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Abstract

We propose a dual approach to dynamic programming and reinforcement learning, based
on maintaining an explicit representation of visit distributions as opposed to value func-
tions. An advantage of working in the dual is that it allows one to exploit techniques for
representing, approximating, and estimating probability distributions, while also avoiding
any risk of divergence. We begin by formulating a modified dual of the standard linear
program that guarantees the solution is a globally normalized visit distribution. Using
this alternative representation, we then derive dual forms of dynamic programming, in-
cluding on-policy updating, policy improvement and off-policy updating, and furthermore
show how to incorporate function approximation. We then investigate the convergence
properties of these algorithms, both theoretically and empirically, and show that the dual
approach remains stable in situations when primal value function approximation diverges.
Overall, the dual approach offers a viable alternative to standard dynamic programming
techniques and offers new avenues for developing algorithms for sequential decision making.

Keywords: Sequential Decision Making, Dynamic Programming, Convergence, Approx-
imation

1. Introduction

Algorithms for dynamic programming (DP) and reinforcement learning (RL) are usually
formulated in terms of value functions: representations of the long run expected value of
a state or state-action pair (Sutton and Barto, 1998). In fact, the concept of value is so
pervasive in DP and RL that it is hard to imagine that a value function representation is not
a necessary component of any solution approach. Yet, linear programming (LP) methods
clearly demonstrate that the value function is not a necessary concept for solving DP and
RL problems. In LP methods, value functions only correspond to the primal formulation
of the problem, and do not appear at all in the dual. Rather, in the dual, value functions
are replaced by the notion of state (or state-action) visit distributions (Puterman, 1994;
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Bertsekas, 1995; Bertsekas and Tsitsiklis, 1996). It is entirely possible to solve DP and RL
problems in the dual representation, which offers an equivalent but distinct approach to
solving DP and RL problems without any reference to value functions.

Despite the well known LP duality, dual representations have not been widely explored
in DP and RL. In fact, they have only been anecdotally and partially treated in the RL
literature (Dayan, 1993; Ng et al., 1999), and not in a manner that acknowledges the
connection to LP duality. Nevertheless, as we will show, there exists a dual form for every
standard value function algorithm, including on-policy updating, policy improvement, off-
policy updating and variants using linear function approximation.

In this paper, we offer a systematic investigation of dual solution techniques based
on manipulating state and state-action visit distributions instead of value functions, and
moreover show how these techniques can be scaled up with linear function approximation.
Beyond merely introducing dual DP algorithms, we also investigate their convergence prop-
erties. The proof techniques we use to analyze convergence are simple, but lead to useful
conclusions. In particular, we find that the standard convergence results for value function
based approaches also apply to the dual case, even in the presence of function approximation
and off-policy updating. Although our results show that the dual approach yields equiv-
alent results to the primal in the tabular case—as one would expect—the dual approach
has an advantage when using approximation: since the fundamental objects being repre-
sented are normalized probability distributions (i.e., belong to a bounded simplex), dual
updates cannot diverge. In particular, we find that dual updates usually converge in the
very circumstance—gradient-based off-policy updates with linear function approximation
(Baird, 1995; Sutton and Barto, 1998)—where primal updates can and often do diverge.
Overall, we show that the dual view offers a coherent and comprehensive perspective on
optimal sequential decision making problems, just as the primal view, but offers new al-
gorithmic insight and new opportunities for developing stable DP and RL methods. This
paper combines and extends the previous shorter contributions (Wang et al., 2007, 2008)
and (Wang, 2007, Chapter 3).

2. Preliminaries

We consider the problem of optimal sequential decision making, and in particular, the
problem of computing an optimal behavior strategy in a Markov decision process (MDP).
Assuming a finite set of actions A and a finite set of states S, an MDP is defined by

• an |S||A|×|S| transition matrix P , whose entries P(sa,s′) specify the conditional proba-
bility of transitioning to state s′ starting from state s and taking action a (that is, P is
nonnegative and row normalized, where P(sa,s′) = p(s′ | s, a) ≥ 0 and

∑

s′ p(s′ | s, a) = 1
for all s, a); and

• an |S||A| × 1 reward vector r, whose entries r(sa) specify the reward obtained when
taking action a in state s; i.e., r(sa) = E[r | s, a].

We focus on maximizing the infinite horizon discounted reward r1 + γr2 + γ2r3 + · · · =
∑∞

t=1 γt−1rt given a discount factor 0 ≤ γ < 1. In this case it is known that an optimal
behavior strategy can always be expressed by a stationary policy. Initially, we will represent
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policies by |S||A|× 1 vectors, π, whose entries π(sa) specify the probability of taking action
a in state s; i.e.,

∑

a π(sa) = 1 for all s. Stationarity refers to the fact that the action
selection probabilities do not change over time. Beyond stationarity, it is also known that
there always exists a deterministic policy that gives the optimal action in each state (i.e.,
simply a policy with probabilities of 0 or 1) (Bertsekas, 1995). The central problem is to
compute an optimal policy given either a complete specification of the environment, P and
r (the “planning problem”), or limited access to the environment through observed states
and rewards and the ability to select actions to cause further state transitions (the “learning
problem”). We focus primarily on the planning problem in this paper.

3. Linear Programming

To establish a dual representation, we briefly review the LP approach for solving MDPs in
the discounted infinite horizon case. Here we assume we are given the environment variables
P and r, the discount factor 0 ≤ γ < 1, and an initial distribution over states expressed by
an |S|×1 vector µ. Then a standard LP for solving the planning problem can be expressed
as (Puterman, 1994; Bertsekas, 1995; Bertsekas and Tsitsiklis, 1996)

min
v

(1 − γ)µ>v subject to v(s) ≥ r(sa) + γP(sa,:)v for all s, a

= min
v

(1 − γ)µ>v subject to Ξ>v ≥ r + γPv (1)

where v, an |S| × 1 vector, is the state value function, and Ξ is an |S| × |S||A| matrix

Ξ =











1 · · · 1
1 · · · 1

. . .

1 · · · 1











given by |S| row blocks of 1s, each of of length |A|, arranged block diagonally. The optimal
solution to this LP corresponds to the value function for the optimal policy, from which the
optimal policy can then be recovered by

π
∗
(sa) =

{

1 if a = a∗(s)
0 if a 6= a∗(s)

such that a∗(s) = arg max
a

(

r(sa) + γP(sa,:)v
∗
)

Note that µ and (1− γ) behave as an arbitrary positive vector and positive constant in
the LP and do not affect the minimizer, v∗, provided µ > 0 and γ < 1 (de Farias and Van
Roy, 2003). However, both play an important and non-arbitrary role in the dual LP below,
and we have chosen the objective in (1) in a specific way to obtain the following.

To derive our particular form of dual LP, consider an |S||A| × 1 vector of Lagrange
multipliers d, and form the Lagrangian of (1) as

L(v,d) = (1 − γ)µ>v + d>(r + γPv − Ξ>v)

subject to d ≥ 0. Taking the gradient of the Lagrangian with respect to v and setting the
result to zero yields Ξd = (1 − γ)µ + γP>d. Substituting this constraint back into the
Lagrangian eliminates v and yields the following dual LP

max
d

d>r subject to d ≥ 0, Ξd = (1 − γ)µ + γP>d (2)
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Interestingly, any feasible vector in the dual LP is guaranteed to be normalized, and there-
fore the solution d∗ is always a joint probability distribution over state-action pairs. Let 1

denote the vector of all 1s.

Lemma 1 The solution to (2) satisfies d ≥ 0 and 1>d = 1

Proof Nonnegativity is explicitly enforced by (2). Next, by the definition of Ξ, we have
1>d = 1>Ξd. Then by (2), it follows that 1>d = (1 − γ)1>

µ + γ1>P>d. Since P is row
normalized and µ is a probability distribution, it follows that 1>d = (1−γ)+γ1>d, which
implies the result, provided γ 6= 1.

By strong duality, we know that the optimal objective value of this dual LP equals the
optimal objective value of the primal LP. Furthermore, given a solution to the dual, d∗,
the optimal policy can be directly recovered by the simple relation π

∗
(sa) = d∗

(sa)/
∑

a d∗
(sa)

(Ross, 1997). Note that the joint distribution d∗ does not correspond to the stationary
state-action visit distribution induced by π

∗ (unless γ = 1), but we will see below that it
does correspond to a distribution of discounted state-action visits beginning in the initial
state distribution µ. Thus, this dual LP formulation establishes that the optimal policy
π
∗ for an MDP can be recovered without any direct reference whatsoever to the value

function. Instead, one can work in the dual, and bypass value functions entirely, while
working instead with normalized probability distributions over state-action pairs. We use
this representation throughout the rest of the paper to derive novel forms of DP algorithms.

3.1 Policy Notation

Before we present dual algorithms and their convergence analysis, we find it convenient to
re-express a policy π as an |S| × |S||A| matrix Π, where

Π =











p(a|s1)
>

p(a|s2)
>

. . .

p(a|s|S|)
>











such that p(a|s1)
> = [π(s1a1)π(s1a2) · · ·π(s1a|A|)], a row vector. (Note that the same defini-

tion is also used in (Lagoudakis and Parr, 2003).) Although this representation of Π might
appear unnatural, we find it extremely convenient in our research: from this definition, one
can quickly verify that the |S| × |S| matrix product ΠP gives the state to state transition
probabilities induced by the policy π in the environment P , and the |S||A| × |S||A| matrix
product PΠ gives the state-action to state-action transition probabilities induced by policy
π in the environment P . We will make repeated use of these two matrix products below.

4. DP with Dual Representations

Dynamic programming methods for solving MDPs are typically expressed in terms of the
primal value function. In this section, we focus on the tabular case and demonstrate that all
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classical DP algorithms have natural duals expressed in terms of state or state-action visit
distributions. The DP algorithms are organized according to their update types: on-policy
update, policy improvement, and off-policy update.

Note that the algorithms presented in this section are intended to be conceptual contri-
butions—the new dual forms generally require more space than their primal counterparts,
but lay the foundation for practical algorithms based on function approximation to be
developed later in Section 6. Ultimately, we will see in Section 7 that the dual algorithms
possess advantageous convergence properties.

4.1 On-Policy Update

First consider the straightforward problem of policy evaluation. Here we assume we are
given a fixed policy Π and wish to compute either its value function in the primal or its
discounted visit distribution in the dual.

4.1.1 State Based Policy Evaluation

Consider the simple case of state based policy evaluation.

Primal Representation. In the primal view, the role of policy evaluation is to recover
the value function for a given policy Π, defined to be the expected sum of future discounted
rewards. This definition can be compactly expressed in a vector-matrix form as

v =

∞
∑

i=0

γi(ΠP )iΠr (3)

As is well known and easy to verify, this infinite series satisfies a recursive relationship that
allows one to recover v by solving a linear system of |S| equations on |S| unknowns

v = Πr +

∞
∑

i=1

γi(ΠP )iΠr = Πr + γ(ΠP )

∞
∑

i=0

γi(ΠP )iΠr = Πr + γΠPv (4)

Using this state value representation, a DP algorithm for policy evaluation can then be
defined by repeatedly applying a vector operator O, given by

Ov = Π(r + γPv)

For a given policy Π, repeated application of the on-policy operator O brings the current
representation closer to satisfying the fixed point equation (4). (We examine the convergence
properties of the on-policy operator in detail in Section 5.1 below, after the tabular DP
algorithms have been introduced.)

Dual Vector Representation. To derive a dual form of policy evaluation, one needs to
recover a probability distribution over states that has a meaningful correspondence to the
long run discounted reward achieved by the policy. Such a correspondence can be achieved
by recovering the following probability distribution over states implicitly defined as

c> = (1 − γ)µ>
∞
∑

i=0

γi(ΠP )i (5)
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This infinite series also satisfies a recursive relationship that allows one to recover c by
solving a linear system of |S| equations on |S| unknowns

c> = (1 − γ)µ> + (1 − γ)µ>
∞

∑

i=1

γi(ΠP )i = (1 − γ)µ> + γc>ΠP (6)

It can be easily verified that (5) in fact defines a probability distribution over states.

Lemma 2 c ≥ 0 and c>1 = 1

Proof First, c ≥ 0 holds since (5) is a convex combination of nonnegative terms. Second, it
is easy to verify that (5) satisfies (6), implying that c>1 = (1−γ)µ>1+γc>ΠP1. Since ΠP
is row normalized and µ is a probability distribution, it follows that c>1 = (1−γ)1+γc>1,
which implies the result, provided γ 6= 1.

Not only is c a proper probability distribution over states, it also allows one to easily
compute the expected discounted return of the policy Π.

Lemma 3 (1 − γ)µ>v = c>Πr

Proof Plugging the definition of v (3) into the left of the above equation and then
applying the definition of c (5) yields (1 − γ)µ>v = (1 − γ)µ>

∑∞
i=0 γi(ΠP )iΠr =

(

(1 − γ)µ>
∑∞

i=0 γi(ΠP )i
)

Πr = c>Πr.

Thus, a dual form of policy evaluation can be conducted by solving (6) for c. The
expected discounted reward obtained by policy Π starting in the initial state distribution
µ can then be computed by c>Πr/(1 − γ), according to Lemma 3. In principle, this gives
a valid form of policy evaluation in a dual representation.

However, below we will find that merely recovering the state distribution c is inadequate
for policy improvement (see Section 4.2), since there is no apparent way to improve Π given
only access to c. Thus, we are compelled to extend the dual representation to a richer
representation that avoids an implicit dependence on the specific initial distribution µ.

Dual Matrix Representation. Consider the following definition for an |S| × |S| matrix

M = (1 − γ)

∞
∑

i=0

γi(ΠP )i (7)

This infinite series satisfies a recursive relationship that allows one to recover M by solving
a linear system of |S| equations on |S| unknowns

M = (1 − γ)I + (1 − γ)
∑∞

i=1 γi(ΠP )i = (1 − γ)I + γMΠP
= (1 − γ)I + γΠPM

(8)

It can be easily verified that (7) defines a matrix where each row is a probability distribution.

Lemma 4 M ≥ 0 and M1 = 1
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Proof First, M ≥ 0 holds since (7) is a convex combination of nonnegative terms. Second,
it is easy to verify that (7) satisfies (8), implying that M1 = (1−γ)1+γMΠP1. Since ΠP
is row normalized, it follows that M1 = (1−γ)1+γM1, which implies the result, provided
γ 6= 1.

Furthermore, note that the matrix M shares a close relationship to c, which can be seen
more clearly by noting that each row of M satisfies

M =











m1
>

m2
>

...
m|S|

>











=











(1 − γ)11
> + γm1

>ΠP
(1 − γ)12

> + γm2
>ΠP

...
(1 − γ)1|S|

> + γm|S|
>ΠP











where 1s is a vector of all zeros except for a 1 in the sth position. That is, each row of M is
a probability distribution (Lemma 4) where the entries M(s,s′) correspond to the probability
of discounted state visits to s′ for a policy Π starting in state s—the same as c except with
a different initial distribution. The matrix representation M has an advantage over the
vector representation c by dropping the dependence on a particular µ, while still allowing
c to be recovered by averaging M ’s rows according to µ.

Lemma 5 c> = µ
>M

Proof Starting from the definition of c (5) and applying the definition of M (7) yields

c> = (1 − γ)µ>
∑∞

i=0 γi(ΠP )i = µ
>
(

(1 − γ)
∑∞

i=0 γi(ΠP )i
)

= µ
>M .

Lemmas 4 and 5 show that M is a variant of the “successor representation” proposed in
(Dayan, 1993), but here extended to the infinite horizon discounted case. Importantly, not
only is M a matrix of probability distributions over states, it allows one to easily recover the
state values of the policy Π. That is, there exists an intimate connection between the primal
state value function v and the dual state visit distribution M , which does not depend on
the specific initial state distribution µ.

Theorem 6 (1 − γ)v = MΠr

Proof Plugging the definition of v (3) into the left of the above equation and then ap-
plying the definition of M (7) yields (1 − γ)v = (1 − γ)

∑∞
i=0 γi(ΠP )iΠr =

(

(1 − γ)
∑∞

i=0 γi(ΠP )i
)

Πr = MΠr.

Thus, a dual form of policy evaluation can be conducted by solving (8) for M . Then at
any time, an equivalent representation to v can be recovered by MΠr/(1 − γ), as demon-
strated by Theorem 6.

Note that there is a many to one relationship between the dual and primal representa-
tions respectively, because the number of variables in M exceeds the number of constraints
relating M and v in Theorem 6. We will obtain a more compact representation by incor-
porating function approximation in Section 6 below.
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Dual Update Operator. Even though the above shows that policy evaluation can be
performed by solving a system of linear equations, the linear system also provides an on-
line update operator that can be repeatedly applied to reach the solution, as in the primal
case. That is, a DP algorithm for policy evaluation can be defined by repeatedly applying
a matrix operator O, given by

OM = (1 − γ)I + γΠPM (9)

For a given policy Π—as we will discuss in Section 5.1 below—repeated application of the
on-policy operator O brings the current representation closer to satisfying the fixed point
equation (8).

4.1.2 State-Action Based Policy Evaluation

Although state based policy evaluation methods like those outlined above are adequate for
assessing a given policy, and eventually for formulating DP algorithms, to formulate dual
variants of classical RL algorithms such as Sarsa and Q-learning, we will ultimately need
to use state-action based evaluations. In this section we derive the state-action analogues
to the previous state based algorithms.

Primal Representation. In the primal representation, the classical state-action value
function can be expressed as an |S||A| × 1 vector

q =

∞
∑

i=0

γi(PΠ)ir (10)

This state-action value function is closely related to the previous state value function (3)
and satisfies a similar recursive relation

q = r + γPΠq (11)

As in the state based case, a DP algorithm for policy evaluation can be defined by
repeatedly applying a vector operator O, given by

Oq = r + γPΠq (12)

For a given policy Π—as we discuss formally in Section 5.1 below—repeated application of
the on-policy operator brings the current representation closer to satisfying the fixed point
equation (11).

Dual Vector Representation. To develop a dual form of state-action policy evalua-
tion, we represent a probability distribution over state-action pairs that has a useful cor-
respondence to the long run expected discounted rewards obtained by the policy. Such
a correspondence can be achieved by defining the following probability distribution over
state-action pairs

d> = (1 − γ)ν>
∞
∑

i=0

γi(PΠ)i (13)
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where ν is an |S||A| × 1 vector specifying the initial distribution over state-action pairs
given by ν = Π>

µ.
This infinite series satisfies a recursive relationship that allows one to recover d by

solving a linear system of |S||A| constraints on |S||A| unknowns

d> = (1 − γ)ν> + γd>PΠ (14)

It can be easily verified that (13) defines a probability distribution over state-action
pairs.

Lemma 7 d ≥ 0 and d>1 = 1

Proof First, d ≥ 0 holds since (13) is a convex combination of nonnegative terms. Second,
it is easy to verify that (13) satisfies (14), implying that d>1 = (1 − γ)ν>1 + γd>PΠ1.
Since PΠ is row normalized and ν is a probability distribution, it follows that d>1 =
(1 − γ)1 + γd>1, which implies the result, provided γ 6= 1.

Interestingly, not only is d a proper probability distribution over state-action pairs, it
also is automatically guaranteed to be a feasible point in the dual LP (2).

Lemma 8 d is a feasible point for (2)

Proof First, it is obvious that d ≥ 0, since (13) is a convex combination nonnegative
terms. To verify that the equality constraint in (2) is satisfied, note that again it is easy to
verify (13) satisfies (14). Thus Ξd = (1− γ)Ξν + γΞΠ>P>d = (1− γ)µ + γP>d, using the
facts that ΞΠ> = I and Ξν = ΞΠ>

µ = µ, which gives the result.

Therefore, this form of d constitutes a valid dual representation, which can be moreover
used to recover the expected discounted return of the policy Π.

Lemma 9 (1 − γ)ν>q = d>r

Proof Plugging the definition of q (10) into the left of the above equation and then ap-
plying the definition of d (13) yields (1 − γ)ν>q = (1 − γ)ν>

∑∞
i=0 γi(PΠ)ir =

(

(1 − γ)ν>
∑∞

i=0 γi(PΠ)i
)

r = d>r.

These results show that a dual form of state-action policy evaluation can be conducted
by solving (14) for d. The expected discounted reward obtained by policy Π starting in the
initial state-action distribution given by ν

> = µ
>Π can then be computed by d>r/(1− γ),

according to Lemma 9. In principle, this gives another valid form of policy evaluation in a
dual representation.

However, once again we will find that merely recovering the state-action distribution d

is inadequate for policy improvement (Section 4.2 below), since there is no apparent way to
improve Π given access to d. Thus, again, we extend the dual representation to a richer
representation that avoids an implicit dependence on the initial distribution ν.
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Dual Matrix Representation. Consider the following definition for an |S||A| × |S||A|
matrix

H = (1 − γ)

∞
∑

i=0

γi(PΠ)i (15)

This infinite series satisfies a recursive relationship that allows one to recover H by solving
a linear system of |S||A| equations on |S||A| unknowns

H = (1 − γ)I + (1 − γ)
∑∞

i=1 γi(PΠ)i = (1 − γ)I + γHPΠ
= (1 − γ)I + γPΠH

(16)

It can be easily verified that (15) defines a matrix where each row is a probability
distribution.

Lemma 10 H ≥ 0 and H1 = 1

Proof First, H ≥ 0 holds since (15) is a convex combination of nonnegative terms. Second,
it is easy to verify that (15) satisfies (16), implying that H1 = (1−γ)1+γHPΠ1. Since PΠ
is row normalized, it follows that H1 = (1− γ)1 + γH1, which implies the result, provided
γ 6= 1.

Once again, we find that the matrix H shares a strong relationship with its vector
correspondent d, since each row of H satisfies

H =











h1
>

h2
>

...

h|S|
>











=











(1 − γ)11
> + γh1

>PΠ

(1 − γ)12
> + γh2

>PΠ
...

(1 − γ)1|S|
> + γh|S|

>PΠ











That is, each row of H is a probability distribution (Lemma 10) where the entries H(sa,s′a′)

correspond to the probability of discounted state-action visits to (s′a′) for a policy Π starting
in state-action pair (sa)—the same as d except with a different initial distribution. The
matrix representation H has an advantage over the vector representation d by dropping the
dependence on a particular ν, while still allowing d to be recovered by averaging H’s rows
according to ν.

Lemma 11 d> = ν
>H

Proof Starting from the definition of d (13) and applying the definition of H (15) yields

d> = (1 − γ)ν>
∑∞

i=0 γi(PΠ)i = ν
>
(

(1 − γ)
∑∞

i=0 γi(PΠ)i
)

= ν
>H.

Not only is H a matrix of probability distributions over state-action pairs, it also allows
one to easily recover the state-action values of the policy Π. That is, there also exists
an important connection between the primal state-action value function q and the dual
state-action visit distribution H, which does not depend on the specific initial state-action
distribution ν.

10
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Theorem 12 (1 − γ)q = Hr

Proof Plugging the definition of q (10) into the left of the above theorem and then
applying the definition of H (15) yields (1 − γ)q = (1 − γ)

∑∞
i=0 γi(PΠ)ir =

(

(1 − γ)
∑∞

i=0 γi(PΠ)i
)

r = Hr.

These results show that a dual form of state-action policy evaluation can be conducted
by solving (16) for H. Then at any time, an equivalent representation to q can be recovered
by Hr/(1 − γ), as established by Theorem 12.

Note however that there is a many to one relationship between the dual and primal
representations, respectively, because the number of variables in H exceeds the number of
constraints relating H and q in Theorem 12. As before, we will obtain a more compact
representation by incorporating function approximation in Section 6 below.

Dual Update Operator. Now, as in the state based case, a DP algorithm for policy
evaluation can be defined by repeatedly applying a matrix operator O, given by

OH = (1 − γ)I + γPΠH (17)

For a given policy Π—as we will prove in Section 5.1 below—repeated application of the
on-policy operator O brings the current representation closer to satisfying the fixed point
equation (16).

4.1.3 State Versus State-Action Based Representations

The state and state-action based representations are closely related. In the primal case, the
state value vector v and state-action value vector q are related by

Lemma 13 v = Πq

Proof Starting from the definition of v (3) and applying the definition of q (10) yields
v =

∑∞
i=0 γi(ΠP )iΠr = Π

∑∞
i=0 γi(PΠ)ir = Πq.

In the dual case, the state visit matrix M and state-action visit matrix H are related by

Lemma 14 MΠ = ΠH

Proof Starting from the definition of M (7) and applying the definition of H (15) yields
MΠ = (1 − γ)

∑∞
i=0 γi(ΠP )iΠ = (1 − γ)

∑∞
i=0 γiΠ(ΠP )i = Π(1 − γ)

∑∞
i=0 γi(ΠP )i =

ΠH.

Given this close relationship, we will concentrate mainly on the state-action based rep-
resentations below. Most of the results for the state-action based case immediately apply
to the state based case.

To this point, we have developed new dual representations that can form the basis
for both state based and state-action based policy evaluation. The alternative dual DP
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algorithms are defined in terms of state distributions and state-action distributions, and do
not require value functions to be computed. Before we examine the convergence properties
of these on-policy updates in detail, however, we first address policy improvement and
introduce off-policy updates.

4.2 Policy Improvement

The next step is to consider mechanisms for policy improvement, which combined with
policy evaluation allows one to develop policy iteration algorithms that are capable of
solving MDP planning problems.

Primal Representation. The standard primal policy improvement update is well known.
Given a current policy π, whose state value function v or state-action value function q have
already been determined, one can derive an improved policy π

′ via the update

π
′
(sa) =

{

1 if a = a′(s)
0 if a 6= a′(s)

such that
a′(s) = arg maxa q(sa)

= arg maxa r(sa) + γP(sa,:)v
(18)

If we let Π′ denote the matrix representation of the updated policy, then (18) yields the
inequality Π′q ≥ Πq by construction. The subsequent “policy improvement theorem”
(Sutton and Barto, 1998) verifies that this update leads to an improved policy.

Theorem 15 Πq ≤ Π′q implies v ≤ v′

Proof It is instructive to briefly illustrate the result by expansion. First note that q =
r + γPv, by (11) and Lemma 13. Combining this with the assumption Πq ≤ Π′q yields
Π(r + γPv) ≤ Π′(r + γPv). Finally, using (4) establishes the key inequality v = Π(r +
γPv) ≤ Π′r + γΠ′Pv. This fact then immediately yields the chain of inequalities

v ≤ Π′r + γΠ′Pv

≤ Π′r + γΠ′PΠ′r + γ2(Π′P )2v

≤ Π′r + γΠ′PΠ′r + γ2(Π′P )2Π′r + γ3(Π′P )3v

...

≤

∞
∑

i=0

γi(Π′P )iΠ′r = v′

Dual Representation. The above development can be paralleled in the dual by first
defining an analogous policy update and proving an analogous policy improvement theorem.
Given a current policy π, in the dual representation one can derive an improved policy π

′

by the update

π
′
(sa) =

{

1 if a = a′(s)
0 if a 6= a′(s)

such that
a′(s) = arg maxa H(sa,:)r

= arg maxa(1 − γ)r(sa) + γP(sa,:)MΠr
(19)

If we let Π′ denote the matrix representation of the updated policy, then (19) yields the
inequality Π′Hr ≥ ΠHr by construction. In fact, by Theorem 12, the two policy updates

12
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given in (18) and (19) respectively, must lead to the same resulting policy Π′. Therefore,
not surprisingly, we have an analogous policy improvement theorem in this case.

Theorem 16 ΠHr ≤ Π′Hr implies MΠr ≤ M ′Π′r

Proof A formal proof proceeds by induction, but it is more instructive to illustrate the
result by expansion. First, note that H = (1− γ)I + γPMΠ by (16) and Lemma 14. Com-
bining this with the assumption ΠHr ≤ Π′Hr yields (1− γ)Πr+ γΠPMΠr ≤ (1− γ)Π′r+
γΠ′PMΠr. Finally, (8) establishes the key inequality MΠr = ((1 − γ)I + γΠPM) Πr ≤
(1 − γ)Π′r + γΠ′P (MΠr). This fact can then be used to derive the chain of inequalities

MΠr ≤ (1 − γ)Π′r + γΠ′P (MΠr)

≤ (1 − γ)Π′r + (1 − γ)γΠ′PΠ′r + γ2(Π′P )2(MΠr)

≤ (1 − γ)Π′r + (1 − γ)γΠ′PΠ′r + (1 − γ)γ2(Π′P )2Π′r + γ3(Π′P )3(MΠr)

...

≤ (1 − γ)

∞
∑

i=0

γi(Π′P )iΠ′r = M ′Π′r

Therefore, a policy iteration algorithm can be completely expressed in terms of the dual
representation, incorporating both dual policy evaluation and dual policy improvement (19).
The resulting approach is equivalent to the standard primal policy iteration algorithms
using primal policy improvement (18). In particular, each policy evaluation and policy
improvement step maintains an equivalence between the primal and dual representations
in the tabular case. (This equivalence will no longer be maintained when we consider
approximate algorithms in Section 6.)

4.3 Off-Policy Update

Finally, beyond policy evaluation and policy iteration, off-policy updating provides a promi-
nent basis for DP and RL algorithms; leading, for example, to value iteration and Q-learning
algorithms. Off-policy updating is based on an alternative operator, M, distinct from the
on-policy operator O, in that it is neither linear nor defined by a reference policy. Instead
M employs a greedy maximum update to the current estimates.

Primal Representation. In the primal case, off-policy updates correspond to the stan-
dard value iteration algorithms. In the state based representation, the off-policy operator
M is given by

Mv = Π∗[r + γPv] where Π∗[r + γPv](s) = max
a

r(sa) + γP(sa,:)v (20)

The goal of this greedy update is to bring the representation v closer to satisfying the
Bellman equation v = Π∗[r+ γPv]. Similarly, in the state-action based representation, the
off-policy operator M is given by

Mq = r + γPΠ∗[q] where Π∗[q](s) = max
a

q(sa) (21)

The goal of this greedy update is to bring the representation q closer to satisfying the
Bellman equation q = r + γPΠ∗[q].

13
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Dual Representation. In the dual representation, analogues to the primal off-policy DP
can be derived without any explicit representation of value. For succinctness, we focus on
the state-action case only. Here, an off-policy update for the state-action visit distribution
H can be expressed by

MH = (1 − γ)I + γPΠ∗
r[H], where

Π∗
r[H](s,:) = H(sa′(s),:) such that

a′(s) = arg max
a

[Hr](sa) = arg max
a

∑

(s′a′)

H(sa,s′a′)r(s′a′) (22)

The goal of this greedy update is to bring the representation H closer to satisfying the
Bellman equation H = (1 − γ)I + γPΠ∗

r[H]. Note that this off-policy dual DP algorithm
does not refer to the primal value function at all. The convergence of this operator is
established in Section 5.2 below.

Overall, we have developed a series of novel DP algorithms based on an alternative but
fully expressive representation: normalized state and state-action visit distributions. These
algorithms do not require value functions to be explicitly computed. In the tabular case, the
dual algorithms appear to require more space than their primal counterparts—a shortcoming
that will be rectified when we consider function approximation in Section 6. However, first,
we examine the theoretical convergence properties of the basic tabular algorithms.

5. Convergence Analysis

We establish that the DP operators on the dual representations exhibit the same convergence
properties as their primal counterparts in the tabular case. To keep the presentation suc-
cinct, we will concentrate only on state-action based representations, q and H—analogous
results are easily obtained for the state-based representations, v and M .

5.1 On-policy Convergence

For the on-policy operator O, convergence to a fixed point is proved by establishing a
contraction property with respect to a specific norm (Tsitsiklis and Van Roy, 1997). In par-
ticular, one defines a weighted 2-norm where the weights are determined by the stationary
distribution of the policy Π and transition model P . Let z ≥ 0 be a vector such that

z>PΠ = z> (23)

That is, z is the stationary state-action visit distribution for PΠ. Note that z is not the same
as the initial distribution ν nor the discounted stationary distribution d. Let Z = diag(z).

Primal Representation. The steps taken in the primal case are useful to proving con-
vergence in the dual. To establish convergence in the primal, one first defines a weighted
2-norm on q vectors

‖q‖z
2 = q>Zq =

∑

(sa)

z(sa)q
2
(sa) (24)

14
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Crucially, for this norm, a state-action transition is a non-expansion; that is, it can be shown
that ‖PΠq‖z ≤ ‖q‖z (Tsitsiklis and Van Roy, 1997). This fact can then be used to show
that the on-policy operator O is a contraction: ‖Oq1 −Oq2‖z ≤ γ‖q1 − q2‖z (Tsitsiklis
and Van Roy, 1997). Finally, by the contraction map fixed point theorem (Bertsekas, 1995)
there must exist a unique fixed point of O in the space of vectors q—that is, a vector qΠ

where qΠ = OqΠ—such that repeated applications of O converges to qΠ.

Dual Representation. Analogously, for the dual representation H, one can establish
convergence of the on-policy operator by first defining an approximate weighted norm over
matrices and then verifying that O is a contraction with respect to this norm. To do so,
first define the pseudo-norm

‖H‖z,r
2 = ‖Hr‖z

2 =
∑

(sa)

z(sa)

(

∑

(s′a′)

H(sa,s′a′)r(s′a′)

)2
(25)

It is easily verified that this definition satisfies the pseudo-norm properties; in particular,
it satisfies the triangle inequality. Note that this definition depends on the stationary
distribution z and the reward vector r, hence the magnitude of a row normalized matrix H is
determined by the magnitude of the weighted reward expectations it induces. Interestingly,
this definition allows one to establish the same non-expansion and contraction results as
the primal case. First, state-action transitions remain a non-expansion.

Lemma 17 ‖PΠH‖z,r ≤ ‖H‖z,r

Proof From Jensen’s inequality, we obtain

‖PΠ(Hr)‖z
2

=
∑

(sa)

z(sa)

(

∑

(s′a′)

[PΠ](sa,s′a′)(Hr)(s′a′)

)2
≤

∑

(sa)

z(sa)

∑

(s′a′)

[PΠ](sa,s′a′)(Hr)2(s′a′)

=
∑

(s′a′)

(Hr)2(s′a′)

∑

(sa)

[PΠ](sa,s′a′)z(sa) =
∑

(s′a′)

(Hr)2(s′a′)z(s′a′) = ‖Hr‖z
2

From the definition (25) it follows that ‖PΠH‖z,r = ‖PΠ(Hr)‖z ≤ ‖Hr‖z = ‖H‖z,r.

This non-expansion result can be used to prove that the on-policy operator O is a
contraction with respect to ‖·‖z,r.

Lemma 18 ‖OH1 −OH2‖z,r ≤ γ‖H1 − H2‖z,r

Proof From the definition of on-policy operator O, we have

‖OH1 −OH2‖z,r = ‖(1 − γ)I + γPΠH1 − (1 − γ)I − γPΠH2‖z,r

= ‖γPΠH1 − γPΠH2‖z,r

= γ‖PΠ(H1 − H2)‖z,r

Together with Lemma 17, this establishes ‖OH1 −OH2‖z,r ≤ γ‖H1 − H2‖z,r.
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Therefore, once again by the contraction map fixed point theorem (Bertsekas, 1995)
there exists a fixed point of O among row normalized matrices H, such that repeated
applications of O will converge to matrices HΠ where OHΠ = HΠ. However, one subtlety
here is that the dual fixed point is not unique. This is not a contradiction because the
norm on dual representations ‖·‖z,r is in fact just a pseudo-norm, not a proper norm. That
is, the fixed point equation OHΠ = HΠ only specifies |S||A| linear constraints on |S|2|A|2

unknowns. The set of fixed points forms a convex subspace (in fact, a simplex), since if
H1r = (1 − γ)I + γPΠH1 and H2r = (1 − γ)I + γPΠH2 then (αH1 + (1 − α)H2)r =
(1 − γ)I + γPΠ(αH1 + (1 − α)H2) for any α, where furthermore α must be restricted to
0 ≤ α ≤ 1 to maintain nonnegativity. Hence, the on-policy operator converges to a simplex
of equivalent fixed points {H : OH = H}.

5.2 Off-policy Convergence

The strategy for establishing convergence for the off-policy operator M is similar to the
on-policy case, but involves working with a different norm. Instead of considering a 2-norm
weighted by the visit probabilities induced by a fixed policy, one simply uses the max-norm.

Primal Representation. In the primal representation, the max-norm is given by

‖q‖∞ = max
(sa)

|q(sa)| (26)

The contraction property of the M operator with respect to this norm can then be easily
established (see (Bertsekas, 1995)): ‖Mq1 −Mq2‖∞ ≤ γ‖q1 − q2‖∞. As in the on-policy
case, contraction suffices to establish the existence of a unique fixed point of M among
vectors q, and that repeated application of M converges to this fixed point q∗ such that
Mq∗ = q∗ (Bertsekas, 1995).

Dual Representation. To establish convergence of the off-policy update M in the dual
representation, we first define a form of max-norm for state-action visit distributions by

‖H‖∞,r = max
(sa)

∣

∣

∣

∑

(s′a′)

H(sa,s′a′)r(s′a′)

∣

∣

∣
(27)

Then convergence of MH can be established by reducing the dual to the primal case by
appealing to their relationship.

Lemma 19 If (1 − γ)q = Hr, then (1 − γ)Mq = MHr.

Proof Given the assumption (1 − γ)q = Hr it follows that (1 − γ)q(sa) = [Hr](sa) for
all sa. Then together with the definitions (21) and (22), we obtain (1 − γ)Mq =
(1 − γ)(r + γPΠ∗[q]) = (1 − γ)r + γPΠ∗[(1 − γ)q] = (1 − γ)r + γPΠ∗[Hr] =
(1 − γ)r + γPΠ∗

r[H]r = ((1 − γ)I + γPΠ∗
r[H]) r = MHr.

Thus, each M update preserves the relationship between H and q. Therefore, given
convergence of Mq to a fixed point q∗, Mq∗ = q∗, it must hold that MH converges to
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H∗ such that H∗r = (1 − γ)q∗. Again, one subtlety here is that the dual fixed point is not
unique. This is, once again, not a contradiction because the norm on dual representations
‖·‖∞,r is in fact just a pseudo-norm, not a proper norm. That is, the relationship between
H and q is many to one, and several matrices can correspond to the same q. These matrices
form a convex subspace (in fact, a simplex), since if H1r = (1 − γ)q and H2r = (1 − γ)q
then (αH1 + (1 − α)H2)r = (1 − γ)q for any α, where furthermore α must be restricted to
0 ≤ α ≤ 1 to maintain nonnegativity. Thus the off-policy operator converges to a simplex
of equivalent fixed points {H∗ : MH∗ = H∗}.

6. Approximate Dynamic Programming

Scaling up DP and RL algorithms to large problem domains is one of the central challenges
in RL research. The most common approach is to generalize state or state-action value
functions using function approximation, where a target is approximated by a weighted
combination of basis functions. Although the combination could be non-linear, it is most
common to focus on linear approximations, which we also do here. Although primal and
dual updates exhibit strong equivalence in the tabular case, important differences begin to
emerge when one considers approximation.

6.1 Linear Approximation Schemes

For succinctness, we focus on the state-action case only.

Primal Representation. In the primal representation, linear function approximation
proceeds, conceptually, by fixing a small set of k basis vectors in a |S||A| × k matrix Φ.
Approximate state-action value vectors q̂ can then be expressed by linear combinations of
these bases, q̂ = Φw, where w is a k × 1 vector of adjustable weights. Thus, q̂ ∈ span(Φ)
(where it is understood that this refers to the column span).

Dual Representation. In the dual representation, a similar linear approximation strat-
egy can be followed: one begins with a set of bases that are linearly combined to form an
approximation Ĥ. However, the resulting approximation Ĥ must satisfy the constraints that
it is nonnegative and row normalized (cf. Lemma 10). Therefore, let Υ = (Υ(1), ...,Υ(k))
denote a set of k basis matrices such that each Υ(i) is an |S||A|×|S||A| matrix satisfying the
constraints Υ(i) ≥ 0 and Υ(i)1 = 1. Then a valid representation of a dual approximation
Ĥ can be expressed by a convex combination

Ĥ = w1Υ
(1) + · · · + wkΥ

(k) subject to w ≥ 0, w>1 = 1 (28)

where w is once again a k × 1 vector of adjustable weights. That is, Ĥ ∈ simplex(Υ). It is
easy to verify that this construction results in appropriately row normalized matrices.

Lemma 20 Ĥ ≥ 0 and Ĥ1 = 1

Proof Nonnegativity is immediate since Ĥ is a convex combination of nonnegative ma-
trices. Second, since w and each row of Υ(i) are normalized, it follows that Ĥ1 =
w1Υ

(1)1 + · · · + wkΥ
(k)1 = w11 + · · · + wk1 = (w>1)1 = 1.
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Below we will often find it convenient to work with a vectorized form of Ĥ. That is,
let Ψ be an (|S||A|)2 × k matrix of basis vectors such that Ψ(:,i) = vec(Υ(i)). Then we can

represent Ĥ in a vectorized form as

ĥ = vec(Ĥ) = Ψw = vec
(

w1Υ
(1) + · · · + wkΥ

(k)
)

(29)

To recover a matrix from a vector representation, one can use an inverse operator such that
Ĥ = reshape(ĥ) = reshape(vec(Ĥ)). A valid vector basis Ψ can then be specified by any
(|S||A|)2 × k matrix such that Ψ ≥ 0 and (1> ⊗ I)Ψ = 11>, where ⊗ denotes Kronecker
product and 11> is the matrix of all 1s.

Lemma 21 vec(Ĥ) = Ψw implies Ĥ ≥ 0 and Ĥ1 = 1

Proof Nonnegativity is obvious since Ψ ≥ 0 and w ≥ 0 by assumption. Second, given
the assumptions (1> ⊗ I)Ψ = 11> and w>1 = 1, it follows that Ĥ1 = vec(Ĥ1) =
(1> ⊗ I)vec(Ĥ) = (1> ⊗ I)Ψw = 11>w = 1.

Thus, one can work equivalently in the simplex of basis matrices, Ĥ ∈ simplex(Υ), or
the corresponding simplex of basis vectors, ĥ ∈ simplex(Ψ), depending on which form is
most convenient.

6.2 Projection Operator

Recall that in the primal, the state-action vector q is approximated by a linear combination
of bases in Φ. Unfortunately, there is no reason to expect Oq or Mq to stay in the column
span of Φ. Instead, a representable approximation is required. The subtlety resolved by
Tsitsiklis and Van Roy (1997) is to identify a particular form of best approximation—
weighted least squares with respect to the stationary distribution z (23)—that ensures
convergence to a fixed point q+ is still achieved when approximation is combined with the
on-policy operator O. Unfortunately, there are a few shortcomings associated with using
least squares projection. First, the fixed point q+ of the combined operator—O composed
with projection—is not guaranteed to be the best representable approximation of O’s fixed
point, qΠ. Instead, only a bound can be proven on how close this altered fixed point is to
the best representable approximation. Second, it is well known that the off-policy update
M does not always have a fixed point when combined with least squares projection in
the primal (de Farias and Van Roy, 2000), and consequently suffers the risk of divergence
(Baird, 1995; Sutton and Barto, 1998). A key advantage of the dual approach is that linear
approximation cannot diverge, even with off-policy updates, due to boundedness. Third,
exact projections do not permit practical algorithms because they require expectations to
be computed over the entire state or state-action spaces. Nevertheless, projection provides
a useful basis for analysis, and a foundation for deriving subsequent practical algorithms.

We first focus on establishing the main convergence results for projection with the on-
policy operator O.
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Primal Representation. The main steps taken in proving a bound in the primal case
are useful to proving a bound in the dual. First, a map from a general q vector onto its
best approximation in span(Φ) can be defined by an operator P that projects q into the
column span of Φ

Pq = argmin
q̂∈span(Φ)

‖q − q̂‖z
2 = Φ(Φ>ZΦ)−1Φ>Zq (30)

where Z = diag(z). The crucial property of this weighted projection is that it is a non-
expansion in ‖·‖z; that is, ‖Pq‖z ≤ ‖q‖z, which can be easily established using a generalized
Pythagorean theorem. Approximate dynamic programming then proceeds by composing
the two operators—the on-policy update O with the subspace projection P—to compute
the best representable approximation of the one step update. This combined operator
is guaranteed to converge to a fixed point q+, since composing a non-expansion with a
contraction is still a contraction. Tsitsiklis and Van Roy (1997) then use these facts to
establish an approximation bound between q+ and the fixed point of the on-policy operator,
qΠ: ‖q+ − qΠ‖z ≤ 1

1−γ
‖qΠ − PqΠ‖z.

Dual Representation. The dual case is somewhat more complicated because one needs
to represent nonnegative, row normalized matrices, not just vectors. Nevertheless, a very
similar approach to the primal case can be applied successfully. In the dual, the state-
action visit distribution H is approximated by a linear combination of basis matrices in Υ.
Once again, there is no reason to expect an update like OH or MH to keep the matrix in
simplex(Υ). Therefore, a projection operator must be constructed that determines a best
representable approximation. This projection needs to be defined with respect to the right
norm to ensure convergence, which can be achieved by the pseudo-norm ‖·‖z,r defined in
(25). Accordingly, define the weighted projection operator P over matrices by

PH = argmin
Ĥ∈simplex(Υ)

‖H − Ĥ‖z,r
2

(31)

This projection can be computed by solving a quadratic program

ŵ = argmin
w≥0, w>1=1

‖H − reshape(Ψw)‖z,r
2

and recovering Ĥ = reshape(Ψŵ). A key result is that this projection operator is a non-
expansion with respect to the pseudo-norm ‖·‖z,r.

Theorem 22 ‖PH‖z,r ≤ ‖H‖z,r

Proof Note that the projection operator P can be viewed as a composition of three
orthogonal projections: first, onto the linear subspace span(Υ), then onto the subspace of
row normalized matrices span(Υ)∩{H : H1 = 1}, and finally onto the space of nonnegative
matrices span(Υ) ∩ {H : H1 = 1} ∩ {H : H ≥ 0}. Note that the last projection into
the nonnegative half-space is equivalent to a projection into a linear subspace for some
hyperplane tangent to the simplex. Each one of these projections is a non-expansion in ‖·‖z,r
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in the same way: they satisfy the following generalized Pythagorean theorem. Consider just
one of these linear projections P1

‖H‖z,r
2 = ‖P1H + H − P1H‖z,r

2 = ‖P1Hr + Hr− P1Hr‖z
2

= ‖P1Hr‖z
2 + ‖Hr − P1Hr‖z

2 = ‖P1H‖z,r
2 + ‖H − P1H‖z,r

2

hence ‖P1H‖z,r ≤ ‖H‖z,r. Since the overall projection P = P1◦P2◦P3 is just a composition
of non-expansions, it must be a non-expansion.

As in the primal, approximate dynamic programming can be implemented by composing
the on-policy update O with the projection operator P. Since O is a contraction and P a
non-expansion, PO must also be a contraction, and it then follows that it has a fixed point.
Note that, as in the tabular case, this fixed point is only unique up to Hr-equivalence, since
the pseudo-norm ‖·‖z,r does not distinguish H1 and H2 such that H1r = H2r. Here too,
the fixed point is actually a simplex of equivalent solutions. For simplicity, we denote the
simplex of fixed points for PO by some representative H+ = POH+.

Finally, we can recover an approximation result analogous to the primal case, which
bounds the approximation error between H+ and the best representable approximation to
the on-policy fixed point HΠ, where HΠ = OHΠ.

Theorem 23 ‖H+ − HΠ‖z,r ≤ 1
1−γ

‖PHΠ − HΠ‖z,r

Proof First note that ‖H+ − HΠ‖z,r = ‖H+ − PHΠ + PHΠ − HΠ‖z,r ≤ ‖H+ − PHΠ‖z,r+
‖PHΠ − HΠ‖z,r by the generalized Pythagorean theorem. Then since H+ = POH+ and P
is a non-expansion, we have ‖H+ − PHΠ‖z,r = ‖POH+ − PHΠ‖z,r ≤ ‖OH+ − HΠ‖z,r. Fi-
nally, using the fact that HΠ = OHΠ, Lemma 18 can be used to establish ‖OH+ − HΠ‖z,r =
‖OH+ −OHΠ‖z,r ≤ γ‖H+ − HΠ‖z,r. Therefore (1 − γ)‖H+ − HΠ‖z,r ≤ ‖PHΠ − HΠ‖z,r,
which gives the result.

To compare the primal and dual results, note that despite the similarity of the bounds,
the projection operators do not preserve the tight relationship between primal and dual
updates. That is, even if (1− γ)q = Hr and (1− γ)(Oq) = (OH)r, it is not true in general
that (1 − γ)(POq) = (POH)r. The most obvious difference comes from the fact that in
the dual, the space of H matrices has bounded diameter, whereas in the primal, the space
of q vectors has unbounded diameter in the natural norm. Automatically, the dual updates
cannot diverge, even under the composition PM.

6.3 Gradient Operator

For large scale problems one does not normally have the luxury of computing full parallel
DP updates. Furthermore, least squares projections also require knowing the stationary
distribution z for PΠ (essentially requiring one to know the model of the MDP). A key
intermediate step toward achieving practical algorithms is to formulate a gradient step
operator that only approximates full projections. Unfortunately, practicality comes with a
cost. As we will see in Section 7 below, a gradient step operator causes significant instability
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when composed with the off-policy update in the primal representation, to the extent that
divergence is a common phenomenon. Fortunately, divergence is not possible in the dual
representation; moreover all DP algorithms appear to converge reliably in the dual case.

Primal Representation. Gradient step updates are easily derived from a given projec-
tion operator. In the primal representation, projection is equivalent to solving for a weight
vector w that minimizes the least squares objective J = 1

2‖q − q̂‖z
2 = 1

2‖q − Φw‖z
2. Us-

ing the relation q̂ = Φw, we can derive the gradient update as Gq̂q = q̂ − αΦ∇wJ =
q̂− αΦΦ>Z(q̂− q), where α is a positive step-size parameter. Here, the target vector q is
usually given by a DP update (either O or M) to a representable vector q̂. This gives the
composed updates

GOq̂ = q̂− αΦΦ>Z(q̂−Oq̂) (32)

GMq̂ = q̂− αΦΦ>Z(q̂−Mq̂) (33)

for the on-policy and off-policy cases respectively. In fact, these are parallel versions of
the standard RL updates with function approximation (see Section 6.4). Our experimental
results in Section 7 show that the gradient update is stable when composed with the on-
policy operator (32), but usually diverges when composed with the off-policy update (33).

Dual Representation. In the dual representation, one can derive a gradient update
similarly, except that simplex constraints must be maintained on w. Consider the objective

J =
1

2
‖H − Ĥ‖z,r

2
=

1

2
‖vec(Hr) − vec(Ĥr)‖z

2
=

1

2
‖(r> ⊗ I)(h − Ψw)‖z

2
(34)

The unconstrained gradient with respect to w is given by

∇wJ = Ψ>(r> ⊗ I)>Z(r> ⊗ I)(Ψw − h) = Γ>Z(r> ⊗ I)(ĥ − h)

where Γ = (r> ⊗ I)Ψ. This gradient direction cannot be followed directly because it
might violate the simplex constraints. Fortunately, enforcing these constraints is easy. For
example, the constraint w>1 = 1 can be maintained by first projecting the gradient onto
the constraint, obtaining the modified update direction δw = (I− 1

k
11>)∇wJ . In this case,

the weight vector can be updated by

wt+1 = wt − αδw = wt − α
(

I −
1

k
11>

)

Γ>Z(r> ⊗ I)(ĥ − h)

where α is a positive step-size parameter. Subsequently, if the update violates any nonneg-
ativity constraint, the step-size can be shortened and the update direction can further be
projected onto the simplex boundaries (we omit these details for succinctness of presenta-
tion). The gradient operator can then be defined by

G
ĥ
h = ĥ − αΨδw = ĥ− αΨ

(

I −
1

k
11>

)

Γ>Z(r> ⊗ I)(ĥ − h)

Here, the target vector h is determined by the underlying DP update (either O or M)
to a representable vector ĥ. This gives the composed updates

GOĥ = ĥ− αΨ
(

I −
1

k
11>

)

Γ>Z(r> ⊗ I)(ĥ −Oĥ) (35)

GMĥ = ĥ− αΨ
(

I −
1

k
11>

)

Γ>Z(r> ⊗ I)(ĥ −Mĥ) (36)
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respectively for the on-policy and off-policy cases. We investigate the convergence properties
of these composed updates experimentally in Section 7, and observe that they both converge
reliably in the dual (whereas GM usually diverges in the primal).

6.4 Stochastic Gradient Operator

Finally, truly practical algorithms for large scale problems can be achieved by approximating
the gradient operator with local stochastic estimates. That is, in place of a full expectation,
the gradient updates can be estimated with a single sampled transition, sa → s′a′. Such
updates are stochastic gradient operators.

Primal Representation. The key observation in deriving an unbiased stochastic gra-
dient update is to note that the projection gradient can be written as an expectation:

∇wJ = Φ>Z(q̂ − q) = E(sa)∼Z

[

Φ>
(sa,:)(q̂(sa) − q(sa))

]

. In an RL context, if states are vis-

ited according to a stationary exploration policy, Π, then each step sa → s′a′ provides an
unbiased sample of the gradient: ∇̃wJ = Φ>

(sa,:)(q̂(sa) −q(sa)). Replacing expectations with
unbiased samples and working strictly with the weight vector w yields the updates

wt+1 = wt − αΦ>
(sa,:)(Φ(sa,:)wt − r(sa) − γΦ(s′a′,:)wt) (37)

wt+1 = wt − αΦ>
(sa,:)(Φ(sa,:)wt − r(sa) − γ max

a∗
Φ(s′a∗,:)wt) (38)

for the on-policy and off-policy cases respectively. The former is the standard RL update
for policy evaluation in large domains; the latter is the well known but unstable update,
Q-learning with linear function approximation (Sutton and Barto, 1998).

Dual Representation. In the dual, the gradient of the objective can also be written as
an expectation

∇wJ = Γ>Z(r> ⊗ I)(ĥ − h) = E(sa)∼Z

[

Γ>
(sa,:)(Γ(sa,:)w − H(sa,:)r)

]

(39)

where Γ = (r> ⊗ I)Ψ. Then, once again, each step sa → s′a′ taken by a stationary

exploration policy Π provides an unbiased sample of the gradient: ∇̃wJ = Γ>
(sa,:)(Γ(sa,:)w−

H(sa,:)r). Replacing expectations with unbiased samples and working strictly with the
weight vector w yields the dual versions of the RL updates

wt+1 = wt − αΓ>
(sa,:)

(

Γ(sa,:)wt − (1 − γ)r(sa) − γΓ(s′a′,:)wt

)

(40)

wt+1 = wt − αΓ>
(sa,:)

(

Γ(sa,:)wt − (1 − γ)r(sa) − max
a∗

γΓ(s′a∗,:)wt

)

(41)

for the on-policy case and off-policy cases respectively. (As before, these gradient updates
need to be projected into the constraint simplex, which is not difficult, but we omit details
for brevity.) The computational cost of the dual updates is not significantly greater than
the primal. These updates provide practical dual algorithms for large scale problems. The
major advantage of the dual updates versus the primal is that they cannot diverge. In
particular, (41) is well behaved in practice, whereas (38) is highly unstable and tends to
diverge, unless specific care is taken (Gordon, 1995; Sutton, 1996). We investigate the
convergence properties of the various updates empirically below.

22



Dual Representations for Dynamic Programming

7. Experimental Results

To investigate the effectiveness of the dual representations, we conducted experiments with
the various DP algorithms on different problem domains. In particular, we considered
three distinct problem domains: randomly synthesized MDPs, Baird’s star problem, and
the mountain car problem. The randomly synthesized MDP problems allow us to test the
general properties of the algorithms. Baird’s star problem is perhaps the most-cited ex-
ample of a problem where Q-learning with linear function approximation diverges (Baird,
1995). The mountain car domain has been prone to divergence with some primal representa-
tions (Boyan and Moore, 1995), although successful results have been reported by carefully
choosing bases based on sparse tile coding (Sutton, 1996).

For each problem domain, we experimented with twelve dynamic programming algo-
rithms: tabular on-policy (O), projected on-policy (PO), gradient on-policy (GO), tabular
off-policy (M), projected off-policy (PM), and gradient off-policy (GM), for both the pri-
mal and dual representations. (We did not include the stochastic gradient updates developed
in Section 6.4, since their behavior is expected to follow that of the gradient operators, due
to the fact that they are unbiased estimates.) In each case, the algorithms were run with
100 repeats to a horizon of 1000 iterations. The discount factor was set to γ = 0.9. The
step size for the gradient updates was 0.1 for primal representations and 100 for dual rep-
resentations. Unless otherwise specified, the initial values of state-action value functions q

are set according to standard normal distribution and state-action visit distributions H are
chosen uniformly randomly with row normalization.

The plots show error obtained versus the number of DP iterations executed. For the
on-policy algorithms, the errors are measured between the current estimates (either q or H)
and the optimal fixed point determined by the policy, using the norm defined in (24) and
(25) for the primal and dual cases, respectively. For the off-policy algorithms, the errors
are measured between the current estimates (either q or H) and the optimal solutions
(either q∗ or H∗), using the max norm defined in (26) and (27) for the primal and dual
cases, respectively. Figures 1, 4, and 6 show the behavior of the on-policy update operators
on different problems, and Figures 2, 5, and 7 show the behavior of the off-policy update
operators.

7.1 Task: Randomly Synthesized MDPs

For the synthetic MDPs, we generated the transition model P and reward function r

randomly—the transition function is uniformly distributed between 0 and 1 and the re-
ward function is normally distributed with mean 0 and variance 1. Since our goal is to test
the stability of algorithms without carefully crafting features, we also choose random basis
functions according to standard normal distribution for primal representations, and random
basis distributions according to uniform distribution for dual representations. Although we
conducted experiments on other problem sizes, we only report results for random MDPs
with 100 states, 5 actions, and 10 bases, averaging over 100 repeats here. We observed con-
sistent behavior of the algorithms over ensembles of random MDPs, across different number
of states, actions, and bases.

Figure 2 shows that the gradient off-policy (GM) algorithm diverges, while all the other
algorithms in Figures 1 and 2 converge.
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Figure 1: On-policy update of state-action value q and visit distribution H on randomly
synthesized MDPs
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Figure 2: Off-policy update of state-action value q and visit distribution H on randomly
synthesized MDPs
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Figure 3: Baird’s star problem (Baird, 1995)

7.2 Task: Baird’s Star Problem

Baird’s star problem, shown in Figure 3, has 7 states and 2 actions. The reward function is
uniformly zero. The transitions in solid lines are triggered by action a1 and the transitions
in dotted lines are generated by action a2, that is, taking action a1 in all the states will
cause a transition to state s7 with probability 1; taking action a2 in each state will cause a
transition to one of states s1 through s6 with equal probability 1/6.

In our experiments, we used the same exploration policy and linear value function ap-
proximation as (Baird, 1995). The fixed policy chooses action a1 with probability 1/7 and
action a2 with probability 6/7. The representation of action values for the primal case is
given in Figure 3. The action values are given by the linear combination of the weights. For
example, Q(s1, a1) = w0 + 2w1 and Q(s1, a2) = w7; see Figure 3. The initial action values
of a1 are set to be bigger than the initial values of a2, and the value of action a1 in state
six is set to the largest action value.

Note that for the dual approach, all of the updates obtain exactly zero error in this
problem domain, according to the pseudo-norms defined in (25) and (27), since r = 0.
Therefore, we do not plot any dual results in this case. However, for the primal approach,
the gradient off-policy update diverges, as shown by the dotted line with the circle marker
in Figure 5. Convergence is obtained in the on-policy case.

7.3 Task: The Mountain Car Problem

The mountain car problem has continuous state and action spaces, which we discretize with
a simple grid, resulting in an MDP with 222 states and 3 actions. The number of bases
is chosen to be 5 in both the primal and dual representations. We chose the bases for the
algorithms randomly. In the primal representation, we randomly generated basis functions
according to a standard normal distribution. In the dual representation, we randomly
generated basis distributions according to a uniform distribution, and renormalized.

Figure 7 again shows that the gradient off-policy update in the primal diverges, while
all of the dual algorithms converge (see Figures 6 and 7).

Overall, we note that the approximate dual algorithms tended to achieve smaller approx-
imation errors than the corresponding primal algorithms. Furthermore, in our experiments
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Figure 4: On-policy update of state-action value q on Baird’s star problem
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Figure 5: Off-policy update of state-action value q Baird’s star problem
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Figure 6: On-policy update of state-action value q and visit distribution H on the mountain
car problem
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Figure 7: Off-policy update of state-action value q and visit distribution H on the mountain
car problem
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the dual DP algorithms always converged, while the primal DP algorithms were only stable
as long as gradient updates were not composed with the off-policy operator. In particular, in
the primal representation, the gradient off-policy update with linear function approximation
almost always diverged.

8. Conclusion

We have introduced a series of dual DP algorithms for sequential decision making problems
based on maintaining an explicit representation of visit distributions as opposed to value
functions. We studied the convergence properties of these dual algorithms both theoretically
and empirically, and found that the on-policy updates converge in both primal and dual
algorithms, while the off-policy updates diverge when composed with gradient operator in
the primal but converged in the dual. In particular, we proved the convergence of tabular
on-policy (O), tabular off-policy (M), and projected on-policy (PO) updates for the dual,
while only establishing experimentally the convergence of the projected off-policy (PM),
gradient on-policy (GO), and gradient off-policy (GM) in the dual.

A potential limitation of the dual approach is that, in the tabular case, the updates
in the dual representation are more expensive than in the primal representation. However,
this limitation can be largely overcome by exploiting function approximation with stochastic
gradient updates (Section 6.4). We plan to investigate the convergence properties of these
practical RL algorithms both theoretically and empirically in future work.

Overall the dual approach offers a coherent and comprehensive perspective on optimal
sequential decision making problems, and provides a viable alternative to standard value
function based approaches for developing DP and RL algorithms. An interesting oppor-
tunity we have not yet explored is to investigate joint primal-dual algorithms that might
permit tighter bounds on approximation quality to be obtained.
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