and stability. Unfortunately, we found a low signal to noise ratio of Cerulean expression over background fluorescence. This may be due to genetic regulatory elements in OGT that may govern the basal expression level of Cerulean. These regulatory elements possess structural and folding features, RNA binding protein partners or other regulatory factors (e.g., endogeneous miRs...) which can influence Cerulean expression. Furthermore, OGT is known to have numerous protein binding partners which could also contribute to the complexity of the question.

Figure 4.21. MiRFluR platform extending to the coding region. (A) Plasmid maps for mapping miRs with OGT coding regulatory regions. (B) Plasmid maps for mapping miRs with full OGT regulatory regions.

4.10 CONCLUSIONS

OGT and OGA expression levels are known to change O-GlcNAc homeostasis and lead to numerous human diseases. However, how OGT and OGA expression levels are regulated is a fundamental question that requires further investigation and study. In the effort to address that question, few previous works demonstrated that OGT and OGA are regulated in both a transcriptional and post-transcriptional manner via CREB/P300 transcription factors and intron retention respectively^{17, 19}. Nonetheless, the comprehensive regulatory network of OGT and OGA by miRs has not yet been explored. Furthermore, our current understanding of miRs is mainly focused on the 3'UTR regulatory element while miR regulation of the 5'UTR is largely neglected. Thus, for our investigation, we utilized genetically encoded ratiometric fluorescent reporters (pFmiR) integrated with our miRFluR platform to comprehensively map miR regulation of OGT and OGA in both the 3'UTR and 5'UTR. The results indicated that OGT and OGA are highly regulated by miRs. For both OGT and OGA, we observed that the down-regulatory miRs are mostly targeting and downregulating via the 3'UTR region, while up-regulatory miRs are binding and upregulating through both regions. However, the 3'UTR is the more dominant domain for miR regulation in general. A selection of miRs hitting OGT and OGA were validated by Western blot. In addition, we also found the post-transcriptional layer of regulation of OGT and OGA by miRs is highly correlated, which could contribute to the maintenance of O-GlcNAc homeostasis. While the transcriptional mechanism is known via CREB/P300 transcription factors, the exact mechanism of how some miRs co-regulate OGT and OGA remains to be elucidated.

4.11 MATERIALS AND EXPERIMENTAL METHODS

4.11.1 Cloning of pFmiR-OGT-3'UTR, pFmiR-OGT-5'UTR, pFmiR-OGT-3+5'UTR, pFmiR-OGA-3'UTR, pFmiR-OGA-5'UTR, pFmiR-OGA-3+5'UTR

OGT 3'UTR, OGT 5'UTR, OGA 3'UTR and OGA 5'UTR was cloned from cDNA using primers:

OGT 3'UTR_fwd: CCACATGATTAAGCCTGTTG OGT 3'UTR_rev: GATCCCCGTATTAAAGGGAAATC OGT 5'UTR_fwd: ATTTCAAGACCGTACTAGGTAG OGT 5'UTR_rev: CTGGAGCTTCTCGAGGGAG OGA 3'UTR_fwd: CTGTGACATTTGTTGACACTG OGA 3'UTR_rev: ACAAGCATTCACTTCAAGTTTTATTTTG OGA 5'UTR_fwd: GGTCTGCAGCGCAAGCGC OGA 5'UTR rev: CCTCCTGCCCCCGGCCGC

under standard PCR conditions. The 3'UTR DNA fragment was cloned using the NheI and BamHI sites downstream of Cerulean in our pFmiR-empty backbone using standard ligation protocols and the 5'UTR DNA fragment was inserted to pFmiR-empty backbone using the EcoRV and HindIII sites upstream of Cerulean. Plasmid maps and sequences for pFmiR-empty, pFmiR-OGT-3'UTR, pFmiR-OGT-5'UTR, pFmiR-OGT-3+5'UTR, pFmiR-OGA-3'UTR, pFmiR-OGA-5'UTR, pFmiR-OGA-3+5'UTR can be found in **Plasmid maps and Sequences**.

4.11.2 FluoRmiR High-throughput Assay.

The Human miRNA Mimic library version 21 (miRDIAN, Horizon Discovery) was resuspended in nuclease-free water and aliquoted into black 384-well, clear optical bottom tissue-culture treated plates (Nunc). Each plate contained 3 replicates of every miRNA (1.8 pmol/well).

To each well in the plate was added 25 ng of pMIR-B3GLCT plasmid in 5 µl Opti-MEM (Gibco) and 0.11 µl lipofectamine 2000 (Invitrogen) in 5 µl Opti-MEM (Gibco). The solution was allowed to incubate at room temperature for 25 min. Then, *HEK293T* cells (25 µl per well, 400

cells/ µl in non-phenol red Dulbecco's Modified Eagle Medium (DMEM) with FBS 10%) were added to the plate. Plates were then incubated at 37°C, 5% CO₂. After 48 hours, the fluorescence signals of Cerulean (excitation: 433 nm; emission: 475 nm) and mCherry (excitation: 587 nm; emission: 610 nm) were measured using the bottom read option in a FlexStation 3 Multi-mode microplate reader (Molecular Devices).

4.11.3 Data Processing

We calculated the ratio Cerulean fluorescence (Cer) over mCherry fluorescence (Cer/mCh) for each well in each plate. For each miR, triplicate values were averaged and the standard deviation (S.D.) obtained. We calculated a % error for each miR as $100 \times S.D./mean.$ As a quality control measure, we removed any plates or miRs that had high errors in the measurement (median error +2 S.D. across all plates). The Cer/mCh ratio for each miR was then normalized to the Cer/mCh ratio for the NTC within that plate and error was propagated. Data from all plates was then combined and Z-scores were calculated. A Z-score of +/-1.960, corresponding to a 2-tailed p-value of 0.05, was used as a threshold for significance. In addition, we set a second threshold of +/- 20% impact by the miR, in line with previous work $^{42, 43}$.

4.11.4 Western Blot

Mammalian cells were seeded in six-well plates (80,000 cells per well), cultured for 24 h, and transfected with miRNA mimics (50 nM, miRIDIAN, Horizon Discovery) using Lipofectamine 2000 (Life Technologies). Cells were washed and harvested 48 hours post-transfection.

Cells were then lysed in cold RIPA buffer supplemented with protease inhibitors and 50 µg of

protein were run on SDS-PAGE. Standard Western Blot analysis using α -OGT (abcam antibody, 1:1000) or α -OGA (Sigma) and then, α -rabbit-HRP (2°, 1:5,000, Abcam)] was performed ⁴⁴. Blots were developed using Clarity and Clarity Max Western ECL substrate (Bio-Rad).

Appendix 4A. OGT Western Blot

Appendix 4A. OGT Western blot analysis and accompanying Ponceau S stain for the 3 biological replicates in *MDA-MB-231*.

Appendix 4B-D. OGA Western Blot

Appendix 4B. OGA Western blot analysis and accompanying Ponceau S stain for the 3 biological replicates in *HeLa*.

Appendix 4C. OGA Western blot analysis and accompanying Ponceau S stain for the 3 biological replicates in *HeLa*.

Appendix 4D. OGA Western blot analysis and accompanying Ponceau S stain for the 3 biological

replicates in MDA-MB-231.

Appendix 4E. 5 Plasmid maps and sequences

List of features:

mCherry (2539..3249) CMV promoter 1 (236..852) CMV promoter 2 (1916..2532) Cerulean (918..1637) polyA_1 (1688..1914) polyA_2 (3272..3498)

Sequence 1_pFmiR-empty:

GACGGATCGGGAGATCTCCCGATCCCCTATGGTCGACTCTCAGTACAATCTGCTCTGATGCCGCATAGTTAAGCCAGTATCTGCTC ${\tt cctgcttgtgtgtggaggtcgctgagtagtgcgccgagcaaaatttaagctacaacaaggcaaggcttgaccgacaattgcatgabaccgaccgacaattgcatgabaccgaccgacgabaccgaccgacaattgcatgabaccgaccgacgabaccgacaattgcatgab$ AGAATCTGCTTAGGGTTAGGCGTTTTGCGCTGCTTCGCGATGTACGGGCCAGATATACGCGTTGACATTGATTATTGACTAGTTAT TAATAGTAATCAATTACGGGGTCATTAGTTCATAGCCCATATATGGAGTTCCGCGTTACATAACTTACGGTAAATGGCCCGCCTGG CTGACCGCCCAACGACCCCCGCCCATTGACGTCAATAATGACGTATGTTCCCATAGTAACGCCAATAGGGACTTTCCATTGACGTC AATGGGTGGACTATTTACGGTAAACTGCCCACTTGGCAGTACATCAAGTGTATCATATGCCAAGTACGCCCCCTATTGACGTCAAT ${\tt GACGGTAAATGGCCCGCCTGGCATTATGCCCAGTACATGACCTTATGGGACTTTCCTACTTGGCAGTACATCTACGTATTAGTCAT}$ ${\tt CGCTATTACCATGGTGATGCGGTTTTGGCAGTACATCAATGGGCGTGGATAGCGGTTTGACTCACGGGGATTTCCAAGTCTCCACC}$ CCATTGACGTCAATGGGAGTTTGTTTTGGCACCAAAATCAACGGGACTTTCCAAAATGTCGTAACAACTCCGCCCCATTGACGCAA ATGGGCGGTAGGCGTGTACGGTGGGAGGTCTATATAAGCAGAGCTCTCTGGCTAACTAGAGAACCCACTGCTTACTGGCTTATCG AAATTAATACGACTCACTATAGGGAGACCCAAGCTTGGTACCGAGCTCGGATCGATATCATGGTGAGCAAGGGCGAGGAGCTGTT CACCGGGGTGGTGCCCATCCTGGTCGAGCTGGACGGCGACGTAAACGGCCACAAGTTCAGCGTGTCCGGCGAGGGCGAGGGCGA TGCCACCTACGGCAAGCTGACCCTGAAGTTCATCTGCACCACCGGCAAGCTGCCCGTGCCCTGGCCCACCCTCGTGACCACCCTG ACCTGGGGCGTGCAGTGCTTCGCCCGCTACCCCGACCACATGAAGCAGCACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACG ACCGCATCGAGCTGAAGGGCATCGACTTCAAGGAGGACGGCAACATCCTGGGGCACAAGCTGGAGTACAACGCCATCAGCGACA ACGTCTATATCACCGCCGACAAGCAGAAGAACGGCATCAAGGCCAACTTCAAGATCCGCCACAACATCGAGGACGGCAGCGTGC AGCTCGCCGACCACTACCAGCAGAACACCCCCATCGGCGACGGCCCCGTGCTGCCCGACAACCACTACCTGAGCACCCAGTC TGCCAGCCATCTGTTGTTGCCCCTCCCCGTGCCTTCCTTGACCCTGGAAGGTGCCACTCCCACTGTCCTTTCCTAATAAAATGAG ${\tt GACAATAGCAGGCATGCTGGGGATGCGGTGGGCTCTATGGACATTGATTATTGACTAGTTATTAATAGTAATCAATTACGGGGTC}$ ATTAGTTCATAGCCCATATATGGAGTTCCGCGTTACATAACTTACGGTAAATGGCCCGCCTGGCTGACCGCCCAACGACCCCCGCC ${\tt CATTGACGTCAATAATGACGTATGTTCCCATAGTAACGCCAATAGGGACTTTCCATTGACGTCAATGGGTGGACTATTTACGGTAATGTCCCATAGTAACGCCAATAGGGACTTTCCCATTGACGTCAATGGGTGGACTATTTACGGTAATGTCCCATAGTAACGCCAATAGGGACTTTCCCATTGACGTCAATGGGTGGACTATTTACGGTAATGTCCCATAGTAACGCCAATAGGGACTTTCCCATTGACGTCAATGGGTGGACTATTTACGGTAATGTCCATTGACGTCAATGGTGGACTATTTACGGTAATGTCCATTGACGTCAATGGGTGGACTATTTACGGTAATGTCCATTGACGTCAATGGGTGGACTATTTACGGTAATGTCCATTGACGTCAATGGGTGGACTATTTACGGTAATGTCAATGGGTGGACTATTTACGGTAATGTCAATGGGTGGACTATTTACGGTAATGTCATTGACGTCAATGGGTGGACTATTTACGGTAATGTCATTGACGTCAATGGGTGGACTATTTACGGTAATGTCATTGACGTCAATGGGTGGACTATTTACGGTAATGTCATTGACGTCAATGGGTGGACTATTTACGGTAATGTCATTGACGTCAATGGTGGACTATTTACGGTAATGTCATGTCATTGACGTCAATGGGTGGACTATTTTACGGTAATGTCATTGACGTCAATGTCATGTCATGTCATTGACGTCAATGTCATGTCATGTCATTGACGTCAATGTCATGTCATGTCATTGACGTCAATGTCAT$ ACTGCCCACTTGGCAGTACATCAAGTGTATCATATGCCAAGTACGCCCCCTATTGACGTCAATGACGGTAAATGGCCCGCCTGGC ATTATGCCCAGTACATGACCTTATGGGACTTTCCTACTTGGCAGTACATCTACGTATTAGTCATCGCTATTACCATGGTGATGCGGT TTTGGCAGTACATCAATGGGCGTGGATAGCGGTTTGACTCACGGGGATTTCCAAGTCTCCACCCCATTGACGTCAATGGGAGTTTG TTTTGGCACCAAAATCAACGGGACTTTCCAAAATGTCGTAACAACTCCGCCCCATTGACGCAAATGGGCGGTAGGCGTGTACGGT GATAACATGGCCATCATCAAGGAGTTCATGCGCTTCAAGGTGCACATGGAGGGCTCCGTGAACGGCCACGAGTTCGAGATCGAGG GCGAGGGCGAGGGCCGCCCTACGAGGGCACCCAGACCGCCAAGCTGAAGGTGACCAAGGGTGGCCCCCTGCCCTTCGCCTGGG ACATCCTGTCCCCTCAGTTCATGTACGGCTCCAAGGCCTACGTGAAGCACCCCGCCGACATCCCCGACTACTTGAAGCTGTCCTTC

GGCGAGTTCATCTACAAGGTGAAGCTGCGCGGCACCAACTTCCCCTCCGACGGCCCCGTAATGCAGAAGAAGAACATGGGCTGG GAGGCCTCCTCCGAGCGGATGTACCCCGAGGACGGCGCCCTGAAGGGCGAGATCAAGCAGAGGCTGAAGCTGAAGGACGGCGGC ${\sf CACTACGACGCTGAGGTCAAGACCACCTACAAGGCCAAGAAGCCCGTGCAGCTGCCCGGCGCCTACAACGTCAACATCAAGTTG}$ GACATCACCTCCCACAACGAGGACTACACCATCGTGGAACAGTACGAACGCGCCGAGGGCCGCCACTCCACCGGCGGCATGGAC GCCTTCCTTGACCCTGGAAGGTGCCACTCCCACTGTCCTTTCCTAATAAAATGAGGAAATTGCATCGCATTGTCTGAGTAGGTGTC GCTCTATGGCTTCTGAGGCGGAAAGAACCAGCTGGGGCTCGAGTGCATTCTAGTTGTGGTTTGTCCAAACTCATCAATGTATCTTA TCATGTCTGTATACCGTCGACCTCTAGCTAGAGCTTGGCGTAATCATGGTCATAGCTGTTTCCTGTGTGAAATTGTTATCCGCTCAC GCGGTAATACGGTTATCCACAGAATCAGGGGGATAACGCAGGAAAGAACATGTGAGCAAAAGGCCAGCAAAAGGCCAGGAACCG TAAAAAGGCCGCGTTGCTGGCGTTTTTCCATAGGCTCCGCCCCCTGACGAGCATCACAAAAATCGACGCTCAAGTCAGAGGTGG ${\tt CGGATACCTGTCCGCCTTTCTCCGGGAAGCGTGGCGCTTTCTCAATGCTCACGCTGTAGGTATCTCAGTTCGGTGTAGGTCGT}$ TCGCTCCAAGCTGGGCTGTGTGCACGAACCCCCCGTTCAGCCCGACCGCTGCGCCCTATCCGGTAACTATCGTCTTGAGTCCAACC CGGTAAGACACGACTTATCGCCACTGGCAGCAGCCACTGGTAACAGGATTAGCAGAGCGAGGTATGTAGGCGGTGCTACAGAGT TCTTGAAGTGGTGGCCTAACTACGGCTACACTAGAAGGACAGTATTTGGTATCTGCGCTCTGCTGAAGCCAGTTACCTTCGGAAAA AAAAAGGATCTCAAGAAGATCCTTTGATCTTTTCTACGGGGTCTGACGCTCAGTGGAACGAAAACTCACGTTAAGGGATTTTGGT CCGTCGTGTAGATAACTACGATACGGGAGGGCTTACCATCTGGCCCCAGTGCTGCAATGATACCGCGAGACCCACGCTCACCGGC ATTAATTGTTGCCGGGAAGCTAGAGTAAGTAGTTCGCCAGTTAATAGTTTGCGCAACGTTGTTGCCATTGCTACAGGCATCGTGGT GTCACGCTCGTCGTTTGGTATGGCTTCATTCAGCTCCGGTTCCCAACGATCAAGGCGAGTTACATGATCCCCCCATGTTGTGCAAAA AATTCTCTTACTGTCATGCCATCCGTAAGATGCTTTTCTGTGACTGGTGAGTACTCAACCAAGTCATTCTGAGAATAGTGTATGCG GCGACCGAGTTGCTCTTGCCCGGCGTCAATACGGGATAATACCGCGCCACATAGCAGAACTTTAAAAGTGCTCATCATTGGAAAA CGTTCTTCGGGGGCGAAAACTCTCAAGGATCTTACCGCTGTTGAGATCCAGTTCGATGTAACCCACTCGTGCACCCAACTGATCTTC AGCATCTTTTACTTTCACCAGCGTTTCTGGGTGAGCAAAAACAGGAAGGCAAAAATGCCGCAAAAAAGGGAATAAGGGCGACACG GAAATGTTGAATACTCATACTCTTTCCATATTTCAATATTGAAGCATTTATCAGGGTTATTGTCTCATGAGCGGATACATATTTGA ATGTATTTAGAAAAATAAACAAATAGGGGTTCCGCGCACATTTCCCCGAAAAGTGCCACCTGACGTC

With the multiple cloning sites

Cerulean NheI

BsiWI BamHI

GACTGTG....

Sequence 1. Plasmid Map of pFmiR-empty and sequence.

Agel

OGT 3'UTR:

TCTGGGGGAAAGGGAACTAGATAACATACTTCTTACTTGTCTGTACAGTACCTTGTTGCAGATGGGTGATATAAATGGTAATAGA ATAGCACAGCCAGACTTGCTTCCTGCATGGTAGGGAGAGACACAAAAGATGGGAAACTGCTTTTCCACAAGGAATCTCCGTAGAA TTTTGCGGCGACCAGATGGTGCATAGGTCTGGAAGGTCTGATCTCCCTTGGTCTTCCATGGGATGGTTAGTGTGGAGGGGAGATAT AATGTTTGGGTATCAGGTATTTTTATTCATGTGAAGTGTATATGATTCTCTTGAGATAAGGTTTTAAGCTAAAATGTTACTCCCTGTTTTAGTTTCTGAACTCTGACAGATTGACAGGGACTTTGCTGGTGTAGTCTTTTTATAGGTTTTATAAACCACTTGAGCCTATATCAGT TTCCTTTTCTTCCCTGACCCCCATACCCTCACCCTTAAAATTCTCCTGTAACTCAACTAACAAATCAAGCCTGATTCAAAAACATCC TAGGGTGTTTTAAACACACCATCTGGTGCCAAATGAAGATTTTTAGGAGTGATTACTAATTATCAAGGGCACAGTTGTGGTACTGT CATTGATAATAATAATATGGTTTTTTTTTTTTTTTTTTCCTAATTTTGACCTGTTTCACCAGTGTTTTACCCTTGACTGCCCCTTCTATGCTGCTTC TCAGCAGAAATGAAATCCCAGGTAAGTATAAGTATTCAAGTATTTGATCAGTAAGTCACAGTTATCTCCAGTGCATTAAATAACCT ${\sf TCATCAAGAAATAGGTTATAGGTAAAATCTCTGAAGGATCATCTATGTATTCAAGTAATTATTTTTTAGATAATAACTGTCTTCTG$ GACTTGGTCTTGAAGTCTGTACAGATTCAGCCTCAGTAGTAGCGAACTGCACTGCTGTTTGGTTTGGAGTACAAATTAGACTTATA GTCCTCCTGGAACTTGAGTTATTAAAATCATAGGAATAAAATTATGGGATCTCAACAAAGGGTCGAGGGTTTGAGGCTTAAACAA GCCAACATATGAATATATGTTTTGTCTCGCTATACTGCACTTACGCTATCCAGTTGCAGGTAATTTTTTGTCTGCTAGTAGTGTTCT AGATTATGTCTTTCCAAAGCGCTGAGGCTGTGCACCTATTCTGTAGTTGCAGCTGATGCCTGAATGTATCCTAGCTGACAAATTAT TGATTAATAAGAACTTGAATTTCTGGAAGATTCTTACTGTTAACCAAATTTTGAGCAAGGAGTCTCAAAGGTAATTCTGAACCAGA GATTGAAATATCAGTTAAAGGTTGCCAGCATGGTTGCAGATAAACTGATGTTTGAAATTCGCTGAAATACTTAATGTGGAAATAGG ATAATATACTTCCAATGCCCTCAAGGCTGTGACCTTACAGCCATTTTACATAGCACATCATTCCTCCTATAGGGATGAACTTTTTCC ${\tt TGGCACGAAAAGTAGCCGCTCTGGTTGAAGCTTTGCTTATTGTAACAGGCTTTTATTTCCAGGTAATATGTCTTGGAAGACTTAAT$

OGT 5'UTR:

ATTTCAAGACCGTACTAGGTAGATGGTCAATTAGAGTTCCCAGGGTTTGAAGCCTGTAACTGCTGCCGCCGCCGCTCAAGCCCTCCAGA GCATTGCTACGGCTGCCCTTGTACTACTACCTCCAAATACGTTCTTGCTGGTAGTGGCGGCAGCAGGACCAATTACCTCTTTT TGCTCTCCCTCGAGAAGCTCCAG

OGT 5'UTR:

ATTTCAAGACCGTACTAGGTAGATGGTCAATTAGAGTTCCCAGGGTTTGAAGCCTGTAACTGCTGCCGCCGCCGCTCAAGCCCTCCAGA GCATTGCTACGGCTGCCGCTGTACTACTACTACCTCCAAATACGTTCTTGCTGGTAGTGGCGGCAGCAGGACCAATTACCTCTTTT TGCTCTCCCTCGAGAAGCTCCAG

OGT 3'UTR:

TCTGGGGGGAAAGGGAACTAGATAACATACTTCTTACTTGTCTGTACAGTACCTTGTTGCAGATGGGTGATATAATGGTAATAGA ATAGCACAGCCAGACTTGCTTCCTGCATGGTAGGGAGAGACACAAAAGATGGGAAACTGCTTTTCCACAAGGAATCTCCGTAGAA TTTTGCGGCGACCAGATGGTGCATAGGTCTGGAAGGTCTGATCTCCCTTGGTCTTCCATGGGATGGTTAGTGTGGAGGGGAGATAT AATGTTTGGGTATCTTTATTCATGTGAAGTGTATATGATTCTCTTGAGATAAGGTTTTAAGCTAAAATGTTACTCCCTGTT TTAGTTTCTGAACTCTGACAGATTGACAGGGACTTTGCTGGTGTAGTCTTTTTATAGGTTTTATAAACCACTTGAGCCTATATCAGT TTCCTTTTCTTCCCTGACCCCCATACCCTCACCCTTAAAATTCTCCCTGTAACTCAACAAAATCAAGCCTGATTCAAAACATCC TAGGGTGTTTTAAACACACCATCTGGTGCCAAATGAAGATTTTTAGGAGTGATTACTAATTATCAAGGGCACAGTTGTGGTACTGT CATTGATAATAATAATAATATTTTTTTTTTTTTTTTCCTAATTTTGACCTGTTTTCACCAGTGTTTTACCCTTGACTGCCCCCTTCTATGCTGCTTCC TCAGCAGAAATGAAATCCCAGGTAAGTATAAGTATTCAAGTATTTGATCAGTAAGTCACAGTTATCTCCAGTGCATTAAATAACCT ${\sf TCATCAAGAAATAGGTTATAGGTAAAATCTCTGAAGGATCATCTATGTATTCAAGTAATTATTTTTTAGATAATAACTGTCTTCTG$ GACTTGGTCTTGAAGTCTGTACAGATTCAGCCTCAGTAGTAGCGAACTGCACTGCTGTTTGGTTTGGAAGTACAAATTAGACTTATA GTCCTCCTGGAACTTGAGTTATTAAAATCATAGGAATAAAATTATGGGATCTCAACAAAGGGTCGAGGGTTTGAGGCTTAAACAA AGATTATGTCTTTCCAAAGCGCTGAGGCTGTGCACCTATTCTGTAGTTGCAGCTGATGCCTGAATGTATCCTAGCTGACAAATTAT TGATTAATAAGAACTTGAATTTCTGGAAGATTCTTACTGTTAACCAAATTTTGAGCAAGGAGTCTCAAAGGTAATTCTGAACCAGA GATTGAAATATCAGTTAAAGGTTGCCAGCATGGTTGCAGATAAACTGATGTTTGAAATTCGCTGAAATACTTAATGTGGAAATAGG ATAATATACTTCCAATGCCCTCAAGGCTGTGACCTTACAGCCATTTTACATAGCACATCATTCCTCCTATAGGGATGAACTTTTTCC TGGCACGAAAAGTAGCCGCTCTGGTTGAAGCTTTGCTTATTGTAACAGGCTTTTATTTCCAGGTAATATGTCTTGGAAGACTTAAT

OGA 3'UTR:

GAATGGTAACAAATCAGCCAATTGGATTCGAAACAAAGAAGAACAATGTAAAAACTCACCCATCACACTTTGAGACTACTCACTGGT TGGAAGAATATAGTATTGCAGCAAATCCTGTATGAAAGAGAGATGTGGGCTTCCTTTTTGAGTCTTGTGTTAGGTGCTGAGACCTT TTACATGGGCTTATACAGGGAGAGAGTCTTCAATAAATGTAGTCAGCACTATTTTCTGCATCCAGTGTGGTTGCGTTTCTCACCTG AGAGTAATCAAGATAACATCTGTCATCTTCCTTGGTTTATTGAGTGAAATGCCTCTCAGTCTTAGGGGGACATGGCAGAGATGAAA TTTCAATTTGGGGCAGTTATTCTGCTTTTTGTAAAGCCGTGGCCAATTGTCTCCTGTAATGACTGTTGGTTCAGGCATGTTGTACTT TGTAGGGACAAATGTGCATTTGTTGTGGCAAAAGCCTACAATTGACAAACTTGTAAATTTCTTTGTATATAAACTAGCTGTAACC TGACTATCCTTTGTGTTTACTGTTTTTGTAAATTTTTTTCCTCTATAAATGAAAGGGTGTTGGTTCAGAATGGCACTTTGAATAATG TAAACCAGTGAAAAGTGGATTTTCTTTACTTTTGTCTTTGGGGTTTGGGGTTGTTTTTGTCTTTTTGAAGTTTTATTATTTTTAAAGT ${\tt GCCTCCCACCTAGGCGTAGGCCATGACCATTTGGGGTACGAGAGCCTAATTTTGTAGGACTTAATCTGTTGAAAAGTGCAGTTACT}$ TCTGGAAATTAACCTCAATATTAGGTCAGCATGTGAAATGTTGGATTTGACATGTCAGGTAGGGTTCAGGGACTGATTGGTCCCAT TTGCCCTCAGGTCAGTTGTTTAATCTCAAGACCTGTTACTACTGATTTTATTAAATCAGAGTCTTTAATTCTTGCATGTTTGTATCTA ATTTCTGAATGAATGAGCACACTTTAACCAGTTATTTACAGTTACCTTTTCCTTTAACCGGATTGTGAAAGCTTCATGTATTTTAA GGTAAAGAAAAGAAACTTAAGTTTTCTTTCACAGAACTCCACCACTGTGGGGCTTTGAGAGAGCCCTAAAGCATTGTACCTAGTG GTACCTAGTGACTTCCAACCAAAGCCTTTGAGTATGCACTAAATAGGTGAGAAGAAGGAGAGAGGAGGAGGAGAGGTTTTTAGGTTAGAAACCT TTAACCGATAGAAGGATATGGTATGTTGTAAAGCTGGAACCAAGTTTGCATTTTTGAGGGCCTTGAGATGAAGGGAAGACTCTTAC GTTAACCTCATGGAATTCAGGATTTTTTAGCAAGTTTGCTTTTGGTTTTATCTTGGCTTTTAGTAATCATGTTGGCTGGTCTGGTCAC AGGTGACTGTGAAACAGATGCCCTGGTCTTGCTTTCATCACTCTAGGATCATGAAGTGCTATGCTATTTCCTGGTTATGAATATTA AGGTTGGAATTACATTTTTATTGATTGTTTGGATCAGAGCTCAGTTCCTGTAGAAAACGAACTGTAAAAGACCATGCAAGAGGCA AAATAAAACTTGAAGTGAATGCTTGT

OGA 5'UTR:

OGA 3'UTR:

GAATGGTAACAAATCAGCCAATTGGATTCGAAACAAAGAAGAACAATGTAAAAACTCACCCATCACACTTTGAGACTACTCACTGGT TGGAAGAATATAGTATTGCAGCAAATCCTGTATGAAAGAGAGATGTGGGCTTCCTTTTTGAGTCTTGTGTTAGGTGCTGAGACCTT TTACATGGGCTTATACAGGGAGAGAGTCTTCAATAAATGTAGTCAGCACTATTTTCTGCATCCAGTGTGGTTGCGTTTCTCACCTG AGAGTAATCAAGATAACATCTGTCATCTTCCTTGGTTTATTGAGTGAAATGCCTCTCAGTCTTAGGGGGACATGGCAGAGATGAAA TTTCAATTTGGGGCAGTTATTCTGCTTTTTGTAAAGCCGTGGCCAATTGTCTCCTGTAATGACTGTTGGTTCAGGCATGTTGTACTT TGTAGGGACAAATGTGCATTTGTTTGTGGCAAAAGCCTACAATTGACAAACTTGTAAATTTCTTTGTATATAAACTAGCTGTAACC TAAACCAGTGAAAAGTGGATTTTCTTTACTTTTGTCTTTGGGGTTTGGGGGTTGTTTTTGTTCTTTTTGAAGTTTTATTATTTTTAAAGT GCCTCCCACCTAGGCGTAGGCCATGACCATTTGGGGGTACGAGAGCCTAATTTTGTAGGACTTAATCTGTTGAAAAGTGCAGTTACTTTGCCCTCAGGTCAGTTGTTTAATCTCAAGACCTGTTACTACTGATTTTATTAAATCAGAGTCTTTAATTCTTGCATGTTTGTATCTA ATTTCTGAATGAATGAGCACACTTTAACCAGTTATTTACAGTTACCTTTTTCCTTTAACCGGATTGTGAAAGCTTCATGTATTTTAA GGTAAAGAAAAGAAAACTTAAGTTTTCTTTCACAGAACTCCACCATTGTGGGCTTTGAGAGAGCCCTAAAGCATTGTACCTAGTG GTACCTAGTGACTTCCAACCAAAGCCTTTGAGTATGCACTAAATAGGTGAGAAGAAAGGAGAGAAGGATTTTTAGGTTAGAAACCT TTAACCGATAGAAGGATATGGTATGTTGTAAAGCTGGAACCAAGTTTGCATTTTTGAGGGCCTTGAGATGAAGGGAAGACTCTTAC GTTAACCTCATGGAATTCAGGATTTTTTAGCAAGTTTGCTTTTGGTTTTATCTTGGCTTTTAGTAATCATGTTGGCTGGTCTGGTCAC AGGTGACTGTGAAACAGATGCCCTGGTCTTGCTTTCATCACTCTAGGATCATGAAGTGCTATGCTATTTCCTGGTTATGAATATTA AGGTTGGAATTACATTTTTATTGATTGTTTGGATCAGAGCTCAGTTCCTGTAGAAAACGAACTGTAAAAGACCATGCAAGAGGCA AAATAAAACTTGAAGTGAATGCTTGT

OGA 5'UTR:

AGGGGCGCACACTTGGAGCTGAAGCCCTCTCCAGGGCTCCGGGCCGGTGCCCCAACGGACAGAGGTCGAGGAGGACCCGCAGAG GTGGCAGCGGCCGGGGGCAGGAGG

	Rela	tive expression of			
	Replicate 1	Replicate 2	Replicate 3	Mean	Standard deviation
NTC	1	1	1	1	0
miR-27a	0.783167898	0.818383815	0.812598138	0.804717	0.018884623
miR-520d-5p	0.424236675	0.318776704	0.566535026	0.436516	0.124334771
miR-524-5p	0.354872531	0.339366198	0.460641085	0.38496	0.065998777
miR-196a-3p	2.735257616	2.54479499	1.605790372	2.295281	0.604662708
miR-148a-3p	1.377535808	2.005785306	1.237375997	1.540232	0.40922591
miR-140	0.819426922	0.850335368	0.827974609	0.832579	0.01596036
miR-3655	1.514178789	1.0528534	0.629836005	1.065623	0.442309656
miR-3127	0.573709387	0.41153999	0.797426084	0.594225	0.193759366

Table 4.1 Quantification of OGA with 3 replicates associated with Figure 4.15

Fable 4.2 Quantification	of OGA	associated	with	Figure 4.16
---------------------------------	--------	------------	------	-------------

	Relative expre				
	Replicate 1	Replicate 2	Replicate 3	Mean	Standard deviation
NTC	1	1	1	1	0
let-7a	0.289593	0.511534	0.335163	0.378763	0.117219
miR-95	0.70804	0.624814	0.537807	0.623554	0.085124
miR-200a	2.647619	1.513154	1.774619	1.978464	0.594068
miR-891b	2.756701	1.586129	1.986308	2.109713	0.594963

miRNA	Ratio	dG_hybrid	LogitProb	TargetMatch	MirMatch
hsa-miR-4729	0.74	-16.8	0.897	GC UCCU AUAAAUGA	CG AGGG UAUUUACU
hsa-miR-3682-5p	0.52	-12.9	0.8917	AGAAGUA	UCUUCAU
hsa-miR-548c-3p	0.76	-18.3	0.8754	CAAAAGUGAU UG AGAUUUUU	GUUUUCAUUA AC UCUAAAAA
hsa-miR-4772-3p	0.66	-21	0.8667	UCUG CAG GUUGCAG	AGAC GUC CAACGUC
hsa-miR-4705	0.77	-20.5	0.8639	UUACCGG UGAUUGA	AAUGGUU ACUAACU
hsa-miR-202-5p	0.61	-15.6	0.8591	GAGU CAUAGGAA	UUCA GUAUCCUU
hsa-miR-3164	0.71	-17	0.8502	UAUUU UC AAGUCACA	GUAAA GG UUCAGUGU
hsa-miR-599	0.78	-19.9	0.8443	UGGUA GA GACACAA	ACUAU UU CUGUGUU
hsa-miR-4712-5p	0.46	-18.1	0.8442	GUACUGGA	CAUGACCU
hsa-miR-205-3p	0.53	-22.6	0.8433	GA UUUG UUCGCUGAAAU	CU AAGU AGGUGACUUUA
hsa-miR-5003-3p	0.69	-19.5	0.8425	UCCUGGCA GAAAAGUA	GGGGUUGU CUUUUCAU
hsa-miR-483-3p	0.71	-19.1	0.8374	AAGAU AGGAGUGA	UUCUG UCCUCACU
hsa-miR-4476	0.62	-26.4	0.8354	GU GUCCU GUUCUUCCU	CG CAGGG UAGGAAGGA
hsa-miR-4696	0.61	-20.6	0.832	AGAUG UUGUCUUGCG	UCUAC GGCAGAACGU
hsa-miR-3155a	0.8	-24.1	0.8262	GGUUU CCACU GAGCCU	UCAAG GGUGA CUCGGA
hsa-miR-1264	0.66	-18.6	0.825	CAGGU G CUUGG AAGACUU	GUCCA C GAGUU UUCUGAA
hsa-miR-3161	0.69	-19.1	0.8169	UCU G CUCUG UUUAUCA	AGA C GAGAC GAAUAGU
hsa-miR-93-3p	0.58	-19.1	0.8161	AAGUG GU UCAGCAG	UUCAC CG AGUCGUC
hsa-miR-3064-5p	0.74	-23.5	0.8149	GUA AU GC ACAGCCAGA	CGU UG UG UGUCGGUCU
hsa-miR-767-5p	0.77	-29.4	0.8128	UGC GGCGACC AUGGUGCA	ACG CUGUUGG UACCACGU
hsa-miR-4422	0.65	-14	0.8118	GUACU C UGCUUU	CAUGA G ACGAAA
hsa-miR-551a	0.74	-22.1	0.8111	UGGGA UCAA GGGUCG	ACCUU GGUU CCCAGC
hsa-miR-770-5p	0.57	-24.5	0.8008	UGG UCUU AUAU GGUACUGGA	ACC GGGA UGUG CCAUGACCU
hsa-miR-4772-3p	0.66	-24.1	0.7988	UUGA UCAG GCA GGUUGCAG	GACU AGUC CGU UCAACGUC
hsa-miR-770-5p	0.57	-18.7	0.7977	GAUAU UACUGGA	CUGUG AUGACCU
hsa-miR-5571-5p	0.78	-14.7	0.7959	AG CU C GAGAAUU	UC GA G CUCUUAA
hsa-miR-770-5p	0.57	-26.2	0.7919	GGC A UGUGGUACUG	CCG U GCACCAUGAC
hsa-miR-3941	0.56	-21.6	0.7904	UAUG UCC AGU UGUGUGUAA	AUAC AGG UCA ACACACAUU
hsa-miR-5579-3p	0.67	-19.8	0.7901	GAU GGU UUUAAGCUAA	CUA CCA GAAUUCGAUU
hsa-miR-624-3p	0.67	-20.4	0.7889	CAGUACCUUGU	GUUAUGGAACA
hsa-miR-7-5p	0.45	-22.1	0.7858	GAUC UUGGUCUUCCA	UUAG GAUCAGAAGGU
hsa-miR-4712-5p	0.46	-21.2	0.7849	GAU AGAGAU UACUGGA	UUA UCUCUG AUGACCU
hsa-miR-466	0.64	-19.1	0.7844	GUG GUGUGUGUA	CGC CAUACACAU
hsa-miR-5195-3p	0.57	-22.8	0.7817	UCU UUAGAGA ACUGGA	GGG AGUCUCU UGACCU
hsa-miR-520a-5p	0.71	-19.1	0.7815	AAG ACUU UUUCUGGA	UUC UGAA GGAGACCU
hsa-miR-520a-5p	0.71	-21.4	0.7707	AAAGUA CC CUCUGG	UUUCAU GG GAGACC

Table 4.3. Analysis of downregulatory miR binding seed sites in OGT 3'UTR regions

hsa-miR-542-3p	0.8	-22.3	0.7669	CAGUUGU G CUGUCAU	GUCAAUA U GACAGUG
hsa-miR-15b-3p	0.49	-11.9	0.7653	GGAU UGAUUC	UUUA ACUAAG
hsa-miR-502-3p	0.52	-25.9	0.7643	GAAUUUU GC CCA GGUGCAU	CUUAGGA CG GGU CCACGUA
hsa-miR-320b	0.76	-23.6	0.7639	GCC CUCU G AGCUUU	CGG GAGA U UCGAAA
hsa-miR-501-3p	0.61	-24.7	0.7596	AGAAUUUU GC CC GGUGCAU	UCUUAGGA CG GG CCACGUA
hsa-miR-1271-5p	0.61	-25.9	0.7544	GGGUGUUU CU GGUGCCAA	CUCACGAA GA CCACGGUU
hsa-miR-548c-3n	0.76	-12.4	0 748		GU LICAU AC LICUAAAAA
hsa-miR-4643	0.69	-20.1	0.747	GGUAUUU UCAUGUG	
hsa-miR-4661-3n	0.05	-17.1	0 7465		
has will 452 2m	0.70	-1/.1	0.7405	CUUACU UCU	GAAUGA AGA
hsa-mik-432-3p	0.79	-20.2	0.7437	CUCUCUAGAC	
hsa-let-/g-3p	0.42	-19.5	0.7436	GUCUGUACAG	
hsa-miR-1264	0.66	-19.3	0.7398	GG GU CAAAU AGACUU	
hsa-miR-1208	0.61	-15.4	0.7352	CCU UU AACAGUG	GGA AG UUGUCAC
hsa-miR-96-5p	0.62	-21.8	0.7349	GUGU UGGUGCCAAA	CACG AUCACGGUUU
hsa-miR-15b-3p	0.49	-14.9	0.7334	AGU GUA AUGAUUC	UCG CGU UACUAAG
hsa-miR-320c	0.77	-21.1	0.7214	GCC CUCU G AGCUUU	UGG GAGA U UCGAAA
hsa-miR-548u	0.74	-19.2	0.7207	GC G UGUAGUCUUU	CG C ACGUCAGAAA
hsa-miR-5571-5p	0.78	-16	0.7185	GGAG CUC G AGAAUU	CCUC GAG C UCUUAA
hsa-miR-1304-5p	0.7	-21.9	0.7164	UAC CU CUG AGCCUCAA	GUG GA GAC UCGGAGUU
hsa-miR-200a-5p	0.58	-19.2	0.7154	UCC AGUG GU UG GUAAGAU	AGG UCGU CA GC CAUUCUA
hsa-miR-544a	0.55	-13.9	0.7153	CUU CUA GCAGAA	GAA GAU CGUCUU
hsa-miR-548at-3p	0.8	-12.2	0.7134	C GAG UA GGUUUU	G UUC AU CCAAAA
hsa-miR-3118	0.76	-17.4	0.7129	AG AUUU UCA AGUCACA	UC UAAA AGU UCAGUGU
hsa-miR-1208	0.61	-21.4	0.7107	UGAACAGUG	AGGC GG ACAG ACUUGUCAC
hsa-miR-548ag	0.8	-14	0.7102	UAG G UA UUACCUU	GUC U GU AAUGGAA
hsa-miR-205-3p	0.53	-15.8	0.7064	UUUUAC UU AUUGAAAU	GAAGUG AG UGACUUUA
hsa-miR-141-5p	0.77	-19.6	0.7046	AAC UUG CUGGAAGAU	UUG GAC GACCUUCUA
hsa-miR-556-3p	0.43	-26.4	0.7037	AGAUGGGU UAAUGGUAAUA	UCUACUCG AUUACCAUUAU
hsa-let-7g-3p	0.42	-23.6	0.7032	GGU UG GUCUGUACAG	CCG AC CGGACAUGUC
hsa-miR-4710	0.69	-31	0.7023	GACC CC CCCUCACCC	UUGG GG GGGAGUGGG
hsa-miR-141-5p	0.77	-22.2	0.7014	UCCAG UGU UUGGAAGA	AGGUU ACA GACCUUCU
hsa-miR-106b-3p	0.74	-26.6	0.7012	CAGUAAGU AUCU CAGUGC	GUCGUUCA UGGG GUCACG
hsa-miR-520a-5p	0.71	-21	0.7	AGA ACU UCUUCUGGA	UCU UGA GGGAGACCU
hsa-miR-7-5p	0.45	-21.7	0.6997	UAA GAGUC CUG UCUUCC	GUU UUUAG GAU AGAAGG
hsa-miR-3143	0.7	-15	0.696	GAA AGAA UUAC AUGUUA	CUU UCUU AAUG UACAAU
hsa-miR-4780	0.74	-21.6	0.6942	UUAGG GAUUA UCAAGGG	GAUCC CUAGU AGUUCCC
hsa-miR-7-5p	0.45	-19	0.694	GAUAA ACU GUCUUCU	UUGUU UGA CAGAAGG
hsa-miR-676-5p	0.74	-21.3	0.6934	GCA AGU CC GGUUGAAG	CGU UCA GG CCAACUUC
hsa-miR-4711-3p	0.55	-18	0.6928	UC GC GGG AGACAC	AG CG UCU UCUGUG
hsa-miR-4476	0.62	-18.8	0.6915	GU UGU U AGAU CCUUCCU	CG ACA G UUUA GGAAGGA
hsa-miR-548c-3n	0.76	_7 9	0 6864	GU GGU GG ALILILIU	CG UCA CUUAAAAA
hsa-miR-3064-5p	0.74	_22 7	0.6852		ACGUUGG UGUCGGU
hsa-miR-103a-2-	0.77	-22.1	0.0052		
5p	0.69	-15.9	0.685	UAUUGUA AAGAAGU	GUGACAU UUCUUCG

hsa-miR-625-3p	0.76	-10.5	0.6812	UAUAGUU	AUAUCAG
hsa-miR-550b-2- 5p	0.69	-22.7	0.6781	GU UUACU UC GGGCACA	CA AAUGA GG UCCGUGU
hsa-miR-452-3n	0.79	-22.1	0.6773	CUUACU UCU UUGCAGAUG	GAAUGA AGA AACGUCUAC
hsa-miR-520a-5p	0.71	-19.9	0.6756	GGA G AUU UCUUCUGGA	UCU CUGA GGGAGACCU
hsa-miR-3202	0.65	-17.9	0.6754		
hsa-miR-4696	0.61	-15.5	0.6712	GGUA UGUCUUG	UCALL GCAGAAC
hsa-miR-5590-3p	0.77	-10.9	0.6708	GUC CUGGA CUUUAU	CGG G ACUIU GAAAUA
hsa-miR-4772-3p	0.66	-23.1	0.6704		GAC AGU CG UCAACGUCC
hsa-miR-298	0.8	-18.1	0.6667	AGA U CUG CUUCUG	UCU A GAC GAAGAC
hsa-miR-3691-3p	0.71	-18.7	0.6649	AGA AU AC GU GGACUUGGU	UCU UA UG CG UCUGAACCA
hsa-miR-876-5p	0.75	-17.2	0.6647	UUCA CAGA GAAAUCC	AAGU GUUU CUUUAGG
hea_miR_3143	0.7	-19.4	0.6628		CUUU UUC CGAAAU
hsa miR 1243	0.72	18.5	0.6623		GAG GAUAU AC
hsa-miR-548ag	0.72	-15.3	0.6617		
hsa miR 2302	0.77	23.3	0.6611		
hsa-miR-5571-5p	0.78	-18.2	0.6611	GGA CUCC AGAAUU	CCU GAGG UCUUAA
hsa-miR-15h-3n	0.49	-10.2	0.661	AGC UGAUUC	
hsa-miR-4696	0.45	-17.1	0.657	GGUA LIGUCUUG A	
hea miP 101 5n	0.01	12.2	0.6561		
hea lat 7a 2 3p	0.7	-12.2	0.656		
hsa-net-/a-2-5p	0.49	-21.1	0.030		
hsa-miR-3155a	0.8	-20.8	0.6541		GGGUG G CUCGGA
hsa-miR-2114-5p	0.62	-18.2	0.6525	GUUUC GA AGGGACU	CGAAG CU UCCCUGA
hsa-miR-550a-3p	0.73	-16.9	0.6517	GUG, G.G.G.G.G.UAAGAU	
hsa-miR-501-3p	0.61	-17.4	0.6514	AG AUCU CC GUGCAUU	UC UAGG GG CACGUAA
hsa-miR-625-3p	0.76	-11.1	0.6468	CUAUAG	GAUAUC
hsa-miR-7-5p	0.45	-18.7	0.6456	CA GA GAUU AGUCUUCU	GU UU UUAG UCAGAAGG
hsa-miR-4422	0.65	-17	0.6435	GG GCU UC GUGCUUU	CC UGA AG UACGAAA
has miD 15h 2m	0.40	14.1	0.6410	AGA GU GCGA	UCU CG CGUU
hsa-miR-130-3p	0.49	-14.1	0.6414		CACA CLICCCA
hsa-miR-4293	0.73	-10.0	0.0414		
hsa-miR-924	0.79	-19.7	0.6273		
hsa-miR-548c-3n	0.76	-11.3	0.6268	GALILIGA GALILILIU	
hee miP 517e 3p	0.60	24.6	0.6220	GCAC CUA AGGGAU	UGUG GAU UCCCUA
isa-mik-517a-5p	0.09	-24.0	0.0229	GCAC CUA AGGGAU	UGUG GAU UCCCUA
hsa-miR-5176-3p	0.6/	-24.6	0.6229	GCACGA	CGUGCU
hsa-miR-548c-3p	0.76	-10	0.6209	AG UGAU AGAUUUUU	
hsa-miR-556-3p	0.43	-15	0.618	GGCU GGUAAUAU GGGUGA AUGG	CUCACU UGCC
hsa-miR-149-5p	0.8	-25.1	0.6174	AGCCAGA	UCGGUCU
hsa-miR-767-5p	0.77	-26.3	0.6154	GUGUUU ACA ACCA UGGUGC	UACGAG UGU UGGU ACCACG
hsa-miR-218-5p	0.58	-22.9	0.6137	AUGGU UAGA AGCACAG	UACCA AUCU UCGUGUU
hsa-miR-5186	0.78	-16.4	0.6105	CUG UUUC AC AAUCUC	GAC AAAG UG UUAGAG
hsa-miR-5590-3p	0.77	-13.6	0.61	UUGUU GUAC GCUUUAU	AACGG UAUG UGAAAUA

hsa-miR-15b-3p	0.49	-18	0.609	GGC GC GUGAUUC	UCG CG UACUAAG
hsa-miR-136-3p	0.73	-19.8	0.6034	GCUU UUGA GAUGAUG	UGAG AACU CUACUAC
hsa-miR-544a	0.55	-17.4	0.6001	ACUUG CUG UGCAGA	UGAAC GAU ACGUCU
hsa-miR-517c-3n	0.6	-21.9	0 5965	GCAC CUA AGGGAU GCACGA	UGUG GAU UUCCUA CGUGCU
hsa-miR-556-3p	0.43	-13.7	0.5962	AGUUG GGUAAU	UCGAU CCAUUA
hee miP 21550	0.8	10.2	0.5008		AAGGG GACG U
hsa miR 3117 5n	0.75	-19.5	0.5908		
hea miP 403 5p	0.75	-21.0	0.5877		CGAUGG ACAUGUU
haa miP 483 3p	0.71	-10.5	0.5854	GAG AGGAGU	
hsa miR 103a 3n	0.71	24.7	0.5851	GCCC C AUGCUGCU	
hsa miR 205 3p	0.53	-24.7	0.5810		
haa miR 421	0.55	10.7	0.5804	CC UCAGU UUUGUUGAU	
hsa-miR-421	0.3	-19.7	0.5777	CCU CUACUCUU	
haa miR 4278	0.73	-13.5	0.5720		
hsa-miR-4278	0.79	-19	0.5739	AGG G CCCCUA	
hsa-miR-50/5	0.76	-10.0	0.5722	CULLA A CC LICCA CA	
hsa-miR-544a	0.55	-10.9	0.5675	GUUAAAGG UGCAGA	CULICANA CCAACU
hsa-miR-301-5p	0.78	-15	0.564	CAG GUUU CCUUGA	GUUCAAA GGAACU
hsa-miR-4761-5p	0.75	-19.5	0.504		
hsa-mik-676-5p	0.74	-15.5	0.5637		ACG AGGACU CC AACUUC
hsa-miR-5095	0.79	-14.9	0.563		AAG GGACAUU
hsa-miR-1290	0.78	-14.2	0.5611	CA UUGCA UGCU	GUAGUGU AG UUUUAG GUAGUGU ACGG
hsa-miR-4704-5p	0.64	-20.3	0.5606	UAGUGUU	AUCACAG
hsa-miR-1243	0.72	-15.4	0.5601	CAC UUAU UCCAGU	GUG GAUA AGGUCA
hsa-miR-29a-3p	0.67	-16.6	0.5589	AAC CA UGGUGC	UUG GU ACCACG
hsa-miR-548ao-3p	0.68	-16.2	0.5567	UGU UGG C GGUCUU AUCUGG GCC UG UUU	ACG AUC G CCAGAA UAGACC CGG AC AAG
hsa-miR-3161	0.69	-19.1	0.5565	UUAUCA	AAUAGU
hsa-miR-520a-5p	0.71	-20.9	0.5565	AGA GGUGC UCUGGA	UCU UCAUG AGACCU
hsa-miR-3202	0.65	-18.1	0.5537	CUU CU CCCUUCUA	GAG GA GGGAAGGU
hsa-miR-3143	0.7	-16.3	0.5509	GGG GGAGC UUUUA AAUGUU	CUU CUUCG GAAAU UUACAA
hsa-miR-548u	0.74	-17.1	0.5505	CGC GUGAUU CAGUCUU	GCG CAUUAA GUCAGAA
hsa-miR-4772-3p	0.66	-21.6	0.5498	CUGA C G GCA AGUUGCAG	GACU G C CGU UCAACGUC
hsa-miR-556-3p	0.43	-15.2	0.5491	UGAGC GA GGUAAU	ACUCG UU CCAUUA
hsa-miR-4764-5p	0.78	-18.3	0.5467	UGAUUC ACAUCC	AUUGAG UGUAGG
hsa-miR-3619-3p	0.69	-16.7	0.5464	UGGUCC	ACCAGG
hsa-miR-555	0.72	-18.1	0.5385	CAGU UUACCCU	GUCG AAUGGGA
hsa-miR-4510	0.74	-24	0.5374	AGCUA AU UUACUCCCU	UUGGU UA GAUGAGGGA
hsa-miR-1304-5p	0.7	-16.7	0.5311	UAC UC CA UG CCUCAAG	GUG AG GU AC GGAGUUU
hsa-miR-320c	0.77	-14.4	0.5283	U UCUU AUUU AGCUUUU	G AGAG UGGG UCGAAAA
hsa-miR-1290	0.78	-14.4	0.522	UCCUG CUA AAAAUC	GGGAC GGU UUUUAG
hsa-miR-298	0.8	-26.5	0.5189	GGAGAA CCU CCUG CUUCUG	CCUCUU GGA GGAC GAAGAC
hsa-miR-24-3p	0.68	-22.1	0.5162	CUGC GAG CUGAGCC	GACG CUU GACUCGG
hsa-miR-5187-3p	0.66	-11.1	0.5146	AAG GAUUCA	UUC CUAAGU

hsa-miR-548ar-3p	0.8	-8.7	0.5132	GUAAGA CU AGUUUU	CGUUUU GA UCAAAA
hsa-miR-493-5p	0.8	-17.8	0.5107	UGGA GGUCU UC UGUACAG	ACUU UCGGA GG ACAUGUU
hsa-miR-4705	0.77	-17.8	0.5091	CGGC GCU GUGAUU	GUCG UGG CACUAA
hsa-miR-15a-5p	0.8	-18.8	0.5061	AC GCC UGCUGCU	UG UGG ACGACGA
hsa-miR-502-3p	0.52	-18.7	0.5056	GAUC GUC CAG GUGCAUU	UUAG CGG GUC CACGUAA
hsa-miR-548u	0.74	-17.2	0.5032	CGC GUGAUU CAGUCUU UG	GCG CAUUAA GUCAGAA AC
hsa-miR-548ag	0.8	-18	0.5008	CAGAA AC ACAGU UACCUUU	GUCUU UG UGUUA AUGGAAA
hsa-miR-7-5p	0.45	-14.9	0.3993	CA UC CU UCUUCC	GU AG GA AGAAGG

Table 4.4. Analysis of downregulatory miR binding seed sites in OGT 5'UTR regions

miRNA	Ratio	dG_hybrid	LogitProb	TargetMatch	MirMatch
				CCC AC	
hsa-miR-196a-5p	0.8	-18.4	0.5014	ACUACCU	GGG UG UGAUGGA
				CCC AC	
hsa-miR-196b-5p	0.8	-18.4	0.5014	ACUACCU	GGG UG UGAUGGA

Table 4.5. Analysis of downregulatory miR binding seed sites in OGT 3+5'UTR regions

miRNA	Ratio	dG_hybrid	LogitProb	TargetMatch	MirMatch
hsa-miR-4475	0.79	-21.5	0.9109	AAUGAAUG UCCCUU	UUACUUAC AGGGAA
hsa-miR-3672	0.75	-20.6	0.9	GCA GAGUCUCA	UGU CUCAGAGU
hsa-miR-4729	0.64	-16.8	0.897	GC UCCU AUAAAUGA	CG AGGG UAUUUACU
hsa-miR-3682-5p	0.58	-12.9	0.8917	AGAAGUA	UCUUCAU
hsa-miR-665	0.75	-24.3	0.8803	CUU AG CCUCCUGG	GAG UC GGAGGACC
hsa-miR-4772-3p	0.59	-21	0.8667	UCUG CAG GUUGCAG	AGAC GUC CAACGUC
hsa-miR-202-5p	0.57	-15.6	0.8591	GAGU CAUAGGAA	UUCA GUAUCCUU
hsa-miR-624-5p	0.6	-29.9	0.8567	GGGCACA GU UGGUACUG	CUUGUGU CA ACCAUGAU
hsa-miR-5696	0.75	-13.2	0.8527	GUC GC CU UAAAUGA	UAG UG GA AUUUACU
hsa-miR-3675-3p	0.73	-19.2	0.8477	UUGG GA UUCU UUAGAGAU	AACC CU AAGG AAUCUCUA
hsa-miR-599	0.7	-19.9	0.8443	UGGUA GA GACACAA	ACUAU UU CUGUGUU
hsa-miR-4712-5p	0.5	-18.1	0.8442	GUACUGGA	CAUGACCU
hsa-miR-205-3p	0.72	-22.6	0.8433	GA UUUG UUCGCUGAAAU	CU AAGU AGGUGACUUUA
hsa-miR-5003-3p	0.68	-19.5	0.8425	UCCUGGCA GAAAAGUA	GGGGUUGU CUUUUCAU
hsa-miR-4687-3p	0.8	-28.6	0.8391	UGCCCUC CC ACAGCCA	ACGGGGG GG UGUCGGU
hsa-miR-4476	0.64	-26.4	0.8354	GU GUCCU GUUCUUCCU	CG CAGGG UAGGAAGGA
hsa-miR-4696	0.58	-20.6	0.832	AGAUG UUGUCUUGCG	UCUAC GGCAGAACGU
hsa-miR-93-3p	0.66	-19.1	0.8161	AAGUG GU UCAGCAG	UUCAC CG AGUCGUC
hsa-miR-339-5p	0.79	-26.1	0.8157	UGA CUCU GA GACAGGGA	ACU GAGG CU CUGUCCCU
hsa-miR-3064-5p	0.78	-23.5	0.8149	GUA AU GC ACAGCCAGA	CGU UG UG UGUCGGUCU
hsa-miR-382-3p	0.78	-21	0.8056	AAG UGUUGUCU G UGAAUGAUU	UUC ACAACAGG C ACUUACUAA
hsa-miR-4519	0.8	-27.7	0.8049	CAGCC C GU GCACUGCUG	GUCGG G CG CGUGACGAC

Iss-miR/70-5p 0.99 -245 0.808 GOUXCUGA ACC OGGA GACU AGUC CACU AGUC <thcau aguc<="" th=""></thcau>					UGG UCUU AUAU	
Iss-miR-172-3p 0.59 -241 0.798 UGAA DCAG CCAC GACU AGUC CGU CAGAC Iss-miR-170-5p 0.59 -147 0.777 GAUAU VACUGGA CCGUG AUGACCU Iss-miR-507-5p 0.69 -147 0.797 GAUAU VACUGAA UCUCAAACC GIUAUACU Iss-miR-507-5p 0.69 -262 0.791 AGC CC GAUAUGU UCUAAACC GIUAUACU Iss-miR-705-5p 0.79 -263 0.791 ACA LACA CACUGU UCUAAACC GIUAUGAACA Iss-miR-759-5p 0.79 -264 0.788 CAGUACUUGU UCUAAGCUAA UCUAACACA GAUCACACU Iss-miR-169-5p 0.72 -264 0.788 CCG UCAAAACA GAUCAGAAGGU Iss-miR-269 0.71 -212 0.788 CUGUUAACA UUAUGGAUCA Iss-miR-269 0.51 -212 0.788 CUGUUCACA UUAUGGAUCU UGACUAGAUGUU Iss-miR-269 0.51 -212 0.788 CUGUUACACA Iss-miR-260 Iss-miR-260 Iss-miR-260 Iss-miR-260 Iss-miR-260	hsa-miR-770-5p	0.59	-24.5	0.8008	GGUACUGGA	ACC GGGA UGUG CCAUGACCU
ha.miR.70.5 0.59 18.7 0.977 GAUAU UACUGGA CUCLG AUGACU ha.miR.5571.5p 0.77 -1.47 0.7999 AGGGUUGG CAUAUGA UCCAG CUCUUAA ha.miR.5501.5p 0.6 -1.86 0.7931 AGGGUUGG CAUAUGA UCCAAACC GUAUCU ha.miR.5573.5p 0.73 -20.5 0.7911 ACA UACC ACACUGU UGCAAACA CACACUAUCAA ha.miR.5279.5p 0.72 -20.4 0.7889 CAUAGU UUUAACCUAA CUA CCA GAUUCGAU ha.miR.2021 0.71 -1.51 0.7889 CAUAUCUUUUAACCUAA CAC ACAUACA ha.miR.4712.5p 0.5 -2.21 0.7896 GAU AGAGAU UACUGAA UUA UCAGAA ha.miR.515.3p 0.51 -2.21 0.7896 GAU AGAGAU UACUGAU UUA UCAGA ha.miR.515.3p 0.51 -2.21 0.7816 GACA CUGGAU UUAUCAGA UUAGGUUCU UGAUACU ha.miR.5216.5p 0.71 -2.28 0.7815 AACAA CUGGAU UUGGUUCUA UUGUUUUGGUUCU GACACCU	hsa-miR-4772-3p	0.59	-24.1	0.7988	UUGA UCAG GCA GGUUGCAG	GACU AGUC CGU UCAACGUC
has-miR-591-5p 0.77 -147 0.799 AG CU C GAGAAUU UC GA G CUCUUAA has-miR-597-5p 0.59 -26.2 0.7991 GGG C AUGGAUCG CCG U GCACAACC G GUUACU has-miR-2075-5p 0.59 -26.2 0.7991 GGC A UGUGAUGG CCG U UCCAACC G GUUCCA has-miR-597-5p 0.72 -20.5 0.7911 ACA UACC ACAGUGU UGU AUGGG UGUCAA has-miR-579-5p 0.51 -15.1 0.788 C.GUUAAGCAA GAC AULUIGUU has-miR-579-5p 0.51 -221 0.788 GAU CUGGUCUCCA UUA GAUCAGAACA has-miR-579-5p 0.51 -221 0.788 GAU CUGGUCUCCA UUA GAUCAGAACA has-miR-579-5p 0.51 -221 0.788 GAU CUGGUCUCA UUA GAUCUAA has-miR-519-5p 0.57 -218 0.7811 UCU UUAGGAA UUGGA UCGGA has-miR-512-5p 0.57 -218 0.7811 UCU UAGAGA UUGGAU UCGGAU UUCGAU has-miR-112-5p 0.57 -218 0.7811 UUU UUAGGAUCUGGA <t< td=""><td>hsa-miR-770-5p</td><td>0.59</td><td>-18.7</td><td>0.7977</td><td>GAUAU UACUGGA</td><td>CUGUG AUGACCU</td></t<>	hsa-miR-770-5p	0.59	-18.7	0.7977	GAUAU UACUGGA	CUGUG AUGACCU
ba-mil: 5007.hp 0.6 -186 0.7911 AGGGUUUG G CAUAUGA UCUCAAAC C GUIAUCU bas-mil: 5201-5p 0.97 -262 0.7919 ACA UACC ACAUUG CCG U GACCAUGAC bas-mil: 5201-5p 0.73 -204 0.7913 ACA UACC ACAUUC CCG U GAUCGAUCA bas-mil: 5201-5p 0.73 -204 0.7890 GAU GUU UUUAGCUA CUA CACAUUUUUUU bas-mil: 5202 0.75 -15.1 0.7887 CUG UUGGUCUUCCA UUAG GAUCGAAGGU bas-mil: 5202 0.51 -211 0.7885 GAUC UUGGUCUUCCA UUAG GAUCGAAGGU bas-mil: 5205 0.57 -212 0.7881 GAGAGUU ACUGGA UUAG GAUCUU UGACCU bas-mil: 5265 0.71 -213 0.781 AACAU CUGGA GUU CGAAG GUAGUU GAUCUU UACGUU UGACUU UGACUU GAUCU UGACU GAUCUU UGACU GAUCU UGACU GAUCUU UGACUU GAUCUU GAUGAUU	hsa-miR-5571-5p	0.77	-14.7	0.7959	AG CU C GAGAAUU	UC GA G CUCUUAA
bs-mR/T0-5p 0.0 0.0 0.00000000000000000000000000000000000	hsa-miR-5007-3p	0.6	-18.6	0.7931	AGGGUUUG G CAUAUGA	UCUCAAAC C GUAUACU
bs-mill-20-p 0.73 -2.95 0.713 ACA UACC ACAUUU UGU AUG UGUCACA hss-mill-5579-3p 0.74 -19.8 0.700 GAU GGU UUUAAGCUAA CUA CCA GAAUUCGAUU hss-mill-5279-3p 0.74 -19.8 0.700 GAU GGU UUUAAGCUAA CUA CCA GAAUUCGAUU hss-mill-624-3p 0.72 -2.04 0.7889 CACUACCUGU GUUAUGGAACA hss-mill-757 0.5 -2.21 0.7889 CACUACUGU UUAG GAUCAGAAGGU hss-mill-759 0.5 -2.21 0.7889 GAU CUGGGAU UACU GG UCUCUG UUAG GAUCAGAAGGU hss-mill-71259 0.5 -2.12 0.7817 UCU UUAGAGA CUACU AA GGG AGUCUU UGACCU hss-mill-71259 0.57 -2.22 0.7817 UCU UUAGAGA CUCUU UCACUA UGGU CUACUA hss-mill-715450 0.77 -19.1 0.7815 AAGACUU UUCUGGA UUU UGAA GGAGACCU hss-mill-715450 0.77 -19.1 0.781 AACUU CUCUU UCUGAAGA GGUDGACCA hss-mill-139 0.76	hsa-miR-770-5p	0.59	-26.2	0.7919	GGC A UGUGGUACUG	CCG U GCACCAUGAC
Instrume Instrume Instrume Instrume Instrume Iss-mik-53rb-jp 0.72 -204 0.7889 CAGUACCUUGU GUUAUGGAACA Iss-mik-524-3p 0.72 -204 0.7889 CAGUACCUUGU GUUAUGGAACA Iss-mik-75p 0.51 -221 0.7887 CUG UCAAAACA GAC AGUUQUGU Iss-mik-75p 0.51 -221 0.7895 GAU CAGUACCUA UUA CCUCUG AGUACAGAAGU Iss-mik-75p 0.51 -221 0.7895 GAU AGAAU UAUGGAA UUA UCUCUG AGUACAGUU Iss-mik-75p 0.57 -228 0.7817 UCU UUAGAGA ACUGGA UGUU AGUACCU UGUU AGUACCU Iss-mik-7265 0.71 -218 0.7815 AAG CUU UUCUGGA UUCUGA GGAACCU Iss-mik-726 0.77 -191. 0.7766 CA UACC ACAGUUU GUUAU GGAACCU Iss-mik-74436-3p 0.777 -214 0.7767 AAGUA CUUCUGGA UUCUGA GGAACCCU Iss-mik-74436-3p 0.77 -222 0.766 CAGUACUU CUCCUGA UUGUAU GGAACCCU Iss-mik-74436-3p 0.77 -221 <td< td=""><td>hsa-miR-200a-3p</td><td>0.73</td><td>-20.5</td><td>0.7913</td><td>ACA UACC ACAGUGU</td><td>UGU AUGG UGUCACA</td></td<>	hsa-miR-200a-3p	0.73	-20.5	0.7913	ACA UACC ACAGUGU	UGU AUGG UGUCACA
Instrume Instrume Instrume Instrume Instrume Instrume Instrume Instrume Instrume Instrume Instrume Instrume Instrume Instrume Instrume Instrume Instrume Instrume Instrume Instrume Instrume Instrume Instret Instret </td <td>hsa-miR-5579-3p</td> <td>0.74</td> <td>-19.8</td> <td>0.7901</td> <td>GAU GGU UUUAAGCUAA</td> <td>CUA CCA GAAUUCGAUU</td>	hsa-miR-5579-3p	0.74	-19.8	0.7901	GAU GGU UUUAAGCUAA	CUA CCA GAAUUCGAUU
hs-miR-2052 0.75 -15.1 0.787 CUG UCAAAACA GAC AGUUUGU hs-miR-7.5p 0.51 -22.1 0.788 GAU CUGGUCUUCCA UUAG GAUCAGAAGGU hs-miR-172.5p 0.5 -21.2 0.789 GAU CAGAACAU UUAUCUCUG AUGACCU hs-miR-192.5p 0.5 -21.2 0.789 GAU CAGAAU VACUGA UUAUCUCUG AUGACCU hs-miR-195.5p 0.57 -22.8 0.7817 UCU UUAGGA ACUGAU UGCUU GG AGUCUCU UGACU hs-miR-195.5p 0.77 -19.1 0.7815 AACAA GC UGAUU ACUGU GG AGUCUCU UGACU GG AGUCUCU UGACU GG AGUCUCU UGACU GACAGGAU hs-miR-2467.5p 0.71 -23.7 0.779 GC CAGG CUUCUGG UUUCU GG GAGCCU AGG UGACC hs-miR-1439 0.66 -19.8 0.776 CA UCG CUUCUGU GUGAAG ACGGA hs-miR-1439 0.77 -21.4 0.777 AAGUUU UUCUGG UUUCAU GG GAGACC hs-miR-155.9 0.77 -22.3	hsa-miR-624-3p	0.72	-20.4	0.7889	CAGUACCUUGU	GUUAUGGAACA
hs-miR-7.5p 0.51 -22.1 0.7858 GAUC UUGGUCUCCA UUAG GAUCAGAAGGU hs-miR-4712.5p 0.5 -21.2 0.7849 GAU AGAGAU UACUGGA UUA UCUCUG AUGACU hs-miR-3195.3p 0.51 -22.8 0.7817 UCU UUAGAGA ACCG UC CACUAA hs-miR-205.5p 0.57 -22.8 0.7817 UCU UUAGAGA ACCGG UC UGACCU hs-miR-206.5p 0.71 -21.8 0.7815 AACA GC CUGAU ACCACU UUGUU UG ACUGG UGUAGA hs-miR-2467.5p 0.71 -21.4 0.7707 GC CAGG CUA C GAGCUCCU GU GAAGA CCGGAU hs-miR-3206.5p 0.77 -21.4 0.7707 AAAGUU UUCUCGA UUCUA GAAGACC hs-miR-3206.5p 0.77 -21.4 0.7707 AAAGUU CCUCUGG UUCAU GGAAGACC hs-miR-330.3p 0.72 -22.2 0.7661 CAUUCU GGACCU GGUGA CUCGGA hs-miR-310.3p 0.72 -22.9 0.7661 UUUG AGCU GUGCUU GAGACU CGGA hs-miR-310.3p 0.72 -22.9 0.7661 </td <td>hsa-miR-2052</td> <td>0.75</td> <td>-15.1</td> <td>0.7887</td> <td>CUG UCAAAACA</td> <td>GAC AGUUUUGU</td>	hsa-miR-2052	0.75	-15.1	0.7887	CUG UCAAAACA	GAC AGUUUUGU
hs-miR-1712-5p 0.5 -21.2 0.7849 GAU AGAGAU UACUGGA UUA UCUCUG AUGACCU hs-miR-34b-3p 0.61 -14.5 0.7831 UGGU AG AGUGAUU ACCG UC UCACUAA hs-miR-3195-3p 0.57 -22.8 0.7817 UCU UUAGGA AUGGA GGG AGUCUCU UGAUCA hs-miR-320b-5p 0.77 -19.1 0.7815 AACAA GC UAC GAGCCUCA CG GUUC GA GGA GCUCUCU UUCUGAA GGA GCCU hs-miR-320b-5p 0.77 -19.1 0.7815 AACAA CC UA C GAGCCUCA CG GUUC GAUCAGA GGAGACCU hs-miR-320b-5p 0.77 -21.4 0.7077 AAAGUA CC CUUGGA UUUCAU GG GAGACC hs-miR-320a-5p 0.77 -22.2 0.7661 CAUUCU UCCCCU GUCAAU UGACAGUGA hs-miR-330-3p 0.72 -22.2 0.7661 UUUG AGCU GUGUAU GUUCAAU ACAGAGA hs-miR-330-3p 0.72 -22.9 0.7661 UUUG AGCU GUGCAU CUUAAGA CC GGAU CACAGAAC	hsa-miR-7-5p	0.51	-22.1	0.7858	GAUC UUGGUCUUCCA	UUAG GAUCAGAAGGU
hss-miR-34b-3p 0.61 -14.5 0.781 UGGU AG AGUGAUU ACCG UC UCAUAA hss-miR-3195-3p 0.57 -22.8 0.7817 UCU UUAGAGA ACUGGA GGG AGUCUCU UGACUA hss-miR-3195-3p 0.57 -21.8 0.7815 AACAA GC UGAUL ACUCCU UUGUGA GGG AGUCUCU UGACUGG UUC UOAA GGGA AGUCU UUCUGAA GGGA AGUCCU hss-miR-3467-5p 0.77 -19.1 0.7766 CA LUACC ACAGUGU GU AGG GUUC C GAU GCUCGGAGU hss-miR-3467-5p 0.77 -21.4 0.7766 CA LUACC ACAGUGU GU AGG ACGGGA hss-miR-342-3p 0.77 -22.2 0.7678 UACUUC UGCCU GUGAAG ACGGGA hss-miR-3155 0.74 -23.5 0.7661 UUUGA GCU GUCUUUGU AGUAACU GG CACGAACG hss-miR-303-3p 0.72 -22.9 0.7651 GGUUUUGU GUUUA ACUAAG GGU CACCUGAA hs-miR-603 0.64 -25.5 0.7611 GUUUGA UUAUGUCUUU CAC GAGAU GAUACAGAAA	hsa-miR-4712-5p	0.5	-21.2	0.7849	GAU AGAGAU UACUGGA	UUA UCUCUG AUGACCU
bs-miR-\$195-3p 0.57 -22.8 0.7817 UCU UUAGAGA ACUGGA GGG AGUCUCU UGACU hss-miR-1265 0.71 -21.8 0.7815 AACAA GC UGAUU ACAUCCU UUG UGACUG UGAUGG UGU UGACUG UGU UGACUG UGU UGACUG UGU UGACUGGA hss-miR-320a-5p 0.77 -19.1 0.7815 AAG ACUU UUUCUGGA UUC UGAA GGU AUGG GCUGGAGU hss-miR-3467-5p 0.77 -21.4 0.7706 CA <uacc< td=""> ACAGUGU GU CAUCAU GGGAAGCC hss-miR-320a-5p 0.77 -21.4 0.7707 AAAGUA CC CUCUGG UUUCAU GGAAGACC hss-miR-4135b 0.77 -21.4 0.7707 AAAGUA CC CUCUGG UUUCAU GGAGAG GGGGA hss-miR-343.5p 0.77 -22.2 0.7661 CUCUCAU GUGAAU UGACCCU GGUGA CUCGGA hss-miR-315.5 0.74 -23.5 0.7661 CUUG A GCU GUCUGA UUUA ACUAAG hss-miR-41 0.74 -25.9 0.7613 GAAUUUU GC CC GUGGACU CUUAGGA CG GG CCCUA</uacc<>	hsa-miR-34b-3p	0.61	-14.5	0.7831	UGGU AG AGUGAUU	ACCG UC UCACUAA
basemiR-1265 0.71 -2.18 0.7815 AACAA GC UGAUU ACAUCCU UUGUU UGGUU UGUU UGU	hsa-miR-5195-3p	0.57	-22.8	0.7817	UCU UUAGAGA ACUGGA	GGG AGUCUCU UGACCU
basmik-202-5p 0.77 -19.1 0.781 AAG ACUU UUUUCUGGA UUC UGAA GGAGCCU hss-mik-2467-5p 0.71 -23.7 0.779 GC CAGG G CUA C GAGCCUCA CG GUU C GAU G CUCGGAGU hss-mik-240-5p 0.77 -21.4 0.7707 AAAGUU UUUCUGGA UUUCAU GG GAGACC hss-mik-220s-5p 0.77 -21.4 0.7707 AAAGUU C UCCCUG UUUCAU GG GAGACC hss-mik-320s-5p 0.77 -21.4 0.7707 AAAGUU C UCCCU GUGAAG ACGGGA hss-mik-320s-5p 0.77 -22.2 0.7678 UACUUC UCCCU GUGAAG ACGGGA hss-mik-320s-3p 0.77 -22.3 0.7664 CACUU GGCCU GUGAA CUCGGA hss-mik-330-3p 0.72 -22.9 0.7661 CUUG AGU GUGCUUU UUUA ACUAAG hss-mik-30-3p 0.71 -25.9 0.7641 GAAU UGU GC CCA GUGCAU CUUAGGA CG GGU CCAGUA hss-mik-603 0.64 -72.5 0.7641 GUUUU U UUUGUUU CAC GAGAU CACACAC hss-mik-603 0.64 -25.6 0.7621 CAAAAGUAU UUU	hsa-miR-1265	0.71	-21.8	0.7815	AACAA GCUGAUU ACAUCCU	UUGUU UG ACUGG UGUAGGA
bss-miR-2467-5p 0.71 -23.7 0.779 GC CAGG G CUA C GAGCUCA C G GUU C GAU G CUCGGAU hss-miR-141-3p 0.66 -19.8 0.776 CA UACC ACAGUGU GU AUGG UGUCACA hss-miR-320s-5p 0.77 -21.4 0.707 AAAGUA CC CUCUGG UUUCAU GG GAGACC hss-miR-430s-3p 0.77 -22.2 0.7678 UACUUC UGCCCU GUGAAG ACGGGA hss-miR-542-3p 0.77 -22.3 0.7661 CAGUUGU G CUGUCAU GUCAAUAU GACAGUG hss-miR-3155 0.74 -23.5 0.7661 UUUG A GCU GUGCUUUGU AGAC UCGG CAGAAACG hss-miR-330-3p 0.72 -22.9 0.7661 UUUG A GCU GUGCAU CUUAGA CAGAACG hss-miR-302-3p 0.71 -25.9 0.7641 GUUUU GC CCA GGUGCAU CUUAGA CAGAACG hss-miR-603 0.64 -25.6 0.7621 CAAAAGUAU AGUGUUU CAC GAGAC CG GG CACCAU hss-miR-613 0.71 -17.4 0.7596 AGAAUUUU GC CC GGUGCAU UUUAGGA CG GG CACCAUA hss-miR-613 0.71 -17.4 0.7596	hsa-miR-520a-5p	0.77	-19.1	0.7815	AAG ACUU UUUCUGGA	UUC UGAA GGAGACCU
bas-miR-141-3p 0.66 -19.8 0.776 CA UACC ACAGUGU GU AUGG UGUCACA hsa-miR-520a-5p 0.77 -21.4 0.770 AAAGUA CC CUCUGG UUUCAU GG GAGACC hsa-miR-436b-3p 0.77 -22.2 0.767 UACUUC UGCCU GUGAAG ACGGGA hsa-miR-542-3p 0.79 -22.3 0.7666 CAGUUGU G CUCUCAU GUCAAUA U GACAGUG hsa-miR-542-3p 0.74 -23.5 0.7661 UUUG A GCU GUGAA CUGGGA hsa-miR-330-3p 0.72 -22.9 0.7661 UUUG A GCU UUUA ACUAAG MaGACU CGG CAGAAACG hsa-miR-611 0.74 -22 0.7641 GUG UUCUA UUAUGUCUUU CAC GAGAU GAUACAGAAA hsa-miR-633 0.64 -25.6 0.7621 CAAAAGUGAU AGUGUGG GAAU CC CG GAGCAU UCUUAGGA CG GG CCACGUA hsa-miR-633 0.64 -25.6 0.7621 CAAAUUUU GC CC GUGCAU UCUUACACAACAC hsa-miR-643 0.71 -17.4 0.7	hsa-miR-2467-5p	0.71	-23.7	0.779	GC CAGG G CUA C GAGCCUCA	CG GUUC C GAU G CUCGGAGU
bss-miR-520a-5p 0.77 -21.4 0.7707 AAAGUA CC CUCUGG UUUCAU GG GAGACC bss-miR-4436b-3p 0.77 -22.2 0.7678 UACUUC UGCCCU GUGAAG ACGGGA bss-miR-542-3p 0.79 -22.3 0.7669 CAGUUGU G CUGUCAU GUCAAUA U GACAGUG bss-miR-3155b 0.74 -23.5 0.7664 CCACU GAGCCU GGUGA CUCGGA bss-miR-3155b 0.72 -22.9 0.7661 UUUGA GCU GUGCUUUGU AGAC U CGG CACGAAACG bss-miR-30-3p 0.72 -22.9 0.7661 UUUGA GCU GUGCAU UUUA ACUAAG bss-miR-611 0.74 -22.9 0.7641 GAUUUU GC CCA GGUGCAU CUUAGGA CG GGU CACGUA bss-miR-611 0.74 -22 0.7641 GUG UUUA UUAUGUCUUU CAC GAGAU GAUACAGAA bss-miR-633 0.64 -22.6 0.7621 CAAAAGUGAU AGUGUG GUUUAAUUA UCACAC bss-miR-513p 0.78 -24.7 0.7596 AGAUUUU GC C GUGCAU UCUUAGGA CG CACGUA bss-miR-93p 0.71 -17.4 0.7551 GCU UGGUGA CUCACGAA	hsa-miR-141-3p	0.66	-19.8	0.7766	CA UACC ACAGUGU	GU AUGG UGUCACA
bss-miR-4436b-3p 0.77 -22.2 0.7678 UACUUC UGCCCU GUGAAG ACGGGA hss-miR-542-3p 0.79 -22.3 0.7669 CAGUUGU G CUGUCAU GUCAAUA U GACAGUG hss-miR-3155b 0.74 -23.5 0.7664 CCACU GAGCCU GGUGA CUCGGA hss-miR-3157b 0.72 -22.9 0.7661 UUUG A GCU GUGCUUUGU AGAC U CGG CACGAAACG hss-miR-15b-3p 0.58 -11.9 0.7653 GGAU UGAUUC UUUA ACUAAG hss-miR-502-3p 0.71 -25.9 0.7643 GAAUUUU GC CCA GGUGCAU CUUAGGA CG GGU CCACGUA hss-miR-601 0.74 -22 0.7641 GUG UUCUA UUAUGUCUUU CAC GAGAU GAUACAGAAA hss-miR-603 0.64 -25.6 0.7621 CAAAAGUGAU AGUGUGG GUUUUCAUUA UCACACAC hss-miR-9-3p 0.71 -17.4 0.7596 AGAAUUUU GC CC GUGCAU UCUUAGGA CG GG CCACGUA hss-miR-1271-5p 0.71 -17.4 0.7551 GCU UGGUUG UGA GCCAAU UCGAAAU hss-miR-4643 0.71 -20.1 0.7475 CAG GUGGU UCUUAGGA	hsa-miR-520a-5p	0.77	-21.4	0.7707	AAAGUA CC CUCUGG	UUUCAU GG GAGACC
bas-mik-542-3p 0.79 -22.3 0.7669 CAGUUGU G CUGUCAU GUCAAUA U GACAGUG bas-mik-3155b 0.74 -23.5 0.7664 CCACU GAGCU GGUGA CUCGGA bas-mik-3155b 0.72 -22.9 0.7661 UUUG A GCU GUCAUUGU AGAC U CGG CACGAAACG bas-mik-15b-3p 0.58 -11.9 0.7653 GGAU UGAUUC UUUA ACUAAG bas-mik-502-3p 0.71 -25.9 0.7644 GAAUUUU GC CCA GGUGCAU CUUAGGA CG GGU CACGUA bas-mik-641 0.74 -22 0.7641 GUG UUCUA UUAUGUCUUU CAC GAGAU GAUACGAAAA bas-mik-603 0.64 -25.6 0.7621 CAAAAGUGAU AGUGUUG GUUUUCAUUA UCACACAC bas-mik-603 0.64 -25.6 0.7621 CAAAAGUGAU AGUGUUG UCUUAGGA CG GG CCACGUA bas-mik-603 0.64 -25.6 0.7621 CAAAAGUGAU CUUGC UCUUAGGA CG AG CCACGUA bas-mik-603 0.71 -17.4 0.7551 GCU UGUUG AGCUUU UCUUAGGA CG AG CCACGUA bas-mik-501-3p 0.71 -21.0 0.7475	hsa-miR-4436b-3p	0.77	-22.2	0.7678	UACUUC UGCCCU	GUGAAG ACGGGA
bss-miR-3153b 0.74 -23.5 0.7664 CCACU GAUGACU GGUGA CUCGGA bss-miR-3103p 0.72 -22.9 0.7661 UUUG A GCU GUGCUUUGU AGAC U CGG CACGAAACG bss-miR-15b-3p 0.58 -11.9 0.7653 GGAU UGAUUC UUUA ACUAAG bss-miR-502-3p 0.71 -25.9 0.7643 GAAUUUU CCA GGUGA CUUGGA CG GGU CACGAAA bss-miR-641 0.74 -22 0.7641 GUG UCUA UUAGUCUU CAC GAGAU GAUACAGAAA bss-miR-603 0.64 -25.6 0.7621 CAAAAGUGAU GUUUCAUUA UCACACAC bss-miR-913p 0.71 -17.4 0.7556 GCU UGGUG AGCUU UCUUAGGA CG CCACGUA bss-miR-93p 0.71 -17.4 0.7551 GCU UGGUGA CUCACGAA GACACACG bss-miR-93p 0.71 -25.9 0.7544 GGUGUU CUGAGAAA GUCACACGAA GUCACACGAA bss-miR-1207-5p 0.71 -20.1<	hsa-miR-542-3p	0.79	-22.3	0.7669	CAGUUGU G CUGUCAU	GUCAAUA U GACAGUG
Instruction Instruction Instruction hsa-miR-330-3p 0.72 -22.9 0.7661 UUUG A GCU GUGCUUUGU AGAC U CGG CACGAAACG hsa-miR-15b-3p 0.58 -11.9 0.7653 GGAU UGAUUC UUUA ACUAAG hsa-miR-502-3p 0.71 -25.9 0.7643 GAAUUUU GC CCA GGUGCAU CUUAGGA CG GGU CCACGUA hsa-miR-641 0.74 -22 0.7641 GUG UUCUA UUAUGUCUUU CAC GAGAU GAUACAGAAA hsa-miR-641 0.74 -22 0.7641 GUG UUCUA UUAUGUCUUU CAC GAGAU GAUACAGAAA hsa-miR-630 0.64 -25.6 0.7621 CAAAAGUGAU AGUGUGUG GUUUUCAUUA UCACACAC hsa-miR-93p 0.71 -17.4 0.7551 GCU UGGUUG AGCUUUG UGA GCCAAU UCAAAAU hsa-miR-1271-5p 0.71 -25.9 0.7544 GGGUGUUU CU GGUGCCAA CUCAGGAA GA CCACGGUU hsa-miR-1271-5p 0.71 -20.1 0.747 GGUAUUU UCAUGA GUC CACCG AUUAUUAU hsa-miR-4643 0.71 -20.1 0.747 GGUAUUU UCAUGUG UCGUAAA AGUACA	hsa-miR-3155b	0.74	-23.5	0.7664	CCACU GAGCCU	GGUGA CUCGGA
Instruction Instruction Instruction Instruction hsa-miR-15b-3p 0.58 -11.9 0.7653 GGAU UGAUUC UUUA ACUAAG hsa-miR-15b-3p 0.71 -25.9 0.7643 GAAUUUU GC CCA GGUGCAU CUUAGGA CG GGU CCACGUA hsa-miR-641 0.74 -22 0.7641 GUG UUCUA UUAUGUCUUU CAC GAGAU GAUACAGAAA hsa-miR-303-3p 0.72 -24.4 0.7631 CUCU GG G GCUUUGC GAGA CC C CGAAACG hsa-miR-403 0.64 -25.6 0.7621 CAAAAGUGAU AGUGUGUG GUUUUCAUUA UCACACAC hsa-miR-501-3p 0.78 -24.7 0.7596 AGAAUUUU GC CC GGUGCAU UCUUAGGA CG GC CCACGUA hsa-miR-171-5p 0.71 -17.4 0.7551 GCU UGGUG AGCUUUG UGA GCCAAU UCGAAAU hsa-miR-19-3p 0.71 -17.4 0.7551 GCU UGGUG UUG UUG GUGCCAA CUCACGAA GA CCACGGUU hsa-miR-19-3p 0.71 -17.4 0.7544 GGGUGUUU CU GGUGCCAA CUCACGAA GA CCACGGUU hsa-miR-195-3p 0.59 -21 0.7475 CAG GUGGU UGUAAA AG	hsa-miR-330-3p	0.72	-22.9	0.7661	UUUG A GCU GUGCUUUGU	
Instruction Instruction Instruction Instruction hsa-miR-502-3p 0.71 -25.9 0.7643 GAAUUUU GC CCA GGUGCAU CUUAGGA CG GGU CCACGUA hsa-miR-641 0.74 -22 0.7641 GUU ULA UUAUGUCUU CAC GAGAU GAUACAGAAA hsa-miR-30-3p 0.72 -24.4 0.7631 CUCU GG G GCUUUGC GAGA CC C CGAAACG hsa-miR-603 0.64 -25.6 0.7621 CAAAAGUGAU AGUGUGUG GUUUUCAUUA UCACACAC hsa-miR-501-3p 0.78 -24.7 0.7596 AGAAUUUU GC CC GGUGCAU UCUUAGGA CG GG CCACGUA hsa-miR-93p 0.71 -17.4 0.7551 GCU UGGUUG AGCUUUG UGA GCCAAU UCGAAAU hsa-miR-171-5p 0.71 -25.9 0.7444 GGGUGUUU CU GGUGCCAA CUCACGAA GA CCACGGUU hsa-miR-4643 0.71 -20.1 0.7475 CAG GUGGU UGUUAAAUA GUC CACCG AUUAUUU hsa-miR-4661-3p 0.71 -17.1 0.7465 GAU UCU UG GAUCCU CUG AGA C CUAGGA hsa-miR-4661-3p 0.79 -12.6 0.7424 AGAACUU	hsa-miR-15b-3p	0.58	-11.9	0.7653	GGAU UGAUUC	
Instruction Instruction Instruction Instruction Instruction hsa-miR-641 0.74 -22 0.7641 GUG UUCUA UUAUGUCUUU CAC GAGAU GAUACAGAAA hsa-miR-330-3p 0.72 -24.4 0.7631 CUCU GG G GCUUUGC GAGA CC C CGAAACG hsa-miR-603 0.64 -25.6 0.7621 CAAAAGUGAU AGUGUGUG GUUUUCAUUA UCACACAC hsa-miR-501-3p 0.78 -24.7 0.7596 AGAAUUUU GC CC GGUGCAU UCUUAGGA CG GG CCACGUA hsa-miR-93p 0.71 -17.4 0.7551 GCU UGGUUG AGCUUUG UGA GCCAAU UCGAAAU hsa-miR-1271-5p 0.71 -25.9 0.7544 GGGUGUUU CU GGUGCCAA CUCACGAA GA CCACGGUU hsa-miR-1271-5p 0.71 -25.9 0.744 GGGUGUUU CU GGUGCCAA CUCACGAA GA CCACGGUU hsa-miR-4643 0.71 -20.1 0.747 GUAUUU UCAUGA GUC GUACAC Insa-miR-4661-3p 0.71 -17.1 0.7465 GAU UCU UG GAUCCU CUG AGA C CUAGGA Insa-miR-4661-3p 0.79 -12.6 0.7424 AGAACUU UCUUGAA	hsa-miR-502-3p	0.71	-25.9	0.7643	GAAUUUU GC CCA GGUGCAU	CUUAGGA CG GGU CCACGUA
Image Image <th< td=""><td>hsa-miR-641</td><td>0.74</td><td>-22</td><td>0 7641</td><td>GUG UUCUA UUAUGUCUUU</td><td></td></th<>	hsa-miR-641	0.74	-22	0 7641	GUG UUCUA UUAUGUCUUU	
hsa-miR-603 0.64 -25.6 0.7621 CAAAAGUGAU AGUGUGUG GUUUUCAUUA UCACACAC hsa-miR-501-3p 0.78 -24.7 0.7596 AGAAUUUU GC CC GGUGCAU UCUUAGGA CG GG CCACGUA hsa-miR-9-3p 0.71 -17.4 0.7551 GCU UGGUUG AGCUUUG UGA GCCAAU UCGAAAU hsa-miR-9-3p 0.71 -25.9 0.7544 GGGUGUUU CU GGUGCCAA CUCACGAA GA CCACGGUU hsa-miR-1271-5p 0.71 -25.9 0.7475 CAG GUGGU UGAUAAUA GUC CACCG AUUAUUAU hsa-miR-4643 0.71 -20.1 0.747 GGUAUUU UCAUGUG UCGUAAA AGUACAC hsa-miR-4643 0.71 -17.1 0.7465 GAU UCU UG GAUCCU CUG AGA AC CUAGGA hsa-miR-4661-3p 0.71 -17.1 0.7465 GAU UCU UG GAUCCU CUG AGA AC CUAGGA hsa-miR-4661-3p 0.71 -17.1 0.7465 GAU UCU UG GAUCCU CUG AGA AC CUAGGA hsa-miR-4661-3p 0.79 -12.6 0.7424 AGAACUU UCUUUGAA hsa-miR-120	hsa-miR-330-3p	0.72	-24.4	0.7631	CUCU GG G GCUUUGC	GAGA CC C CGAAACG
Institution Institution Institution Institution hsa-miR-501-3p 0.78 -24.7 0.7596 AGAAUUUU GC CC GGUGCAU UCUUAGGA CG GG CCACGUA hsa-miR-9-3p 0.71 -17.4 0.7551 GCU UGGUUG AGCUUUG UGA GCCAAU UCGAAAU hsa-miR-1271-5p 0.71 -25.9 0.744 GGGUGUUU CU GGUGCCAA CUCACGAA GA CCACGGUU hsa-miR-4795-3p 0.59 -21 0.7475 CAG GUGGU UGAUAAUA GUC CACCG AUUAUUAU hsa-miR-4643 0.71 -20.1 0.7475 GAG UUCU UG GAUCCU CUG AGA AC CUAGGA hsa-miR-4661-3p 0.71 -17.1 0.7465 GAU UCU UG GAUCCU CUG AGA AC CUAGGA hsa-miR-4661-3p 0.71 -17.1 0.7465 GAU UCU UG GAUCCU CUG AGA AC CUAGGA hsa-miR-4661-3p 0.71 -17.1 0.7465 GAU UCU UG AGACCU CUG AGA AC CUAGGA hsa-miR-16208 0.58 -15.4 0.7352 CCU UU AACAGUG GGA AG UUGUCAC hsa-miR-1208 0.58 -15.4 0.7322 CCU UU AACAGUG </td <td>hsa-miR-603</td> <td>0.64</td> <td>-25.6</td> <td>0.7621</td> <td>CAAAAGUGAU AGUGUGUG</td> <td>GUUUUCAUUA UCACACAC</td>	hsa-miR-603	0.64	-25.6	0.7621	CAAAAGUGAU AGUGUGUG	GUUUUCAUUA UCACACAC
hsa-miR-9-3p 0.71 -17.4 0.7551 GCU UGGUUG AGCUUUG UGA GCCAAU UCGAAAU hsa-miR-1271-5p 0.71 -25.9 0.7544 GGGUGUUU CU GGUGCCAA CUCACGAA GA CCACGGUU hsa-miR-1271-5p 0.71 -25.9 0.7544 GGGUGUUU CU GGUGCCAA CUCACGAA GA CCACGGUU hsa-miR-4795-3p 0.59 -21 0.7475 CAG GUGGU UGAUAAUA GUC CACCG AUUAUUAU hsa-miR-4643 0.71 -20.1 0.747 GGUAUUU UCAUGUG UCGUAAA AGUACAC hsa-miR-4661-3p 0.71 -17.1 0.7465 GAU UCU UG GAUCCU CUG AGA AC CUAGGA hsa-miR-4661-3p 0.71 -17.1 0.7465 GAU UCU UG GAUCCU CUG AGA AC CUAGGA hsa-miR-4661-3p 0.71 -17.1 0.7465 GAU UCU UG GAUCCU CUG AGA AC CUAGGA hsa-miR-148a-5p 0.79 -12.6 0.7424 AGAACUU UCUUGAA hsa-miR-1208 0.58 -15.4 0.7352 CCU UU AACAGUG GGA AG UUGUCAC <tr< td=""><td>hsa-miR-501-3p</td><td>0.78</td><td>-24.7</td><td>0.7596</td><td>AGAAUUUU GC CC GGUGCAU</td><td>UCUUAGGA CG GG CCACGUA</td></tr<>	hsa-miR-501-3p	0.78	-24.7	0.7596	AGAAUUUU GC CC GGUGCAU	UCUUAGGA CG GG CCACGUA
hsa-miR-1271-5p 0.71 -25.9 0.7544 GGGUGUUU CU GGUGCCAA CUCACGAA GA CCACGGUU hsa-miR-1271-5p 0.59 -21 0.7475 CAG GUGGU UGAUAAUA GUC CACCG AUUAUUAU hsa-miR-4643 0.71 -20.1 0.7475 GGUAUUU UCAUGUG UCGUAAA AGUACAC hsa-miR-4661-3p 0.71 -17.1 0.7465 GAU UCU UG GAUCCU CUG AGA AC CUAGGA hsa-miR-4661-3p 0.71 -17.1 0.7465 GAU UCU UG GAUCCU CUG AGA AC CUAGGA hsa-miR-4661-3p 0.71 -17.1 0.7465 GAU UCU UG GAUCCU CUG AGA AC CUAGGA hsa-miR-4661-3p 0.71 -17.1 0.7465 GAU UCU UG GAUCCU CUG GGA AC CUAGGA hsa-miR-4661-3p 0.79 -12.6 0.7424 AGAACUU UCUUGAA UCUUGAA hsa-miR-1208 0.58 -15.4 0.7352 CCU UU AACAGUG GGA AG UUGUCAC Issa-miR-96-5p 0.68 -21.8 0.7334 AGU GUA AUGAUUC	hsa-miR-9-3p	0.71	-17.4	0.7551	GCU UGGUUG AGCUUUG	UGA GCCAAU UCGAAAU
hsa-miR-4795-3p 0.59 -21 0.7475 CAG GUGGU UGAUAAUA GUC CACCG AUUAUUAU hsa-miR-4643 0.71 -20.1 0.747 GGUAUUU UCAUGUG UCGUAAA AGUACAC hsa-miR-4643 0.71 -20.1 0.747 GGUAUUU UCAUGUG UCGUAAA AGUACAC hsa-miR-4661-3p 0.71 -17.1 0.7465 GAU UCU UG GAUCCU CUG AGA AC CUAGGA hsa-let-7g-3p 0.49 -19.5 0.7436 GUCUGUACAG CGGACAUGUC hsa-miR-148a-5p 0.79 -12.6 0.7424 AGAACUU UCUUGAA hsa-miR-1208 0.58 -15.4 0.7352 CCU UU AACAGUG GGA AG UUGUCAC hsa-miR-96-5p 0.68 -21.8 0.7349 GUGU UGGUGCCAAA CACG AUCACGGUUU hsa-miR-15b-3p 0.58 -14.9 0.7334 AGU GUA UCUCU A CU ACUGAGUC AGU ACUGAGA hsa-miR-5197-3p 0.68 -23 0.7232 AGGU UUUAU AACCACU UCCA AAGUG UUGGUGA	hsa-miR-1271-5p	0.71	-25.9	0.7544	GGGUGUUU CU GGUGCCAA	CUCACGAA GA CCACGGUU
hsa-miR-4643 0.71 -20.1 0.747 GGUAUUU UCAUGUG UCGUAAA AGUACAC hsa-miR-4661-3p 0.71 -17.1 0.7465 GAU UCU UG AGA AC UAGGA AGUACAC hsa-miR-4661-3p 0.71 -17.1 0.7465 GAU UCU UG GGA AC CUAGGA AGA CUAGGA AGA CUAGGA AGA CUAGGA AGA CUG AGA AGA CUG AGA AGUACUC UCUUGAA Insa-miR-148a-5p 0.79 -12.6 0.7424 AGAACUU UCUUGAA UCUUGAA Insa-miR-1208 0.58 -15.4 0.7352 CCU UU AACAGUG GGA AG UUGUCAC Insa-miR-160-5p 0.68 -21.8 0.7349 GUGU UGGUGCCAAA CACG AUCACGGUUU hsa-miR-15b-3p 0.58 -14.9 0.7334 AGU GUA AUGAUUCA UCG CGU UACUAAGGA Insa-miR-5197-3p 0.68 -23 0.7327 U GA UGAUUCAG UCUUU A CU ACUGAGAGA AGAU CU ACAA Insa-miR-4	hsa-miR-4795-3p	0.59	-21	0.7475	CAG GUGGU UGAUAAUA	GUC CACCG AUUAUUAU
hsa-miR-4661-3p 0.71 -17.1 0.7465 GAU UCU UG GAUCCU CUG AGA AC CUAGGA hsa-let-7g-3p 0.49 -19.5 0.7436 GUCUGUACAG CGGACAUGUC hsa-miR-148a-5p 0.79 -12.6 0.7424 AGAACUU UCUUGAA hsa-miR-1208 0.58 -15.4 0.7352 CCU UU AACAGUG GGA AG UUGUCAC hsa-miR-96-5p 0.68 -21.8 0.7349 GUGU UGGUGCCAAA CACG AUCACGGUUU hsa-miR-15b-3p 0.58 -14.9 0.7334 AGU GUA AUCAUGAGUC UCG CGU UACUAAG hsa-miR-5197-3p 0.68 -23 0.7327 U GA UGAUUCAG UCCA AGUGU UUGAGA hsa-miR-4460 0.66 -19.6 0.7232 AGGU UUUAU AACCACU UCCA AAGUG UUGGUGA hsa-miR-200a-3p 0.73 -19.8 0.7217 ACAU GUUA GA CAGUGU UGUA CAAU CU GUCACA hsa-miR-320c 0.8 -21.1 0.7214 GCC CUCU G AGCUUU UGG GAGA U UCGAAA	hsa-miR-4643	0.71	-20.1	0.747	GGUAUUU UCAUGUG	UCGUAAA AGUACAC
hsa-let-7g-3p 0.49 -19.5 0.7436 GUCUGUACAG CGGACAUGUC hsa-miR-148a-5p 0.79 -12.6 0.7424 AGAACUU UCUUGAA hsa-miR-1208 0.58 -15.4 0.7352 CCU UU AACAGUG GGA AG UUGUCAC hsa-miR-1208 0.58 -15.4 0.7352 CCU UU AACAGUG GGA AG UUGUCAC hsa-miR-96-5p 0.68 -21.8 0.7349 GUGU UGGUGCCAAA CACG AUCACGGUUU hsa-miR-15b-3p 0.58 -14.9 0.7334 AGU GUA AUGAUUC UCG CGU UACUAAG hsa-miR-5197-3p 0.68 -23 0.7327 U GA UGAUUCAG UCUUCU A CU ACUGAGUC AGAAGA hsa-miR-4460 0.66 -19.6 0.7232 AGGU UUUAU AACCACU UCCA AAGUG UUGGUGA hsa-miR-200a-3p 0.73 -19.8 0.7217 ACAU GUUA GA CAGUGU UGUA CAAU UUGAAA hsa-miR-320c 0.8 -21.1 0.7214 GCC CUCU G AGCUUU UGG GAGA U UCGAAA	hsa-miR-4661-3p	0.71	-17.1	0.7465	GAU UCU UG GAUCCU	CUG AGA AC CUAGGA
hsa-miR-148a-5p 0.79 -12.6 0.7424 AGAACUU UCUUGAA hsa-miR-1208 0.58 -15.4 0.7352 CCU UU AACAGUG GGA AG UUGUCAC hsa-miR-1208 0.58 -15.4 0.7352 CCU UU AACAGUG GGA AG UUGUCAC hsa-miR-96-5p 0.68 -21.8 0.7349 GUGU UGGUGCCAAA CACG AUCACGGUUU hsa-miR-15b-3p 0.58 -14.9 0.7334 AGU GUA AUGAUUC UCG CGU UACUAAG hsa-miR-5197-3p 0.68 -23 0.7327 U GA UGAUUCAG UCUA ACU ACUGAGUC AGAAGA hsa-miR-4460 0.66 -19.6 0.7232 AGGU UUUAU AACCACU UCCA AAGUG UUGGUGA hsa-miR-200a-3p 0.73 -19.8 0.7217 ACAU GUUA GA CAGUGU UGUA CAAU CU GCACA hsa-miR-320c 0.8 -21.1 0.7214 GCC CUCU G AGCUUU UGG GAGA U UCGAAA	hsa-let-7g-3p	0.49	-19.5	0.7436	GUCUGUACAG	CGGACAUGUC
hsa-miR-1208 0.58 -15.4 0.7352 CCU UU AACAGUG GGA AG UUGUCAC hsa-miR-96-5p 0.68 -21.8 0.7349 GUGU UGGUGCCAAA CACG AUCACGGUUU hsa-miR-96-5p 0.68 -21.8 0.7349 GUGU UGGUGCCAAA CACG AUCACGGUUU hsa-miR-15b-3p 0.58 -14.9 0.7334 AGU GUA AUGAUUC UCG CGU UACUAAG hsa-miR-5197-3p 0.68 -23 0.7327 U GA UGAUUCAG UCUUCU A CU ACUGAGUC AGAAGA hsa-miR-4460 0.66 -19.6 0.7232 AGGU UUUAU AACCACU UCCA AAGUG UUGGUGA hsa-miR-200a-3p 0.73 -19.8 0.7217 ACAU GUUA GA CAGUGU UGUA CAAU CU GUCACA hsa-miR-320c 0.8 -21.1 0.7214 GCC CUCU G AGCUUU UGG GAGA U UCGAAA	hsa-miR-148a-5p	0.79	-12.6	0.7424	AGAACUU	UCUUGAA
hsa-miR-96-5p 0.68 -21.8 0.7349 GUGU UGGUGCCAAA CACG AUCACGGUUU hsa-miR-15b-3p 0.58 -14.9 0.7334 AGU GUA AUGAUUC UCG CGU UACUAAG hsa-miR-5197-3p 0.68 -23 0.7327 U GA UGAUUCAG UCUUCU A CU ACUGAGUC AGAAGA hsa-miR-4460 0.66 -19.6 0.7232 AGGU UUUAU AACCACU UCCA AAGUG UUGGUGA hsa-miR-200a-3p 0.73 -19.8 0.7217 ACAU GUUA GA CAGUGU UGUA CAAU CU GUCACA hsa-miR-320c 0.8 -21.1 0.7214 GCC CUCU G AGCUUU UGG GAGA U UCGAAA	hsa-miR-1208	0.58	-15.4	0.7352	CCU UU AACAGUG	GGA AG UUGUCAC
hsa-miR-15b-3p0.58-14.90.7334AGU GUAAUGAUUCUCG CGUUACUAAGhsa-miR-5197-3p0.68-230.7327U GA UGAUUCAG UCUUCUA CU ACUGAGUC AGAAGAhsa-miR-44600.66-19.60.7232AGGUUUUAU AACCACUUCCAAAGUG UUGGUGAhsa-miR-200a-3p0.73-19.80.7217ACAU GUUA GA CAGUGUUGUA CAAUCU GUCACAhsa-miR-320c0.8-21.10.7214GCC CUCU GAGCUUUUGG GAGA UUCGAAA	hsa-miR-96-5p	0.68	-21.8	0.7349	GUGU UGGUGCCAAA	CACG AUCACGGUUU
hsa-miR-5197-3p0.68-230.7327U GA UGAUUCAG UCUUCUA CU ACUGAGUC AGAAGAhsa-miR-44600.66-19.60.7232AGGU UUUAU AACCACUUCCA AAGUG UUGGUGAhsa-miR-200a-3p0.73-19.80.7217ACAU GUUA GA CAGUGUUGUA CAAU CU GUCACAhsa-miR-320c0.8-21.10.7214GCC CUCU G AGCUUUUGG GAGA U UCGAAA	hsa-miR-15b-3p	0.58	-14.9	0.7334	AGU GUA AUGAUUC	UCG CGU UACUAAG
hsa-miR-44600.66-19.60.7232AGGUUUUAU AACCACUUCCAAAGUG UUGGUGAhsa-miR-200a-3p0.73-19.80.7217ACAU GUUAGA CAGUGUUGUA CAAUCU GUCACAhsa-miR-320c0.8-21.10.7214GCC CUCU GAGCUUUUGG GAGA UUCGAAA	hsa-miR-5197-3p	0.68	-23	0.7327	U GA UGAUUCAG UCUUCU	A CU ACUGAGUC AGAAGA
hsa-miR-200a-3p 0.73 -19.8 0.7217 ACAU GUUA GA CAGUGU UGUA CAAU CU GUCACA hsa-miR-320c 0.8 -21.1 0.7214 GCC CUCU G AGCUUU UGG GAGA U UCGAAA	hsa-miR-4460	0.66	-19.6	0.7232	AGGU UUUAU AACCACU	UCCA AAGUG UUGGUGA
hsa-miR-320c 0.8 -21.1 0.7214 GCC CUCU G AGCUUU UGG GAGA U UCGAAA	hsa-miR-200a-3p	0.73	-19.8	0.7217	ACAU GUUA GA CAGUGU	UGUA CAAU CU GUCACA
	hsa-miR-320c	0.8	-21.1	0.7214	GCC CUCU G AGCUUU	UGG GAGA U UCGAAA

hsa-miR-4461	0.78	-20.3	0.7203	AGC AGUCUCAA	UCG UCAGAGUU
hsa-miR-4760-3p	0.75	-14.7	0.7197	GAAC UGAAUUU	CUUG ACUUAAA
hsa-miR-641	0.74	-21.6	0.7192	GGCUUU UCC UAUGUCUU	CUGAGA AGG AUACAGAA
hsa-miR-5571-5p	0.77	-16	0.7185	GGAG CUC G AGAAUU	CCUC GAG C UCUUAA
hsa-miR-1304-5p	0.59	-21.9	0.7164	UAC CU CUG AGCCUCAA	GUG GA GAC UCGGAGUU
hsa-miR-200a-5p	0.54	-19.2	0.7154	UCC AGUG GU UG GUAAGAU	AGG UCGU CA GC CAUUCUA
hsa-miR-544a	0.66	-13.9	0.7153	CUU CUA GCAGAA	GAA GAU CGUCUU
hsa-miR-3167	0.67	-19.2	0.7139	CA CAG UGAAAUCC	GU GUC ACUUUAGG
hsa-miR-548at-3p	0.69	-12.2	0.7134	C GAG UA GGUUUU	G UUC AU CCAAAA
hsa-miR-1208	0.58	-21.4	0.7107	UCUG CC UGUU UGAACAGUG	AGGC GG ACAG ACUUGUCAC
hsa-miR-548ag	0.71	-14	0.7102	UAG G UA UUACCUU	GUC U GU AAUGGAA
hsa-miR-490-3p	0.74	-20.7	0.7075	GGC UUUCCAGGU	UCG GGAGGUCCA
hsa-miR-205-3p	0.72	-15.8	0.7064	UUUUAC UU AUUGAAAU	GAAGUG AG UGACUUUA
hsa-miR-141-5p	0.5	-19.6	0.7046	AAC UUG CUGGAAGAU	UUG GAC GACCUUCUA
hsa-miR-541-5p	0.77	-16.5	0.7046	AUCG ACAG AGA AUCCUU	UGGC UGUC UCU UAGGAA
hsa-miR-556-3p	0.46	-26.4	0.7037	AGAUGGGU UAAUGGUAAUA	UCUACUCG AUUACCAUUAU
hsa-let-7g-3p	0.49	-23.6	0.7032	GGU UG GUCUGUACAG	CCG AC CGGACAUGUC
hsa-miR-4710	0.77	-31	0.7023	GACC CC CCCUCACCC	UUGG GG GGGAGUGGG
hsa-miR-141-5p	0.5	-22.2	0.7014	UCCAG UGU UUGGAAGA	AGGUU ACA GACCUUCU
hsa-miR-4514	0.77	-20.5	0.7014	CCUA UCU UGCCUG	GGGU AGG ACGGAC
hsa-miR-106b-3p	0.74	-26.6	0.7012	CAGUAAGU AUCU CAGUGC	GUCGUUCA UGGG GUCACG
hsa-miR-21-5p	0.77	-16.9	0.7	GAUA GGUUU UAAGCUA	UUGU UCAGA AUUCGAU
hsa-miR-520a-5p	0.77	-21	0.7	AGA ACU UCUUCUGGA	UCU UGA GGGAGACCU
hsa-miR-7-5p	0.51	-21.7	0.6997	UAA GAGUC CUG UCUUCC	GUU UUUAG GAU AGAAGG
hsa-miR-4795-3p	0.59	-21.3	0.6989	CAG GUGGU UAAUAAUAU	GUC CACCG AUUAUUAUA
hsa-miR-5582-3p	0.78	-12.2	0.6985	CCU C UAAAGUUUU	GGA G AUUUCAAAA
hsa-miR-3143	0.74	-15	0.696	GAA AGAA UUAC AUGUUA	CUU UCUU AAUG UACAAU
hsa-miR-640	0.8	-23.3	0.6955	AGGU AGGU UCU GGAUCAU	UCCG UCCA AGG CCUAGUA
hsa-miR-4780	0.75	-21.6	0.6942	UUAGG GAUUA UCAAGGG	GAUCC CUAGU AGUUCCC
hsa-miR-7-5p	0.51	-19	0.694	GAUAA ACU GUCUUCU	UUGUU UGA CAGAAGG
hsa-miR-3616-3p	0.7	-21.7	0.6936	UGUG GA AAUGCCCUC	ACGU CU UUACGGGAG
hsa-miR-676-5p	0.77	-21.3	0.6934	GCA AGU CC GGUUGAAG	CGU UCA GG CCAACUUC
hsa-miR-4711-3p	0.52	-18	0.6928	UC GC GGG AGACAC	AG CG UCU UCUGUG
hsa-miR-4476	0.64	-18.8	0.6915	GU UGU U AGAU CCUUCCU	CG ACA G UUUA GGAAGGA
hsa-miR-338-5p	0.8	-11.1	0.6912	UACU G ACUA UAUUGU	GUGA U UGGU AUAACA
hsa-miR-4686	0.8	-18.2	0.6894	CC UUCAGCAGA	GG GGGUCGUCU
hsa-miR-9-3p	0.71	-15.7	0.6892	UUUUC GU UCU GCUUUAU	GAAAG CA AGA CGAAAUA
hsa-miR-4672	0.65	-21.4	0.6854	UGCUUC GU UAGU UGUGUAA	ACGGAG CA GUCG ACACAUU
hsa-miR-3064-5p	0.78	-22.7	0.6852	UGUG ACC ACAGCCA	ACGU UGG UGUCGGU
hsa-miR-103a-2-5p	0.8	-15.9	0.685	UAUUGUA AAGAAGU	GUGACAU UUCUUCG
hsa-miR-362-3p	0.73	-20.5	0.6841	UG UCC UGA UAG GUGUGU	AC AGG ACU AUC CACACA
hsa-miR-4724-5p	0.8	-22.4	0.6816	G GCUU AUUCC UGG UUCAGU	C CGAG UGAGG ACC AAGUCA
hsa-miR-16-1-3p	0.74	-13.4	0.6799	GU CGC AUACUG	CG GUG UAUGAC

hsa-miR-550b-2-5p	0.74	-22.7	0.6781	GU UUACU UC GGGCACA	CA AAUGA GG UCCGUGU
hsa-miR-641	0.74	-12.1	0.678	GAU UGUCUU	CUG ACAGAA
hsa-miR-2467-5p	0.71	-22.5	0.6778	AGUC AGGUU AAC GAGCCU	UCGG UCCGA UUG CUCGGA
hsa-miR-4461	0.78	-13.9	0.6765	UUAU GG UCUCAA	GAUG UC AGAGUU
hsa-miR-520a-5p	0.77	-19.9	0.6756	GGA G AUU UCUUCUGGA	UCU CUGA GGGAGACCU
hsa-miR-3202	0.66	-17.9	0.6754	UAAG UUUUU CCUUCC	AUUU GAGAA GGAAGG
hsa-miR-5696	0.75	-12.6	0.6721	UCAG C AAAUGA	AGUC G UUUACU
hsa-miR-4696	0.58	-15.5	0.6712	GGUA UGUCUUG	UCAU GCAGAAC
hsa-miR-4661-5p	0.76	-19.1	0.6709	CG AUCC GCAGG GCUAGU	GU UAGG UGUCU CGAUCA
hsa-miR-5590-3p	0.73	-10.9	0.6708	GUC C UGGA CUUUAU	CGG G ACUU GAAAUA
hsa-miR-4772-3p	0.59	-23.1	0.6704	CUG UUA GC AGUUGCAGG	GAC AGU CG UCAACGUCC
hsa-miR-4686	0.8	-20.4	0.6686	CAG CCU GCAGAUG	GUC GGG CGUCUAU
hsa-miR-3691-3p	0.68	-18.7	0.6649	AGA AU AC GU GGACUUGGU	UCU UA UG CG UCUGAACCA
hsa-miR-876-5p	0.68	-17.2	0.6647	UUCA CAGA GAAAUCC	AAGU GUUU CUUUAGG
hsa-miR-330-3p	0.72	-14.4	0.6641	UCU UUGUA CU UGCUUU	AGA GACGU GG ACGAAA
hsa-miR-3143	0.74	-19.4	0.6628	GAGA AAG GUUUUA AAUGUUA	CUUU UUC CGAAAU UUACAAU
hsa-miR-1243	0.66	-18.5	0.6623	CUC CUAUA UG AUCCAGUU	GAG GAUAU AC UAGGUCAA
hsa-miR-548ag	0.71	-15.3	0.6617	UACAG UACCUU	GUGUU AUGGAA
hsa-miR-5571-5p	0.77	-18.2	0.6611	GGA CUCC AGAAUU	CCU GAGG UCUUAA
hsa-miR-15b-3p	0.58	-13	0.661	AGC UGAUUC	UCG ACUAAG
hsa-miR-5007-3p	0.6	-11.7	0.6593	GU UAUAUGAU	CA GUAUACUA
hsa-miR-4696	0.58	-17.1	0.657	GGUA UGUCUUG A	UCAU GCAGAAC U
hsa-let-7a-2-3p	0.51	-21.1	0.656	GGA GG CU G AG CUGUACAG	CCU UC GA C UC GACAUGUC
hsa-miR-3155b	0.74	-20.8	0.6541	CCUAU C GAGCCU	GGGUG G CUCGGA
hsa-miR-2114-5p	0.59	-18.2	0.6525	GUUUC GA AGGGACU	CGAAG CU UCCCUGA
hsa-miR-200a-5p	0.54	-14.9	0.6518	GUACU UAAGAUG	CGUGA AUUCUAC
hsa-miR-452-5p	0.75	-21.1	0.6515	CAGU CCUUU AACAGU	GUCA GGAGA UUGUCA
hsa-miR-501-3p	0.78	-17.4	0.6514	AG AUCU CC GUGCAUU	UC UAGG GG CACGUAA
hsa-let-7f-2-3p	0.79	-11.8	0.651	GUG A UGUAUA	CAU U ACAUAU
hsa-miR-7-5p	0.51	-18.7	0.6456	CA GA GAUU AGUCUUCU	GU UU UUAG UCAGAAGG
hsa-miR-338-5p	0.8	-17.8	0.645	CGCUC GGU GCU UAUUGU	GUGAG UCG UGG AUAACA
hsa-miR-15b-3p	0.58	-14.1	0.6419	AGA GU GCGA AAUGAUUU	UCU CG CGUU UUACUAAG
hsa-miR-493-3p	0.77	-14.5	0.6417	UG A AU ACCUUC	AC U UG UGGAAG
hsa-miR-493-3p	0.77	-20.6	0.6322	CCUG GC C CA ACCUUC	GGAC CG G GU UGGAAG
hsa-miR-5197-3p	0.68	-12.5	0.6321	GAU AU U UCUUCU	CUA UG A AGAAGA
hsa-miR-330-3p	0.72	-22.3	0.6312	UUGU GGCC GCUUUGU	GACG CCGG CGAAACG
hsa-miR-4528	0.64	-21.7	0.6303	U CAGAU G AUAUAUAAUGG	A GUCUA U UGUAUAUUACU
hsa-miR-9-3p	0.71	-17.4	0.6269	AUUUU GGU AGCUUU	UGAAA CCA UCGAAA
hsa-miR-517b-3p	0.74	-24.6	0.6229	GCAC CUA AGGGAU GCACGA	UGUG GAU UCCCUA CGUGCU
hsa-miR-3148	0.8	-17.7	0.62	GAG ACACA AG U UUUUCCA	UUC UGUGU UC A AAAAGGU
hsa-miR-556-3p	0.46	-15	0.618	GGCU GGUAAUAU	UCGA CCAUUAUA
hsa-miR-34b-3p	0.61	-11.9	0.6129	AGUGAU	UCACUA
hsa-miR-5696	0.75	-14.4	0.6116	CAUC GG UGC AAAUGA	GUAG CU AUG UUUACU

hsa-miR-5186	0.77	-16.4	0.6105	CUG UUUC AC AAUCUC	GAC AAAG UG UUAGAG
hsa-miR-5590-3p	0.73	-13.6	0.61	UUGUU GUAC GCUUUAU	AACGG UAUG UGAAAUA
hsa-miR-15b-3p	0.58	-18	0.609	GGC GC GUGAUUC	UCG CG UACUAAG
hsa-miR-505-3p	0.76	-22	0.6076	GGAG AUCAGUG UGUUGAU	CCUU UGGUCGU ACAACUG
hsa-miR-141-3p	0.66	-18.4	0.6061	UCU ACCA GA CAGUGU	AGA UGGU CU GUCACA
hsa-miR-16-1-3p	0.74	-12.8	0.6059	GC A AAUACU	CG U UUAUGA
hsa-miR-4795-3p	0.59	-9.4	0.6059	AUUCA AGU UU GAUAAUA	UAGGU UCA GA UUAUUAU
hsa-miR-490-3p	0.74	-22.2	0.6049	CAGCA GA UC CCAGGU	GUCGU CU GG GGUCCA
hsa-miR-660-5p	0.72	-21.1	0.6042	CC UGCA AUGGGUG	GG ACGU UACCCAU
hsa-miR-136-3p	0.64	-19.8	0.6034	GCUU UUGA GAUGAUG	UGAG AACU CUACUAC
hsa-miR-2467-5p	0.71	-25.3	0.6009	GGUC AAG CUG ACAG AGCCUCA	UCGG UUC GAU UGUC UCGGAGU
hsa-miR-181a-2-3p	0.8	-14.2	0.6002	AGC UCAGUG	UUG AGUCAC
hsa-miR-544a	0.66	-17.4	0.6001	ACUUG CUG UGCAGA	UGAAC GAU ACGUCU
hsa-miR-526b-5p	0.69	-20.7	0.5993	GGAG AGUGCUUU U CUCAAGA	UCUU UCACGAAG G GAGUUCU
hsa-miR-517c-3p	0.73	-21.9	0.5965	GCAC CUA AGGGAU GCACGA	UGUG GAU UUCCUA CGUGCU
hsa-miR-556-3p	0.46	-13.7	0.5962	AGUUG GGUAAU	UCGAU CCAUUA
hsa-miR-26a-2-3p	0.8	-22.8	0.5935	GAAAUA UAAU GGAAUAGG	CUUUGU AUUA UCUUAUCC
hsa-miR-3117-5p	0.8	-21.8	0.5894	AUAU A UCGU UAGUGUCU	UAUA U AGCA AUCACAGA
hsa-miR-3913-3p	0.75	-18.7	0.5861	UGG GC GAU UGAUGUUU	ACC UG CUA ACUACAGA
hsa-miR-103a-3p	0.75	-24.7	0.5851	GCCC C AUGCUGCU	CGGG G UACGACGA
hsa-miR-3148	0.8	-14.4	0.5851	GAG UAUA UACUGG UUUUUUCUA	UUC GUGU GUGGUC AAAAAAGGU
hsa-miR-205-3p	0.72	-15.7	0.5819	AUUUC UC UGAAAUC	UGAAG AG ACUUUAG
hsa-miR-141-3p	0.66	-21.2	0.5813	GUCU GCUAG UAGUGUU	UAGA UGGUC GUCACAA
hsa-miR-421	0.56	-19.7	0.5804	GC UCAGU UUUGUUGAU	CG GGUUA AGACAACUA
hsa-miR-493-3p	0.77	-19.4	0.5804	CC GUGCAU ACCUUCA	GG CGUGUG UGGAAGU
hsa-miR-3120-3p	0.74	-25.8	0.5788	GCCU GU CUGCAC UGCUGU	CGGA CA GAUGUG ACGACA
hsa-miR-3117-5p	0.8	-15.3	0.5777	GCU GUAGUGUU	UGA UAUCACAG
hsa-miR-802	0.73	-17	0.5763	AUAAGG CU UGUUACU	UGUUCC GA ACAAUGA
hsa-miR-3155b	0.74	-17.8	0.5761	UCUC CUGU A AGCCUG	AGGG GACG U UCGGAC
hsa-miR-567	0.71	-22.2	0.5759	CUG UUCUGG G AACAUACU	GAC AGGACC C UUGUAUGA
hsa-miR-4519	0.8	-16.3	0.5757	AG UG G ACUGCU	UC AC C UGACGA
hsa-miR-200a-3p	0.73	-21	0.5747	UUGU UGCUAG UAGUGUU	AGCA AUGGUC GUCACAA
hsa-miR-5197-5p	0.77	-19.6	0.5714	UCAAGG GUGA GCCAUU	AGUUCU UACU CGGUAA
hsa-miR-5591-3p	0.54	-13.8	0.571	UGGGUA	ACCCAU
hsa-miR-26a-2-3p	0.8	-17	0.5705	AGAU GUGAU AGAAUAG	UUUG CAUUA UCUUAUC
hsa-miR-544a	0.66	-16.9	0.5673	GUUAAAGG UGCAGA	CGAUUUUU ACGUCU
hsa-miR-676-5p	0.77	-15.5	0.5637	UGU UUCUGG GG UUGAAG	ACG AGGACU CC AACUUC
hsa-miR-641	0.74	-11.1	0.563	UUUUA UA UGUCUU	GAGAU AU ACAGAA
hsa-miR-4704-5p	0.77	-20.3	0.5606	CA UUGCA UGCU UAGUGUU	GU AGUGU ACGG AUCACAG
hsa-miR-1243	0.66	-15.4	0.5601	CAC UUAU UCCAGU	GUG GAUA AGGUCA
hsa-miR-29a-3p	0.8	-16.6	0.5589	AAC CA UGGUGC	UUG GU ACCACG
hsa-miR-520a-5p	0.77	-20.9	0.5565	AGA GGUGC UCUGGA	UCU UCAUG AGACCU

hsa-miR-3202	0.66	-18.1	0.5537	CUU CU CCCUUCUA	GAG GA GGGAAGGU
hsa-miR-3143	0.74	-16.3	0.5509	GGG GGAGC UUUUA AAUGUU	CUU CUUCG GAAAU UUACAA
hsa-miR-4772-3p	0.59	-21.6	0.5498	CUGA C G GCA AGUUGCAG	GACU G C CGU UCAACGUC
hsa-miR-493-3p	0.77	-19.9	0.5498	CCU GGC GU GACCUU	GGA CCG CA CUGGAA
hsa-miR-141-3p	0.66	-17.9	0.5495	AUUUU ACC G CAGUGUU	UAGAA UGG C GUCACAA
hsa-miR-3148	0.8	-11.3	0.5495	UUUUUCC	AAAAAGG
hsa-miR-556-3p	0.46	-15.2	0.5491	UGAGC GA GGUAAU	ACUCG UU CCAUUA
hsa-miR-4764-5p	0.8	-18.3	0.5467	UGAUUC ACAUCC	AUUGAG UGUAGG
hsa-miR-4776-5p	0.73	-24.5	0.5457	AGCU UGCU G UUCUGG	UCGG ACGG U AGGACC
hsa-miR-362-3p	0.73	-17	0.5379	UG UCC UGA GUGUGU	AC AGG ACU CACACA
hsa-miR-3148	0.8	-14.9	0.5364	G AU A UCAGU UUUUUCU	C UG U GGUCA AAAAAGG
hsa-miR-148a-5p	0.79	-18.3	0.5318	GG UUGGAGU G CUU GGAACUU	UC AGCCUCA C GAG UCUUGAA
hsa-miR-1304-5p	0.59	-16.7	0.5311	UAC UC CA UG CCUCAAG	GUG AG GU AC GGAGUUU
hsa-miR-200a-3p	0.73	-15.8	0.5295	AUU ACC G CAGUGUU	UAG UGG C GUCACAA
hsa-miR-5000-3p	0.79	-17.7	0.5295	UCUAA GUUU AAGU GUCCUG	AGGUU CAAG UUCA CAGGAC
hsa-miR-4686	0.8	-24.7	0.5286	AAUAUCAG AAGGU CCA GCAGAUA	UUGUGGUC UUUCG GGU CGUCUAU
hsa-miR-3913-3p	0.75	-16.5	0.5284	UGG GC GAU UGAUGU	ACC UG CUA ACUACA
hsa-miR-320c	0.8	-14.4	0.5283	U UCUU AUUU AGCUUUU	G AGAG UGGG UCGAAAA
hsa-miR-493-3p	0.77	-20.3	0.5282	CCU GGC GU GACCUU CA	GGA CCG CA CUGGAA GU
hsa-miR-4761-3p	0.69	-25	0.5262	GGAUAA AUGCCCUC	CCUGUU UACGGGAG
hsa-miR-3148	0.8	-14.6	0.5259	GU AU ACU AG UUUUUUCU	CG UG UGG UC AAAAAAGG
hsa-miR-5591-3p	0.54	-17.2	0.5248	GUU GC AUGGGUG	CGA CG UACCCAU
hsa-miR-665	0.75	-22.7	0.5213	AGGG CUU UUUCCUGG	UCCC GAG GGAGGACC
hsa-miR-4999-3p	0.8	-17.2	0.5186	GC GUA UUGUC GUAGUG	UG CAU AACAG CAUCAC
hsa-miR-3148	0.8	-18.9	0.5177	AGCACA CAU UAG UUUUUUCC	UCGUGU GUG GUC AAAAAGG
hsa-miR-24-3p	0.63	-22.1	0.5162	CUGC GAG CUGAGCC	GACG CUU GACUCGG
hsa-miR-3689f	0.78	-13.8	0.516	CC GG G AUAUCA	GG CC C UAUAGU
hsa-miR-5187-3p	0.65	-11.1	0.5146	AAG GAUUCA	UUC CUAAGU
hsa-miR-502-3p	0.71	-18.7	0.5056	GAUC GUC CAG GUGCAUU	UUAG CGG GUC CACGUAA
hsa-miR-4721	0.6	-24.8	0.5016	UCGCUG UACUU GGA GCCCUC	GGUGGC GUGGA CCU CGGGAG
hsa-miR-5094	0.79	-18.7	0.5012	AGGUU CA GGU ACUGAU	UCCAA GU CCG UGACUA
hsa-miR-548ag	0.71	-18	0.5008	CAGAA AC ACAGU UACCUUU	GUCUU UG UGUUA AUGGAAA
hsa-miR-7-5p	0.51	-14.9	0.3993	CA UC CU UCUUCC	GU AG GA AGAAGG

Table 4.6. Analysis of downregulatory miR binding seed sites in OGA 3'UTR regions

miRNA	Ratio	dG_hybrid	LogitProb	TargetMatch	MirMatch
hsa-miR-582-5p	0.71	-18.3	0.9035	UCA GAC CUU UUGACAUU	UU CAA G
hsa-miR-582-3p	0.72	-19.4	0.8837	AAGUUGGUCAAU	CCAAGUCAAC
hsa-miR-130b-5p	0.8	-21.4	0.8768	CAU ACGUUGU CUUUCUC	C CC A
hsa-miR-3125	0.78	-19	0.8615	A AGGUG CG AAGGAGAU	AG G U

hsa-miR-4729	0.63	-16.1	0.8513	GAAGGG UAUUUACU	AUC UUGUC
hsa-miR-5582-3p	0.8	-18.5	0.8314	GAUCC GU GAAUUUCAAAAU	G GU
hsa-miR-628-5p	0.61	-22.4	0.8291	GGAG AUUUAUA CAGUCGU	AUC A
hsa-miR-595	0.62	-22	0.8276	UGU UGC CGUGUGAAG	UCUG GG
hsa-miR-5696	0.76	-12	0.8239	AG GAU AUUUACU	CCGU UCU GA C
hsa-miR-539-3p	0.77	-19.4	0.7979	UUUCUU UAAC AGG ACAUACU	A A
hsa-miR-27a-3p	0.63	-22.6	0.7941	GCC UCG UGACACUU	C UUGAA G
hsa-miR-802	0.8	-15	0.7853	UCC AC UUAGA ACAAUGA	UGU U A C
hsa-miR-520d-5p	0.56	-10.7	0.7702	A GGAAACAU	CUUUCCCGA G C
hsa-miR-524-5p	0.56	-10.7	0.7702	A GGAAACAU	CUCUUUCACGA G C
hsa-miR-520d-5p	0.56	-14.6	0.7699	AGGGAAACAU	CUUUCCCGA C
hsa-miR-3973	0.72	-29.4	0.7652	UCCG UACGACAUGAAACA	GAU AU
hsa-miR-27b-3p	0.7	-21.6	0.7571	CG CU GA UCG UGACACUU	UUA G
hsa-miR-4709-3p	0.68	-21.1	0.7532	AUGUCUC AGAAGUU	CG GUGGAGG
hsa-miR-524-5p	0.56	-15.1	0.7483	ACG AGGGAAACAU	CUCUUUC A C
hsa-miR-4735-3p	0.66	-20.7	0.7466	CAGA CGUGGAA	UA UUAAACU A
hsa-miR-3613-3p	0.77	-21.1	0.7409	UUC ACCCGAA AAAAAC	C CCA AAA A
hsa-miR-519c-5p	0.77	-21.7	0.7377	GUC UUUCG GAAG GGAGAUCU	C C
hsa-miR-523-5p	0.78	-21.7	0.7377	GUC UUUCG GAAG GGAGAUCU	ССС
hsa-miR-4432	0.59	-18.8	0.7358	GUAG GUCUCAGAAA	UCC AAC
hsa-miR-548aq-5p	0.68	-22.3	0.7333	UUUUU CGUUAAUGAA	CCG GU AG
hsa-miR-3613-3p	0.77	-24.2	0.7306	CCCAA CCC AA ΑΑΑΑΑCA	CUU G AAA
hsa-miR-548am-5p	0.78	-22	0.7285	UUUUU GCGUUAAUGAA	CCG G AA
hsa-miR-520h	0.74	-15.2	0.7271	UGAG GUGAAAC	AUUUCCCUUC A
hsa-miR-4474-5p	0.61	-11.4	0.719	C UCUGAU	ACACAGACUAGUA U
hsa-miR-3133	0.75	-10.6	0.7089	ACC AA AAGAAAU	UA C AAUUCUC
hsa-miR-548ao-3p	0.61	-24.6	0.6996	ACGUUU UCAUCAGU CCAGAA	G A
hsa-miR-4696	0.77	-18.7	0.6956	GUC UAGG AGAACGU	UCUACU A C
hsa-miR-485-3p	0.79	-16.6	0.6952	CUCU CC UCU CG ACAUA	U GC
hsa-miR-3973	0.72	-10.8	0.6855	UGAAAC	GAUUCCGAUUACGACA A
hsa-miR-4668-3p	0.71	-17.8	0.6839		GACCUU UG
hsa-miR-520d-5p	0.56	-19.9	0.6756	UCCCG GGGAAACAU	CUIU AA C
hsa-miR-520d-5p	0.56	-16	0.6754	GA GGGAAACAU	CUUUCCC A C
hsa-miR-5191	0.71	-18.7	0.6708	UCG A GA GAUAGGA	UG AGUAA AG
hsa-miR-3133	0.75	-21.9	0.6689		U A U U
hsa-miR-524-5p	0.56	-17.4	0.6669	AC GA GGGAAACAU	CUCUUUC A C
hsa-miR-515-3p	0.78	-23.1	0.6599	GC AGGUUUU CCGUGAG	UU G CUU
hsa miP 5003 3n	0.62	20.1	0.6583	GGGUUG UUGGAU	G
hsa-miR-4432	0.02	-20.1	0.0363		UAGAA G A
hsa-miR-155-3p	0.76	-19.7	0.6518		
hsa-miR-640	0.78	-10.2	0.6503		
hea miP 3612 2m	0.70	-10.4	0.0303		
nsa-mix-3013-3p	0.//	-7.3	0.0408	CUAAAA AAAAAA	COULCAACE LA

hsa-miR-524-5p	0.56	-18.4	0.6465	ACGA GAAACAUC	CUCUUUC AGG
hsa-miR-3613-3p	0.77	-13.1	0.6373	AAC CGAA AAAAACA	CUUCCC C AAA
hsa-miR-18b-5p	0.78	-22.2	0.6366	UUGACG GA ACGUGGAAU	GA U UCU
hsa-miR-625-3p	0.79	-17.7	0.6365	CC CUUUC AUAUCA	ACU CC AAG G
hsa-miR-4709-3p	0.68	-18.8	0.6312	UG CGUGGAG G AGAAGU	CGA UCU U
hsa-miR-324-3p	0.74	-26.8	0.6254	UCG C UGGACCCCGUCA	GG UG
hsa-miR-3919	0.8	-19.5	0.6205	UGACU CAG AAC AAGAGACG	GA
hsa-miR-524-5p	0.56	-19.4	0.6174	CUC UCA AAGG GAAACAU	UU CG C
hsa-miR-4432	0.59	-21.7	0.6172	UCCG GAA CUCAGAA	UA CGU A
hsa-miR-548y	0.78	-14.6	0.6142	CG UUUU UCAC UAAUGAA	CUG AA
hsa-miR-5003-3p	0.62	-17.9	0.6132	GG UU UUGG CUUUUCAU	GG G AU
hsa-miR-1244	0.77	-24.2	0.6127	UAGAGU UUUGG UGAUGA	UUGG AUG U A
hsa-miR-4696	0.77	-23.3	0.6107	CUA UGUCAUAGG AGAACG	UC C U
hsa-miR-548av-5p	0.71	-16.5	0.6085	AG CGU CAUGAAA	UUU GU A
hsa-miR-548av-5p	0.71	-10.7	0.6066	UUUAGG G AUGAAAA	C UUC
hsa-miR-520h	0.74	-14.8	0.6043	GAGAUUU C UUC GUGAAA	U C C CA
hsa-miR-520d-5p	0.56	-18.1	0.6042	UCC CGA GAAACAUC	CUU AGG
hsa-miR-520h	0.74	-26	0.6037	GAGAU UUCCC UCGUGAAAC	U U A
hsa-miR-3133	0.75	-9.5	0.6028	AAGAAAU	UAACCCAAAAUUCUC
hsa-miR-4474-5p	0.61	-17.3	0.6028	UAGU ACUCUGAU	ACACAGAC U
hsa-miR-4432	0.59	-14.6	0.5991	CCG AAC UC UCAGAA	U UAG G A
hsa-miR-548y	0.78	-19.8	0.5988	CCGU UUU GUCACU AAUGAAAA	U
hsa-miR-4659b-5p	0.71	-27.4	0.5987	AGAA UCUGUACCGUU	A GAA
hsa-miR-4696	0.77	-25.9	0.5964	UCUAC UC AGG CAGAACG	UG AU U
hsa-miR-3119	0.8	-16.1	0.5916	GUAG CA UUUUCGG	CG UUU A U
hsa-miR-550a-3p	0.75	-21.8	0.5878	AC CGGACU CCCU CAUUCUGU	U A
hsa-miR-130b-5p	0.8	-10.3	0.5867	UUUCUC	CAUCACGUUGUCCC A
hsa-miR-3613-3p	0.77	-8.2	0.5861	AAAAAC	CUUCCCAACCCGAAAAA A
hsa-miR-595	0.62	-22.1	0.5855	GUG GGUG GUGUGAAG	UCU U CC
hsa-miR-2355-3p	0.66	-24.8	0.5852	AGGUUUGU CGUUCCUGUU	UAG A
hsa-miR-3973	0.72	-17.2	0.5829	UUCC UACGAC UGAAAC	GA GAU A A
hsa-miR-548aq-5p	0.68	-17	0.5713	CCGU UUU GUCGUU AAUGAAAG	U
hsa-miR-4531	0.76	-21.2	0.5698	AGU CU UCGG AAGAGGUA	
hsa-miR-3681-3p	0.74	-19.2	0.567	AUC ACC ACU UCG UGACAC	UC U A
hsa-miR-3119	0.8	-15.5	0.5571	CGG AG CA UUUCGGU	U UUU AU
hsa-miR-548am-5p	0.78	-16.3	0.5555	CCGU UUUGG CGUU AAUGAAAA	U
hsa-miR-105-5p	0.69	-20.8	0.5549	UGG UCCU AC CGUAAAC	UG CAG U U
hsa-miR-628-5p	0.61	-23.4	0.5542	GGAGAUC UUUA CAGUCGUA	A UA
hsa-miR-449c-3p	0.78	-14.6	0.5536	ACGU UGAUCG	UGUCUCUCCUC UU
hsa-miR-4301	0.67	-26.9	0.5479	AGU UUCACUUCA UCACCCU	G
hsa-miR-4668-3p	0.71	-8.8	0.5447	GAC U UG CUAAAA	CU UU UUUUUC G
hsa-miR-4729	0.63	-16.6	0.5437	UCGAA UGUC UAUUUAC	A GGGU U

hsa-miR-676-3p	0.68	-21.1	0.5426	GUU UUGGA AUCCUG	UUGA G UC
hsa-miR-802	0.8	-14.7	0.5406	UCCU UUAGA CAAUGA	UGU AC AA C
hsa-miR-4659b-5p	0.71	-15.8	0.5382	AAG UCU UACCGU	AAG AA G U
hsa-miR-548an	0.72	-18.3	0.538	UUGGU CGGAAA	GUUU GUUA A
hsa-miR-5582-3p	0.8	-16	0.5243	UCCGU UGAA UUCAAAA	GGA G U U
hsa-miR-3973	0.72	-18.3	0.5205	CG CGACA UGAAAC	GAUUC AUUA A
hsa-miR-1243	0.75	-18.1	0.5119	UG GAUA AC UAGGUCA	G AG UUA A
hsa-miR-548aq-5p	0.68	-17.5	0.5095	CCG UUUGU CG AUGAAA	UU UUA G
hsa-miR-365b-3p	0.78	-20.3	0.508	UCCUA AAU CCGUAAU	UAU AA CC
hsa-miR-4420	0.71	-17	0.5056	AGUC UGU CU UA GUCACU	G GA G G
hsa-miR-5582-3p	0.8	-13.2	0.5014	UCC GAAU UUCAAA	GGA GUGU AU

Table 4.7. Analysis of downregulatory miR binding seed sites in OGA 3+5'UTR regions

miRNA	Ratio	dG_hybrid	LogitProb	TargetMatch	MirMatch
hsa-miR-421	0.75	-24.4	0.8846	CGGGUUAA AC AGACAACU	CG UU A
hsa-miR-582-3p	0.71	-19.4	0.8837	AAGUUGGUCAAU	CCAAGUCAAC
hsa-miR-5696	0.78	-12	0.8239	AG GAU AUUUACU	CCGU UCU GA C
hsa-miR-199a-3p	0.58	-19.2	0.8114	UUGG ACG UGAUGAC	A UUAC UC A
hsa-miR-1305	0.67	-14.9	0.795	GGGU AUCU CAACUUUU	AGAGA A
hsa-miR-27a-3p	0.75	-22.6	0.7941	GCC UCG UGACACUU	C UUGAA G
hsa-miR-3973	0.69	-29.4	0.7652	UCCG UACGACAUGAAACA	GAU AU
hsa-miR-4423-5p	0.73	-17.2	0.7605	GUAC UUUUCCGUU	C CCUUGU GA
hsa-miR-4709-3p	0.77	-21.1	0.7532	AUGUCUC AGAAGUU	CG GUGGAGG
hsa-miR-4735-3p	0.73	-20.7	0.7466	CAGA CGUGGAA	UA UUAAACU A
hsa-miR-3613-3p	0.73	-21.1	0.7409	UUC ACCCGAA AAAAAC	C CCA AAA A
hsa-miR-548ai	0.76	-16.7	0.7372	GUUAAUGGAAA	CCCUUUUUGAC
hsa-miR-4432	0.57	-18.8	0.7358	GUAG GUCUCAGAAA	UCC AAC
hsa-miR-548ar-5p	0.69	-22.7	0.7355	UUUUU ACGUUAAUGAA	CG G AA
hsa-miR-548ar-5p	0.69	-16.1	0.7332	CGUUUUU AC U AAUGAAAA	G G U
hsa-miR-3613-3p	0.73	-24.2	0.7306	CCCAA CCC AA AAAAACA	CUU G AAA
hsa-miR-574-5p	0.77	-25.1	0.7299	UGAGUG GUG GUGUGAG	UGUG U U U
hsa-miR-548a-5p	0.67	-14.5	0.7136	CAUUUU CGUU AAUGAAAA	C GAG
hsa-miR-541-5p	0.8	-19.3	0.7019	UC AC UGG CUG UAGGAAA	CC UCGUCU
hsa-miR-548d-5p	0.68	-19.4	0.6986	UUUUU GUGUUAAUGAA	CCG G AA
hsa-miR-3973	0.69	-10.8	0.6855	UGAAAC	GAUUCCGAUUACGACA A
hsa-miR-4511	0.74	-21.1	0.6672	UCCCG ACG CAAGAAG	UUU UUGU
hsa-miR-130a-5p	0.74	-17.8	0.6659	UGU AUC GU UACACUU	CGUC C GU
hsa-miR-5087	0.74	-21.1	0.6659	UACG UCG UUUCG UGUUUGGG	G G A
hsa-miR-5003-3p	0.79	-20.1	0.6583	GGGUUG UUGGAU CUUUUCAU	G
hsa-miR-4432	0.57	-19.7	0.6563	UCCG C UCUCAGAA	UAGAA G A
hsa-miR-93-3p	0.79	-18.6	0.6557	GAUC AGUCGU	GCCCUUCAC G CA

hsa-miR-3613-3p	0.73	-7.5	0.6468	CGAAAA AAAAAA	CUUCCCAACC CA	
hsa-miR-192-5p	0.61	-20.2	0.642	AGUUA AUCCAGUC	CCGAC AGU	
hsa-miR-548k	0.8	-14	0.6383	UCGUUUU GC U AUGAAAA	AG GUC	
hsa-miR-3613-3p	0.73	-13.1	0.6373	AAC CGAA AAAAACA	CUUCCC C AAA	
hsa-miR-18b-5p	0.66	-22.2	0.6366	UUGACG GA ACGUGGAAU	GA U UCU	
hsa-miR-625-3p	0.75	-17.7	0.6365	CC CUUUC AUAUCA	ACU CC AAG G	
hsa-miR-4709-3p	0.77	-18.8	0.6312	UG CGUGGAG G AGAAGU	CGA UCU U	
hsa-miR-548a-5p	0.67	-22.4	0.6297	CAUUUUGA GCGUUAAUGAA	C AA	
hsa-miR-101-3p	0.8	-13.1	0.6289	AG AAUA G AUGACA	A UC GU UC U	
hsa-miR-5087	0.74	-17.8	0.627	UACG UCG UUUCG UGUUUG	G G A GG	
hsa-miR-324-3p	0.72	-26.8	0.6254	UCG C UGGACCCCGUCA	GG UG	
hsa-miR-548ar-3p	0.74	-11.3	0.6238	GAC UCAAAAU	CGUUUUUAUU G	
hsa-miR-4659a-5p	0.78	-29.2	0.6188	AGAA UCUGUACCGUC	CAAA GAA	
hsa-miR-499a-5p	0.79	-15.2	0.6173	GUGAC UUCAGAA	UUUGUA G UU	
hsa-miR-4432	0.57	-21.7	0.6172	UCCG GAA CUCAGAA	UA CGU A	
hsa-miR-5003-3p	0.79	-17.9	0.6132	GG UU UUGG CUUUUCAU	GG G AU	
hsa-miR-371b-5p	0.66	-20.2	0.6005	UUUC ACG C G AG AAAACUCA	GGU	
hsa-miR-4432	0.57	-14.6	0.5991	CCG AAC UC UCAGAA	U UAG G A	
hsa-miR-4659b-5p	0.71	-27.4	0.5987	AGAA UCUGUACCGUU	A GAA	
hsa-miR-542-3p	0.7	-20.8	0.5912	UCA UAGU UAGACAGUG	AAAG A U	
hsa-miR-93-3p	0.79	-19.1	0.5887	GAUC AGUCGU CA	GCCCUUCAC G	
hsa-miR-3613-3p	0.73	-8.2	0.5861	AAAAAC	A	
hsa-miR-3973	0.69	-17.2	0.5829	UUCC UACGAC UGAAAC	GA GAU A A	
hsa-miR-548k	0.8	-17.1	0.5723	CG AG CGU CAUGAAA	U UUUU G U A	
hsa-miR-4509	0.73	-19.3	0.5671	UGGAAGA AGGAAAU	UUU UAU CA	
hsa-miR-548d-5p	0.68	-16.3	0.5555	AAUGAAAA	U GU	
hsa-miR-2114-5p	0.66	-25.8	0.5512	CUG AGU UCCU UCCCUGAU	GCGA	
hsa-miR-4641	0.8	-21.6	0.5501	UCCG UUC GUACCCG	AC UU AUACC U	
hsa-miR-484	0.68	-25.1	0.5499	CCCC UG CUCGGA	UAGCCCU A CU	
hsa-miR-371b-5p	0.66	-15.5	0.5485	UUC C CGG AG AAAACU	U A GG U CA	
hsa-miR-93-3p	0.79	-21.2	0.545	CCCU UC CG AUC AGUCGU	G A G CA	
hsa-miR-676-3p	0.59	-21.1	0.5426	GUU UUGGA AUCCUG	UUGA G UC	
hsa-miR-4777-5p	0.78	-16.9	0.5421	UAU UAGAG AGU AGAUCUU	A AUA	
hsa-miR-125a-5p	0.75	-31.6	0.5412	A GUCCA UCCC GAGUCCCU	GU AUU A	
hsa-miR-4659b-5p	0.71	-15.8	0.5382	AAG UCU UACCGU	AAG AA G U	
hsa-miR-548an	0.75	-18.3	0.538	UUGGU CGGAAA	GUUU GUUA A	
hsa-miR-4659a-5p	0.78	-15.7	0.5366	AAG UCU UACCGU	CAAAAG AA G C	
hsa-miR-154-3p	0.8	-17.2	0.5221	UAUC GUUG ACAUACU	U CA GC AA	
hsa-miR-3973	0.69	-18.3	0.5205	CG CGACA UGAAAC	GAUUC AUUA A	
hsa-miR-199a-3p	0.58	-17	0.5161	GGU AC UCUGAUGA	AUU UAC G CA	
hsa-miR-499a-5p	0.79	-15.1	0.5119	ACG UCAGAAUU	UUUGUAGUG U	
hsa-miR-365a-3p	0.79	-20.3	0.508	UCCUA AAU CCGUAAU	UAU AA CC	
hsa-miR-4420	0.77	-17	0.5056	AGUC UGU CU UA GUCACU	G GA G G	
miRNA	Ratio	dG_hybrid	LogitProb	TargetMatch	MirMatch	
------------------	-------	-----------	-----------	--------------------------	--------------------------	--
hsa-miR-4778-3p	1.43	-20.5	0.8208	U ACUCUGC AAGAAG	A UGAGACG UUCUUC	
hsa-miR-551b-3p	1.84	-21.5	0.8063	UGGGAUC GGGUCG	ACUUUGG CCCAGC	
hsa-miR-2115-5p	1.5	-22.2	0.795	CAGG GUC UGGAAG	GUCC CAG ACCUUC	
hsa-miR-513c-5p	1.44	-20	0.7474	GUA AUGAU UCU CUUGAGA	UAU UGCUG GGA GAACUCU	
hsa-miR-4747-5p	1.38	-21.3	0.7466	G UAAG CCUUCCUU	C GUUC GGAAGGGA	
hsa-miR-2115-5p	1.5	-22.7	0.7226	CAGG GUC UGGAAG CU	GUCC CAG ACCUUC GA	
hsa-miR-4693-5p	1.41	-20.2	0.7199	UGA CAGU UCACAGU	ACU GUCA AGUGUCA	
hsa-miR-520c-3p	2.05	-17.1	0.7155	UCUC GCACUU	GGAG CGUGAA	
hsa-miR-148b-3p	1.54	-16.1	0.7023	GA UGCACUG	CU ACGUGAC	
hsa-miR-130b-3p	1.64	-18.6	0.6931	AUGU U UCG UAU UGCACU	UACG A AGU GUA ACGUGA	
hsa-miR-4747-5p	1.38	-18.1	0.6912	UAAGAUU UUU CCUUCC	AUUCUGG GGA GGAAGG	
hsa-miR-2115-5p	1.5	-13.5	0.6822	UC UGGAAG	AG ACCUUC	
hsa-miR-29b-2-5p	1.44	-14.2	0.677	UAGGUU UUAU AAACCA	AUUCGG GGUA UUUGGU	
hsa-miR-4325	1.37	-16.7	0.6168	UCAC G AU AGUGCA	AGUG C UG UCACGU	
hsa-miR-513c-5p	1.44	-17.5	0.5967	GAC CCUC CUUGAG	CUG GGAG GAACUC	
hsa-miR-513c-5p	1.44	-15	0.5961	ACC CUUGAG	UGG GAACUC	
hsa-miR-148a-3p	1.63	-16.5	0.5706	AUA GUUUUGU A UGCACU	UGU CAAGACA U ACGUGA	
hsa-miR-4693-5p	1.41	-17	0.5704	GUGAU AAG CACAGU	CACUG UUU GUGUCA	
hsa-miR-148b-3p	1.54	-16.4	0.5693	AUA GUUUUGU UGCACU	UGU CAAGACA ACGUGA	
hsa-miR-765	1.77	-18.2	0.5673	UAC UU CUU UCCUCC	GUG AA GAA AGGAGG	
hsa-miR-130b-3p	1.64	-20.3	0.5648	GCCU UA CG UGCACUG	CGGG GU GU ACGUGAC	
hsa-miR-148a-3p	1.63	-18.7	0.5367	GAAG UCUGU AG UGCACUG	UUUC AGACA UC ACGUGAC	
hsa-miR-4739	1.37	-27.2	0.5102	GGUCU G UCU UCUCCCUU	CCGGG C AGG GGAGGGAA	

Table 4.8. Analysis of upregulatory miR binding seed sites in OGA 3' UTR regions

Table 4.9. Analysis of upregulatory miR binding seed sites in OGT 3+5' UTR regions

miRNA	Ratio	dG_hybrid	LogitProb	TargetMatch	MirMatch	
hsa-miR-519c-3p	1.35	-18	0.8264	UCUC UGCACUU	GGAG ACGUGAA	
hsa-miR-302a-3p	1.45	-19.2	0.759	UCGCUA AC GCACUUA	AGUGGU UG CGUGAAU	
hsa-miR-449b-5p	1.37	-28.8	0.756	UCAGU UAGCGA UGCACUGCU	GGUCG AUUGUU AUGUGACGG	
hsa-miR-302b-3p	1.95	-16.6	0.751	GCUA AC GCACUUA	UGAU UG CGUGAAU	
hsa-miR-148b-3p	1.63	-16.1	0.7023	GA UGCACUG	CU ACGUGAC	
hsa-miR-1306-3p	1.39	-19.4	0.6387	GCU CA AGCCAAC	UGG GU UCGGUUG	
hsa-miR-1207-3p	1.45	-18.6	0.6232	UGAGG GU CAGCUGA	ACUCC CG GUCGACU	
hsa-miR-513a-5p	1.36	-20.4	0.61	AUG C CCUC CUGUGA	UAC G GGAG GACACU	
hsa-miR-5700	1.61	-17.4	0.6	UCAGUAA UUA GUGCAUUA	AGUUAUU AAU UACGUAAU	

hsa-miR-148a-3p	1.48	-16.5	0.5706	AUA GUUUUGU A UGCACU	UGU CAAGACA U ACGUGA
hsa-miR-148b-3p	1.63	-16.4	0.5693	AUA GUUUUGU UGCACU	UGU CAAGACA ACGUGA
hsa-miR-765	1.75	-18.2	0.5673	UAC UU CUU UCCUCC	GUG AA GAA AGGAGG
hsa-miR-449b-5p	1.37	-24.9	0.5582	CCAGU AC U ACUGCC	GGUCG UG A UGACGG
hsa-miR-148a-3p	1.48	-18.7	0.5367	GAAG UCUGU AG UGCACUG	UUUC AGACA UC ACGUGAC
hsa-miR-4739	1.38	-27.2	0.5102	GGUCU G UCU UCUCCCUU	CCGGG C AGG GGAGGGAA
hsa-miR-519c-3p	1.35	-18.2	0.5056	CCUC UAG GA UGCACU	GGAG AUU CU ACGUGA
hsa-miR-30c-2-3p	1.44	-22.7	0.5045	GG UGGA GGUCU UCUCCC	UC AUUU UCGGA AGAGGG

Table 4.10. Analysis of upregulatory miR binding seed sites in OGT 3' UTR regions

miRNA	Ratio	Seed_Type	dG_hybrid	LogitProb	TargetMatch	MirMatch
hsa-miR-1185-1-3n	1.65	6mer	-18.2	0.6433	CA Agggggacauaua	UAUUCU G
hsa-miR-19a-5n	1.52	offset_6mer	-18.3	0.6296	CACGU GAUA	ACAU U GA
hee miR 10e 5p	1.52	offsat 6mar	17.0	0.0290		
has miR 2122	1.52	offeet 6men	-17.9	0.7993		
lisa-mik-5122	1.65	offset-offier	-23.5	0.0884	UC AGG AA AG	A AGAA UU
hsa-miR-3925-5p	1.43	6mer	-17.3	0.5274	AAGAGA	CG UG UC A
hsa-miR-4470	2.69	offset-6mer	-17.5	0.5439	GAG CC GAAGG CAAACGG	A UG U
hsa-miR-4717-3p	1.54	7mer-A1	-17.7	0.6197	GGU UCGGU GUACAC	UCC G GG A

Table 4.11. Analysis of upregulatory miR binding seed sites in OGT 3' UTR regions

miRNA	Ratio	Seed_Type	dG_hybrid	LogitProb	TargetMatch	MirMatch
hsa-miR-1322	1.49	6mer	-23.3	0.5075	GUC UAGUCGUC GUAGUA	G G
hsa-miR-302b-3p	1.63	offset-6mer	-15	0.5934	UUUGUA C UCGUGA	GAUGAU CU AU
hsa-miR-302c-3p	1.75	offset-6mer	-16.1	0.5737	GGU UUUGUA C UCGUGA	GAC CU AU
hsa-miR-431-5p	1.54	offset-6mer	-19.1	0.7168	ACGU CUG ACGUUCU	A CCGG GU
hsa-miR-4470	2.12	offset-6mer	-17.5	0.5439	GAG CC GAAGG CAAACGG	A UG U
hsa-miR-4496	1.5	6mer	-17	0.5204	GG AGA GUCGA G AAAGGAG	G A UC
hsa-miR-4496	1.5	6mer	-22.2	0.6062	GGGAGA CGAA C AAAGGAG	GU GU
hsa-miR-520e	1.76	offset-6mer	-20.1	0.5817	GGGAGUU UC UCGUGA	UU CU AA
hsa-miR-548ap-5p	1.61	7mer-m8	-13.6	0.7168	UCUGG AAUGAAAA	UU CGUU
hsa-miR-548ap-5p	1.61	offset-6mer	-18.1	0.686	UUUC GCGUUAAUGAA	UG AA
hsa-miR-548ap-5p	1.61	6mer	-15.4	0.5457	UCUG GCG AUGAAA	UU UUA A
hsa-miR-5683	1.72	7mer-m8	-19.1	0.5924	UCUC UUAG GUAGACA	CUUCAG AC U

4.12 REFERENCES

1. Bond, M. R.; Hanover, J. A., A little sugar goes a long way: the cell biology of O-GlcNAc. *J Cell Biol* **2015**, *208* (7), 869-80.

2. Jiang, M.; Xu, B.; Li, X.; Shang, Y.; Chu, Y.; Wang, W.; Chen, D.; Wu, N.; Hu, S.; Zhang, S.; Li, M.; Wu, K.; Yang, X.; Liang, J.; Nie, Y.; Fan, D., O-GlcNAcylation promotes colorectal cancer metastasis via the miR-101-O-GlcNAc/EZH2 regulatory feedback circuit. *Oncogene* **2019**, *38* (3), 301-316.

3. Ong, Q.; Han, W.; Yang, X., O-GlcNAc as an Integrator of Signaling Pathways. *Front Endocrinol (Lausanne)* **2018**, *9*, 599.

4. Yang, X.; Qian, K., Protein O-GlcNAcylation: emerging mechanisms and functions. *Nat Rev Mol Cell Biol* **2017**, *18* (7), 452-465.

5. Wu, D.; Cai, Y.; Jin, J., Potential coordination role between O-GlcNAcylation and epigenetics. *Protein Cell* **2017**, *8* (10), 713-723.

6. Wright, J. N.; Collins, H. E.; Wende, A. R.; Chatham, J. C., O-GlcNAcylation and cardiovascular disease. *Biochem Soc Trans* **2017**, *45* (2), 545-553.

7. Singh, J. P.; Zhang, K.; Wu, J.; Yang, X., O-GlcNAc signaling in cancer metabolism and epigenetics. *Cancer Lett* **2015**, *356* (2 Pt A), 244-50.

8. Zhu, Y.; Shan, X.; Yuzwa, S. A.; Vocadlo, D. J., The emerging link between O-GlcNAc and Alzheimer disease. *J Biol Chem* **2014**, *289* (50), 34472-81.

9. Yuzwa, S. A.; Vocadlo, D. J., O-GlcNAc and neurodegeneration: biochemical mechanisms and potential roles in Alzheimer's disease and beyond. *Chem Soc Rev* 2014, *43* (19), 6839-58.

10. Yang, Y. R.; Suh, P. G., O-GlcNAcylation in cellular functions and human diseases. *Adv Biol Regul* **2014**, *54*, 68-73.

11. Li, Z.; Yi, W., Regulation of cancer metabolism by O-GlcNAcylation. *Glycoconj J* **2014**, *31* (3), 185-91.

12. Hart, G. W., Nutrient regulation of immunity: O-GlcNAcylation regulates stimulusspecific NF-kappaB-dependent transcription. *Sci Signal* **2013**, *6* (290), pe26.

13. Fardini, Y.; Dehennaut, V.; Lefebvre, T.; Issad, T., O-GlcNAcylation: A New Cancer Hallmark? *Front Endocrinol (Lausanne)* **2013**, *4*, 99.

14. Hart, G. W.; Slawson, C.; Ramirez-Correa, G.; Lagerlof, O., Cross talk between O-GlcNAcylation and phosphorylation: roles in signaling, transcription, and chronic disease. *Annu Rev Biochem* **2011**, *80*, 825-58.

15. Hanover, J. A.; Yu, S.; Lubas, W. B.; Shin, S. H.; Ragano-Caracciola, M.; Kochran, J.; Love, D. C., Mitochondrial and nucleocytoplasmic isoforms of O-linked GlcNAc transferase encoded by a single mammalian gene. *Arch Biochem Biophys* **2003**, *409* (2), 287-97.

16. Shafi, R.; Iyer, S. P.; Ellies, L. G.; O'Donnell, N.; Marek, K. W.; Chui, D.; Hart, G. W.; Marth, J. D., The O-GlcNAc transferase gene resides on the X chromosome and is essential for embryonic stem cell viability and mouse ontogeny. *Proc Natl Acad Sci U S A* **2000**, *97* (11), 5735-9.

17. Tan, Z. W.; Fei, G.; Paulo, J. A.; Bellaousov, S.; Martin, S. E. S.; Duveau, D. Y.; Thomas, C. J.; Gygi, S. P.; Boutz, P. L.; Walker, S., O-GlcNAc regulates gene expression by controlling detained intron splicing. *Nucleic Acids Res* **2020**, *48* (10), 5656-5669.

18. Keembiyehetty, C. N.; Krzeslak, A.; Love, D. C.; Hanover, J. A., A lipid-droplettargeted O-GlcNAcase isoform is a key regulator of the proteasome. *J Cell Sci* **2011**, *124* (Pt 16), 2851-60.

19. Qian, K.; Wang, S.; Fu, M.; Zhou, J.; Singh, J. P.; Li, M. D.; Yang, Y.; Zhang, K.; Wu, J.; Nie, Y.; Ruan, H. B.; Yang, X., Transcriptional regulation of O-GlcNAc homeostasis is disrupted in pancreatic cancer. *J Biol Chem* **2018**, *293* (36), 13989-14000.

20. Han, D. L.; Wang, L. L.; Zhang, G. F.; Yang, W. F.; Chai, J.; Lin, H. M.; Fu, Z.; Yu, J. M., MiRNA-485-5p, inhibits esophageal cancer cells proliferation and invasion by down-regulating O-linked N-acetylglucosamine transferase. *Eur Rev Med Pharmacol Sci* **2019**, *23* (7), 2809-2816.

21. Yu, F. Y.; Zhou, C. Y.; Liu, Y. B.; Wang, B.; Mao, L.; Li, Y., miR-483 is down-regulated in gastric cancer and suppresses cell proliferation, invasion and protein O-GlcNAcylation by targeting OGT. *Neoplasma* **2018**, *65* (3), 406-414.

22. Lo, W. Y.; Yang, W. K.; Peng, C. T.; Pai, W. Y.; Wang, H. J., MicroRNA-200a/200b Modulate High Glucose-Induced Endothelial Inflammation by Targeting O-linked N-Acetylglucosamine Transferase Expression. *Front Physiol* **2018**, *9*, 355.

23. Chai, Y.; Du, Y.; Zhang, S.; Xiao, J.; Luo, Z.; He, F.; Huang, K., MicroRNA-485-5p reduces O-GlcNAcylation of Bmi-1 and inhibits colorectal cancer proliferation. *Exp Cell Res* **2018**, *368* (1), 111-118.

24. Liu, Y.; Huang, H.; Liu, M.; Wu, Q.; Li, W.; Zhang, J., MicroRNA-24-1 suppresses mouse hepatoma cell invasion and metastasis via directly targeting O-GlcNAc transferase. *Biomed Pharmacother* **2017**, *91*, 731-738.

25. Liu, Y.; Huang, H.; Cao, Y.; Wu, Q.; Li, W.; Zhang, J., Suppression of OGT by microRNA24 reduces FOXA1 stability and prevents breast cancer cells invasion. *Biochem Biophys Res Commun* **2017**, *487* (3), 755-762.

26. Vaiana, C. A.; Kurcon, T.; Mahal, L. K., MicroRNA-424 Predicts a Role for beta-1,4 Branched Glycosylation in Cell Cycle Progression. *J Biol Chem* **2016**, *291* (3), 1529-37.

27. Murashov, A. K.; Pak, E. S.; Koury, M.; Ajmera, A.; Jeyakumar, M.; Parker, M.; Williams, O.; Ding, J.; Walters, D.; Neufer, P. D., Paternal long-term exercise programs offspring for low energy expenditure and increased risk for obesity in mice. *FASEB J* **2016**, *30* (2), 775-84.

28. Luo, P.; He, T.; Jiang, R.; Li, G., MicroRNA-423-5p targets O-GlcNAc transferase to induce apoptosis in cardiomyocytes. *Mol Med Rep* **2015**, *12* (1), 1163-8.

29. Solary, E.; Bernard, O. A.; Tefferi, A.; Fuks, F.; Vainchenker, W., The Ten-Eleven Translocation-2 (TET2) gene in hematopoiesis and hematopoietic diseases. *Leukemia* **2014**, *28* (3), 485-96.

30. Babae, N.; Bourajjaj, M.; Liu, Y.; Van Beijnum, J. R.; Cerisoli, F.; Scaria, P. V.; Verheul, M.; Van Berkel, M. P.; Pieters, E. H.; Van Haastert, R. J.; Yousefi, A.;

Mastrobattista, E.; Storm, G.; Berezikov, E.; Cuppen, E.; Woodle, M.; Schaapveld, R. Q.; Prevost, G. P.; Griffioen, A. W.; Van Noort, P. I.; Schiffelers, R. M., Systemic miRNA-7 delivery inhibits tumor angiogenesis and growth in murine xenograft glioblastoma. *Oncotarget* **2014**, *5* (16), 6687-700.

31. Muthusamy, S.; DeMartino, A. M.; Watson, L. J.; Brittian, K. R.; Zafir, A.; Dassanayaka, S.; Hong, K. U.; Jones, S. P., MicroRNA-539 is up-regulated in failing heart, and suppresses O-GlcNAcase expression. *J Biol Chem* **2014**, *289* (43), 29665-76.

32. Wang, D.; Hu, X.; Lee, S. H.; Chen, F.; Jiang, K.; Tu, Z.; Liu, Z.; Du, J.; Wang, L.; Yin, C.; Liao, Y.; Shang, H.; Martin, K. A.; Herzog, R. I.; Young, L. H.; Qian, L.; Hwa, J.; Xiang, Y., Diabetes Exacerbates Myocardial Ischemia/Reperfusion Injury by Down-Regulation of MicroRNA and Up-Regulation of O-GlcNAcylation. *JACC Basic Transl Sci* **2018**, *3* (3), 350-362.

33. Chatterjee, S.; Pal, J. K., Role of 5'- and 3'-untranslated regions of mRNAs in human diseases. *Biol Cell* **2009**, *101* (5), 251-62.

34. Jing, Q.; Huang, S.; Guth, S.; Zarubin, T.; Motoyama, A.; Chen, J.; Di Padova, F.; Lin, S. C.; Gram, H.; Han, J., Involvement of microRNA in AU-rich element-mediated mRNA instability. *Cell* **2005**, *120* (5), 623-34.

35. Otsuka, H.; Fukao, A.; Funakami, Y.; Duncan, K. E.; Fujiwara, T., Emerging Evidence of Translational Control by AU-Rich Element-Binding Proteins. *Front Genet* **2019**, *10*, 332.

36. Lytle, J. R.; Yario, T. A.; Steitz, J. A., Target mRNAs are repressed as efficiently by microRNA-binding sites in the 5' UTR as in the 3' UTR. *Proc Natl Acad Sci U S A* **2007**, *104* (23), 9667-72.

37. Orom, U. A.; Nielsen, F. C.; Lund, A. H., MicroRNA-10a binds the 5'UTR of ribosomal protein mRNAs and enhances their translation. *Mol Cell* **2008**, *30* (4), 460-71.

38. Panda, A. C.; Sahu, I.; Kulkarni, S. D.; Martindale, J. L.; Abdelmohsen, K.; Vindu, A.; Joseph, J.; Gorospe, M.; Seshadri, V., miR-196b-mediated translation regulation of mouse insulin2 via the 5'UTR. *PLoS One* **2014**, *9* (7), e101084.

39. Wu, Q.; Liu, H. O.; Liu, Y. D.; Liu, W. S.; Pan, D.; Zhang, W. J.; Yang, L.; Fu, Q.; Xu, J. J.; Gu, J. X., Decreased expression of hepatocyte nuclear factor 4alpha

(Hnf4alpha)/microRNA-122 (miR-122) axis in hepatitis B virus-associated hepatocellular carcinoma enhances potential oncogenic GALNT10 protein activity. *J Biol Chem* **2015**, *290* (2), 1170-85.

40. Trapannone, R.; Mariappa, D.; Ferenbach, A. T.; van Aalten, D. M., Nucleocytoplasmic human O-GlcNAc transferase is sufficient for O-GlcNAcylation of mitochondrial proteins. *Biochem J* **2016**, *473* (12), 1693-702.

41. Thu, C. T.; Chung, J. Y.; Dhawan, D.; Vaiana, C. A.; Mahal, L. K., High-Throughput miRFluR Platform Identifies miRNA Regulating B3GLCT That Predict Peters' Plus Syndrome Phenotype, Supporting the miRNA Proxy Hypothesis. *ACS Chem Biol* 2021, *16* (10), 1900-1907.
42. Wolter, J. M.; Kotagama, K.; Pierre-Bez, A. C.; Firago, M.; Mangone, M., 3'LIFE: a functional assay to detect miRNA targets in high-throughput. *Nucleic Acids Res* 2014, *42* (17),

e132. 43 7hou P · Y

43. Zhou, P.; Xu, W.; Peng, X.; Luo, Z.; Xing, Q.; Chen, X.; Hou, C.; Liang, W.; Zhou, J.; Wu, X.; Songyang, Z.; Jiang, S., Large-scale screens of miRNA-mRNA interactions unveiled that the 3'UTR of a gene is targeted by multiple miRNAs. *PLoS One* **2013**, *8* (7), e68204.

44. Agrawal, P.; Kurcon, T.; Pilobello, K. T.; Rakus, J. F.; Koppolu, S.; Liu, Z.; Batista, B. S.; Eng, W. S.; Hsu, K. L.; Liang, Y.; Mahal, L. K., Mapping posttranscriptional regulation of the human glycome uncovers microRNA defining the glycocode. *Proc Natl Acad Sci U S A* **2014**, *111* (11), 4338-43.

Bibliography

1. Piras, V.; Tomita, M.; Selvarajoo, K., Is central dogma a global property of cellular information flow? *Front Physiol* **2012**, *3*, 439.

2. Wymann, M. P.; Schneiter, R., Lipid signalling in disease. *Nat Rev Mol Cell Biol* **2008**, *9* (2), 162-76.

3. Sasisekharan, R.; Shriver, Z.; Venkataraman, G.; Narayanasami, U., Roles of heparansulphate glycosaminoglycans in cancer. *Nat Rev Cancer* **2002**, *2* (7), 521-8.

4. Heindel, D. W.; Koppolu, S.; Zhang, Y.; Kasper, B.; Meche, L.; Vaiana, C. A.; Bissel, S. J.; Carter, C. E.; Kelvin, A. A.; Elaish, M.; Lopez-Orozco, J.; Zhang, B.; Zhou, B.; Chou, T. W.; Lashua, L.; Hobman, T. C.; Ross, T. M.; Ghedin, E.; Mahal, L. K., Glycomic analysis of host response reveals high mannose as a key mediator of influenza severity. *Proc Natl Acad Sci U S A* **2020**, *117* (43), 26926-26935.

5. Amon, R.; Reuven, E. M.; Leviatan Ben-Arye, S.; Padler-Karavani, V., Glycans in immune recognition and response. *Carbohydr Res* **2014**, *389*, 115-22.

6. van den Berg, T. K.; Honing, H.; Franke, N.; van Remoortere, A.; Schiphorst, W. E.; Liu, F. T.; Deelder, A. M.; Cummings, R. D.; Hokke, C. H.; van Die, I., LacdiNAc-glycans constitute a parasite pattern for galectin-3-mediated immune recognition. *J Immunol* **2004**, *173* (3), 1902-7.

7. De Giorgi, F.; Fumagalli, M.; Scietti, L.; Forneris, F., Collagen hydroxylysine glycosylation: non-conventional substrates for atypical glycosyltransferase enzymes. *Biochem Soc Trans* **2021**, *49* (2), 855-866.

8. Joshi, H. J.; Hansen, L.; Narimatsu, Y.; Freeze, H. H.; Henrissat, B.; Bennett, E.; Wandall, H. H.; Clausen, H.; Schjoldager, K. T., Glycosyltransferase genes that cause monogenic congenital disorders of glycosylation are distinct from glycosyltransferase genes associated with complex diseases. *Glycobiology* **2018**, *28* (5), 284-294.

9. Neelamegham, S.; Mahal, L. K., Multi-level regulation of cellular glycosylation: from genes to transcript to enzyme to structure. *Curr Opin Struct Biol* **2016**, *40*, 145-152.

10. Anugraham, M.; Jacob, F.; Nixdorf, S.; Everest-Dass, A. V.; Heinzelmann-Schwarz, V.; Packer, N. H., Specific glycosylation of membrane proteins in epithelial ovarian cancer cell lines: glycan structures reflect gene expression and DNA methylation status. *Mol Cell Proteomics* **2014**, *13* (9), 2213-32.

11. Nairn, A. V.; York, W. S.; Harris, K.; Hall, E. M.; Pierce, J. M.; Moremen, K. W., Regulation of glycan structures in animal tissues: transcript profiling of glycan-related genes. *J Biol Chem* **2008**, *283* (25), 17298-313.

12. Liu, G.; Marathe, D. D.; Matta, K. L.; Neelamegham, S., Systems-level modeling of cellular glycosylation reaction networks: O-linked glycan formation on natural selectin ligands. *Bioinformatics* **2008**, *24* (23), 2740-7.

13. Kurcon, T.; Liu, Z.; Paradkar, A. V.; Vaiana, C. A.; Koppolu, S.; Agrawal, P.; Mahal, L. K., miRNA proxy approach reveals hidden functions of glycosylation. *Proc Natl Acad Sci US A* **2015**, *112* (23), 7327-32.

14. Agrawal, P.; Kurcon, T.; Pilobello, K. T.; Rakus, J. F.; Koppolu, S.; Liu, Z.; Batista, B. S.; Eng, W. S.; Hsu, K. L.; Liang, Y.; Mahal, L. K., Mapping posttranscriptional regulation of the human glycome uncovers microRNA defining the glycocode. *Proc Natl Acad Sci U S A* **2014**, *111* (11), 4338-43.

15. Kasper, B. T.; Koppolu, S.; Mahal, L. K., Insights into miRNA regulation of the human glycome. *Biochem Biophys Res Commun* **2014**, *445* (4), 774-9.

16. Schmiedel, J. M.; Klemm, S. L.; Zheng, Y.; Sahay, A.; Bluthgen, N.; Marks, D. S.; van Oudenaarden, A., Gene expression. MicroRNA control of protein expression noise. *Science* **2015**, *348* (6230), 128-32.

17. Liu, B.; Li, J.; Cairns, M. J., Identifying miRNAs, targets and functions. *Brief Bioinform* **2014**, *15* (1), 1-19.

18. Chendrimada, T. P.; Gregory, R. I.; Kumaraswamy, E.; Norman, J.; Cooch, N.; Nishikura, K.; Shiekhattar, R., TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. *Nature* **2005**, *436* (7051), 740-4.

19. Michlewski, G.; Caceres, J. F., Post-transcriptional control of miRNA biogenesis. *RNA* **2019**, *25* (1), 1-16.

20. Khvorova, A.; Reynolds, A.; Jayasena, S. D., Functional siRNAs and miRNAs exhibit strand bias. *Cell* **2003**, *115* (2), 209-16.

21. Agrawal, P.; Fontanals-Cirera, B.; Sokolova, E.; Jacob, S.; Vaiana, C. A.; Argibay, D.; Davalos, V.; McDermott, M.; Nayak, S.; Darvishian, F.; Castillo, M.; Ueberheide, B.; Osman, I.; Fenyo, D.; Mahal, L. K.; Hernando, E., A Systems Biology Approach Identifies FUT8 as a Driver of Melanoma Metastasis. *Cancer Cell* **2017**, *31* (6), 804-819 e7.

22. Cheng, L.; Gao, S.; Song, X.; Dong, W.; Zhou, H.; Zhao, L.; Jia, L., Comprehensive N-glycan profiles of hepatocellular carcinoma reveal association of fucosylation with tumor progression and regulation of FUT8 by microRNAs. *Oncotarget* **2016**, *7* (38), 61199-61214.

23. Bernardi, C.; Soffientini, U.; Piacente, F.; Tonetti, M. G., Effects of microRNAs on fucosyltransferase 8 (FUT8) expression in hepatocarcinoma cells. *PLoS One* **2013**, *8* (10), e76540.

24. Gaziel-Sovran, A.; Segura, M. F.; Di Micco, R.; Collins, M. K.; Hanniford, D.; Vega-Saenz de Miera, E.; Rakus, J. F.; Dankert, J. F.; Shang, S.; Kerbel, R. S.; Bhardwaj, N.; Shao, Y.; Darvishian, F.; Zavadil, J.; Erlebacher, A.; Mahal, L. K.; Osman, I.; Hernando, E., miR-30b/30d regulation of GalNAc transferases enhances invasion and immunosuppression during metastasis. *Cancer Cell* **2011**, *20* (1), 104-18.

25. Peng, R. Q.; Wan, H. Y.; Li, H. F.; Liu, M.; Li, X.; Tang, H., MicroRNA-214 suppresses growth and invasiveness of cervical cancer cells by targeting UDP-N-acetyl-alpha-D-galactosamine:polypeptide N-acetylgalactosaminyltransferase 7. *J Biol Chem* **2012**, *287* (17), 14301-9.

26. Shan, S. W.; Fang, L.; Shatseva, T.; Rutnam, Z. J.; Yang, X.; Du, W.; Lu, W. Y.; Xuan, J. W.; Deng, Z.; Yang, B. B., Mature miR-17-5p and passenger miR-17-3p induce hepatocellular carcinoma by targeting PTEN, GalNT7 and vimentin in different signal pathways. *J Cell Sci* **2013**, *126* (Pt 6), 1517-30.

27. Li, W.; Ma, H.; Sun, J., MicroRNA34a/c function as tumor suppressors in Hep2 laryngeal carcinoma cells and may reduce GALNT7 expression. *Mol Med Rep* **2014**, *9* (4), 1293-8.

28. Duan, H. F.; Li, X. Q.; Hu, H. Y.; Li, Y. C.; Cai, Z.; Mei, X. S.; Yu, P.; Nie, L. P.; Zhang, W.; Yu, Z. D.; Nie, G. H., Functional elucidation of miR-494 in the tumorigenesis of nasopharyngeal carcinoma. *Tumour Biol* **2015**, *36* (9), 6679-89.

29. Nie, G. H.; Luo, L.; Duan, H. F.; Li, X. Q.; Yin, M. J.; Li, Z.; Zhang, W., GALNT7, a target of miR-494, participates in the oncogenesis of nasopharyngeal carcinoma. *Tumour Biol* **2016**, *37* (4), 4559-67.

30. Li, Y.; Li, Y.; Chen, D.; Jin, L.; Su, Z.; Liu, J.; Duan, H.; Li, X.; Qi, Z.; Shi, M.; Ni, L.; Yang, S.; Gui, Y.; Mao, X.; Chen, Y.; Lai, Y., miR30a5p in the tumorigenesis of renal cell carcinoma: A tumor suppressive microRNA. *Mol Med Rep* **2016**, *13* (5), 4085-94.

31. Lu, Q.; Xu, L.; Li, C.; Yuan, Y.; Huang, S.; Chen, H., miR-214 inhibits invasion and migration via downregulating GALNT7 in esophageal squamous cell cancer. *Tumour Biol* **2016**, *37* (11), 14605-14614.

32. Niu, J. T.; Zhang, L. J.; Huang, Y. W.; Li, C.; Jiang, N.; Niu, Y. J., MiR-154 inhibits the growth of laryngeal squamous cell carcinoma by targeting GALNT7. *Biochem Cell Biol* **2018**, *96* (6), 752-760.

33. Kahai, S.; Lee, S. C.; Lee, D. Y.; Yang, J.; Li, M.; Wang, C. H.; Jiang, Z.; Zhang, Y.; Peng, C.; Yang, B. B., MicroRNA miR-378 regulates nephronectin expression modulating osteoblast differentiation by targeting GalNT-7. *PLoS One* **2009**, *4* (10), e7535.

34. Dyrskjot, L.; Ostenfeld, M. S.; Bramsen, J. B.; Silahtaroglu, A. N.; Lamy, P.; Ramanathan, R.; Fristrup, N.; Jensen, J. L.; Andersen, C. L.; Zieger, K.; Kauppinen, S.; Ulhoi, B. P.; Kjems, J.; Borre, M.; Orntoft, T. F., Genomic profiling of microRNAs in bladder cancer: miR-129 is associated with poor outcome and promotes cell death in vitro. *Cancer Res* **2009**, *69* (11), 4851-60.

35. Shan, Y.; Ma, J.; Pan, Y.; Hu, J.; Liu, B.; Jia, L., LncRNA SNHG7 sponges miR-216b to promote proliferation and liver metastasis of colorectal cancer through upregulating GALNT1. *Cell Death Dis* **2018**, *9* (7), 722.

36. Nakagawa, Y.; Nishikimi, T.; Kuwahara, K.; Fujishima, A.; Oka, S.; Tsutamoto, T.; Kinoshita, H.; Nakao, K.; Cho, K.; Inazumi, H.; Okamoto, H.; Nishida, M.; Kato, T.; Fukushima, H.; Yamashita, J. K.; Wijnen, W. J.; Creemers, E. E.; Kangawa, K.; Minamino, N.; Nakao, K.; Kimura, T., MiR30-GALNT1/2 Axis-Mediated Glycosylation Contributes to the Increased Secretion of Inactive Human Prohormone for Brain Natriuretic Peptide (proBNP) From Failing Hearts. *J Am Heart Assoc* **2017**, *6* (2).

37. Schjoldager, K. T.; Joshi, H. J.; Kong, Y.; Goth, C. K.; King, S. L.; Wandall, H. H.; Bennett, E. P.; Vakhrushev, S. Y.; Clausen, H., Deconstruction of O-glycosylation--GalNAc-T isoforms direct distinct subsets of the O-glycoproteome. *EMBO Rep* **2015**, *16* (12), 1713-22.

38. Hintze, J.; Ye, Z.; Narimatsu, Y.; Madsen, T. D.; Joshi, H. J.; Goth, C. K.; Linstedt, A.; Bachert, C.; Mandel, U.; Bennett, E. P.; Vakhrushev, S. Y.; Schjoldager, K. T., Probing the contribution of individual polypeptide GalNAc-transferase isoforms to the O-glycoproteome by inducible expression in isogenic cell lines. *J Biol Chem* **2018**, *293* (49), 19064-19077.

39. Zhang, L.; Hammell, M.; Kudlow, B. A.; Ambros, V.; Han, M., Systematic analysis of dynamic miRNA-target interactions during C. elegans development. *Development* **2009**, *136* (18), 3043-55.

40. Pilobello, K. T.; Krishnamoorthy, L.; Slawek, D.; Mahal, L. K., Development of a lectin microarray for the rapid analysis of protein glycopatterns. *Chembiochem* **2005**, *6* (6), 985-9.

41. Pilobello, K. T.; Slawek, D. E.; Mahal, L. K., A ratiometric lectin microarray approach to analysis of the dynamic mammalian glycome. *Proc Natl Acad Sci U S A* **2007**, *104* (28), 11534-9.

42. Hsu, S. D.; Lin, F. M.; Wu, W. Y.; Liang, C.; Huang, W. C.; Chan, W. L.; Tsai, W. T.; Chen, G. Z.; Lee, C. J.; Chiu, C. M.; Chien, C. H.; Wu, M. C.; Huang, C. Y.; Tsou, A. P.; Huang, H. D., miRTarBase: a database curates experimentally validated microRNA-target interactions. *Nucleic Acids Res* **2011**, *39* (Database issue), D163-9.

43. Lee, T.; Wang, N.; Houel, S.; Couts, K.; Old, W.; Ahn, N., Dosage and temporal thresholds in microRNA proteomics. *Mol Cell Proteomics* **2015**, *14* (2), 289-302.

44. Wolter, J. M.; Kotagama, K.; Pierre-Bez, A. C.; Firago, M.; Mangone, M., 3'LIFE: a functional assay to detect miRNA targets in high-throughput. *Nucleic Acids Res* **2014**, *42* (17), e132.

45. Zhou, P.; Xu, W.; Peng, X.; Luo, Z.; Xing, Q.; Chen, X.; Hou, C.; Liang, W.; Zhou, J.; Wu, X.; Songyang, Z.; Jiang, S., Large-scale screens of miRNA-mRNA interactions unveiled that the 3'UTR of a gene is targeted by multiple miRNAs. *PLoS One* **2013**, *8* (7), e68204.

46. Liu, W.; Wang, X., Prediction of functional microRNA targets by integrative modeling of microRNA binding and target expression data. *Genome Biol* **2019**, *20* (1), 18.

47. Ameres, S. L.; Horwich, M. D.; Hung, J. H.; Xu, J.; Ghildiyal, M.; Weng, Z.; Zamore, P. D., Target RNA-directed trimming and tailing of small silencing RNAs. *Science* **2010**, *328* (5985), 1534-9.

48. Ameres, S. L.; Hung, J. H.; Xu, J.; Weng, Z.; Zamore, P. D., Target RNA-directed tailing and trimming purifies the sorting of endo-siRNAs between the two Drosophila Argonaute proteins. *RNA* **2011**, *17* (1), 54-63.

49. Cazalla, D.; Yario, T.; Steitz, J. A., Down-regulation of a host microRNA by a Herpesvirus saimiri noncoding RNA. *Science* **2010**, *328* (5985), 1563-6.

50. Baccarini, A.; Chauhan, H.; Gardner, T. J.; Jayaprakash, A. D.; Sachidanandam, R.; Brown, B. D., Kinetic analysis reveals the fate of a microRNA following target regulation in mammalian cells. *Curr Biol* **2011**, *21* (5), 369-76.

51. Chipman, L. B.; Pasquinelli, A. E., miRNA Targeting: Growing beyond the Seed. *Trends Genet* **2019**, *35* (3), 215-222.

52. Vogel, C.; Marcotte, E. M., Insights into the regulation of protein abundance from proteomic and transcriptomic analyses. *Nat Rev Genet* **2012**, *13* (4), 227-32.

53. Kosti, I.; Jain, N.; Aran, D.; Butte, A. J.; Sirota, M., Cross-tissue Analysis of Gene and Protein Expression in Normal and Cancer Tissues. *Sci. Rep.* **2016**, *6*, 24799.

54. Buccitelli, C.; Selbach, M., mRNAs, proteins and the emerging principles of gene expression control. *Nat Rev Genet* **2020**, *21* (10), 630-644.

55. Pascal, L. E.; True, L. D.; Campbell, D. S.; Deutsch, E. W.; Risk, M.; Coleman, I. M.; Eichner, L. J.; Nelson, P. S.; Liu, A. Y., Correlation of mRNA and protein levels: cell type-specific gene expression of cluster designation antigens in the prostate. *BMC Genomics* **2008**, *9*, 246.

56. Maier, T.; Guell, M.; Serrano, L., Correlation of mRNA and protein in complex biological samples. *FEBS Lett* **2009**, *583* (24), 3966-73.

57. Koussounadis, A.; Langdon, S. P.; Um, I. H.; Harrison, D. J.; Smith, V. A., Relationship between differentially expressed mRNA and mRNA-protein correlations in a xenograft model system. *Sci Rep* **2015**, *5*, 10775.

58. Ostlund, G.; Sonnhammer, E. L., Quality criteria for finding genes with high mRNAprotein expression correlation and coexpression correlation. *Gene* **2012**, *497* (2), 228-36.

59. Eichhorn, S. W.; Guo, H.; McGeary, S. E.; Rodriguez-Mias, R. A.; Shin, C.; Baek, D.; Hsu, S. H.; Ghoshal, K.; Villen, J.; Bartel, D. P., mRNA destabilization is the dominant effect of mammalian microRNAs by the time substantial repression ensues. *Mol Cell* **2014**, *56* (1), 104-15.

60. Zhang, X.; Zuo, X.; Yang, B.; Li, Z.; Xue, Y.; Zhou, Y.; Huang, J.; Zhao, X.; Zhou, J.; Yan, Y.; Zhang, H.; Guo, P.; Sun, H.; Guo, L.; Zhang, Y.; Fu, X. D., MicroRNA directly enhances mitochondrial translation during muscle differentiation. *Cell* **2014**, *158* (3), 607-19.

61. Panda, A. C.; Sahu, I.; Kulkarni, S. D.; Martindale, J. L.; Abdelmohsen, K.; Vindu, A.; Joseph, J.; Gorospe, M.; Seshadri, V., miR-196b-mediated translation regulation of mouse insulin2 via the 5'UTR. *PLoS One* **2014**, *9* (7), e101084.

62. Gabius, H. J.; Andre, S.; Jimenez-Barbero, J.; Romero, A.; Solis, D., From lectin structure to functional glycomics: principles of the sugar code. *Trends Biochem Sci* **2011**, *36* (6), 298-313.

63. Chai, Y.; Du, Y.; Zhang, S.; Xiao, J.; Luo, Z.; He, F.; Huang, K., MicroRNA-485-5p reduces O-GlcNAcylation of Bmi-1 and inhibits colorectal cancer proliferation. *Exp Cell Res* **2018**, *368* (1), 111-118.

64. Han, D. L.; Wang, L. L.; Zhang, G. F.; Yang, W. F.; Chai, J.; Lin, H. M.; Fu, Z.; Yu, J. M., MiRNA-485-5p, inhibits esophageal cancer cells proliferation and invasion by down-regulating O-linked N-acetylglucosamine transferase. *Eur Rev Med Pharmacol Sci* **2019**, *23* (7), 2809-2816.

65. Jiang, M.; Xu, B.; Li, X.; Shang, Y.; Chu, Y.; Wang, W.; Chen, D.; Wu, N.; Hu, S.; Zhang, S.; Li, M.; Wu, K.; Yang, X.; Liang, J.; Nie, Y.; Fan, D., O-GlcNAcylation promotes colorectal cancer metastasis via the miR-101-O-GlcNAc/EZH2 regulatory feedback circuit. *Oncogene* **2019**, *38* (3), 301-316.

66. Yu, F. Y.; Zhou, C. Y.; Liu, Y. B.; Wang, B.; Mao, L.; Li, Y., miR-483 is downregulated in gastric cancer and suppresses cell proliferation, invasion and protein O-GlcNAcylation by targeting OGT. *Neoplasma* **2018**, *65* (3), 406-414.

67. Lo, W. Y.; Yang, W. K.; Peng, C. T.; Pai, W. Y.; Wang, H. J., MicroRNA-200a/200b Modulate High Glucose-Induced Endothelial Inflammation by Targeting O-linked N-Acetylglucosamine Transferase Expression. *Front Physiol* **2018**, *9*, 355.

68. Liu, Y.; Huang, H.; Liu, M.; Wu, Q.; Li, W.; Zhang, J., MicroRNA-24-1 suppresses mouse hepatoma cell invasion and metastasis via directly targeting O-GlcNAc transferase. *Biomed Pharmacother* **2017**, *91*, 731-738.

69. Vaiana, C. A.; Kurcon, T.; Mahal, L. K., MicroRNA-424 Predicts a Role for beta-1,4 Branched Glycosylation in Cell Cycle Progression. *J Biol Chem* **2016**, *291* (3), 1529-37.

70. Luo, P.; He, T.; Jiang, R.; Li, G., MicroRNA-423-5p targets O-GlcNAc transferase to induce apoptosis in cardiomyocytes. *Mol Med Rep* **2015**, *12* (1), 1163-8.

71. Babae, N.; Bourajjaj, M.; Liu, Y.; Van Beijnum, J. R.; Cerisoli, F.; Scaria, P. V.; Verheul, M.; Van Berkel, M. P.; Pieters, E. H.; Van Haastert, R. J.; Yousefi, A.;

Mastrobattista, E.; Storm, G.; Berezikov, E.; Cuppen, E.; Woodle, M.; Schaapveld, R. Q.; Prevost, G. P.; Griffioen, A. W.; Van Noort, P. I.; Schiffelers, R. M., Systemic miRNA-7 delivery inhibits tumor angiogenesis and growth in murine xenograft glioblastoma. *Oncotarget* **2014**, *5* (16), 6687-700.

72. Muthusamy, S.; DeMartino, A. M.; Watson, L. J.; Brittian, K. R.; Zafir, A.; Dassanayaka, S.; Hong, K. U.; Jones, S. P., MicroRNA-539 is up-regulated in failing heart, and suppresses O-GlcNAcase expression. *J Biol Chem* **2014**, *289* (43), 29665-76.

73. Ghahramani Seno, M. M.; Gwadry, F. G.; Hu, P.; Scherer, S. W., Neuregulin 1-alpha regulates phosphorylation, acetylation, and alternative splicing in lymphoblastoid cells. *Genome* **2013**, *56* (10), 619-25.

74. Chan, J. K.; Kiet, T. K.; Blansit, K.; Ramasubbaiah, R.; Hilton, J. F.; Kapp, D. S.; Matei, D., MiR-378 as a biomarker for response to anti-angiogenic treatment in ovarian cancer. *Gynecol Oncol* **2014**, *133* (3), 568-74.

75. Liu, B.; Ma, X.; Liu, Q.; Xiao, Y.; Pan, S.; Jia, L., Aberrant mannosylation profile and FTX/miR-342/ALG3-axis contribute to development of drug resistance in acute myeloid leukemia. *Cell Death Dis* **2018**, *9* (6), 688.

76. Tatura, R.; Buchholz, M.; Dickson, D. W.; van Swieten, J.; McLean, C.; Hoglinger, G.; Muller, U., microRNA profiling: increased expression of miR-147a and miR-518e in progressive supranuclear palsy (PSP). *Neurogenetics* **2016**, *17* (3), 165-71.

77. De Antonellis, P.; Carotenuto, M.; Vandenbussche, J.; De Vita, G.; Ferrucci, V.; Medaglia, C.; Boffa, I.; Galiero, A.; Di Somma, S.; Magliulo, D.; Aiese, N.; Alonzi, A.; Spano, D.; Liguori, L.; Chiarolla, C.; Verrico, A.; Schulte, J. H.; Mestdagh, P.; Vandesompele, J.; Gevaert, K.; Zollo, M., Early targets of miR-34a in neuroblastoma. *Mol Cell Proteomics* **2014**, *13* (8), 2114-31.

78. Li, Y.; Sun, Z.; Liu, B.; Shan, Y.; Zhao, L.; Jia, L., Tumor-suppressive miR-26a and miR-26b inhibit cell aggressiveness by regulating FUT4 in colorectal cancer. *Cell Death Dis* **2017**, *8* (6), e2892.

79. Wang, M.; Wang, J.; Kong, X.; Chen, H.; Wang, Y.; Qin, M.; Lin, Y.; Chen, H.; Xu, J.; Hong, J.; Chen, Y. X.; Zou, W.; Fang, J. Y., MiR-198 represses tumor growth and metastasis in colorectal cancer by targeting fucosyl transferase 8. *Sci Rep* 2014, *4*, 6145.
80. Huang, H.; Liu, Y.; Yu, P.; Qu, J.; Guo, Y.; Li, W.; Wang, S.; Zhang, J., MiR-23a transcriptional activated by Runx2 increases metastatic potential of mouse hepatoma cell via

directly targeting Mgat3. Sci Rep 2018, 8 (1), 7366.

81. Guo, Y.; Li, S.; Qu, J.; Ye, L.; Wang, S.; Fan, J.; Wang, Q.; Zhang, J., Let-7c inhibits metastatic ability of mouse hepatocarcinoma cells via targeting mannoside

acetylglucosaminyltransferase 4 isoenzyme A. *Int J Biochem Cell Biol* 2014, *53*, 1-8.
82. Wang, Y. Q.; Ren, Y. F.; Song, Y. J.; Xue, Y. F.; Zhang, X. J.; Cao, S. T.; Deng, Z. J.; Wu, J.; Chen, L.; Li, G.; Shi, K. Q.; Chen, Y. P.; Ren, H.; Huang, A. L.; Tang, K. F., MicroRNA-581 promotes hepatitis B virus surface antigen expression by targeting Dicer and EDEM1. *Carcinogenesis* 2014, *35* (9), 2127-33.

83. Li, G.; Luna, C.; Qiu, J.; Epstein, D. L.; Gonzalez, P., Role of miR-204 in the regulation of apoptosis, endoplasmic reticulum stress response, and inflammation in human trabecular meshwork cells. *Invest Ophthalmol Vis Sci* **2011**, *52* (6), 2999-3007.

84. Vitiello, M.; Tuccoli, A.; D'Aurizio, R.; Sarti, S.; Giannecchini, L.; Lubrano, S.; Marranci, A.; Evangelista, M.; Peppicelli, S.; Ippolito, C.; Barravecchia, I.; Guzzolino, E.; Montagnani, V.; Gowen, M.; Mercoledi, E.; Mercatanti, A.; Comelli, L.; Gurrieri, S.; Wu, L. W.; Ope, O.; Flaherty, K.; Boland, G. M.; Hammond, M. R.; Kwong, L.; Chiariello, M.; Stecca, B.; Zhang, G.; Salvetti, A.; Angeloni, D.; Pitto, L.; Calorini, L.; Chiorino, G.; Pellegrini, M.; Herlyn, M.; Osman, I.; Poliseno, L., Context-dependent miR-204 and miR-211 affect the biological properties of amelanotic and melanotic melanoma cells. *Oncotarget* **2017**, 8 (15), 25395-25417.

85. Lim, S. M.; Park, S. H.; Lee, J. H.; Kim, S. H.; Kim, J. Y.; Min, J. K.; Lee, G. M.; Kim, Y. G., Differential expression of microRNAs in recombinant Chinese hamster ovary cells treated with sodium butyrate using digital RNA counting. *J Biotechnol* **2018**, *283*, 37-42.

86. Pan, S.; Cheng, X.; Chen, H.; Castro, P. D.; Ittmann, M. M.; Hutson, A. W.; Zapata, S. K.; Sifers, R. N., ERManI is a target of miR-125b and promotes transformation phenotypes in hepatocellular carcinoma (HCC). *PLoS One* **2013**, *8* (8), e72829.

87. Adhikari, S.; Mandal, P., Integrated analysis of global gene and microRNA expression profiling associated with aplastic anaemia. *Life Sci* **2019**, *228*, 47-52.

88. Bhise, N. S.; Chauhan, L.; Shin, M.; Cao, X.; Pounds, S.; Lamba, V.; Lamba, J. K., MicroRNA-mRNA Pairs Associated with Outcome in AML: From In Vitro Cell-Based Studies to AML Patients. *Front Pharmacol* **2015**, *6*, 324.

89. Serino, G.; Sallustio, F.; Curci, C.; Cox, S. N.; Pesce, F.; De Palma, G.; Schena, F. P., Role of let-7b in the regulation of N-acetylgalactosaminyltransferase 2 in IgA nephropathy. *Nephrol Dial Transplant* **2015**, *30* (7), 1132-9.

90. Liu, B.; Pan, S.; Xiao, Y.; Liu, Q.; Xu, J.; Jia, L., LINC01296/miR-26a/GALNT3 axis contributes to colorectal cancer progression by regulating O-glycosylated MUC1 via PI3K/AKT pathway. *J Exp Clin Cancer Res* **2018**, *37* (1), 316.

91. Nakamura, S.; Horie, M.; Daidoji, T.; Honda, T.; Yasugi, M.; Kuno, A.; Komori, T.; Okuzaki, D.; Narimatsu, H.; Nakaya, T.; Tomonaga, K., Influenza A Virus-Induced Expression of a GalNAc Transferase, GALNT3, via MicroRNAs Is Required for Enhanced Viral Replication. *J Virol* **2016**, *90* (4), 1788-801.

92. Qu, J. J.; Qu, X. Y.; Zhou, D. Z., miR4262 inhibits colon cancer cell proliferation via targeting of GALNT4. *Mol Med Rep* **2017**, *16* (4), 3731-3736.

93. Liu, Y.; Liu, H.; Yang, L.; Wu, Q.; Liu, W.; Fu, Q.; Zhang, W.; Zhang, H.; Xu, J.; Gu, J., Loss of N-Acetylgalactosaminyltransferase-4 Orchestrates Oncogenic MicroRNA-9 in Hepatocellular Carcinoma. *J Biol Chem* **2017**, *292* (8), 3186-3200.

94. Zhang, J.; Zhang, Z.; Wang, Q.; Xing, X. J.; Zhao, Y., Overexpression of microRNA-365 inhibits breast cancer cell growth and chemo-resistance through GALNT4. *Eur Rev Med Pharmacol Sci* **2016**, *20* (22), 4710-4718.

95. Stiegelbauer, V.; Vychytilova-Faltejskova, P.; Karbiener, M.; Pehserl, A. M.; Reicher, A.; Resel, M.; Heitzer, E.; Ivan, C.; Bullock, M.; Ling, H.; Deutsch, A.; Wulf-Goldenberg,

A.; Adiprasito, J. B.; Stoeger, H.; Haybaeck, J.; Svoboda, M.; Stotz, M.; Hoefler, G.; Slaby, O.; Calin, G. A.; Gerger, A.; Pichler, M., miR-196b-5p Regulates Colorectal Cancer Cell Migration and Metastases through Interaction with HOXB7 and GALNT5. *Clin Cancer Res* **2017**, *23* (17), 5255-5266.

96. Wu, Q.; Liu, H. O.; Liu, Y. D.; Liu, W. S.; Pan, D.; Zhang, W. J.; Yang, L.; Fu, Q.; Xu, J. J.; Gu, J. X., Decreased expression of hepatocyte nuclear factor 4alpha

(Hnf4alpha)/microRNA-122 (miR-122) axis in hepatitis B virus-associated hepatocellular carcinoma enhances potential oncogenic GALNT10 protein activity. *J Biol Chem* **2015**, *290* (2), 1170-85.

97. Yang, J.; Li, G.; Zhang, K., MiR-125a regulates ovarian cancer proliferation and invasion by repressing GALNT14 expression. *Biomed Pharmacother* 2016, *80*, 381-387.
98. Liu, X.; Chen, J.; Guan, T.; Yao, H.; Zhang, W.; Guan, Z.; Wang, Y., miRNAs and target genes in the blood as biomarkers for the early diagnosis of Parkinson's disease. *BMC Syst Biol* 2019, *13* (1), 10.

99. Gao, Y.; Liu, T.; Huang, Y., MicroRNA-134 suppresses endometrial cancer stem cells by targeting POGLUT1 and Notch pathway proteins. *FEBS Lett* 2015, *589* (2), 207-14.
100. Thapa, I.; Fox, H. S.; Bastola, D., Coexpression Network Analysis of miRNA-142 Overexpression in Neuronal Cells. *Biomed Res Int* 2015, *2015*, 921517.

101. Metzler-Guillemain, C.; Victorero, G.; Lepoivre, C.; Bergon, A.; Yammine, M.; Perrin, J.; Sari-Minodier, I.; Boulanger, N.; Rihet, P.; Nguyen, C., Sperm mRNAs and microRNAs as candidate markers for the impact of toxicants on human spermatogenesis: an application to tobacco smoking. *Syst Biol Reprod Med* **2015**, *61* (3), 139-49.

102. Wang, R.; Fang, J.; Ma, H.; Feng, L.; Lian, M.; Yang, F.; Wang, H.; Wang, Q.; Chen, X., Effect of microRNA-203 on tumor growth in human hypopharyngeal squamous cell carcinoma. *Mol Cell Biochem* **2015**, *405* (1-2), 97-104.

103. Serino, G.; Sallustio, F.; Cox, S. N.; Pesce, F.; Schena, F. P., Abnormal miR-148b expression promotes aberrant glycosylation of IgA1 in IgA nephropathy. *J Am Soc Nephrol* **2012**, *23* (5), 814-24.

104. Li, C.; Shi, J.; Zhao, Y., MiR-320 promotes B cell proliferation and the production of aberrant glycosylated IgA1 in IgA nephropathy. *J Cell Biochem* **2018**, *119* (6), 4607-4614.

105. Yang, L.; Zhang, X.; Peng, W.; Wei, M.; Qin, W., MicroRNA-155-induced T lymphocyte subgroup drifting in IgA nephropathy. *Int Urol Nephrol* **2017**, *49* (2), 353-361. 106. Hu, S.; Bao, H.; Xu, X.; Zhou, X.; Qin, W.; Zeng, C.; Liu, Z., Increased miR-374b promotes cell proliferation and the production of aberrant glycosylated IgA1 in B cells of IgA nephropathy. *FEBS Lett* **2015**, *589* (24 Pt B), 4019-25.

107. Chao, C. C.; Wu, P. H.; Huang, H. C.; Chung, H. Y.; Chou, Y. C.; Cai, B. H.; Kannagi, R., Downregulation of miR-199a/b-5p is associated with GCNT2 induction upon epithelial-mesenchymal transition in colon cancer. *FEBS Lett* **2017**, *591* (13), 1902-1917.

108. Li, Q.; Ran, P.; Zhang, X.; Guo, X.; Yuan, Y.; Dong, T.; Zhu, B.; Zheng, S.; Xiao, C., Downregulation of N-Acetylglucosaminyltransferase GCNT3 by miR-302b-3p Decreases Non-Small Cell Lung Cancer (NSCLC) Cell Proliferation, Migration and Invasion. *Cell Physiol Biochem* **2018**, *50* (3), 987-1004.

109. Gonzalez-Vallinas, M.; Molina, S.; Vicente, G.; Zarza, V.; Martin-Hernandez, R.; Garcia-Risco, M. R.; Fornari, T.; Reglero, G.; Ramirez de Molina, A., Expression of microRNA-15b and the glycosyltransferase GCNT3 correlates with antitumor efficacy of Rosemary diterpenes in colon and pancreatic cancer. *PLoS One* **2014**, *9* (6), e98556.

110. He, X. J.; Xiao, Y.; Zhang, Q.; Ma, L. P.; Li, N.; Yang, J., Detection and functional annotation of misregulated microRNAs in the brain of the Ts65Dn mouse model of Down syndrome. *Chin Med J (Engl)* **2013**, *126* (1), 108-13.

111. Riley, M. F.; Bochter, M. S.; Wahi, K.; Nuovo, G. J.; Cole, S. E., Mir-125a-5pmediated regulation of Lfng is essential for the avian segmentation clock. *Dev Cell* **2013**, *24* (5), 554-61.

112. Wahi, K.; Friesen, S.; Coppola, V.; Cole, S. E., Putative binding sites for mir-125 family miRNAs in the mouse Lfng 3'UTR affect transcript expression in the segmentation clock, but mir-125a-5p is dispensable for normal somitogenesis. *Dev Dyn* **2017**, *246* (10), 740-748.

113. Raimo, M.; Orso, F.; Grassi, E.; Cimino, D.; Penna, E.; De Pitta, C.; Stadler, M. B.; Primo, L.; Calautti, E.; Quaglino, P.; Provero, P.; Taverna, D., miR-146a Exerts Differential Effects on Melanoma Growth and Metastatization. *Mol Cancer Res* **2016**, *14* (6), 548-62.

114. Wang, L.; Wei, Z.; Wu, K.; Dai, W.; Zhang, C.; Peng, J.; He, Y., Long noncoding RNA B3GALT5-AS1 suppresses colon cancer liver metastasis via repressing microRNA-203. *Aging (Albany NY)* **2018**, *10* (12), 3662-3682.

115. Liu, Y. X.; Wang, L.; Liu, W. J.; Zhang, H. T.; Xue, J. H.; Zhang, Z. W.; Gao, C. J., MiR-124-3p/B4GALT1 axis plays an important role in SOCS3-regulated growth and chemosensitivity of CML. *J Hematol Oncol* **2016**, *9* (1), 69.

116. Teruel, R.; Martinez-Martinez, I.; Guerrero, J. A.; Gonzalez-Conejero, R.; de la Morena-Barrio, M. E.; Salloum-Asfar, S.; Arroyo, A. B.; Aguila, S.; Garcia-Barbera, N.; Minano, A.; Vicente, V.; Corral, J.; Martinez, C., Control of post-translational modifications in antithrombin during murine post-natal development by miR-200a. *J Biomed Sci* 2013, *20*, 29.
117. Cai, H.; Zhou, H.; Miao, Y.; Li, N.; Zhao, L.; Jia, L., MiRNA expression profiles reveal the involvement of miR-26a, miR-548l and miR-34a in hepatocellular carcinoma progression through regulation of ST3GAL5. *Lab Invest* 2017, *97* (5), 530-542.
118. Tonevitsky, A. G.; Maltseva, D. V.; Abbasi, A.; Samatov, T. R.; Sakharov, D. A.; Shkurnikov, M. U.; Lebedev, A. E.; Galatenko, V. V.; Grigoriev, A. I.; Northoff, H., Dynamically regulated miRNA-mRNA networks revealed by exercise. *BMC Physiol* 2013, *13*, 9.
119. Sun, M.; Zhao, X.; Liang, L.; Pan, X.; Lv, H.; Zhao, Y., Sialyltransferase ST3GAL6

mediates the effect of microRNA-26a on cell growth, migration, and invasion in hepatocellular carcinoma through the protein kinase B/mammalian target of rapamycin pathway. *Cancer Sci* **2017**, *108* (2), 267-276.

120. Han, Y.; Liu, Y.; Fu, X.; Zhang, Q.; Huang, H.; Zhang, C.; Li, W.; Zhang, J., miR-9 inhibits the metastatic ability of hepatocellular carcinoma via targeting beta galactoside alpha-2,6-sialyltransferase 1. *J Physiol Biochem* **2018**, *74* (3), 491-501.

121. Gao, L.; He, R. Q.; Wu, H. Y.; Zhang, T. T.; Liang, H. W.; Ye, Z. H.; Li, Z. Y.; Xie, T. T.; Shi, Q.; Ma, J.; Hu, X. H.; Chen, G., Expression Signature and Role of miR-30d-5p in Non-Small Cell Lung Cancer: a Comprehensive Study Based on in Silico Analysis of Public Databases and in Vitro Experiments. *Cell Physiol Biochem* **2018**, *50* (5), 1964-1987.

122. Liu, B.; Liu, Y.; Zhao, L.; Pan, Y.; Shan, Y.; Li, Y.; Jia, L., Upregulation of microRNA-135b and microRNA-182 promotes chemoresistance of colorectal cancer by targeting ST6GALNAC2 via PI3K/AKT pathway. *Mol Carcinog* 2017, *56* (12), 2669-2680.
123. Jia, L.; Luo, S.; Ren, X.; Li, Y.; Hu, J.; Liu, B.; Zhao, L.; Shan, Y.; Zhou, H., miR-182 and miR-135b Mediate the Tumorigenesis and Invasiveness of Colorectal Cancer Cells via

Targeting ST6GALNAC2 and PI3K/AKT Pathway. *Dig Dis Sci* **2017**, *62* (12), 3447-3459.

124. Miao, X.; Jia, L.; Zhou, H.; Song, X.; Zhou, M.; Xu, J.; Zhao, L.; Feng, X.; Zhao, Y., miR-4299 mediates the invasive properties and tumorigenicity of human follicular thyroid carcinoma by targeting ST6GALNAC4. *IUBMB Life* **2016**, *68* (2), 136-44.

125. Shan, Y.; Liu, Y.; Zhao, L.; Liu, B.; Li, Y.; Jia, L., MicroRNA-33a and let-7e inhibit human colorectal cancer progression by targeting ST8SIA1. *Int J Biochem Cell Biol* **2017**, *90*, 48-58.

126. Liu, Q. Y.; Miao, Y.; Wang, X. H.; Wang, P.; Cheng, Z. C.; Qian, T. M., Increased levels of miR-3099 induced by peripheral nerve injury promote Schwann cell proliferation and migration. *Neural Regen Res* **2019**, *14* (3), 525-531.

127. Ma, X.; Dong, W.; Su, Z.; Zhao, L.; Miao, Y.; Li, N.; Zhou, H.; Jia, L., Functional roles of sialylation in breast cancer progression through miR-26a/26b targeting ST8SIA4. *Cell Death Dis* **2016**, *7* (12), e2561.

128. Zhao, L.; Li, Y.; Song, X.; Zhou, H.; Li, N.; Miao, Y.; Jia, L., Upregulation of miR-181c inhibits chemoresistance by targeting ST8SIA4 in chronic myelocytic leukemia. *Oncotarget* **2016**, *7* (37), 60074-60086.

129. Wang, Z.; Hu, J.; Pan, Y.; Shan, Y.; Jiang, L.; Qi, X.; Jia, L., miR-140-5p/miR-149 Affects Chondrocyte Proliferation, Apoptosis, and Autophagy by Targeting FUT1 in Osteoarthritis. *Inflammation* **2018**, *41* (3), 959-971. 130. Wang, Y.; Chen, J.; Chen, X.; Jiang, F.; Sun, Y.; Pan, Y.; Zhang, W.; Zhang, J., MiR-34a suppresses HNSCC growth through modulating cell cycle arrest and senescence. *Neoplasma* **2017**, *64* (4), 543-553.

131. Wu, C. S.; Yen, C. J.; Chou, R. H.; Chen, J. N.; Huang, W. C.; Wu, C. Y.; Yu, Y. L., Downregulation of microRNA-15b by hepatitis B virus X enhances hepatocellular carcinoma proliferation via fucosyltransferase 2-induced Globo H expression. *Int J Cancer* **2014**, *134* (7), 1638-47.

132. Hu, J.; Wang, Z.; Pan, Y.; Ma, J.; Miao, X.; Qi, X.; Zhou, H.; Jia, L., MiR-26a and miR-26b mediate osteoarthritis progression by targeting FUT4 via NF-kappaB signaling pathway. *Int J Biochem Cell Biol* **2018**, *94*, 79-88.

133. Zheng, Q.; Zhang, D.; Yang, Y. U.; Cui, X.; Sun, J.; Liang, C.; Qin, H.; Yang, X.; Liu, S.; Yan, Q., MicroRNA-200c impairs uterine receptivity formation by targeting FUT4 and alpha1,3-fucosylation. *Cell Death Differ* **2017**, *24* (12), 2161-2172.

134. Zhao, L.; Feng, X.; Song, X.; Zhou, H.; Zhao, Y.; Cheng, L.; Jia, L., miR-493-5p attenuates the invasiveness and tumorigenicity in human breast cancer by targeting FUT4. *Oncol Rep* **2016**, *36* (2), 1007-15.

135. Feng, X.; Zhao, L.; Gao, S.; Song, X.; Dong, W.; Zhao, Y.; Zhou, H.; Cheng, L.; Miao, X.; Jia, L., Increased fucosylation has a pivotal role in multidrug resistance of breast cancer cells through miR-224-3p targeting FUT4. *Gene* **2016**, *578* (2), 232-41.

136. Liang, L.; Gao, C.; Li, Y.; Sun, M.; Xu, J.; Li, H.; Jia, L.; Zhao, Y., miR-125a-3p/FUT5-FUT6 axis mediates colorectal cancer cell proliferation, migration, invasion and pathological angiogenesis via PI3K-Akt pathway. *Cell Death Dis* **2017**, *8* (8), e2968.

137. Li, N.; Liu, Y.; Miao, Y.; Zhao, L.; Zhou, H.; Jia, L., MicroRNA-106b targets FUT6 to promote cell migration, invasion, and proliferation in human breast cancer. *IUBMB Life* **2016**, *68* (9), 764-75.

Hu, B.; Xu, C.; Tian, Y.; Shi, C.; Zhang, Y.; Deng, L.; Zhou, H.; Cao, P.; Chen, H.; Yuan, W., Inflammatory microRNA-194 and -515 attenuate the biosynthesis of chondroitin sulfate during human intervertebral disc degeneration. *Oncotarget* 2017, *8* (30), 49303-49317.
Prudnikova, T. Y.; Mostovich, L. A.; Kashuba, V. I.; Ernberg, I.; Zabarovsky, E. R.; Grigorieva, E. V., miRNA-218 contributes to the regulation of D-glucuronyl C5-epimerase

expression in normal and tumor breast tissues. Epigenetics 2012, 7 (10), 1109-14.

140. Song, Y. Q.; Karasugi, T.; Cheung, K. M.; Chiba, K.; Ho, D. W.; Miyake, A.; Kao, P. Y.; Sze, K. L.; Yee, A.; Takahashi, A.; Kawaguchi, Y.; Mikami, Y.; Matsumoto, M.;

Togawa, D.; Kanayama, M.; Shi, D.; Dai, J.; Jiang, Q.; Wu, C.; Tian, W.; Wang, N.; Leong, J. C.; Luk, K. D.; Yip, S. P.; Cherny, S. S.; Wang, J.; Mundlos, S.; Kelempisioti, A.; Eskola, P. J.; Mannikko, M.; Makela, P.; Karppinen, J.; Jarvelin, M. R.; O'Reilly, P. F.; Kubo, M.; Kimura, T.; Kubo, T.; Toyama, Y.; Mizuta, H.; Cheah, K. S.; Tsunoda, T.; Sham, P. C.; Ikegawa, S.; Chan, D., Lumbar disc degeneration is linked to a carbohydrate sulfotransferase 3 variant. *J Clin Invest* **2013**, *123* (11), 4909-17.

141. Yang, G.; Gong, Y.; Wang, Q.; Wang, Y.; Zhang, X., The role of miR-100-mediated Notch pathway in apoptosis of gastric tumor cells. *Cell Signal* **2015**, *27* (6), 1087-101.

142. Liep, J.; Kilic, E.; Meyer, H. A.; Busch, J.; Jung, K.; Rabien, A., Cooperative Effect of miR-141-3p and miR-145-5p in the Regulation of Targets in Clear Cell Renal Cell Carcinoma. *PLoS One* **2016**, *11* (6), e0157801.

143. Shi, X.; Su, S.; Long, J.; Mei, B.; Chen, Y., MicroRNA-191 targets N-deacetylase/N-sulfotransferase 1 and promotes cell growth in human gastric carcinoma cell line MGC803. *Acta Biochim Biophys Sin (Shanghai)* **2011**, *43* (11), 849-56.

144. Bao, L.; Yan, Y.; Xu, C.; Ji, W.; Shen, S.; Xu, G.; Zeng, Y.; Sun, B.; Qian, H.; Chen, L.; Wu, M.; Su, C.; Chen, J., MicroRNA-21 suppresses PTEN and hSulf-1 expression and promotes hepatocellular carcinoma progression through AKT/ERK pathways. *Cancer Lett* **2013**, *337* (2), 226-36.

145. Yang, L.; Zhang, S.; Guo, K.; Huang, H.; Qi, S.; Yao, J.; Zhang, Z., miR-125a restrains cell migration and invasion by targeting STAT3 in gastric cancer cells. *Onco Targets Ther* **2019**, *12*, 205-215.

146. Wang, G.; Zhao, W.; Gao, X.; Zhang, D.; Li, Y.; Zhang, Y.; Li, W., HNF1AAS1 promotes growth and metastasis of esophageal squamous cell carcinoma by sponging miR214 to upregulate the expression of SOX-4. *Int J Oncol* **2017**, *51* (2), 657-667.

147. Midgley, A. C.; Morris, G.; Phillips, A. O.; Steadman, R., 17beta-estradiol ameliorates age-associated loss of fibroblast function by attenuating IFN-gamma/STAT1-dependent miR-7 upregulation. *Aging Cell* **2016**, *15* (3), 531-41.

148. Pan, B.; Toms, D.; Shen, W.; Li, J., MicroRNA-378 regulates oocyte maturation via the suppression of aromatase in porcine cumulus cells. *Am J Physiol Endocrinol Metab* **2015**, *308* (6), E525-34.

149. Rock, K.; Tigges, J.; Sass, S.; Schutze, A.; Florea, A. M.; Fender, A. C.; Theis, F. J.; Krutmann, J.; Boege, F.; Fritsche, E.; Reifenberger, G.; Fischer, J. W., miR-23a-3p causes cellular senescence by targeting hyaluronan synthase 2: possible implication for skin aging. *J Invest Dermatol* **2015**, *135* (2), 369-377.

150. Zhang, J.; Chang, J. J.; Xu, F.; Ma, X. J.; Wu, Y.; Li, W. C.; Wang, H. J.; Huang, G. Y.; Ma, D., MicroRNA deregulation in right ventricular outflow tract myocardium in nonsyndromic tetralogy of fallot. *Can J Cardiol* **2013**, *29* (12), 1695-703.

151. Lagendijk, A. K.; Goumans, M. J.; Burkhard, S. B.; Bakkers, J., MicroRNA-23 restricts cardiac valve formation by inhibiting Has2 and extracellular hyaluronic acid production. *Circ Res* **2011**, *109* (6), 649-57.

152. Pan, B.; Toms, D.; Li, J., MicroRNA-574 suppresses oocyte maturation via targeting hyaluronan synthase 2 in porcine cumulus cells. *Am J Physiol Cell Physiol* **2018**, *314* (3), C268-C277.

153. Li, H. M.; Xiao, Y. J.; Min, Z. S.; Tan, C., Identification and interaction analysis of key genes and microRNAs in atopic dermatitis by bioinformatics analysis. *Clin Exp Dermatol* **2019**, *44* (3), 257-264.

154. Bai, F.; Jiu, M.; You, Y.; Feng, Y.; Xin, R.; Liu, X.; Mo, L.; Nie, Y., miR29a3p represses proliferation and metastasis of gastric cancer cells via attenuating HAS3 levels. *Mol Med Rep* **2018**, *17* (6), 8145-8152.

155. Pashaei, E.; Guzel, E.; Ozgurses, M. E.; Demirel, G.; Aydin, N.; Ozen, M., A Meta-Analysis: Identification of Common Mir-145 Target Genes that have Similar Behavior in Different GEO Datasets. *PLoS One* **2016**, *11* (9), e0161491.

156. Barter, M. J.; Tselepi, M.; Gomez, R.; Woods, S.; Hui, W.; Smith, G. R.; Shanley, D. P.; Clark, I. M.; Young, D. A., Genome-Wide MicroRNA and Gene Analysis of Mesenchymal Stem Cell Chondrogenesis Identifies an Essential Role and Multiple Targets for miR-140-5p. *Stem Cells* **2015**, *33* (11), 3266-80.

157. Straniero, L.; Rimoldi, V.; Samarani, M.; Goldwurm, S.; Di Fonzo, A.; Kruger, R.; Deleidi, M.; Aureli, M.; Solda, G.; Duga, S.; Asselta, R., The GBAP1 pseudogene acts as a ceRNA for the glucocerebrosidase gene GBA by sponging miR-22-3p. *Sci Rep* **2017**, *7* (1), 12702.

158. Chang, S.; He, S.; Qiu, G.; Lu, J.; Wang, J.; Liu, J.; Fan, L.; Zhao, W.; Che, X., MicroRNA-125b promotes invasion and metastasis of gastric cancer by targeting STARD13 and NEU1. *Tumour Biol* **2016**, *37* (9), 12141-12151.

159. Tao, J.; Liu, W.; Shang, G.; Zheng, Y.; Huang, J.; Lin, R.; Chen, L., MiR-207/352 regulate lysosomal-associated membrane proteins and enzymes following ischemic stroke. *Neuroscience* **2015**, *305*, 1-14.

160. Yang, C.; Ren, J.; Li, B.; Zhang, D.; Ma, C.; Cheng, C.; Sun, Y.; Fu, L.; Shi, X., Identification of clinical tumor stages related mRNAs and miRNAs in cervical squamous cell carcinoma. *Pathol Res Pract* **2018**, *214* (10), 1638-1647.

161. Yamada, Y.; Arai, T.; Sugawara, S.; Okato, A.; Kato, M.; Kojima, S.; Yamazaki, K.; Naya, Y.; Ichikawa, T.; Seki, N., Impact of novel oncogenic pathways regulated by antitumor miR-451a in renal cell carcinoma. *Cancer Sci* **2018**, *109* (4), 1239-1253.

162. Sun, Y.; Liu, X.; Zhang, Q.; Mao, X.; Feng, L.; Su, P.; Chen, H.; Guo, Y.; Jin, F., Oncogenic potential of TSTA3 in breast cancer and its regulation by the tumor suppressors miR-125a-5p and miR-125b. *Tumour Biol* **2016**, *37* (4), 4963-72.

163. Kwon, D. N.; Chang, B. S.; Kim, J. H., MicroRNA dysregulation in liver and pancreas of CMP-Neu5Ac hydroxylase null mice disrupts insulin/PI3K-AKT signaling. *Biomed Res Int* **2014**, *2014*, 236385.

164. Gan, B. L.; Zhang, L. J.; Gao, L.; Ma, F. C.; He, R. Q.; Chen, G.; Ma, J.; Zhong, J. C.; Hu, X. H., Downregulation of miR2245p in prostate cancer and its relevant molecular mechanism via TCGA, GEO database and in silico analyses. *Oncol Rep* **2018**, *40* (6), 3171-3188.

165. Xu, Q. F.; Pan, Y. W.; Li, L. C.; Zhou, Z.; Huang, Q. L.; Pang, J. C.; Zhu, X. P.; Ren, Y.; Yang, H.; Ohgaki, H.; Lv, S. Q., MiR-22 is frequently downregulated in medulloblastomas and inhibits cell proliferation via the novel target PAPST1. *Brain Pathol* **2014**, *24* (6), 568-83.

166. Lim, C. H.; Jeong, W.; Lim, W.; Kim, J.; Song, G.; Bazer, F. W., Differential expression of select members of the SLC family of genes and regulation of expression by microRNAs in the chicken oviduct. *Biol Reprod* **2012**, *87* (6), 145.

167. Hao, G. J.; Ding, Y. H.; Wen, H.; Li, X. F.; Zhang, W.; Su, H. Y.; Liu, D. M.; Xie, N. L., Attenuation of deregulated miR-369-3p expression sensitizes non-small cell lung cancer cells to cisplatin via modulation of the nucleotide sugar transporter SLC35F5. *Biochem Biophys Res Commun* **2017**, *488* (3), 501-508.

168. Wijayakumara, D. D.; Mackenzie, P. I.; McKinnon, R. A.; Hu, D. G.; Meech, R., Regulation of UDP-Glucuronosyltransferase 2B15 by miR-331-5p in Prostate Cancer Cells Involves Canonical and Noncanonical Target Sites. *J Pharmacol Exp Ther* 2018, 365 (1), 48-59.
169. Margaillan, G.; Levesque, E.; Guillemette, C., Epigenetic regulation of steroid inactivating UDP-glucuronosyltransferases by microRNAs in prostate cancer. *J Steroid Biochem Mol Biol* 2016, 155 (Pt A), 85-93.

170. Wijayakumara, D. D.; Hu, D. G.; Meech, R.; McKinnon, R. A.; Mackenzie, P. I., Regulation of Human UGT2B15 and UGT2B17 by miR-376c in Prostate Cancer Cell Lines. *J Pharmacol Exp Ther* **2015**, *354* (3), 417-25.

171. Papageorgiou, I.; Court, M. H., Identification and validation of the microRNA response elements in the 3'-untranslated region of the UDP glucuronosyltransferase (UGT) 2B7 and 2B15 genes by a functional genomics approach. *Biochem Pharmacol* **2017**, *146*, 199-213.

172. Zhang, J. J.; Wang, L. N.; Feng, Y.; Zhi, H.; Ma, G. S.; Ye, X. Z.; Qian, S. S.; Wang, B., [Association study on the microRNA-1 target gene polymorphism and the risk of premature coronary artery disease]. *Zhonghua Xin Xue Guan Bing Za Zhi* **2012**, *40* (5), 386-91.

173. Fu, T.; Kemper, J. K., MicroRNA-34a and Impaired FGF19/21 Signaling in Obesity. *Vitam Horm* **2016**, *101*, 175-96.

174. Kang, W. L.; Xu, G. S., Atrasentan increased the expression of klotho by mediating miR-199b-5p and prevented renal tubular injury in diabetic nephropathy. *Sci Rep* **2016**, *6*, 19979.

175. He, X. J.; Ma, Y. Y.; Yu, S.; Jiang, X. T.; Lu, Y. D.; Tao, L.; Wang, H. P.; Hu, Z. M.; Tao, H. Q., Up-regulated miR-199a-5p in gastric cancer functions as an oncogene and targets klotho. *BMC Cancer* **2014**, *14*, 218.

176. Jiang, B.; Gu, Y.; Chen, Y., Identification of novel predictive markers for the prognosis of pancreatic ductal adenocarcinoma. *Cancer Invest* **2014**, *32* (6), 218-25.

177. Mehi, S. J.; Maltare, A.; Abraham, C. R.; King, G. D., MicroRNA-339 and microRNA-556 regulate Klotho expression in vitro. *Age (Dordr)* **2014**, *36* (1), 141-9.

178. Koshizuka, K.; Hanazawa, T.; Kikkawa, N.; Katada, K.; Okato, A.; Arai, T.; Idichi, T.; Osako, Y.; Okamoto, Y.; Seki, N., Antitumor miR-150-5p and miR-150-3p inhibit cancer cell aggressiveness by targeting SPOCK1 in head and neck squamous cell carcinoma. *Auris Nasus Larynx* **2018**, *45* (4), 854-865.

179. Osako, Y.; Seki, N.; Koshizuka, K.; Okato, A.; Idichi, T.; Arai, T.; Omoto, I.; Sasaki, K.; Uchikado, Y.; Kita, Y.; Kurahara, H.; Maemura, K.; Natsugoe, S., Regulation of SPOCK1 by dual strands of pre-miR-150 inhibit cancer cell migration and invasion in esophageal squamous cell carcinoma. *J Hum Genet* **2017**, *62* (11), 935-944.

180. Lee, S. J.; Kim, S. J.; Seo, H. H.; Shin, S. P.; Kim, D.; Park, C. S.; Kim, K. T.; Kim, Y. H.; Jeong, J. S.; Kim, I. H., Over-expression of miR-145 enhances the effectiveness of HSVtk gene therapy for malignant glioma. *Cancer Lett* **2012**, *320* (1), 72-80.

181. Paul, P.; Chakraborty, A.; Sarkar, D.; Langthasa, M.; Rahman, M.; Bari, M.; Singha, R. S.; Malakar, A. K.; Chakraborty, S., Interplay between miRNAs and human diseases. *J Cell Physiol* **2018**, *233* (3), 2007-2018.

182. Bartel, D. P., Metazoan MicroRNAs. Cell 2018, 173 (1), 20-51.

183. Bracken, C. P.; Li, X.; Wright, J. A.; Lawrence, D. M.; Pillman, K. A.; Salmanidis,

M.; Anderson, M. A.; Dredge, B. K.; Gregory, P. A.; Tsykin, A.; Neilsen, C.; Thomson, D. W.; Bert, A. G.; Leerberg, J. M.; Yap, A. S.; Jensen, K. B.; Khew-Goodall, Y.; Goodall, G. J., Genome-wide identification of miR-200 targets reveals a regulatory network controlling cell invasion. *EMBO J* **2014**, *33* (18), 2040-56.

184. Agarwal, V.; Bell, G. W.; Nam, J. W.; Bartel, D. P., Predicting effective microRNA target sites in mammalian mRNAs. *Elife* **2015**, *4*.

185. Betel, D.; Koppal, A.; Agius, P.; Sander, C.; Leslie, C., Comprehensive modeling of microRNA targets predicts functional non-conserved and non-canonical sites. *Genome Biol* **2010**, *11* (8), R90.

186. Gumienny, R.; Zavolan, M., Accurate transcriptome-wide prediction of microRNA targets and small interfering RNA off-targets with MIRZA-G. *Nucleic Acids Res* **2015**, *43* (18), 9095.

187. Reczko, M.; Maragkakis, M.; Alexiou, P.; Grosse, I.; Hatzigeorgiou, A. G., Functional microRNA targets in protein coding sequences. *Bioinformatics* **2012**, *28* (6), 771-6.

188. Wang, X., Improving microRNA target prediction by modeling with unambiguously identified microRNA-target pairs from CLIP-ligation studies. *Bioinformatics* **2016**, *32* (9), 1316-22.

189. Chi, S. W.; Zang, J. B.; Mele, A.; Darnell, R. B., Argonaute HITS-CLIP decodes microRNA-mRNA interaction maps. *Nature* **2009**, *460* (7254), 479-86.

190. Hafner, M.; Landthaler, M.; Burger, L.; Khorshid, M.; Hausser, J.; Berninger, P.; Rothballer, A.; Ascano, M., Jr.; Jungkamp, A. C.; Munschauer, M.; Ulrich, A.; Wardle, G. S.; Dewell, S.; Zavolan, M.; Tuschl, T., Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP. *Cell* **2010**, *141* (1), 129-41.

191. Mukherji, S.; Ebert, M. S.; Zheng, G. X.; Tsang, J. S.; Sharp, P. A.; van Oudenaarden, A., MicroRNAs can generate thresholds in target gene expression. *Nat Genet* **2011**, *43* (9), 854-9.

192. Lemus-Diaz, N.; Boker, K. O.; Rodriguez-Polo, I.; Mitter, M.; Preis, J.; Arlt, M.; Gruber, J., Dissecting miRNA gene repression on single cell level with an advanced fluorescent reporter system. *Sci Rep* **2017**, *7*, 45197.

193. Ziauddin, J.; Sabatini, D. M., Microarrays of cells expressing defined cDNAs. *Nature* **2001**, *411* (6833), 107-10.

194. Wheeler, D. B.; Carpenter, A. E.; Sabatini, D. M., Cell microarrays and RNA interference chip away at gene function. *Nat Genet* **2005**, *37 Suppl*, S25-30.

195. Kittler, R.; Pelletier, L.; Heninger, A. K.; Slabicki, M.; Theis, M.; Miroslaw, L.;
Poser, I.; Lawo, S.; Grabner, H.; Kozak, K.; Wagner, J.; Surendranath, V.; Richter, C.;
Bowen, W.; Jackson, A. L.; Habermann, B.; Hyman, A. A.; Buchholz, F., Genome-scale RNAi
profiling of cell division in human tissue culture cells. *Nat Cell Biol* 2007, *9* (12), 1401-12.
196. Genovesio, A.; Giardini, M. A.; Kwon, Y. J.; de Macedo Dossin, F.; Choi, S. Y.; Kim,

N. Y.; Kim, H. C.; Jung, S. Y.; Schenkman, S.; Almeida, I. C.; Emans, N.; Freitas-Junior, L.
H., Visual genome-wide RNAi screening to identify human host factors required for Trypanosoma cruzi infection. *PLoS One* 2011, 6 (5), e19733.

197. Castel, D.; Pitaval, A.; Debily, M. A.; Gidrol, X., Cell microarrays in drug discovery. *Drug Discov Today* **2006**, *11* (13-14), 616-22.

198. Erfle, H.; Neumann, B.; Liebel, U.; Rogers, P.; Held, M.; Walter, T.; Ellenberg, J.; Pepperkok, R., Reverse transfection on cell arrays for high content screening microscopy. *Nat Protoc* **2007**, *2* (2), 392-9.

199. Sturzl, M.; Konrad, A.; Sander, G.; Wies, E.; Neipel, F.; Naschberger, E.; Reipschlager, S.; Gonin-Laurent, N.; Horch, R. E.; Kneser, U.; Hohenberger, W.; Erfle, H.; Thurau, M., High throughput screening of gene functions in mammalian cells using reversely transfected cell arrays: review and protocol. *Comb Chem High Throughput Screen* **2008**, *11* (2), 159-72.

200. Rantala, J. K.; Makela, R.; Aaltola, A. R.; Laasola, P.; Mpindi, J. P.; Nees, M.; Saviranta, P.; Kallioniemi, O., A cell spot microarray method for production of high density siRNA transfection microarrays. *BMC Genomics* **2011**, *12*, 162.

201. Kim, H. C.; Kim, G. H.; Cho, S. G.; Lee, E. J.; Kwon, Y. J., Development of a celldefined siRNA microarray for analysis of gene function in human bone marrow stromal cells. *Stem Cell Res* **2016**, *16* (2), 365-76. 202. Bajar, B. T.; Wang, E. S.; Lam, A. J.; Kim, B. B.; Jacobs, C. L.; Howe, E. S.;
Davidson, M. W.; Lin, M. Z.; Chu, J., Improving brightness and photostability of green and red fluorescent proteins for live cell imaging and FRET reporting. *Sci Rep* 2016, *6*, 20889.
203. Kohen, N. T.; Little, L. E.; Healy, K. E., Characterization of Matrigel interfaces during defined human embryonic stem cell culture. *Biointerphases* 2009, *4* (4), 69-79.
204. Thu, C. T.; Mahal, L. K., Sweet Control: MicroRNA Regulation of the Glycome. *Biochemistry* 2020, *59* (34), 3098-3110.

205. Varki, A., Biological roles of glycans. *Glycobiology* **2017**, *27* (1), 3-49.

206. Vasudevan, D.; Takeuchi, H.; Johar, S. S.; Majerus, E.; Haltiwanger, R. S., Peters plus syndrome mutations disrupt a noncanonical ER quality-control mechanism. *Curr Biol* **2015**, *25* (3), 286-295.

207. Holdener, B. C.; Percival, C. J.; Grady, R. C.; Cameron, D. C.; Berardinelli, S. J.; Zhang, A.; Neupane, S.; Takeuchi, M.; Jimenez-Vega, J. C.; Uddin, S. M. Z.; Komatsu, D. E.; Honkanen, R.; Dubail, J.; Apte, S. S.; Sato, T.; Narimatsu, H.; McClain, S. A.; Haltiwanger, R. S., ADAMTS9 and ADAMTS20 are differentially affected by loss of B3GLCT in mouse model of Peters plus syndrome. *Hum Mol Genet* **2019**, *28* (24), 4053-4066.

208. Weh, E.; Reis, L. M.; Tyler, R. C.; Bick, D.; Rhead, W. J.; Wallace, S.; McGregor, T. L.; Dills, S. K.; Chao, M. C.; Murray, J. C.; Semina, E. V., Novel B3GALTL mutations in classic Peters plus syndrome and lack of mutations in a large cohort of patients with similar phenotypes. *Clin Genet* **2014**, *86* (2), 142-8.

209. Maillette de Buy Wenniger-Prick, L. J.; Hennekam, R. C., The Peters' plus syndrome: a review. *Ann Genet* **2002**, *45* (2), 97-103.

210. Hennekam, R. C.; Van Schooneveld, M. J.; Ardinger, H. H.; Van Den Boogaard, M. J.; Friedburg, D.; Rudnik-Schoneborn, S.; Seguin, J. H.; Weatherstone, K. B.; Wittebol-Post, D.; Meinecke, P., The Peters'-Plus syndrome: description of 16 patients and review of the literature. *Clin Dysmorphol* **1993**, *2* (4), 283-300.

211. Liu, J.; Li, Y.; Chen, X.; Xu, X.; Zhao, H.; Wang, S.; Hao, J.; He, B.; Liu, S.; Wang, J., Upregulation of miR-205 induces CHN1 expression, which is associated with the aggressive behaviour of cervical cancer cells and correlated with lymph node metastasis. *BMC Cancer* **2020**, *20* (1), 1029.

212. Wang, L.; Zhang, S.; Zhang, W.; Cheng, G.; Khan, R.; Junjvlieke, Z.; Li, S.; Zan, L., miR-424 Promotes Bovine Adipogenesis Through an Unconventional Post-Transcriptional Regulation of STK11. *Front Genet* **2020**, *11*, 145.

213. Vasudevan, S.; Tong, Y.; Steitz, J. A., Switching from repression to activation: microRNAs can up-regulate translation. *Science* **2007**, *318* (5858), 1931-4.

214. Valinezhad Orang, A.; Safaralizadeh, R.; Kazemzadeh-Bavili, M., Mechanisms of miRNA-Mediated Gene Regulation from Common Downregulation to mRNA-Specific Upregulation. *Int J Genomics* **2014**, *2014*, 970607.

215. Dweep, H.; Sticht, C.; Pandey, P.; Gretz, N., miRWalk--database: prediction of possible miRNA binding sites by "walking" the genes of three genomes. *J Biomed Inform* **2011**, *44* (5), 839-47.

216. Dweep, H.; Gretz, N.; Sticht, C., miRWalk database for miRNA-target interactions. *Methods Mol Biol* **2014**, *1182*, 289-305.

217. Sticht, C.; De La Torre, C.; Parveen, A.; Gretz, N., miRWalk: An online resource for prediction of microRNA binding sites. *PLoS One* **2018**, *13* (10), e0206239.

218. Baek, D.; Villen, J.; Shin, C.; Camargo, F. D.; Gygi, S. P.; Bartel, D. P., The impact of microRNAs on protein output. *Nature* **2008**, *455* (7209), 64-71.

219. Didiano, D.; Hobert, O., Perfect seed pairing is not a generally reliable predictor for miRNA-target interactions. *Nat Struct Mol Biol* **2006**, *13* (9), 849-51.

220. Lal, A.; Navarro, F.; Maher, C. A.; Maliszewski, L. E.; Yan, N.; O'Day, E.; Chowdhury, D.; Dykxhoorn, D. M.; Tsai, P.; Hofmann, O.; Becker, K. G.; Gorospe, M.; Hide, W.; Lieberman, J., miR-24 Inhibits cell proliferation by targeting E2F2, MYC, and other cell-cycle genes via binding to "seedless" 3'UTR microRNA recognition elements. *Mol Cell* **2009**, *35* (5), 610-25.

221. Fan, Y.; Siklenka, K.; Arora, S. K.; Ribeiro, P.; Kimmins, S.; Xia, J., miRNet - dissecting miRNA-target interactions and functional associations through network-based visual analysis. *Nucleic Acids Res* **2016**, *44* (W1), W135-41.

222. Chang, L.; Zhou, G.; Soufan, O.; Xia, J., miRNet 2.0: network-based visual analytics for miRNA functional analysis and systems biology. *Nucleic Acids Res* **2020**, *48* (W1), W244-W251.

223. Huang, H. Y.; Lin, Y. C.; Li, J.; Huang, K. Y.; Shrestha, S.; Hong, H. C.; Tang, Y.; Chen, Y. G.; Jin, C. N.; Yu, Y.; Xu, J. T.; Li, Y. M.; Cai, X. X.; Zhou, Z. Y.; Chen, X. H.; Pei, Y. Y.; Hu, L.; Su, J. J.; Cui, S. D.; Wang, F.; Xie, Y. Y.; Ding, S. Y.; Luo, M. F.; Chou, C. H.; Chang, N. W.; Chen, K. W.; Cheng, Y. H.; Wan, X. H.; Hsu, W. L.; Lee, T. Y.; Wei, F. X.; Huang, H. D., miRTarBase 2020: updates to the experimentally validated microRNAtarget interaction database. *Nucleic Acids Res* **2020**, *48* (D1), D148-D154.

224. Pinero, J.; Ramirez-Anguita, J. M.; Sauch-Pitarch, J.; Ronzano, F.; Centeno, E.; Sanz, F.; Furlong, L. I., The DisGeNET knowledge platform for disease genomics: 2019 update. *Nucleic Acids Res* **2020**, *48* (D1), D845-D855.

225. Dweep, H.; Gretz, N., miRWalk2.0: a comprehensive atlas of microRNA-target interactions. *Nat Methods* **2015**, *12* (8), 697.

226. Bond, M. R.; Hanover, J. A., A little sugar goes a long way: the cell biology of O-GlcNAc. *J Cell Biol* **2015**, *208* (7), 869-80.

227. Ong, Q.; Han, W.; Yang, X., O-GlcNAc as an Integrator of Signaling Pathways. *Front Endocrinol (Lausanne)* **2018**, *9*, 599.

228. Yang, X.; Qian, K., Protein O-GlcNAcylation: emerging mechanisms and functions. *Nat Rev Mol Cell Biol* **2017**, *18* (7), 452-465.

229. Wu, D.; Cai, Y.; Jin, J., Potential coordination role between O-GlcNAcylation and epigenetics. *Protein Cell* **2017**, *8* (10), 713-723.

230. Wright, J. N.; Collins, H. E.; Wende, A. R.; Chatham, J. C., O-GlcNAcylation and cardiovascular disease. *Biochem Soc Trans* **2017**, *45* (2), 545-553.

231. Singh, J. P.; Zhang, K.; Wu, J.; Yang, X., O-GlcNAc signaling in cancer metabolism and epigenetics. *Cancer Lett* **2015**, *356* (2 Pt A), 244-50.

232. Zhu, Y.; Shan, X.; Yuzwa, S. A.; Vocadlo, D. J., The emerging link between O-GlcNAc and Alzheimer disease. *J Biol Chem* **2014**, *289* (50), 34472-81.

233. Yuzwa, S. A.; Vocadlo, D. J., O-GlcNAc and neurodegeneration: biochemical mechanisms and potential roles in Alzheimer's disease and beyond. *Chem Soc Rev* **2014**, *43* (19), 6839-58.

234. Yang, Y. R.; Suh, P. G., O-GlcNAcylation in cellular functions and human diseases. *Adv Biol Regul* **2014**, *54*, 68-73.

235. Li, Z.; Yi, W., Regulation of cancer metabolism by O-GlcNAcylation. *Glycoconj J* **2014**, *31* (3), 185-91.

236. Hart, G. W., Nutrient regulation of immunity: O-GlcNAcylation regulates stimulusspecific NF-kappaB-dependent transcription. *Sci Signal* **2013**, *6* (290), pe26.

237. Fardini, Y.; Dehennaut, V.; Lefebvre, T.; Issad, T., O-GlcNAcylation: A New Cancer Hallmark? *Front Endocrinol (Lausanne)* **2013**, *4*, 99.

238. Hart, G. W.; Slawson, C.; Ramirez-Correa, G.; Lagerlof, O., Cross talk between O-GlcNAcylation and phosphorylation: roles in signaling, transcription, and chronic disease. *Annu Rev Biochem* **2011**, *80*, 825-58.

239. Hanover, J. A.; Yu, S.; Lubas, W. B.; Shin, S. H.; Ragano-Caracciola, M.; Kochran, J.; Love, D. C., Mitochondrial and nucleocytoplasmic isoforms of O-linked GlcNAc transferase encoded by a single mammalian gene. *Arch Biochem Biophys* **2003**, *409* (2), 287-97.

240. Shafi, R.; Iyer, S. P.; Ellies, L. G.; O'Donnell, N.; Marek, K. W.; Chui, D.; Hart, G. W.; Marth, J. D., The O-GlcNAc transferase gene resides on the X chromosome and is essential for embryonic stem cell viability and mouse ontogeny. *Proc Natl Acad Sci U S A* **2000**, *97* (11), 5735-9.

241. Tan, Z. W.; Fei, G.; Paulo, J. A.; Bellaousov, S.; Martin, S. E. S.; Duveau, D. Y.; Thomas, C. J.; Gygi, S. P.; Boutz, P. L.; Walker, S., O-GlcNAc regulates gene expression by controlling detained intron splicing. *Nucleic Acids Res* **2020**, *48* (10), 5656-5669.

242. Keembiyehetty, C. N.; Krzeslak, A.; Love, D. C.; Hanover, J. A., A lipid-droplettargeted O-GlcNAcase isoform is a key regulator of the proteasome. *J Cell Sci* **2011**, *124* (Pt 16), 2851-60.

243. Qian, K.; Wang, S.; Fu, M.; Zhou, J.; Singh, J. P.; Li, M. D.; Yang, Y.; Zhang, K.; Wu, J.; Nie, Y.; Ruan, H. B.; Yang, X., Transcriptional regulation of O-GlcNAc homeostasis is disrupted in pancreatic cancer. *J Biol Chem* **2018**, *293* (36), 13989-14000.

244. Liu, Y.; Huang, H.; Cao, Y.; Wu, Q.; Li, W.; Zhang, J., Suppression of OGT by microRNA24 reduces FOXA1 stability and prevents breast cancer cells invasion. *Biochem Biophys Res Commun* **2017**, *487* (3), 755-762.

245. Murashov, A. K.; Pak, E. S.; Koury, M.; Ajmera, A.; Jeyakumar, M.; Parker, M.; Williams, O.; Ding, J.; Walters, D.; Neufer, P. D., Paternal long-term exercise programs offspring for low energy expenditure and increased risk for obesity in mice. *FASEB J* **2016**, *30* (2), 775-84.

246. Solary, E.; Bernard, O. A.; Tefferi, A.; Fuks, F.; Vainchenker, W., The Ten-Eleven Translocation-2 (TET2) gene in hematopoiesis and hematopoietic diseases. *Leukemia* **2014**, *28* (3), 485-96.

247. Wang, D.; Hu, X.; Lee, S. H.; Chen, F.; Jiang, K.; Tu, Z.; Liu, Z.; Du, J.; Wang, L.; Yin, C.; Liao, Y.; Shang, H.; Martin, K. A.; Herzog, R. I.; Young, L. H.; Qian, L.; Hwa, J.; Xiang, Y., Diabetes Exacerbates Myocardial Ischemia/Reperfusion Injury by Down-Regulation of MicroRNA and Up-Regulation of O-GlcNAcylation. *JACC Basic Transl Sci* **2018**, *3* (3), 350-362.

248. Chatterjee, S.; Pal, J. K., Role of 5'- and 3'-untranslated regions of mRNAs in human diseases. *Biol Cell* **2009**, *101* (5), 251-62.

249. Jing, Q.; Huang, S.; Guth, S.; Zarubin, T.; Motoyama, A.; Chen, J.; Di Padova, F.; Lin, S. C.; Gram, H.; Han, J., Involvement of microRNA in AU-rich element-mediated mRNA instability. *Cell* **2005**, *120* (5), 623-34.

250. Otsuka, H.; Fukao, A.; Funakami, Y.; Duncan, K. E.; Fujiwara, T., Emerging Evidence of Translational Control by AU-Rich Element-Binding Proteins. *Front Genet* 2019, *10*, 332.
251. Lytle, J. R.; Yario, T. A.; Steitz, J. A., Target mRNAs are repressed as efficiently by microRNA-binding sites in the 5' UTR as in the 3' UTR. *Proc Natl Acad Sci U S A* 2007, *104* (23), 9667-72.

252. Orom, U. A.; Nielsen, F. C.; Lund, A. H., MicroRNA-10a binds the 5'UTR of ribosomal protein mRNAs and enhances their translation. *Mol Cell* **2008**, *30* (4), 460-71.

253. Trapannone, R.; Mariappa, D.; Ferenbach, A. T.; van Aalten, D. M., Nucleocytoplasmic human O-GlcNAc transferase is sufficient for O-GlcNAcylation of mitochondrial proteins. *Biochem J* **2016**, *473* (12), 1693-702.

254. Thu, C. T.; Chung, J. Y.; Dhawan, D.; Vaiana, C. A.; Mahal, L. K., High-Throughput miRFluR Platform Identifies miRNA Regulating B3GLCT That Predict Peters' Plus Syndrome Phenotype, Supporting the miRNA Proxy Hypothesis. *ACS Chem Biol* **2021**, *16* (10), 1900-1907.