
Proceedings of the 23rd CANCAM

PHANSIM : A SIMULINK TOOLKIT FOR THE SENSABLE PHANTOM HAPTIC DEVICES

Alireza Mohammadi, Mahdi Tavakoli, Ali Jazayeri
Department of Electrical and Computer Engineering

University of Alberta
Edmonton, AB, Canada

alireza3@ualberta.ca, tavakoli@ece.ualberta.ca, ali.jazayeri@ualberta.ca

ABSTRACT

The PHANToM R© devices (SensAble Technologies Inc.,
MA, USA) provide the users in industry and academia with an
opportunity for research and education in virtual reality, haptics,
robot motion control and teleoperation. Traditionally, one has
to develop C/C++ codes using the OpenHaptics R© software de-
velopment kit (SDK) in order to use these devices. The PHAN-
SIM Toolkit is an academic/non-commercial Simul- ink toolkit
for real-time motion control and teleoperation of the PHAN-
ToM haptic devices. This toolkit facilitates using the PHAN-
ToM haptic devices in Simulink. The usefulness of this toolkit
is demonstrated through two illustrative experiments using two
different types of PHANToM products, namely the Omni and
the Premium 1.5 models.

Keywords: PHANToM haptic devices, Simulink, robotics, tele-
operation.

INTRODUCTION

The word haptic, from the Greek origin haptikus, means
of/related to the sense of touch. Haptic technology enables the
users to touch and manipulate remote or virtual objects in re-
mote or virtual environments. This technology has found ap-
plications in a wide variety of areas such as video games, med-
ical training, scientific visualization, computer animation, re-
mote vehicle and robot control, and medical rehabilitation. The
SensAble PHANToM haptic devices [1] are among the most
popular commercial haptic devices that provide the users with
an opportunity for research and education in haptic technology
and its applications. The PHANToM product line includes a
large variety of haptic devices, from the Premium models with
high-precision, large workspaces and high forces to the Omni
model that is one of the most cost-effective haptic devices avail-
able in the market. These haptic devices have been used in var-

ious applications that provide the user with the sense of touch
such as computer games [2], surgical simulators [3], virtual re-
habilitation excercise systems [4] and teleoperation systems [5].
Robotics education is another area where these haptic devices,
especially the affordable PHANToM Omni, have been used ef-
fectively [6].

The OpenHaptics SDK [7], provided by the SensAble Tech-
nologies Inc., enables the users to develop C/C++ programs to
work with the PHANToM haptic devices. However, it does not
provide easy access to the device inputs and outputs, easy inte-
gration with external hardware such as cameras, and advanced
mathematical functions such as matrix operations and filtering
tasks. On the other hand, MATLAB/Simulink software pack-
age [8], which supports external hardware integration and a
large variety of mathematical functions, has been used to deve-
lope versatile real-time interface for motion control of different
robots such as KUKA manipulators [9]. A noncommercial in-
terface has also been developed for the
PHANToM Omni [10]. However, it requires dismantling the
haptic device and using an additional hardware system, i.e. dSP-
ACE system, in order to use this interface. This serves as the
motivation to develop an academic/non-commercial Simul- ink
toolkit for the PHANToM haptic devices.

The PHANSIM Toolkit uses C/C++ S-functions along with
the OpenHaptics toolkit to make an interface that provides the
users with access to the PHANToM torque/force inputs, the
Cartesian pose (position and orientation) of the gimbal and the
joint angles of the device in the Simulink environment. The
toolkit supports the operation of a single haptic device as well
as the teleoperation of a master-slave system consisting of two
haptic devices. This toolkit enables the users to implement and
test their designed controllers on the PHANToM devices in a
fast and easy way. The toolkit can be downloaded from the
webpage: http://www.ece.ualberta.ca/˜alireza3/Research.
html.

In this paper, we will introduce the PHANSIM Toolkit and

787



its capabilites. We will explain how this toolkit works. Also,
we will provide an overview on the Simulink blocks which are
provided in the PHANSIM Toolkit library. Finally, we show the
usefulness of the toolkit by two illustrative experiments, namely
a circle drawing task using an Omni model and a bilateral tele-
operation task using an Omni model as the master device and a
Premium 1.5 model as the slave device.

OVERVIEW OF THE PHANSIM TOOLKIT

The PHANSIM Toolkit builds up a Simulink interface/block
on top of the OpenHaptics Toolkit. The OpenHaptics HDAPI
(Haptic Device Application Programming Interface) functions
included in the OpenHaptics Toolkit enable the programmers to
access and manipulate the low-level signals of the haptic devie
(e.g., joint torque commands and joint position readings) using
C/C++ [10]. One important component of the HDAPI is the
scheduler component which enables the developer to communi-
cate with the underlying servo-loop thread without using plat-
form specific synchronization and thread related system calls
[10]. In order to create an interface for the haptic device, which
enables the users to set the input force/torque of the haptic de-
vice and to read the device states in the Simulink environment,
we have used C/C++ S-functions to access the OpenHaptics
HDAPI functions from Simulink. Figure 1 depicts how the
Simulink communicates with the physical device by using the
toolkit S-functions and the OpenHaptics HDAPI functions.

Fig.1: PHANSIM Toolkit hierarchy.

In order to work with a haptic device using the OpenHaptics
Toolkit, the HDAPI functions should be called according to the
following pattern (the readers are referred to the OpenHaptics
Toolkit guide for a thorough explanation) [10]:

1. The device should be initialized.

2. The force outputs should be activated and the device sched-
uler function should be defined and started.

3. The force outputs should be disabled and the scheduler
should be cleaned up.

The PHANSIM Toolkit S-functions use the above pattern to in-
voke the HDAPI functions and manipulate the haptic device.
Figure 2 depicts the flow chart of the PHANSIM interface. As
it can be observed, when the user starts the Simulink model, the

haptic device will be initialized, device force outputs will be ac-
tivated and the device scheduler function will be started. The
scheduler function is called every 1 millisecond and applies the
force or torque inputs, which are provided by the Simulink S-
functions, to the device and reads the states (e.g., joint angles
and gimbal position) of the device, which are reported to the
Simulink S-functions. The Simulink should be able to update
the inputs provided for the haptic device with a rate faster than
or equal to 1 kHz if a smooth motion is required. The rate at
which the inputs of the device are updated in the Simulink can
be set through the Configuration Parameters dialog box of the
Simulink model. In fact, one can consider the scheduler func-
tion as a sample-and-hold device which reads the inputs and
reports the outputs at a rate of 1 kHz. When the user termi-
nates running the Simulink model, the haptic device scheduler
will be stopped and the device force outputs will be disabled. In
short, the PHANSIM Simulink interface initialzes the device,
provides input for the scheduler function, reads the device out-
put and stops the device at the end by using the HDAPI func-
tions.

Fig.2: Flow chart of the PHANSIM interface.

The PHANSIM library consists of the following blocks:

• PHANToM Block This block can be used when only one
haptic device is used. Force or torque inputs may be ap-
plied to the device. The user can determine the domain
of the inputs (joint-level vs. Cartesian-level) in the block
dialog box. Figure 3 depicts the schematic diagram of the
PHANToM haptic device. Gimbal coordinates (x, y and
z) and angles (q1, q2 and q3) and the angles of the first
three actuated joints (θ1, θ2 and θ3) can be read from the
device. If more than one haptic device is connected to
the PC, the user can choose the desired device by typing
its name in the block dialog box. The device name is the
name by which the SenSable’s PHANTOM Test program
recognizes the haptic device. Figure 4 shows the PHAN-
TOM Block.

788



Fig.3: PHANToM schematic diagram.

Fig.4: PHANSIM Library: PHANTOM Block.

• PHANTOM Teleoperation Block This block can be used
when two haptic devices are used simultaneously. Again,
force or torque inputs may be applied to the devices; the
user can determine the type of inputs in the block dialog
box. Gimbal coordinates and angles and the angles of the
first three actuated joints of the robots can be read. The
user can identify each device by typing its name in the
block dialog box. Figure 5 shows this block.

Fig.5: PHANSIM Library: PHANTOM Teleoperation
Block.

• PHANTOM Clock Generator Block Since Simulink’s
simulation time is not representative of the actual time
elapsed during an experiment, a block is needed to syn-
chronize the simulation with the actual time. The PHAN-
TOM Clock Generator Block generates a real-time clock

signal by reading the CPU time. This block can be used
to generate real-time signals. For instance, if we want
to record the time passed during a teleoperation task, we
should use this block’s output to record the time. Figure
6 shows this block.

Fig.6: PHANSIM Library: PHANTOM Clock Generator
Block.

EXPERIMENTS

This section illustrates the effectiveness of the toolkit by
two experiments: a circle drawing task and a bilateral teleper-
ation task. In the experiments, a PHANToM Omni haptic de-
vice was connected to a PC through the IEEE 1394 port and
a PHANToM Premium 1.5 haptic device was connected to the
same PC via the parallel port (EPP) interface. The following
software programs were installed on the PC:

• Microsoft Windows R© XP (service pack 2),

• MATLAB R© R2009a (32-bit version),

• OpenHaptics R© 3.0 academic edition.

A.Circle Drawing Task

A PHANToM Omni haptic device was used to draw a circle
with a radius of 30mm on a horizontal plane. Proportional-
derivative (PD) control laws were used as control schemes at
each joint with proportional and derivative gains equal to 0.25
and 0.7, respectively. Through the PHANTOM Block, a force
input (i.e., PD controller output) was applied to the device, and
the Cartesian coordiantes of the device gimbal were read. The
reference trajectory was:

x(t) = 30 sin(
π

2
t), y(t) = 0, z(t) = 30 cos(

π

2
t) (1)

The Simulink PID controller block from Simulink Extras/Add-
itional Linear library was used to implement the PD control
law. Note that the output of the PHANToM Clock Generator
Block is used to synchronize the sine wave sources with the ac-
tual time which is read from the PC’s CPU. Figure 7 depicts the
gimbal’s x and z coordinates time-histories and the final trajec-
tory of the device gimbal.

789



Fig.7: Circle drawing task.

B.Bilateral Teleoperation Task

In this experiment, a 1-DOF bilateral teleoperation task was
done using two haptic devices. The PHANToM Omni haptic de-
vice was used as the master device and the PHANToM Premium
1.5 was used as the slave device. Through the PHANToM Tele-
operation Block, torque inputs were applied to the first joints
of the haptic devices and the angles of the first joints of the de-
vices were read. Two proportional-derivative (PD) controllers
were used at the master and the slave sides with proportional
and derivative gains equal to 0.25 and 0.7, respectively.

Similar to the previous experiment, the Simulink PID con-
troller block from Simulink Extras/Additional Linear library was
used to implement the PD control law. Figure 8 depicts the time-
history of the first joint angles of the PHANTOM OMNI and the
PHANTOM Premium 1.5, respectively.

Fig.8: Bilateral teleoperation.

CONCLUSIONS

An academic/noncommercial Simulink toolkit for easy in-
terfacing with SensAble PHANToM haptic devices was intro-
duced in this paper. The toolkit can serve as a good and quick
means for research and education purposes. It relieves the users
from cumbersome hand coding in C/C++. The users can de-
velop and implement their control systems in Simulink and test
them on PHANToM haptic devices with ease and speed.

ACKNOWLEDGMENTS

This work was supported by the Natural Sciences and En-
gineering Research Council of Canada (NSERC).

REFERENCES

[1] SenSable Technologies Corporation,
http://www.sensable.com/.

[2] Fyans, A. C., and McAllister, G., 2008, “Creating games
with feeling,” Proc. Int. Conf. on Computer Games: Arti-
ficial Intelligence and Mobile Systems, Las Vegas, NV, pp.
94–98.

[3] Trier, P., Noe, K. O., Sorenson, M. S., and Mosegaard, J.,
2008, “The visible ear surgery simulator,” Proc. Conf. on
Medicine Meets Virtual Reality, Long Beach, CA, pp. 523–
525.

[4] Guo, S. X., Song, Z. B., and Ren, C. C., 2009, “Develop-
ment of upper limb motor function training and rehabilita-
tion system,” Proc. IEEE Int. Conf. on Mechatron. Autom.,
Changchum, China, pp. 931–936.

[5] Tzafestas, C., Velanas, S., and Fakiridis, G., 2008, “Adap-
tive impedance control in haptic teleoperation to improve
transparency under time-delay,” Proc. IEEE Int. Conf. on
Robot. Autom., Pasadena, CA, pp. 212–219.

[6] Medical robotics and computer-integrated
intervention at the University of Alberta-
EE464, http://www.ece.engineering.ualberta.ca/
en/Undergraduate/Courses.aspx.

[7] OpenHaptics Toolkit, The SenSable Technologies Inc.,
USA, http://www.sensable.com/products-openhaptics-
toolkit.htm/.

[8] MATLAB and Simulink for Technical Computing, The
MathWorks Inc., USA, http://www.mathworks.com/.

[9] Chinello, F.,Scheggi, S., Morbidi, F., and Prattichizzo, D.,
2010, “KCT: a MATLAB toolbox for motion control of
KUKA robot manipulators,” Proc. IEEE Int. Conf. on
Robot. Autom., Anchorage, Alaska, 2010, pp. 4603–4608.

[10] Eriksson M., and Wikander, J., 2010, A haptic interface
using Matlab/Simulink, Sweden, Stockholm: Mechatronics
Laboratory, Machine Design, KTH.

790




