
University of Alberta

On Separation between Interface� Implementation� and
Representation in Object DBMSs

by

Yuri Leontiev� M� Tamer �Ozsu� Duane Szafron

Technical Report TR �����
March ����

DEPARTMENT OF COMPUTING SCIENCE
University of Alberta

Edmonton� Alberta� Canada

On Separation between Interface� Implementation� and

Representation in Object DBMSs

Yuri Leontiev� M� Tamer �Ozsu� Duane Szafron

Laboratory for Database Systems Research

Department of Computing Science

University of Alberta

Edmonton� Alberta� Canada T�G �E�

fyuri�ozsu�duaneg�cs�ualberta�ca

Abstract

In this paper we present a model that supports a clean separation between the concepts of interface�

implementation� and representation� We present several problems that are di�cult to solve in the absence

of such separation and describe how the proposed model can be used to provide a solution� We also

describe the principles that can be used to implement the proposed model in an existing object�oriented

database management system�

Keywords� object�oriented� interface� implementation� representation� type� class� database program�

ming languages

� INTRODUCTION �

� Introduction

In the past two decades� object�oriented technology has been extensively used in design and development of
database management systems� This technology has been introduced to meet the challenging requirements
posed by current applications�
One of the major advantages of object�oriented software technology is its strong support for code reuse�

While code reuse is important in application programs� it is even more important in database programming�
Data stored in many databases far outlives the application programs originally written to process it� There�
fore� incremental application development is the only strategy that helps to avoid huge reinvestments in the
development of new applications�
Object�oriented technology supports code reuse via the concept of inheritance� where a subclass �sub�

type� automatically reuses the code written for its superclasses �supertypes�� Major object�oriented design
strategies associate classes �types� with real�world concept descriptions� thus providing support for concept�
oriented modeling�
Surprisingly enough� this design principle limits code reuse since in current object�oriented database

programming languages and systems� a class �type� describes not only the concept it denotes� but also
the interface� implementation �code�� and representation �data format� of its instances� Therefore� it is
impossible to use the same implementation or representation for two unrelated concepts without repeating
the code related to it�
The problem described above stems from the fact that the concepts of subtyping and subclassing are

uni�ed in most of the current database systems �as discussed in Section ��� A clean separation of these
concepts allows for much better code reuse� as will be shown in Section ��
Some of the important problems that can be addressed with the help of the mechanism proposed in this

paper include extensibility� incremental data evolution� and foreign data integration�

��� Extensibility

Modern database systems often provide support for schema extension and manipulation� The ability of a
programmer or database administrator to introduce new classes �types� into an existing schema becomes
increasingly more important as new application areas arise� For example� CAD	CAM applications generally
require the addition of a new class �type� into the schema once a new component is introduced into the
design process� Medical applications also require schema changes as new diagnostic equipment and new�
non�standard methods of treatment become available�
While schema evolution capabilities are present in most current database systems� both traditional and

object�oriented� there is one
forbidden� section of the schema that severely restricts possible extensions�
This section consists of the so�called primitive classes �types�� It usually includes boolean� numeric� character�
and string types� Dates and certain multimedia data types are sometimes included in this section as well�
Purely object�oriented systems �such as GemStone �BMO���� usually allow the programmer to de�ne new
methods for the primitive types� but disallow the addition of new primitive types� Hybrid systems �such
as ObjectStore �LLOW���� support the addition of new primitive types �sometimes termed as value types��
but severely limit the addition of any user�de�ned methods that work on them� and disallow user�de�ned
placement of the newly de�ned primitive types in the type �class� hierarchy� Traditional database systems
completely seal the primitive types from any kind of extension or modi�cation�
These restrictions have an obvious justi�cation� representation of primitive types as well as their opera�

tions are internally optimized� and schema changes that might a�ect the correctness of such optimizations
are disallowed� However� the ability of a database management system designer to foresee all types that

� INTRODUCTION �

need heavy optimization is questionable� For example� just a decade ago addition of an audio or an image
type into the primitive type system would not even be considered� while nowadays such additions seem to
be almost inevitable� There are two major reasons� First� operations on audio and video data need to be
heavily optimized� Second� the audio and video formats �representations� are speci�ed by standards which
are not under the control of the database designer� The speci�cs of a particular application might also require
an optimization of some non�primitive types� For example� a scienti�c application might need to optimize
matrix or complex number types� so a special representation is necessary�
It is therefore desirable for a database system to allow the addition of new primitive� heavily optimized

types and to support the optimization of types that already exist in the system� Such a task can be achieved
by the introduction of low�level primitives that will be discussed in Section ��

��� Incremental data evolution

One of the major e�ects of schema evolution on the database is the necessity to perform data evolution� For
example� changing the attribute
Name� of a Person class to three attributes �
FirstName��
SecondName��
and
MiddleName�� requires changing all instances of this class in the database� The straightforward
approach to this problem is to �nd all instances of the changed class and change them right after the schema
change is made� However� this approach su�ers from two major drawbacks� �rst� it is very ine�cient and
makes the database virtually inaccessible while the change is being made� Second� the programs that were
written for the old schema will not work for the new one� On the other hand� incremental data evolution

�or lazy data evolution�� only changes objects when they are requested by an application� This approach
eliminates the �rst of these drawbacks� but still su�ers from the second one� The reason for this is the fact
that an old application might create new objects in the old form �H�ol���� Thus� a mechanism that allows
coexistence of old and new data is required to overcome this drawback� Such a mechanism will be described
in Section ��

��	 Foreign data integration

One of the hot topics in today�s database systems research is that of interoperability �Weg���� �Kon����
Since enormous amounts of data are currently stored in traditional databases and plain �les� the ability of
new database systems �including object�oriented ones� to use such
foreign� data is extremely important�
However� support for such interaction is quite limited in current database systems� An indirect con�rmation
of this fact can be seen in the number of frameworks proposed to achieve this task �e�g� �LP���� �BY����
�BPK���� and many others�� These frameworks are not a part of any database system but rather they are
built on top of such systems� Most of the proposed frameworks are object�oriented or object�based� which
supports the opinion that an object�oriented database system can have built�in facilities for interoperability�
While the interoperability problem is not the topic of this paper� the mechanisms described here can be

used to support foreign data integration in object�oriented databases� We believe this to be an important
step towards the development of truly interoperable and extensible object�oriented database management
systems�

��
 Organization of the paper

The paper is organized as follows� Section � reviews current database systems and programming languages
from the point of view of the separation between interface� implementation� and representation� In Section �
a model that provides such separation is proposed and an example of its use is presented� Section � provides

� RELATED WORK �

a description of dispatch principles in the presented model according to two di�erent dispatch paradigms�
single and multiple dispatch� Then Section � shows how the model proposed in the paper can solve the
problems discussed in the current section� Section � describes a method that can be used to shield an
ordinary user from most of the conceptual complexities of the proposed model and outlines a way that the
model can be implemented in a su�ciently powerful database management system such as ObjectStore�
Finally� Section � concludes the paper and outlines the directions for future research�

� Related work

Before we introduce the main concepts of the proposed model� we will discuss the issues related to the
separation between the notions of interface� implementation� and representation in current database systems
and object�oriented programming languages� We start with the controversy surrounding the meaning of the
notions of type and class� which are considered to be central to object�oriented systems� Both type and class
are used by di�erent researchers to refer to one or more of the following notions�

�� A real�world concept �CONCEPT�

�� Programmatic interface �INTERFACE�

�� Implementation of the programmatic interface �IMPLEMENTATION�

�� Internal machine representation �REPRESENTATION�

�� A factory for creation of instances �FACTORY�

�� The maintainer of the extent �the set of all instances� �EXTENT�

For example� in GemStone �BMO���� class refers to all of the above notions� In ObjectStore �LLOW����
type refers to the notions �INTERFACE� and �REPRESENTATION�� while class refers to the notions �CON�
CEPT�� �IMPLEMENTATION� and �FACTORY�� Alternately� the type of an object of a particular class
is implicitly de�ned by that class� so it may also be argued that class in ObjectStore actually refers to all
notions except �EXTENT�� In O� �LRV���� type refers to the notions �INTERFACE� and �REPRESENTA�
TION�� while class is a special kind of type that refers to the notions �CONCEPT� through �EXTENT�� In
Iris �Fis��� type refers to the notions �CONCEPT�� �REPRESENTATION�� �FACTORY�� and �EXTENT��
the �INTERFACE� and �IMPLEMENTATION� are de�ned with respect to the type but are not a part of
the type� In VODAK �VOD��� �which is built on top of ObjectStore but has a di�erent data model�� type
refers to the notions �INTERFACE�� �IMPLEMENTATION�� and �REPRESENTATION�� while class refers
to the notions �CONCEPT� and �FACTORY�� Type in VODAK has two components� the interface� referring
to the notion �INTERFACE�� and the implementation� referring to the notion �IMPLEMENTATION�� Both
parts of the VODAK type can de�ne the representation� In relational database systems� type refers to the
notions �INTERFACE� and �REPRESENTATION��
The above analysis shows that none of these systems �except for VODAK� distinguishes between the no�

tions �INTERFACE�� �IMPLEMENTATION�� and �REPRESENTATION�� i�e�� between the programmatic
interface� its implementation� and the internal representation� The separation in VODAK is only partial�
since both components of the VODAK type do not exist independently of the type they belong to� The
database model AQUA �LMS���� completely separates the notions �INTERFACE� and �REPRESENTA�
TION�� however� the issues related to the notion of �IMPLEMENTATION� and to dispatch are not fully
developed�
Surprisingly� there seems to be much more consensus on the meaning of the derived terms subtyping

and subclassing ��LP���� �Tai����� Subtyping usually refers to the relationship between the interfaces �IN�
TERFACE�� while subclassing refers to the relationship between representations �REPRESENTATION� and

� THE MODEL �

implementations of the interface �IMPLEMENTATION�� While these two relationships are often uni�ed�
there are languages that distinguish between them �e�g� �CL���� �CL���� �RTL����� �SOM���� �BBB�����
�ACO��� �DGLM���� and �Fra�����
Some object�oriented programming languages do provide much cleaner separation between interface and

implementation� Languages Cecil �CL��� and its ancestor BeCecil �CL��� provide a clean separation between
these two notions� as well as between the notions of subtyping and subclassing� However� no separation be�
tween representation and implementation is provided� Emerald �RTL���� also distinguishes between types
�interfaces� and classes �implementations�� but does not support implementation inheritance �subclassing��
Sather �SOM��� distinguishes between interface and implementation inheritance� but does not completely
separate interface �type� from implementation �class�� Lagoona �Fra��� completely separates object interface
�called a category� from representation �type�� However� implementation �a set of methods� is tied to the
representation �type�� Inheritance in Lagoona works di�erently for all of these three concepts� interfaces
�categories� support multiple inheritance� representations �types� support single inheritance� and implemen�
tations �methods� can not be inherited� Theta �DGLM��� is another language that cleanly separates interface
�type� from implementation �class�� but ties together implementation and representation� Other languages
that provide partial separation between interface and implementation include TM �BBB���� and Galileo
�ACO���
In the next section� we will describe a model that completely separates interface� implementation� and

representation by providing implementation types that are used to describe the internal representation of
data and implementation functions that operate on them�

� The model

In the model we propose� the separation between interface� implementation� and representation is total� We
will use the term type to refer to the notions �CONCEPT� and �INTERFACE�� the term implementation

type to refer to the notion �REPRESENTATION�� and the term class to refer to the notions �FACTORY�
and �EXTENT�� The notions of �EXTENT� and issues related to extent maintenance are marginal in tra�
ditional programming languages� however� they are crucial for databases and persistent programming� The
notion �IMPLEMENTATION� is supported by behavior � function � implementation function bindings to
be discussed later� Thus� a type �denoted by the pre�x T � de�nes a programmatic interface� while an
implementation type �denoted by a pre�x IT � de�nes an internal representation� When a type meets an
implementation type� a class �denoted by the pre�x C � capable of producing new instances is created� Type
and implementation type hierarchies are totally independent� Usually� there is one�to�one correspondence
between types T X� implementation types IT X� and classes C X� However� it is possible to use the same
implementation type for classes of unrelated types� This occurs when two unrelated types use the same or
related internal representations� It is also possible to implement a type using more than one implementation
type� Therefore� objects of the same type can have di�erent internal representations�

Example ��� Let us assume that we are dealing with the banking system of a bank called MegaBank that
has two types of accounts� chequing and savings� It is possible to draw a cheque on a chequing account�
while drawing a cheque on a savings account will result in a substantial service charge� An account stores the
balance �and possibly some other information� such as owner and account number�� It is also possible to have
a term deposit in MegaBank� For a term deposit� the system stores the same information as for an account
with the addition of the term length� We will also assume that MegaBank has a partner bank MiniBank
and can handle its accounts by interaction with the banking system of MiniBank� In order to model this

� THE MODEL �

situation� we will de�ne types T Account� its subtypes T ChequingAccount and T SavingsAccount� and an
unrelated type T TermDeposit� We will also de�ne implementation types IT Account and its implementation
subtype IT TermDeposit to handle MegaBank�s accounts� and an implementation type IT PartnerAccount

to handle MiniBank�s accounts� Note that while IT TermDeposit de�nes only one �eld �attribute�� data of
this implementation type will have at least two �elds �attributes� since at least one �eld is inherited from
IT Account� Type de�nitions for this example are shown in Figure �� implementation type de�nitions in
Figure �� and class de�nitions in Figure �� Note that the type and implementation type hierarchies here are
independent of each other� any type can combine with any implementation type to produce a class�

TYPE T Account

BEHAVIOR B balance�� � T Natural �� FUNCTION F balance END END

BEHAVIOR B setBalance�T Natural amount� �� FUNCTION F setBalance END END

BEHAVIOR B deposit�T Natural amount� ��
FUNCTION SELF�B setBalance�SELF�B balance � amount�� END

END

BEHAVIOR B withdraw�T Natural amount� ��
FUNCTION

IF SELF�B balance �� amount THEN SELF�B setBalance�SELF�B balance � amount��
ELSE RAISE �Not enough money��

END

END

BEHAVIOR B drawCheque�T Cheque cheque� END
END

TYPE T ChequingAccount

SUPERTYPES T Account�
BEHAVIOR B drawCheque�T Cheque cheque� ��

FUNCTION

SELF�B withdraw�cheque�B amount��
cheque�B account �B deposit�cheque�B amount��

END

END

END

TYPE T SavingsAccount

SUPERTYPES T Account�
BEHAVIOR B drawCheque�T Cheque cheque� ��

FUNCTION

SELF�B withdraw�cheque�B amount��
SELF�B withdraw�ServiceCharge��
Bank�B deposit�ServiceCharge��
cheque�B account �B deposit�cheque�B amount��

END

END

END

TYPE T TermDeposit

BEHAVIOR B balance�� � T Natural �� FUNCTION F balance END END

BEHAVIOR B setBalance�T Natural amount� �� FUNCTION F setBalance END END

BEHAVIOR B term�� � T TimeSpan �� FUNCTION F term END END

BEHAVIOR B setTerm�T TimeSpan span� �� FUNCTION F setTerm END END

BEHAVIOR B renew ��
� � �

END

� � �

END

Figure �� Type de�nitions for the banking system example

� THE MODEL �

IMPLEMENTATION TYPE IT Account

FIELD IT Natural balance�
FUNCTION F balance�� � IT Natural �� ACCESS balance END

FUNCTION F setBalance�IT Natural� �� SET balance END

� � �

END

IMPLEMENTATION TYPE IT TermDeposit

SUPERTYPES IT Account�
FIELD IT TimeSpan term�
FUNCTION F term�� � IT TimeSpan �� ACCESS term END

FUNCTION F setTerm�IT TimeSpan� �� SET term END

� � �

END

IMPLEMENTATION TYPE IT PartnerAccount

STRUCTURE f MiniBankAccountNumber remoteNumber� g END
FUNCTION F balance�� � IT Natural ��

IMPLEMENTATION FUNCTION

f return miniBankSystemInterface�getBalance�remoteNumber�� g
END

FUNCTION F setBalance�IT Natural amount� ��
IMPLEMENTATION FUNCTION

f miniBankSystemInterface�setBalance�remoteNumber�amount�� g
END

END

� � �

END

Figure �� Implementation type de�nitions for the banking system example

CLASS C SavingsAccount

TYPE T SavingsAccount�

IMPLEMENTATION TYPE IT Account�

END

CLASS C ChequingAccount

TYPE T ChequingAccount�

IMPLEMENTATION TYPE IT Account�

END

CLASS C PartnerSavingsAccount

TYPE T SavingsAccount�

IMPLEMENTATION TYPE IT PartnerAccount�

END

CLASS C PartnerChequingAccount

TYPE T ChequingAccount�

IMPLEMENTATION TYPE IT PartnerAccount�

END

CLASS C TermDeposit

TYPE T TermDeposit�

IMPLEMENTATION TYPE IT TermDeposit�

END

Figure �� Class de�nitions for the banking system example

� THE MODEL �

The actions in our model are performed by behaviors �messages� denoted by the pre�x B � applied
�sent� to objects� When a behavior is applied� it is dispatched to an appropriate function �denoted by the
pre�x F �� The dispatch is done according to the behavior�to�function bindings�� For instance� in the above
example the behavior B balance is bound to the function F balance on the type T Account� An ordinary
�high�level� function consists of behavior applications �e�g� an anonymous function bound to the behavior
B withdraw on the type T Account�� High�level functions are independent of implementation types of their
arguments as they are concerned with types �interfaces� only� From the software engineering perspective
for code maintenance purposes it is best to make as few functions as possible dependent on the actual
implementation �i�e� implementation type�� However� when the actual data representation must be accessed
by a function� then that function must be bound to an implementation function de�ned on the implementation
type describing the data representation to be accessed� For example� the function F balance is bound to
an anonymous �eld�access implementation function on the implementation type IT Account� The same
function is bound to a low�level implementation function on the implementation type IT PartnerAccount�
The implementation functions are written in a lower�level language that is capable of accessing data� thus
providing support for low�level optimization and interoperability�
In our model� types de�ne behaviors� Functions are bound to behaviors on types� and subtypes inherit

behaviors and bindings from their supertypes� In the above example� the behavior B balance is de�ned on
the type T Account and it is also bound to the function F balance on that type� This behavior along with
its binding is inherited by the types T ChequingAccount and T SavingsAccount and is used in the code of
the functions bound to the behavior B drawCheque on these types�
Types together with behaviors and high�level functions provide a traditional object�oriented framework

that supports inheritance� overriding� and dynamic binding� For example� the behavior B drawCheque

originally de�ned on the type T Account is implemented di�erently for chequing and savings accounts�
Thus� our model is an extension of the traditional object�oriented models rather than a substitute for them�
As will be shown in Section �� this allows us to provide an ordinary user with a familiar framework while
giving the database administrator all the power of the presented model�
Implementation types de�ne functions and bind implementation functions to them� Functions and imple�

mentation function bindings are inherited by implementation subtypes of a particular implementation type�
The structure of the internal data representation is also inherited between implementation types� so that an
implementation type always has at least the �elds that are de�ned by its implementation supertypes� For
example� the implementation type IT TermDeposit inherits the function F balance and the �eld it accesses
from the implementation type IT Account� The data of the implementation type IT TermDeposit have the
same �elds as the data of the implementation type IT Account plus the �eld that stores the term length�
The latter is accessed by an anonymous �eld access implementation function bound to the function F term�
The implementation type IT PartnerAccount illustrates additional capabilities of implementation types�

The implementation of the function F balance by this implementation type is designed to access the remote
MiniBank system� The code is written in a lower�level language �in this case� a dialect of C���� It uses the
�eld remoteNumber that contains
foreign� data� This �eld can not be directly accessed by the high�level
code� Note that while the implementation and representation of the implementation types IT Account and
IT PartnerAccount are fundamentally di�erent� they are both used to implement the interface de�ned by
the types T ChequingAccount and T SavingsAccount� The same high�level code transparently deals with
both ordinary and remote accounts�
The banking system example illustrates the need for the total separation of type and implementation

type hierarchies� The interface de�ned by the type T ChequingAccount has two unrelated implementations�

�The particulars of the dispatch mechanism will be discussed in Section ��

� THE MODEL

the one de�ned by the implementation type IT Account and the one de�ned by the implementation type
IT PartnerAccount� yet the high�level code is transparently reused for both of them� At the same time�
unrelated interfaces de�ned by the types T ChequingAccountand T TermDeposit are implemented by related
implementation types IT Account and IT TermDeposit that allows the latter to transparently reuse the �eld
de�nitions of the implementation type IT Account� It would not be possible to achieve the degree of code
reuse illustrated by this example if the type and implementation type hierarchies were not totally independent
of each other�
A class can use any type T X and any implementation type IT X� The only restriction here is the re�

quirement that if the type T X de�nes or inherits a behavior B alpha� then there exists one and only one
most speci�c binding of B alpha to a function F alpha� and there exists one and only one most speci�c
binding of F alpha to an implementation function IF alpha on the implementation type IT X �see Section �
for the de�nition of the most speci�c binding�� In other words� when a class is created� the system makes
sure that the dispatch of every behavior de�ned on� or inherited by its type� is unambiguous and yields an
implementation function�
To sum up� the model we are proposing consists of�

�� The set of types T with a partial order �t �subtyping�� A type T X can de�ne a set of behav�
iors �fB alpha

i
g � explicitelyDefined�T X��� It can also bind behaviors to functions �F alpha �

explicitBinding�B alpha � T X����

�� The set of implementation types IT with a partial order �it �implementation subtyping�� An imple�
mentation type IT X can de�ne a set of functions �fF alphaig � explicitelyDefined�IT X��� It can
also bind functions to implementation functions �IF alpha � explicitBinding�F alpha � IT X��� An
implementation type can also de�ne additional data structures� �

�� The set of classes C� Each class C X has an associated type associatedType�C X� � T X and an
associated implementation type associatedImplementationType�C X� � IT X�

�� The set of behaviors B�

�� The set of functions F� A function may or may not have high�level code�

�� The set of implementation functions IF� An implementation function either has low�level code or it is
a �eld access	storage implementation function�

�� The set of objects O� Each object o belongs to a single class �C X � classOf�o���

The consistency condition that must be satis�ed is�

For each class C X � C� for each behavior B alpha de�ned on the type associatedType�C X� or one
of its supertypes� the cardinality of the set mostSpecif icBindings�B alpha� associatedType�C X��
�de�ned in Section �� is �� and the only element of this set� function F alpha� satis�es the following�

Either the set mostSpecificBindings�F alpha� associatedImplementationType�C X�� �de�ned in
Section �� has cardinality �� or it has cardinality � and the function F alpha has high�level code�

This consistency condition ensures that any behavior applicable to an object can be unambiguously dis�
patched on the class of that object�
In this section� we have presented a model in which a clean separation between interface� implementation�

and representation is achieved� In the next section� we will discuss the principles behind behavior �message�
dispatch in the proposed model�

�An example of a behavior that is de�ned on a type but is not bound on it is the behavior B drawCheque de�ned on the

type T Account�
�For example� the �eld remoteNumber in the implementation type IT PartnerAccount�

� DISPATCH �

� Dispatch

There are currently two major dispatch techniques� the traditional� receiver�only dispatch �single dispatch�
and a newer� more complicated but also more powerful� multiple dispatch that chooses the function �method�
according to the types of all message arguments� We will consider dispatch in the proposed model using
both of these techniques�

�� Single dispatch

In the case of single dispatch� the code chosen for execution when a behavior is applied is determined by the
class of the receiver�
Theoretically� in the proposed model� the function is chosen according to the behavior being applied and

the receiver type� and the implementation function is then chosen according to the function and the receiver�s
implementation type �two�phase dispatch�� However� since both type and implementation type are known
by a class� it is possible to implement this theoretical model by a single�phase dispatch� We will discuss this
issue further in Section ��
Since it is possible that there is more than one binding of a particular behavior inherited or de�ned by

a particular type� it is important to know which binding prevails� The same situation occurs for function�
to�implementation function bindings� The process used to pick a binding de�nes the semantics of interface
and implementation inheritance respectively�
That is� the behavior�to�function bindings are de�ned and inherited along the type hierarchy� while

function�to�implementation function bindings are de�ned and inherited along the implementation type hi�
erarchy� The mechanisms used in these two cases are identical� therefore we will only describe the type
inheritance mechanism�

mostSpecificBindings�behavior�type�

IF �explicitBinding�behavior�type� �� NONE� THEN

RETURN explicitBinding�behavior�type��

ELSE

result � ��
FOREACH supertype IN immediateSupertypesOf�type� DO

result �� result � mostSpecificBindings�behavior�supertype��

RETURN result�

Figure �� Algorithm for �nding most speci�c bindings

Let us consider a particular type T X and a particular behavior B alpha� The set of the most speci�c

bindings is then determined by the algorithm depicted in the Figure �� This is the set of bindings that
are not overridden in the inheritance hierarchy� If it is empty� the behavior B alpha is inapplicable to the
receiver of type T X �message not understood�� If the set has a cardinality of �� the only function in the set
is chosen� If the set has a cardinality which is greater than �� the behavior application is ambiguous�
An example of behavior�to�function binding inheritance is depicted in Figure �� Each type is represented

by a box divided into three parts� the upper part shows the name of the type� the middle part shows
explicit bindings for that type� and the lower part depicts the set of the most speci�c bindings derived by the
algorithm� All bindings are given for a single behavior B alpha� Note that the type T � has two most speci�c
bindings and thus cannot be used to de�ne any class since otherwise the consistency constraint would be

� DISPATCH ��

violated� However� its subtype T � can be used to de�ne a class as it has a single most speci�c binding for
the behavior B alpha�
Thus� the consistency condition described in the previous section ensures that a legal behavior application

can always be dispatched unambiguously� The same algorithm is used when a function is dispatched on the
implementation type of its receiver to yield an implementation function�

T_1
B_alpha -> F_1

B_alpha -> {F_1}

T_2
B_alpha -> F_2

B_alpha -> {F_2}

T_3

B_alpha -> {F_1}

T_4

B_alpha -> {F_2}

T_5
B_alpha -> F_3

B_alpha -> {F_3}

T_6
B_alpha -> F_4

B_alpha -> {F_4}

T_7

B_alpha -> {F_2, F_4}

T_8
B_alpha -> F_5

B_alpha -> {F_5}

Figure �� Inheritance example

If a function F alpha is written in a high�level language �e�g� the function attached to the behavior
B drawCheque on the type T ChequingAccount in Figure ��� such a function is applicable to objects ir�
respective of their implementation types� This is treated as an association between the function F alpha

and an anonymous implementation function IF anonymous on the implementation type IT �� which is the
supertype of all implementation types in the system� Such a treatment allows us to use the dispatch model
already presented with no modi�cations� It also corresponds to the intuition that a high�level function does
not care about the implementation types of its receiver and other arguments�

� DISCUSSION ��

�� Multiple dispatch

Multiple dispatch di�ers from single dispatch in that classes of all arguments of a behavior� rather than
just the receiver class� participate in dispatch� Multiple dispatch can solve many typing problems in object�
oriented languages and systems� but this increased power comes with a steep price� a signi�cantly more
complicated dispatch mechanism and decreased e�ciency ��BCC����� �BG���� �Cas���� �Cha�����
The choice between single and multiple dispatch is a design decision� In this section� we will show how

our model can be adopted for multiple dispatch without making any arguments in favor of either single or
multiple dispatch�
In the presence of multiple dispatch� there can be more than one binding of a behavior to a function on

a type �a function to an implementation function on an implementation type� for di�erent types �implemen�
tation types� of arguments� Such bindings can be understood as bindings on a set of product types� where a
product type is a tuple of all argument types� including the receiver type� Subtyping between product types
is a component�wise subtyping of their components ��BG���� �CTK����� If all bindings are understood in
this manner� the mechanism of the previous subsection can be used to choose an appropriate �most speci�c�
binding�
Thus the only changes to the model required by the introduction of multiple dispatch are the following

ones�

�� It should be possible to provide more than one binding for a behavior on a type provided the types of
arguments di�er� The same is true of functions and implementation types�

�� The dispatch mechanism should be able to handle product types�

In fact� the space of design decisions here is much wider than single�versus�multiple dispatch� Since
type and implementation type hierarchies are completely independent� it is possible� for example� to provide
multiple dispatch on types while providing only single dispatch on implementation types� The same is
true of other design decisions related to the construction of the type hierarchy and inheritance� such as
single�versus�multiple subtyping or the methods for con�ict resolution �disambiguating ambiguous behavior
�function� bindings��

� Discussion

In this section� we will describe how the model introduced in this paper can help to solve the problems
described in Section ��
We will start with the problem of code reuse� The model proposed in this article cleanly separates

interface from implementation and representation� Since only types are used to specify variables in high�level
�function� code� such code is reusable without modi�cations for all implementation types� In other words� the
high�level code is totally independent of underlying machine representation� For instance� the code written
for the type T Account and its subtypes T ChequingAccount and T SavingsAccount in Example ��� works
for both ordinary and remote accounts�
The ability to keep high�level code intact when the underlying implementation type hierarchy changes also

helps to provide a very high degree of extensibility� For example� it is possible to provide a highly optimized
version of complex numbers by introducing a new implementation type and a class that provides optimized
implementation functions for all operations on the complex numbers� The application design can thus
proceed in two stages� �rst� a prototyping stage� when all the necessary types are de�ned and implemented
by the default mechanism �which will provide capabilities for fast prototyping� like the one used in Smalltalk
�GR���� After the prototype is tested and its performance is measured� new implementation types for the

� IMPLEMENTATION NOTES ��

types that need optimization are developed and integrated into the system� It is important to note that at
this stage the �high�level� code that was developed in the �rst stage is kept intact� signi�cantly reducing
the possibility of introducing new bugs during optimization� This approach can also be used to introduce
new
primitive� types into the system� such as multimedia types that might not have been provided as

primitive� by the system kernel� These new primitive types will have exactly the same status as the kernel
ones�
The transparent introduction of new implementation types for the types that already exist in the system

can also be used to support incremental data evolution� As has been argued in Section �� coexistence of old
and new data has to be supported if we want to continue using old code during and after incremental data
evolution� This can be achieved by introducing the
new� implementation type describing the new data
structure� while keeping the
old� implementation type in the system� This way� both old and new high�
level code will be able to use old as well as new objects since the dispatch mechanism will choose the correct
implementation function �old or new� every time a behavior is applied to a particular object� For example�
if the banks MegaBank and MiniBank from Example ��� merge� the objects representing remote accounts
�classes C PartnerChequingAccount and C PartnerSavingsAccount� will be gradually transformed
to the objects representing ordinary accounts �classes C ChequingAccount and C SavingsAccount�
respectively�� Both representations can coexist as long as the implementation of the remote �MiniBank�
system access is changed to access the local system�
A similar method can be employed to provide transparent foreign data integration� An example of

such integration can be seen in the de�nitions of remote account implementation types and classes in the
MegaBank system example �Section ��� High�level code written for account types does not depend on the
fact that some accounts are remote ones and the data related to them have to be obtained via interaction
with a remote system� In fact� it is possible that the implementation type IT PartnerAccount as well as
the classes C PartnerSavingsAccount and C PartnerChequingAccount are introduced at the time
when MegaBank establishes partnership with MiniBank rather than at the time the database is created�
The introduction of the above entities does not a�ect the code written for account types� it is still valid and
works the same way as before�
In this section� we have outlined the ways in which the proposed model can help in solving the problems

described in Section �� In the next section we will consider the method of shielding an ordinary user from the
internal complexity of the proposed model� We will also show how the proposed model can be implemented
in an existing object�oriented database management system�

� Implementation notes

The implementation type mechanism is designed primarily for low�level tasks� Thus� it is possible to shield
an ordinary user from the complexities related to the existence of two independent type systems� The user
will only be able to deal with types� classes� behaviors� and functions written in high�level code� A special
keyword has to be provided to allow the user to specify a function as
stored�� Then� the default system
mechanism will create appropriate implementation types as slot lists� where the number of slots is equal to
the number of user�de�ned stored functions for the given class� From the user perspective� the behavior of
the system will resemble that of the Smalltalk run�time environment�
On the other hand� a database administrator will be able to use all the capabilities of the user�de�ned

implementation type mechanism� The changes made by the system administrator to the implementation of
types will be transparent to the ordinary users� since high�level code �the only code the users are allowed to
write� is independent of the underlying implementation type system� The same is true of the type system

� CONCLUSIONS ��

the user sees and deals with�
While the ability to cleanly separate interface from implementation and representation at the language

level has many advantages� the model presented in this paper can also be implemented in any su�ciently
powerful language or database system� The features that are required are�

�� Support for multiple inheritance

�� The ability to support low�level optimized user code

The C�� language �Str��� and the ObjectStore DBMS �LLOW��� satisfy these requirements� The following
is a description of design principles that can be used to gain many of the advantages of the proposed model
in ObjectStore�
We map types� implementation types� and classes to C�� classes� behaviors to C�� method declarations�

implementation functions to C�� method de�nitions� and functions to protected methods� More precisely�
types map to abstract C�� classes with no attributes� Behavior�to�high�level function bindings on types
correspond to non�abstract method de�nitions on these classes� Implementation types correspond to abstract
C�� classes that can de�ne attributes and protected methods that correspond to function�to�implementation
function bindings� C�� subclassing between C�� classes corresponding to types �implementation types�
represents subtyping �implementation subtyping�� The C�� classes that represent classes in our model have
no attributes and no methods of their own� they just inherit from both the C�� class representing their
type and the C�� class representing their implementation type� The code in C�� classes corresponding
to types is independent of the implementation type hierarchy with many of the advantages described in this
paper�
Having described principles that can be used to implement the proposed model in an existing database

system� we now turn to the question of the price we have to pay for the additional functionality provided by
our model� First� a price is paid due to the conceptual complexity of the model� However� this complexity
can be shielded from an ordinary user� as described above� Second� the proposed model may have a negative
impact on the performance of the dispatch mechanism� However� this impact will only be felt in systems
that utilize a run�time lookup dispatch strategy� Systems that do not allow run�time schema modi�cations
and use table�based dispatch� such as ObjectStore� BeCecil� and many others� will not su�er from any
negative impact�� On the other hand� if run�time schema modi�cations are allowed and run�time lookup is
used� the straightforward approach to the implementation of dispatch in the proposed model can decrease
performance by a factor of � �instead of dispatching on a type� we now have to dispatch on a type and then
on the implementation type�� The more the original dispatch process is optimized� the less it will su�er
from the negative impact of the new model� Therefore we feel that the increased functionality of the model
outweighs the potential impact on performance�

� Conclusions

In this paper we have described several problems related to various aspects of data representation in cur�
rent object�oriented database systems� Following the analysis of existing systems and languages� we have
presented a model that supports a clean separation between interface� implementation� and representation�
We have also described the principles of behavior �message� dispatch in the proposed model under di�erent
dispatch paradigms �namely� single and multiple dispatch��

�The proposed implementation in ObjectStore described above has the same dispatch performance as any other application

written in ObjectStore� i�e�� the dispatch performance is not a�ected�

REFERENCES ��

We have also shown how such a model can be used to solve the problems described in Section �� Finally�
we have presented a mechanism that can be used to shield an ordinary user from the internal complexity of
the model along with a method to implement the proposed model on top of a su�ciently powerful database
management system such as ObjectStore and a discussion of the performance impact of the proposed model�
We believe that the additional functionality provided by the proposed model can have a signi�cant impact

on the development of interoperable� extensible� and reusable object�oriented DBMSs� The improved support
for code reuse� extensibility� and foreign data integration provided by the model will help in the design and
implementation of such systems� At the same time� the part of the model visible to an ordinary user will
provide him with a familiar object�oriented framework�
The future research directions include static consistency checking of behavior and function de�nitions� ad�

dition of parametric types �implementation types� to the model� and extension of the machine representation
de�nitions�

References

�ACO�� Antonio Albano� Luca Cardelli� and Renzo Orsini� Galileo� A strongly�typed� interactive concep�

tual language� ACM Transactions on Database Systems �� ������ no� �� ��������

�BBB���� Ren�e Bal� Herman Balsters� Rolf A� De By� Alexander Bosschaart� Jan Folkstra� Maurice Van
Keulen� Jacek Skowronek� and Bart Termorshuizen� The TM manual� December ����� Version ���
revision C�

�BCC���� K� Bruce� L� Cardelli� G� Castagna� The Hopkins Object Group� G� Leavens� and B� Pierce� On
binary methods� Theory and Practice of Object Systems � ������� no� �� ��������

�BG��� Elisa Bertino and Giovanna Guerrini� Objects with multiple most speci�c classes� ECOOP����
�����

�BG��� M� F� Barrett and M� E� Giguere� A note on covariance and contravariance uni�cation� ACM
SIGPLAN Notices �� ������� no� �� ������

�BMO��� Robert Bretl� David Maier� Allen Otis� Jason Penney� Bruce Schuchardt� Jacob Stein� E� Harold
Williams� and Monty Williams�The GemStone data management system� Object�Oriented Con�
cepts� Databases and Applications �Won Kim and Frederick H� Lochovsky� eds��� Addison�Wesley�
����

�BPK��� A� Bouguettaya� M� Papazoglou� and R� King� On building a hyperdistributed database� Informa�
tion Systems �� ������� no� �� ��������

�BY��� W� C� Burkett and Y� W� Yang� The STEP integration information architecture� Engineering
with Computers �� ������� no� �� ��������

�Cas��� Giuseppe Castagna� Covariance and contravariance� Con�ict without a cause� ACM Transactions
on Programming Languages and Systems �� ������� no� �� ��������

�Cha��� Craig Chambers� Object�oriented multi�methods in Cecil� ECOOP ���� European Conference on
Object�Oriented Programming� Utrecht� The Netherlands �New York� N�Y�� �Ole Lehrmann
Madsen� ed��� Lecture Notes in Computer Science� vol� ���� Springer�Verlag� New York� N�Y��
����� pp� ������

�CL��� Craig Chambers and Gary T� Leavens� Typechecking and modules for multimethods� ACM Trans�
actions on Programming Languages and Systems �� ������� no� �� ������

REFERENCES ��

�CL��� Craig Chambers and Gary T� Leavens� BeCecil� A core object�oriented language with block struc�

ture and multimethods� Semantics and typing� FOOL �� The Fourth International Workshop on
Foundations of Object�Oriented Languages� Paris� France� January �����

�CTK��� Weimin Chen� Volker Turau� and Wolfgang Klas� E�cient dynamic look�up strategy for multi�

methods� ECOOP ���� European Conference on Object�Oriented Programming� Bologna� Italy
�New York� N�Y�� �Mario Tokoro and Remo Pareschi� eds��� Lecture Notes in Computer Science�
vol� ��� Springer�Verlag� July ����� pp� �������

�DGLM��� M� Day� R� Gruber� B� Liskov� and A� C� Myers� Subtypes vs where clauses� Constraining para�
metric polymorphism� SIGPLAN Notices �� ������� no� ��� �������

�Fis�� D� Fishman�Overview of the Iris DBMS� Object�Oriented Concepts� Databases and Applications
�Won Kim and Frederick H� Lochovsky� eds��� Addison�Wesley� ���� pp� ��������

�Fra��� Michael Franz� The programming language Lagoona � A fresh look at object�orientation� Soft�
ware Concepts and Tools �� ������� ������

�GR�� A� Goldberg and D� Robson� ST���� the language� Addison�Wesley� ����

�H�ol��� Urs H�olzle� Integrating independently�developed components in object�oriented languages� Pro�
ceedings of ECOOP���� �����

�Kon��� Dimitri Konstantas� Object oriented interoperability� Proceedings of the Seventh European Con�
ference on Object Oriented Programming �ECOOP����� July �����

�LLOW��� C� Lamb� G� Landis� J� Orenstein� and D� Weinreb� The ObjectStore database management

system� Communications of the ACM �� ������� no� ��� ������

�LMS���� Theodore W� Leung� Gail Mitchell� Bharathi Subramanian� Bennet Vance� Scott L� Vanderberg�
and Stanley B� Zdonik� The AQUA data model and algebra� Tech� Report CS������� Brown
University� �����

�LP��� W� R� LaLonde and J� Pugh� Subclassing �� subtyping �� is�a� Journal of Object�Oriented Pro�
gramming � ������� no� �� ������

�LP��� L� Liu and C� Pu� An adaptive object oriented approach to integration and access of heterogeneous

information sources� Distributed and Parallel Databases � ������� no� �� ��������

�LRV��� C� L�ecluse� P� Richard� and F� V�elez� O�� an object�oriented data model� Building an Object�
Oriented Database System� The Story of O� �Fran!cois Banchilon� Claude Delobel� and Paris
Kanellakis� eds��� �����

�RTL���� Rajendra K� Raj� Ewan Tempero� Henry M� Levy� Andrew P� Black� Norman C� Hutchinson� and
Eric Jul� Emerald� A general�purpose programming language� Software Practice and Experience
�� ������� no� �� ������

�SOM��� Clemens Szypersky� Stephen Omohundro� and Stephan Murer� Engineerig a programming lan�

guage� The type and class system of Sather� Tech� Report TR�������� The International Com�
puter Science Institute� November �����

�Str��� B� Stroustrup� The C		 programming language� Addison�Wesley� �����

�Tai��� Antero Taivalsaari� On the notion of inheritance� ACM Computing Surveys �� ������� no� ��
��������

�VOD��� VODAK V
�� user manual� April ����� GMD Technical Report No� ����

�Weg��� P� Wegner� Interoperability� ACM Computing Surveys �� ������� no� �� ������

