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Abstract

We will study whether or not the invertible group of a nest algebra is connected. This
is an open problem in general for nest algebras. In this thesis. we will survey the known
resuits. The invertible group of a nest algebra is connected when there is a finite bound
on the number of consecutive finite rank atoms in the nest. As particular cases, this shows
that the invertible group is connected for finite dimensional nest algebras, continuous nest

algebras, and nest algebras of infinite multiplicity.
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CHAPTER 1

Introduction and Historical Notes

Whether or not the group of invertibles in a unital Banach algebra is connected is an
interesting question in general. Let G be the group of invertible elements of a unital Banach
algebra A and let Gy denote the connected component of G which contains the identity.
Then, Gq is an open, closed. and normal subgroup of G. We may then define the abstract
index group Az to be the quotient group G/Gp. We see that the invertible elements are
connected in a unital Banach algebra if and only if Az is the trivial group.

The invertibles are connected in the finite dimensional matrix algebra M, (C). It is also
known that the invertible group is connected in B(#), the set of bounded linear operators
on a separable, infinite dimensional, complex Hilbert space, H. If we are dealing with a
commutative unital Banach algebra A, there is a nice description of Gg. the connected
component of the identity. It turns out that Gg = exp(A), the range of the exponential

j o
function. (The exponential of F' € A is defined by the convergent series exp(F’) := Z ?.)

n=0

An example of a Banach algebra where the invertibles are not connected is the Calkin

o

algebra, which is the quotient algebra A(#H) := B(#H)/K(#H). Once again, H is a separable
infinite dimensional Hilbert space, and K(H) denotes the set of compact operators on H.
The abstract index group for the Calkin algebra is isomorphic to Z. We can obtain a
description of the connected components of the invertible group of A(7) in terms of the
Fredholm index. An operator T € B(#) is called Fredholm if ran(T) is closed, and both
nul(7T) and nul(T ™) are finite. For a Fredholm operator T, we define the (Fredholm) index
of T to be ind(T") = nul(T) — nul(T™). It turns out that T € B(#) is Fredholm if and only

if #(T) is invertible in the Calkin algebra, where = denotes the canonical quotient map.



Also, ©(T1) and 7 (T3) lie within the same connected component of the group of invertibles
if and only if T} and T are Fredholm with ind(7;) = ind(7%2). Each connected component
is non-empty, since ind(7) = 0, ind(S™) =n if n > 0. and ind((§*)™") = n if = < 0, where
S denotes the backward unilateral shift in B(#). For further details, see [4].

The connectedness question has been studied recently in the case of nest algebras.
Though a complete answer to the question has not yet been found, it has been shown that
the invertible elements are connected for a large class of nest algebras. These results will
be examined in this thesis.

Nests and nest algebras were first defined precisely by Ringrose in 1965 [11], though
these objects were also studied in a more general setting by Kadison and Singer as early
as 1960 [5]. One of the most important results for nest algebras is the Similarity Theorem,
which characterizes when two nest algebras are isomorphic. D. Larson proved the first
version of f.he theorem in 1982 [6], showing that any two continuous nest algebras are
similar, and hence. their nest algebras are isomorphic. The Similarity Theorem was proved
in its most general form by K. R. Davidson in 1983 [1]. He showed that two nests are
similar precisely when there is an order preserving isomorphism between the nests which
also preserves the rank of the atoms.

The first result on the invertibility question in nest algebras came in 1993, when
K. R. Davidson and J. Orr showed that the invertible group is connected in nest alge-
bras of infinite multiplicity. These are the nest algebras in which all of the atoms have
infinite rank; and in particular, includes the nest algebras of continuous nests. The proof of
this result uses results of D. Larson and D. Pitts on idempotents in nest algebras [7], and
the Interpolation Theroem of J. Orr [8].

Soon after, in 1994, the invertibility question was again answered in the affirmative for

a more general class of nest algebras. In [3], K. R. Davidson, J. Orr and D. Pitts showed



that the invertibles are connected in nest algetbras for which there is a finite bound on the
number of consecutive finite rank atoms in thes nest.

The invertibility question remains an open problem in general. It is unknown whether
or not the invertibles are connected in the rnest algebra consisting of upper-triangular
(bounded) matrices on an infinite dimensional, separable Hilbert space. This is some-
what surprising, since it was originally thought that this was one of the most “natural” nest

algebras to deal with.



CHAPTER 2

Introduction to Nests and Nest Algebras

In this chapter, we provide a brief introduction to nests and nest algebras. We will give the
definitions we will need, some examples of nests and nest algebras, and a few basic results
on connectedness. We also discuss the useful Similarity Theorem for nest algebras. For a

more complete treatment of nest algebras, including the Similarity Theorem. see [2].

1. Preliminaries

A Hilbert space, H. is a vector space equipped with an inner product, (-.-), such that A
is complete under the norm ||z]| := (r,x)%. We denote by B(#) the set of linear, bounded
(or equivalently, continuous) functions from # into H. We will always assume that the field
of scalars for our Hilbert spaces is C. We will also assume throughout that our Hilbert
spaces are separable; that is to say, that each Hilbert space has a countable orthonormal
basis.

To each operator T € B(H) we associate the adjoint operator 7~ which is the unique
operator in B(?#) which satisfies (T'z, y) = (z,T"y) for all z,y € H. An idempotent in an
algebra is an element E which satisfies E? = E. A projection is an operator P € B(#)
which is a self-adjoint (that is, P = P~) idempotent.

We define a norm on B(#) by setting ||T|| = sup{||Tz|| : ||z} < 1}. This norm makes
B(H) into a metric space, via the metric d(S5,T) = ||S — T||. We define the rank of an
operator to be the dimension of its range (possibly oc), and write rank(T"). The set of finite
rank operators in B(#) is denoted by F(#). The set of compact operators, K(H), is the

(norm) closure of F(H).



Along with the metric topology defined by the norm as above, there are various other
topologies we can put on B(H). We will define each by describing which nets converge. The
strong operator topology (SOT) is defined by the convergence T, 0% Tif and only if

WOT
— T

Toz — Tz for all z € H. The weak operator topology (WOT) is defined by T,
if and only if (Toz.y) > (Tx,y) forall z,y € H.

We also have a weak-* topology on B(#) because it is the dual space of the space of
trace class operators, C;(H). which we will define presently. We will say that an operator
T € B(H) is in Cy(H) if it is compact, and if the spectrum of |K| = (I\‘"K)%, (sn)nz,-
is a sequence in {}(N). The sequence (s,)S%, is usually listed in decreasing order. and
these s, are called the s-numbers of K. For K € C;(H) we may define its trace by
tr(K) := 3" (Kek.ex) where (ex) is some orthonormal basis for #. It can be shown that
the trace is independent of the choice of orthonormal basis. If H is finite dimensional. this

agrees with the usual notion of trace of a matrix. Now, weak-+ convergence in B(#) can be

described by T, "2557 T if and only if tr(To K) — to(TK) for all K € €y (H).

2. Nests and Nest Algebras: Definitions and Examples

2.1. Definition. Let H be a Hilbert space. A nest on H is a linearly ordered subset
B of projections in B(H) which is closed in the strong operator topology, and contains 0

and I.

2.2. Definition. For a nest 8, the nest algebra, Alg(3). consists of all operators

which leave the range of each projection in g invariant. That is,

Alg(3) = {T € B(H) : TP = PTP for all P € 8}.



We will check that Alg(3) is in fact an algebra. Let 4,B € Alg(3), A € C. Itis
easy to see that 4 + B and AA are in Alg(3). Let P € 8 and let M = ran(P). Then
ABM C AM C M and hence AB € Alg(3).

Let us also show that Alg(3) is VVOT closed. Let P € 3 and let M = ran(P). Suppose
(Tw)aca is a net in Alg(3) which converges (WOT) toT € B(H). Letr € M and y € ML

Since T, € Alg(3). we have (T,z,y) = 0. Then,
(Tz, y)y=lim(T,z,y) =0,

which implies that Tr € M as y <€ .M* was arbitrary. Since r € M was arbitrary,
TM C M and thus T € Alg(3).

Here are some examples of nests and nest algebras:

2.3. Example. Let H be a finite dimensional Hilbert space, with basis {e;.....€n}.

Let P be the orthogonal projection onto the span of {e;....,ex}. and let By = 0. Then,
B8={P.:0<k<n}

is a nest. In this case, the nest algebra is just 7,(C), the algebra of upper triangular n X n

matrices (with respect to the basis {e;1.... ;€en}).

2.4. Example. Let H be an inffinite dimensional (separable) Hilbert space with basis

{e1.€2,...}. Let P, be the projection onto the span of {ey,....exr}. Then
{0, Pe,lf:k=1,2,...}

is a nest. The nest algebra consists of all bounded operators which have an upper triangular

matrix with respect to the basis {ej, €3,...}.



2.5. Example. Let H = L?%([0,1],m), where m denotes Lebesgue measure. The

multiplication operator P; := A, . is a projection in 5(#). The set

[0.¢]

3={P:0<t<1}

is a nest, known as the Volterra nest.

2.6. Example. Let H = [2(Q) = L*(Q.p) where u denotes counting measure:

card(E) if E is a finite set
u(E) =

oc otherwise.

For any t € R define

NT=M

ATF — 7
Y(eso.qyne @nd N7 =AM

Lx(—oc.t]nT

where \y denotes the characteristic function of the set Y. The multiplication operators

above are projections in 5(#H). We define the nest

B={0,N7,N¥,I:teR}

which is known as the Cantor nest.

Given P € 3, define P_ =sup{Q € 3:Q < P} and Py =inf{Q € 8:@Q > P}. Notice
that these are both in 3 since nests are SOT closed. If P. # P, then P_ is the immediate
predecessor of P; likewise, when P; # P, P, is the immediate successor of P. If it happens
that P_ # P, then we call P — (P-) an atom of 3. If the atoms of 8 sum (in the strong
operator topology) to the identity, we say that J is atomic. If a nest has no atoms at all,
we call the nest continuous.

The nests in Examples 2.3 and 2.4 are atomic, whereas the Volterra nest of Example
2.5 is continuous. We claim that the Cantor nest (Example 2.6) is atomic. If ¢ is irrational,

T



then N;' = N and both are equal to (N, ). If t € Q, then N;" — N = AL

x{¢} 1S an atom

of 8. Also,

SNONFNT=Y My, =M =1
teG teQ

where [ is the identity in B(/?(Q)). Hence, the Cantor nest is atomic.

More generally, a projection of the form P — @Q where P,Q € 3 is called an interval
of 3, also written J3-interval. Notice that atoms are minimal intervals. Each A-interval.
N — M, is semi-invariant for T € Alg(3). meaning that T(:N — M) = NT(N — M). and

(N = M)T = (N = M)T(I — M).

2.7. Definition. Let # be a Hilbert space. A nest 3 on H is called maximal if

whenever « is a nest on H with 3 C ~ then 5 = 3.

Here is 'a nice characterization of when a nest is maximal.

2.8. Proposition. A nest is mazimal if and only if all of its atoms have rank one.
Proof. Let 3 be a maximal nest on a Hilbert space # and suppose that E = N — M is
an atom of 3 with rank(E) > 2. Choose some non-zero vector = € ran(E). The orthogonal
projection P onto (ran(}) + span{z}) satisfies M < P < N. Hence v = 3U {P} is a nest
which is strictly larger than 3, which is a contradiction.

Conversely, let 3 be a nest on # such that all of its atoms have rank one. Let P € B(H)
be a projection such that P < N or P > N for all N € 3. These are the only possible

projections with which we might hope to enlarge our nest 3. Define
No=sup{N €g8:N < P}and Ny =inf{N € 3:N > P}.

Note that Ng, N; € 8, and Ng < P < N;. Forany N € 3, N < Ngor N > N}. Hence
(N1)— = No. By hypothesis, rank(N; — Ng) < 1. Thus, P = Ng or P = Ny, and hence our

8



nest B is maximal.

Notice that in particular, continuous nests are maximal (because there are no atoms to
check). Each one of the nests in the Examples above is maximal. Here is an example of a

nest which is not maximal.

2.9. Example. Let H be an infinite dimensional Hilbert space with orthonormal

basis (e,)S%,. Let Px be the orthogonal projection onto the span of {e1.e2.....€e2t}. The

nest 8 ={0, P, : k > 1} is not maximal, because each atom of 3 has rank 2. In fact, this

nest is contained in the maximal nest from Example 2.4.

We define the diagonal of a nest algebra to be

D(8) = Alg(8) N (Alg(5))"-

If we are in the maximal finite dimensional case (Example 2.3). Alg(3) = 7.(C), then the
diagonal of Alg(3) is precisely the set of diagonal matrices.

The commutant of a subset A C B(H) is the set
A ={T € B(H) : TA= AT for all 4 € A}.
We will check that D(3) = 3. If T € D(3), then for P € 3,
TP=PIP=(PT"P)"= (T"P)" = PT.

On the other hand, if T € &', then TP = (TP)P = PTP and T"P = (PT)" = (PTP)" =
PT=P. Hence D(B) = B’. The double commutant 3” = (3')' is known as the core of 3.
By von Neumann’s Double Commutant Theorem, the core of 3 is the SOT closure of the

algebra generated by 3.



Here is another way to think about nests. The map sending P ~ ran(P) is an order
preserving homeomorphism which carries the strong operator topology to the order topology
(the order on subspaces of # is just containment). So we could have also defined a nest as
a linearly ordered chain of subspaces of # which contains {0} and #. and is closed under
taking intersections and closed spans.

For any nest 3 on a separable Hilbert space. there is an order preserving homeomorphism
from (3, SOT) onto a compact subset « C [0.1] [2, Theorem 2.13]. The homeomorphism
is given by the map P — (Puz, r) where z is a unit separating vector for 3. (A separating
vector for 3 is a vector £ € H such that Pz = 0 implies that P = 0 for all P € 3.) In
particular, notice that nests are (SOT) compact. We call « the order type of 3.

Observe that the order type depends on the choice of unit separating vector, z, but is

well defined up to homeomorphism.

2.10. Example. The order types of the nests in the first three examples above are
{1-%:k=1,...n}u{1}. {1 = £ :k=1,2....} U{1}, and [0. 1] respectively. If 3 is
the Volterra nest (Example 2.5), an example of a separating vector for 3 is the constant
function 1. Thus, the map ® : P — (P1, 1) gives rise to the natural parameterization P, <+ t
of the nest. The order type of the Cantor nest turns out to be the Cantor set. Perhaps

1

surprisingly, the order type of the nest in Example 2.9 is also {1 — ¢ : k£ =1,2....} U {1},

the same order type as in Example 2.4.

Each nest 8 has an associated spectral measure, £. Let kA be an order preserving
homeomorphism of 3 onto a compact subset « C [0.1]. The spectral measure £ is defined
on the Borel subsets of «w or equivalently {via the homeomorphism &} on the Borel subsets
of 3. For each Borel set, ¥, £(X) is a projection in the core, 3”. The spectral measure
satisfies countable additivity; that is, if (B,)3%, is a countable family of disjoint Borel sets
of 3, then £(UsZ; Bn) = SOT — 3., £(Ba). Also, for any vectors z,y € H, the map

10



B — (£(B)z,y) is a complex-valued measure on the Borel sets of 3. The spectral measure

has the property that £([0,£]) = h~1(¢) for ¢ € w.

3. Connectedness

For a general topological space, connectedness and path connectedness are different.
However, we will see that for the invertible group of a nest algbebra. (Alg(3))~!, connect-
edness and path connectedness are the same. We will use some standard topological results;

the proofs here are based on [12].

3.1. Definition. We say that an invertible element T € Alg(3) is connected to the
identity if there is a (norm) continuous function f : [0,1] — (Alg(3))~! such that f(0) =T
and f(1) = 1.

It is worth pointing out that the range of f being in (Alg(3))~! really requires three
things: for every t € [0, 1], f(t) must be invertible, and f(¢) and f(¢)~! must be in the nest

algebra, Alg(3).

3.2. Definition. A topological space X is called connected if there do not exist
disjoint non-empty open sets A, B such that X = 4 U B. We call X path (or pathwise)
connected if for every z, y € X, there exists a continuous function f : {0, 1] = X such that
f(0) =z and f(1) = y. Such an f will be called a path from z to y. A space X is called
locally path connected if each point z € X has a neighbourhood base consisting of path

connected sets.

The next proposition compares connectedness to path connectness.

3.3. Proposition. Let X be a topological space. If X is path connected, then it is
connected. If X is connected and locally path connected, then it is path connected.

11



Proof. Let X be path connected, and suppose A. B are disjoint non-empty open sets such
that X = AU B. Choose a € A and b € B and let f : [0,1] = X be a path from a to b.
Then, the sets f~!(A) and f~!(B) are disjoint non-empty open sets whose union is [0, 1]
This is a contradiction, because [0, 1] is connected. Hence, X is connected.

Next, suppose that X is connected and locally path connected. Let z € X and define
A = {y € X : there exists a path in X from z to y}.

Notice that A # () because z € A. Let a € 4 and choose a path connected neighbourhood
U of a. Any point u € U is also in A4, because there is a path from z to a within X, and a
path from a to u within A C X. So U C A and hence 4 is open.

We will show that A is also closed. Let & € A and let I/ be a path connected neigh-
bourhood of b. Then. U N 4 is non-empty, say = € [/ N 4. Then. we have a path from z
to z (within X'), and a path from =z to b (within ["). Adjoining these two paths shows that
b € A, and hence A is closed.

Since X is connected, we must have 4 = X, for otherwise A4 and (X \ 4) would be

disjoint non-empty open sets whose union is X. This means that X is path connected.

3.4. Proposition. Let 3 be a nest. Then the group of invertibles, (Alg(8))~! is
locally path connected.
Proof. First, notice that Aig(3) is a Banach algebra because it is a norm closed subalgebra
of B(H). Indeed, we have seen that Alg(3) is even WOT closed. Fix T € (Alg(8))~! and

for n € N with n > ||T!|[, define

Un = {X € (Alg(8)) : X — T < =)

12



Then, {U, : n € N,n > ||[T7!||} is a neighbourhood base at T. Let X € U, and define

f@)=0-t)T +tX fort € [0,1]. Then, for each ¢,

1 1
Q@) -TI=elX-Tl < - < =7
I=Th<s <y
which implies that f(¢) is invertible, and also that f(t} € U,. Also, f is continuous because
1F(t1) = f(E))| = |t — t2]l| X — T|| for any t;.t, € [@, 1]. This shows that (Alg(3))~! is

locally path connected.

As an immediate corollary to the two results above,. we see that path connectedness and

connectedness are the same for (Alg(3))~1.

3.5. Corollary. Let 3 be a nest. The invertibles are connected in Alg(3) if and only
if the invertibles are path connected in Alg(3).

So when we consider the question of whether or not the invertibles are connected a
nest algebra, the Corollary above shows that we may equally mean “connected”™ or “path
connected™.

Whether or not the invertibles are connected is a nesst algebra remains an open problem
in general. However, it has been shown that the inver-tibles are connected in all the cases
where the answer is known. The purpose of this thesis is to examine the connectedness
question for nest algebras. We will first look at a simple case to give an idea of the flavour

of this problem.

3.6. Proposition. Lel H be a finite dimensional Hilbert space with orthonormal basis
{€1,...,en} and let B = {0, Pr : k = 1,...,n} where .P; is the orthogonal projection onto
span{ey,...,er}. Then, the invertibles are connected :n Alg(3).

13



Proof. Recall that the nest algebra Alg(3) for this nest is simply 7,(C), the algebra of
upper-triangular n X n matrices. A matrix in Alg(83) is invertible if and only if all of its
diagonal entries are non-zero.

Let T € Alg(8) be invertible, and write T = D+ N where D = diag{d;}?_, is diagonal.
and N is strictly upper triangular. Note that each d; is non-zero.

We will first define the function f :[0,1] — (Alg(3))~! by

f(t)=D+(1—-t)N.

Note that f(0) = T and f(1) = D. For each ¢. f(t) € (Alg(3))™! because it is an upper
triangular matrix with non-zero diagonal entries. The function f is continuous since || f(£1)—
f(&2)ll = |t = taf |[N]] for any ty,£5 € [0.1].

For each £,1 < k& < n, write d;. = rre'% and define functions gx on [0, 1] by

ret (=206 if0<t<

N|—

gr(t) =
(2 —2t)rp + (2t = 1) if

[T

<t<1.

Set g(t) = diag{gx(¢)}7?_,- We have g(0) = D and g(1) = I (the n x n identity matrix). For
every t € [0,1], g(¢) is a diagonal matrix with non-zero entries, and is thus in (Alg(3))~!.
Also g is continuous since each function g is continuous, and since the norm in this case is
given by [lg(t)]| = max{|gu(t)] : k = 1..... .n}.

So, the function

f(2t) ifo<t<:
R(t) =

—

g2t—1) if1<t<

is a continuous function into (Alg(3))~! with 2(0) = T and A(1) = I. Hence, the invertibles

are connected in Alg(3).

14



It is important here that our scalar field for # was C. If we take only real scalars, it
is false that the invertibles are connected, even in the nest algebra 7;(R) ~ R. The set of

invertible elements of the nest algebra is R\ {0} which is not connected.

4. Similarity

4.1. Definition. We say that two nests 3,+ on Hilbert spaces H;.H, are similar if

there is an invertible operator S : H; — H3 such that
v =853 :={[SN]: N € 3}

where [SN] denotes the orthogonal projection onto the range of S:V.

One of the most important results for nest algebras is the Similarity Theorem (Theorem
4.3 below). The first version of the Similarity Theorem. which showed that all continuous
nest algebras are similar, was proved by D. Larson [6]. This paper also showed that a
similarity between nests can fail to preserve multiplicity, which answered a long stand-
ing question of J. R. Ringrose. We will see an example of this phenomenon below. The
Similarity Theorem in its full generality was proved by K. R. Davidson [1].

Similarity of nests gives us useful information about the correqunding nest algebras;
namely, if § and v are similar nests. then Alg(3) and Alg(y) are isomorphic. In fact, if
S : B — v is the similarity, then Alg(3) = S~!Alg(+)S. To see this, let T € Alg(3). and let

L € v. Choose N € 8 so that L = [SN]. Let A" =ran(N) and £ = ran(L). We have
STS™'L=STS™'SN =STN C SN =L,

and hence, STS~! € Alg(y). Thus, Alg(8) C S~tAlg(+)S. For the converse, let R € Alg(7)
and N € 8. Choose L € v with L = [SN] and set A" = ran(), £ = ran(L) as before.
Then, ST!RSN = S7'RL C S™L = N, and so, ST'!RS € Alg(3). This shows that
Alg(8) = S~1Alg(v)S.
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4.2. Definition. We call a map 8 : § — v between two nests rank preserving if for

every atom P ~ @ in 3,

rank(P — Q) = rank(6(P) — 0(Q))-

We wish to gain some information on when nests will be similar. First. suppose we
are given two nests which are similar, say S : 3 — + is a similarity. We define the map
fs(N) = [SN]. By definition of similarity of nests, this map is onto. If N| < N3 are in 8.
then 85(N}) = [SN] < [SNy] = 85(V2); thus, 85 is one-to-one and order preserving. Since
S is an invertible operator, fs also preserves the rank of the atoms of 3. To summarize, s is
an order and rank preserving isomorphism between the nests. T he Similarity Theorem shows
that the converse holds; that is, if there exists an order and rank preserving isomorphism
between two nests, then they are similar. If this is the case. we may even take the similarity

to be a small compact perturbation of a unitary.

4.3. Theorem. (Similarity Theorem [1]) Let 8,.32 be nests on Hilbert spaces H,, H
respectively. There exists an order and rank preserving isomorphism 8 : 8, — 32 if and only
if there is an invertible operator S € B(Hy.Ha) such that S8y = 32. Given such a 6 and
€ > 0, we can find a unitary U and a compact K with ||K|| < € such that S = U + K is
invertible, SB; = B2 and 0 = s, where 9s(N) = [SN] for N € ;.

We will end with an example which shows that two nests can be similar, and yet not
unitarily equivalent. We will say that nests 8, + on Hilbert spances H;, Ha respectively

are unitarily equivalent if there is a unitary operator U : #; — 2 such that v =Ug3 :=

{[lUN]: N € 5}.



4.4. Example. Let 3 = {N; : t € [0,1]} be the Volterra nest from Example 2.5.
Define the nest
v=8&0:={N&N::te€[0.1]}
on the Hilbert space L?([0, 1j, m) & L?([0, 1], m), where m denotes Lebesgue measure. The
map N; — N, & N, is an order preserving isomorphism, which also (vacuously) preserves
the rank of atoms because 3 and < are continuous nests. By the Similarity Theorem, the
nests are similar. However, the nests are not unitarily equivalent, since 3’ = L*([0. 1], m)

is commutative, whereas v’ = M, (L>([0. 1], m)) is not.



CHAPTER 3

Idempotents in a Nest Algebra

In this chapter, we will collect some results on idempotents in a nest algebra. We will
define algebraic equivalence and similarity of idempotents, and obtain a description of when
idempotents in a nést algebra are algebraically equivalent or similar in terms of the ranks
of their compressions to intervals of the nest. These results will be of use to us in the
next chapter when we prove the Interpolation Theorem, and again when we study the

connectedness problem for nest algebras in Chapter 6.

1. The Idempotent Theorem

1.1. Lemma. Let 3 be a nest and E € Alg(3) be an idempotent. Let S € B(H) be

invertible. For any N .M € 3 with N > M.

rank((N — M)E(N — M)) = rank(([SN] — [SM])SES™Y[SN] — [SM]))

where [T] denotes the projection onto ran(T).
Proof. Fix N, M € 3 with N > M. Consider the finite subnest v = {0, M, N, I'}. We may
factor S = U; A where U; is unitary, and 4 € Alg(y) [2, Lemma 14.4]. Since 7 is a finite
nest, we may further factor A = U B where U, is unitary. B € Alg(y) and B is invertible
with B™! € Alg(y) [2, Corollary 14.3]. Hence, S = B where U = U, is unitary, and
B € Alg(+)~L.

Now, we have SN = UBN = UNBN =UNU~SN. Thus, ran(SN) C ran(UNU™).
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On the other hand, UNU* = SB™'NBS™! = SNB"!NBS~! because B~! is also in
Alg(v). Hence, we have shown that ran(SN) = ran(UNU™). This implies that [SN] =
UNU™ since both are projections with the same range.

The same proof shows that [SM] = UMU~". So, [SN] - [SM]=U(N — M)U~. Using

the fact that £, B, B~! € Alg(v), and the semi-invariance of N — M, we get
rank(([SN] — [SM])SES~Y[SN] - [SM]))
= rank(U(N — MYU"SES™'U(N - M)U™)
= rank(U(N — M)BEB™Y(N - M)U™)
= rank(U(N — M)B(N — M)E(N - M)B™Y(N = M)U™)
= rank({(V - M)B(N — M)E(N - M)B™Y(N — AM))
= rank((N — M)E(N — M}),

because (N —AM)B(N — M) is invertible in B((N —AM)H): its inverse is (N —M)B~1(N - M).

To verify this last comment, consider the matrices

£ * % MH x % % MH
B=|0 By « | (N=MH and B™'=| o ¢, « | (N-MH:
0 0 =« NL+H 0 0 =« N+H

both of which have this block upper-triangular form because B, B~! € Alg(y). So multi-
plying these matrices shows that B4Cy = I = C4B,. as advertised.

O

If A is a algebra, we say that two idempotents 4, B € A are algebraically equivalent
if there exist X, Y € A (not necessarily idempotents) such that 4 = XY and B =YX, and
we write A ~ B. Algebraic equivalence is an equivalence relation on the set of idempotents
in A. We will check that ~ is transitive; the reflexivity and symmetry are easy to see.
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Let A,B,C € A be idempotents with A ~ B and B ~ C. Let X,Y € A be such that
A= XY and B = Y X; and choose Z,W € A so that B = ZW and C = WZ. Now,
(XZY(WY)=XBY = X(YX)Y =Aand (WY )(XZ)=WBZ =W(ZW)Z = C. Hence
A~C.

Algebraic equivalence is a useful notion in other settings as well. For example, it is used
when defining the K-theory of rings.

If A is a unital algebra, we cail 4, B € A similar if there exists an invertible element
S € A with A = SBS~!. The next theorem, due to D. Larson and D. Pitts gives us useful

information on when idempotents in a nest algebra are algebraically equivalent or similar.

1.2. Theorem. (Idempotent Thecrem [7]) Let 3 be a nest on H and E, F € Alg(5)
be idempotents.

1. E|F are algebraically equivalent within Alg(3) if and only if
rank((N — M)E(N — M)) = rank((N — M)F(N - M))

forall N.M e 8,N > M.

2. E,F are similar within Alg(3) if and only if
rank((N — M)E(N — M)) =rank((N — M)F(N — M))

and

rank((N — M)(I = E)(N — M)) = rank((N — M)(I — F)(N = M))

foral NN\M e B, N > M.

Proof. We first prove that E is similar to F ifand only if E~ Fand I — E~ T — F.
Suppose that E is similar to F. Let A € Alg(8)~! be such that E = AFA~!. Then,

E=(AF)A"!, F=A"Y(AF)and I - E= (A(J - F))A™}, I - F = A71(A(Il -~ F)). So,

E~Fand I -E~I-F.
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Conversely, choose A/, B',C’, D’ € Alg(8) with E = A'B’,F = B’A’ and [ — E =

C'D',I - F = D'C’. Next, put

A=EA'F, B=FB'E, C=(I-E)C'(I-F), D= ([ — F)D'(I — E).

Notice that AB = EA'FB'E = EA'(B'A")B’'E = E; and similarly, F=BA, [ - E=CD
and I — F = DC.

Now, we have (B+ D)E = BE = BAB = FB = F(B + D). Finally,

(A+C)YB+D)=AB+CB+AD+CD=E+0+0+({-E)=1

and similarly, (B + D){(A+ C) = I. So, E'is similar to F. Having established this, it now
suffices to prove only the first part of our Theorem.
Firstly, suppose that E ~ F. Choose 4, B € Alg(3) such that £ = A8 and F = BA.

Let N,M € 8 with N > M. Then,

(N = M)E(N — M) (N = M)A(N = M)B(N — M)

I

(N = MYA(N = M))((:¥ — M)B(N — M)).

Similarly, (N — M)F(N — M) = ((N = M)B(N — M))((N — M)A(N — M)) so we have
(N -M)E(N—-M)~(N—-MF(N - M).
Notice that any compression of the idempotent E € Alg(3) to an interval of 3 is again

an idempotent. To see this, let G — L be the interval. Since E2 = E, the decomposition

* ok % LH
E=10 E, = | (G-L)H
0 0 = G*+H
shows that E? = Ej; however, Ey is just the compression of E to G — L, namely Ey =

(G - L)E(G ~ L).
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We claim that if X, Y are algebraically equivalent idempotents, then they have the same

rank. For consider the algebraic equivalence X = CD, Y = DC. Then,

rank(X) = rank(X?)
= rank(CDCD)

= rank(CY D)

IN

rank(Y).

The same argument gives the reverse inequality upon switching the roles of X and ¥". Hence
rank(X) = rank(Y) and the first half our result follows.

For the converse, suppose that rank((N — M)E(N — M)) = rank((N — M)F(.N — M))
for all N > M in 8.

First, we claim that every idempotent is similar (within B(#)) to a projection. To see

this let X € B(H) be an idempotent. We have a matrix decomposition

I X5 XH
_X'z
0 O (I-X)H
so that
I X5 I X, I =X I 0
0 I 0 O 0 I 0 0

and the operator on the right hand side is a projection.

Choose S,T € B(H) so that P = SES~! and Q = TFT™! are projections. Notice that
P € SAlg(8)S—! = Alg(S3) and is self adjoint. Hence, P € Alg(S3) 0 Alg(53)" = (58)".
In other words, P commutes with [SL] for all L € 8. We have similar results for Q.

If v is a nest on a Hilbert space #’ and R is a projection in ¥/, we will use the notation
vr for the nest {(RN)|ran(r) : NV € v} on the Hilbert space ran(R).
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Let ¥, M € 8 with N > M. By Lemma 1.1 (and by hypothesis), we have
rank(P([SN] — [SM])) = rank(Q ([T N] — [T M]))

‘In particular, P[SN] = P[SM] if and only if Q[T N] = Q[T M].

This means that the map 8 : (S8)p — (T8)g given by

8((P[SL]) lran(py) = (QITL]) lran(o)

is well-defined and one-to-one. Also notice that @ is onto. and is order preserving.
By applying Lemma 1.1 again, we see that # is dimension preserving; namely
rank((PSN]) [ranpy) — (PLSM])) lran(p)))
= rank(P([SN]-[SAM]))
= rank(Q([TN]-[TM]))
= rank(8((PISNY) lranp)) — 8((PISM)) Lran())

So, by the Similarity Theorem (Theorem 2.4.3), there is an invertible operator

Jo : ran(P) — ran(Q) which implements 6. That is,
Jo(ran(P[SL])) =ran(Q[TL]) forall L € 3.

Put Ko = J;'. Extend Jg, Ko to operators J, K defined on all of B(#) by setting them
equal to zero on (ran(P))t and (ran(Q))* respectively. Then, we have K.J =P, JK = Q.
Also note that K = PKQ and J =QJP.

Let A=S"'KT and B=T"'JS. Then,
AB=ST'KTT'JS=S8"'KJS=S"'PS=F

and similarly, BA = F.

23



It only remains to check that 4, B € Alg(8). Let L € 8. Since P commutes with [SL],
ALH = S7'KTLH = S'K[TLIH
= STIKQITLIH = S™'P[SLIH
C STYSLIH
= LH.

Similarly, BLH C LH. Hence, A, B € Alg(3) and they show that £~ F.
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CHAPTER 4

Interpolation

We will introduce the Ringrose lower diagonal seminorm function and Larson’s Ideal in
this chapter. These tools, along with several other preliminary results, will lead us to the
Interpolation Theorem of J. Orr (Theorem 3.6). We will use the Interpolation Theorem
to show that the so called interpolating operators (see Definition 3.7) are dense in a nest

algebra of infinite multiplicity. Most of the results in this chapter are based on [8].

1. The Diagonal Seminorm Function

1.1. Definition. Let 8 be a nest, N € 3, X € B(#H). We define
in(X)=inf{J(N -M)X(N-AM)||: M e€8.M <N}
if N > 0 and set 75(X) = 1. We define the support of X to be the set

supps(X) = {N € B : in(X) # 0}.

The function i, (X') was first defined by Ringrose in [11] to study ideals in nest algebras,
and is called the (lower) diagonal seminorm function. Ringrose also defined the upper
diagonal seminorm function, i{;(X) = sup{[|(M — N)X (M ~ N)|[: M € 3,M > N}, but
we will not make use of this function here. The (lower) diagonal seminorm function will be
studied in the next few results, which will lead up to the Interpolation Theorem of J. Orr

(Theorem 3.6). Some elementary properties of ix(X') are given in the next Lemma.
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1.2. Lemma. Let 8 be a nest on H and X € B(H). Then, i y(X) is a positive
valued, bounded function on 8. If N € (8 is not the upper endpoint of an atom of 3, then
limsupyren tar(X) < en(X). The function ix(-) is a seminorm, and is submultiplicative
on Alg(8). The map Y + i()(Y) is continuous from (B(H), || -[|) into (B(3). |- lec) where
B(8) denotes the space of bounded functions on (3.

Proof. Clearly i.j(X) is positive valued. For NV € 3,

in(X) = inf{||(N=M)X(N-M)||: M < N}

< inf{IY = M XTI = M = M < N} < [1X]],

and so i(.,)(X) is bounded. Let N € 8, and € > 0. Suppose NV is not the upper endpoint of
an atom of 3. Choose L € 8, L < N such that ||[(N¥ — L)X(N - L)|| < in(X) +¢. For all

M e (L,N),
i(X) < (M = D)X(M = L)|| < I(N = L)X (N — L)]| < in(X) +e.
Hence, limsupyren iar(X) < in(X). Let X, Y € B(H) and fix N € 5.

iN(‘X + Y)
= inf{|[(N=M)(X +Y)}(N - M)||: M < N}

< inf{[[(N = M)X(N = M)|| + (N = M)Y(N = M)|| : M < N}.

e

Let £ > 0. Choose M, M, € 3 such that [[(N — M)X(N - My)|| < in(X) + $ and
[(N = M)Y (N — Ma)|j < iy (X)+5 and let Mo = max{M;, M,}. By the above inequality,
we have in (X +Y) < [[(V = Mg) X (N — M) ||+ | (N — Mo) Y (N — Mp)|| € in(X)+in(Y)+e-
Hence in(X +Y) <:in(X) +in(Y).
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If 5,T € Alg(8), then using the semi-invariance of the interval N — M we have
in(ST)
= inf{|{(N - M)ST(N - M)||: M < N}

< inf{||(N = M)S(N — M) (N = M)T(N — M)|[ : M < N}.

I3
2(in(S) +in(T
(N = Mo)S(N — Mo)|| < in(S) + 6 and |[(N — Mo)T(N — Mp)|| < in(T) + 6. We have

Let € > 0, and set § = min{ ;i—, ))}. As above, choose My such that
iN(ST) < (in(S)+ ) (in(T)+6) < in(S) in(T)+8(in(S)+in(T)) +8% < in(S) in(T) +=.
So, in(ST) < in(S)in(T).

Let (X,)52, be a sequence in B(#) with X, LN 0. For any N € 3,
ll7¢) (Xn)lloc = sup{llin (Xa)ll : N € 3} < (| Xal|

and hence, .i(,)(Xn) ”—h’ 0 as n — oc.

1.3. Proposition. Let 3 be a continuous nest and E € Alg(3) be an idempotent. For
all N € (3, either ixn(E) =0 or iny(E) > 1.
Proof. First recall that for any M € 3 with M < N, (N —-M)E(N — M) is an idempotent.

If T is any non-zero idempotent in B(#), then
Tl = IT%) < T2

which implies that ||T'|| > 1. Hence, it is clear from the definition of :,y that either ix(E) =0

or in(E) > 1.

[

The next result gives us a condition for algebraic equivalence of idempotents in a con-

tinuous nest algebra based on the lower diagonal seminorm function.
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1.4. Proposition. Let 8 be a continuous nest and let E, F € Alg(/3) be idempotents.

Then E| F are algebraically equivalent if and only if

{Nepf:in(E)y=0}={N € g :ix(F)=0}.

Proof. Let N,M € 5, M < N. Let T € Alg(8) be an idempotent. We will first show that

o if i (T) # 0 for some L € (M, N]
rank((N — M)T(N — M)) =

0 otherwise.

First, suppose we have some L € (M, N] such that if(T) # 0. Since 3 is a continuous
nest, we can find an increasing sequence (M,)52, C (M, L) such that M, — L. (The
convergence here is in the strong operator topology, the usual topology on a nest 3.)

Suppose that rank((L — A\ )T (L — M;)) is finite. Then, rank((L — M,)T(L — M,))
is finite for all n, and hence the convergence A, — L is also in norm. However, this

contradicts the fact that iy (T) # 0. So,
rank((N — M)T(N — M)) > rank((L — M)T (L — M,)) = ==<.

Conversely, suppose that i (T) = 0 for all L € (A, N]. In particular. ix(7T) = 0, and

so there exists Ny € (M, V) such that
1N = No)T (& = No[ < 1.
Since it is an idempotent, we must have (N — Ng)T (N — Np) = 0. Define
Ny =inf{P € (M.N]: (N - P)YT(N — P) =0}.

Notice that (V — N)T (N — N1) = 0, since multiplication is jointly SOT-continuous in the
ball of radius [|T|| in B(#). We claim that N, = A{; suppose it does not. Since iy, (T) =0,
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we can find some N, € (M, N;) so that

(N1 — Np)T(Ny —N,p) =0

by the same argument as above. Now,

(N = No)T(N — Nj)

= (N=Ny+Ni— N)T(N = Ny + Ny — M)

0+ (N =N)T (N, = No)+ (N1 = No)T(N = Np)+0

= (N;— No)T(N = Ny)

because TNy = N1TN;. Since (N — N)T' (N — N,) is an idempotent, we have

(N = No)T(N — Ny) = (N, = No)T(N — Np))? =0.

However, this contradicts our definition of Ny, and so Ny = AL and (N —-AM)T(N-M) =0.

Our result now follows immediately from the Idempotent Theorem (Theorem 3.1.2).

2. Larson’s Ideal

2.1. Definition. Let 3 be a nest, and let N — A be a S-invterval. A partition of
N — M is a (not necessarily finite) collection (E,)se4 of pairwise orthogonal 3-intervals
such that zaeA Ey, =N—-M. Let X € B(H). We will call a partition (E,)asca of 2

pB-interval an e-partition for X if [|[E. X E,]| < € for all a € A.

For N, M € 3, we will use the notation

(N,M)={LeB:M<L<N},
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with analogous definitions for (N, M], [V, M), and [V, M]. Notice that when we use this
notation we are always dealing with subsets of 3; that is, if we say L € (N, M), we are

including the fact that L € 5.

2.2. Lemma. Let 3 be a nest, X € B(H) and = > 0. Suppose there erist G,L € 3
such that in(X) <€ for all N € 8 with G < N < L. Then, there exists a partition (E,) of

L — G such that

|EaXE,| < &

for all a. In other words, there ezxists an c-partition of L — G for X.
Proof. Since if(X) < &, we can choose Ng € [G. L) such that ||[(L — No) X (L — No)f| < e.

Hence, the class

C = {(Ea)aca : (Ea)aca is an e—partition of L — N for some N € [G. L)}

is non-empty. We define a partial order on C by setting (Es)ac4 =X (Fs5)sep if (and only if)
for all a € A, there exists § € D such that E, = Fs. That is, if each interval in (Es)qea is
also in (Fs)sep-

Suppose (Cy)aea is an increasing linearly ordered subset of C. Then, the union [Jyc, Ca
is again in C and is an upper bound for (Cy)\ea- Hence, by Zorn’s Lemma, there exists a
maximal element in C, say (Eqs)oeca Which is an e-partition of L — N for some N} € [G, L).

We claim that N; = G. Suppose to the contrary that N; > G. By hypothesis, iy, (X) <
£ and thus, we may choose N; € [G, Ny) such that |[(N] — N2) X (N — N2)|| < €. But then
(Es)aca together with the interval Ny — N, is a partition which lies in C and is strictly
greater than (E,)ae4. This contradicts the maximality of (Es)ac4. Hence, Ny = G and

we have a partition of L — G with the required property.
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Next, we will examine Larson’s Ideal for a nest algebra (defined below). This ideal is
meant to generalize the notion of strict upper triangularity for finite-dimensional matrices.
D. Larson defines this ideal in [6], and also shows that for an uncountable nest, R’ contains
non-zero idempotents. This may be somewhat surprising, given that the only strictly upper-

triangular matrix which is an idempotent is 0 in finite dimensions.

2.3. Definition. Let § be a nest. We define Larson’s ideal to be the set

5 = {T € Alg(B) : for all € > 0, there exists an g-partition of / for T}.

Another generalization of strict upper-triangularity for nest algebras is the Jacobson
radical. One way to define the Jacobson radical of a nest algebra is via the so called
Ringrose condition (see [2, Theorem 6.7]). We will say that 7" € Alg(3) is in the Jacobson
radical if and only if for all € > 0, there exists a finite s-partition of [ for T'. It is obvious
from this definition that R contains the Jacobson radical. In [8]. it is shown that R is
actually the largest diagonal-disjoint ideal in Alg(3).

The next Theorem gives an equivalent definition of R} in terms of the Ringrose diagonal
seminorm function. It will follow as an easy Corollary to the Theorem, that Larson’s ideal

is in fact a two-sided ideal in Alg(3).

2.4. Theorem. Let 3 be a nest. Then,

R = {T € Alg(3) : in(T) =0 for almost all N € 5}.

Proof. For each a > 0 and X € B(#), theset Y, = {N € B8 : in(X) > a} is a Borel
set. This follows from the fact that the map N s ix(X) is left lower semi-continuous, and
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hence (Borel) measurable. Thus, theset Y = {IV € §: in(X) = 0} is also a Borel set. So,
the set on the right hand side in the theorem is well-defined.

Let T € R and let € > 0. Choose a partition (Ea)aga of I such that ||Eq X Eu|| < € for
all @ € A. Write E, = L, —G, (where Ly, G4 € 8). Then, in(X) <ceforall N € (Gq, La]-

Let

Y = {N €8 :in(T) > <}

Then,

E(Y) < &8\ | (GasLal)

acA

= I-) (La-Ga)=I-1=0.
a€Ad

So, in(T) =0 for almost all vV € 5.

Next, s.uppose in(T) = 0 for almost all N € 3. Let £ > 0. Theset ¥ = {N € 3:
in(T) > 0} has measure zero. Also, if (M,)sea as an increasing net in Y which converges
to M € 8, then M € ¥. We may write the complement 3\ Y = U,e4(Ga:Lal, where
the intervals (Go, L] are pairwise disjoint. By Lemma 2.2, for each (fixed) o € A there
exists a partition (E,s)sep of Lo — G4 such that ||[E. sTEqsll < forall 6 € D. Since the

collection (E, s)aca.seD is a partition of I, we have T € RF and we are done.

2.5. Corollary. Larson’s ideal, RF’, is a two-sided ideal in Alg(8).
Proof. Let T' € R and X,Y € Alg(8). By submultiplicativity of iy on Alg(3), we have
iN(XTY) < in(X)in(T) in(Y). By the previous Theorem, the right hand side is equal to

zero for almost all N € 8. Using the Theorem again, XTY € R7.
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3. The Interpolation Theorem

We now require several technical Lemmas on our way to the proof of the Interpolation

Theorem (Theorem 3.6).

3.1. Lemma. Let 831,82 be similar nests, with similarity S : H, — H2. Let if\l,.)(X),

iE;fV](X) denote the respective diagonal seminorm functions. For T € Alg(3;) and N € 3.

1. _ . . -
Zian(STS™) < i (T) < kifghy(STS™)

where k = ||S||||S™}|| is the condition number for S.
Proof. Let N, M € 3; with M < N. Let z € H and write = = y; +y2, where y; € ran(S.V).

y2 € (ran(SN))t. We may write y = SNz for some z € H. Then.

5—1[5.‘\-]]/1 = 5'1y1 = S”ISN:z
= Nz = NS7!§Nz

= NS7ly, = NSTUSNy.

Since S~![SN]y, = 0 = NS~ ![SN]y,, we have ST![SN] = NST![SN]. For = € H we also

have

[SM]*SM*z = [SMPS( - M)z
= [SM]*Sz— [SM]*SM:=

= [SM]*S=,

and so [SM]*+S = [SM]LtSM*L.
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Write E = [SN] — [SM]. Using the equalities above, we have

IESTS™'E|| IE(SMI*SMYT (NS HSN)E]

< USHIIMATN IS ™|

= K||(N - M)T(N — M)]|

because T € Alg(53;). Hence, %ig}v](STS'l) < if\lf)(T). To get the other required inequal-

ity, we repeat the same argument considering S-1 as a similarity from 3> to 3;.

3.2. Lemma. Let 8 be a continuous nest. There ezists a sequence of pairwise orthog-

onal projections (F.)2%, in the core, 8", such that
suppg(Fn) =3

for all n.

Proof. We will construct a sequence (J)3%, of Lebesgue measurable subsets of [0, 1] which
are pairwise disjoint, and are such that m(J, N G) > 0 for every open interval G C [0,1]
and for all n.

Let (Gm)2%., be a countable {topological) basis of open intervals for [0,1]. Fix a well-
ordering of N x N. We will define J,m € G'm inductively according to this well-ordering as
follows.

First, select an open interval contained in

G\ U Ju
(kd)<(m,n)

say (@mn,bmn). Let C C [0, 1] be a non-null Cantor set. Put

_ (bm,n - am.n) 3Cm n
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so that Jp, » is a set of non-zero measure which lies within G,,. Also, by construction, the

oo

—1 Jm.,n- The sequence (J;)5Z, consists of pairwise

Jm,n are pairwise disjoint. Set J, = J n=1

disjoint subsets. Since each J, meets every basic open interval G,, in a set of non-zero
measure, the same holds for an arbitrary open interval G C [0, 1].
The sequence of spectral projections F,, = &(Jn) n = 1,2,3,..., are the required pro-

jections for our result. Indeed, the F;, are pairwise orthogonal; and for NV € 3,
iN(Fn) = i1 N —-MF,(N-M)|| =
in(Fn) = inf [[(Z VER(N = M)[[=1

because £~1((M, N)) is an open interval in [0, 1] whenever 0 < M < N.

3.3. Lemma. Let 8 be a continuous nest. There is a bounded sequence (Q,)3Z,
of idempotents in RF and a sequence of pairwise orthagonal projections (Fp)5%, in 3"
such that supps(Fp) = B, Qn = FoQnF, (for all n) and suppg(Q) = 3 where Q =
SOT— 322, @n.

Proof. We will first work with the Volterra nest (Example 2.2.5). Let v be the Volterra
nest. We may parameterize v as v = {/V; : ¢ € [0, 1]}, where N; = M, .-

Let K C [0, 1] be a non-null version of the Cantor set which is constructed by deleting
semi-open intervals of the form (a,b] from [0, 1]. Let P = M, ,.. Notice that supp.(P) =
{N::te K}.

Now, let 3 be the given continuous nest, and let N € 8. Let f : [0,1] — [0,1] be
an order preserving homeomorphism which maps K onto a version of the Cantor set, C,
which does have measure zero. Let ® be an order homeomorphism of [0, 1] onto 3 such that
N € ®(C). Composing these maps (and using of the parameterization of v) we obtain an
order preserving, and (vacuously) rank preserving isomorphism, § from the Volterra nest
onto B. By the Similarity Theorem (Theorem 2.4.3), we can choose a similarity of the form
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S = U + K where U is unitary, K is compact, and ||K{| < &. Hence, the condition number
ISHIS™H < 1+ 51~ <2

Set Q = SPS~!. By Lemma 3.1,

. 1.
(@) > 57'[5"‘.‘\"](13) > 0,

and thus, N € supps(Q). Again by Lemma 3.1, i3/(Q) = 0 for almost all M &€ 3 because
C has measure zero. Hence, Q € R% (Theorem 2.4). Also notice that Q is an idempotent
with ||Q]| < 2.

Since (8, SOT) is separable (it is homeomorphic to [0, 1]}, we can choose a countable
(SOT) dense subset (N;)72, C 8. For each 7, use the construction above to obtaim P;, where
F; is an idempotent in R such that [|P]| < 2 and N; € suppy, (F;).

Let (F;)?2, be the sequence of core projections obtained in Lemma 3.2. Fix ¢ € N.
The map N — FiN |ran(F,) is an order and rank preserving isomorphism of &3 onto the
nest Br, := {FiN |anF) : NV € B}. By the Similarity Theorem, we can find 2 similarity
Si : H — ran(F;) with [|S]|||S™!|| < 2. We can extend the domain and range of .S; and S;!
if necessary by defining them to be zero where they are not already defined. This way, we
may think of each as an operator in B(#). Also, S;, S7! € Alg(83). Since R is & two-sided
ideal in Alg(8), Q; := S;P,S7! lies inside RE. Hence, (Q:)2, is a sequence of idempotents
with sup;5, [|Qi]| < 2.

We claim that for each 7, N; € suppy, (Q:). Suppose M € 3, M < N;. Then, M F; < N,.

By Lemma 3.1, we have
1(N: = M)Qi(N: = M)|| 2 ZI{(N; = M)P(N; = M)]| > 0.

Let Q@ = SOT — Y22, Q;. Since each N € 8, N > 0 is the limit of some increasing

subsequence of (V;)?,, we have suppg(@Q) = 6.
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3.4. Definition. Let z,y be vectors in H We define the rank one operator z @ y~ €

B(#) by the action
Ty (z) =(zy)z

for all z € H.

3.5. Lemma. Let 3 be a continuous nest and X € B(H). Let (E,)52, be a sequence
of intervals of 8 such that for all n, there exists N € 3 such that ix(E,XE,) > 1. Let
(zn). (yn) be orthonormal sequences in H. There ezist orthogonal sequences (a,), (b,) in H
such that a,, b, € ran(Ey), [|a.|l, |[onl] < 1, and

co
AXB=) z.Qu;
n=1
where A=3507 2, ®a;,B=3 72, 0. D y5.

Proof. We will choose our orthogonal sequences (a,)5%,, (br)nz, inductively. Select a;, b,

to be any unit vectors in ran(E;). Let n € N be fixed, and suppose that ay, b; have already

been chosen for 1 < &£ < n -1. Put
M =span{bg, X ar, X Enar, X"E, Xb :k=1,2,...,n— 1}

Choose N € g with in(E,XE,) > 1. There exists an infinite dimensional subspace Q C
ran(E,) such that ||E, X z|| > ||z]| for all z € Q.

Because M is finite dimensional, there exists a unit vector in @ N M=, call it b,. Let

L _Eaxb,
" T B X0al2

Note that ||E, X bn|| > ||bz]| = 1, and so ||lax|| < 1. The sequence (b,)5Z, is orthogonal by

construction of M. If 1 <k <n -1,

_ (EnXbn,ak) _ (bn, X"Enar) _
(an,(Lk> - IIEnanH2 - ”En_}{anZ =0
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since b, € M+ and X*Epar € M. We have
<‘¥bn7 ak) = (bn, .Y'ak) =0

and similarly, (Xbg,a,) = 0. Lastly,

_ (Xbn, EnXby)  (EnXbn, EnXby,)

" = E. X6 1EwXbal?

= 1.

(Xbn,a

So, we have shown that for 7,7 € N,

_ 0 ifiktj
(_Xbi, aj> =6l] =
1 ifi=7y

Set A=Y zm©a, and B=Y o_ b, ®@y;. If = € . we have

m=1 "1

AXB:z = (i Ty © a;‘n)_-‘((i b Dyn)z
m=1 n=1
= (D zm ©an)X (D _(z.yn)bn)
m=1 n=1}
= (3 2m @ i)Y Xbalz.ya))
m=l1 n=l1

= ZZ(an,am):l'm(Ze yn>

n=1 n=l

= Z Z(Sm":rm(‘?'v yn)
m=1n=1

= Z(z, Ym)Tm = (Z T @ Ym)z
m=1 m=1

3.6. Theorem. (Interpolation Theorem [8, Theorem 3.1]) Let 3 be a continuous nest.
Let X € B(H) anda > 0. Let ¥ = {N € 8 :in5(X) > a}. There exist A, B € Alg(3) such
that AX B = £(X) where £ is the spectral measure for 3.

Proof. Let vy = £(X)8. Notice that v is also a continuous nest. We apply Lemma 3.3 to
to obtain sequences (F,)3%, and (Q,)S%, as in the Lemma. Set Q = 3.7, Q.. For fixed
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n € N, Q, is an idempotent in RZ7, so we may choose a partition (E,(,Il) oo_; of v such that
IIE,(,?)Q,IE,(,?)H < 1. As it is an idempotent, E,(,?)QnEgl) = 0.

Next, fix m,n € N. Choose a strictly increasing sequence (M} )irez in ¥ so that the
intervals M — M;._; form a partition of E,S?). Define E'r(:)k =M — M_;.

For each m,n € N and k € Z, the projection Er(:}:Fn is non-zero, and hence has
infinite rank (because § is a continuous nest). Let U, » « be a partial isometry which sends
ran(Er(Tz)kHFn) onto ran(E,(,Z)an); andput Un =30 02 Unmi-

Notice that U, maps F; onto F,,, U, € Alg(v) and U, commutes with each E,(,?). Also
U:=3 77, Uy, is 2 unitary in 7.

We will now show that U'"Q € Alg(v). Write EM = G — L, where G&', L €

Alg(v). Then,

EfMNQ. = EMUI-LMQ.

= EQ.(I-GT)
because ESNQLES) =0 and Q, € Alg(+). If ¥ € Alg(y), then

UsQ:N = > EQMU;Q.N

m=1
= i EQUZERIQa(I - GEN.
m=1
Notice that (I — G'ST?))N is non-zero only when G < N; and thus, when ™ < N
Therefore, U;Q.N = NU;Q,N. Since N € « was arbitrary, U;Q, € Alg(~) and then so is
U-Q =¥, UzQn.
We think of Alg(~) as a subalgebra of Alg(3) by identifving T € Alg(v) with £(X)TE(X).
Write B; for the element which corresponds to U~@Q within Alg(3).
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We claim that suppg(Q) = suppg(£(X)). For N € 5.
in(Q) = in(£(2)Q) < [IQllin(E(X))-

So, supp(Q) C suppz(£(X)). On the other hand, suppose that ix(£(X)) > 0. Thus, for
M € Bwith M < N, we have ME(E) < NE(Z). Since supp.,(Q) =7, (N -M)Q(N—-M) #
0, and hence ix(Q) > 1. Thus suppz(£(X)) C suppg(Q) which establishes the claim.

By Proposition 1.4, @ is algebraically equivalent (within Alg(3)) to £(X). Choose
Ay, B, € Alg(8) with Q = B2A; and £(X) = A2 B2. Hence, A2QBs = (A2B,)? = £(T).

For m, n, k we will redefine our E( . to be the S-interval
inf{F : F is a 8-interval, and Er(:)k < F}

Since Ef:')ké'(S) # 0, the open interval (L(") G(n)) (where E,(;l)k = G(")k - Lf:}k) must
contain some point from ¥. So, ix (ET(:L_‘& E(n) ) > a for some N € 3. (Indeed, this holds
for some N € X.)

Relabel the intervals ET(:)L as (E;)%, in such a way that each Er(:),\ occurs infinitely
many times in the sequence (E;)%,. For each i, choose a vector y; so that the set Yo nt =
{y: : i is such that E; = (") .} is a basis for ran(Em H_11-",-).

Let z, = Uyn. Note that z, € ran(Er(n t_1Fn)- By Lemma 3.5 we can find Ag, Bg €

Alg(B) such that AgX Bg = U. Finally,

(A240) X (BoB1B2) = A»(UB1)Bs = A:QB2 = £(3).

3.7. Definition. We say that an element X in a unital algebra A is interpolating
if there exist A, B € A such that AXB =1.

40



As an immediate Corollary to the Interpolation Theorem, we get a nice description
of when an element of a nest algebra is interpolating in terms of the Ringrose diagonal

seminorm funtion.

3.8. Corollary. Let 3 be a continuous nest. If X € B(H) is such that ix:(X) > a for
some a > 0 and for all N € 3, then there exist A, B € Alg(8) such that AXB = I. That
ts, X is interpolating in Alg(3).

Proof. We apply the Interpolation Theorem. By hypothesis, £ = 3, and hence £(X) = [.

]
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CHAPTER 5

Nest Algebras of Infinite Multiplicity
1. Infinite Multiplicity

1.1. Definition. We say a Banach subalgebra A C B(#) has infinite multiplicity
if it is isomorphic to A @ B(#’) for some infinite dimensional Hilbert space #’. For the
tensor product, we are taking the completion of the algebraic tensor product in the weak

operator topology on B(H @ H').

We are now interested in the nest algebras of infinite multiplicity. Let 3 be a nest such
that all of the atoms of 3 are infinite dimensional. We will show that the nest algebra,
Alg(/3), has infinite multiplicity.

Let #H' be an infinite dimensional Hilbert space, and let I be the identity for B(#’).

Consider the nest

gel:={PoI:Pec3}.

The map P — P@®]/ is an order preserving isomorphism of 8 onto @ /. Also note that P
is an atom of 3 precisely when P@/ is an atom of 5@ I, and that the dimension of the atom
is infinite in each nest. Hence, by the Similarity Theorem, the nests 8 and 3@ I are similar.
So, the corresponding nest algebras are isomorphic. Since Alg(8 @ I) ~ Alg(3) @ B(#'),
Alg(p) has infinite multiplicity.

Conversely, suppose 3 is a nest such that Alg(8) is of infinite multiplicity. Then
Alg(B8) ~ Alg(B8) @ B(H), where H' is some infinite dimensional Hilbert space. Notice
that Alg(B8) @ B(H') is a nest algebra, with v := Lat(Alg(3) @ B(#')) as its nest.
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Suppose that T is in the diagonal, D(v) = Alg(y)N(Alg(v))~. Write T in matrix form as
(Tij)i,jem where T;; € Alg(B). Since T™ has the matrix T = (Tj‘i)i'jef'{, we have T;; € D(8)
for each ¢, 7. On the other hand, suppose that T € Alg(8) @ B(H’) has the matrix (T;;j)i jex
and T;; € D(P) for each i, j. Then, T}; € Alg(3) for all ;,5 € N. So, T € Alg(B8) @ B(H').

Hence,
D(v) = {(Ty;) € Alg(8) @ B(H') : Ti; € D(B) for all 4, j}.

Next, let P € v and write P = (F;;). Since D(y) = 7', P commutes with each
T € D(y). Let Ar € D(v) be defined to be the matrix with the identity in the (A&, k)
entry, and zero elsewhere. By examining the matrix multiplication, PA; = AgP implies
that Ppnx = Pim = 0 whenever m # k. Since this holds for all &, P is diagonal, say
P = diag{P;;}. Also, P commutes with each 4;4). where A4,y has the identity in
the (&, & +'1) entry, and zero elsewhere. The matrix multiplication this time shows that
Py =Py = P33 =---. Hence P = P;; @ I. where I denotes the identity in B(H').

Let Ti; € Alg(3). Then, T := diag{T1;.0.0,...} is in Alg(y) = Alg(8) @ B(H').
Since PTP = TP, we also have (by matrix multiplication) P 17T11Pi1 = T11FP11. Thus,
Pu € Lat(Alg(6)) = 6.

If P, < P, are in 3, then
rank(P, — P) =rank(R @I - P, @) =00

and hence, §# cannot have any finite rank atoms.

2. Approximation by Interpolating Operators

In this section, we will show that the interpolating operators are dense in a nest algebra
of infinite multiplicity.
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2.1. Proposition. Let 8 be a continuous nest. The interpolating operators are dense

in Alg(f3).

Proof. We may parameterize our continuous nest as 3 = {N, : 0 < ¢t < 1}. Write 1, for
iN,-

Let Y € Alg(8) and let € > 0. Define
U={te (0.1]:i(Y) < 3}

Notice that U is measurable because the map ¢t — #;(X) is left lower semicontinuous, and

hence measurable.
Let X =Y +&&(U) where £ is the spectral measure for 3. Notice that X € Alg(3).
Suppose that ¢t is an interior point of I/. Then, #,(£{U)) = 1. On the other hand, if ¢ is
an interior point of the complement U¢, then ¢(&(L7)) = 0.

Because i; is a seminorm,

(X)) > (YY) =i (E(U))]

3
> _
- 2
whenever ¢t is in Int(U) U Int(U€). Since ¢ — i;(X) is left lower semi-continuous, the above

inequality holds for all t € (0, 1].

Hence, ||Y — X|| < € and #,(X) > § for all £. By Corollary 4.3.8, X is interpolating, and

so the interpolating operators are dense in Alg(83).

Next, we will show that the interpolating operators are dense in a nest algebra of infinite

multiplicity.
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2.2. Definition. An operator T € B(#) is called semi-Fredholm if ran(T) is closed
and one of nul(T) := dim(ker(T")) and nul(T~) := dim(ker(7™)) is finite. If T is semi-
Fredholm, we define its (semi-Fredholm) index to be ind (T) = nul(T) — nul(T=). The

index can take either integer values, or the values +oc.

2.3. Lemma. Let H be an infinite dimensional (separable) Hilbert space. Then, the
interpolating operators are dense in B(H).

Proof. Let T € B(H) and let £¢ > 0. We will split the proof into two cases. For the first
case, assume 7T is semi-Fredholm.

Suppose that nul(T) < nul(7™). Then, n = nul(T’) is finite. Let (ex)%_, be an orthonor-
mal basis for ker(T), and let (fx)?_, be an orthonormal set in (ran(T))+ = ker(T~). Let
F=e¢(3 iz, fx@¢€r). (If n was 0, T is already left invertible, so just take F = 0.)

Let z € H be a vector, and write z = z; + T where z; € ker(T) and z5 € (ker(T))*. If
1 #0, then (T+ F)z =Tz + Fz = Tz, + Fz) # 0 since Fz, # 0 and Fz; € (ran(T))*.
If 220 #£ 0, then (T + F)z = Tz + Fz; # 0 since z5 ¢ ker(T). Thus, ker(T + F) = {0} so
that T + F is one-to-one. Hence, T + F is left invertible.

On the other hand, suppose that n = nul(T™) < nul(T). Let (ex)?~; be an orthonormal
set in ker(T'), and let (f;)?_, be an orthonormal basis for (ran(T))*. Let F =¢(3 7., fr @
e;). (Again, if n =0 take FF =0.)

For y € H, write y = y; + y2 where y; € ran(T) and y, € (ran(T))*. Choose z; €
(ker(T))* with Tz, = y;, and z, € ker(T) with Fzy = ya. Then, (T + F)(z; + z2) =
Tz, + Fzo =y;1 + y2 = y. So, T+F is onto, and hence right invertible.

Notice that left invertible and right invertible operators are interpolating. Also, ||T —

(T+E)|l = IFll <

m

Next, suppose that T is not semi-Fredholm. It is easy to see from the definition that T
is also not semi-Fredholm. Let |[T]| = (T'T)?l. Since |T'| and |T~]| are self-adjoint (in fact,
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positive), we have the associated spectral projections Ejr| and Ejr.;. Then, E\7y([0, ]) and
Ei7+|([0, §]) are infinte rank projections. Also, |[TEr|([0. 5]l < § and ||TEj7+|([0, 5Dl <

$- Define
To = (I = Bir ([0, ST = Eqry (0. 1))

Then, since T and T™ commute with their spectral projections, we have ||T — Tg|| < 945 by
the triangle inequality.

Define Up to be a partial isometry which sends ker(Tp) onto ker(7g). This is possible
since both kernels are infinite dimensional. Then, the operator Tg + $Up is bounded below.
and hence invertible. Since ||T — (Tp + $Uo)|| < €, we have approximated T by an interpo-
lating (it was even invertible) operator to within . Hence, the interpolating operators are

dense in B(H).

2.4. Proposition. Let 3 be a nest whose nest algebra has infinite multiplicity. Then,
the interpolating operators are dense in Alg(53).

Proof. By hypothesis, every atom of § is infinite dimensional. Let (E,) be the set of atoms
of 8, and put H, = ran(E},) for each n. Let T € Alg(8) and 0 < e < 1.

By the Lemma above, the interpolating operators are dense in B(#H,). For each n,
choose A, B,, T, € B(Ha.) so that A, T, B, is the identity for H,, and |E.TE, — T,|| <
$- T £ £ for some n, replace T, with T + §E,. If we make this replacement,
also choose new A4,, B, in B(H') such that A,T, B, is the identity for H,, and we have
|EnTE, — T}|| < 2. Now, we have the additional condition that [[T;]| > £ for all =, since
T+ SEn|l > || Tn]] — §]IERll] > £ if we had to redefine our Ty.

Define operators A, B € B(H) by A=1-3Y _(E.— E,A.Ep,)and B=1-3 (En —
E.BhE,). Let T' =T - Y (ExTLE, — E,TE,). By this construction, we have AT'B
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equal to the identity on each atom, and [|T — T”|| < 2¢. Notice that A, B, and 7" are all in

Alg(p).

Let h be an order preserving homeomorphism of § onto a compact subset w C [0, 1].

For each t € w, let N; = h~1(t); this paramaterizes our nest, 3. Define the Borel set

U={tew:in(T") <

}.

o m

Let £ be the spectral projection for 3. This gives us the projection £(U7) € 3”. Notice that
for each atom E, of 8, E(U)E, = 0, since ig, (T’) = |Tnll > £, where G, is the upper
endpoint for E,. Define T"” = T’ + $£(U). Notice that AT”B is still equal to the identity
on each atom E, of 3. Also, T” € Alg(3).

Form a new nest, v, by replacing each infinite rank atom E,, with a continuous nest on
Hn, which is possible because each H, is infinite dimensional. So, v is a continuous nest.
Notice that AT"B is also in Alg(~), because replacing each atom E, of 3 with a continuous
nest will not change the identity operator that was on that atom. Let i3, be the lower
diagonal seminorm function for v. We have i}, (AT"B) > £ for all Ml € v. Hence AT"B is
interpolating in Alg(v), by (the Corollary to) the Interpolation Theorem (Corollary 4.3.8).
Choose A’, B’ € Alg(v) such that A’(AT"B)B’ = I. Since 4’, B’ are also in Alg(3), T" is

interpolating in Alg(3). Since we also have

3
+

IT =TI SUT - TN+ SIEW € S+ T ==,

=1 ™

the interpolating operators are dense in Alg(3).



3. Connectedness in Infinite Multiplicity Algebras

Let A be an algebra of infinite multiplicity. Notice that A is (continuously) isomorphic

to M3(A) because

A~AQBH)~AQBH oH')=ARB(H') @ Mz(C) ~ A M(C) ~ Ma(4).

Because of this isomorphism, the results of this section will focus on the connectedness of

invertibles within M5 (4).

3.1. Lemma. Let A be an infinite multiplicity algebra. An invertible operator of the

form

in M,(A) is connected within the invertibles to I,.

Proof. We can factor

1 A 1 0 1 0 1 A
B C B 1 0 C-BA 0 1
1 0 [ 1 0
Forany t € [0, 1], the matrix is invertible; the inverse is simply
tB 1 —tB 1

Hence, the outer two factors are connected to /. The middle factor of the right hand side

is invertible, so it only remains to show that any invertible operator of the form

is connected to I, within M>(A).
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Let Y be a unital Banach algebra and suppose that ¥ € Y is invertible. Then, we claim

Y1 o0
that the element € M,(Y) is connected to I;. Consider the path
0 Y
cos(5t) sin(5t) Y-l o cos(Zt) —sin(5t) 1 0
f() =
—sin($t) cos(5t) 0 1 sin(5t) cos(5t) 0 Y

Notice that f(¢) is invertible for each t. Since [|f(t)]| < 2(|cos(5t)| + |sin(5t)[), we see
that f(t) is a continuous path. Finally, notice that f(0) is the given operator, and f(1) = I5.

Now, let X € A and let X be the image of X under the isomorphism A — A @ B(#').
Let I be the identity in B(#'). Since H’ is infinite dimensional, X &I is unitarily equivalent
to X&I@I&I&---; and hence the latter is also unitarily equivalent to I = X.

As we saw above, I is connected to X~'@ X in MH(ASB(H')). So, XelsIsis---

is connected to

o R

XeX &l

@

o~
o v o

which (by the same argument) is connected to

Isglglalc---.

Using the continuous isomorphism between A and A ® B(#’), we obtain a continuous

1 0 1
path of invertibles which connects to in M,(A) as required.

0 X 0 1

3.2. Corollary. Let A be an infinite multiplicity algebra. An invertible operator of

0 4
the form € M,(A) is connected to I,.

B C
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A

Proof. Let T = Ifo<r< E‘TI:W’ then the op-erator
B C
rl A
T :=
B C

is also invertible.
Thus, T is connected (by a straight line segment) to T, wwhere € = 2—“:}?% At each point
in the path, the operator differs from T in norm by at most: €, and hence is invertible.

Next, we can connect T, to

1 A

o [

lp ic

n =

via a path of scalar multiples of T.. The last matrix is conn:ected to I; by Lemma 3.1.

Similar results to Lemma 3.1 and Corollary 3.2 hold even when the “special” entry is
somewhere other than the (1, 1) corner. For example, in thee proof of Lemma 3.1 we could

change our factorization to

A B A1l 0 1 o 1

il

1 C 1 0 B-4AC 0 1 C

to obtain the same results for the (2, 1) entry.

3.3. Theorem. Let A be an infinite multiplicity algeb:ra. Let X € A be interpolating.
X A
If the operator € My (A) is invertible, then it is- connected to I>.
B C
Proof. Suppose that UV = I. Then, the operators

U 0 vV 1-VU
D= and F =

1-VvU V 0 U



are invertible; they are inverses of each other. By Corollary 3.2, each is connected to [.

Let S, T € A be such that SXT =1.

is connected to

X A
D

E

It

X 4
Substitute U =S,V =XTin A,and U=S5X,V =T in B. We have that
B C
/ S 0 X A T 1-T5X
B C 0 SX

B C

\ 1-XTS XT

/I*

\**

Since the last matrix is invertible, it is connected to the identity by Lemma 3.1.
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CHAPTER 6

Connectedness of the Invertibles

We will now show that the invertibles are connected in a nest algebra where there is a
finite bound on the number of consecutive finite rank atoms in the nest. In particular, this
shows that the invertibles are connected in any continuous nest algebra (where there are no
atoms), and any nest algebra of infinite multiplicity (where there are no finite rank atoms).

The results here are based on [3].

1. Nests with no Isolated Finite Rank Atoms

1.1. Deﬁnition. Let 3 be a nest, and let (E},) be the set of finite rank atoms of 3.
The projection Py = Y E, is called the projection onto the finite part of 3. The
projection onto the infinite part of 3is P =1 — Py. For T € Alg(3), we can define

the corresponding compressions A¢(T) = PfTPf and A (T) = P TP..

1.2. Definition. Let 7 be a nest. A S-interval F = N — \{ is called isolated if either

of its endpoints (/N or M) is an isolated point of the topological space (3, SOT).

1.3. Theorem. Let 8 be a nest with no isolated finite rank atoms and assume that 3
has mazimal non-atomic part. Let T € Alg(3) be such that its compression to the finite rank
atoms, A¢(T), is zero. Then, there exist operators A, B € Alg(8) such that T = AP B.
Proof. If E is a B-interval which is not a finite rank atom, then P, E has infinite rank.

Hence we may write

oo oo
Poo=P0+ZZPm,n

m=1 n=1
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where all of the projections Py and P, , are pairwise orthogonal, and also satisfy
rank(FPFE) =rank(Pp,E) =

whenever F is not a B-interval which is not a finite rank atom. In particular, it follows from
Theorem 3.1.2 that P, is algebraically equivalent to Fp.

Let E, = G, — L, be a finite rank atom for some (fixed) n € N. There are at
most countably many such atoms, because we are always assuming our Hilbert spaces are
separable; this allows us to use n € N to index the finite rank atoms. Since E,T =
E,T(I — G,) has finite rank, it is compact.

Select a strictly descreasing sequence (Np n)5_, C 3 such that

1
n= inf {Nmn}and [E.TNmn i
G n‘f‘Zl{ ) and || Nomall < —2

This sequer;ce exists, for suppose to the contrary that we could not find such a sequence.
Then we would have £ > 0, and an infinite dimensional subspace Z on which ||E,T (] —
Ga)z|| > € for z € Z, which contradicts compactness. (Recall that the finite rank atom £,
is isolated by hypothesis.)

As a result,

i i m|[EnT Nmall < 1.

m=1n=1

For each m,n > 1 choose a partial isometry V,, , which maps ran(Ey) into ran((Npm . —
Gr)Pm ). This is possible since the latter space is infinite dimensional. Notice that we
may write

0 00 L, H
Vmmn=10 0 0 | E.H
0 = 0 (I -Ga)H
and hence, V,; , is in the nest algebra, Alg(5).
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Set Non = I and Jmn = Nm—1n — Nmn, and define
o oC 1 oo o
A=>"> =V;nand B= S>> mVinEnTImn
m=1 n=1 m=1n=1
Note that A is bounded because of the scalars —1}1- We claim that B is also bounded. Define

[» ] [o ]
Bo=Y_ Y mVpnEnTJmn-

m=2n=1
Then, Bg is compact. Also,

oo oS )

B~ Bo= (> Via)(Pr = ExTNia)

n=1 n=1
where Py = I — Py, is the projection onto the finite part of 3. Since the last term on the
right hand side is compact, B — Bp is bounded, and hence so is B = By + (B — Bg).

Set P, = 5%, P, ,. We have AB = AP, B = P;T. Since P is algebraically equivalent

to P, we can choose operators A;, B) € Alg(3) such that P, = A;B; and Fp = B;4,. Set
Az = .41P0 and B‘_)_ = PoBl. Then, AQP()BQ = .41PoB1 = .-11(31_41)B1 = Rx,. AISO,

A, Py = A, and PyBs = B,. So, we calculate

(A4 A2)Poc (B + BoPyuT) = AB + A2 Bo P T = PT + P, T =T,

1.4. Theorem. Let 3 be a nest with no isolated finite rank atoms. Then, the invert-
ibles in Alg(B) are connected.
Proof. We may assume that 8 has maximal non-atomic part, since A is similar to such a
nest; hence, the corresponding nest algebras are isomorphic. So, the subspace P,.H can be
decomposed as Po,H = H1& Ha, where #, and H, are unitarily equivalent. Let P; and P

be the orthogonal projections onto #; and #3 respectively.
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Let T € B(#) be invertible. We decompose T as

A B PrH
T =
C D PoH,
and decompose D further as
D, D, Hi
D=
D; Dy Ho.

Since P,8 has infinite multiplicity, there exist X, Y, D} € Alg(8) such that XD4Y =1

and {|Dy — Dif| < 2||_T1—T|T (Proposition 5.2.4). Consider the path

A B PiH D, D, Hy
f(T) = where D, :=
C D, P.H Ds (1- t)D4+tD4 Ho
for t € [0,1]. Then, f is continuous, for ||f(t1) — f(t2)|l = |t1 — t2|||Ds — D4} for any

t1,t2 € [0,1]. Since ||f(T) = T|| = [|[(1 — t) Da+ tDy — Dyf| = [t][| Ds — Dill < gp=ry- f(1) is

invertible for t € [0, 1]. Hence, T is connected to the matrix

A B PiH Dy D, Hy
where D' :=

C D' | PoH Ds D, | Ha.

For convenience of notation, we will replace Dy with Dj.

As in the proof of Theorem 5.3.3, there exist invertible operators X’ and Y of the form

* * Hl x 0 Hl
X' = and V' =

0 X H2 * Y H?v

both of which are connected to I; by Corollary 5.3.2. Let

I o A B I 0 A B | PH

T =
0 X’ C D 0 Y Cc' D P .H.
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It now suffices to show that T” is connected to the identity. Notice that

/Dl D2 * ok

D'=X' Y=
D3 D4 = [

Using the same factorization as in the proof of Lemma 5.3.1, we may connect T” to in

invertible operator 7" of the form

‘AI/ BII
T = c* D"
0 0
Set
‘4”
E =

Cvll

and Eg = E — Ay(F)— P. Then,

A" — Ap(A")
Eo=

Cvll

because (with respect to the same decomposition) Af(E) =

Also notice that Ay(Ep) = 0, since Ap(Af(A”)) = Af(A").

By Theorem 1.3 we can factor £y = FP,G =

Alg((Pr + P.)3). Now,

Af(A"Y 0 R I 0 0
0 I F 0 1 0 | =
0 c I Gy G2 I
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0 PiH
0 Hi
I Ho.
BII
DII
B” PrH
D" -1 Hy,
A” 0 0 0
and P, =
0 O 0 7
0 F 0 0
, where F,G €
0 F, G1 G-
AII B/l Fl
E FII
CII DII F2 =
GII I
0 0 I



F
is connected to the identity, where F"” = and G" = ( G, G- ) Since E is
3

invertible, we have

I 0 E F” I —E-'F” E 0

-G"E~!' I G" I 0 I 0 I-G'E"LF"
E 0
The right hand side is connected to = T", and so we have connected our original
0 I

T to the identity.

2. Nests with a Finite Bound on the Number of Consecutive Finite Rank

Atoms

2.1. Corollary. Let 3 be a nest such that there is a finite bound on the number of
consecutive finite rank atoms of 8. Then, the invertibles are connected in Alg(3).

Proof. Let N € N be an upper bound for the number of consecutive finite rank atoms of
B. Let (J,) be the set of maximal S-intervals which are formed by summing consecutive
finite rank atoms. Let T € Alg(83) be invertible.

Let P, = 3. E;, where E; runs over the set of all atoms of 3. Then, F, is the projection
onto the atomic part of 4. Let A be the compression onto the atomic part; namely, A(X) :=
P,XP,. The projection onto the continuous part of §is P, =1 — F,.

Set D = A(T) + P.. Notice that D is invertible, with D~! = A(T~!) + P.. Also, D'is
connected to the identity within the diagonal 3’ = Alg(8) N (Alg(B))".

Next, let A = > JoD'TJ, + Py. For each n, 8;, is a nest with at most N + 1
elements. So, A is of the form I + B, where B is nilpotent of order at most NV + 1. For any
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t € [0, 1], the inverse of ] +tB exists. Indeed, it is given by the finite sum 7+ 3 N (—tB)*.
Hence, A is connected to I by a path of invertibles in Alg(3).

Finally, let C = A~!D~IT. We claim that C is also connected to the identity. On
showing this, we will have connected the product T = DAC to the identity, which is what
we want.

We form a new nest v from 8 by replacing each J, with a single atom (which is‘ finite
rank); and by replacing each infinite rank atom, say Gj, with a continuous nest on the
Hilbert space GrH. Then, our nest v is such that no finite rank atom of v is isolated.
Hence, by Theorem 1.4, we may connect C to the identity in (Alg(v))~! by some path, say

f(t). Then, define a new path

g(t) = A, (fFENFO

where A., denotes the compression onto the atomic part of . The path g(¢) also connects
C to the identity within (Alg(+))~!. Hovever, the compression of g{t) to the atomic part

of 7 is always the identity, since
AL (g(t)) = AZ(FENAL ()Y = A, (F(O) f()1) = A, (T).

So, g(t) is a path which also lies within (Alg(3))~!. Hence, T = DAC is connected to the

identity within Alg(8).



CHAPTER 7

Conclusions

Let us apply the connectedness results we have studied to some of the examples of nest
algebras given in the Introduction.

We already have seen a direct proof that the invertibles are connected in the nest algebra
of a maximal nest on a finite dimensional Hilbert space. More abstractly, any nest on a
finite dimensional Hilbert space certainly has a finite bound on the number of consecutive
finite rarnk atoms in the nest: we could take the dimension of the Hilbert space itself as our
bound. Hence, the invertible group is connected for a nest algebra on a finite dimensional
Hilbert space by Theorem 6.2.1.

Since continuous nests have no atoms at all, V. =0 is a finite bound on the number of
consecutive finite atoms in the nest. Again by Theorem 6.2.1, the invertibles are connected
in any continuous nest algebra. In particular, the invertibles are connected in the Volterra
nest algebra.

More generally, a nest with an infinite multiplicity nest algebra has no finite rank atoms.
In particular then, the nest has no isolated finite rank atoms. Hence, Theorem 6.1.4 shows
that the invertibles are connected in any infinite multiplicity nest algebra. Let us consider
a special case. Let H is an infinite dimensional (separable) Hilbert space. The nest algebra
for the trivial nest {0,7} is B(#). Since B(#) is an infinite multiplicty nest algebra (the
nest has no finite rank atoms), the invertible group of B(#) is connected.

Finally, let 8 be the Cantor nest. The atoms of 8 are of the form N;f — N[ = My, for
t € Q. Each atom has rank one, since the range is just {¢d; : ¢ € C} where §; is the point

mass function at t. For any t € Q, we can choose a strictly increasing sequence of rationals,
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(5n)2,, with s, — t as n —e oo. Then,

SOT - lim N =N, = N/ .
n—yoc  Sn (limn— 0o Sn)
So, the atom N;% — N = Mf,,, is not isolated. Since ¢ was arbitrary (in Q), there are no

isolated finite rank atoms in 3. By Theorem 6.1.4, the invertibles are connected in Alg(3).

It is still unknown whetther or not the invertibles are connected in the nest algebra
of upper-triangular (boundeed) matrices on an infinite dimensional Hilbert space (Example
2.2.4). It is thought by manys that the invertible group of this nest algebra is not connected,
because this is the case in tlne commutative analogue, H>(D); this is the space of analytic
functions on the closed unit disk D={z€ C:|z] < 1}.

Let # be a Hilbert spacee with orthonormal basis (e,)nez- Let v be the nest {0, P, [ :
k € Z}, where Py is the pro_jection onto the closed span of {e, : n < k}. In [10]. D. Pitts
shows that -a specific inverti ble operator T € Alg(y) is actually connected to the identity,
though it was previously thoought that this T would be a good candidate to be an operator
which would lie outside the econnected component of /.

Another approach to the invertibility question for this nest algebra might be through
K-theory. D. Pitts has calcwlated the Ko group of an arbitrary nest algebra [9]. The K
group of a nest algebra is stilll unknown in general, and, if found, could provide information

about the connected comporents of the invertibles of the nest algbera.
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