
INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films

the text directly from the original or copy submitted. Thus, some thesis and

dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the

copy submitted. Broken or indistinct print, colored or poor quality illustrations

and photographs, print bleedthrough, substandard margins, and improper

alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized

copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by

sectioning the original, beginning at the upper left-hand comer and continuing

from left to right in equal sections with small overlaps.

ProQuest Information and Learning
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA

800-521-0600

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

University of Alberta

Data Stream Summarization Methodology

by

SamerNassar

A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment of
the

requirements for the degree of Master of Science

Department of Computing Science

Edmonton, Alberta
Spring 2005

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

0-494-08125-2

1*1 Library and
Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ONTK1A 0N4
Canada

Bibiiotheque et
Archives Canada

Direction du
Patrimoine de I'edition

395, rue Wellington
Ottawa ON K1A 0N4
Canada

Your file Votre reference
ISBN:
Our We Notre reference
ISBN:

NOTICE:
The author has granted a non
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non
commercial purposes, in microform,
paper, electronic and/or any other
formats.

AVIS:
L'auteur a accorde une licence non exclusive
permettant a la Bibiiotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par I'lntemet, preter,
distribuer et vendre des theses partout dans
le monde, a des fins commerciales ou autres,
sur support microforme, papier, electronique
et/ou autres formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author’s
permission.

L'auteur conserve la propriete du droit d’auteur
et des droits moraux qui protege cette these.
Ni la these ni des extraits substantiels de
celle-ci ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

Conformement a la loi canadienne
sur la protection de la vie privee,
quelques formulaires secondaires
ont ete enleves de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n’y aura aucun contenu manquant

Canada
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

certainly God is conscienced by, from the people, the ones with knowledge...

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

To God: the most gracious, the most merciful

To my best friend and first teacher: my father
To my best compassionate and first care: my mother
To my bests patience and joy: my sister and my brother

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ABSTRACT

Knowledge discovery from multidimensional data streams requires a method for

effectively maintaining a historical “collection” of summaries of past windows such

that historical stream queries can be answered. We present the Stream Summary Store

method. In this method, ‘similar’ spatial summary objects that summarize points in

different windows are approximated by one approximate spatio-temporal summary

object. A stream summary store is a collection of approximate spatio-temporal

summary objects that consume a certain space budget We outline various policies for

satisfying the space budget constraint during the summarization of the data stream,

and focus on policies that utilize prominent data mining and compression techniques

(Clustering and Signal Compression) to further reduce the space consumption of the

summary store. An extensive experimental evaluation shows that our methodology

for constructing approximate spatio-temporal summary stores coupled with well-

known Clustering and Signal Compression techniques significantly outperforms

existing methods for summarizing multidimensional data streams.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ACKNOWLEDGEMENT

Professor Jorg Sander certainly taught me great concepts: from challenging problem
formulation to creative comparative analysis to elegant presentation of scientific
ideas. To you Professor Sander, I say thank you for supervising my work, thank you
for inspiring me about Clustering and Data Streams, and thank you for challenging
me with publishing in top conferences. I was certainly privileged. It was a great
intellectual journey. Thank you.

Professor Russell Greiner certainly ignited my interest in Artificial Intelligence. To
you Professor Greiner, I say thank you for your joy and unwavering help. It was
fantastic to know that I could always stop by your office for extra advice. Thank you.

Professor Piotr Rudnicki certainly anchored my interest in Computing Science. To
you Professor Rudnicki, I say thank you for teaching me from your admirable
knowledge. It was very enjoyable to ponder concepts computationally. Thank you.

To my colleagues in the Data Base group Stanley Oliveira, Reza Sherkat,
Jianjun Zhou, and others, thank you for thought provoking discussions and support.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TABLE OF CONTENTS

1. INTRODUCTION..1

2. DATA BUBBLES... 3

3. INCREMENTAL AND EFFECTIVE DATA SUMMARIZATION FOR

DYNAMIC HIERARCHICAL CLUSTERING..5

3.1. Motivation... 5

3.2. Related Work.. 9

3.3. Speeding Up The Construction of Data Bubbles..10

3.4. The Compression Quality of Data Bubbles.. 15

3.5. Maintaining Incremental Data Bubbles..21

3.6. Performance Evaluation.. 25

4. SPACE BUDGETED MAINTENANCE OF SUMMARIES FROM

MULTI-DIMENSIONAL DATA STREAMS FOR EFFECTIVE CLUSTER

ANALYSIS...34

4.1. Motivation... 34

4.2. Related Work.. 36

4.3. A General Framework for the Summarization of Multi-Dimensional Data

Streams..40

4.4. Approximating Spatial Summary Objects..44

4.4.1. (&A) Approximate Spatial Configuration..44

4.4.2. Approximate Spatio-Temporal Summary Object............................... 48

4.5. Spatial Summarization of Data Streams...52

4.6. Data Stream Summary Stores... 55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.6.1. Summary Store Life-History Management... 56

4.6.2. Summary Store Space Management... 58

4.6.3. Reconstructing Summarized Stream Windows.................................. 62

4.7. Performance Evaluation.. 62

5. CONCLUSIONS... 74

6. FUTURE DIRECTIONS...76

7. BIBLIOGRAPHY.. 77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LIST OF TABLES
1. Illustration of Wavelet Transformation...38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LIST OF FIGURES

1. Pruning of Distance Computations.. 12

2. Finding the Closest Data Bubble Seed for a Point p.. 14

3. Overall Scheme of Maintaining Data Bubbles Incrementally...............................15

4. Over-filling of a Data Bubble by New Clusters...22

5. Migration of Under-filled Data Bubbles..24

6. Improving the Quality of an Over-filled Data Bubble...25

7. Comparison of Adaptation of Data Bubbles to Insertions and Deletions When

Using the Fraction of Points vs the Extent as Quality Measures...........................27

8. Clustering Structure in the Complex Database..29

9. Incremental Scheme Quality Using 2D Databases..30

10. Incremental Scheme Quality Using Complex Databases......................................31

11. Percentage of Data Bubbles Rebuilt..32

12. Pruning of Representatives Using Triangle Inequalities.......................................33

13. Summary Objects with Approximately Equal Spatial Configurations................. 47

14. Snapshot of First Window in a Data Stream...64

15. Relative Quality Profile When Querying 2D Stream 4 and Query Size is 4

Windows..68

16. Relative Quality Profile When Querying 5D Stream 4 and Query Size is 4

Windows..70

17. Relative Quality Profile When Querying 10D Stream 4 and Query Size is 4

Windows..70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

18. Summarization Method Runtime Comparison when Querying Stream 4 and

Query Size is 4 Windows...71

19. Relative Quality Profile When Querying 2D Stream 4 and Query Size is 2

Windows..72

20. Relative Quality Profile When Querying 2D Stream 4 and Query Size is 8

Windows..72

21. Relative Quality Profile When Querying 2D Stream 5 and Query Size is 4

Windows..73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LIST OF SYMBOLS

B: a data bubble object

ôver-fiiied- an over filled data bubble

Bunder-fiiied- an under filled data bubble

CF: clustering features

D: dimensionality of a data space

E : an episode in the life history of an (e, ̂ -approximate spatio-temporal summary

LS: linear sum of points summarized by a spatial summary object

n: number of points summarized by a spatial summary object

p : a multi dimensional object

R: multi dimensional data stream

rep: representative

S: spatial summary object

SE: summarization error of an (e, ̂ -approximate spatio-temporal summary

SS: square sum of points summarized by a spatial summary object

SSW: set of spatial summary objects that summarize points in window W

stdev: standard deviation of points summarized by a spatial summary object

v. time stamp

var. variance of a points summarized by a spatial summary object

WSr. window based summarization of a multi dimensional stream R

fi: summarization index of a spatial summary object

e: error level in the variance of a spatial summary object

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• <5: error level in the mean of a spatial summary object

• S: a set of spatial summary objects {Si S*}

• Sw: a spatial summary object that summarizes (some of the) points in a window W

• ‘Fs- spatial configuration of a spatial summary object 5

S -• : (£, ̂ -approximate spatial configuration of a set S

p S
• be,S : an (c,<5)-approximate spatio-temporal summary of a set S

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1

CHAPTER ONE

INTRODUCTION

Knowledge discovery from data streams has attracted the interest of many scientists,

as data streams are quickly becoming a prominent computational model and emerging

as an application in many extraterrestrial and planetary fields including astrophysics,

financial markets, and phone and web services.

Currently, knowledge discovery from data streams requires a method for

effectively summarizing incoming windows and efficiently maintaining a historical

“collection” of summaries of past windows such that queries pertaining to these

collections of summaries of past windows can be effectively answered. Achieving

effective answers is particularly important in conducting long term analysis of

clusters evolution, where the emergence of several clusters and subsequent changes to

them during the stream can be analyzed over a long period of time to make better

decisions during the cluster mining process instead of relying on a limited short time

period.

In this thesis, to achieve an effective window based summarization of a multi

dimensional data stream, we present the stream summary store methodology. The

thesis is organized as follows. In chapter 2, we give a brief background of the data

summarization method that we use for compressing hierarchical clusters: data

bubbles. To develop our stream window based summarization methodology, we begin

by designing in chapter 3 an effective and efficient dynamic summarization under a

database environment. In chapter 4, we formulate the problem of effective window

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

based summarization of multi-dimensional data stream and present our stream

summary store methodology that solves this problem. We design an approximate

spatio-temporal summary object that compresses ‘similar’ spatial summary objects

that summarize points in different windows. A stream summary store that consumes a

certain space budget is constructed using approximate spatio-temporal summary

objects. Finally, we design various policies for satisfying the space budget constraint

during the summarization of the data stream, and focus on policies that utilize

prominent data mining and compression techniques (Clustering and Signal

Compression) to reduce the space consumption of the summary store. By effectively

integrating summarizations of many stream windows, our stream summary store is

the first step towards achieving analysis of cluster evolution in multi-dimensional

data streams. In chapter 6, we present the conclusions of our work: maintaining

incremental data bubbles and stream summary stores. The bibliography is presented

in chapter 7.

The contributions of the thesis are:

1. A method to speed-up the construction of data summaries during the

assignment of points to the representatives of the data summaries.

2. An efficient and effective method for incrementally maintaining a given

number of data bubbles in a dynamic database environment with insertions

and deletions.

3. A general framework for summarizing multi-dimensional data streams.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. A novel approximate spatio temporal summary that is capable of effectively

approximating several ‘similar’ spatial summary objects that summarize

points in different stream windows.

5. Dynamic stream summary stores that satisfy a given storage space budget

constraint and are capable of providing effective answers to queries of

summaries of historical stream windows.

CHAPTER TWO

DATA BUBBLES

In recent years and with the massive increase in the size of databases and the

emergence of very large data streams, the development of scalable clustering

algorithms has received a lot of attention in KDD. One approach for scaling up a

clustering algorithm is to reduce its runtime such that it can be applied very quickly to

large data sets and still effectively uncover the clustering structure within acceptable

runtime limits. This reduction in runtime can be achieved by applying the clustering

algorithm to only a summary of the database instead of the whole database. In data

summarization methods such as Data Bubbles [5] and BIRCH [27], the database is

partitioned into a small number of subsets, where each subset represents its elements

by a number of sufficient statistics. A modified version of the preferred clustering

algorithm can be applied then to those data summarizations to detect the interesting

patterns.

Previously it has been shown that for hierarchical clustering algorithms, the so-

called data bubbles [5] are much more effective than basic clustering features CF-(n,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LS, SS), where LS is the linear sum of n points and SS is their square sum, as

proposed, e.g., for BIRCH[27]. Data bubbles summarize a set of n points by.

“compressing” the points into special sufficient statistics that are required for

effective hierarchical clustering based on data summarizations. Data bubbles have

been evaluated in [5], using OPTICS [2], and were shown to reduce the runtime of

OPTICS dramatically while still producing high-quality hierarchical clustering

structures.

A data bubble has been defined as follows [5]:

Definition 1. A data bubble B for a set o f points X = (XJ, l<=i<= n is a tuple

B = (rep, n, extent, nnDist)

where

• rep is a representative, defined as the mean o f the points in X

• n is the number o f points in X

• extent is the radius o f B around rep that encloses majority o f the points in X

• nnDist(k,B) is a function that estimates the average k nearest neighbour

distances in B □

Although the information in a data bubble is more specialized than the basic

sufficient statistics (n, LS, SS), it has been shown in [5] that the representative rep, the

extent, and assuming a uniform distribution of points within a data bubble, the

average nearest neighbor distances nnDist(k,B) can be easily derived from n, LS, SS.

In this thesis, we use data bubbles because our intended application is analyzing

hierarchical clusters, and data bubbles have been shown in [5] to be suitable for this

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5

task. In the next chapter, we present a new method for incrementally maintaining data

bubbles.

CHAPTER THREE

INCREMENTAL AND EFFECTIVE DATA
SUMMARIZATION FOR DYNAMIC HIERARCHICAL
CLUSTERING [18]

3.1 Motivation
Knowledge Discovery in Databases (KDD) has been instrumental in uncovering

useful patterns hidden in very large databases, improving the understanding of these

patterns, and aiding in making better decisions related to the databases. Detecting

patterns effectively and efficiently in real world databases is a challenging task since

these patterns usually reside in large amounts of high dimensional and noisy data. As

time goes by, the data distribution and the underlying clustering structure may change

whereby previously uncovered patterns may become obsolete. The ability of a data

mining technique to detect and react quickly to dynamic changes in the data patterns

is highly desirable.

Clustering is one of the most prominent and frequently used data mining

techniques in KDD. The main goal of a clustering algorithm is to partition a set of

data points into groups such that similar points belong to the same group and

dissimilar points belong to different groups. There are two main kinds of clustering

algorithms: partitioning and hierarchical. Partitioning algorithms like &-means [17]

create k partitions of the points. Hierarchical clustering algorithms like the Single-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Link method [22] or OPTICS [2] compute a representation of the possible

hierarchical clustering structure of the database in the form of a dendrogram or a

reachability plot from which clusters at various resolutions can be extracted, as has

been shown in [20].

Various dynamic updates of deletions and insertions to very large databases add

new challenges to the clustering task by possibly changing the underlying data

distribution and the associated clustering structure over time. The naive approach is to

reapply the data mining algorithms and extract the hidden patterns every time

following a certain fraction of updates to the database. However, this approach is

prohibitively slow for fast changing and large databases, especially if an up-to-date

clustering structure is required frequently, e.g., in order to detect the changes in the

data distribudon after a small fraction of updates occur and important decisions are

based on the current data distribution. For example, for effective marketing and early

detection of changing purchasing patterns, or fraudulent transactions on debit cards, it

is very important to maintain a large history of transactions for all current

customers/subscribers, in order to detect possible changes in the clustering structures,

which could indicate possible changes in the customer/subscriber behaviour.

There are two main strategies to address the problem of incremental clustering in a

database environment In the first strategy, a specialized incremental clustering

algorithm is designed to directly handle dynamic changes in the database. In the

second strategy, a data summarization technique is developed and used to compress

the database incrementally, and then a slightly modified, standard clustering

algorithm is subsequently applied to the generated data summarizations.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7

Unlike the first strategy that typically invents yet another “new” incremental

algorithm (with possible unclear properties) for a particular application, the second

strategy is more flexible and generic as it allows the application of a broad range of

existing standard clustering algorithms (hierarchical and partitioning) to the data

summaries. The adaptation of a standard clustering algorithm to data summarization

typically requires only minor modifications, as has been shown in [5]. It also has the

advantage that the data summaries can be used for other data mining tasks such as

computing approximate statistics of data sets or quickly approximating the number of

objects in a database within certain attribute ranges of interest

In this chapter, we expand the second approach and propose a scheme to

incrementally maintain data summaries of a dynamic database, i.e., we enhance data

summarizations to become incremental and capable of adapting to insertions and

deletions into a database. We choose the so-called data bubbles proposed in [5] for

this task over the clustering features as proposed for BIRCH [27], which is another

data summarization method that could be used for handling dynamic changes. We

choose to enhance data bubbles because the intended applications of the achieved

incremental data summarization include obtaining effective hierarchical clustering

structures very quickly for large changing databases, and that it has been shown in [5]

that data bubbles outperform clustering features significantly in this respect.

In this chapter, we show that our incremental data summarization method is

effective in handling dynamic changes to a hierarchical clustering structure because

the majority of the data bubbles can adapt to both insertions and deletions without

rebuilding them. The data bubbles partition the space into sub-regions. Thus, during

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

8

the dynamic updates to a data base, the incremental data bubbles are able to detect the

local effects of insertions and deletions in these sub-regions more easily than

comparing all of the current distribution to the previous distribution of the database

prior to the most recent insertions and deletions.

Furthermore, by using a measure of the compression quality, we can identify the

data bubbles that still compress their points well following the insertions and the

deletions. The sub-regions that cause some of the data bubbles to have low

compression quality -possibly due to changes in the underlying data distribution- will

result in data bubbles that require rebuilding. Typically, the number of these sub-

regions is small and thus the majority of the data bubbles can adapt easily to even

very large numbers of insertions and deletions.

The contributions of this chapter are:

1. A method to speed-up the incremental construction of data summaries by

utilizing triangle inequalities when assigning points to the representatives of

the data summaries.

2. A scheme for incrementally maintaining a given number of data bubbles in a

dynamic database environment with insertions and deletions.

3. A quality measure for identifying the incremental data bubbles that degrade

the clustering structure most significantly.

4. Efficient and synchronized merge and split operations for rebuilding

incremental data bubbles that have low compression quality in order to

improve the effectiveness of the over all data summarization and consequently

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the quality of the analytical results obtained from the database using only the

data bubbles such as hierarchical clustering structures.

3.2 Related Work
The problem of incremental clustering has been studied by many scientists. In this

section, we discuss some of the proposed algorithms. There are several incremental

clustering algorithms that do not use the data summarization technique but attempt to

directly restructure the clusters to adapt to the dynamic changes of the dataset

Chen et al. [7] propose the incremental hierarchical clustering algorithm GRIN for

numerical datasets, which is based on gravity theory in physics. In the first phase,

GRIN uses GRACE, which is a gravity-based agglomerative hierarchical clustering

algorithm, to build a clustering dendrogram for the data set. Then GRIN restructures

the clustering dendrogram before adding new data points by flattening and pruning its

bottom levels to generate a tentative dendrogram. Each cluster in the tentative

dendrogram is represented by the centroid, the radius, and the mass of the cluster

(which is the number of points in the cluster). In the second phase, new data points

are examined to determine whether they belong to leaf nodes of the tentative

dendrogram. If a new point belongs to only one node, then it is inserted in that node.

Else, the gravity theory is applied to determine the leaf node that the point belongs to,

and the point is added to the selected leaf.

Ester et al. [10] present a new incremental clustering algorithm called

IncrementalDBSCAN suitable for mining in a data-warehousing environment.

IncrementalDBSCAN is based on the DBSCAN algorithm [9], which is a density

based clustering algorithm. Due to its density-based qualities, in

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

IncrementalDBSCAN the effects of inserting and deleting objects are limited only to

the neighborhood of these objects, where only these objects may undergo a change in

their core property, while other objects retain their core property.

IncrementalDBSCAN requires only a distance function and is applicable to any data

set from a metric space. However, the proposed method does not address the problem

of changing point densities over time, which would require adapting the input

parameters for IncrementalDBSCAN over time.

Widyantoro et al. [25] present the agglomerative incremental hierarchical

clustering (IHC) algorithm that also utilizes a restructuring process while preserving

homogeneity of the clusters and monotonicity of the cluster hierarchy, where a

homogenous cluster is a set of points with similar density (i.e. their distances to their

closest neighbours are approximately equal), and the monotonicity of the clustering

structure requires that the density of a cluster is always higher than the density of its

parent in the clustering structure. New points are added in a bottom-up fashion to the

clustering hierarchy, which is maintained using a restructuring process performed

only on the regions affected by the addition of new points. The restructuring process

repairs a cluster whose homogeneity has been degraded by eliminating lower and

higher dense regions.

33 Speeding Up The Construction of Data Bubbles
In this section, we consider the problem of using incremental data bubbles to speed

up hierarchical clustering of large databases. Previously it has been shown that for

hierarchical clustering algorithms, the so-called data bubbles are much more effective

than basic clustering features CF=(n, LS, SS), where LS is the linear sum of n points

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

and SS is their square sum, as proposed, e.g., for BIRCH. Data bubbles have been

evaluated in [5] using OPTICS [2], and were shown to reduce the runtime of OPTICS

dramatically while still producing high-quality hierarchical clustering structures.

The method that has been proposed to construct data bubbles consists of the

following two steps:

1. Retrieve randomly s points from the database as “seeds”.

2. Scan the database, and assign each point in the database to the closest seed in

the set obtained in step 1.

In step 2 of this construction algorithm, the closest seed of a data bubble to a point

p has to be found. In a standard implementation, the distance between p and all the

seeds has to be determined to make that decision. Although we assume that only a

relatively small number of data bubbles is used to represent a database, these distance

computations offer a big potential for optimization.

We propose to use triangle inequalities to reduce the runtime of constructing the

data bubbles significantly. Relative to distance comparisons, distance calculations are

computationally much more expensive.1 The idea is to avoid these computationally

expensive distance calculations by using the much cheaper distance comparisons

when applying certain triangle inequalities. The method is based on the observation

that the computation of certain distances between seeds and database points can be

avoided if the pairwise distances between the seeds are known. A sufficient condition

under which this observation applies is stated in the following lemma:

1 Related techniques for pruning distance calculations using triangle inequalities have been successfully applied in
the computation of similarity queries [4] and in £-means [8]

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

12

avoided distance
actually
computed
distance

s h

known (pre-computed)
distance between seeds

Figure 1. Pruning of Distance Computations

Lemma 1: Let p be a database point, and let sbi and sb2 denote the selected seeds o f

two data bubbles Bj and Bj respectively. I f d is t(sB i,S B 2) > 2* d is t (p ,S B j) , then

d i s t (p , s Bi) < d i s t (p , s B2)- □

The lemma is illustrated in figure 1. Assume we have pre-computed the distances

among all the seeds selected in step 1 in the construction of data bubbles (once, prior

to step 2). To determine which of the seeds is closer to a point p, we have to compute

the distance between p and at least one of the seeds, say s b j . Assuming that this

distance is as depicted in figure 1, and the distance between sbi and sb2 is larger than

twice this distance, we can actually avoid the computation of the distance between p

and sb2 since we can conclude using lemma 1 that sb2 cannot be closer to p than sbj.

To utilize the above lemma during the assignment of points to their closest seeds, we

maintain a distance matrix that stores the distances among the seeds of all of the data

bubbles. Typically, the overhead of computing distances among the data bubble seeds

is low since the number of data bubbles is small and more than compensated by the

huge fraction of distance calculations between database points and the seeds that are

consequently avoided.

computation • ^ S

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

13

The assignment of a point p to the closest data bubble using the triangle

inequalities proceeds as follows. First the distance of a database point p to the seed sc

of a randomly selected data bubble is computed. This seed is the current candidate

data bubble for assigning the point to from the set of data bubbles. We try to prune

the seeds s-, of all the other data bubbles without computing their distances to p by

looking up the distances between sc and s,- and applying Lemma 1. If all data bubbles

can be pruned, then sc is the closest seed to p. Otherwise, we attempt to find a closer

seed to p by computing the distance to another un-pruned seed Sj. If s;- is closer to p

than the previous sc, then sj becomes our new current candidate and we attempt to

prune the remaining data bubbles in a similar fashion using the distance to the new

candidate. This pruning and updating of the candidate seed is iterated until there is

only one candidate seed left, which has to be the closest to the point p. The point p is

assigned to the closest data bubble. The pseudo code for this procedure is depicted in

Figure 2.

In the following presentation of the scheme for incrementally maintaining a set of

data bubbles, we assume that we have initially constructed a set of data bubbles that

summarize a large database of rf-dimensional points following the description in the

previous section. As indicated, the purpose of our data summarization is to be able to

obtain a hierarchical clustering result very quickly for the whole database, based on

the data bubbles. If the database is dynamic, new points are inserted and old points

are deleted over time, possibly changing the underlying data distribution. We are

interested in the updated clustering structure and hence the underlying data

summarization after a set of updates during which N% points have been deleted and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

14

set CandidateSeeds to the set of all seeds of data bubbles

select and remove a random seed sc from CandidateSeeds

compute minDist = dist(p,sc)

while CandidateSeeds is not empty

for all Si in CandidateSeeds

look up the distance dSJ between s,- and sc

if dS Jc >= 2 * minDist

remove st from CandidateSeeds

while CandidateSeeds is not empty

select and remove a random seed

compute dist(p,Sj)

if dist(p,Sj) < m inD ist

set sc = Sj

set m inD ist = dist(p,Sj)

break

return sc

Figure 2. Finding the Closest Data Bubble Seed for a Point p .

M% points have been inserted (where N and M are parameters that determine the

amount of updates after which we want to inspect the changes in the hierarchical

clustering structure).

The high-level description of our scheme for incrementally updating a set of data

bubbles following a batch of updates to the underlying database is given in Figure 3.

In a nutshell, the sufficient statistics of affected data bubbles are decremented when

deleting the old points and incremented when inserting the new points. When deleting

a point p, the sufficient statistic (n, LS, SS) of the data bubble B where p was

previously assigned are updated to {n-1, LS-p, SS-p2), whereas when inserting a point

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

15

1. Delete N% of the old points and decrease the sufficient

statistics of the corresponding data bubbles.

2. Insert M% new points and assign them their closest data

bubbles (using the improved assignment algorithm

described in section 3.3).

3. Determine the compression quality of the data bubbles.

4. Rebuild data bubbles that have a low compression quality.

Figure 3. Overall Scheme of Maintaining Data Bubbles Incrementally.

p, the sufficient statistics (n, LS, SS) of the data bubble B that is closest to p are

updated to (n+1, LS+p, SS+p2).

After these updates, it is possible that some data bubbles do not represent their

points well or lost all of their points such that the overall compression quality is poor,

possibly resulting in a distorted clustering structure based on these data bubbles. In

order to recover from structural distortions due to changes in the data distribution, we

have to identify those data bubbles that significantly degrade the quality of the data

summarization and re-build them quickly, while at the same time maintaining a given

compression rate.

3.4 The Compression Quality of Data Bubbles
To achieve a high quality of an overall compression by the data bubbles, we need to

distinguish “good” data bubbles that have a high quality of compression from data

bubbles that have a low quality of compression. Since building data bubbles

completely from scratch can be considered as a baseline algorithm that has been

shown to perform well for hierarchical clustering [5], we can assume that when

building data bubbles from scratch, the majority of the data bubbles has “good”

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

compression quality by construction (due to randomization effects we can not exclude

to have a few data bubbles with a “bad” compression even in this case though).

However, the important question is how to define and measure the compression

quality of data bubbles.

Clustering features constructed by BIRCH [21] can be viewed as being

incremental with respect to insertions only. These methods implicitly suggest, as a

quality measure for clustering features, the diameter, or the standard deviation of the

distances from the mean, by the way they construct and maintain the clustering

features. Roughly speaking, clustering features can “absorb” points as long as the

resulting diameter or a related measure does not exceed a given maximal value

provided as an input parameter.

These statistics are all quantifying the “spatial extent” of the clustering feature, i.e.,

measuring a kind of radius around the mean into which the points compressed by the

clustering feature fall. We argue that the spatial extent is not a suitable measure for

the quality of data summarizations, especially in an incremental setting.

Solving the problem of “what are the clusters in a database?” often depends on the

resolution at which we analyze the database. Hierarchical clustering algorithms try to

leverage this problem by constructing a hierarchical representation of the data that

can reveal clusters at different levels of resolution. Setting a threshold for the spatial

extent of the data summarizations is equivalent to fixing a resolution at which the

clusters can be found. This is already a severe limitation for a static database.

Moreover, setting a global threshold parameter for the spatial extent basically

equalizes the extents of the clustering features and the data bubbles such that the data

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

17

space is split more or less equally among the data bubbles. However, it is not

uncommon in many applications to have richer and denser substructures in some

regions of the data space than in others, although the regions may occupy the same

volume. Such important differences may not be detected if the number of data

bubbles that are located in the area that contains the substructure is too low because

the region (but not the number of points) covered by the substructure is relatively

small compared to the specified extent parameter for the data bubbles. In dynamic

databases where the data distribution may change over time, the clustering

substructures can evolve at lower levels of a hierarchical clustering structure and go

undetected if they are located within the allowed radius of a data bubble.

The measure that is much more significant for determining the quality of a data

bubble is the number of points it summarizes relative to the total database size.

Roughly (and vaguely) speaking, “good” data bubbles summarize not too many and

not too few points.

On the one hand, potentially “bad” data bubbles summarize a large fraction of the

total number of points. These data bubbles may easily span several substructures that

are lost in a subsequent clustering of all the data bubbles, and thereby critically

degrading the quality of the clustering result. In a dynamic setting, for instance, an

over-filled data bubble can even arise when a new cluster appears in the database in

an area that is not covered well by data bubbles (e.g., a previous noise region).

On the other hand, data bubbles that compress a very small fraction of the whole

database are also not good in the sense that these data bubbles may become empty

very quickly when all their points are deleted and no new points are inserted in the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

18

regions that they span whereby they do not contribute much to the overall

compression rate. These data bubbles do not directly influence the quality of the

hierarchical clustering results based on data summarization. However, they may

degrade the clustering result indirectly to some degree because they are in the sense

’’wasted” that it would be better to release their points (and assign them to the nearby

data bubbles), and position their representatives elsewhere in the data space, where

they can contribute more to the overall quality of the data summarization.

To capture the quality of a data bubble, we introduce the data summarization index

P that we define to be the fraction of points in the database compressed by the data

bubble.

Definition 2. Given a data base D o f N points and a set Q o f data bubbles that

compress the points in D, the data summarization index Pi o f a data bubble i that

compresses n points is defined as P i = ~ D

In order to determine which data bubbles have a low quality of compression, we

know from our initial observation that when building data bubbles from scratch, the

majority of the data bubbles have good compression. Thus, a data bubble has a bad

compression if its fraction of points is significantly different from the majority of

fractions of points in the data bubbles. The question is how to determine the P values

that define “good” data bubbles. Even after a complete construction of the data

bubbles from scratch, there is some significant variability in the number of points per

data bubble due to different point densities in different regions of the data space.

However, we can analyze the distribution of p values in order to determine which

data bubbles have a good quality of compression and which do not

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

19

In a set Q of data bubbles that compress the database D, the P values of all the data

bubbles follow a certain distribution. By analyzing the statistical properties of the

mean and the standard deviation of this distribution, we recognize the outlier P values

that identify the data bubbles that have significantly low compression quality and

which require special handling in our scheme of incremental data summarization.

Although we don’t know the exact distribution of the p values, we can determine the

outliers in the distribution by estimating the lower and upper boundaries of the P

interval that characterizes the “good” data bubbles through using Chebyshev's

Inequality theorem [24]. According to the theorem, if px and ax are the mean and

standard deviation of a random variable X, then for any positive constant k

Thus, the probability that a random variable will take on a value within k standard

o f the distribution. By considering our data summarization index P as a random

variable with the mean pp and the standard deviation op and for a specific probability

p, the value k can be determined as well as the upper (and lower) boundary of the

region that contains at least p% of the P values. The upper boundary is pp + hap (and

the lower boundary is pp - kop).

A data bubble that compresses several substructures would contain a large fraction

of points, its P value would be significantly larger than the average, and therefore its P

value would be above the upper boundary pp + kop (the p value would be located

towards the right end of the distribution). On the other hand, p values that are

significantly lower than the average P value are below the lower boundary pp - kap.

deviations of the mean of the distribution of its values is at least 1 - 1 /k 2 regardless

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

20

These low p values identify data bubbles that are (nearly) empty (i.e. they compress

relatively very few or no points). Using these statistical boundaries in the distribution

of the data summarization index, we distinguish three classes of data bubbles

according to their compression quality.

Definition 3. Given a data base D o f N points and a set Q o f data bubbles that

compress the points in D, let pp and op be the mean and standard deviation o f the

distribution o f the P values fo r all data bubbles in Q. Given a probability p (where the

corresponding k value is computed according to Chebyshev's Inequality), a data

bubble B with the data summarization index fS is called:

• "good” iffP € [pp - kxtp, pp + kop]

• “under-filled” iffP <pp-kop

• "over-filled” ifffi > Pp + kop o

Improving the quality of the over-filled data bubbles is immediately critical for

providing a high quality data summarization of the given database. Although the

under-filled data bubbles have a low compression quality, their effect on the

hierarchical clustering structure is not as significant as the effect of the over-filled

data bubbles. The under-filled data bubbles do not contribute significantly to the

overall data summarization and in principle could remain as-is without attempting to

improve their compression quality. Thus, we focus on improving the compression

quality of the over-filled data bubbles through “splitting” them by migrating possible

under-filled data bubbles, as explained next

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

21

3.5 Maintaining Incremental Data Bubbles
The main objective of our incremental data summarization scheme is to efficiently

improve the quality of the over-filled data bubbles since they degrade the

compression quality most A natural way to reduce the number of points in a data

bubble is to reassign some of these points among more data bubbles, whereby an

over-filled data bubble gives up some of its points to other data bubbles.

The naive approach is to reassign some of the points in an over-filled data bubble

to their next closest data bubbles (the closest data bubble of each of these points is the

over-filled data bubble they are currently assigned to by construction). These next

closest data bubbles are the surrounding neighbours of the over-filled data bubble.

However, reassigning some of the points in the over-filled data bubble to (some) of

its neighbouring data bubble is very likely to reduce the compression quality of these

neighbouring data bubbles due to the following reasons.

When constructing a set of data bubbles to compress a given database, more seeds

are likely to be selected from the dense regions in the data space due to the random

seed selection process. Thus, typically data bubbles “share” dense regions, and the

majority of the data bubbles have a good quality of compression. When the

compression quality of a data bubble degrades from good (or even possibly under

filled) to over-filled, then the number of points it compresses has increased

dramatically but not for other data bubbles. The over-filled data bubble has absorbed

a large number of new points while its neighbours have not, which indicates that the

neighbouring data bubbles are not close to the over-filled data bubble, i.e. the new

points have appeared in a region that is not summarized by the neighbouring data

bubbles.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

before insertions of points after insertions of points

2D database

representatives of
data bubbles
summarizing the
database

Figure 4. Over-filling of a Data Bubble by New Clusters.

In figure 4, we see an example of this over-filling effect Given an initial database

(part a), the seeds for the data bubbles (part c) are selected randomly during the

construction phase with more seeds selected in the region of the cluster. When two

new clusters are inserted far from the initial cluster (part b), there are few data

bubbles in the vicinity of these new clusters, in this case only one such data bubble,

and this data bubble becomes over-filled by absorbing these new clusters.

Reassigning some of the points in the over-filled data bubble (identified by a circle in

part d) to its neighbouring data bubbles would force the neighbouring data bubbles to

absorb points that are located far away from the regions they compress, thereby

significantly degrading their compression quality and distorting the net clustering

structure.

pps

initial cluster two newly inserted clusters

ififl
w
H f l
^ § 1

over-filled data bubble

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

We propose, instead, to position additional data bubbles. In our incremental data

summarization scheme, we can not assume that we have access to an unlimited

number of unused data bubbles that can be used for improving the compression

quality of the over-filled data bubbles since “splitting” an over-filled data bubble

requires positioning additional data bubbles in the vicinity of the center of the over

filled data bubble. We already know that the under-filled data bubbles have low /?

values and contain relatively few (or no) points that can be distributed among

neighboring data bubbles without significantly affecting the quality of these

neighboring data bubbles. Once the points of these under-filled data bubbles are

redistributed, these data bubbles can be re-used. Thus, we can migrate them and

reposition them in the vicinity of the centers of over-filled data bubbles to achieve the

splitting of the over-filled data bubbles.

We can see an example of this migration of under-filled data bubbles in Figure 5.

For a given database (part a), the set of data bubbles that summarizes the points in

this database contains few data bubbles that are under-filled. Following the insertion

of the two new clusters (part b), under-filled data bubbles (identified in circles in part

c) are re-positioned and migrate to the region of the two new clusters (part d) to

improve the compression of these new clusters.

In the current approach of incremental data bubbles for handling updates in the

database, the quality of an over-filled data bubble Bover.fiiud is improved by merging

and ideally re-positioning an under-filled data bubble Bunder.f,ued to the vicinity of the

center of B™.r.pi.A and “splitting” 5over.̂ ae</into two new data bubbles B\ and Z?2- In the

absence of an under-filled data bubble, we utilize enough data bubbles from the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

24

before insertions of points after insertions of points

2D database

initial cluster two newly inserted clusters

representatives
of data bubbles

the database

ui uaia uuuuicb
summarizing

One of the under-filled one of the migrated
data bubbles (others are data bubbles
also circled)

Figure 5. Migration of Under-filled Data Bubbles.

“good” data bubble subset to split all the over-filled data bubbles. We select the

lowest quality data bubbles from the “good” subset to perform the splitting of all the

over-filled data bubbles.

Figure 6 shows the pseudo code for this process. The quality of B over.fu ied is

improved by first merging B u n d er-ju u d and then splitting B 0ver-jm ed• During the merge

phase, the points in the Bu^ur-fdud are released and assigned to their next closest data

bubbles thereby emptying Bunderfuud• Bunderfilled is re-positioned to the region of

B o ver-fu u d by selecting a new seed S \ for it from the current points in B over.ju u d . Next,

Bover-fuied is assigned a new representative si from its current points, and the points in

5over-fiiied are distributed between the two newly selected representatives s\ and S2- We

utilize the triangle inequalities mentioned above throughout the process of assigning a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

25

1. Select a random under-filled data bubble Bunder-juied (if none

exists, select the “good” data bubble with lowest quality in the

“good” data bubbles set)

2. Free Bunder-juied by assigning its points to their next closest data

bubble(s)

3. Migrate Bunder-juied to the region compressed by Bover.fiUed by

selecting a new seed si for it from the points of Bover-fiiud

4. Select a new seed S2 for Bover.faud from the points of 5over-fiUed

5. Split Bover.fiiied by reassigning its points between s\ and S2

Figure 6. Improving the Quality of an Over-filled Data Bubble.

point to its closest data bubble. The sequence of synchronized merging and splitting

of data bubbles is repeated after updating the database with each batch of insertions

and deletions.

3.6 Performance Evaluation
In this section, we perform an extensive evaluation of our scheme for achieving

incremental data bubbles. The results show that our new method for incremental data

summarization is suitable to be used with a clustering algorithm for mining

hierarchical clustering structures very efficiently from dynamically changing

databases, and that it is scalable and well suited for high dimensional data.

We first compare the adaptation of the data bubbles to insertions and deletions of

points when using the fraction of points versus the extent as the measure of the

compression quality. We perform a simple experiment where we demonstrate that if

we use the extent of a data bubble as the quality measure instead of its relative

number of points, the extent quality measure fails to produce a high quality of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

26

compression while our quality measure does not As figure 7 shows, we use a simple

database that consists of two clusters before any insertions and deletions of points.

During the insertions and deletions of points, the cluster in the middle disappears

while two new clusters appear in the far right.

When using the extent as a measure of the quality of compression, the data bubbles

(enclosed in a circle in part c of figure 7) that compressed the deleted cluster are

eventually repositioned to another location. However, the insertion of the new

clusters does not attract new data bubbles since they appear in a region where a

previous data bubble is located (the enclosed data bubble in part d), which now

summarizes more than one cluster after the insertions and deletions.

On the other hand, when using the fraction of points as the quality measure, the

data bubbles are able to adapt to both the deletions and the insertions of clusters. The

extent quality measure attempts to partition the space into roughly equal regions

without regard to the point density. When a cluster is deleted, the data bubbles that

compressed this cluster become empty and their extents are very small compared to

the average extent. Thus, they are repositioned to new locations in the space.

However, when new points possibly representing several sub-clusters are inserted, a

close by data bubble can easily absorb all the sub-clusters without a significant

change in its extent and its low compression quality is undetected by the extent

measure. This data bubble now compresses significantly more points and the quality

measure using the fraction of points instead of the extent identifies it as having a low

compression quality whereby more data bubbles are repositioned to its vicinity, and

the two new clusters are now compressed by several data bubbles instead of one (the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

27

2D database

before insertions and
deletions of points

stationary cluster to be
cluster deleted

after insertions and
deletions of points

newly inserted
clusters

reps of data
bubbles using
extent as quality
measure

reps of data
bubbles using
fraction of
points as quality
measure

Figure 7. Comparison of Adaptation of Data Bubbles to
Insertions and Deletions When Using the Fraction of

Points vs the Extent as Quality Measures.

data bubbles identified in a circle in part f in figure 7). Thus, using the fraction of

points is a much better quality measure than the extent to adapt data bubbles to the

dynamic changes in a database.

Next we evaluate the performance of the incremental data bubbles using several

databases. The performance of the incremental scheme is measured under the

following dynamic situations of the database:

* •
’ •.?; * e - • • . *f•

© • •
• • -

: : : : .Q

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• Random: a database where points are inserted and deleted randomly according

to the data distributions.

• Appear: a database where points are inserted and deleted such that a new

cluster appears in the database over time.

• Extreme appear: a database where points are inserted and deleted such that a

new cluster appears in the database over time but in a completely new region

that does not contain any previous points, not even noise.

• Disappear: a database where points are inserted and deleted such that an old

cluster disappears from the database over time.

• Gradmove: a database where one cluster gradually moves across the space

over time via insertions and deletions.

• Complex: a combination of the above cases where there are random insertions

and deletions to some clusters in the database, while other various clusters

appear, disappear, and move with insertions and deletions of points as shown

in figure 8.

We create databases using synthetic data to simulate the various scenarios

described above which allow us to analyze the effectiveness of our scheme for

different changes to the data distribution. We populate our databases with 50,000 to

110,000 points electing to simulate a reasonable average of the database size (smaller

databases are easier to summarize while larger databases would yield similar results

using proportionally more data bubbles for achieving the summarization).

Currently, we focus on achieving an effective data summarization capable of

handling the dynamics of a given database with a certain percentage of insertions and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

29

gradually
moving
subclustt

clusters with
random

jfj insertions and
deletions

disappears
cluster thal subclusters

that appear
withwith deletions insertions

Figure 8. Clustering Structure in the Complex Database

deletions. In our databases, we assume that on average there will be an equal number

of insertions and deletions (consistendy inserting (or deleting) more points over time

would cause the database to grow infinitely (or to disappear completely)). The

probability needed to determine the boundaries of the classes of the .data bubbles

(presented above) was set to 80%. Using Chebyshev inequality, a probability of 80%

results in a k value of 2. We used 200 data bubbles during the summarization of the

databases, which is about 0.2% of size of the various databases (for analysis of

different compression rates see [5]). We created databases with the above properties

for several dimensions (2, 5, 10, 20). All results are average values of 10 repetitions

of simulating the insertions and deletions.

We measure the quality and effectiveness of the incremental data bubbles by

studying their effect on the performance of a clustering algorithm relative to its

performance when using completely rebuilt data bubbles. After each batch of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

30

80

F-Score 60

100
If

7
6
5

40

20
0

2D Database

Clustering Quality

■ incremental
■ static 2D Database

Representatives Quality

Figure 9. Incremental Scheme Quality using 2D Databases

insertions and deletions, we summarize each data base of the current points by

building separate incremental and completely rebuilt data bubbles. Next, OPTICS is

applied to these data bubbles separately to generate the reachability plots of the

completely rebuilt and incremental clustering structures. The clusters are extracted

from these plots using a modified version of an automatic method developed in [20].

The performance of OPTICS is determined using the F score measure [13] (where F =

2*p*r/(p+r), p is precision and r is recall).

We notice from figures 9 and 10 that the F score of the clustering algorithm

OPTICS using our incremental scheme is always very close to (and sometimes higher

than) the F score when using completely rebuilt data bubbles even when clustering

the complex database. Thus, our scheme for maintaining the incremental data bubbles

is effective in preserving both the quality of the data summarization and the quality of

the clustering algorithm as measured by the F score.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

31

100 10-T1
80-H

F-Score 60
8-

Compactness 6-
40
20
0

(* 107) 4-

2D 5 D 10D20D
Dimensionality

of Complex Database ■ incremental
■ static

Dimensionality
of Complex Database

Representatives Quality

2 D 5 D 10D 2 0 D

Clustering Quality

Figure 10. Incremental Scheme Quality using Complex Databases

To further analyze how our scheme of incremental data bubbles affects the quality

of the data summarization technique, we study the effectiveness of repositioning the

representatives of the rebuilt data bubbles in the proximity of the data points

following a certain number of insertions and deletions. When a representative is close

to its points, the compactness (which is the sum of the square distances of the points

in the data bubble to its representative) is relatively low. In the completely rebuilt

data bubbles, the representatives will be close to their points, with some possible

variation in the positions of these representatives due to their random selection. If the

repositioning of the representatives of incremental data bubbles is effective, then the

overall compactness of the incremental data bubbles should not (significantly) exceed

the overall compactness of the completely rebuilt data bubbles. As shown in figures 9

and 10, our dynamic scheme is very effective in (re)-positioning data bubbles.

Incremental data bubbles even have a lower compactness than the completely rebuilt

ones in many experiments. This effective (re)-positioning is further supported and

reflected by the good clustering qualities (as indicated by the F scores) that we

achieve.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

32

O 25M W
15

update percentage

Figure 11. Percentage of Data Bubbles Rebuilt

We further analyze the adaptation of the incremental data bubbles to the dynamic

updates to a database by examining the number of data bubbles that are rebuilt by our

incremental scheme. Figure 11 shows the number of rebuilt data bubbles when

applying our scheme to the dynamics of the complex database. On average, we

rebuild only between 2 and 4 percent of the current data bubbles. This complex

database contains various cases of dynamic changes to the clustering structures (a

cluster disappears and reappears in completely different region of the space). Even in

such highly dynamic cases, we never have to execute a rebuilding of all the data

bubbles. Thus, the majority of the data bubbles are capable of adapting to changes in

the data distributions by simply updating their sufficient statistics.

Furthermore, we study the effect of using the triangle inequalities in speeding up

the assignment of points to data bubbles by measuring the number of distance

calculations saved when utilizing the triangle inequalities (the ove±ead of computing

the pair-wise distances among the representatives to utilize the triangle inequalities is

low because typically the number of the representatives relative to the size of the

database is small). Figure 12 shows the gain of using the triangle inequality in terms

of the percentage of pruned distance computations when summarizing the complex

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

33

£ 0 8o
50.6O)sa4
c
20 2

Figure 12. Pruning of Representatives using
Triangle Inequalities

database. Typically, we can prune between 60 and 80 percent of all the distance

computations using the triangle inequalities. This leads to significant gain in

performance. This observation also indicates that a similar strategy is likely effective

in significantly speeding up other techniques based on point assignment since those

methods also basically execute distance computations.

In addition, we notice in figure 12 that the pruning factor decreases slowly as the

fraction of updates in the complex database increases. As large amounts of points are

inserted and deleted, the changes in the clustering structure in the complex database

occur more abruptly, i.e. the clusters disappear and appear in larger batches. For

instance, for the appear cluster, there are no initial representatives that are close to the

points of the inserted cluster and can be used in the pruning. Only after the first batch

has been inserted will there be close by representatives that can be used in the

pruning. For the smaller fraction of insertions, the new region attracts a representative

much earlier such that for points in later insertions the probability of avoiding

distance computations to far away data bubbles is significantly higher.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

34

CHAPTER FOUR

SPACE BUDGETED MAINTENANCE OF SUMMARIES
FROM MULTI DIMENSIONAL DATA STREAMS FOR
EFFECTIVE CLUSTER ANALYSIS

4.1 Motivation
Knowledge discovery from data streams has attracted the interest of many

scientists, as data streams are quickly becoming a prominent computational model

and emerging in many planetary and extraterrestrial fields including astrophysics,

financial markets, and phone and web services. Data streams pose numerous exciting

computational challenges ranging from compact summarization of the stream, to

effective pattern discovery, to efficient query processing. The ability of mining

algorithm to solve these problems and provide accurate and efficient answers to

stream queries in a flexible manner that is suitable for diversified applications is

highly desirable.

A data stream is an instance of a block evolution model, where a data set is

updated periodically through insertions and deletions [11]. In this model, the data set

consists of conceptually infinite sequence of data blocks Du Di, — that arrive at times

1,2,... where each block has a set of records. Some applications require mining all of

the data encountered thus far (unrestricted window scenario), while others require

mining only the most recent part (restricted window scenario). There are several

conditions on the representation of data streams [19]. First, a large portion of data

arrives continuously and it is unnecessary or impractical to store all of the data.

Second, the data points can be accessed only in the order of their arrival. Third, the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

35

data arrives in chunks that fit into main memory. Moreover, there are also several

requirements for the mining of data streams [3]. These requirements include: 1)

compact representation of the points that can be maintained in main memory even as

lots of new points arrive, 2) fast incremental processing of new data points, and 3)

clear and fast identification of outliers. The interplay among these conditions and

requirements, and their concurrent satisfaction makes knowledge discovery from data

stream very interesting and challenging.

Cluster analysis from the distant past of a data stream hinges on effective

summarization of the data stream. The summarization must not only be very space-

efficient but also capable of efficiently providing high quality answers to stream

queries. The problem of effectively and efficiently answering historical queries from

data streams can be divided into two main sub-problems:

1. Effective and efficient construction and maintenance of a history of

summarization of the data stream

2. Effective and efficient knowledge discovery from the summarization history

The formulation of the two main sub-problems and the performance of their

solutions are interdependent High quality (or effective and efficient) maintenance of

the stream summarization is a precondition for high quality querying of the data

stream, and high quality querying is a guiding condition for performing subsequent

high quality maintenance and updating of the stream summarization. However, the

solution to the problem of effectively and efficiently answering historical queries

begins with effective and efficient historical summarization of the data stream.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

36

In this chapter, we formulate and solve the first problem of efficiently constructing

and maintaining a high quality and effective historical summarization of a multi

dimensional data stream. We present the main challenge in effectively summarizing a

multi-dimensional data stream. In addition, we design various policies for

maintaining both the summarization quality of the history and its overall space budget

constraint

The contributions of this chapter are:

1. A general framework for the summarization of multi-dimensional data

streams.

2. Novel approximate spatio temporal summary suitable to effectively

approximate several ‘similar’ spatial summary objects.

3. Dynamic stream summary stores that satisfy a given storage space budget

constraint and provide effective answers to queries of historical stream

windows.

4.2 Related Work
There has been a burst of research on data streams recently, with many efforts

dedicated towards designing methods for compressing data streams and providing

approximate answers to queries, and mining data streams. In this section, we quickly

overview some of the related work relevant to summarizing data streams that contain

dynamic clusters. As we discussed in the introduction, D. Barbara [3] and Ganti et al

[1 1] presented the conditions and the requirements for modelling and mining data

streams respectively. Several researchers have extended current database mining

schemes to data streams mining, while adapting classical mining approaches.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

37

Aggarwal et al [1] recently presented a framework for clustering evolving data

streams by combining online micro clustering with offline macro clustering using

BIRCH [27] to compress stream windows into clustering features. During the micro

clustering phase, a temporal version of the clustering features of BIRCH and

pyramidal time frames are used to store on disk micro clusters from different time

snapshots in a pyramidal pattern. Once the user specifies the window for mining the

macro clusters, the micro clusters for that window are extracted using the additivity

property of the clustering features and the macro clusters are uncovered using a

modified k-means algorithm that regards the micro clusters as points.

O’Callaghan et al [19] presented a new jfc-median algorithm called LocalSearch to

solve a ^-median problem that minimizes the facility cost function, where the cost

associated with each cluster is estimated by considering the sum of the square

distance of the points to the centres of the clusters. The Stream algorithm is presented

to cluster each chunk of the stream using the LocalSearch algorithm.

In addition, researchers have also noted the application of signal processing

techniques to compress streaming data and provide approximate answers to queries.

Wavelets are a mathematical tool that transforms a signal into a set of so-called

coefficients, where the first coefficient is the overall average of the signal and the

remaining coefficients represent the overall ‘shape’ of the signal from coarse to fine

respectively. By retaining all coefficients, the set can be inversely transformed to

reconstruct the original signal, such that no information in S is lost. When several of

the coefficients have small values, the space consumption of S can be reduced by

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

38

deleting these coefficients while introducing relatively small error when

reconstructing the signal S.

To illustrate how wavelets work, we borrow an example from [26]. Assume we are

given a signal 5 = [2 ,2 ,0 ,2 ,3,5,4,4] and we want to find the pattern in the signal.

Using wavelets, we build this pattern hierarchically. In each step, we build the

pairwise average of the current ‘values’ of the signal until one value is obtained

which is the overall average of the signal. In the first step of transforming S using

wavelets, we transform 5 to the following values [2,1,4,4], where the average of the

first two values in S, (2,2), is 2, the average of the second two values of 5, (0,2), is 1,

and so on. To be able to inverse the values back to S, we save additional information

by storing coefficients. Hoar wavelets maintain as coefficients the pairwise

differences of the original values. Thus, in the above example, we also store four

coefficients: 0, -1, -1, 0, where (2-2)/2 = 0, (0-2)/2 = -1, and so on. We repeat this

process recursively, until we obtain the overall average of the signal and the final set

of coefficients as presented in table 1, where 5 is now transformed to

s ' = [2 ^ , - i X , K , o,o, - i, - i,o] .

Table 1. Illustration of Wavelet Transformation

Resolution Averages Coefficients

8 [2,2,0,2,3,5,4,4]

4 [2,1,4,4] [0 ,-1 ,-1 ,0]

2 il/zA] 0]

1 [2 %] [- W

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chakrabarti et al [6] used high dimensional wavelets to build approximate

synopses (wavelet coefficient synopses) of data streams such that queries can be

approximately answered very quickly and entirely in the wavelets domain using

special query processing algebra that is applicable to wavelet coefficients. Gilbert el

al [1 2] also apply wavelets to stream data by building ‘sketches’ of the data that are

suitable for approximately answering point and aggregate queries of data streams. A

data stream is modelled as an incoming signal which is transformed using Hoar

wavelets and compressed by storing only a small number of the coefficients. When

new data arrives, these coefficients are carefully maintained to preserve the quality of

their approximation. Guha et al [13] also utilize wavelets to compress data streams

and provide approximate query answers. Their approach, however, focuses on

compressing multiple measures using so called extended wavelets, where an extended

wavelet attempts to save storage space by storing the same wavelet coefficient present

in different measures using a bit map. They provide schemes for maintaining these

extended wavelets in a streaming fashion using a limited amount of space.

However, wavelets are not suitable for approximating clusters of high dimensional

data, and, more importantly, their role in providing approximate answers to

historically distant queries pertaining to evolutionary patterns of clusters present in

dynamic data streams has not been envisioned yet In this chapter, we overcome the

high dimensionality limitation by first using an effective data summarization method

suitable for compressing high dimensional data, and then utilize wavelets to further

reduce the space consumption of the stream summarizations so that queries pertaining

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

40

to distant past regions of a multi-dimensional data stream can be effectively

answered.

43 A General Framework for the Summarization of Multi-
Dimensional Data Streams
In previous work, different types of data summarizations for multi-dimensional point

data such as Clustering Features [27] and Data Bubbles [5] have been proposed to

summarize static data sets. In addition, Clustering Features have been used to

compress data streams [1], and Data Bubbles have been improved and utilized for

compressing dynamic databases[18]. Both Clustering Features and Data Bubbles

summarize in a sense sub-regions of the multi-dimensional space where data is

located. In the following, we denote any of the summaries generated by these

methods as spatial summary objects.

A data stream consists of an infinite sequence of data blocks -also called

“windows”- W2, ... that arrive at times 1, 2, ... A window-based data stream

summarization can be consequently modeled as summarizing a (sub-) sequence of

windows of the stream. In a limited amount of storage space, we can obviously only

maintain a limited number of summary objects. A window based summarization of a

data stream is defined as following.

Definition 4. Given a data stream R={WU Wo,...} o f data point windows arriving at

times 1, 2, ..., a (finite) window-based summarization o f R is conceptually a

sequence <SSW" ,...,SSw‘m > where each element SSW,J is a summarization o f a

window (at time stamp ij) comprised o f a number o f spatial summary objects, i.e.:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

41

• For each j e {1, ..., m}, there is a k>l such that SS 0 = {S,,...,S4} is a set of

k spatial summary objects that summarize the points in a stream window Wijt

where ij e {1, 2, . . . } .

W- w
• I fr < s, then SS summarizes an earlier window than SS *' . □

Clearly, given a window-based summarization WSR =< SS™1' ,...,SSw‘m > of a data

stream R, the sequence will maintain information about windows in a certain time

interval fo, r£] of the stream, where the start time stamp ts= i\ and the end time stamp

t£=im-

The challenge for a data stream summarization is to describe a portion of the

stream as large as possible using a window-based summarization in a finite amount of

space such that important information about the data distribution in the stream can be

re-constructed (e.g., using clustering algorithms). In practice, we want to be able to

answer queries about portions of a stream. For that, we want to retrieve the

information about all windows of the stream that belong to a query time interval.

Since past stream windows are no longer available at query time, we can only answer

the query by information retrieved from a stream summarization. In order to provide

high-quality answers to queries pertaining to the distant past of a stream, the

summarization should effectively manage its finite storage space.

A window-based summarization WSr can be constructed (and maintained) using

different methods. A naive method is to keep just the m most recent window

summarizations. Assuming that the available storage space can hold m window

summarizations, once the space is filled up, a new window summarization is added

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

42

after deleting the oldest window summarization. This method obviously offers only a

very limited stream time horizon and may store highly redundant information without

considering any repetitive patterns in the stream.

The most recent proposal for summarizing multi-dimensional data streams in [1]

can also be seen as an instance of our window-based summarization framework. This

method improves over the naive method by using pyramidal time frames to store

summarizations of windows from different time stamps in a pyramidal fashion. The

idea is to maintain a number of I so-called “time orders”, where the Ith time order

maintains a certain number of summarizations of windows with time stamps divisible

by d for some user-specified value of a. This is conceptually equivalent to dividing

the sequence < SSW',...,SSw‘m > into I blocks (each of size mil) to store the

summarizations of windows belonging to different time orders. For instance, if a=2

(as used in the performance evaluation of [1]), the block for the first time order (2 °)

will store the summarizations of the most recent mil windows. The next block (time

order 2 1) will store mil summarizations of every second most recent window, and so

on. For better space utilization, summarizations of windows that simultaneously

belong to several time orders are only stored in the highest time order they belong to.

The naive method is still used for adding a new window summarization SSW to its

block: the oldest summarization in this block is deleted and SSW is added.

The pyramidal time frames provide information within a larger time horizon than

the naive method. However, the available information is less accurate the more

distant into the past it is. This scheme also does not consider any repetitive patterns in

the stream to optimize storage utilization, and has the disadvantage that not only

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

43

different data streams may require different settings for the time orders (their number

and the base of an order), but also the user has to somehow specify these parameters

before initiating the summarization of the stream.

By further analyzing definition 4, we note that there are three main issues that have

to be addressed when instantiating a window-based data stream summarization

< SSWil = {5,,..., 5*, 55 = {5,,..., S km} > :

1. Determining which windows summarizations to keep in the sequence.

2. Determining which summary objects to keep in a certain window summarization.

3. Designing a space efficient encoding of the summary objects.

There are several thinkable policies for addressing each issue. To the best of our

knowledge, the only proposal that has been presented for window based

summarization of multi-dimensional data streams addresses only the first issue by

keeping summarization windows according to a pyramidal time scheme [1].

We propose not to have a fixed policy for determining which window

summarizations to keep based on a time stamp scheme but rather have the ‘least

informative’ window summarizations removed. As we will see, we can achieve this

goal by presenting effective policies for addressing the second and third issues.

To address the second issue, we propose two different policies for representing

windows with different numbers of spatial summary objects. The first policy is age

based where older window summarizations contain fewer summary objects. The

second policy utilizes the “informativeness” of spatial summarizations objects based

on its compression quality and the role it plays in the third issue.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

44

To address the third issue, we propose two encoding schemes that effectively

represent “similar” summaries by one “approximate” summary with a controlled error

level and thus reducing the description length per summary object and more

importandy enabling the applications of prominent compression techniques (Signal

Compression and Clustering).

In our methodology, we use Data Bubbles as spatial summarization objects since

our intended application is mining data streams of multi-dimensional hierarchical

clusters, and Data Bubbles have been shown to significantly outperform other

summarization methods for effectively uncovering hierarchical clusters. Our

methodology is also applicable using other spatial summary objects such as

Clustering Features.2

4.4 Approximating Spatial Sum m ary Objects
4.4.1 (e,S) Approximate Spatial Configuration

In order to achieve effective window based summarization of a very large multi

dimensional data stream, we propose to encode several “similar” spatial summary

objects that represent repetitive patterns in the underlying data distribution using one

“approximate” summary object. The type of spatial summary objects we assume

represents objects in a sub-region of the multi-dimensional space by sufficient

statistics, which contains at least information equivalent to (n, LS, SS) as presented in

section 4.3. This information is representing the data in a spatial region by the number

of points, and some spatial information which is essentially the mean, i.e., the

location, and the variance, i.e., the “spread”, of the summarized data points. In order

2 Although the information in a data bubble is more specialized than the basic sufficient statistics (n. LS. SS). it has
been shown in [5] that the representative rep. the extent, and assuming a uniform distribution of points within a
data bubble, the average nearest neighbour distances nnDist(k,B) can be easily derived from n. LS. SS.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

45

to compare spatial summarization objects, we first define the spatial configuration of

a spatial summary object as following.

Definition 5. Given a spatial summary object S constructed from the clustering

feature CF = (n, LS, SS), the spatial configuration *Fs of S is the tuple

¥ 5 = (means , vars)
where

• means = LS/n

vars =SS/n □

Using this definition, we can compare spatial configurations of spatial

summarization objects S\ and S2 by comparing their variances and means. Intuitively,

two summary objects are approximately equal if their representatives are ‘close’ and

the two distributions they compress have similar variances. The idea is to check

whether spatial summary objects from different windows have approximately equal

spatial configurations such that their spatial configurations can be ‘replaced’ by one

approximate spatial configuration object consuming less space. The information

about the number of objects n in each of the spatial summarization objects is

maintained separately enabling even further compression of the summary objects (as

described in section 4.6). To define approximate equality of two spatial

configurations, we simply require their means and variances to be within a certain

error level of each other.

Definition 6 . Given sand 5 e [0,1], and two summary objects Si and Sj, then Si and Sj

have (£,S}-approximately equal spatial configurations iff the difference between their

variances is within € percent o f the maximum of the two variances, and the distance

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

46

between the two means is within 5 percent o f (the maximum o f the) two standard

deviations o f the two spatial summary objects. Formally:

2 . | means — means | / 2 *max(stdevs ,stdevs) < 8

where meansi is the mean of points summarized by the summary object Si, stdev$i is

In an effective window based summarization of multi-dimensional data stream, the

goal is to identify spatial summary objects Sj,...,St, that belong to the summarizations

of windows respectively and each has a spatial configuration that is

approximately equal to a certain spatial configuration, and therefore these summary

objects represent approximately the same spatial pattern of points reoccurring in

different windows. We define such an approximate spatial configuration for a set of

spatial summary objects as following.

Definition 7. Given a set o f spatial summary objects S={S/,...,S*} with spatial

£
configurations respectively, then an x̂ £j = (.tti,v) is (^^-approximate

spatial configuration o f the set S iff for all Si e S: ^ ~(£%S) □

3 Note that the relation is symmetric since we normalize by the maximum of both the mean and the
standard deviation.

1.

the standard deviation, and varsi is the variance o f points summarized by Si o3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 13. Summary Objects with
Approximately Equal Spatial Configurations

s «If an (£ ^-approximate spatial configuration = (m,v) of a set S ={5/.....S*}

of spatial summary objects exists, then it holds that the spatial configuration of every

spatial summary object is (£ ̂ -approximate equal to ^ £.s (as defined in definition

6). By replacing the spatial configurations of each S,- with a reference to xP£,s we

effectively reduce their space consumption while increasing the amount of storage

space available for keeping more spatial summary objects that have different spatial

configurations. The saved space is gained by loosing some accuracy in approximating

the spatial configurations, where the accuracy loss is bounded by £ percent of the

variance and ^percent of the mean of the approximated spatial configuration.

We test approximate equality only on spatial summary objects that are constructed

from different stream windows. Spatial summary objects that are constructed from the

same window are not compared because in practice, they do not satisfy the

approximate equality condition by construction, as the summary objects typically

divide the multi-dimensional space into large, disjoint sub-regions.

Figure 13. presents an illustration of the similarity of spatial summary objects. The

figure shows spatial summary objects S *1. S p , S p that are present in a region of

the two dimensional space and are constructed from points in the data stream

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

48

windows W\, W?, and W3. It is easy to see that, given small values for £ and S, the

spatial configurations of S^1, S p , S p are (£ ̂ -approximately equal to the spatial

|SWi -tv2 -w3.
configuration 8 r shown in the dotted circle in the figure.

4.4.2 Approximate Spatio-Temporal Summary Object

By replacing the spatial configurations of spatial summary objects S=(n, LS, SS) in

a set S with a reference to an (£ ^-approximate spatial configuration = (m,v)

we save the space needed to store the ^-dimensional vector LS for each spatial

summary object Si, where instead of LS and SS, we only store a pointer (which

consumes the same space as SS, which is just a number) to the approximate spatial

configuration, which encodes an approximation of LS via LS = n m. To reconstruct

the information of a spatial summary object from its approximation, we need to store

the n value.

Two spatial summary objects whose spatial configurations are approximately equal

may differ significantly only in the number of points n whereas their spatial

configurations that encode their relative statistical properties are approximately equal.

When these two summary objects represent points at different window time stamps, a

change in the value of n from one window time stamp to the next represents an

evolutionary pattern in the number of points present in the underlying distribution,

where an increase represents emergence of points, a decrease represents dissolution of

points, and no significant change represents stability of the distribution at the spatial

location of these summary objects.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

49

Consequently, if an (£ ^-approximate spatial configuration j = (m.v) of a set

S ={Si,...,Sk} of spatial summary objects exists, then the n values of the spatial

summary objects can be viewed as a temporal sequence that conceptually represents a

life history of the distribution D at the (approximate) location of the spatial summary

objects. This life history consists of a sequence of time stamps < tl ,t2....,tm > with

an associated sequence of values < n \,n 2,..., nm > ? where it* is the number of points

in the summary object that summarizes points belonging to window with time stamp

tt, 1 < k< m . The time stamps are increasing but not necessarily always consecutive,

i.e., it is possible that some windows in the stream do not contain points at the

location of the approximate spatial configuration 'i 'Ets — ipi,v). Conceptually, the

sequence of time stamps (and its associated sequence of n values) can be considered

as consisting of a chain of sub-sequences of consecutive time stamps

<rf, r, + 1, ..., r, +kj >, i.e., in each subsequence the time stamps of adjacent pairs

differ by one time unit.

We propose to store the sequences of time stamps and n values as a sequence of

‘episodes’, where each episode consists of start and end time points of a consecutive

subsequence and stores the n values as a signal that can be separately compressed

using signal compression techniques [23] or ‘compared’ to other signals such that

‘similar’ signals can be collectively compressed by replacing them with their

common pattern using data mining techniques.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

50

According to these considerations, we define a compact summary, called

approximate spatio-temporal summary, that represents an approximate spatial

configuration ^ £̂ = (m>v) and its associated temporal life history as following.

Definition 8 . Given an (£,S)-approximate spatial configuration x&£j as defined

in definition 7, and a sequence o f increasing time stamps

V r'i +1, —’rn +*»i’ V +^ 2’ +1' that are associated

with a sequence o f n values (of the spatial summary objects in a set S)

^ 2’ *̂2+*r>’ where ni>l, kt . > 0 ,

an (e, ̂ -approximate spatio-temporal summary <s£,S is a tuple:

& = »

whereEJ =(EJslarrEtnd,ElgnJ , 1 < j < m, and Eltart=tijr ^ m̂ t ij+^j ,

^ W/=<V V 1*"’V > □

Approximate spatio-temporal summaries allow effective window based

summarization of a multi-dimensional data stream such that historical queries

pertaining to data points present in past temporal periods of the data stream can be

answered with bounded error levels, and the evolution of spatial regions can be easily

and effectively analyzed. Note that as a consequence of this definition, each spatial

summary object in S must have a unique time stamp. That means an (c, (Si-

approximate spatio-temporal summary is allowed to summarize a sequence of spatial

summary objects only from different stream windows.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

51

In order to refer to the components of a spatio-temporal summary, we introduce

the following notions.

Definition 9. Given an (e,S) approximate spatio-temporal summary

d .s = (¥ /* .< £ '>) vw? call

• < E 1 E m > the Ufe-History o f 4e.s

• E, 1 <i < man Episode o f %e.s □

To measure the “importance” of an approximate spatio-temporal summary ,

we define the summarization error of as follows.

Definition 10. Given an (e,S) approximate spatio-temporal summary 4e.s that

approximates n spatial summary objects, the Summarization Error SE() o f 4e.s

is

SE(£s) = vaT*(Zis)/nr

where a, y e R are coefficients for weighing the variance var o f ond n

respectively. □

Intuitively, an approximate spatio-temporal summary is more “important”

than another spatio-temporal summary when 1) represents more spatial

summary objects than 4'Se.s and 2) its variance is smaller than the variance of

The coefficients a and /add flexibility to the definition by allowing a user to give

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

52

different weights to the contribution of the variance and the contribution of n,

respectively (in our experimental evaluation, we set a = y=l).

4.5 Spatial Summarization of Data Streams
For the window based summarization of a data stream, it is important to design a

scheme that not only efficiently summarizes the objects in a current window wic, but

also enables efficient finding of new spatial summary objects that have approximately

equal spatial configurations to the spatial configurations of the previously constructed

spatial summary objects such that approximate spatio temporal summaries can be

quickly constructed and updated. The naive approach for finding the best match for

every spatial summary object from a set N in a set M is to compare all elements of the

first set with all elements of the second set. The cost of this matching is O(NM)

comparison operations, which is computationally expensive. If the mean and the

variance of the distribution of points compressed by a spatial summary object S; do

not change significantly from the current window to the next, then 5 / remains

“relatively” stationary in the data space and we can reuse the location of its

representative to position a new spatial summary object Sj in the summarization of the

next window, whereby the spatial configuration of Sj is only compared to the spatial

configuration of 5,-.

However, as noted in chapter 3, reusing locations of spatial summary objects that

summarize a given data set D\, to initialize spatial summary objects for a second data

set D2 that is expected to be similar to Du may result in so called “over-filled” spatial

summary objects which summarize significantly more points than other summary

objects, and have relatively low quality of summarization. We recall from definition 2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

53

that the quality of a spatial summary object is measured using a data summarization

index f . For an easy flow of presentation, we recall here definition 2 as follows.

Definition 11. Given a data set D o fN multi-dimensional points and a set S o f spatial

data summary objects that compress the points in D, the data summarization index /?,-

o f a data summary object 5/ e S where Si compresses n points is defined as f t = — □
N

To identify summary objects that are “over-filled”, i.e., have low quality of

compression, definition 3 can be used (see chapter 3 for a more detailed and technical

presentation). For an easy flow of presentation, we recall here definition 3 as follows.

Definition 12. Given a data set D o f N multi-dimensional points and a set S o f

spatial data summary objects that compress the points in D, let pp and op be the mean

and standard deviation o f the distribution o f the ft values for all spatial data summary

objects in S. Given a value k (determined from a user-specified probability p

according to Chebyshev's Inequality[24]), a spatial data summary object with the

data summarization index f is called:

1. “good” iffp € [pp-kop, pp + kop]

2 . “under-filled” iff fi <pp- kxtp

3. "over-filled” iff fi > pp + kop □

In order to improve the overall quality of a summarization and eliminate over

filled spatial summary objects, the scheme presented in chapter 3 proposed to split

each over-filled spatial summary object into two new spatial summary objects by re

positioning one spatial data summary objects that summarize relatively few points.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

54

This strategy to maintain good quality spatial summary objects can also be applied

in our current context of data streams. The summarization index P can be computed

for summaries of data stream windows by considering each window as a data set.

Splitting an over-filled summary object into only two new summary objects was

suitable in the context of maintaining dynamic summaries of databases, where

typically only very small difference between two large databases occurred. In a data

stream, the differences between two consecutive windows can be more substantial so

that a binary split may still generate overfilled spatial summary objects. To avoid this

effect for stream windows, we propose to split an “over-filled” summary object

simultaneously into m = round (Pi I lip) summary objects.

Our scheme for spatial summarization of stream windows is given as following.

To summarize the first window of a stream, spatial summary objects are

constructed by selecting random points from the window as “seeds”, and assigning

each point to its closest seeds, incrementally computing sufficient statistics.

To summarize subsequent windows, spatial summary objects are constructed by

re-using the spatial summary objects of the previous window. The means of the

summary objects of the previous window are used as “seeds” for the current window,

and all points in the current window are assigned to their closest seed, again

incrementally computing sufficient statistics.

In all cases, after the initial construction of spatial summary objects, “over-filled”

summary objects are identified using definition 1 2 and rebuilt as mentioned above.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

55

4.6 Data Stream Summary Stores
We propose to encode a window based summarization WSr of a multi-dimensional

data stream R defined in definition 4 as a collection of (e,S) approximate spatio-

temporal summaries as defined in definition 5. We call a collection of (e,<5)

approximate spatio-temporal summaries a stream summary store. Our general scheme

for achieving an effective window based summarization using a summary store is

presented as follows. We summarize each window in R into a set of spatial summary

objects using the following general strategy.

• Initialization of the Stream Summary Store

1. Summarize the first window W\ in the stream into a set of spatial summary

objects SS={S\,..., S*}.

2. Initialize the summary store with a new spatio-temporal summaries

4 $ = E >) for each S > e ̂ where E = (E start ’ E end »E signal) = (U .« Sj) .

• Maintenance of the Stream Summary Store

1. Summarize a new window Wt, t > 1, in the stream into a set of spatial

summaries SS={Si,..., S*}.

2. Integrate the new spatial summaries to the summary store:

For every new spatial summary object 5,

Search the summary store for a spatio-temporal summary

with an (e,^-approximate equal spatial

configuration, i.e., and E^nd

If 4e.s is found

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

56

update the life history of with ns. by either by extending the signal

of the most recent episode ZT" if = t - 1 or by adding a new episode

£m+1 =) .

else

construct a new spatio-temporal summary ̂ E >), where

E={Estarp Eend, Estgna) =(t.t, nSj) and add it to the summary store

3. Check the store’s space budget and reduce space consumption by m% if

needed:

If compression of life histories of spatio-temporal summaries saves m% of the

space consumed by the store

compress life-histories

else

free m% of the space by deleting summaries with the largest summarization

error SE as defined in definition 7

The details for integrating new spatial summary objects into a summary store and

managing the store’s space budget are discussed in the next two subsections.

4.6. J Summary Store Ufe-History Management
To integrate a new spatial summary object Si from a new window Wt into the

summary store, we first have to check if there is a “matching” spatio-temporal

summary. A matching spatio-temporal summary ^ s =Qi^s,<B,...JEm>) must satisfy

the conditions that 1) it has an (^-approximately equal spatial configuration to the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

57

spatial configuration of Si, and 2) has not yet integrated another spatial summary

object Sj from the same window W„ i.e., the E™nd * t (recall that a spatio-temporal

summary is allowed to only summarize a sequence of spatial summary objects from

different stream windows).

In general, to find a match for a spatial summary object Si, we have to compare S,-

to every spatio-temporal summary in the summary store until a matching summary is

found. However, since we reuse locations of spatial summary objects of a previous

window to position the seeds of spatial summary objects for a current window, we

speed up the matching and improve its quality.

In general, the spatial configurations of many spatial summary objects (i.e., mean

and the variance, but not their number of points) of the previous window are still

suitable to represent the corresponding sub-regions in the current window. This is

obviously true if the distribution does not change dramatically from one window to

the next. But even if the distribution in the current window is overall very different

from the previous window, on the “micro-clustering-level” of the spatial summary

objects, the changes are not as drastic; the resulting spatial configurations of the

current window are often within e, 8 (as defined in Definition 6) of the previous

spatial configurations. As a consequence, we have a high probability of finding a

matching spatio-temporal summary quickly by first checking the spatio-temporal

summaries that have integrated the corresponding spatial summary objects. In

addition, having good matches between consecutive windows leads in general also to

fewer spatio-temporal summaries with longer episodes which results in a better space

utilization. Note that constructing spatial summary objects for a current window

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

58

“from scratch” (e.g., using a random sample of the window as seeds) would not

necessarily generate as many summaries that have approximately equal spatial

configuration - even if the data distribution would be identical in the two windows.

4.6.2 Summary Store Space Management

Once the summary store is updated with new spatial summary objects of a new

window, the space budget constraint of the summary store is enforced. We propose to

reduce the space consumption of a summary store by ‘compressing’ the life histories

of the approximate spatio-temporal summaries present in the summary store, and

deleting some of these summaries when necessary. When we exceed the space budget

after the integration of the summarization of the current window by m%, our scheme

first tries to reduce the space consumption by compressing the life histories of spatio-

temporal summaries. If this is not possible, m% of the space is released by discarding

from the summary store the least ‘important’ summaries, which have the largest

summarization error.

We propose to compress the life histories of approximate spatio-temporal

summaries using one of two policies: local compression using signal compression,

and global compression using clustering.

We can consider the sequence of n values in an episode of a spatio-temporal

summary as a signal and model it using wavelets. We choose the orthonormal Haar

transformation, which is very fast and suitable for data streams. When an episode is

completed, i.e. (E ^ * t) or the n signal reaches a certain user-specified maximum

length, we normalize the signal using the Haar transform. Compression of a Wavelet

transformed signal can be achieved by deleting the smallest coefficients from the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

59

orthonormal basis which optimally minimizes the sum-squared error of the signal

[23]. We note that to forward-transform/inverse-transform the signal when deleting

coefficients, an episode must separately maintain the coefficients of the n signal and

their coordinates.

In the local compression policy, m% of the space is saved as follows. For each

episode, the number of coefficients that should be deleted to free m% of the space for

the whole summary (including the space for start and end time points) is determined,

and the smallest such coefficients are deleted. Episodes that do not have any

remaining coefficients after the deletion are removed from their summary; spatio-

temporal summaries that do not have any remaining episodes after this step are

removed from the summary store. This procedure guarantees that at least m% of the

total space is recovered. It is possible that more space is released when episodes or

even whole summaries are completely deleted since an episode consumes space not

only through its n signal but also its start and end time points, and a spatio-temporal

summary also consumes space for its spatial configuration.

The global compression policy on the other hand globally saves m% of the space

by approximating coefficients across multiple n signals instead of locally deleting

coefficients from an n signal. Intuitively, to reduce the life history space by m%, the

normalized n signals can be grouped into clusters. Each cluster is represented by an

“average” n signal which approximates the elements in the cluster. Note that if two n

signals have similar pair-wise changes in the n values, their sequences of coefficients

are similar. Space compression is achieved by replacing the original n signal in an

episode with a reference to the representative n signal of the assigned cluster. This

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

60

policy obviously only makes sense after “enough” episodes are constructed in the

summary store so that the amount of space required for maintaining clusters of n

signals is significantly smaller than the space required to maintain just the original n

signals.

For clustering n signals of episodes, each Haar transformed signal can be

considered a multi-dimensional point of signal values p = (n[. One of the

difficulties of clustering those n signals is that they may differ in their dimensionality

or length d. If the dimensionality of points in a group G is not too different, a

meaningful representative r = ('t[,—,n^max) can be computed as the “average” of all

points in G, where the value of the i-th dimension is the average of the i-th dimension

of all the points in G that have at least i dimensions, and dmax is the largest length in

G. Using this approach, when we want to use the representative as an approximation

of a particular n signal s — (nf >—>nds) in G, ds < dmax, we use only the first ds

dimensions of r, ,...,ds (r) . The dissimilarity between two points P = (nf

and q = (r f) of different dimensionality can in this approach be defined as the

Euclidean distance between the two points using the first number of coordinates

present in both points, i.e., disr(p,q) = J £ {nf - n f p . Consequently, to find

meaningful representatives for groups of n signals such as an average n signal, we

first have to partition the n signals into I “length-groups” where the signals in each

partition have “approximately” the same length, and then find clusters and

representatives within each partition. This can be achieved using different methods

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

61

such as an equal-width partitioning of the range of possible lengths into I segments

(since we have a maximum length of episodes) or even using a clustering algorithm

constructing I clusters.

When the global compression policy using clustering is applied for the first time,

an initial clustering structure is constructed for every length-group of signals. Again,

in principle any clustering algorithm that allows specifying the number of clusters k

can be used with the above dissimilarity distance function for clustering the n signals

in a group. The required number of clusters per group of n-signals has to be

determined so that we achieve m% storage space reduction. Since we can compute

how much space would be saved by replacing n-signals with a reference to a cluster

representative, we can calculate the total number of clusters (over all groups) needed

to achieve the required m% storage space reduction. The number of clusters per

length-group is then allocated proportional to the number of signals in that group.

After the first application of the global compression policy, we have a set of

clusters that have to be now maintained incrementally when episodes are deleted or

added to the summary store. For incremental maintenance, the clusters are

represented by the average n-signal of their members (as defined above) and the

number of signals they contain. When the space consumption of new episodes must

be reduced, the length-groups of their n signals are determined first, and then each

signal is assigned to its closest cluster representative in this group, updating the

average and incrementing the number of members in that group. When an episode is

deleted, we know its cluster, and simply decrement the number of members in that

cluster.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

62

4.6.3 Reconstructing Summarized Stream Windows
We reconstruct the summarization set SS of a stream window W; from a summary

store that contains spatio temporal summaries in the following way. First, we find all

spatio-temporal summaries 4 e.s whose life history contains an episode

E = (£ s ta r t*£e n d 'Es igna l^ such that E sta n < i < E end, i.e., each approximates a

spatial summary object S from window W;, which is reconstructed by setting its

spatial configuration to the spatial configuration of ■ To set the n value of 5, we

recover from E the appropriate n value whose associated time point equals to i by first

decompressing E signal if E Signai was compressed earlier. On the one hand, the

decompression of E Signai that was compressed using a local compression policy is

achieved by first approximating the coefficients deleted during the compression by

zeros and then inversing the approximate E Signai using the Haar wavelet. On the other

hand, the decompression of E Signai that was compressed using a global compression

policy is achieved by first constructing a temporary signal S' using the first m

dimensions of the cluster E s;gnai is assigned to (m = E end - E sta n + 1), and then

inversing S ’ using the Haar wavelet Any n < 0 in an inverted signal is set to one.

4.7 Performance Evaluation
We perform extensive experimental evaluation of our stream summary store

methodology. Our results demonstrate that our methodology is efficient and effective

in several areas: summarization of stream windows, construction of a summary store

of approximate spatio-temporal summaries in a limited space budget, integration of

new spatial summary objects to the summary store, and maintenance of the summary

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

63

store to satisfy its space budget constraint. We test these various aspects of our

methodology by querying the stores for historically distant information, and compare

the retrieved information with the expected information obtained from the complete

history. We query the stores for historically distant information by constructing from

the store summarizations of the oldest windows in our streams. We consider queries

that cover the summarizations of the first two, four, and eight windows of the stream.

The complete history of the stream summary is constructed by archiving the complete

spatial summary objects of all stream windows.

For a certain query, the relative quality Q measures the difference between the

approximated spatial summaries Sapprox obtained from the summary store to the exact

spatial summaries Shisoiy retrieved from the complete history. Intuitively, we want to

measure how well Sapprox approximates Shiswty- For this, we first have to find for each

spatial summary object in Sw,anry the best matching spatial summary object in Sapprox-

The quality of a matching between two spatial summary objects Si, Si, constructed

from clustering features CF} =(nl,LSl,SSl) and CF2 = (n2 ,LS2 ,SS2) respectively,

is determined by how “close” they are in terms of their means, their number of points,

and their variance. There is no trivial way to combine the changes in all three aspects

into one single measure. We propose first to combine Si and S2 by constructing the

combined summary S3, that represents both Si and S2 using the additivity of clustering

features [27], i.e., we construct CF3 =CFl +CF2 =(n3,LS3,SS3), with ” 3 = ni + ”2 ,

LS3 =LSi +LS2, and SS3 =SSX + S S 2 .

The difference in the sum squared error of S3 and the sum of the sum squared

errors of Si and S2 relative to the sum squared error of S3 tells us the amount of error

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 14. Snapshot of First Window in a Data Stream

we would introduce by substituting Sj and S2 by S3. Formally, this relative mismatch

of a fixed pair of spatial summary objects Si and S2 is defined as

Mismatches = (SS£ 3 -(SS£, +SSE2))/ SSE3 where SS£(- = var,*n-t . The smaller

this value, the better S3 represents the sum of Si and S2, i.e., the better Si and S2

“match”. This mismatch measure is, however, monotonically dependent on the value

of /13, and therefore, to compare matches for a given spadal summary object Si with

several other summary objects, we have to normalize by 113. To compute the relative

quality Q of the approximation SapProx, we find the best matching spatial summary

object in Shistory for each spatial summary object in Sapprox- Note that the number of

spatial summary objects in the two sets may be different due to possible deletions in

•Sapprox during the maintenance of the summary store. The relative quality Q is

computed as 1 minus the average mismatch between the spatial summary objects in

•Shisory to the spatial summary objects in Sapprox (in an optimal matching, the Mismatch

for unmatched summary objects in Shistory is counted as 1).

We evaluate the performance of our methodology using several multi-dimensional

data streams, in which we simulate various dynamics of clusters starting with a spatial

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

65

configuration of the clusters in the first window of a stream that contains clusters as

presented in figure 14. We set the size of a stream window to 10,000 objects. We

simulate streams of 2, 5, and 10 dimensions, with four scenarios of evolution of

clusters:

• stream 1 : a stream consisting of 2 0 0 windows, where the means of the

clusters are stationary but the clusters go through repeated periods of change

in their variance (i.e., they “shrink” and “grow”)

• stream 2 : a stream consisting of 280 windows, where the means and

variances of some clusters are stationary but for other clusters the number of

points changes dramatically whereby they undergo repeated periods of

disappearance, appearance, and no change (one cluster is deleted every

window until all clusters are deleted, and then one cluster is added every

window until all clusters are added, and so on)

• stream 3: a stream consisting of 140 windows, where the variance and the

number of points in the clusters are stationary but their means change such

that some clusters (two clusters) go through cyclic patterns of motion, some

(five clusters) move randomly across the space, and others stay stationary

• stream 4: a stream consisting of 230 windows, which simulates a combination

of the above three cases

• stream 5: a stream consisting of 300 windows, and which is not initialized

with the configuration in figure 14, but constitutes a “worst case” scenario for

data stream summarization, where each window contains independently of all

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

66

other windows a random number of randomly generated Gaussian clusters

located at random positions in the data space.

We conduct our comparative analyses by examining the effectiveness of different

window based summarization methods in answering queries pertaining to distant

temporal regions in the stream. We query the stores for historically distant

information by constructing from the store the summarizations of the oldest windows

in our streams. We consider queries that cover the summarizations of the first two,

four, and eight windows of the stream. To compare the effectiveness of the methods,

we analyze at different time points the relative quality Q of the answers for any given

query by repeatedly posing the same query after the arrival of new stream windows.

As mentioned in section 3.3, Aggarwal et al [1] utilize time orders to save snapshots

of the stream in a pyramidal time fashion. For comparison purposes, we assign our

stream summary store a storage space budget that is equal to the sum of storage space

budgets assigned to all orders. In our experiments, we set the number of orders to four

and the base to 2 (i.e., the orders are 1, 2, 4, 8). We compare the performance of

following four methods:

1. Deletion: maintain spatial summary objects in a pyramidal time fashion with

deletion of oldest summary objects when storage space runs out (Aggarwal et al

[1] method).

2. Aggregation: maintain spatial summary objects in a pyramidal time fashion

with ‘aggregation’ of oldest summary objects when storage space runs out. Two

summary objects S\ and Sz such that Si is constructed from the clustering feature

CFl = (nl,LSl ,SSl) and Sz is constructed from the clustering feature

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

67

CF2 =(n2,LS2,SS2), and summarize points from the same stream window, are

‘aggregated’ into one summary object S3 constructed from

CF = (n3 = nx + n2,LS3 = LS[+LS2,SS3 = SSX +SS2) (when there is only one

summary object left that summarizes a window W,-, it is simply deleted).

3. Local Compression: construct a stream summary store using our methodology

and utilize the local compression policy to compress life histories when possible.

4. Global Compression: construct a stream summary store using our

methodology and utilize the global compression policy to compress life histories

when possible. We use the clustering algorithm Chameleon [15] to construct an

initial signal clustering structure since it has been used previously to cluster

wavelets [2 1], and therefore is suitable to cluster the transformed n signals

(Chameleon is also used for partitioning the set of n signals into groups of similar

lengths).

We set the number of spatial summary objects per window to 100, the probability

for Chebyshev inequality to 0.8, the m% of space to be freed when space runs out to

the fraction of space consumed by 1 0 0 spatial summary objects out of the total

storage budget. The total storage budget is set to 16k, and e and S are set to 50%. By

using a storage budget of 16k, we can analyze when the different methods run out of

memory using our streams described above. Increasing/decreasing the storage space

budget would only delay/hasten the exhaustion of the storage budget of the different

methods and the comparative analysis of the different methods remains the same

using streams with more/less windows where now the different methods exhaust their

space budget after summarizing proportionally more/less windows. We compare the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

68

«3O
©>
©
©
£E

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0

*1

* \

-Deletion
-Aggregation
- Local Compression
-Global Compression

0 50 100 150 200

Num of Arrived Windows

Figure 15. Relative Quality Profile When Querying 2D Stream 4
and Query Size is 4 Windows

accuracy profiles of the various schemes in answering at different time points during

the simulation, the same query: retrieving the summaries in the first 4 windows of a

stream. We use as time points the number of windows summarized since the

beginning of stream summarization. In addition, we also examine the effect of

changing the query size on the quality of the results, where we consider queries of

sizes 2, 4, and 8 windows. As noted above, we currently use Chameleon. A few

experiments run out of space during the clustering step in the global compression

policy. Exploring other clustering algorithms is an endeavour for future directions.

Figure 15 shows the profile analysis when querying stream 4 that consists of 2

dimensional objects. Although the approximation of spatial configuration incurs a

little loss in quality (as shown by a relative quality of less than 100% for the first few

windows), the space gained by this approximation, and the life history compression

techniques, allow our summary store to retain the majority of the required

information and consequently the local and global compression methods outperform

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

69

the deletion and aggregation methods when querying the stream after summarizing

the first 15 windows of the stream. However, as more windows are summarized, the

local compression policy eventually deletes all the coefficients of the episodes that

contain relevant information to answer the query and thereby the quality of the

answer degrades dramatically at window 50. However, our summary store that

utilizes the global compression policy (which uses clustering to compress life

histories) drastically outperforms other schemes after window 50 as it effectively

compresses the life history of episodes and is capable of providing answers with a

high quality (about 70%) even after a very large number of the windows (200

windows) have been summarized.

To further demonstrate the effectiveness of our global compression policy in

compressing the stream in comparison to other three methods (deletion, aggregation,

and local compression), we conducted further experiments to determine how much

storage space the other three methods need to maintain a quality of 70% after

summarizing 200 windows of the stream. We found that the deletion and the

aggregation methods required 15 folds more space than the storage space required by

the global compression method, and that the local compression method required 4

folds more space than the storage space required by the global compression method.

The benefits from approximating spatial configurations are further evident when

summarizing a data stream that consists of high dimensional objects. As shown in

figures 16 and 17, the local and global compression methods provide high quality

answers when increasing the dimensionality of the data space to 5 and then to 10.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Re
la

tiv
e

Q
ua

lit
y

70

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0 50 100 150 200

-Deletion
-Aggregation
-Local Compression
- Global Compression

Num of Arrived Windows

Figure 16. Relative Quality Profile When Querying 5D Stream 4
and Query Size is 4 Windows

a3a
©>
35
©oc

1

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0

u ---- ,

s
1

50 100 150

Num of Arrived Windows
200

-Deletion
-Aggregation
-Local Compression
-Global Compression

Figure 17. Relative Quality Profile When Querying 10D Stream
4 and Query Size is 4 Windows

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

71

40

35

0 2 D
Q5D
□ 10D

0
Deletion Aggregation Local Global

Compression Compression

Su m m ar iz a t io n Method

Figure 18. Summarization Method Runtime Comparison when
Querying Stream 4 and Query Size is 4 Windows

However, the deletion and the aggregation methods (where there is no

approximation of spatial configurations) spend a significant amount of the space

storage budget on storing the high dimensional means without reducing this space

storage by approximating them. Consequently, they exhaust their space storage

budget very quickly and delete the summaries that contain the information for

answering the query after summarizing only a few stream windows (when the

dimensionality D is 10, the space budget has already been consumed by the fourth

window, the time point when the first query arrives, and the quality of the query

answer is only 50% of the quality of the query answer obtained from the archived

summary history). At the same time, the runtimes of our local and global compression

methods are very close to the runtimes of the deletion and aggregation methods, and

consistently so across different dimensions as shown in figure 18.

Moreover, we compare the performance of the different methods when varying the

query size from 4 windows to 2 and 8 windows. As figure 19 and 20 show, our

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

72

0.9
0.8

I* 0.7
CO3 0.6
o 0.5

~ 0.4
CO

© 0.3 oc
0.2
0.1

150 20050 1000
Num of Arrived Windows

— Deletion
—•—Aggregation
— Local Compression
 Global Compression

Figure 19. Relative Quality Profile When Querying 2D Stream 4 and
Query Size is 2 Windows

— Deletion
—.—Aggregation
—*— Local Compression
-^-Global Compression

0 50 100 150 200

Num of Arrived Windows

Figure 20. Relative Quality Profile When Querying 2D Stream 4 and
Query Size is 8 Windows

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

73

-•-Deletion
Aggregation

—#— Local Compression
—•—Global Compression

0 100 200 300

Num of Arrived Windows

Figure 21. Relative Quality Profile When Querying 2D Stream 5
and Query Size is 4 Windows

method using global compression consistently and drastically outperforms other

methods.

Using similar analysis, we examine the performance of the different methods when

summarizing the extreme case of a stream 5 consisting of 2 dimensional objects. As

figure 21 shows, all methods now provide answers with roughly the same quality (the

results are similar across different dimensions of 2, 5, 10). Stream 5 consists of

completely random changes to the clustering structure from one window to the next.

Thereby, the majority of the spatial configurations of summary objects are completely

different from one window to the next, and little space is saved by approximating the

few similar ones. Thus, approximating spatial configurations of spatial summary

objects is most effective when there are repetitive patterns in the data stream, and in

that sense, our summary store has the added advantage that the number of

approximate spatio temporal summaries it contains in comparison to the total number

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

74

of spatial summary objects constructed in the stream windows, provides some

intuition about the existence of repetitive patterns in the stream.

CHAPTER FIVE

CONCLUSIONS

In this thesis, we presented a new scheme for incrementally maintaining effective

data summarizations for the purpose of compressing large dynamic databases. Our

incremental data bubbles are capable of handling various scenarios of insertions and

deletions of points in a database environment and are suitable as an effective

preprocessing technique for obtaining very efficient, online, hierarchical clustering

analysis. A quality measure for the data bubbles was introduced to identify the data

bubbles that do not compress well their underlying data points after certain insertions

and deletions. We only rebuild these data bubbles using efficient split and merge

operations. In addition, we also point out that data summarizations can be further

sped up using triangle inequalities as illustrated by augmenting assignment of points

to their closest data bubbles with triangle inequalities.

An extensive experimental evaluation for various cases of dynamic insertions and

deletions of points in a database environment showed that the incremental data

bubbles provide an efficient and effective data summarization technique of

dynamically changing large databases, and even sometimes improve over data

bubbles built from scratch while preserving the quality of the overall compression.

Moreover, our scheme of incremental data summarization can augment further Data

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

75

Mining methods (like clustering techniques) to uncover hidden patterns in large

databases very quickly.

Furthermore, we outlined a general window based summarization framework for

compressing a multi-dimensional data stream. We presented a new methodology for

achieving an effective window based summarization of a multi-dimensional data

stream. Our comprehensive methodology effectively compressed similar spatial

summaries from different window summarizations into one approximate spatio-

temporal summary object, efficiently constructed a stream summary store of

approximate spatio-temporal summaries, and effectively managed the integration of

new window summarization into the summary store while satisfying the summary

store space budget constraint by utilizing space management policies which we

introduced and which used prominent Signal Compression and Clustering techniques.

An extensive experimental evaluation using a variety of data streams of different

dimensions demonstrated that our methodology significantly outperformed existing

summarization method. Our results demonstrated that our methodology is efficient

and effective in several areas: summarization of stream windows, construction of a

summary store of approximate spatio-temporal summaries in a limited space budget,

integration of new spatial summary objects to the summary store, maintenance of the

summary store to satisfy its space budget constraint. Moreover, unlike other methods,

our stream summary store method is capable of providing high quality answers to

queries that cover distant past regions of a multi-dimensional data stream while using

a limited storage budget.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER SIX
76

FUTURE DIRECTIONS

There are several interesting directions for future research of knowledge discovery in

multi-dimensional data streams using our general framework of window based

summarization and stream summary stores. First, formulating and solving the

problem of cluster evolution analysis in a multi-dimensional data stream using the

presented stream summary store summarization methodology is a very interesting

computational problem to consider. What are the computational tools needed to

model and uncover evolutionary patterns of clusters development in a multi

dimensional data stream? In addition, mining patterns from several stream summary

stores to effectively compress several multi-dimensional data streams simultaneously

is an intriguing problem. What is an effective strategy to summarize several multi

dimensional data streams that may belong to different applications? Is maintaining a

summary store for each such stream a good method? Or is it possible to design a more

effective method consisting of a ‘general’ summary store with different

‘departments’, where now the store abstracts and maintains similar ‘patterns’ from the

departments such that the overall storage space requirement is significantly smaller

than the total storage requirements of the separate stores?

Furthermore, in this thesis, we solved the first problem of achieving effective

window based summarization of a multi-dimensional data stream. It is now also very

interesting to look into the second complementary problem: online mining of a stream

summary store. Is it possible that there are regions in a multi-dimensional data

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

77

streams that are queried less frequently such that a stream summary store can discard

most of the information pertaining to these regions? Moreover, it is possible to

formulate and find patterns in the queries of a stream summary store and utilize these

patterns to provide “mining feedback” to the store about its space management?

Certainly, upcoming applications will call upon effective and intelligent techniques

for knowledge discovery in multi-dimensional data streams. The envisioning of

computational problems and providing effective solutions to them in this realm will

be most gratifying.

CHAPTER SEVEN

BIBLIOGRAPHY

[1] Aggarwal, C. C., Han, J., Wang, J., Yu, P. S. A Framework for Clustering

Evolving Data Streams. In VLDB’03, 81-92,2003.

[2] Ankerst, M., Breuing, M., Kriegel, H-P., Sander, J. OPTICS: Ordering Points to

Identify the Clustering Structure. In SIGMOD’99,49-60,1999.

[3] Barbara, D. Requirements for Clustering Data Streams. SIGKDD Explorations,

3:23-27,2002.

[4] Braunmueller, B., Ester, M., Kriegel, H-P., Sander, J. Efficiently Supporting

Multiple Similarity Queries for Mining in Metric Databases. In ICDE’00, 256-

267,2000.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

78

[5] Breuing, M., Kriegel, H-P, Kroger, P., Sander, J. Data Bubbles: Quality

Preserving Performance Boosting for Hierarchical Clustering. In SIGMOD’Ol,

79-90,2001.

[6] Chakrabarti, K., Garofalakis, M., Rastogi, R., Shim, K. Approximate Query

Processing Using Wavelets. In VLDB’0 0 ,111-122,2000.

[7] Chen, C., Hwang, S., Oyang, Y. An Incremental Hierarchical Data Clustering

Algorithm Based on Gravity Theory. In PKDD’02,237-250,2002.

[8] Elkan, C. Using the Triangle Inequality to Accelerate &-means. In ICML’03, 147-

153,2003.

[9] Ester, M., Kriegel, H-P., Sander, J., Xu, X. A Density Based Algorithm for

Discovering Clusters in Large Spatial Databases with Noise. In KDD’96, 226-

231,1996.

[10] Ester, M., Kriegel, H-P., Sander, J. Wimmer, M., Xu, X. Incremental Clustering

for Mining in a Data Warehousing Enviomment. In VLDB’98,323-333,1998.

[11]Ganti, V., Gehrke, J., Ramakrishnan, R. Mining Data Streams under Block

Evolution. In ACM SIGKDD Explorations, 3:1-10,2002.

[12] Gilbert, A., Kotidis, Y., Muthukrishnan, S., Strauss, M. J. Surfing Wavelets on

Streams: One-Pass Summaries for Approximate Aggregate Queries. In VLDB’01,

79-88,2001.

[13]Guha, S., Kim, C., Shim, K. XWAVE: Optimal and Approximate Extended

Wavelets For Streaming Data. In VLDB’04 ,288-299,2004.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

79

[14]Jawerth, B., Sweldens, W. An Overview of Wavelet Based Multiresolution

Analyses. In SIAM Rev., 36(3): 377-412, 1994.

[15]Karypis, G. Han, E. H., Kumar, V. Chameleon: A Hierarchical Clustering

Algorithm Using Dynamic Modeling, IEEE Computer, 32(8):68-75, 1999.

[16] Larsen, B., Aone, C. Fast and Effective Text Mining Using Linear-time

Document Clustering. In KDD’9 9 ,16-22,1999.

[17]MacQueen, J. Some Methods for Classification and Analysis of Multivariate

Observations. In 5th Berkeley Symp. Math. Statist. Prob., 281-297,1967.

[18]Nassar, S., Sander, J., Cheng, C. Incremental and Effective Data Summarization

for Dynamic Hierarchical Clustering. In SIGMOD’04,467-478,2004.

[19]0’Callaghan, L., Mishra, N., Meyerson, A., Guha, S., Motwani, R. Streaming-

data Algorithms for High-quality Clustering. In ICDE’02,685-704,2002.

[20] Sander, J., Qin, X., Lu, Z., Niu, N, Kovarsky, A. Automated Extraction of

Clusters from Hierarchical Clustering Representations. In PAKDD’03, 75-87,

2003.

[21]Sheikholeslami, G., Chatteijee, S., Zhang, A. WaveCluster: a Multi-Resolution

Clustering Approach for Very Large Spatial Databases. In VLDB’99, 428-439,

1998.

[22] Sibson, R. SLINK: An Optimally Efficient Algorithm for the Single-link Cluster

Method. The Computer Journal, 16(1): 30-34,1973.

[23]Sollnitz, E. J., Derose, T. D., Salesin, D. H. Wavelets for Computer Graphics.

Morgan Kaufmann, 1996.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

80

[24]Triola, M. F., Goodman, W. M., Law, R. Elementary Statistics First Canadian

Edition, Addison-Wesley, Don Mills, Ontario, 1999.

[25] Widyantoro, D. H., Ioerger, T. R., Yen, J. An Incremental Approach to Building a

Cluster Hierarchy. In ICDM’02,705-708,2002.

[26]Yossi, M., Vitter, J. S., Wang, M. Dynamic Maintenance of Wavelet Based

Histograms. In VLDB’0 0 ,101-110,2000.

[27]Zhang, T., Ramakrishnan, R., Linvy, M. BIRCH: An Efficient Data Clustering

Method for Very Large Databases. In SIGMOD’9 6 ,103-114, 1996.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

