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Abstract10

A principal concern of ecological research is to unveil the causes behind observed spatio-11

temporal distributions of species. A key tactic is to correlate observed locations with en-12

vironmental features, in the form of resource selection functions or other correlative species13

distribution models. In reality, however, the distribution of any population both affects and14

is affected by those surrounding it, creating a complex network of feedbacks causing emergent15

spatio-temporal features that may not correlate with any particular aspect of the underlying16

environment. Here, we study the way in which the movements of populations in response to one17

another can affect the spatio-temporal distributions of ecosystems. We construct a stochastic18

individual-based modelling (IBM) framework, based on stigmergent interactions (i.e. organisms19

leave marks which cause others to alter their movements) between and within populations. We20

show how to gain insight into this IBM via mathematical analysis of a partial differential equa-21

tion (PDE) system given by a continuum limit. We show how the combination of stochastic22

simulations of the IBM and mathematical analysis of PDEs can be used to categorise emer-23

gent patterns into homogeneous vs. heterogeneous, stationary vs. perpetually-fluctuating, and24
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aggregation vs. segregation. In doing so, we develop techniques for understanding spatial25

bifurcations in stochastic IBMs, grounded in mathematical analysis. Finally, we demonstrate26

through a simple example how the interplay between environmental features and between-27

population stigmergent interactions can give rise to predicted spatial distributions that are28

quite different to those predicted purely by accounting for environmental covariates.29

Key words: animal movement, animal space use, individual based models, partial differential30

equations, resource selection, species distribution models, stigmergy31
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1 Introduction32

Understanding the processes behind the spatial distributions of animal populations has been33

a core concern of ecological research throughout its history (Elton, 2001; Nathan et al., 2008).34

Today, the need to manage the effects of rapid anthropogenic actions on ecosystems makes35

predictive tools for spatial ecology more important than ever (Azaele et al., 2015; Maris et al.,36

2018). However, spatial ecology is complicated by the fact that the distribution of a population37

of organisms will affect the distributions of those populations that surround it, and also be38

affected by these populations (Morales et al., 2010; Ovaskainen & Abrego, 2020). This generates39

a complex network of feedbacks between the constituent populations of an ecosystem, causing40

spatio-temporal patterns that can be difficult to predict, and impossible without the correct41

mathematical and computational tools linking process to pattern (May, 2019; Potts & Lewis,42

2019).43

There are two principal processes by which space use can be affected by interactions between44

populations (we use the word ‘population’ loosely, referring to anything ranging from a small45

group such as a territorial unit or herd through to an entire species). First, interactions can46

affect demographics, i.e. birth- and death-rates. This can be, for example, through predator-47

prey interactions or competition for resources, both of which are well-known to have non-trivial48

effects on both the overall demographic dynamics and the spatial distribution of species (Holmes49

et al., 1994; Tilman et al., 1997; Okubo & Levin, 2001; Cantrell & Cosner, 2004; Lewis et al.,50

2013, 2016).51

Second, for mobile organisms, population interactions can affect the movement of individ-52

uals (Mitchell & Lima, 2002; Vanak et al., 2013; Breed et al., 2017; Matthews et al., 2020).53

It is well-known, from the mathematical literature, that the two processes of demographics54

and movement can combine to affect spatial distribution patterns in non-trivial ways, as ex-55

emplified by studies of cross-diffusion and prey-taxis (Shigesada et al., 1979; Lee et al., 2009;56

Gambino et al., 2013; Potts & Petrovskii, 2017; Han & Dai, 2019; Haskell & Bell, 2020). These57

studies typically model movement and demographics in the same system of equations (usually58
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partial differential equations), implying that the movements are occurring on the same spatio-59

temporal scale as the demographics. Therefore the movements considered in such studies are60

usually dispersal events. However, many animal populations can make significant movements61

to rearrange themselves in space over timescales where births and deaths are negligible (Moor-62

croft et al., 2006; Vanak et al., 2013; Ellison et al., 2020). This particularly applies to larger63

animals, such as birds, mammals, and reptiles, who have great capability for movement but64

may only reproduce at a particular time of the year (e.g. spring). Therefore it is important65

to understand how movement processes alone may affect spatio-temporal population patterns66

(Potts & Lewis, 2019).67

Spurred by rapid improvements in animal tagging technology, the empirical study of move-68

ment has surged, with data being gathered at ever higher resolutions (Williams et al., 2020).69

Furthermore, an increasing number of studies are measuring animal interactions via the co-70

tagging of multiple animals and new techniques for decoding the resulting information (Vanak71

et al., 2013; Potts et al., 2014c; Schlägel et al., 2019). A key goal of movement ecology is72

to understand animal space use, so the question of how fine-grained movement and interac-73

tion processes upscale to broader spatio-temporal patterns is gaining significant methodolog-74

ical attention (Avgar et al., 2016; Signer et al., 2017; Potts & Schlägel, 2020). However, to75

make predictions requires a theoretical understanding of how movements mediated by between-76

population interactions affect space use. Our principal aim here is to provide the theoretical77

framework for answering such questions.78

To this end, we construct a general and extensible individual-based model (IBM) of move-79

ments and interactions between multiple populations. We assume that animals, left alone on80

the landscape, will have some sort of movement process allowing them to embark on daily81

activities such as foraging. We model this very simply as a nearest-neighbour lattice random82

walk (Okubo & Levin, 2001; Codling et al., 2008). This is a foundational movement model,83

which can be readily extended if one is interested in the finer details of foraging activity.84

In this study, however, our focus is on the interactions between individuals and populations.85
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Fig. 1. Schematic diagram of stigmergent interactions. The left-hand side shows the
three possible pairwise interactions between two populations. On the right is an example
network built from these interactions. One might imagine that A and B are competing prey
being predated by mutualistic predators C and D.

For this, we assume that, as individuals move, they leave a trace of where they have been on86

the landscape, which could be in the form of scent, visual or olfactory marks, feces or a simply87

a trail. These marks decay over time if the area is not revisited. Consequently, each population88

leaves a distribution of such marks on the landscape, which changes over time as the constituent89

individuals move about. Individuals of a population alter their movement according to the90

presence or otherwise of marks, both from their own population and from others.91

This process of leaving marks that cause others to alter their movement is called stigmergy,92

and has been studied in various contexts, including collective animal movement and territorial93

formation (Theraulaz & Bonabeau, 1999; Giuggioli et al., 2013; White et al., 2020). For any94

given pair of populations, A and B, one could either have mutual avoidance (where individuals95

from A avoid the marks of B and B avoid those of A), mutual attraction (individuals from96

A and B are attracted to the marks of one another), or pursuit-and-avoidance (individuals97

from A are attracted to marks of B but those from B avoid the marks of A). These combine98

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 30, 2022. ; https://doi.org/10.1101/2022.02.28.482253doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.28.482253
http://creativecommons.org/licenses/by-nc-nd/4.0/


6

into a network of stigmergent interactions that together determine the overall spatio-temporal99

distribution of the constituent populations (Figure 1). Our model is a generalisation of previous100

models of territory formation from stigmergent interactions (Giuggioli et al., 2011, 2013; Potts101

et al., 2012). However, these previous models were restricted to mutual avoidance processes102

and typically had only one individual per ‘population’ (recall, we are using ‘population’ quite103

generically here and could mean anything from a territorial unit to a larger group to a whole104

species, depending on context).105

As well as stochastic simulation analysis, we also examine the continuum limit of our IBM106

model in space and time (i.e. as the lattice spacing and time step go to zero). We construct the107

IBM so that this limit is a system of partial differential equations (PDEs) studied previously108

in Potts & Lewis (2019). This formal connection between IBM and PDE enables us to use109

the mathematical tools of PDE analysis to gain insight into the expected behaviour of the110

IBM, which we can verify through simulation. The resulting techniques allow us to use PDE111

analysis as a starting-point for exploring IBM models. This is valuable because PDEs are112

amenable to mathematical analysis, enjoying a huge history of analytic techniques (Evans,113

2010; Murray, 2012). However, IBMs are closer to reality and may be more amenable to114

extensions that incorporate further realism beyond what is studied here (for example, realistic115

movement processes based on life history needs such as foraging and tending to young). Such116

formal connections between IBMs and PDEs are powerful as they enable the best of both117

worlds: combining rigorous mathematical analysis with realistic modelling.118

Finally, we explain how to account for landscape heterogeneity in our model, through119

coupling our IBM to a step selection function (Fortin et al., 2005; Potts et al., 2014a; Avgar120

et al., 2016). We illustrate this with a simple example of two co-existing populations competing121

for the same resource, inspired by wolf-coyote coexistence in the Greater Yellowstone Ecosystem122

(Arjo & Pletscher, 2000). We investigate how the inclusion of interactions between and within123

the populations combine with the heterogeneous landscape. We show how this combination124

can cause emergent spatio-temporal patterns that cannot be explained merely by examining125
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the effect of landscape heterogeneity on animal space use (as is the norm in resource selection126

studies and many other species distribution models).127

A central theme that runs throughout this paper is that correlative models are not suf-128

ficient for predicting space use patterns of multiple species in novel environments. This can129

be illustrated by a simple thought experiment. Imagine there are two populations, each of130

whose space use is affected by the other. One could understand the effect of population A on131

the space use of population B by using a correlative model, such as resource or step selection,132

with population B as the response variable and A as the explanatory variable. But then to133

predict the space use of B in a novel environment, one would need to know a priori the space134

use of A. Flipping this, one could put the distribution of A as the response variable and B as135

explanatory. But then predicting the space use of A requires a priori knowledge about B. If136

there is a novel environment where one does not know about the space use of either A or B then137

correlative models (including joint species distribution models) cannot be used for prediction.138

Instead a dynamic model is needed, such as an IBM or PDE. Although such IBMs and PDEs139

can be parametrised by correlative techniques (Schlägel et al., 2019; Potts & Schlägel, 2020),140

prediction in a multi-population situation needs techniques beyond correlation. Our purpose141

here is to make inroads into building these techniques.142

Overall, our study aims to provide both insights into the effect of stigmergent interactions143

between populations on the spatio-temporal distribution of mobile species, and provide extensi-144

ble methods for studying these emergent features. This complements the burgeoning statistical145

field of joint species distribution modelling, which gives tools for inferring the effect of one (or146

more) species on the distribution of another (Ovaskainen & Abrego, 2020), whilst also enhanc-147

ing this field by demonstrating the importance of considering the nonlinear feedbacks between148

the movement processes of constituent populations for understanding spatial distributions.149
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2 Methods150

2.1 The model151

Our model of animal movement and stigmergent interactions is based on a nearest-neighbour152

lattice random walk formalism. We work on an L × L square lattice, Λ. We choose periodic153

boundary conditions for simplicity of presentation, although other forms are possible. We154

assume that there are N populations and that, for each index i = 1, ..., N , population i consists155

of Mi individuals. Individuals leave marks at each lattice site they visit, and those marks decay156

geometrically over time. For simplicity, one can think of these marks as scent, such as faeces157

or urine, but they could correspond to any form by which animals may leave a trace of their158

presence on the environment. The movement of each individual is biased by the presence of159

marks from both their own population and others. For each population, this bias could be either160

attractive or repulsive, depending on whether it is beneficial or detrimental for individuals161

of one population to be in the presence of another population. Since animals look at their162

surroundings at a distance to make movement decisions, our model allows for individuals to163

respond to the local average density of nearby marks.164

Mathematically this situation can be described by writing down the probability f(x, t +165

τ |x′, t) of moving from lattice site x′ to x in a timestep of length τ . This function f is known166

as a movement kernel. To construct our movement kernel, we use a generalised linear model167

to describe the attraction to, or repulsion from, the local average density of nearby marks. A168

second equation is then required to describe how marks are averaged over space. Finally, the169

deposition and decay of marks over time is given by a third equation. We now give precise170

functional forms of these three equations in turn.171

Letting l be the lattice spacing and mi(x, t) be the density of marks from population i at172
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location x at time t, the movement kernel is given by173

f(x, t+ τ |x′, t) =


Kx′ exp

[∑N
j=1 aijm̄

δ
j(x, t)

]
, if |x− x′| = l,

0, otherwise.

(1)174

175

Here Kx′ =
∑

x f(x, t + τ |x′, t) is a normalising constant ensuring that f(x, t + τ |x′, t) is a176

well-defined probability distribution; if aij > 0 (resp. aij < 0) then |aij | is the strength of177

population i’s attraction to (resp. repulsion from) population j; and m̄δ
j(x, t) represents the178

average mark density over a radius of δ. Note that Equation (1) fits into the broad category of179

functions that can be parametrised by integrated step selection analysis (Avgar et al., 2016).180

The equation for average mark density is181

m̄δ
j(x, t) =

1

|Sδ|
∑
z∈Sδ

mj(x + z, t), (2)182

183

where Sδ = {z ∈ Λ : |z| < δ} is the set of lattice sites that are within a distance of δ from184

0 and |Sδ| is the number of lattice sites in Sδ. Note that Equation (2) requires us to use185

periodic boundary conditions, so that there are always the same number of lattice sites within186

a distance of δ from any point in Λ. However, if we were to use hard boundaries, e.g. for187

modelling movement near a coastline, we would have to take the average in Equation (2) over188

the set {x + z ∈ Λ|z ∈ Sδ}.189

The equation defining the change in marks over time, which are deposited by individuals190

and then decay geometrically, is191

mi(x, t+ τ) = (1− µτ )mi(x, t) + ρτNi(x, t), (3)192
193

where Ni(x, t) is the number of individuals at location x in population i at time t, µτ is the194

amount by which marks decay in a time step of length τ , and ρτ is the amount of marking195

made by a single animal in a single time step.196
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Equations (1-3) are not the only available functional forms to describe our stigmergent197

process. However, the specific form for Equation (1) is advantageous because it arrives in198

the form of a step selection function (Fortin et al., 2005; Avgar et al., 2016). It thus has the199

potential to be parametrised by the methods of Schlägel et al. (2019), which deals with step200

selection for interacting individuals (although here we focus on analysing the emergent features201

of the model in Equation (3) rather than the question of fitting this model to data.) Equation202

(2) assumes that marks are averaged over a fixed disc around the individual and was chosen203

for simplicity, but other options, such as exponentially decaying averaging kernels, are also204

possible. Equation (3) was, likewise, chosen for simplicity.205

One drawback is that there is, in theory, no limit on the amount of marks in one location. If206

it is necessary to account for such a limit, one might exchange the ρτNi(x, t) term for something207

like ρτ (1 − Ni(x, t)/Nmax)Ni(x, t), where Nmax is the maximum number of marks at a single208

location. However, we do not explore this extension in detail here; much insight can be gained209

without needing to incorporate this extra complexity. Alternatively, one could replace ‘amount210

of marks’ with ‘probability of mark presence’. Since probabilities are bounded between 0 and211

1, this would lead to a similar formalism as the situation where the number of marks has a212

limit. Such a situation was studied in Potts & Lewis (2016) but is not considered here.213

Finally, there is an analogy between marks and resource depletion that enables our mod-214

elling framework to be used in situations where animals both deplete resources and move up215

resource gradients. The idea is to view the total number of marks in a location, from all the216

populations, as the extent of depletion of a resource. In this case, each population would avoid217

‘marks’ left by either population, as animals will tend to avoid depleted resources. We do218

not explicitly examine this situation here, but it is a possibility for future investigations and219

expands the potential applicability of our work.220
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2.2 Methods for analysing simulation output221

We analyse the individual-based model (IBM) from Equations (1-3) using stochastic simula-222

tions. Example simulation runs reveal a range of patterns (Fig. 2). Here, we detail methods223

for characterising these via three broad questions: (I) Is the distribution of animal locations224

heterogeneous or homogeneous? (II) If heterogeneous, do the patterns stabilise over time, so225

that populations keep broadly to fixed areas of space, or do they undergo persistent fluctua-226

tions? (III) For any two populations, are they segregated from one another or aggregated in227

the same small area? The stochastic nature of the IBM means that there will always be some228

amount of heterogeneity and persistent fluctuations due to noise. Our methods thus need to229

distinguish between what is noise and what is an actual pattern.230

To answer question (I), we examine the local population density, li,d(x, t), averaged around231

a disc of radius d, at each lattice site x and time t, for each population i. At each point in232

time, we compute the amplitude of the pattern as Ai,d(t) = maxx[li,d(x, t)] − minx[li,d(x, t)],233

the maximum local population density across space minus the minimum. We want to find out234

whether the amplitude ever becomes higher than would be expected from individuals moving235

as independent random walkers (i.e. when aij = 0 for all i, j in Equation 1), assuming that the236

individuals are initially distributed uniformly at random on the lattice. For this, we calculate237

Ai,d(t) in the case aij = 0 for all i, j (i.e. no mark deposition so no interactions between walkers)238

and take the average over a sufficiently long time period to calculate the mean to a given degree239

of accuracy (i.e. so that the standard deviation of the mean is below a pre-defined threshold,240

determined by the needs of the simulation experiment). We call this mean amplitude Arw (for241

‘random walk’). Then the extent to which the patterns are heterogenous can be determined242

with reference to this base-line value.243

Question (II) requires that we keep track of the mean location of individuals in each pop-244

ulation. Since individuals are moving on a lattice with periodic boundary conditions, it is245

necessary to take a circular mean (Berens, 2009). However, if individuals are roughly uni-246

formly spread in either the horizontal or vertical direction then the circular mean can be very247
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Fig. 2. Example snapshots of simulation output. In all panels, two populations of 100
individuals each were simulated on a 25×25 lattice, with initial locations distributed
uniformly at random on the landscape. Also µ = 0.001 and ρ = 0.01 for all panels (Equation
3). Panel (a) shows a system where two populations form a single, stable aggregation. Here,
a11 = a22 = 0, a12 = a21 = 2, δ = 10l (Equation 1). In panel (b) the populations segregate
into distinct parts of space. Here, a11 = a22 = 0, a12 = a21 = −2, and δ = 5l. In both Panels
(a) and (b) the snapshot is taken at time t = 5000τ . Panels (c) and (d) show a situation
where one population (blue) chases other (red) around the landscape in perpetuity, with
snapshots at two different times. Here, a11 = a22 = 1, a12 = 10, a21 = −10, and δ = 10l.

sensitive to stochastic fluctuations. We therefore introduce a corrected circular mean which248

accounts for this, and denote it by ci(t) (notice that this is a location in two dimensions, for249

each time, t). Precise details of how to calculate ci(t) are given in Supplementary Appendix250
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A.251

As with the amplitude calculations, we need to determine whether changes in ci(t) are252

indicative of a fluctuating pattern (like in Figs. 2c,d) or just noise around an essentially253

stationary population distribution (as in Figs. 2a,b). For any length R and time-interval, T ,254

we say that a system has become (R, T )-stable at time T∗ if |ci(T∗ + t)− ci(T∗)| < R for each255

population i whenever 0 ≤ t ≤ T . For example, the systems in Figs. 2a,b are both (l, 1000τ)-256

stable, but the system shown in Figs. 2c,d is not. In Section 2.3 we will show how to choose257

values of R and T , by ensuring they are consistent with the results of mathematical analysis.258

For Question (III), the extent to which a pair of populations i, j (i 6= j) is aggregated or259

segregated at any point in time is measured using the separation index, sij(t) = |ci(t)− cj(t)|.260

For systems that become (R, T )-stable at some time T∗, we can define the asymptotic separation261

index s∗ij as the average of sij(t) across T∗ < t < T∗+T . A separation index close to 0 indicates262

that the populations are occupying a similar part of space. If we know, from Question (I), that263

both populations are displaying heterogeneous patterns then in this case we have an aggregation264

of both populations. Higher separation indices, coupled with the existence of heterogeneous265

patterns, are suggestive of segregation patterns.266

The separation index is a simple metric that is quick to calculate for multiple simulation267

analysis. However, one could also use more sophisticated measures of range overlap, such as268

the Bhattacharyya’s Affinity (Fieberg & Kochanny, 2005) between kernel density estimators269

(Worton, 1989; Fleming et al., 2015). Here, though, we will keep things simple, to enable270

analysis of a broader range of simulation scenarios in a realistic time-frame.271

2.3 Mathematical techniques272

Techniques for analysing the output of stochastic IBMs can involve choices that might be273

somewhat arbitrary, for example the choices of Tamp, R, and T in Section 2.2. Therefore it274

is valuable to ground-truth these choices by means of mathematical analysis. In particular,275

we do this via a PDE approximation describing the probability distribution of individuals for276
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each population. In PDE theory, patterns can emerge when a change in parameter causes277

the system to switch from a situation whereby the constant steady state (corresponding to278

homogeneously distributed individuals) becomes unstable, leading to the distribution tending279

to either a non-constant steady state (heterogeneously distributed individuals), or entering a280

perpetually fluctuating situation. The parameter value where the switch occurs is called a281

bifurcation point. The nature of this bifurcation point can be ascertained by a combination282

of linear stability analysis (LSA) and weakly non-linear analysis. Here we focus on LSA for283

simplicity (which is also called Turing pattern analysis, after Turing (1952)).284

To arrive at a PDE system, we take a continuous limit in both space and time, sending285

l and τ to 0 such that l2/τ tends to a finite constant, D > 0. This is sometimes called the286

diffusion limit, as D is a diffusion constant, but is also referred to as the parabolic limit (Hillen287

& Painter, 2013). If we take this limit, and also assume that infinitesimal moments beyond the288

second are negligible, we arrive at the following system of PDEs (see Supplementary Appendix289

B for details)290

∂ui
∂t

= D∇2ui︸ ︷︷ ︸
Diffusive movement

− 2D∇ ·

ui∇ N∑
j=1

aij q̄
δ
j


︸ ︷︷ ︸

Advection due to presence of marks

, (4)291

∂qi
∂t

= ρui︸︷︷︸
Mark deposition

− µqi︸︷︷︸
Mark decay

, (5)292

293

for each i = 1, ..., N , where ui(x, t) is the location density of population i, qi(x, t) is the density294

of marks, ρ is the limit of ρτ
τ as ρτ , τ → 0, µ is the limit of µτ

τ as µτ , τ → 0, and q̄δj (x, t) is295

the average of q(x, t) over a ball of radius δ. Here, we assume that animals move at the same296

rate, so D is independent of i. It is possible to drop this assumption, and we discuss the effect297

of doing this in Supplementary Appendix C. However, for simplicity of calculations we keep D298

constant in the Main Text.299

It is sometimes helpful to simplify calculations by assuming that qi equilibrates much faster300

than ui, so that the scent mark is in quasi-equilibrium (∂qi∂t = 0), leading to the following301
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equation for each i = 1, ..., N302

∂ui
∂t

= D∇2ui −
2Dρ

µ
∇ ·

ui∇ N∑
j=1

aij q̄
δ
j

 . (6)303

304

This assumption says, in effect, that the distribution of marks accurately reflects the space305

use distribution of the population. When terrain marking is deliberate, its usual purpose is306

precisely to advertise space use. Therefore this quasi-equilibrium assumption is likely to be307

biologically reasonable in many realistic situations.308

The LSA technique enables us to use Equations (4-5) to construct the pattern formation309

matrix,M (see Supplementary Appendix C for the full expression and derivation). The eigen-310

values of M give key information about whether heterogeneous patterns will spontaneously311

form from small perturbations of a homogeneous system (i.e. individuals initially uniformly312

distributed on the landscape), and also whether these patterns begin to oscillate as they emerge.313

This technique dates back to Turing (1952) and is essentially an extension to PDEs of stability314

analysis for ordinary differential equations (May, 2019).315

The emergence of heterogeneous patterns is expected whenever there is an eigenvalue whose316

real part is positive. Thus the sign of the eigenvalue with biggest real part (a.k.a. the dominant317

eigenvalue) gives an indication of the answer to Question (I) above. If the dominant eigenvalue318

has positive real part and a non-zero imaginary part then small perturbations of the homoge-319

neous system will oscillate as they grow, at least at small times. Often (but not always) these320

oscillations will persist for all times, so give an indication of the likely answer to Question (II).321

We stress that this is just an indication, though, and that discrepancies may exist between the322

answer to (II) and whether or not the dominant eigenvalue ofM is real. Full analysis of when323

to expect non-constant stationary patterns in Equation (4-5), or when to expect perpetually324

changing patterns, requires more sophisticated techniques.325
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2.4 Simulation experiments326

To give some insight into the sort of patterns that can emerge from our model (Equations 1-3),327

we perform a variety of simulations in the simple case of two populations (N = 2). Throughout,328

we assume that each population has 100 individuals (M1 = M2 = 100) and we work on a 25×25329

lattice. We assume τ = 1 and l = 1 so can write µτ = µ and ρτ = ρ for ease of notation. We330

also assume δ = 5 throughout.331

First, we examine the situation where populations have a symmetric response to one an-332

other, so that a12 = a21 = a. For simplicity, we set a11 = a22 = 0. In this case the continuum333

limit PDE system (Equations 4-5) has the following pattern formation matrix (derived in Sup-334

plementary Appendix C)335

M =



−κ2 0 0 8a
25κ

2

0 −κ2 8a
25κ

2 0

ρ 0 −µ 0

0 ρ 0 −µ


. (7)336

337

Here, κ is the wavenumber of the patterns that may emerge at small times, if there is an338

eigenvalue ofM with positive real part (i.e. the wavelength of these patterns would be 2π/κ).339

For our simulation experiments, we fix the scent-marking rate ρ = 0.01 to be a low number and340

vary the decay rate µ. We consider two different values of a: either a = 2, which corresponds341

to populations having a mutual attraction, or a = −2, corresponding to mutual avoidance.342

In either case, the dominant eigenvalue of M is always real (Supplementary Appendix C).343

Furthermore, it is positive if and only if µ < 0.0064. In other words, this mathematical344

analysis predicts that the system will bifurcate at µ = 0.0064 from homogeneous patterns345

(µ > 0.0064) to heterogeneous patterns (µ < 0.0064). This means that if marks remain long346

enough on the landscape, they will affect movement to such an extent that the overall space347

use patterns change from being homogeneous (so indistinguishable from independent random348

walkers) to heterogeneous. This hetergogeneity will be either aggregative, if a = 2, analogous349
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to the example in Figure 2a or segregative, if a = −2, like Figure 2b.350

To test whether we see a similar change in stability in simulations, we start by simulating351

our system in the case µ = 0.009, run this until it is (R, T )-stable for R = 1 and T = 1000352

and measure the asymptotic amplitude, A∗i,d for i = 1, 2, by averaging Ai,d(t) over the 10000353

time steps after (R, T )-stability has been achieved. For this, we use d = 5. We then use354

the final locations of each individual as initial conditions in our next simulation run, which is355

identical except for choosing µ = 0.0069. We iterate this process, reducing µ by 0.0001 each356

time, until µ = 0.001. This mimics the numerical bifurcation analysis often performed when357

analysing PDEs (Painter & Hillen, 2011). We perform this whole iterative process for both358

a = 2 and a = −2, the expectation being that A∗i,d will be approximately the same as that of359

non-interacting individuals (Arw) until the value of µ crosses µ = 0.0064, at which point we360

expect A∗i,d to start increasing.361

To investigate whether linear stability analysis of the PDE system (Equations 4-5) reflects362

our method for answering Question (II), we set a11 = a22 = 1, ρ = 0.01, µ = 0.002, and363

sample a12 and a21 uniformly at random, 100 times each, from the interval [−5, 5]. To make364

calculations more transparent, we assume that the scent marks are in quasi-equilibrium, taking365

the adiabatic approximation in Equation (6). In this case the pattern formation matrix is366

M =
1

5

 3 8a12

8a21 3

 , (8)367

368

and so the dominant eigenvalue is (15 + 4
√
a12a21)/25. If the cross interaction terms are of369

identical sign (a12a21 > 0) then linear stability analysis predicts stationary patterns to emerge370

(at least at small times), but if they are of different sign (a12a21 < 0) then the dominant371

eigenvalue is not real, so patterns should oscillate as they emerge. The latter case corresponds372

to the type of pursuit-and-avoidance situation that we see in Fig. 2c,d. We compare these373

predictions to our definition of (R, T )-stability for a range of values of R and T to ascertain374

the extent to which the separation between real and non-real eigenvalues corresponds to the375
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Fig. 3. Pattern formation analysis of stochastic simulations for N = 2. Each panel
shows, using solid dots, the amplitude, A∗1,5, of Population 1 for different values of µ, where
ρ = 0.01, a12 = a21 = a, and a11 = a22 = 0. Black dots represent the situation where µ is
decreased progressively (see Section 2.4 for details) and red dots show the situation where µ
is increased (Section 3). In Panel (a), a = −2 so that the populations repel one another and
in Panel (b), a = 2 so populations are attractive. The value Arw, the amplitude in the
situation where each individual is a non-interacting random walker, is given by the dashed
black line. The blue line gives the bifurcation point predicted by analysis of the continuum
limit PDE, Equations (4)-(5), which gives an indication of where we expect the amplitudes of
the simulations to become notably larger Arw.

existence or not of (R, T )-stability.376

2.5 Incorporating environmental effects377

As mentioned at the end of Section 2.1, Equation (1) is in the form of a step selection function.378

This means that it can be readily used to incorporate the effect on movement of environ-379

mental or landscape features. Suppose that we have n such features, denoted by functions380

Z1(x), . . . , Zn(x). For each k = 1, . . . , n, denote by βk the relative effect of Zk(x) on move-381

ment. Then, to incorporate these into the movement kernel, we modify Equation (1) as follows382

f(x, t+ τ |x′, t) =


Kx′ exp

[∑N
j=1 aijm̄

δ
j(x, t) +

∑n
k=1 βkZk(x)

]
, if |x− x′| = l,

0, otherwise.

(9)383

384
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Fig. 4. Stability of emergent patterns. In Panel (a), each dot represents a simulation
run of the IBM in Equations (1)-(3) where a11 = a22 = 1, ρ = 0.01, µ = 0.002 and the values
of a12 and a21 are given by the horizontal and vertical axes respectively. Red dots denote
simulation runs that were not (R, T )-stable (for R/l = 1, T/τ = 7500), whereas those on the
purple-to-brown spectrum were (R, T )-stable. This colour spectrum corresponds to the
separation index, from aggregative to segregative. Linear pattern formation analysis of the
PDEs in Equations (4)-(5) predicts stationary (resp. non-stationary) patterns to emerge in
the top-right and bottom-left (resp. top-left and bottom-right) quadrants, which corresponds
well with the dot colours. Notice that the top-right (resp. bottom-left) quadrant corresponds
to mutual attraction (resp. avoidance) and, likewise, the dot colours indicate aggregation
(resp. segregation) patterns. Panel (b) gives a schematic of the between-population
movement responses corresponding to the four quadrants in panel (a). An arrow from ui to
uj represents attraction of population i towards population j. An arrow pointing out of ui
away from uj represents ui avoiding uj .

We use this to investigate the effect on space use of interactions both between populations385

and with the environment, by considering a simple toy scenario, but one that is based on a386

particular empirical situation. Specifically, we consider two populations competing for the same387

heterogeneously-distributed resource, Z1(x) (here, n = 1). One population is assumed to be388

a weaker competitor, so avoids the stronger competitor, whilst the movements of the stronger389

are not affected by the weaker. Both have a tendency to move towards areas of higher-density390

resources.391

In our simulations, each population consists of 100 individuals. We examine three cases.392
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R/l T/τ Agreement SU/AS SS/AU

0.5 5000 54% 46% 0%
1 5000 87% 0% 13%
1 7000 96% 0% 4%
1 7500 97% 2% 1%
1 8000 95% 5% 0%
2 5000 84% 0% 14%
2 7000 93% 0% 7%
2 7500 95% 0% 5%
2 8000 96% 4% 0%

Table 1. Extent to which analytic predictions agree with our simulation analysis for different
choices of R and T . The third column gives the percentage of the simulations from Fig. 4 for
which the analytic prediction for stability agrees with that measured from stochastic
simulations using our method. The fourth (resp. fifth) gives the percentage for which the
stochastic simulations were deemed unstable (resp. stable), for the given values of R and T ,
but the analytic prediction is stable (resp. unstable), denoted as SU/AS (rep. SS/AU).

The first is where the effect of the stronger competitor on the weaker is ignored (so animals393

are assumed to act independently, which mirrors many basic resource/step selection studies).394

The second incorporates the effect of the stronger on the weaker’s movements, but treats each395

individual within a population as independent from the others in the population. This mirrors396

some recent resource selection studies whereby the movement of one population is affected by397

the presence of another, e.g. Vanak et al. (2013); Latombe et al. (2014). The third assumes398

that the stronger population are highly territorial, so are split into five separate sub-groups,399

each of which exhibit strong intra-group attraction but inter-group repulsion. The simulated400

resource layer is a Gaussian random field on a 25 × 25 lattice, previously used in the context401

of resource selection by (Potts et al., 2014b). Precise details of the simulation experiments we402

performed are given in Supplementary Appendix D.403

Whilst this situation is a deliberately general and simplified model, it is inspired by the404

particular situation of wolf-coyote coexistence in the Greater Yellowstone Ecosystem. Here, the405

stronger competitor is the wolf population, coyotes being weaker, and the resource layer is the406

distribution of where prey are likely to be found. The ability for coyotes to coexist with wolves407

in this system has been conjectured to emerge from the territorial structures of wolves, which408
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include relatively large interstitial regions that may be havens for coyote (Arjo & Pletscher,409

2000). If true, this means that the intra-pack attraction and inter-pack avoidance mechanisms410

are key to understanding the space use of wolves and coyotes. The three models presented411

here can be viewed as testing how the different assumptions about wolf-coyote and wolf-wolf412

interactions might interface with resource selection to affect their space use distributions.413

3 Results414

Fig. 3 shows the results of pattern formation analysis of our IBM. The place at which the415

amplitude grows higher than that of random non-interacting individuals is reasonably close to416

the bifurcation point predicted by linear stability analysis of the corresponding continuum PDE417

system. However, the latter occurs at a slightly lower value of µ than for the IBM indicating418

that a slightly lower decay rate of marks is necessary to overcome the stochastic effects and419

allow patterns to form. In other words, the stochasticity has a mild homogenising effect.420

For negative a (recall a = a12 = a21 in Equation 1), where we tend to see segregation421

patterns beyond the bifurcation point, the amplitudes A∗1,5, represented by black dots, appear422

to grow steadily as µ is decreased (Fig. 3a). However, for positive a, there is a sudden jump423

in the amplitude between µ = 0.0062 and µ = 0.0061 (Fig. 3b). Such jumps in bifurcation424

diagrams can sometimes be accompanied by a hysteresis effect, whereby if the initial conditions425

contain patterns then the patterns may persist even in parameter regimes where they would426

not emerge spontaneously. To test this, we performed the same IBM pattern formation analysis427

as before, but this time starting with µ = 0.0004 and increasing µ by 0.0001 each iteration428

(rather than decreasing as before). The red dots in Fig. 3b show that there is indeed hysteresis429

in the IBM system, whereby the system is bistable for 0.006 . µ . 0.0065, a phenomenon430

that has also been observed in single population aggregation models with a slightly different431

class of differential equation models (Potts & Painter, 2021). This means that if a population432

is already aggregated then µ would need to drop below about 0.006 for the aggregation to433

collapse. Yet if a population is not already aggregated, µ would have to increase above 0.0065434
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for aggregations to form.435
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Fig. 5. Incorporating environmental effects. This figure shows the space use
distributions that emerge from three different scenarios involving two populations attracted
to the same heterogeneously-distributed resource. This resource is shown in shades of
yellow-green, with darker (resp. lighter) green denoting higher (resp. lower) density of
resources. Magenta (resp. blue) dots denote the stronger (resp. weaker) competitor. In Panel
(a) the individuals do not alter their movement in response to the presence of others, and we
simply see a preference for higher quality resources. In Panel (b), as well as attraction to
better resources, the weaker (blue) population has a tendency to move away from the
stronger (magenta) population. In addition to this avoidance mechanism, in Panel (c) the
magenta population is strongly territorial. This leads to the emergence of interstitial regions
where the blue population can access resources that may be quite high quality.

Fig. 4 shows that (R, T )-stability corresponds well to the predictions of pattern formation436

analysis in the case where R = l and T = 5000τ . These were the best values of R and T437

we found from the ones tested, inasmuch as the results corresponded to the pattern formation438

analysis in the highest proportion of cases, N% (Table 1). Notice too that the mutually-439

avoiding populations (with a12, a21 < 0) tend to have much higher separation indices, s∗12, than440

the mutually attracting populations, as one would expect.441

Fig. 5 shows the results of our three simulation experiments on a heterogeneous resource442

landscape. When we assume that there are no inter-population interactions then the result-443

ing model predicts space-use patterns whereby both populations have very similar space use444

distributions (Fig. 5a). When we account for the avoidance of the weaker population by the445

stronger then the model predicts that the stronger population will live where the resources are446
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better, driving the weaker to resource-poor areas (Fig. 5b). This, of course, may ultimately447

lead to the weaker population being unable to survive. However, if the stronger population is448

strongly territorial, it can subdivide into separate groups, leaving interstitial regions where the449

weaker population can survive and have access to resources that may be relatively high quality450

(Fig. 5c).451

4 Discussion452

Resource selection analysis is one of the most popular techniques for understanding the distri-453

bution of species and populations. However, like many species distribution models, studies tend454

to focus on correlating animal locations with environmental and landscape features. Whilst455

some more recent studies in resource selection (Bastille-Rousseau et al., 2015), step selection456

(Vanak et al., 2013), and species distribution modelling (Ovaskainen & Abrego, 2020) have457

examined the way presence of one population may affect that of another, the first population458

tends to be treated as a static layer, similar to a resource layer, which then affects the presence459

or movement of the second population. This assumption neglects the dynamic feedbacks that460

can occur between two or more populations of animals.461

Here, we have shown that such feedbacks can generate a variety of emergent patterns that462

can be quite different to those that appear when only accounting for static layers (Fig. 5).463

We have given a basic categorisation scheme for these patterns via simple binary questions:464

homogeneous or heterogeneous, stable or dynamic, segregated or aggregated. We have shown465

that, even with just two populations, all these patterns are possible. This categorisation,466

however, is likely to be only the tip of the iceberg in terms of the possible patterning properties467

arising from sigmergent interactions between multiple populations. Indeed, a recent study468

of the limiting deterministic PDE (Potts & Lewis, 2019) unveiled a rich suite of patterns469

through numerical simulations, including all those patterns studied here, as well as period470

doubling bifurcations, travelling-waves, and irregular patterns suggestive of chaos. Although471

such subtleties in pattern formation may be tricky to distinguish from noise in an IBM, it is472
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valuable to be aware that they may yet be present in real systems.473

Whilst a coarse-grained, individual-based approach to ecological modelling is valuable in474

ensuring emergent phenomena are not simply an outcome of continuum assumptions (Durrett475

& Levin, 1994; Getz et al., 2018), here our limiting PDE has been very valuable for gaining476

insight into our IBM. First, understanding the places where the PDE system bifurcates from477

between different patterning regimes has enabled us to identify interesting parameter regimes478

for studying our IBM (Figs. 3 and 4). Second, comparison between patterns in our IBM479

and the corresponding PDE has enabled us to tune the various otherwise-arbitrary choices480

of parameters used in analysing IBMs (e.g. the choices of R and T determined by Table 1).481

Whilst there is a tradition of ecological studies where limiting PDEs have helped decode the482

complexity inherent in IBMs (Durrett & Levin, 1994; Sherratt et al., 1997; Hosseini, 2006), this483

is perhaps overshadowed by the recent prevalence of IBM-only studies in ecology (Grimm, 1999;484

Grimm & Railsback, 2013; DeAngelis, 2018). We hope our use of PDEs here helps encourage485

further studies to implement PDEs as a tool for understanding IBMs.486

Here, we have explored pattern formation analysis of PDEs using perhaps the simplest487

tool, that of linear analysis. However, there are plenty of other tools, with varying conceptual488

and mathematical complexity, that may provide insight. For example, in Fig. 3a, we see that489

patterns emerge smoothly as one decreases µ past the bifurcation point, which is suggestive490

of a super-critical bifurcation. However, in Fig. 3b, there is a sudden jump, together with491

a hysteresis (bistable) region, something usually accompanied by a sub-critical bifurcation.492

Techniques such as weakly non-linear analysis (Eftimie et al., 2009) and Crandall-Rabinowitz493

abstract bifurcation theory (Buttenschön & Buttenschön, 2021) are able to distinguish rigor-494

ously between these two cases. These are, however, much more conceptually and technically495

demanding than linear analysis, and will require a significant, separate work.496

Even without advanced techniques for studying PDEs, though, we have shown how re-497

searchers can gain insight through stochastic IBM experiments. To do this, we have developed498

tools that mimic those used for understanding PDEs, but tailored for use with stochastic IBMs.499
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A principal technical obstacle was to seperate-out random noise from actual spatial patterns,500

be they stationary or fluctuating. The fact that our techniques agreed well with the analogous501

PDE analysis provides a validation and ground-truthing of the methods, suggesting they are502

capturing the key features of patterning with good accuracy.503

Furthermore, even in the relatively simple example situations studied here, our IBM anal-504

ysis revealed some interesting theoretical insights. It appears that segregation patterns emerge505

in a continuous fashion as a parameter value moves past the bifurcation point (Figure 3a).506

However, when aggregations emerge, they appear suddenly (Figure 3b), with a small change in507

parameter value causing a sudden jump from homogeneous patterns to clearly-defined aggrega-508

tions. Moreover, this is accompanied by a hysteresis effect, meaning that identical underlying509

processes can give rise to either aggregation or homogeneity, depending on the history of the510

system.511

As well as using our methods to analyse IBMs, it is conceivable that the same methods512

may be valuable for analysing pattern formation in empirical data. One would, admittedly,513

need some rather high quality data: large quantities of co-tagged animals for sufficiently long514

time periods to observe changes in space use patterns. However, in the present ‘golden age’ of515

animal movement data (Wilmers et al., 2015), with ongoing rapid increases in the magnitude516

and quality of datasets (Williams et al., 2020), it is good idea to ensure the methodological517

and theoretical tools exist to deal with such data as it emerges. We have not focused on data518

analysis here, but we encourage researchers to test this idea in future studies if they have such519

data.520

On the more ecological side, we have shown how accounting for feedbacks between the521

movement mechanisms of constituent populations may help explain the emergence of intersti-522

tial regions in territorial animals that could provide safe-havens for weaker competitors. Such523

patterns have been observed in coexistent wolf and coyote populations in the Greater Yellow-524

stone Ecosystem. There, these interstitial regions have also been observed as refuges for deer525

(Lewis & Murray, 1993). Although we did not consider the mobility of prey resources in our526
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simple example, one could add extra complexity by considering the attempts of mobile prey to527

avoid predators, and observe how this affects the spatial patterns. However, for the purposes528

of our simple illustration, this level of modelling complexity was not required.529

An important thing to note is that emergent patterns from interacting populations cannot530

be revealed by correlative models alone. To take the example from Figure 5, if one knew the531

distribution of the stronger population, one could perform resource selection analysis with this532

distribution and the resource layer as the two explanatory variables to understand how these533

drive space use of the weaker population. However, to use this in a novel environment to predict534

space use of the weaker population, one would need to know a priori the distribution of the535

stronger. If one wants to predict space use of both populations at the same time, in situations536

where there is no a priori knowledge of either population, resource selection functions are not537

enough. Instead, one could perform step selection analysis for both interacting population,538

for example using the techniques of Schlägel et al. (2019), then feed the output of this into539

a movement kernel in the form of Equation (1), for example using the techniques of Potts540

& Schlägel (2020). This would lead to precisely the sort of IBM studied here, which enables541

analysis of predicted space use patterns in novel environments.542

In general, our approach is valuable for predicting the distribution of populations whenever543

the locations of two or more populations affect the movements of each other (Schlägel et al.,544

2020). This has been observed in a variety of situations. We have already mentioned com-545

petition between carnivores, and indeed the movements of coexistent carnivore populations in546

response to the presence of others has been measured in various studies (Vanak et al., 2013;547

Swanson et al., 2016). Also the effect of predator movement on prey locations (sometimes548

called prey-taxis), and vice versa (the ‘landscape of fear’), has been documented in a variety of549

scenarios (Kareiva & Odell, 1987; Laundré et al., 2010; Latombe et al., 2014; Gallagher et al.,550

2017). Despite this, the predominant species distributions models used in ecology tend to551

not to account for the underlying between-population movement processes and the emergent552

features that they engender, even in cases where they model species jointly (Ovaskainen &553
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Abrego, 2020). Explicit modelling of the underlying movement mechanisms, as we have done554

here, would help plug this gap and lead to more accurate description and forecasting of species555

distributions.556
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Laundré, J.W., Hernández, L. & Ripple, W.J. (2010). The landscape of fear: ecological673

implications of being afraid. Open Ecology Journal, 3, 1–7.674

34.675

Lee, J., Hillen, T. & Lewis, M. (2009). Pattern formation in prey-taxis systems. J. Biol.676

Dynam., 3, 551–573.677

35.678

Lewis, M.A., Maini, P.K. & Petrovskii, S.V. (2013). Dispersal, individual movement and679

spatial ecology. Lecture Notes in Mathematics (Mathematics Bioscience Series), 2071.680

36.681

Lewis, M.A. & Murray, J.D. (1993). Modelling territoriality and wolf-deer interactions.682

Nature, 366, 738–740.683

37.684

Lewis, M.A., Petrovskii, S.V. & Potts, J.R. (2016). The mathematics behind biological inva-685

sions. Springer, Switzerland.686

38.687
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