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ABSTRACT

Knowledge discovery from multidimensional data streams requires a method for 

effectively maintaining a historical “collection” of summaries of past windows such 

that historical stream queries can be answered. We present the Stream Summary Store 

method. In this method, ‘similar’ spatial summary objects that summarize points in 

different windows are approximated by one approximate spatio-temporal summary 

object. A stream summary store is a collection of approximate spatio-temporal 

summary objects that consume a certain space budget We outline various policies for 

satisfying the space budget constraint during the summarization of the data stream, 

and focus on policies that utilize prominent data mining and compression techniques 

(Clustering and Signal Compression) to further reduce the space consumption of the 

summary store. An extensive experimental evaluation shows that our methodology 

for constructing approximate spatio-temporal summary stores coupled with well- 

known Clustering and Signal Compression techniques significantly outperforms 

existing methods for summarizing multidimensional data streams.
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CHAPTER ONE 

INTRODUCTION

Knowledge discovery from data streams has attracted the interest of many scientists, 

as data streams are quickly becoming a prominent computational model and emerging 

as an application in many extraterrestrial and planetary fields including astrophysics, 

financial markets, and phone and web services.

Currently, knowledge discovery from data streams requires a method for 

effectively summarizing incoming windows and efficiently maintaining a historical 

“collection” of summaries of past windows such that queries pertaining to these 

collections of summaries of past windows can be effectively answered. Achieving 

effective answers is particularly important in conducting long term analysis of 

clusters evolution, where the emergence of several clusters and subsequent changes to 

them during the stream can be analyzed over a long period of time to make better 

decisions during the cluster mining process instead of relying on a limited short time 

period.

In this thesis, to achieve an effective window based summarization of a multi

dimensional data stream, we present the stream summary store methodology. The 

thesis is organized as follows. In chapter 2, we give a brief background of the data 

summarization method that we use for compressing hierarchical clusters: data 

bubbles. To develop our stream window based summarization methodology, we begin 

by designing in chapter 3 an effective and efficient dynamic summarization under a 

database environment. In chapter 4, we formulate the problem of effective window
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based summarization of multi-dimensional data stream and present our stream 

summary store methodology that solves this problem. We design an approximate 

spatio-temporal summary object that compresses ‘similar’ spatial summary objects 

that summarize points in different windows. A stream summary store that consumes a 

certain space budget is constructed using approximate spatio-temporal summary 

objects. Finally, we design various policies for satisfying the space budget constraint 

during the summarization of the data stream, and focus on policies that utilize 

prominent data mining and compression techniques (Clustering and Signal 

Compression) to reduce the space consumption of the summary store. By effectively 

integrating summarizations of many stream windows, our stream summary store is 

the first step towards achieving analysis of cluster evolution in multi-dimensional 

data streams. In chapter 6, we present the conclusions of our work: maintaining 

incremental data bubbles and stream summary stores. The bibliography is presented 

in chapter 7.

The contributions of the thesis are:

1. A method to speed-up the construction of data summaries during the 

assignment of points to the representatives of the data summaries.

2. An efficient and effective method for incrementally maintaining a given 

number of data bubbles in a dynamic database environment with insertions 

and deletions.

3. A general framework for summarizing multi-dimensional data streams.
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4. A novel approximate spatio temporal summary that is capable of effectively 

approximating several ‘similar’ spatial summary objects that summarize 

points in different stream windows.

5. Dynamic stream summary stores that satisfy a given storage space budget 

constraint and are capable of providing effective answers to queries of 

summaries of historical stream windows.

CHAPTER TWO 

DATA BUBBLES

In recent years and with the massive increase in the size of databases and the 

emergence of very large data streams, the development of scalable clustering 

algorithms has received a lot of attention in KDD. One approach for scaling up a 

clustering algorithm is to reduce its runtime such that it can be applied very quickly to 

large data sets and still effectively uncover the clustering structure within acceptable 

runtime limits. This reduction in runtime can be achieved by applying the clustering 

algorithm to only a summary of the database instead of the whole database. In data 

summarization methods such as Data Bubbles [5] and BIRCH [27], the database is 

partitioned into a small number of subsets, where each subset represents its elements 

by a number of sufficient statistics. A modified version of the preferred clustering 

algorithm can be applied then to those data summarizations to detect the interesting 

patterns.

Previously it has been shown that for hierarchical clustering algorithms, the so- 

called data bubbles [5] are much more effective than basic clustering features CF-(n,
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LS, SS), where LS is the linear sum of n points and SS is their square sum, as 

proposed, e.g., for BIRCH[27]. Data bubbles summarize a set of n points by. 

“compressing” the points into special sufficient statistics that are required for 

effective hierarchical clustering based on data summarizations. Data bubbles have 

been evaluated in [5], using OPTICS [2], and were shown to reduce the runtime of 

OPTICS dramatically while still producing high-quality hierarchical clustering 

structures.

A data bubble has been defined as follows [5]:

Definition 1. A data bubble B for a set o f points X = (XJ, l<=i<= n is a tuple 

B = (rep, n, extent, nnDist)

where

• rep is a representative, defined as the mean o f the points in X

• n is the number o f points in X

• extent is the radius o f B around rep that encloses majority o f the points in X

• nnDist(k,B) is a function that estimates the average k nearest neighbour

distances in B □

Although the information in a data bubble is more specialized than the basic 

sufficient statistics (n, LS, SS), it has been shown in [5] that the representative rep, the 

extent, and assuming a uniform distribution of points within a data bubble, the 

average nearest neighbor distances nnDist(k,B) can be easily derived from n, LS, SS. 

In this thesis, we use data bubbles because our intended application is analyzing 

hierarchical clusters, and data bubbles have been shown in [5] to be suitable for this
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task. In the next chapter, we present a new method for incrementally maintaining data 

bubbles.

CHAPTER THREE 

INCREMENTAL AND EFFECTIVE DATA 
SUMMARIZATION FOR DYNAMIC HIERARCHICAL 
CLUSTERING [18]

3.1 Motivation
Knowledge Discovery in Databases (KDD) has been instrumental in uncovering 

useful patterns hidden in very large databases, improving the understanding of these 

patterns, and aiding in making better decisions related to the databases. Detecting 

patterns effectively and efficiently in real world databases is a challenging task since 

these patterns usually reside in large amounts of high dimensional and noisy data. As 

time goes by, the data distribution and the underlying clustering structure may change 

whereby previously uncovered patterns may become obsolete. The ability of a data 

mining technique to detect and react quickly to dynamic changes in the data patterns 

is highly desirable.

Clustering is one of the most prominent and frequently used data mining 

techniques in KDD. The main goal of a clustering algorithm is to partition a set of 

data points into groups such that similar points belong to the same group and 

dissimilar points belong to different groups. There are two main kinds of clustering 

algorithms: partitioning and hierarchical. Partitioning algorithms like &-means [17] 

create k partitions of the points. Hierarchical clustering algorithms like the Single-
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Link method [22] or OPTICS [2] compute a representation of the possible 

hierarchical clustering structure of the database in the form of a dendrogram or a 

reachability plot from which clusters at various resolutions can be extracted, as has 

been shown in [20].

Various dynamic updates of deletions and insertions to very large databases add 

new challenges to the clustering task by possibly changing the underlying data 

distribution and the associated clustering structure over time. The naive approach is to 

reapply the data mining algorithms and extract the hidden patterns every time 

following a certain fraction of updates to the database. However, this approach is 

prohibitively slow for fast changing and large databases, especially if an up-to-date 

clustering structure is required frequently, e.g., in order to detect the changes in the 

data distribudon after a small fraction of updates occur and important decisions are 

based on the current data distribution. For example, for effective marketing and early 

detection of changing purchasing patterns, or fraudulent transactions on debit cards, it 

is very important to maintain a large history of transactions for all current 

customers/subscribers, in order to detect possible changes in the clustering structures, 

which could indicate possible changes in the customer/subscriber behaviour.

There are two main strategies to address the problem of incremental clustering in a 

database environment In the first strategy, a specialized incremental clustering 

algorithm is designed to directly handle dynamic changes in the database. In the 

second strategy, a data summarization technique is developed and used to compress 

the database incrementally, and then a slightly modified, standard clustering 

algorithm is subsequently applied to the generated data summarizations.
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Unlike the first strategy that typically invents yet another “new” incremental 

algorithm (with possible unclear properties) for a particular application, the second 

strategy is more flexible and generic as it allows the application of a broad range of 

existing standard clustering algorithms (hierarchical and partitioning) to the data 

summaries. The adaptation of a standard clustering algorithm to data summarization 

typically requires only minor modifications, as has been shown in [5]. It also has the 

advantage that the data summaries can be used for other data mining tasks such as 

computing approximate statistics of data sets or quickly approximating the number of 

objects in a database within certain attribute ranges of interest

In this chapter, we expand the second approach and propose a scheme to 

incrementally maintain data summaries of a dynamic database, i.e., we enhance data 

summarizations to become incremental and capable of adapting to insertions and 

deletions into a database. We choose the so-called data bubbles proposed in [5] for 

this task over the clustering features as proposed for BIRCH [27], which is another 

data summarization method that could be used for handling dynamic changes. We 

choose to enhance data bubbles because the intended applications of the achieved 

incremental data summarization include obtaining effective hierarchical clustering 

structures very quickly for large changing databases, and that it has been shown in [5] 

that data bubbles outperform clustering features significantly in this respect.

In this chapter, we show that our incremental data summarization method is 

effective in handling dynamic changes to a hierarchical clustering structure because 

the majority of the data bubbles can adapt to both insertions and deletions without 

rebuilding them. The data bubbles partition the space into sub-regions. Thus, during
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the dynamic updates to a data base, the incremental data bubbles are able to detect the 

local effects of insertions and deletions in these sub-regions more easily than 

comparing all of the current distribution to the previous distribution of the database 

prior to the most recent insertions and deletions.

Furthermore, by using a measure of the compression quality, we can identify the 

data bubbles that still compress their points well following the insertions and the 

deletions. The sub-regions that cause some of the data bubbles to have low 

compression quality -possibly due to changes in the underlying data distribution- will 

result in data bubbles that require rebuilding. Typically, the number of these sub- 

regions is small and thus the majority of the data bubbles can adapt easily to even 

very large numbers of insertions and deletions.

The contributions of this chapter are:

1. A method to speed-up the incremental construction of data summaries by 

utilizing triangle inequalities when assigning points to the representatives of 

the data summaries.

2. A scheme for incrementally maintaining a given number of data bubbles in a 

dynamic database environment with insertions and deletions.

3. A quality measure for identifying the incremental data bubbles that degrade 

the clustering structure most significantly.

4. Efficient and synchronized merge and split operations for rebuilding 

incremental data bubbles that have low compression quality in order to 

improve the effectiveness of the over all data summarization and consequently
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the quality of the analytical results obtained from the database using only the 

data bubbles such as hierarchical clustering structures.

3.2 Related Work
The problem of incremental clustering has been studied by many scientists. In this 

section, we discuss some of the proposed algorithms. There are several incremental 

clustering algorithms that do not use the data summarization technique but attempt to 

directly restructure the clusters to adapt to the dynamic changes of the dataset

Chen et al. [7] propose the incremental hierarchical clustering algorithm GRIN for 

numerical datasets, which is based on gravity theory in physics. In the first phase, 

GRIN uses GRACE, which is a gravity-based agglomerative hierarchical clustering 

algorithm, to build a clustering dendrogram for the data set. Then GRIN restructures 

the clustering dendrogram before adding new data points by flattening and pruning its 

bottom levels to generate a tentative dendrogram. Each cluster in the tentative 

dendrogram is represented by the centroid, the radius, and the mass of the cluster 

(which is the number of points in the cluster). In the second phase, new data points 

are examined to determine whether they belong to leaf nodes of the tentative 

dendrogram. If a new point belongs to only one node, then it is inserted in that node. 

Else, the gravity theory is applied to determine the leaf node that the point belongs to, 

and the point is added to the selected leaf.

Ester et al. [10] present a new incremental clustering algorithm called 

IncrementalDBSCAN suitable for mining in a data-warehousing environment. 

IncrementalDBSCAN is based on the DBSCAN algorithm [9], which is a density 

based clustering algorithm. Due to its density-based qualities, in
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IncrementalDBSCAN the effects of inserting and deleting objects are limited only to 

the neighborhood of these objects, where only these objects may undergo a change in 

their core property, while other objects retain their core property. 

IncrementalDBSCAN requires only a distance function and is applicable to any data 

set from a metric space. However, the proposed method does not address the problem 

of changing point densities over time, which would require adapting the input 

parameters for IncrementalDBSCAN over time.

Widyantoro et al. [25] present the agglomerative incremental hierarchical 

clustering (IHC) algorithm that also utilizes a restructuring process while preserving 

homogeneity of the clusters and monotonicity of the cluster hierarchy, where a 

homogenous cluster is a set of points with similar density (i.e. their distances to their 

closest neighbours are approximately equal), and the monotonicity of the clustering 

structure requires that the density of a cluster is always higher than the density of its 

parent in the clustering structure. New points are added in a bottom-up fashion to the 

clustering hierarchy, which is maintained using a restructuring process performed 

only on the regions affected by the addition of new points. The restructuring process 

repairs a cluster whose homogeneity has been degraded by eliminating lower and 

higher dense regions.

33 Speeding Up The Construction of Data Bubbles
In this section, we consider the problem of using incremental data bubbles to speed

up hierarchical clustering of large databases. Previously it has been shown that for 

hierarchical clustering algorithms, the so-called data bubbles are much more effective 

than basic clustering features CF=(n, LS, SS), where LS is the linear sum of n points
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and SS is their square sum, as proposed, e.g., for BIRCH. Data bubbles have been 

evaluated in [5] using OPTICS [2], and were shown to reduce the runtime of OPTICS 

dramatically while still producing high-quality hierarchical clustering structures.

The method that has been proposed to construct data bubbles consists of the 

following two steps:

1. Retrieve randomly s points from the database as “seeds”.

2. Scan the database, and assign each point in the database to the closest seed in 

the set obtained in step 1.

In step 2 of this construction algorithm, the closest seed of a data bubble to a point 

p  has to be found. In a standard implementation, the distance between p  and all the 

seeds has to be determined to make that decision. Although we assume that only a 

relatively small number of data bubbles is used to represent a database, these distance 

computations offer a big potential for optimization.

We propose to use triangle inequalities to reduce the runtime of constructing the 

data bubbles significantly. Relative to distance comparisons, distance calculations are 

computationally much more expensive.1 The idea is to avoid these computationally 

expensive distance calculations by using the much cheaper distance comparisons 

when applying certain triangle inequalities. The method is based on the observation 

that the computation of certain distances between seeds and database points can be 

avoided if the pairwise distances between the seeds are known. A sufficient condition 

under which this observation applies is stated in the following lemma:

1 Related techniques for pruning distance calculations using triangle inequalities have been successfully applied in 
the computation of similarity queries [4] and in £-means [8]
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avoided distance
actually 
computed 
distance

s h

known (pre-computed) 
distance between seeds

Figure 1. Pruning of Distance Computations

Lemma 1: Let p be a database point, and let sbi and sb2 denote the selected seeds o f 

two data bubbles Bj and Bj respectively. I f  d is t(sB i,S B 2 ) > 2* d is t ( p ,S B j) ,  then 

d i s t ( p , s Bi )  <  d i s t ( p , s B2)- □

The lemma is illustrated in figure 1. Assume we have pre-computed the distances 

among all the seeds selected in step 1 in the construction of data bubbles (once, prior 

to step 2). To determine which of the seeds is closer to a point p, we have to compute 

the distance between p  and at least one of the seeds, say s b j .  Assuming that this 

distance is as depicted in figure 1, and the distance between sbi and sb2 is larger than 

twice this distance, we can actually avoid the computation of the distance between p 

and sb2 since we can conclude using lemma 1 that sb2 cannot be closer to p  than sbj.

To utilize the above lemma during the assignment of points to their closest seeds, we 

maintain a distance matrix that stores the distances among the seeds of all of the data 

bubbles. Typically, the overhead of computing distances among the data bubble seeds 

is low since the number of data bubbles is small and more than compensated by the 

huge fraction of distance calculations between database points and the seeds that are 

consequently avoided.

computation • ^  S

 ....................................
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The assignment of a point p  to the closest data bubble using the triangle 

inequalities proceeds as follows. First the distance of a database point p  to the seed sc 

of a randomly selected data bubble is computed. This seed is the current candidate 

data bubble for assigning the point to from the set of data bubbles. We try to prune 

the seeds s-, of all the other data bubbles without computing their distances to p  by 

looking up the distances between sc and s,- and applying Lemma 1. If all data bubbles 

can be pruned, then sc is the closest seed to p. Otherwise, we attempt to find a closer 

seed to p  by computing the distance to another un-pruned seed Sj. If s;- is closer to p  

than the previous sc, then sj becomes our new current candidate and we attempt to 

prune the remaining data bubbles in a similar fashion using the distance to the new 

candidate. This pruning and updating of the candidate seed is iterated until there is 

only one candidate seed left, which has to be the closest to the point p. The point p  is 

assigned to the closest data bubble. The pseudo code for this procedure is depicted in 

Figure 2.

In the following presentation of the scheme for incrementally maintaining a set of 

data bubbles, we assume that we have initially constructed a set of data bubbles that 

summarize a large database of rf-dimensional points following the description in the 

previous section. As indicated, the purpose of our data summarization is to be able to 

obtain a hierarchical clustering result very quickly for the whole database, based on 

the data bubbles. If the database is dynamic, new points are inserted and old points 

are deleted over time, possibly changing the underlying data distribution. We are 

interested in the updated clustering structure and hence the underlying data 

summarization after a set of updates during which N% points have been deleted and
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set CandidateSeeds to the set of all seeds of data bubbles 

select and remove a random seed sc from CandidateSeeds 

compute minDist = dist(p,sc) 

while CandidateSeeds is not empty 

for all Si in CandidateSeeds 

look up the distance dSJ between s,- and sc

if dS Jc >= 2 * minDist

remove st from CandidateSeeds 

while CandidateSeeds is not empty 

select and remove a random seed 

compute dist(p,Sj) 

if dist(p,Sj) <  m inD ist 

set sc =  Sj

set m inD ist =  dist(p,Sj) 

break

return sc

Figure 2. Finding the Closest Data Bubble Seed for a Point p .

M% points have been inserted (where N  and M are parameters that determine the 

amount of updates after which we want to inspect the changes in the hierarchical 

clustering structure).

The high-level description of our scheme for incrementally updating a set of data 

bubbles following a batch of updates to the underlying database is given in Figure 3. 

In a nutshell, the sufficient statistics of affected data bubbles are decremented when 

deleting the old points and incremented when inserting the new points. When deleting 

a point p, the sufficient statistic (n, LS, SS) of the data bubble B where p was 

previously assigned are updated to {n-1, LS-p, SS-p2), whereas when inserting a point
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1. Delete N% of the old points and decrease the sufficient 

statistics of the corresponding data bubbles.

2. Insert M% new points and assign them their closest data 

bubbles (using the improved assignment algorithm 

described in section 3.3).

3. Determine the compression quality of the data bubbles.

4. Rebuild data bubbles that have a low compression quality.

Figure 3. Overall Scheme of Maintaining Data Bubbles Incrementally.

p, the sufficient statistics (n, LS, SS) of the data bubble B that is closest to p  are 

updated to (n+1, LS+p, SS+p2).

After these updates, it is possible that some data bubbles do not represent their 

points well or lost all of their points such that the overall compression quality is poor, 

possibly resulting in a distorted clustering structure based on these data bubbles. In 

order to recover from structural distortions due to changes in the data distribution, we 

have to identify those data bubbles that significantly degrade the quality of the data 

summarization and re-build them quickly, while at the same time maintaining a given 

compression rate.

3.4 The Compression Quality of Data Bubbles
To achieve a high quality of an overall compression by the data bubbles, we need to 

distinguish “good” data bubbles that have a high quality of compression from data 

bubbles that have a low quality of compression. Since building data bubbles 

completely from scratch can be considered as a baseline algorithm that has been 

shown to perform well for hierarchical clustering [5], we can assume that when 

building data bubbles from scratch, the majority of the data bubbles has “good”
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compression quality by construction (due to randomization effects we can not exclude 

to have a few data bubbles with a “bad” compression even in this case though). 

However, the important question is how to define and measure the compression 

quality of data bubbles.

Clustering features constructed by BIRCH [21] can be viewed as being 

incremental with respect to insertions only. These methods implicitly suggest, as a 

quality measure for clustering features, the diameter, or the standard deviation of the 

distances from the mean, by the way they construct and maintain the clustering 

features. Roughly speaking, clustering features can “absorb” points as long as the 

resulting diameter or a related measure does not exceed a given maximal value 

provided as an input parameter.

These statistics are all quantifying the “spatial extent” of the clustering feature, i.e., 

measuring a kind of radius around the mean into which the points compressed by the 

clustering feature fall. We argue that the spatial extent is not a suitable measure for 

the quality of data summarizations, especially in an incremental setting.

Solving the problem of “what are the clusters in a database?” often depends on the 

resolution at which we analyze the database. Hierarchical clustering algorithms try to 

leverage this problem by constructing a hierarchical representation of the data that 

can reveal clusters at different levels of resolution. Setting a threshold for the spatial 

extent of the data summarizations is equivalent to fixing a resolution at which the 

clusters can be found. This is already a severe limitation for a static database.

Moreover, setting a global threshold parameter for the spatial extent basically 

equalizes the extents of the clustering features and the data bubbles such that the data
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space is split more or less equally among the data bubbles. However, it is not 

uncommon in many applications to have richer and denser substructures in some 

regions of the data space than in others, although the regions may occupy the same 

volume. Such important differences may not be detected if the number of data 

bubbles that are located in the area that contains the substructure is too low because 

the region (but not the number of points) covered by the substructure is relatively 

small compared to the specified extent parameter for the data bubbles. In dynamic 

databases where the data distribution may change over time, the clustering 

substructures can evolve at lower levels of a hierarchical clustering structure and go 

undetected if they are located within the allowed radius of a data bubble.

The measure that is much more significant for determining the quality of a data 

bubble is the number of points it summarizes relative to the total database size. 

Roughly (and vaguely) speaking, “good” data bubbles summarize not too many and 

not too few points.

On the one hand, potentially “bad” data bubbles summarize a large fraction of the 

total number of points. These data bubbles may easily span several substructures that 

are lost in a subsequent clustering of all the data bubbles, and thereby critically 

degrading the quality of the clustering result. In a dynamic setting, for instance, an 

over-filled data bubble can even arise when a new cluster appears in the database in 

an area that is not covered well by data bubbles (e.g., a previous noise region).

On the other hand, data bubbles that compress a very small fraction of the whole 

database are also not good in the sense that these data bubbles may become empty 

very quickly when all their points are deleted and no new points are inserted in the
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regions that they span whereby they do not contribute much to the overall 

compression rate. These data bubbles do not directly influence the quality of the 

hierarchical clustering results based on data summarization. However, they may 

degrade the clustering result indirectly to some degree because they are in the sense 

’’wasted” that it would be better to release their points (and assign them to the nearby 

data bubbles), and position their representatives elsewhere in the data space, where 

they can contribute more to the overall quality of the data summarization.

To capture the quality of a data bubble, we introduce the data summarization index 

P that we define to be the fraction of points in the database compressed by the data 

bubble.

Definition 2. Given a data base D o f N  points and a set Q o f data bubbles that 

compress the points in D, the data summarization index Pi o f a data bubble i that

compresses n points is defined as P i = ~  D

In order to determine which data bubbles have a low quality of compression, we 

know from our initial observation that when building data bubbles from scratch, the 

majority of the data bubbles have good compression. Thus, a data bubble has a bad 

compression if its fraction of points is significantly different from the majority of 

fractions of points in the data bubbles. The question is how to determine the P values 

that define “good” data bubbles. Even after a complete construction of the data 

bubbles from scratch, there is some significant variability in the number of points per 

data bubble due to different point densities in different regions of the data space. 

However, we can analyze the distribution of p  values in order to determine which 

data bubbles have a good quality of compression and which do not
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In a set Q of data bubbles that compress the database D, the P values of all the data 

bubbles follow a certain distribution. By analyzing the statistical properties of the 

mean and the standard deviation of this distribution, we recognize the outlier P values 

that identify the data bubbles that have significantly low compression quality and 

which require special handling in our scheme of incremental data summarization. 

Although we don’t know the exact distribution of the p  values, we can determine the 

outliers in the distribution by estimating the lower and upper boundaries of the P 

interval that characterizes the “good” data bubbles through using Chebyshev's 

Inequality theorem [24]. According to the theorem, if px and ax are the mean and 

standard deviation of a random variable X, then for any positive constant k

Thus, the probability that a random variable will take on a value within k standard

o f the distribution. By considering our data summarization index P as a random 

variable with the mean pp and the standard deviation op and for a specific probability 

p, the value k can be determined as well as the upper (and lower) boundary of the 

region that contains at least p% of the P values. The upper boundary is pp + hap (and 

the lower boundary is pp - kop).

A data bubble that compresses several substructures would contain a large fraction 

of points, its P value would be significantly larger than the average, and therefore its P 

value would be above the upper boundary pp + kop (the p  value would be located 

towards the right end of the distribution). On the other hand, p  values that are 

significantly lower than the average P value are below the lower boundary pp - kap.

deviations of the mean of the distribution of its values is at least 1 -  1 /k 2 regardless
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These low p  values identify data bubbles that are (nearly) empty (i.e. they compress 

relatively very few or no points). Using these statistical boundaries in the distribution 

of the data summarization index, we distinguish three classes of data bubbles 

according to their compression quality.

Definition 3. Given a data base D o f N points and a set Q o f data bubbles that 

compress the points in D, let pp and op be the mean and standard deviation o f the 

distribution o f the P values fo r all data bubbles in Q. Given a probability p (where the 

corresponding k value is computed according to Chebyshev's Inequality), a data 

bubble B with the data summarization index fS is called:

• "good” iffP  € [pp - kxtp, pp + kop]

• “under-filled” iffP  <pp-kop

• "over-filled” ifffi > Pp + kop o

Improving the quality of the over-filled data bubbles is immediately critical for 

providing a high quality data summarization of the given database. Although the 

under-filled data bubbles have a low compression quality, their effect on the 

hierarchical clustering structure is not as significant as the effect of the over-filled 

data bubbles. The under-filled data bubbles do not contribute significantly to the 

overall data summarization and in principle could remain as-is without attempting to 

improve their compression quality. Thus, we focus on improving the compression 

quality of the over-filled data bubbles through “splitting” them by migrating possible 

under-filled data bubbles, as explained next
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3.5 Maintaining Incremental Data Bubbles
The main objective of our incremental data summarization scheme is to efficiently 

improve the quality of the over-filled data bubbles since they degrade the 

compression quality most A natural way to reduce the number of points in a data 

bubble is to reassign some of these points among more data bubbles, whereby an 

over-filled data bubble gives up some of its points to other data bubbles.

The naive approach is to reassign some of the points in an over-filled data bubble 

to their next closest data bubbles (the closest data bubble of each of these points is the 

over-filled data bubble they are currently assigned to by construction). These next 

closest data bubbles are the surrounding neighbours of the over-filled data bubble. 

However, reassigning some of the points in the over-filled data bubble to (some) of 

its neighbouring data bubble is very likely to reduce the compression quality of these 

neighbouring data bubbles due to the following reasons.

When constructing a set of data bubbles to compress a given database, more seeds 

are likely to be selected from the dense regions in the data space due to the random 

seed selection process. Thus, typically data bubbles “share” dense regions, and the 

majority of the data bubbles have a good quality of compression. When the 

compression quality of a data bubble degrades from good (or even possibly under

filled) to over-filled, then the number of points it compresses has increased 

dramatically but not for other data bubbles. The over-filled data bubble has absorbed 

a large number of new points while its neighbours have not, which indicates that the 

neighbouring data bubbles are not close to the over-filled data bubble, i.e. the new 

points have appeared in a region that is not summarized by the neighbouring data 

bubbles.
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Figure 4. Over-filling of a Data Bubble by New Clusters.

In figure 4, we see an example of this over-filling effect Given an initial database 

(part a), the seeds for the data bubbles (part c) are selected randomly during the 

construction phase with more seeds selected in the region of the cluster. When two 

new clusters are inserted far from the initial cluster (part b), there are few data 

bubbles in the vicinity of these new clusters, in this case only one such data bubble, 

and this data bubble becomes over-filled by absorbing these new clusters. 

Reassigning some of the points in the over-filled data bubble (identified by a circle in 

part d) to its neighbouring data bubbles would force the neighbouring data bubbles to 

absorb points that are located far away from the regions they compress, thereby 

significantly degrading their compression quality and distorting the net clustering 

structure.

pps

initial cluster two newly inserted clusters

ififl
w
H f l
^ § 1

over-filled data bubble
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We propose, instead, to position additional data bubbles. In our incremental data 

summarization scheme, we can not assume that we have access to an unlimited 

number of unused data bubbles that can be used for improving the compression 

quality of the over-filled data bubbles since “splitting” an over-filled data bubble 

requires positioning additional data bubbles in the vicinity of the center of the over

filled data bubble. We already know that the under-filled data bubbles have low /? 

values and contain relatively few (or no) points that can be distributed among 

neighboring data bubbles without significantly affecting the quality of these 

neighboring data bubbles. Once the points of these under-filled data bubbles are 

redistributed, these data bubbles can be re-used. Thus, we can migrate them and 

reposition them in the vicinity of the centers of over-filled data bubbles to achieve the 

splitting of the over-filled data bubbles.

We can see an example of this migration of under-filled data bubbles in Figure 5. 

For a given database (part a), the set of data bubbles that summarizes the points in 

this database contains few data bubbles that are under-filled. Following the insertion 

of the two new clusters (part b), under-filled data bubbles (identified in circles in part 

c) are re-positioned and migrate to the region of the two new clusters (part d) to 

improve the compression of these new clusters.

In the current approach of incremental data bubbles for handling updates in the 

database, the quality of an over-filled data bubble Bover.fiiud is improved by merging 

and ideally re-positioning an under-filled data bubble Bunder.f,ued to the vicinity of the 

center of B™.r.pi.A and “splitting” 5over.̂ ae</into two new data bubbles B\ and Z?2- In the 

absence of an under-filled data bubble, we utilize enough data bubbles from the
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Figure 5. Migration of Under-filled Data Bubbles.

“good” data bubble subset to split all the over-filled data bubbles. We select the 

lowest quality data bubbles from the “good” subset to perform the splitting of all the 

over-filled data bubbles.

Figure 6 shows the pseudo code for this process. The quality of B over.fu ied  is 

improved by first merging B u n d er-ju u d  and then splitting B 0ver-jm ed• During the merge 

phase, the points in the Bu^ur-fdud are released and assigned to their next closest data 

bubbles thereby emptying Bunderfuud• Bunderfilled is re-positioned to the region of 

B o ver-fu u d  by selecting a new seed S \  for it from the current points in B over.ju u d . Next, 

Bover-fuied is assigned a new representative si from its current points, and the points in 

5over-fiiied are distributed between the two newly selected representatives s\ and S2- We 

utilize the triangle inequalities mentioned above throughout the process of assigning a
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1. Select a random under-filled data bubble Bunder-juied (if none 

exists, select the “good” data bubble with lowest quality in the 

“good” data bubbles set)

2. Free Bunder-juied by assigning its points to their next closest data 

bubble(s)

3. Migrate Bunder-juied to the region compressed by Bover.fiUed by 

selecting a new seed si for it from the points of Bover-fiiud

4. Select a new seed S2 for Bover.faud from the points of 5over-fiUed

5. Split Bover.fiiied by reassigning its points between s\ and S2

Figure 6. Improving the Quality of an Over-filled Data Bubble.

point to its closest data bubble. The sequence of synchronized merging and splitting 

of data bubbles is repeated after updating the database with each batch of insertions 

and deletions.

3.6 Performance Evaluation
In this section, we perform an extensive evaluation of our scheme for achieving 

incremental data bubbles. The results show that our new method for incremental data 

summarization is suitable to be used with a clustering algorithm for mining 

hierarchical clustering structures very efficiently from dynamically changing 

databases, and that it is scalable and well suited for high dimensional data.

We first compare the adaptation of the data bubbles to insertions and deletions of 

points when using the fraction of points versus the extent as the measure of the 

compression quality. We perform a simple experiment where we demonstrate that if 

we use the extent of a data bubble as the quality measure instead of its relative 

number of points, the extent quality measure fails to produce a high quality of
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compression while our quality measure does not As figure 7 shows, we use a simple 

database that consists of two clusters before any insertions and deletions of points. 

During the insertions and deletions of points, the cluster in the middle disappears 

while two new clusters appear in the far right.

When using the extent as a measure of the quality of compression, the data bubbles 

(enclosed in a circle in part c of figure 7) that compressed the deleted cluster are 

eventually repositioned to another location. However, the insertion of the new 

clusters does not attract new data bubbles since they appear in a region where a 

previous data bubble is located (the enclosed data bubble in part d), which now 

summarizes more than one cluster after the insertions and deletions.

On the other hand, when using the fraction of points as the quality measure, the 

data bubbles are able to adapt to both the deletions and the insertions of clusters. The 

extent quality measure attempts to partition the space into roughly equal regions 

without regard to the point density. When a cluster is deleted, the data bubbles that 

compressed this cluster become empty and their extents are very small compared to 

the average extent. Thus, they are repositioned to new locations in the space. 

However, when new points possibly representing several sub-clusters are inserted, a 

close by data bubble can easily absorb all the sub-clusters without a significant 

change in its extent and its low compression quality is undetected by the extent 

measure. This data bubble now compresses significantly more points and the quality 

measure using the fraction of points instead of the extent identifies it as having a low 

compression quality whereby more data bubbles are repositioned to its vicinity, and 

the two new clusters are now compressed by several data bubbles instead of one (the
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Figure 7. Comparison of Adaptation of Data Bubbles to 
Insertions and Deletions When Using the Fraction of 

Points vs the Extent as Quality Measures.

data bubbles identified in a circle in part f in figure 7). Thus, using the fraction of 

points is a much better quality measure than the extent to adapt data bubbles to the 

dynamic changes in a database.

Next we evaluate the performance of the incremental data bubbles using several 

databases. The performance of the incremental scheme is measured under the 

following dynamic situations of the database:

* •
’ •.?; * e - • • . *f•

© • •
• • -
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• Random: a database where points are inserted and deleted randomly according 

to the data distributions.

• Appear: a database where points are inserted and deleted such that a new 

cluster appears in the database over time.

• Extreme appear: a database where points are inserted and deleted such that a 

new cluster appears in the database over time but in a completely new region 

that does not contain any previous points, not even noise.

• Disappear: a database where points are inserted and deleted such that an old 

cluster disappears from the database over time.

•  Gradmove: a database where one cluster gradually moves across the space 

over time via insertions and deletions.

• Complex: a combination of the above cases where there are random insertions 

and deletions to some clusters in the database, while other various clusters 

appear, disappear, and move with insertions and deletions of points as shown 

in figure 8.

We create databases using synthetic data to simulate the various scenarios 

described above which allow us to analyze the effectiveness of our scheme for 

different changes to the data distribution. We populate our databases with 50,000 to 

110,000 points electing to simulate a reasonable average of the database size (smaller 

databases are easier to summarize while larger databases would yield similar results 

using proportionally more data bubbles for achieving the summarization).

Currently, we focus on achieving an effective data summarization capable of 

handling the dynamics of a given database with a certain percentage of insertions and
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Figure 8. Clustering Structure in the Complex Database

deletions. In our databases, we assume that on average there will be an equal number 

of insertions and deletions (consistendy inserting (or deleting) more points over time 

would cause the database to grow infinitely (or to disappear completely)). The 

probability needed to determine the boundaries of the classes of the .data bubbles 

(presented above) was set to 80%. Using Chebyshev inequality, a probability of 80% 

results in a k value of 2. We used 200 data bubbles during the summarization of the 

databases, which is about 0.2% of size of the various databases (for analysis of 

different compression rates see [5]). We created databases with the above properties 

for several dimensions (2, 5, 10, 20). All results are average values of 10 repetitions 

of simulating the insertions and deletions.

We measure the quality and effectiveness of the incremental data bubbles by 

studying their effect on the performance of a clustering algorithm relative to its 

performance when using completely rebuilt data bubbles. After each batch of
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Figure 9. Incremental Scheme Quality using 2D Databases

insertions and deletions, we summarize each data base of the current points by 

building separate incremental and completely rebuilt data bubbles. Next, OPTICS is 

applied to these data bubbles separately to generate the reachability plots of the 

completely rebuilt and incremental clustering structures. The clusters are extracted 

from these plots using a modified version of an automatic method developed in [20]. 

The performance of OPTICS is determined using the F score measure [13] (where F = 

2*p*r/(p+r), p is precision and r is recall).

We notice from figures 9 and 10 that the F score of the clustering algorithm 

OPTICS using our incremental scheme is always very close to (and sometimes higher 

than) the F score when using completely rebuilt data bubbles even when clustering 

the complex database. Thus, our scheme for maintaining the incremental data bubbles 

is effective in preserving both the quality of the data summarization and the quality of 

the clustering algorithm as measured by the F score.
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Figure 10. Incremental Scheme Quality using Complex Databases

To further analyze how our scheme of incremental data bubbles affects the quality 

of the data summarization technique, we study the effectiveness of repositioning the 

representatives of the rebuilt data bubbles in the proximity of the data points 

following a certain number of insertions and deletions. When a representative is close 

to its points, the compactness (which is the sum of the square distances of the points 

in the data bubble to its representative) is relatively low. In the completely rebuilt 

data bubbles, the representatives will be close to their points, with some possible 

variation in the positions of these representatives due to their random selection. If the 

repositioning of the representatives of incremental data bubbles is effective, then the 

overall compactness of the incremental data bubbles should not (significantly) exceed 

the overall compactness of the completely rebuilt data bubbles. As shown in figures 9 

and 10, our dynamic scheme is very effective in (re)-positioning data bubbles. 

Incremental data bubbles even have a lower compactness than the completely rebuilt 

ones in many experiments. This effective (re)-positioning is further supported and 

reflected by the good clustering qualities (as indicated by the F scores) that we 

achieve.
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We further analyze the adaptation of the incremental data bubbles to the dynamic 

updates to a database by examining the number of data bubbles that are rebuilt by our 

incremental scheme. Figure 11 shows the number of rebuilt data bubbles when 

applying our scheme to the dynamics of the complex database. On average, we 

rebuild only between 2 and 4 percent of the current data bubbles. This complex 

database contains various cases of dynamic changes to the clustering structures (a 

cluster disappears and reappears in completely different region of the space). Even in 

such highly dynamic cases, we never have to execute a rebuilding of all the data 

bubbles. Thus, the majority of the data bubbles are capable of adapting to changes in 

the data distributions by simply updating their sufficient statistics.

Furthermore, we study the effect of using the triangle inequalities in speeding up 

the assignment of points to data bubbles by measuring the number of distance 

calculations saved when utilizing the triangle inequalities (the ove±ead of computing 

the pair-wise distances among the representatives to utilize the triangle inequalities is 

low because typically the number of the representatives relative to the size of the 

database is small). Figure 12 shows the gain of using the triangle inequality in terms 

of the percentage of pruned distance computations when summarizing the complex

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



33

£ 0 8o
50.6O)sa4
c
20 2

Figure 12. Pruning of Representatives using 
Triangle Inequalities

database. Typically, we can prune between 60 and 80 percent of all the distance 

computations using the triangle inequalities. This leads to significant gain in 

performance. This observation also indicates that a similar strategy is likely effective 

in significantly speeding up other techniques based on point assignment since those 

methods also basically execute distance computations.

In addition, we notice in figure 12 that the pruning factor decreases slowly as the 

fraction of updates in the complex database increases. As large amounts of points are 

inserted and deleted, the changes in the clustering structure in the complex database 

occur more abruptly, i.e. the clusters disappear and appear in larger batches. For 

instance, for the appear cluster, there are no initial representatives that are close to the 

points of the inserted cluster and can be used in the pruning. Only after the first batch 

has been inserted will there be close by representatives that can be used in the 

pruning. For the smaller fraction of insertions, the new region attracts a representative 

much earlier such that for points in later insertions the probability of avoiding 

distance computations to far away data bubbles is significantly higher.
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CHAPTER FOUR

SPACE BUDGETED MAINTENANCE OF SUMMARIES 
FROM MULTI DIMENSIONAL DATA STREAMS FOR 
EFFECTIVE CLUSTER ANALYSIS

4.1 Motivation
Knowledge discovery from data streams has attracted the interest of many 

scientists, as data streams are quickly becoming a prominent computational model 

and emerging in many planetary and extraterrestrial fields including astrophysics, 

financial markets, and phone and web services. Data streams pose numerous exciting 

computational challenges ranging from compact summarization of the stream, to 

effective pattern discovery, to efficient query processing. The ability of mining 

algorithm to solve these problems and provide accurate and efficient answers to 

stream queries in a flexible manner that is suitable for diversified applications is 

highly desirable.

A data stream is an instance of a block evolution model, where a data set is 

updated periodically through insertions and deletions [11]. In this model, the data set 

consists of conceptually infinite sequence of data blocks Du Di, — that arrive at times 

1,2,... where each block has a set of records. Some applications require mining all of 

the data encountered thus far (unrestricted window scenario), while others require 

mining only the most recent part (restricted window scenario). There are several 

conditions on the representation of data streams [19]. First, a large portion of data 

arrives continuously and it is unnecessary or impractical to store all of the data. 

Second, the data points can be accessed only in the order of their arrival. Third, the
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data arrives in chunks that fit into main memory. Moreover, there are also several 

requirements for the mining of data streams [3]. These requirements include: 1) 

compact representation of the points that can be maintained in main memory even as 

lots of new points arrive, 2) fast incremental processing of new data points, and 3) 

clear and fast identification of outliers. The interplay among these conditions and 

requirements, and their concurrent satisfaction makes knowledge discovery from data 

stream very interesting and challenging.

Cluster analysis from the distant past of a data stream hinges on effective 

summarization of the data stream. The summarization must not only be very space- 

efficient but also capable of efficiently providing high quality answers to stream 

queries. The problem of effectively and efficiently answering historical queries from 

data streams can be divided into two main sub-problems:

1. Effective and efficient construction and maintenance of a history of 

summarization of the data stream

2. Effective and efficient knowledge discovery from the summarization history

The formulation of the two main sub-problems and the performance of their

solutions are interdependent High quality (or effective and efficient) maintenance of 

the stream summarization is a precondition for high quality querying of the data 

stream, and high quality querying is a guiding condition for performing subsequent 

high quality maintenance and updating of the stream summarization. However, the 

solution to the problem of effectively and efficiently answering historical queries 

begins with effective and efficient historical summarization of the data stream.
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In this chapter, we formulate and solve the first problem of efficiently constructing 

and maintaining a high quality and effective historical summarization of a multi

dimensional data stream. We present the main challenge in effectively summarizing a 

multi-dimensional data stream. In addition, we design various policies for 

maintaining both the summarization quality of the history and its overall space budget 

constraint

The contributions of this chapter are:

1. A general framework for the summarization of multi-dimensional data 

streams.

2. Novel approximate spatio temporal summary suitable to effectively 

approximate several ‘similar’ spatial summary objects.

3. Dynamic stream summary stores that satisfy a given storage space budget 

constraint and provide effective answers to queries of historical stream 

windows.

4.2 Related Work
There has been a burst of research on data streams recently, with many efforts 

dedicated towards designing methods for compressing data streams and providing 

approximate answers to queries, and mining data streams. In this section, we quickly 

overview some of the related work relevant to summarizing data streams that contain 

dynamic clusters. As we discussed in the introduction, D. Barbara [3] and Ganti et al 

[1 1 ] presented the conditions and the requirements for modelling and mining data 

streams respectively. Several researchers have extended current database mining 

schemes to data streams mining, while adapting classical mining approaches.
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Aggarwal et al [1] recently presented a framework for clustering evolving data 

streams by combining online micro clustering with offline macro clustering using 

BIRCH [27] to compress stream windows into clustering features. During the micro 

clustering phase, a temporal version of the clustering features of BIRCH and 

pyramidal time frames are used to store on disk micro clusters from different time 

snapshots in a pyramidal pattern. Once the user specifies the window for mining the 

macro clusters, the micro clusters for that window are extracted using the additivity 

property of the clustering features and the macro clusters are uncovered using a 

modified k-means algorithm that regards the micro clusters as points.

O’Callaghan et al [19] presented a new jfc-median algorithm called LocalSearch to 

solve a ^-median problem that minimizes the facility cost function, where the cost 

associated with each cluster is estimated by considering the sum of the square 

distance of the points to the centres of the clusters. The Stream algorithm is presented 

to cluster each chunk of the stream using the LocalSearch algorithm.

In addition, researchers have also noted the application of signal processing 

techniques to compress streaming data and provide approximate answers to queries. 

Wavelets are a mathematical tool that transforms a signal into a set of so-called 

coefficients, where the first coefficient is the overall average of the signal and the 

remaining coefficients represent the overall ‘shape’ of the signal from coarse to fine 

respectively. By retaining all coefficients, the set can be inversely transformed to 

reconstruct the original signal, such that no information in S is lost. When several of 

the coefficients have small values, the space consumption of S can be reduced by
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deleting these coefficients while introducing relatively small error when 

reconstructing the signal S.

To illustrate how wavelets work, we borrow an example from [26]. Assume we are 

given a signal 5 = [2 ,2 ,0 ,2 ,3,5,4,4] and we want to find the pattern in the signal. 

Using wavelets, we build this pattern hierarchically. In each step, we build the 

pairwise average of the current ‘values’ of the signal until one value is obtained 

which is the overall average of the signal. In the first step of transforming S using 

wavelets, we transform 5 to the following values [2,1,4,4], where the average of the 

first two values in S, (2,2), is 2, the average of the second two values of 5, (0,2), is 1, 

and so on. To be able to inverse the values back to S, we save additional information 

by storing coefficients. Hoar wavelets maintain as coefficients the pairwise 

differences of the original values. Thus, in the above example, we also store four 

coefficients: 0, -1, -1, 0, where (2-2)/2 = 0, (0-2)/2 = -1, and so on. We repeat this 

process recursively, until we obtain the overall average of the signal and the final set 

of coefficients as presented in table 1, where 5 is now transformed to

s ' = [ 2 ^ , - i X , K , o,o, - i, - i,o] .

Table 1. Illustration of Wavelet Transformation

Resolution Averages Coefficients

8 [2,2,0,2,3,5,4,4]

4 [2,1,4,4] [0 ,-1 ,-1 ,0 ]

2 il/zA ] 0 ]

1 [2 %] [ - W
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Chakrabarti et al [6 ] used high dimensional wavelets to build approximate 

synopses (wavelet coefficient synopses) of data streams such that queries can be 

approximately answered very quickly and entirely in the wavelets domain using 

special query processing algebra that is applicable to wavelet coefficients. Gilbert el 

al [1 2 ] also apply wavelets to stream data by building ‘sketches’ of the data that are 

suitable for approximately answering point and aggregate queries of data streams. A 

data stream is modelled as an incoming signal which is transformed using Hoar 

wavelets and compressed by storing only a small number of the coefficients. When 

new data arrives, these coefficients are carefully maintained to preserve the quality of 

their approximation. Guha et al [13] also utilize wavelets to compress data streams 

and provide approximate query answers. Their approach, however, focuses on 

compressing multiple measures using so called extended wavelets, where an extended 

wavelet attempts to save storage space by storing the same wavelet coefficient present 

in different measures using a bit map. They provide schemes for maintaining these 

extended wavelets in a streaming fashion using a limited amount of space.

However, wavelets are not suitable for approximating clusters of high dimensional 

data, and, more importantly, their role in providing approximate answers to 

historically distant queries pertaining to evolutionary patterns of clusters present in 

dynamic data streams has not been envisioned yet In this chapter, we overcome the 

high dimensionality limitation by first using an effective data summarization method 

suitable for compressing high dimensional data, and then utilize wavelets to further 

reduce the space consumption of the stream summarizations so that queries pertaining
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to distant past regions of a multi-dimensional data stream can be effectively 

answered.

43 A General Framework for the Summarization of Multi- 
Dimensional Data Streams
In previous work, different types of data summarizations for multi-dimensional point 

data such as Clustering Features [27] and Data Bubbles [5] have been proposed to 

summarize static data sets. In addition, Clustering Features have been used to 

compress data streams [1], and Data Bubbles have been improved and utilized for 

compressing dynamic databases[18]. Both Clustering Features and Data Bubbles 

summarize in a sense sub-regions of the multi-dimensional space where data is 

located. In the following, we denote any of the summaries generated by these 

methods as spatial summary objects.

A data stream consists of an infinite sequence of data blocks -also called 

“windows”-  W2, ... that arrive at times 1, 2, ... A window-based data stream 

summarization can be consequently modeled as summarizing a (sub-) sequence of 

windows of the stream. In a limited amount of storage space, we can obviously only 

maintain a limited number of summary objects. A window based summarization of a 

data stream is defined as following.

Definition 4. Given a data stream R={WU Wo,...} o f data point windows arriving at 

times 1, 2, ..., a (finite) window-based summarization o f R  is conceptually a

sequence <SSW" ,...,SSw‘m > where each element SSW,J is a summarization o f a 

window (at time stamp ij) comprised o f a number o f spatial summary objects, i.e.:
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• For each j e  {1, ..., m}, there is a k>l such that SS 0 = {S,,...,S4} is a set of 

k spatial summary objects that summarize the points in a stream window Wijt 

where ij e  {1, 2, . . . } .

W- w
• I fr  < s, then SS summarizes an earlier window than SS  *' . □

Clearly, given a window-based summarization WSR =< SS™1' ,...,SSw‘m > of a data

stream R, the sequence will maintain information about windows in a certain time 

interval fo, r£] of the stream, where the start time stamp ts= i\ and the end time stamp 

t£=im-

The challenge for a data stream summarization is to describe a portion of the 

stream as large as possible using a window-based summarization in a finite amount of 

space such that important information about the data distribution in the stream can be 

re-constructed (e.g., using clustering algorithms). In practice, we want to be able to 

answer queries about portions of a stream. For that, we want to retrieve the 

information about all windows of the stream that belong to a query time interval. 

Since past stream windows are no longer available at query time, we can only answer 

the query by information retrieved from a stream summarization. In order to provide 

high-quality answers to queries pertaining to the distant past of a stream, the 

summarization should effectively manage its finite storage space.

A window-based summarization WSr can be constructed (and maintained) using 

different methods. A naive method is to keep just the m most recent window 

summarizations. Assuming that the available storage space can hold m window 

summarizations, once the space is filled up, a new window summarization is added
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after deleting the oldest window summarization. This method obviously offers only a 

very limited stream time horizon and may store highly redundant information without 

considering any repetitive patterns in the stream.

The most recent proposal for summarizing multi-dimensional data streams in [1] 

can also be seen as an instance of our window-based summarization framework. This 

method improves over the naive method by using pyramidal time frames to store 

summarizations of windows from different time stamps in a pyramidal fashion. The 

idea is to maintain a number of I so-called “time orders”, where the Ith time order 

maintains a certain number of summarizations of windows with time stamps divisible 

by d  for some user-specified value of a. This is conceptually equivalent to dividing

the sequence < SSW',...,SSw‘m > into I blocks (each of size mil) to store the 

summarizations of windows belonging to different time orders. For instance, if a=2 

(as used in the performance evaluation of [1]), the block for the first time order (2 °) 

will store the summarizations of the most recent mil windows. The next block (time 

order 2 1) will store mil summarizations of every second most recent window, and so 

on. For better space utilization, summarizations of windows that simultaneously 

belong to several time orders are only stored in the highest time order they belong to. 

The naive method is still used for adding a new window summarization SSW to its 

block: the oldest summarization in this block is deleted and SSW is added.

The pyramidal time frames provide information within a larger time horizon than 

the naive method. However, the available information is less accurate the more 

distant into the past it is. This scheme also does not consider any repetitive patterns in 

the stream to optimize storage utilization, and has the disadvantage that not only
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different data streams may require different settings for the time orders (their number 

and the base of an order), but also the user has to somehow specify these parameters 

before initiating the summarization of the stream.

By further analyzing definition 4, we note that there are three main issues that have 

to be addressed when instantiating a window-based data stream summarization

< SSWil = {5,,..., 5*, 55 = {5,,..., S km} >  :

1. Determining which windows summarizations to keep in the sequence.

2. Determining which summary objects to keep in a certain window summarization.

3. Designing a space efficient encoding of the summary objects.

There are several thinkable policies for addressing each issue. To the best of our 

knowledge, the only proposal that has been presented for window based 

summarization of multi-dimensional data streams addresses only the first issue by 

keeping summarization windows according to a pyramidal time scheme [1].

We propose not to have a fixed policy for determining which window 

summarizations to keep based on a time stamp scheme but rather have the ‘least 

informative’ window summarizations removed. As we will see, we can achieve this 

goal by presenting effective policies for addressing the second and third issues.

To address the second issue, we propose two different policies for representing 

windows with different numbers of spatial summary objects. The first policy is age 

based where older window summarizations contain fewer summary objects. The 

second policy utilizes the “informativeness” of spatial summarizations objects based 

on its compression quality and the role it plays in the third issue.
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To address the third issue, we propose two encoding schemes that effectively 

represent “similar” summaries by one “approximate” summary with a controlled error 

level and thus reducing the description length per summary object and more 

importandy enabling the applications of prominent compression techniques (Signal 

Compression and Clustering).

In our methodology, we use Data Bubbles as spatial summarization objects since 

our intended application is mining data streams of multi-dimensional hierarchical 

clusters, and Data Bubbles have been shown to significantly outperform other 

summarization methods for effectively uncovering hierarchical clusters. Our 

methodology is also applicable using other spatial summary objects such as 

Clustering Features.2

4.4 Approximating Spatial Sum m ary Objects
4.4.1 (e,S) Approximate Spatial Configuration

In order to achieve effective window based summarization of a very large multi

dimensional data stream, we propose to encode several “similar” spatial summary 

objects that represent repetitive patterns in the underlying data distribution using one 

“approximate” summary object. The type of spatial summary objects we assume 

represents objects in a sub-region of the multi-dimensional space by sufficient 

statistics, which contains at least information equivalent to (n, LS, SS) as presented in 

section 4.3. This information is representing the data in a spatial region by the number 

of points, and some spatial information which is essentially the mean, i.e., the 

location, and the variance, i.e., the “spread”, of the summarized data points. In order

2 Although the information in a data bubble is more specialized than the basic sufficient statistics (n. LS. SS). it has 
been shown in [5] that the representative rep. the extent, and assuming a uniform distribution of points within a 
data bubble, the average nearest neighbour distances nnDist(k,B) can be easily derived from n. LS. SS.
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to compare spatial summarization objects, we first define the spatial configuration of 

a spatial summary object as following.

Definition 5. Given a spatial summary object S constructed from the clustering 

feature CF = (n, LS, SS), the spatial configuration *Fs of S is the tuple

¥ 5  = (means , vars ) 
where

• means = LS/n

vars =SS/n □

Using this definition, we can compare spatial configurations of spatial 

summarization objects S\ and S2 by comparing their variances and means. Intuitively, 

two summary objects are approximately equal if their representatives are ‘close’ and 

the two distributions they compress have similar variances. The idea is to check 

whether spatial summary objects from different windows have approximately equal 

spatial configurations such that their spatial configurations can be ‘replaced’ by one 

approximate spatial configuration object consuming less space. The information 

about the number of objects n in each of the spatial summarization objects is 

maintained separately enabling even further compression of the summary objects (as 

described in section 4.6). To define approximate equality of two spatial 

configurations, we simply require their means and variances to be within a certain 

error level of each other.

Definition 6 . Given sand 5  e  [0,1], and two summary objects Si and Sj, then Si and Sj 

have (£,S}-approximately equal spatial configurations iff the difference between their 

variances is within € percent o f the maximum of the two variances, and the distance
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between the two means is within 5  percent o f (the maximum o f the) two standard 

deviations o f the two spatial summary objects. Formally:

2 . | means — means | / 2 *max(stdevs ,stdevs ) < 8

where meansi is the mean of points summarized by the summary object Si, stdev$i is

In an effective window based summarization of multi-dimensional data stream, the 

goal is to identify spatial summary objects Sj,...,St, that belong to the summarizations 

of windows respectively and each has a spatial configuration that is

approximately equal to a certain spatial configuration, and therefore these summary 

objects represent approximately the same spatial pattern of points reoccurring in 

different windows. We define such an approximate spatial configuration for a set of 

spatial summary objects as following.

Definition 7. Given a set o f spatial summary objects S={S/,...,S*} with spatial

£
configurations respectively, then an x̂ £j = (.tti,v) is (^^-approximate

spatial configuration o f the set S  iff for all Si e  S: ^  ~(£%S) □

3 Note that the relation is symmetric since we normalize by the maximum of both the mean and the 
standard deviation.

1.

the standard deviation, and varsi is the variance o f points summarized by Si o3
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Figure 13. Summary Objects with 
Approximately Equal Spatial Configurations

s  «If an (£ ^-approximate spatial configuration = (m,v) of a set S  ={5/.....S*}

of spatial summary objects exists, then it holds that the spatial configuration of every 

spatial summary object is (£  ̂ -approximate equal to ^ £.s (as defined in definition

6 ). By replacing the spatial configurations of each S,- with a reference to xP£,s we

effectively reduce their space consumption while increasing the amount of storage 

space available for keeping more spatial summary objects that have different spatial 

configurations. The saved space is gained by loosing some accuracy in approximating 

the spatial configurations, where the accuracy loss is bounded by £ percent of the 

variance and ^percent of the mean of the approximated spatial configuration.

We test approximate equality only on spatial summary objects that are constructed 

from different stream windows. Spatial summary objects that are constructed from the 

same window are not compared because in practice, they do not satisfy the 

approximate equality condition by construction, as the summary objects typically 

divide the multi-dimensional space into large, disjoint sub-regions.

Figure 13. presents an illustration of the similarity of spatial summary objects. The

figure shows spatial summary objects S *1. S p , S p  that are present in a region of 

the two dimensional space and are constructed from points in the data stream
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windows W\, W?, and W3. It is easy to see that, given small values for £  and S, the 

spatial configurations of S^1, S p , S p  are (£  ̂ -approximately equal to the spatial

|SWi -tv2 -w3.
configuration 8 r shown in the dotted circle in the figure.

4.4.2 Approximate Spatio-Temporal Summary Object

By replacing the spatial configurations of spatial summary objects S=(n, LS, SS) in

a set S  with a reference to an (£ ^-approximate spatial configuration = (m,v)

we save the space needed to store the ^-dimensional vector LS for each spatial 

summary object Si, where instead of LS and SS, we only store a pointer (which 

consumes the same space as SS, which is just a number) to the approximate spatial 

configuration, which encodes an approximation of LS via LS = n m. To reconstruct 

the information of a spatial summary object from its approximation, we need to store 

the n value.

Two spatial summary objects whose spatial configurations are approximately equal 

may differ significantly only in the number of points n whereas their spatial 

configurations that encode their relative statistical properties are approximately equal. 

When these two summary objects represent points at different window time stamps, a 

change in the value of n from one window time stamp to the next represents an 

evolutionary pattern in the number of points present in the underlying distribution, 

where an increase represents emergence of points, a decrease represents dissolution of 

points, and no significant change represents stability of the distribution at the spatial 

location of these summary objects.
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Consequently, if an (£ ^-approximate spatial configuration j  = (m.v) of a set

S ={Si,...,Sk} of spatial summary objects exists, then the n values of the spatial 

summary objects can be viewed as a temporal sequence that conceptually represents a 

life history of the distribution D at the (approximate) location of the spatial summary 

objects. This life history consists of a sequence of time stamps < tl ,t2....,tm > with

an associated sequence of values < n \,n 2,..., nm > ? where it* is the number of points 

in the summary object that summarizes points belonging to window with time stamp 

tt, 1 < k< m . The time stamps are increasing but not necessarily always consecutive,

i.e., it is possible that some windows in the stream do not contain points at the

location of the approximate spatial configuration 'i 'Ets  — ipi,v). Conceptually, the 

sequence of time stamps (and its associated sequence of n values) can be considered 

as consisting of a chain of sub-sequences of consecutive time stamps 

<rf, r, + 1, ..., r, +kj >, i.e., in each subsequence the time stamps of adjacent pairs 

differ by one time unit.

We propose to store the sequences of time stamps and n values as a sequence of 

‘episodes’, where each episode consists of start and end time points of a consecutive 

subsequence and stores the n values as a signal that can be separately compressed 

using signal compression techniques [23] or ‘compared’ to other signals such that 

‘similar’ signals can be collectively compressed by replacing them with their 

common pattern using data mining techniques.
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According to these considerations, we define a compact summary, called 

approximate spatio-temporal summary, that represents an approximate spatial

configuration ^ £̂  = (m>v) and its associated temporal life history as following.

Definition 8 . Given an (£,S)-approximate spatial configuration x&£j  as defined 

in definition 7, and a sequence o f increasing time stamps 

V  r'i +1, —’rn +*»i’ V  +^ 2’ +1' that are associated

with a sequence o f n values (of the spatial summary objects in a set S) 

^ 2’ *̂2+*r>’ where ni>l, kt . > 0 ,

an (e, ̂ -approximate spatio-temporal summary <s£,S is a tuple:

&  =  »

whereEJ =(EJslarrEtnd,ElgnJ ,  1 < j  < m, and Eltart=tijr ^ m̂ t ij+^j ,

^ W/=<V V 1*"’V  > □

Approximate spatio-temporal summaries allow effective window based 

summarization of a multi-dimensional data stream such that historical queries 

pertaining to data points present in past temporal periods of the data stream can be 

answered with bounded error levels, and the evolution of spatial regions can be easily 

and effectively analyzed. Note that as a consequence of this definition, each spatial 

summary object in S  must have a unique time stamp. That means an (c, (Si- 

approximate spatio-temporal summary is allowed to summarize a sequence of spatial 

summary objects only from different stream windows.
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In order to refer to the components of a spatio-temporal summary, we introduce 

the following notions.

Definition 9. Given an (e,S) approximate spatio-temporal summary 

d .s  = (¥ /* .<  £ ' ............>) vw? call

• < E 1 E m > the Ufe-History o f 4e.s

• E, 1 <i < man Episode o f %e.s □ 

To measure the “importance” of an approximate spatio-temporal summary ,

we define the summarization error of as follows.

Definition 10. Given an (e,S) approximate spatio-temporal summary 4e.s that

approximates n spatial summary objects, the Summarization Error SE( ) o f 4e.s 

is

SE(£s ) = vaT*(Zis)/nr

where a, y  e  R are coefficients for weighing the variance var o f ond n 

respectively. □

Intuitively, an approximate spatio-temporal summary is more “important” 

than another spatio-temporal summary when 1) represents more spatial

summary objects than 4'Se.s and 2 ) its variance is smaller than the variance of 

The coefficients a and /add  flexibility to the definition by allowing a user to give
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different weights to the contribution of the variance and the contribution of n, 

respectively (in our experimental evaluation, we set a = y=l).

4.5 Spatial Summarization of Data Streams
For the window based summarization of a data stream, it is important to design a 

scheme that not only efficiently summarizes the objects in a current window wic, but

also enables efficient finding of new spatial summary objects that have approximately 

equal spatial configurations to the spatial configurations of the previously constructed 

spatial summary objects such that approximate spatio temporal summaries can be 

quickly constructed and updated. The naive approach for finding the best match for 

every spatial summary object from a set N  in a set M  is to compare all elements of the 

first set with all elements of the second set. The cost of this matching is O(NM) 

comparison operations, which is computationally expensive. If the mean and the 

variance of the distribution of points compressed by a spatial summary object S; do 

not change significantly from the current window to the next, then 5 / remains 

“relatively” stationary in the data space and we can reuse the location of its 

representative to position a new spatial summary object Sj in the summarization of the 

next window, whereby the spatial configuration of Sj is only compared to the spatial 

configuration of 5,-.

However, as noted in chapter 3, reusing locations of spatial summary objects that 

summarize a given data set D\, to initialize spatial summary objects for a second data 

set D2 that is expected to be similar to Du may result in so called “over-filled” spatial 

summary objects which summarize significantly more points than other summary 

objects, and have relatively low quality of summarization. We recall from definition 2
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that the quality of a spatial summary object is measured using a data summarization 

index f .  For an easy flow of presentation, we recall here definition 2 as follows. 

Definition 11. Given a data set D o fN  multi-dimensional points and a set S o f spatial 

data summary objects that compress the points in D, the data summarization index /?,-

o f a data summary object 5/ e  S where Si compresses n points is defined as f t  = — □
N

To identify summary objects that are “over-filled”, i.e., have low quality of 

compression, definition 3 can be used (see chapter 3 for a more detailed and technical 

presentation). For an easy flow of presentation, we recall here definition 3 as follows.

Definition 12. Given a data set D o f N multi-dimensional points and a set S o f 

spatial data summary objects that compress the points in D, let pp and op be the mean 

and standard deviation o f the distribution o f the ft values for all spatial data summary 

objects in S. Given a value k (determined from a user-specified probability p 

according to Chebyshev's Inequality[24]), a spatial data summary object with the 

data summarization index f  is called:

1. “good” iffp € [pp-kop, pp + kop]

2 . “under-filled” iff fi <pp-  kxtp

3. "over-filled” iff fi > pp + kop □

In order to improve the overall quality of a summarization and eliminate over

filled spatial summary objects, the scheme presented in chapter 3 proposed to split 

each over-filled spatial summary object into two new spatial summary objects by re

positioning one spatial data summary objects that summarize relatively few points.
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This strategy to maintain good quality spatial summary objects can also be applied 

in our current context of data streams. The summarization index P can be computed 

for summaries of data stream windows by considering each window as a data set. 

Splitting an over-filled summary object into only two new summary objects was 

suitable in the context of maintaining dynamic summaries of databases, where 

typically only very small difference between two large databases occurred. In a data 

stream, the differences between two consecutive windows can be more substantial so 

that a binary split may still generate overfilled spatial summary objects. To avoid this 

effect for stream windows, we propose to split an “over-filled” summary object 

simultaneously into m = round (Pi I lip) summary objects.

Our scheme for spatial summarization of stream windows is given as following.

To summarize the first window of a stream, spatial summary objects are 

constructed by selecting random points from the window as “seeds”, and assigning 

each point to its closest seeds, incrementally computing sufficient statistics.

To summarize subsequent windows, spatial summary objects are constructed by 

re-using the spatial summary objects of the previous window. The means of the 

summary objects of the previous window are used as “seeds” for the current window, 

and all points in the current window are assigned to their closest seed, again 

incrementally computing sufficient statistics.

In all cases, after the initial construction of spatial summary objects, “over-filled” 

summary objects are identified using definition 1 2  and rebuilt as mentioned above.
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4.6 Data Stream Summary Stores
We propose to encode a window based summarization WSr of a multi-dimensional 

data stream R defined in definition 4 as a collection of (e,S) approximate spatio- 

temporal summaries as defined in definition 5. We call a collection of (e,<5) 

approximate spatio-temporal summaries a stream summary store. Our general scheme 

for achieving an effective window based summarization using a summary store is 

presented as follows. We summarize each window in R into a set of spatial summary 

objects using the following general strategy.

• Initialization of the Stream Summary Store

1. Summarize the first window W\ in the stream into a set of spatial summary 

objects SS={S\,..., S*}.

2. Initialize the summary store with a new spatio-temporal summaries

4 $  = E  >) for each S > e ̂  where E  = ( E start ’ E end »E signal ) = (U .« Sj ) .

• Maintenance of the Stream Summary Store

1. Summarize a new window Wt, t > 1, in the stream into a set of spatial 

summaries SS={Si,..., S*}.

2. Integrate the new spatial summaries to the summary store:

For every new spatial summary object 5,

Search the summary store for a spatio-temporal summary

with an (e,^-approximate equal spatial 

configuration, i.e., and E^nd

If 4e.s is found
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update the life history of with ns. by either by extending the signal 

of the most recent episode ZT" if = t - 1  or by adding a new episode

£m+1 = ) .

else

construct a new spatio-temporal summary ̂  E >), where

E={Estarp Eend, Estgna) =(t.t, nSj) and add it to the summary store

3. Check the store’s space budget and reduce space consumption by m% if 

needed:

If compression of life histories of spatio-temporal summaries saves m% of the 

space consumed by the store 

compress life-histories 

else

free m% of the space by deleting summaries with the largest summarization 

error SE as defined in definition 7

The details for integrating new spatial summary objects into a summary store and 

managing the store’s space budget are discussed in the next two subsections.

4.6. J Summary Store Ufe-History Management
To integrate a new spatial summary object Si from a new window Wt into the 

summary store, we first have to check if there is a “matching” spatio-temporal

summary. A matching spatio-temporal summary ^ s =Qi^s,<B,...JEm>) must satisfy

the conditions that 1) it has an (^-approximately equal spatial configuration to the
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spatial configuration of Si, and 2) has not yet integrated another spatial summary

object Sj from the same window W„ i.e., the E™nd * t (recall that a spatio-temporal 

summary is allowed to only summarize a sequence of spatial summary objects from 

different stream windows).

In general, to find a match for a spatial summary object Si, we have to compare S,- 

to every spatio-temporal summary in the summary store until a matching summary is 

found. However, since we reuse locations of spatial summary objects of a previous 

window to position the seeds of spatial summary objects for a current window, we 

speed up the matching and improve its quality.

In general, the spatial configurations of many spatial summary objects (i.e., mean 

and the variance, but not their number of points) of the previous window are still 

suitable to represent the corresponding sub-regions in the current window. This is 

obviously true if the distribution does not change dramatically from one window to 

the next. But even if the distribution in the current window is overall very different 

from the previous window, on the “micro-clustering-level” of the spatial summary 

objects, the changes are not as drastic; the resulting spatial configurations of the 

current window are often within e, 8  (as defined in Definition 6) of the previous 

spatial configurations. As a consequence, we have a high probability of finding a 

matching spatio-temporal summary quickly by first checking the spatio-temporal 

summaries that have integrated the corresponding spatial summary objects. In 

addition, having good matches between consecutive windows leads in general also to 

fewer spatio-temporal summaries with longer episodes which results in a better space 

utilization. Note that constructing spatial summary objects for a current window

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



58

“from scratch” (e.g., using a random sample of the window as seeds) would not 

necessarily generate as many summaries that have approximately equal spatial 

configuration -  even if the data distribution would be identical in the two windows.

4.6.2 Summary Store Space Management

Once the summary store is updated with new spatial summary objects of a new 

window, the space budget constraint of the summary store is enforced. We propose to 

reduce the space consumption of a summary store by ‘compressing’ the life histories 

of the approximate spatio-temporal summaries present in the summary store, and 

deleting some of these summaries when necessary. When we exceed the space budget 

after the integration of the summarization of the current window by m%, our scheme 

first tries to reduce the space consumption by compressing the life histories of spatio- 

temporal summaries. If this is not possible, m% of the space is released by discarding 

from the summary store the least ‘important’ summaries, which have the largest 

summarization error.

We propose to compress the life histories of approximate spatio-temporal 

summaries using one of two policies: local compression using signal compression, 

and global compression using clustering.

We can consider the sequence of n values in an episode of a spatio-temporal 

summary as a signal and model it using wavelets. We choose the orthonormal Haar 

transformation, which is very fast and suitable for data streams. When an episode is

completed, i.e. ( E ^  *  t ) or the n signal reaches a certain user-specified maximum 

length, we normalize the signal using the Haar transform. Compression of a Wavelet 

transformed signal can be achieved by deleting the smallest coefficients from the
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orthonormal basis which optimally minimizes the sum-squared error of the signal 

[23]. We note that to forward-transform/inverse-transform the signal when deleting 

coefficients, an episode must separately maintain the coefficients of the n signal and 

their coordinates.

In the local compression policy, m% of the space is saved as follows. For each 

episode, the number of coefficients that should be deleted to free m% of the space for 

the whole summary (including the space for start and end time points) is determined, 

and the smallest such coefficients are deleted. Episodes that do not have any 

remaining coefficients after the deletion are removed from their summary; spatio- 

temporal summaries that do not have any remaining episodes after this step are 

removed from the summary store. This procedure guarantees that at least m% of the 

total space is recovered. It is possible that more space is released when episodes or 

even whole summaries are completely deleted since an episode consumes space not 

only through its n signal but also its start and end time points, and a spatio-temporal 

summary also consumes space for its spatial configuration.

The global compression policy on the other hand globally saves m% of the space 

by approximating coefficients across multiple n signals instead of locally deleting 

coefficients from an n signal. Intuitively, to reduce the life history space by m%, the 

normalized n signals can be grouped into clusters. Each cluster is represented by an 

“average” n signal which approximates the elements in the cluster. Note that if two n 

signals have similar pair-wise changes in the n values, their sequences of coefficients 

are similar. Space compression is achieved by replacing the original n signal in an 

episode with a reference to the representative n signal of the assigned cluster. This
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policy obviously only makes sense after “enough” episodes are constructed in the 

summary store so that the amount of space required for maintaining clusters of n 

signals is significantly smaller than the space required to maintain just the original n 

signals.

For clustering n signals of episodes, each Haar transformed signal can be 

considered a multi-dimensional point of signal values p  = (n[ . One of the

difficulties of clustering those n signals is that they may differ in their dimensionality 

or length d. If the dimensionality of points in a group G is not too different, a 

meaningful representative r = ('t[,—,n^max) can be computed as the “average” of all

points in G, where the value of the i-th dimension is the average of the i-th dimension 

of all the points in G that have at least i dimensions, and dmax is the largest length in 

G. Using this approach, when we want to use the representative as an approximation

of a particular n signal s — (nf >—>nds ) in G, ds < dmax, we use only the first ds

dimensions of r, ,...,ds (r ) . The dissimilarity between two points P = (nf

and q = ( r f ) of different dimensionality can in this approach be defined as the 

Euclidean distance between the two points using the first number of coordinates

present in both points, i.e., disr(p,q) = J  £  {nf - n f  p . Consequently, to find

meaningful representatives for groups of n signals such as an average n signal, we 

first have to partition the n signals into I “length-groups” where the signals in each 

partition have “approximately” the same length, and then find clusters and 

representatives within each partition. This can be achieved using different methods
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such as an equal-width partitioning of the range of possible lengths into I segments 

(since we have a maximum length of episodes) or even using a clustering algorithm 

constructing I clusters.

When the global compression policy using clustering is applied for the first time, 

an initial clustering structure is constructed for every length-group of signals. Again, 

in principle any clustering algorithm that allows specifying the number of clusters k 

can be used with the above dissimilarity distance function for clustering the n signals 

in a group. The required number of clusters per group of n-signals has to be 

determined so that we achieve m% storage space reduction. Since we can compute 

how much space would be saved by replacing n-signals with a reference to a cluster 

representative, we can calculate the total number of clusters (over all groups) needed 

to achieve the required m% storage space reduction. The number of clusters per 

length-group is then allocated proportional to the number of signals in that group.

After the first application of the global compression policy, we have a set of 

clusters that have to be now maintained incrementally when episodes are deleted or 

added to the summary store. For incremental maintenance, the clusters are 

represented by the average n-signal of their members (as defined above) and the 

number of signals they contain. When the space consumption of new episodes must 

be reduced, the length-groups of their n signals are determined first, and then each 

signal is assigned to its closest cluster representative in this group, updating the 

average and incrementing the number of members in that group. When an episode is 

deleted, we know its cluster, and simply decrement the number of members in that 

cluster.
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4.6.3 Reconstructing Summarized Stream Windows
We reconstruct the summarization set SS of a stream window W; from a summary 

store that contains spatio temporal summaries in the following way. First, we find all

spatio-temporal summaries 4 e.s whose life history contains an episode

E = (£ s ta r t*£e n d 'Es igna l^ such that E sta n < i < E end, i.e., each approximates a 

spatial summary object S from window W;, which is reconstructed by setting its

spatial configuration to the spatial configuration of ■ To set the n value of 5, we 

recover from E  the appropriate n value whose associated time point equals to i by first 

decompressing E signal if E Signai  was compressed earlier. On the one hand, the 

decompression of E Signai that was compressed using a local compression policy is 

achieved by first approximating the coefficients deleted during the compression by 

zeros and then inversing the approximate E Signai  using the Haar wavelet. On the other 

hand, the decompression of E Signai that was compressed using a global compression 

policy is achieved by first constructing a temporary signal S' using the first m 

dimensions of the cluster E s;gnai  is assigned to (m = E end  -  E sta n  + 1), and then 

inversing S ’ using the Haar wavelet Any n < 0 in an inverted signal is set to one.

4.7 Performance Evaluation
We perform extensive experimental evaluation of our stream summary store 

methodology. Our results demonstrate that our methodology is efficient and effective 

in several areas: summarization of stream windows, construction of a summary store 

of approximate spatio-temporal summaries in a limited space budget, integration of 

new spatial summary objects to the summary store, and maintenance of the summary
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store to satisfy its space budget constraint. We test these various aspects of our 

methodology by querying the stores for historically distant information, and compare 

the retrieved information with the expected information obtained from the complete 

history. We query the stores for historically distant information by constructing from 

the store summarizations of the oldest windows in our streams. We consider queries 

that cover the summarizations of the first two, four, and eight windows of the stream. 

The complete history of the stream summary is constructed by archiving the complete 

spatial summary objects of all stream windows.

For a certain query, the relative quality Q measures the difference between the 

approximated spatial summaries Sapprox obtained from the summary store to the exact 

spatial summaries Shisoiy retrieved from the complete history. Intuitively, we want to 

measure how well Sapprox approximates Shiswty- For this, we first have to find for each 

spatial summary object in Sw,anry the best matching spatial summary object in Sapprox- 

The quality of a matching between two spatial summary objects Si, Si, constructed 

from clustering features CF} =(nl,LSl,SSl) and CF2 = (n2 ,LS2 ,SS2) respectively, 

is determined by how “close” they are in terms of their means, their number of points, 

and their variance. There is no trivial way to combine the changes in all three aspects 

into one single measure. We propose first to combine Si and S2 by constructing the 

combined summary S3, that represents both Si and S2 using the additivity of clustering 

features [27], i.e., we construct CF3 =CFl +CF2 =(n3,LS3,SS3), with ” 3 = ni + ”2 , 

LS3 =LSi +LS2, and SS3 =SSX + S S 2 .

The difference in the sum squared error of S3 and the sum of the sum squared 

errors of Si and S2 relative to the sum squared error of S3 tells us the amount of error
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Figure 14. Snapshot of First Window in a Data Stream

we would introduce by substituting Sj and S2 by S3. Formally, this relative mismatch 

of a fixed pair of spatial summary objects Si and S2 is defined as 

Mismatches = (SS£ 3 -(SS£, +SSE2))/ SSE3 where SS£(- = var,*n-t . The smaller 

this value, the better S3 represents the sum of Si and S2, i.e., the better Si and S2 

“match”. This mismatch measure is, however, monotonically dependent on the value 

of /13, and therefore, to compare matches for a given spadal summary object Si with 

several other summary objects, we have to normalize by 113. To compute the relative 

quality Q of the approximation SapProx, we find the best matching spatial summary 

object in Shistory for each spatial summary object in Sapprox- Note that the number of 

spatial summary objects in the two sets may be different due to possible deletions in 

•Sapprox during the maintenance of the summary store. The relative quality Q is 

computed as 1 minus the average mismatch between the spatial summary objects in 

•Shisory to the spatial summary objects in Sapprox (in an optimal matching, the Mismatch 

for unmatched summary objects in Shistory is counted as 1).

We evaluate the performance of our methodology using several multi-dimensional 

data streams, in which we simulate various dynamics of clusters starting with a spatial
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configuration of the clusters in the first window of a stream that contains clusters as 

presented in figure 14. We set the size of a stream window to 10,000 objects. We 

simulate streams of 2, 5, and 10 dimensions, with four scenarios of evolution of 

clusters:

• stream 1 : a stream consisting of 2 0 0  windows, where the means of the 

clusters are stationary but the clusters go through repeated periods of change 

in their variance (i.e., they “shrink” and “grow”)

• stream 2 : a stream consisting of 280 windows, where the means and 

variances of some clusters are stationary but for other clusters the number of 

points changes dramatically whereby they undergo repeated periods of 

disappearance, appearance, and no change (one cluster is deleted every 

window until all clusters are deleted, and then one cluster is added every 

window until all clusters are added, and so on)

• stream 3: a stream consisting of 140 windows, where the variance and the 

number of points in the clusters are stationary but their means change such 

that some clusters ( two clusters) go through cyclic patterns of motion, some 

(five clusters) move randomly across the space, and others stay stationary

•  stream 4: a stream consisting of 230 windows, which simulates a combination 

of the above three cases

•  stream 5: a stream consisting of 300 windows, and which is not initialized 

with the configuration in figure 14, but constitutes a “worst case” scenario for 

data stream summarization, where each window contains independently of all
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other windows a random number of randomly generated Gaussian clusters 

located at random positions in the data space.

We conduct our comparative analyses by examining the effectiveness of different 

window based summarization methods in answering queries pertaining to distant 

temporal regions in the stream. We query the stores for historically distant 

information by constructing from the store the summarizations of the oldest windows 

in our streams. We consider queries that cover the summarizations of the first two, 

four, and eight windows of the stream. To compare the effectiveness of the methods, 

we analyze at different time points the relative quality Q of the answers for any given 

query by repeatedly posing the same query after the arrival of new stream windows. 

As mentioned in section 3.3, Aggarwal et al [1] utilize time orders to save snapshots 

of the stream in a pyramidal time fashion. For comparison purposes, we assign our 

stream summary store a storage space budget that is equal to the sum of storage space 

budgets assigned to all orders. In our experiments, we set the number of orders to four 

and the base to 2 (i.e., the orders are 1, 2, 4, 8 ). We compare the performance of 

following four methods:

1. Deletion: maintain spatial summary objects in a pyramidal time fashion with 

deletion of oldest summary objects when storage space runs out (Aggarwal et al

[1] method).

2. Aggregation: maintain spatial summary objects in a pyramidal time fashion 

with ‘aggregation’ of oldest summary objects when storage space runs out. Two 

summary objects S\ and Sz such that Si is constructed from the clustering feature 

CFl = (nl,LSl ,SSl) and Sz is constructed from the clustering feature

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



67

CF2 =(n2,LS2,SS2), and summarize points from the same stream window, are 

‘aggregated’ into one summary object S3 constructed from 

CF = (n3 = nx + n2,LS3 = LS[ +LS2,SS3 = SSX +SS2) (when there is only one 

summary object left that summarizes a window W,-, it is simply deleted).

3. Local Compression: construct a stream summary store using our methodology 

and utilize the local compression policy to compress life histories when possible.

4. Global Compression: construct a stream summary store using our 

methodology and utilize the global compression policy to compress life histories 

when possible. We use the clustering algorithm Chameleon [15] to construct an 

initial signal clustering structure since it has been used previously to cluster 

wavelets [2 1 ], and therefore is suitable to cluster the transformed n signals 

(Chameleon is also used for partitioning the set of n signals into groups of similar 

lengths).

We set the number of spatial summary objects per window to 100, the probability 

for Chebyshev inequality to 0.8, the m% of space to be freed when space runs out to 

the fraction of space consumed by 1 0 0  spatial summary objects out of the total 

storage budget. The total storage budget is set to 16k, and e and S are set to 50%. By 

using a storage budget of 16k, we can analyze when the different methods run out of 

memory using our streams described above. Increasing/decreasing the storage space 

budget would only delay/hasten the exhaustion of the storage budget of the different 

methods and the comparative analysis of the different methods remains the same 

using streams with more/less windows where now the different methods exhaust their 

space budget after summarizing proportionally more/less windows. We compare the
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accuracy profiles of the various schemes in answering at different time points during 

the simulation, the same query: retrieving the summaries in the first 4 windows of a 

stream. We use as time points the number of windows summarized since the 

beginning of stream summarization. In addition, we also examine the effect of 

changing the query size on the quality of the results, where we consider queries of 

sizes 2, 4, and 8 windows. As noted above, we currently use Chameleon. A few 

experiments run out of space during the clustering step in the global compression 

policy. Exploring other clustering algorithms is an endeavour for future directions.

Figure 15 shows the profile analysis when querying stream 4 that consists of 2 

dimensional objects. Although the approximation of spatial configuration incurs a 

little loss in quality (as shown by a relative quality of less than 100% for the first few 

windows), the space gained by this approximation, and the life history compression 

techniques, allow our summary store to retain the majority of the required 

information and consequently the local and global compression methods outperform
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the deletion and aggregation methods when querying the stream after summarizing 

the first 15 windows of the stream. However, as more windows are summarized, the 

local compression policy eventually deletes all the coefficients of the episodes that 

contain relevant information to answer the query and thereby the quality of the 

answer degrades dramatically at window 50. However, our summary store that 

utilizes the global compression policy (which uses clustering to compress life 

histories) drastically outperforms other schemes after window 50 as it effectively 

compresses the life history of episodes and is capable of providing answers with a 

high quality (about 70%) even after a very large number of the windows (200 

windows) have been summarized.

To further demonstrate the effectiveness of our global compression policy in 

compressing the stream in comparison to other three methods (deletion, aggregation, 

and local compression), we conducted further experiments to determine how much 

storage space the other three methods need to maintain a quality of 70% after 

summarizing 200 windows of the stream. We found that the deletion and the 

aggregation methods required 15 folds more space than the storage space required by 

the global compression method, and that the local compression method required 4 

folds more space than the storage space required by the global compression method.

The benefits from approximating spatial configurations are further evident when 

summarizing a data stream that consists of high dimensional objects. As shown in 

figures 16 and 17, the local and global compression methods provide high quality 

answers when increasing the dimensionality of the data space to 5 and then to 10.
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However, the deletion and the aggregation methods (where there is no 

approximation of spatial configurations) spend a significant amount of the space 

storage budget on storing the high dimensional means without reducing this space 

storage by approximating them. Consequently, they exhaust their space storage 

budget very quickly and delete the summaries that contain the information for 

answering the query after summarizing only a few stream windows (when the 

dimensionality D is 10, the space budget has already been consumed by the fourth 

window, the time point when the first query arrives, and the quality of the query 

answer is only 50% of the quality of the query answer obtained from the archived 

summary history). At the same time, the runtimes of our local and global compression 

methods are very close to the runtimes of the deletion and aggregation methods, and 

consistently so across different dimensions as shown in figure 18.

Moreover, we compare the performance of the different methods when varying the 

query size from 4 windows to 2 and 8 windows. As figure 19 and 20 show, our
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Figure 21. Relative Quality Profile When Querying 2D Stream 5 
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method using global compression consistently and drastically outperforms other

methods.

Using similar analysis, we examine the performance of the different methods when 

summarizing the extreme case of a stream 5 consisting of 2 dimensional objects. As 

figure 21 shows, all methods now provide answers with roughly the same quality (the 

results are similar across different dimensions of 2, 5, 10). Stream 5 consists of 

completely random changes to the clustering structure from one window to the next. 

Thereby, the majority of the spatial configurations of summary objects are completely 

different from one window to the next, and little space is saved by approximating the 

few similar ones. Thus, approximating spatial configurations of spatial summary 

objects is most effective when there are repetitive patterns in the data stream, and in 

that sense, our summary store has the added advantage that the number of 

approximate spatio temporal summaries it contains in comparison to the total number
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of spatial summary objects constructed in the stream windows, provides some 

intuition about the existence of repetitive patterns in the stream.

CHAPTER FIVE 

CONCLUSIONS

In this thesis, we presented a new scheme for incrementally maintaining effective 

data summarizations for the purpose of compressing large dynamic databases. Our 

incremental data bubbles are capable of handling various scenarios of insertions and 

deletions of points in a database environment and are suitable as an effective 

preprocessing technique for obtaining very efficient, online, hierarchical clustering 

analysis. A quality measure for the data bubbles was introduced to identify the data 

bubbles that do not compress well their underlying data points after certain insertions 

and deletions. We only rebuild these data bubbles using efficient split and merge 

operations. In addition, we also point out that data summarizations can be further 

sped up using triangle inequalities as illustrated by augmenting assignment of points 

to their closest data bubbles with triangle inequalities.

An extensive experimental evaluation for various cases of dynamic insertions and 

deletions of points in a database environment showed that the incremental data 

bubbles provide an efficient and effective data summarization technique of 

dynamically changing large databases, and even sometimes improve over data 

bubbles built from scratch while preserving the quality of the overall compression. 

Moreover, our scheme of incremental data summarization can augment further Data
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Mining methods (like clustering techniques) to uncover hidden patterns in large 

databases very quickly.

Furthermore, we outlined a general window based summarization framework for 

compressing a multi-dimensional data stream. We presented a new methodology for 

achieving an effective window based summarization of a multi-dimensional data 

stream. Our comprehensive methodology effectively compressed similar spatial 

summaries from different window summarizations into one approximate spatio- 

temporal summary object, efficiently constructed a stream summary store of 

approximate spatio-temporal summaries, and effectively managed the integration of 

new window summarization into the summary store while satisfying the summary 

store space budget constraint by utilizing space management policies which we 

introduced and which used prominent Signal Compression and Clustering techniques.

An extensive experimental evaluation using a variety of data streams of different 

dimensions demonstrated that our methodology significantly outperformed existing 

summarization method. Our results demonstrated that our methodology is efficient 

and effective in several areas: summarization of stream windows, construction of a 

summary store of approximate spatio-temporal summaries in a limited space budget, 

integration of new spatial summary objects to the summary store, maintenance of the 

summary store to satisfy its space budget constraint. Moreover, unlike other methods, 

our stream summary store method is capable of providing high quality answers to 

queries that cover distant past regions of a multi-dimensional data stream while using 

a limited storage budget.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER SIX
76

FUTURE DIRECTIONS

There are several interesting directions for future research of knowledge discovery in 

multi-dimensional data streams using our general framework of window based 

summarization and stream summary stores. First, formulating and solving the 

problem of cluster evolution analysis in a multi-dimensional data stream using the 

presented stream summary store summarization methodology is a very interesting 

computational problem to consider. What are the computational tools needed to 

model and uncover evolutionary patterns of clusters development in a multi

dimensional data stream? In addition, mining patterns from several stream summary 

stores to effectively compress several multi-dimensional data streams simultaneously 

is an intriguing problem. What is an effective strategy to summarize several multi

dimensional data streams that may belong to different applications? Is maintaining a 

summary store for each such stream a good method? Or is it possible to design a more 

effective method consisting of a ‘general’ summary store with different 

‘departments’, where now the store abstracts and maintains similar ‘patterns’ from the 

departments such that the overall storage space requirement is significantly smaller 

than the total storage requirements of the separate stores?

Furthermore, in this thesis, we solved the first problem of achieving effective 

window based summarization of a multi-dimensional data stream. It is now also very 

interesting to look into the second complementary problem: online mining of a stream 

summary store. Is it possible that there are regions in a multi-dimensional data
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streams that are queried less frequently such that a stream summary store can discard 

most of the information pertaining to these regions? Moreover, it is possible to 

formulate and find patterns in the queries of a stream summary store and utilize these 

patterns to provide “mining feedback” to the store about its space management?

Certainly, upcoming applications will call upon effective and intelligent techniques 

for knowledge discovery in multi-dimensional data streams. The envisioning of 

computational problems and providing effective solutions to them in this realm will 

be most gratifying.

CHAPTER SEVEN 
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