
University of Alberta

Morphological Parser for Field Linguists

by

Isabel Klint \ U
* -

A thesis submitted to the Faculty o f Graduate Studies and Research
in partial fulfillm ent o f the requirements for the degree of

Master of Arts

in

Linguistics

Humanities Computing

Edmonton, Alberta

Spring 2007

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Library and
Archives Canada

Bibliotheque et
Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A 0N4
Canada

Your file Votre reference
ISBN: 978-0-494-29885-5
Our file Notre reference
ISBN: 978-0-494-29885-5

Direction du
Patrimoine de I'edition

395, rue Wellington
Ottawa ON K1A 0N4
Canada

NOTICE:
The author has granted a non­
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non­
commercial purposes, in microform,
paper, electronic and/or any other
formats.

AVIS:
L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par I'lnternet, preter,
distribuer et vendre des theses partout dans
le monde, a des fins commerciales ou autres,
sur support microforme, papier, electronique
et/ou autres formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these.
Ni la these ni des extraits substantiels de
celle-ci ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

Conformement a la loi canadienne
sur la protection de la vie privee,
quelques formulaires secondaires
ont ete enleves de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

i * i

Canada
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Abstract

This thesis presents Parser X, a universal morphological parser for field linguists

at the onset of a language documentation project. Parser X was designed,

programmed and implemented after an evaluation of ten morphological parsers,

four of which are based on Two-level Morphology systems. Two-level

morphology parsers require grammatical information for implementation;

therefore, they cannot be implemented at the onset of a project. An exemplar

theory-based parser such as Parser X can be successfully implemented at the

onset of a project. Two use-case scenarios describe the parser implementation in

two transcription projects: the interlinearization of field data by a field linguist

and the preparation of CHAT transcripts for CLAN analysis by a child language

acquisition researcher using the CHILDES system. Both scenarios use Upper

Necaxa Totonac language data. Parser X is a free and open-source parser,

programmed in Java with data encoded in XML and suitable for field linguists.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table of Contents

1 INTRODUCTION..1

2 INTRODUCTION TO CONCEPTS..5

2.1 C riteria for Ev a l u a t io n ..5
2.1.1 D efinition o f U n iversal P a rse r ...6
2.1.2 P arsing E d g e ...7
2.1.3 P arser F un ction a lity ..13
2.1 .4 O rder-D ependen t P a rs in g ... 15
2.1 .5 D a ta In corpora tion .. 17
2 .1 .6 P h onolog ica l P ro cess in g ... 18
2.1 .7 Suitab ility fo r F ie ld L ingu ists ...18

3 EVALUATION OF PARSERS..21

3.1 Tw o -L evel Mo rph olog y Pa r s e r s ..22
3.1.1 L exicon ..23
3.1.2 R ules ...26

3.2 Eva lu a t io n o f T w o -L evel Mo rphology Pa r s e r s ... 28
3.2.1 PC-K1M M O a n d K -T ex t (Antworth, 19 9 3) ... 28
3.2.2 C G P (K arlsson, 1 9 9 5) .. 30
3.2.3 KOVAL (K o va l e t al. 2 0 0 0) .. 34
3.2 .4 ALEGR1A (A legria e t al. 1 9 9 6) ... 36

3.3 Other Pa r se r s ..38
3.3.1 BITC (Sprouse, 2 0 0 0) ... 38
3.3.2 D O L A N (Dolan, 1988).. 42
3.3.3 SO LA K (Solak & Oflazer, 1 9 9 3) ... 47
3.3.4 W W M (N euval & Fulop, 2 0 0 2) .. 49
3.3.5 Q pop (W allace, 1 9 8 8) ... 51
3.3 .6 M orpheus (Crane, 1 9 9 1) ...52

3.4 Results of Ev a l u a t io n ...53
3.4.1 P arser U n iversa lity ..54
3.4.2 P arsing E d g e ..55
3.4.3 P arser F u n ction a lity ... 57
3.4 .4 O rder D epen dency an d D ata In corpora tion ..58
3.4.5 P h onolog ica l P ro cess in g ...59
3 .4 .6 Su itab ility fo r F ie ld L ingu ists .. 60

3.5 Ev a l u a t io n Su m m a r y ... 61

4 PARSER X DESIGN AND IMPLEMENTATION..64

4.1 Pa r ser X Im pl e m e n t a t io n ...65
4.2 Pa r ser X D e s ig n ...66

4.2.1 Texts a n d C orpus ...68
4.2.2 In d ex er ... 69
4.2.3 Index ...71
4.2 .4 D ic tio n a ry .. 71
4.2.5 Affix L is t... 72
4.2 .6 P a rser .. 73
4.2 .7 G raph ica l U ser In terface ... 79

5 USE CASE SCENARIOS..82

5.1 First Sc e n a r io : F ield D a t a Inter linear izing A i d .. 83
5.2 Ev a lu a t io n of Pa r ser X 100

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6 CONCLUSION... 102

6.1 Su m m a r y ..102
6.2 Future W o r k ... 104

BIBLIOGRAPHY... 109

APPENDIX A. ABBREVIATIONS..118

APPENDIX B. XML SCHEMA FILES.. 119

Corpus Sc h e m a : t e x t I .x s d .. 119
In d e x Sc h e m a : in d e x .x s d ..120
D ictionary En tries Sc h e m a : en tr ies .x s d ... 121
A ffix L ist Sc h e m a : a f fix e s .x s d ...121

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table of Tables

T able 2-1 Left-to -R ig h t P a r s in g : S e a r c h S t r in g s fo r Suffixal La n g u a g e (Tu r k ish) 8
T a b le 2 -2 L e f t - t o - R ig h t P a r s in g S e a r c h S t r i n g s f o r d a a n a h b A n (C h ir i c a h u a) 10
T able 2 -3 R ig h t -t o -L eft a n d Left-to -R ig h t P a r s in g : P refixed W o r d a n d Ef f ic ie n c y 12
T a b le 2-4 P a r s e T a b le f o r d a r a m a z k i o t ... 16
T able 3-1 Le x ic o n E n t r i e s ... 25
T able 3 -2 C o n t in u a t io n C l a sse s ...25
T able 3 -3 PC -K IM M O O u t p u t .. 29
T able 3 -4 P ar ser s by L a n g u a g e s P a r s e d ... 54
T able 3 -5 P ar ser Ed g e o f Ea c h P a r s e r ...56
T able 3 -6 P ar ser s by D a t a In c o r p o r a t io n a n d O r der D e p e n d e n c y .. 59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table of Figures

F ig u re 2-1. A R ig h t -to -L eft P a r sin g Ex a m p l e i n En g l is h ..11
F ig u re 3-1 . F in it e Sta te A u t o m a t o n o f d o g ..23
F ig u r e 3-2 . A P a t h i n t h e N e t w o r k ..24
F ig u r e 3-3 . F in i t e S t a t e A u t o m a t o n o f d o g .N -3 p ..26
F ig u r e 3-4 . C o r r e s p o n d e n c e B e t w e e n T w o R e p r e s e n t a t io n s o f d o g s26
F ig u r e 3-5 . A F in i t e S t a t e T r a n s d u c e r f o r d o g s .. 27
F ig u re 3-6. KOVAL a s a V ir t u a l F in it e Sta te A u t o m a t o n ..35
F ig u re 3-7 . BITC G r a p h ic a l U ser In t e r f a c e ..39
F ig u r e 4-1 . S c h e m a t i c o f P a r s e r X D e s ig n ..67
F ig u r e 4-2. P ar ser X G r a p h ic a l U ser In t e r f a c e ...80
F ig u re 5-1. V iew o f P arser X i n U s e ...86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1

1 Introduction

A field linguist at the beginning of a language documentation

project must collect and interlinearize texts in order to build up a corpus

for his target language. Interlinearizing texts is a tedious task and much of

it could easily be automated. Parsers are used by linguists to automate the

breaking down of linguistic expressions (words, sentences) into

constituent units. A parser is a tool that breaks language data into smaller

elements, according to a set of rules that describe the data structure. A

computational parser for natural language processing accepts natural

language data and returns that data analyzed into elements according to

rules; for example, a morphological parser decomposes words into

morphemes. Parsers typically parse words by running a parsing routine

that uses a lexicon and a set of morphological rules to identify the

segments in the word and provide a morphological analysis of that word.

Some parsers have a phonological processor that identifies segments that

exhibit morphophonemic alternations.

Currently, tools that allow linguists to build their own parsers for

well-studied languages are freely available or easy to obtain. However,

despite the many advances in parsing techniques and the many parser-

building tools available, only a handful of ready-made morphological

parsers are available. Of these, only one or two are designed for field

linguists in the process of documenting a language (for example, Shoebox

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2

5, the Summer Institute of Linguistics' legacy software for field linguists).

Currently there are no morphological parsers that are easy to find,

download and implement for the major computer platforms. If the

linguist were willing to implement a parser in his target language, he

would discover that few parsers can parse all language types. The linguist

in the early stages of a project may not know enough about his target

language to decide if a particular parser can be implemented in that

language or not. As endangered languages rapidly become moribund, a

multi-platform and language independent tool to parse field data is

needed. A parser for field linguists must meet the computational and

linguistic needs of the field linguist.

Field linguists who wish to use a currently available parser will find

that parsers are designed by computational linguists for a variety of

different reasons. For example, parsers are designed by linguists to

exemplify a theory, to parse a specific language, or for a specific purpose

or type of user. Parsers that are theory specific have difficulty with

linguistic phenomenon that are not accounted for in the theory; for

example, the popular Two-Level Morphology model parsers have

difficulty parsing words with segments that have long-distance

dependencies. Furthermore, they require extensive rule sets and lexicons

in order to be useful in practice. Language-specific parsers may be only

applicable to one language or to languages that share a particular feature.

For example, some parsers only parse suffixing languages and cannot

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3

parse prefixing languages. Parsers designed for a specific purpose or user

may be difficult to implement for use in a different context without

extensive program m ing knowledge.

Chapter 2 of the thesis introduces basic concepts in parser design.

As many parser designs are described in academic papers (one or two are

even available to download and implement), any new parser for field

linguists must build from lessons learned. This thesis documents the

design, implementation and usage of a parser for field linguists that can be

implemented in any language. Chapter 3 gives an evaluation of ten

parsers that inform the design of this universal parser. The ten parsers

exemplify a variety of approaches to morphological parsing and a range

of parser functionalities. The evaluation section describes how each parser

meets needs specific to field linguists.

Chapter 4 describes the universal parser design and

implementation. The parser's design is described in detail. The parser

implementation in a poly synthetic agglutinative language is described.

The parser's usage is described in two use case scenarios in Chapter 5.

These scenarios describe the implementation and use of Parser X by

student researchers. The first scenario describes a student field

researcher's implementation of Parser X to interlinearize an Upper Necaxa

Totonac text and the second scenario describes a student child language

acquisition researcher's implementation of Parser X to correct and

interlinearize child language data. Chapter 6 concludes this thesis with a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4

thesis summary, a description of the universal parser's shortcomings and

directions for future improvements to the parser.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5

2 Introduction to Concepts

2.1 Criteria fo r Evaluation

The first of the evaluation criteria is parser universality. A parser is

universal if can adequately parse an agglutinative, polysynthetic language.

The second of these criteria is the parsing edge, which refers to the

starting point in a word from which the parser begins a parsing routine.

By convention, this is the left edge, although some parsers parse from the

right edge or from both edges. The third is parser functionality or the

actions or processes that a parser performs. This might include a parser

output such as an interlinearized gloss or an identification of lexical

ambiguity. The fourth is order dependent parsing. A parsing routine that

relies on the completion of a series of ordered steps is an order dependent

parser. For example, in a case where the parser must parse a word with

multiple affixes, if the parser identifies an affix that does not co-occur with

certain other affixes, those other affixes are not included in the subsequent

search for matches for the remaining affixes in the word. The fifth is data

incorporation. For example, when a parser performs operations such as

affix stripping on input words and then updates a lexicon to include novel

roots whose class is determined by the stripped affixes, that parser is

incorporating new data (new root and word class). A sixth criterion is

phonological processing, where a parser decomposes input strings in

accordance with phonological rules. The last is the suitability for field

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6

linguists. The author of a particular parser may be aiming to illustrate a

particular theory or implement a parsing algorithm that resolves a

parsing issue present in a specific language; however, these aims do not

always result in a parser that can parse raw field data. The author or

program m er's goal in designing the parser affects the suitability of the

parser for the field linguist. I describe each of these criteria in detail below.

2.1.1 D efin ition of Universal Parser

One goal of this thesis is to describe the suitability of specific parser

designs for fieldwork. The design of a universal parser is constrained, as

the name implies, by the requirement that the parser be able to parse any

language. In order to adequately parse a typologically diverse set of

languages, the parser must be able to parse languages that exhibit

complex morphological or morphophonemic phenomena. Agglutinative,

polysynthetic languages have complex morphology; therefore, these

languages are typically avoided by computational linguists when building

parsers as their complex morphology poses problems for the

programmer. Languages that are morphologically complex include

Turkish, Basque, Inuktitut and Nahuatl. For the purposes of this paper, a

parser will be considered universal if it can adequately parse a

morphologically complex language.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7

Although individual parsers differ in some respects, in general

parsers incorporate the same basic features. These features form the

criteria for evaluation of the parsers analyzed in Chapter Three.

2.1.2 Parsing Edge

The parsing edge refers to the beginning or end of the w ord to be

parsed. In order to parse a w ord (represented by an input string), the

parser must distinguish the root from the affixes. To identify the root, the

parser must begin from one edge and iteratively check substrings of the

input string until a root match is found. For languages that are suffixing

only, such as Turkish, the problem of root recognition is reduced because

the root edge is always the left edge of the word; there are no prefixes in

Turkish. The root of the word is always word-initial; therefore, the left

edge of the word is also the root-edge. Not only is the num ber of

substrings that might be roots reduced but also the root substring location

is known: only the root length and root match remain for the parser to

discover. Consider example (1) from Hankamer (2006) below:

(1) Turkish

a v r u p a l i la s t in la m iy a c a k la r d a n $ in iz d ir

Q v r u p Q - l i - l a § - t i r - i l - Q - m i - y a c a k - l a r - d a n - § m i z - d i r

Europe-ean-ize-CAUS-PASS-POT-NEG-FUT-ABL-2PL-POLITE-EMPH
'You are certainly am ong those w ho will not be Europeanizable'

In the above example, the text string that represents the word has 38

characters. The substring that corresponds to the root is the first six

characters, avrupa. The parser must match a string of length n beginning

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

8

from the left edge of the word to a root in the lexicon. The parser starts

with the shortest substring (where n = 1) of avrupahla$tirilamiyacak-

lardan$inizchr and continues until a root match is found. Table 1 shows the

six substrings that the parser uses as search strings before finding a match

in avrupa.

Table 2-1 Left-to-Right Parsing: Search Strings for Suffixal Language

(Turkish)

NUMBER SUBSTRING

1 a

2 av

3 avr

4 avru

5 avrup

6 avrupa

The algorithm searches for a word-initial root; if the algorithm reaches the

end of the string before a match is found, then there is no root match.

Left-edge parsing is not always efficient for languages with

prefixes. In the following example from Hoijer (1938, p. 3), this strategy is

unsuccessful because the root is not word initial.1

11 provided the interlinear gloss; any errors are mine, not Hoijer's.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

9

(2) Chiricahua
daanahiban
daa-nahi-ban
DiSTR.PL-2DU.POSS-bread
'our/you r bread'

In example (2), the root -ban is preceded by seven characters, the prefix

string daanahi-. In this case, an exclusively left-edge parser fails to find a

match in the lexicon for -ban. However, a parser using a left-to-right

algorithm such as the brute force algorithm described in Charras and

Lecroq (1997) would succeed in finding a match. Such a parser starts

searching iteratively from the left-edge for a three-character root match,

in this case for ban, beginning with the first three characters daa and

continuing one character to the right with aan until it eventually matches

the final three characters ban. A parser employing the brute-force

algorithm would examine 51 substrings before finding the matching

segment. This is illustrated in Table 2-2.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

10

Table 2-2 Left-to-Right Parsing Search Strings for daanahbati (Chiricahua)

SUBSTRINGS OF daanahiban

d

da a

daa aa a

daan aan an n

daana aana ana na a

daanah aanah anah nah ah h

daanahi aanahi anahi nahi ahi hi i
daanahib aanahib anahib nahib ahib hib ib b
daanahiba aanahiba anahiba nahiba ahiba hiba iba ba
daanahiban aanahiban anahiban nahiban ahiban hiban iban ban

When parsing a language with prefixes, all prefix characters must be

eliminated from the search before the root characters can be matched. In

other words, the parser must find the root's location in the original word

or input string. Therefore, it is more efficient to parse a language that only

allows suffixes than it is to parse a language that allows prefixes.

In order to resolve the problem of root recognition for languages

with prefixes, some parser designs include bi-directional parsing routines.

In bi-directional parsing, the parser strips characters from the left edge

and the right edge, either alternately or by parsing first from one edge

then the other. For example, Neuval and Fulop's (2002) Whole-Word

Morphologizer (WWM) will strip characters from the left or the right

edge, depending on which edge shares characters with those of a word in

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

11

the lexicon. Figure 1 shows a right-edge parse of the word jumps (Neuval

& Fulop, 2002, p.6)

Input String: jumps
Analysis: xxxx+s
Output: jump (v) , jumps (3sg)

Figure 2-1. A Right-to-Left Parsing Example in English

In Figure 2-1, the WWM matches the last character of the input string

jumps to the last character with the lexicon entry for plays, performs an

analysis based on the parse of plays and outputs a parsed form for jumps.

Neuval and Fulop's WWM analyzer implements a bi-directional matching

function in order to perform a form of sequence-alignment, classifying

input strings into groups based on the maximum num ber of characters

the input strings have in common (2002, p. 4).

The practical reason for parsing bi-directionally, as described by

Poibeau (1998, p. 110), is that bi-directional parsing improves parsing

speed over uni-directional parsing for some strings. However, gains in

parsing speed through bi-directional parsing differ from language to

language. For a suffixal language, left-to-right parsing is more efficient.

However, if a language has both prefixes and suffixes, a bi-directional

parser may be more efficient than a uni-directional parser for some

words. Specifically, a bi-directional parser is more efficient than a uni­

directional parser in two instances. In the first instance, a bi-directional

parser is more efficient when the left-edge segment has the length n and

the right edge segment has the length n-1. For example, parsing from the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

12

right edge is more efficient for the input string unhappy, as shown below

in Table 2-3:

Table 2-3 Right-to-Left and Left-to-Right Parsing: Prefixed Word and

Efficiency

RIGHT-TO-LEFT LEFT-TO-RIGHT

y u n h

py un nh ha

ppy unh nha hap

appy unha nhap happ

happy unhap... nhapp... happy

In Table 2-3, the right-to-left parse results in a match after five substrings

while a left-to-right parse requires seventeen substrings to find a match. It

is clear that a right-to-left parse would be more efficient in this case than a

left-to-right parse. Bi-directional parsers, parsers that parse from both the

left and right edge of the input string, can be more efficient than left-edge

parsers when the parser recognizes the right-edge segment but not the

left-edge segment. However, as is obvious from Table 2-3, a uni­

directional parser will generate the same matches as a bi-directional

parser. Notice that in the above examples all the parsing is performed by

a variant of the Brute Force algorithm. Parsing efficiency will improve

with other parsing algorithms such as the Boyer-Moore algorithm and its

many variations. However, as parsing efficiency does not affect parsing

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

13

success, it is not a criterion for evaluation and I do not further discuss the

efficiency of parsing algorithms in this thesis.

Regardless of the implications of parsing edge on efficiency, the

parsing edge remains an important criterion because it relates to the

typological class of the language to be parsed. A universal parser must

have a method for recognizing roots that does not rely on the parsing

edge because without such a method no languages with prefixes could be

parsed by that parser. Note that the parser may be theoretically bi­

directional but in practice only parse from the left edge. For example, the

Two-Level Morphology model-based parsers are in theory bi-directional

parsers; however, they are implemented to parse from left-to-right.

Therefore, these parsers, unlike a left edge parser such as Solak and

Oflazer's parser (1993), are not dependent on the root edge coinciding

with the parsing edge.

2.1.3 Parser Functionality

Parser functionality refers to the type of actions other than parsing

that the parser performs. These include operations on input strings such

as calculating the frequency of occurrence of each candidate parse per

input string. For example, the Constraint Grammar Parser (Karlsson,

1995) incorporates frequency information in the parsing routine to return

the most likely candidate for a parse. Parser functionality is a criterion for

evaluation because parsers must perform some sort of analysis on input

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

14

strings, for example to account for hom ographs (words that are spelt the

same but differ in meaning) or to analyze phonological processes. Dolan's

parser (1988) runs a pre-parsing routine that checks the input string for a

sequence of characters that indicates a morphophonemic alternation.

Without pre-parsing, it will be impossible to find the root as represented

in the input string in the lexicon unless all variants of the root are listed in

the lexicon. For example, the Indonesian prefix / moN/ (where N

represents an unspecified nasal consonant) can cause a phonological

change to the root w ord to which it is attached. Consider the following

example from Dolan (1988, p. 81):2

(3) Indonesian
m a m in ja m
m a n -p in ja m
T R A N S-borrow
'to b o r r o w fro m '

In (3), the root is represented by either the string minjam or the string

injam. The parser m ust derive a prefix and a root in order to match these

to the lexicon. For example, if the parser matches mem to a list of

phonological variants of meN and injam to a list of phonological variants of

pinjam, the pre-parsing routine could generate a string such as menpinjam

for the underlying representation of the prefix and root strings. The

revised string is entered into the parser to produce candidate parses.

Typically, parser functionality is added to the parsing routine to account

for some language-specific issue such as phonological alternations, lexical

2 I provided the interlinear gloss, any error in it is mine not Dolan's.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

15

ambiguity or floating diacritics such as in Classical Greek. However, in

order to adequately parse all languages, a universal parser must also

parse languages that have these phenomena. Parser functionality is

therefore included as an evaluation criterion.

2.1.4 O rder-D ependent Parsing

Order-dependent parsing refers to parsing that requires data to

undergo operations in a specific order to maximize parser efficiency. A

parser that recognizes a root's syntactic category (such as "noun") based

on a successful prefix or root match will limit the set of possible matches

for the unmatched affixes. For each successful affix match, other affixes

are ruled out. For example, if an affix is a first person singular subject

prefix, then no other subject prefix can attach to the root. Thus, the set of

subject prefixes is removed from the set of legal affixes. Furthermore, if

the subject prefix attaches to the verb, then all affixes that attach to nouns

are also ruled out. The parser continues to search for matches from a

decreasing set of legal affixes. This type of parsing is order-dependent

because an affix or root m ust be matched before the set of subsequent

legal matches are defined. In example 4, from Alegria, Artola, Sarasola &

Urkia (1996, p. 4), each affix constrains the set from which the following

affixes may be matched.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

16

(4) Basque
daramazkiot
d-a-rama-zki-o-t
1 SG-PRS-take. to-PL-D a t-3 sg . io
'I take things to him /her'

In the above example, the affix d- is first-person singular. The object

cannot also be first-person singular; therefore, a legal string following d-

can include only two possible subsequent affixes, the second- or third-

person dative morphemes. If the string included a first-person dative

morpheme instead, the string would be ungrammatical in this language.

Assuming a left-to-right parse that begins matching segments to affixes or

roots, the parse table for daramazkiot in Table 2-4 is plausible.

Table 2-4 Parse Table for daramazkiot

STRING SUBSTRING SEARCH
DOMAIN

SUBSTRING
MATCH

SEARCH
DOMAIN
MATCH

daramazkiot d all d lSG

aramazkiot a verb
prefixes a PRS

ramazkiot r no match

ramazkiot ra no match

ramazkiot ram no match

ramazkiot rama verb roots rama take, to

zkiot z no match

zkiot zk no match
zkiot zki verb roots zki PL

ot o verb suffixes o D A T

t t verb suffixes t 3SG.IO

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

17

Bans are also possible. For example, the prefix bait- may be followed by

morphemes belonging to a particular person paradigm, but those

belonging to two other paradigms (not specified by the authors) are not

permitted. Any restriction on the domain of possible segments improves

the parser performance and eliminates the possibility of returning an

ungrammatical candidate parse. As order-dependent parsing increases the

accuracy of candidate parses, it is included as an evaluation criterion.

2.1.5 Data Incorporation

Data incorporation refers to the generation of new information

during the parsing routine or the addition of new information to the

parser databases (the lexicon, corpus or m orpheme list). For instance, new

information could be generated during the parsing routine when input

strings are altered to reflect phonological processes. Data incorporation

such as the addition of new roots to the lexicon is a form of artificial

learning because the parser's output to a given input may vary over a

number of texts as the output is determined by both the form and

frequency of any string in the parser corpus. Data incorporation is useful

because it allows the user to expand the lexicon, corpus or other parser

databases. It is a criterion for evaluation because it is an important feature

that gives the user control of the parser's knowledge base. Processes that

require data incorporation are often order-dependent.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

18

2.1.6 Phonological Processing

Phonological processing can occur either before or during the

parsing routine. Some parsers have a separate routine for pre-processing

input strings to rewrite input strings to account for any phonological

processes. For example, selves may be rewritten as self+s. Other parsers

perform phonological analysis as part of the parsing routine. Phonological

processing may be considered a type of data incorporation in that the

input string is re-written, generating a new string.

2.1.7 Suitability for Field Linguists

The objective of the parser designers is not necessarily user-driven.

As shown by Anderson (1988, p. 5), the objective of parser design is

generally to showcase a particular theory or to resolve a parsing issue in a

specific language. Other reasons for building a parser are to create a

computationally efficient parser or to build a parser tailored to the needs

of a specific user. Therefore, not all parser designs are suitable for the field

linguist. A parser for field linguists must meet certain computational

needs. From a computational standpoint, the field linguist requires a

parser that is platform independent (that is, that runs on the IBM, Apple

and Unix platforms) so that the linguist is not limited to a particular

platform. Furthermore, a platform independent parser would allow a

wider community of users to share data or collaborate on a project. A

parser for field linguists must be freely or at least easily available. Ideally,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

19

a parser for field linguists would be extensible or modifiable by the user

without requiring programming knowledge to implement in order for

the average field linguist to use the software. The parser should also be

computationally efficient: it should not disrupt the computing

environment by adversely affecting the processing power available to

other applications.

Several programming tools are available for linguists with

programming ability who want to build a computationally efficient

parser. The Xerox tools form the basis of many parsers (for example, the

ALEGRIA parser). The SOLAK parser was built with Unix tools Lex and

Yacc. Other kinds of tools include MinorThird (Cohen, 2004), the Alembic

Workbench and Ellogon (Petassis, 2005); however, only the first of these

includes the tools to build a morphological parser. The major drawback of

these tools is that they require programming knowledge to implement.

A parser for field linguists should also meet linguistic requirements.

Primarily, such a parser m ust be language-independent. As field linguists

often start a documentation project with little or no language data, a

parser for field linguists should not require a large corpus, lexicon or

grammar. As languages often require special characters, the parser must

be able to accept and display these characters. For example, a Unicode

encoding such as UTF-8 can display most characters. It is important that

the field user be able to begin using the parser without having to learn a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

20

special encoding format or navigate a complicated interface. The parser

must be designed with ease of use as a primary goal.

The original parsing objective of the designer can limit the

suitability of a parser for field linguists. The type of parser a field linguist

would require must meet certain computational and linguistic criteria. The

parsers evaluated in Chapter Three are described in terms of their

suitability for a field linguist at the beginning of a language

documentation project who requires a parser for morphological analysis.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

21

3 Evaluation of Parsers

The parsers analyzed in this thesis were chosen because the authors

claim that these parsers adequately parse a typologically diverse set of

languages. In other words, each parser can parse languages that have

complex morphological or morphophonemic phenomena. This section

contains the analysis for the following ten parsers (where the parser has

no name, the name of the first author, in capitals, stands for the parser

name):

ALEGRIA (Alegria, Artola, Sarasola & Urkia, 1996)3

BITC (Sprouse, 2000)

CGP (Karlsson, 1995)

DOLAN (Dolan, 1988)

KOVAL (Koval et al. 2000)

PC-KIMMO and K-Text (Antworth, 1993)

Morpheus (Crane, 1991)

Qpop (Wallace, 1988)

SOLAK (Solak & Oflazer, 1993)

Whole Word Morphologizer (Neuval & Fulop, 2002)

Each parser design is evaluated according to the criteria described in

Chapter Two. If the parser is available for testing, a description of the

3 ALEGRIA is officially known as Morfeus (also spelt Morpheus), the
Basque parser described but not named in Alegria et al. (1996). Morfeus is
here called ALEGRIA to avoid confusion with the Morpheus parser
described by Crane in 1991.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

22

parser implementation is included. If the parser is not available then I

evaluate it based on the author's report. As several of the parsers

evaluated in this section are based on the Two-Level Morphology model

of language, this chapter is divided into two sections: the first section

describes Two-Level Morphology and parsers based on a Two-Level

Morphology model of a language and the second section describes the

remaining parsers.

3.1 Two-Level M orphology Parsers

Many of the parsers I analyze in this chapter are based on the Two-

Level Model of Morphology model of language (TWOL), first described

by Johnson (1972) and Koskenniemi (1983, a and b).4 In a TWOL model, "a

word is represented as a direct, character-to-character correspondence

between its underlying form and its surface form" (Antworth, 1993, p.

391). The two basic components of a TWOL model of a language are a

lexicon of strings and a set of rules that maps inflected strings from their

surface forms to their underlying forms. In this section, I briefly describe

the TWOL model of morphology that forms the basis of the parsers

analyzed below.

4 A more detailed discussion of Two-Level Morphology models may be
found in Chapter One of Jurafsky and Martin's Speech and Language
Processing: A n Introduction to Natural Language Processing, Computational
Linguistics, and Speech Recognition (2000).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

23

3.1.1 Lexicon

The lexicon is a network of finite state automata (FSAs). An FSA is a

regular expression or a "formula for expressing ... a class of strings"

(Jurafsky & Martin, 2000, p. 22). For example, the FSA in Figure 3-1

represents the string dog:

D O G

Figure 3-1. Finite State Automaton of dog.

The FSA in Figure 3-1 has four states: the starting state 0, two transition

states and the final state 3. Each transition between states is represented

by an arc between two states of the FSA. From the initial state 0, the FSA

can only move to the next state 1 if the first character of the input string

matches the legal path d. The second character o is also a legal transition as

is the final character g\. Here, the FSA reaches the final state. If the parser

reaches the final character but cannot make a legal transition, it cannot

reach the final state. For example, if the input string were dof it would be

an illegal string in the language because there is no path that leads from

state 2 (do) to the final state 3 (dof). Several FSAs can be combined to create

a finite state network (FSN). In a TWOL model of a language, each

character in the input string is verified as a legal step through the network

of FSAs, until the end of the string is reached (a variety of different

programming techniques can perform these steps). If the input string

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

24

cannot be matched to a legal path from the beginning and ending states

on the network, it is an illegal string. In Figure 3-2 (adapted from Beesley

& Karttunen, 2001), a path in the network is illustrated.5

Figure 3-2. A Path in the Network

From the starting state, the string doggy is matched character by character

against a possible path through the network. From each state, a number

of possible paths extend. If the string being matched were doggie, and that

word were not in the lexicon, the string would fail to find a path from dog

to gy. The string would be identified as an illegal string. Doggy is a legal

string because the final state is reached. The lexicon does not contain all

legal strings in the language; typically, the lexicon only contains root

strings and other strings that cannot be analyzed. TWOL systems are

powerful because inflected strings (strings that contain affixes, for

example) do not need to be encoded in the network but are recognized

through the addition of the rules component described below that

5 Figure 3-2 is adapted from Beesley & Kartunnen, 2001.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

25

specifies which lexemes may be combined with affixes, thus adding new

paths to the existing paths in the network.

To avoid encoding every possible string pair, each root is

associated with a word category; for example, the root dog has the word

category noun. Additionally, each root is associated with a continuation

class. Koskenniemi (1983a) describes continuation classes as the

morphotactics of a language. In a TWOL model, any morphosyntactic

information included in a lexicon entry is an assignment to a continuation

class. Continuation class information for each root is listed with the root in

its entry in the lexicon. For example, entries for the roots 'talk' and 'walk'

are shown in Table 3-1 and continuation classes for verbs and nouns are

shown in Table 3-2.

Table 3-1 Lexicon Entries

ENTRY ROOT CLASS

1 Talk Verb

2 Walk Verb

Table 3-2 Continuation Classes

CLASS CONTINUATION CLASS

Verb -ed, -ing, -s, -#

Noun -s, -#

If a root has the class 'Verb', it cannot have affixes of the class 'Noun'. As a

parser moves from state to state in a network, the continuation class

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

26

information associated with a lexeme indicates to the parser the legal path

on which to continue.

3.1.2 Rules

In a TWOL model of a language, inflected strings do not appear in

the lexicon. For example, the string dogs would not appear in a lexicon for

English, yet it is a legal surface string in this language. The FSA that

represents the underlying representation of dogs is shown in Figure 3-3.

D O G N PL

Figure 3-3. Finite State Automaton of dog.N-3p.

This FSA differs from the FSA shown in Figure 3-1 in that it shows the

lexical or underlying representation of dogs, while Figure 3-1 shows the

orthographic representation of dog. The correspondence between the

orthographic representation and underlying representation of dogs is

illustrated in Figure 3-4. Figure 3-4 shows the correspondence between

the two representations of dogs.

Orthographic representation d o g £ S
I t X I X

Underlying representation d o g N PL

Figure 3-4. Correspondence Between Two Representations of dogs.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

27

Every character of the orthographic representation string is mapped to

another character on the underlying representation string, showing a one-

to-one correspondence between the two strings. Note that e in the surface

string corresponds to N in the underlying string. The automaton that

performs the mapping between two strings is another kind of finite

automaton called a finite state transducer (FST). It can output a lexical or

underlying representation when given its orthographic representation

(and vice-versa). The string dogs, while not in the lexicon, can be verified

as a legal string by an FST that maps paths for the inflected strings

through the network. This FST is composed of two FSTs: one that matches

roots to root-classes, verifying that dog is a regular noun and a second FST

that verifies that dog can take the plural s. A simplified diagram of this FST

is shown in Figure 3-5.

D O G N:£ PL:S

Figure 3-5. A Finite State Transducer for dogs.

Although the string dogs does not appear in the network, the FST in

Figure 3-5 shows how the continuation class info allows the FST to select a

legal path through the network for the inflected strings.

Each TWOL model is a network of all the legal strings in a language

and series of rules. Any parser implementation that includes a TWOL

model is language dependent; however, the basic parser design may be

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

28

language independent if the parser is modular and the lexicon and rules

are separate from the parser engine. For example, the Xerox tools can be

downloaded and implemented in several languages for which the user

supplies a lexicon and rules.6 One of the disadvantages of the TWOL

model is that if the lexicon and rule set must be supplied by the user in

order for the parser to function correctly, the user cannot use a TWOL

parser at the beginning of a data collection project to perform parses

because the lexicon and rule set are incomplete. TWOL model parsers

remain popular because they are language-independent. The TWOL

parsers evaluated here are implemented in several languages with the

exception of one parser that is an implementation of the Xerox tools.

3.2 Evaluation o f Two-Level M orphology Parsers

3.2.1 PC-KIMMO and K-Text (Antworth, 1993)

Antworth's objective in designing PC-KIMMO is to create a freely

available implementation of a TWOL model parser. PC-KIMMO can be

downloaded and installed on a personal computer running the MS-DOS,

Mac Classic or Unix operating systems. The finite state tables that create

the rules for generating surface representations from underlying

representations or vice-versa can be generated by K-Gen, another

6 These tools are described in detail in Beesley and Kartunnen, 2001. The
book includes the software. The software can be downloaded from the
book's website:
<h ttp :// www.stanford.edu/~laurik/fsm book/hom e.htm l>.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.stanford.edu/~laurik/fsmbook/home.html

29

downloadable program. Also available is K-Text, a program that works in

conjunction with PC-KIMMO. K-Text is a text editor for linguistic corpora.

K-Text produces either parsed data for further analysis or interlinear

glosses. Thee programs are still available for the PC from SIL's website.

These program s are all freely available and open source. Furthermore,

they are based on user-created language files.

The PC-KIMMO parser is not language-dependent; rather, the user

is able to add the language files to the parser and update those files at any

time. PC-KIMMO is unidirectional (it parses from the left-edge of the

word). The parsing routines are as follows:

Table 3-3 PC-KIMMO Output

PC-KIMMO OUTPUT

Unambiguous String

Glossed string V(hope)+PROG

UR hope+ing

SR hoping

Ambiguous String

Glossed string % 2 % N (spy)+PLURAL % V(spy)+3SG %

UR %2%spy+s%spy+s%

SR spies

As shown in Table 3-3, when the input is the unambiguous string hoping,

PC-KIMMO parses the input and returns the interlinear gloss,

v(hope)+PROG. For the input spies, an ambiguous string, PC-KIMMO

returns two analyses. The first analysis is N(Spy)+PLURAL and the second

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

30

analysis is v(spy)+3SG . PC-KIMMO parses concatenative morphology and

K-Text decomposes forms that exhibit morphophonemic alternation. K-

Text can pre-parse input to regularize spelling or transform orthographic

transcription into phonetic transcription.

PC-KIMMO, together with KGEN and K-Text is easy to download

and implement. However, it is difficult to use because it runs from the

command line. The user must learn the commands and notation form at in

order to enter the rules that map SRs to URs. In addition, the user must

run several programs in conjunction with PC-KIMMO. A basic set-up for

the field linguist would be the following: PC-KIMMO, KGEN, K-TEXT,

Text Editor and a video or audio player. Furthermore, in order to use the

program, the field linguist would need to create several rules files.

However, as a parsing tool PC-KIMMO is adequate. PC-KIMMO has the

advantage the TWOL model affords, the computational efficiency of

having a rule set that is separate from the lexicon. Furthermore, PC-

KIMMO does not require a complete lexicon or set of rules to run.

3.2.2 CGP (Karlsson, 1995)

The Constraint Grammar Parser (CGP) is a TWOL model-based

parser implemented in several natural languages and designed to embody

a Constraint Grammar description of a specific language (Karlsson, 1995,

p. 11). In 1994, there were CGP implementations for English, German,

Swedish, Finnish, Danish, Russian and Estonian. CGP has three main

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

31

functions: to pre-process parser input, to maintain surface ambiguities in

parser output and to use both TWOL system parsing and probabilistic

parsing (Karlsson calls this 'guesser' parsing). CGP is based on a TWOL

model; therefore, it is theoretically bi-directional. However, the parser

implementations all parse from the left edge of the word.

The parser accepts "pre-parsed" input: input that has been marked-

up for w ord class, as well as other information. The parsing routine

requires part-of-speech information; therefore, the input string is

manipulated by a pre-parsing routine. In this way, the parser is order

dependent because the input string is altered by a parser module before it

is analyzed. The parser matches the pre-parsed input string against a

master lexicon: the continuation classes for each lexeme, which contain all

possible inflections or derivations for a lexeme, are listed with the lexeme.

The parsing routine is an interleaving of a TWOL system parser and a

"guesser". When the parser fails to parse based on the rules and the

lexicon, the guesser assigns a parse to the words rejected by the TWOL

system parser by applying ordered rules to create an output. The ordered

rules can refer to both the form and the context of the rejected string.

Multiple 'guesses ' or candidate output forms are returned to the user for

acceptance.

While Karlsson describes a parsing philosophy that gives the user

optional control over many functions of the parser (such as ambiguity

resolution), the user must implement those functions in a language-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

32

specific way for his particular parser. Therefore, each parser

implementation is language-dependent although the model and design

are not.

Karlsson's main objective in designing a parser is to implement

Constraint Grammar theory; therefore, the disambiguation of

morphological strings is the parser's main task (p. 25). Karlsson claims

that computational efficiency is gained by maintaining surface ambiguities

in the parsing output. For example, the parse of a sentence such as 'Bill

saw the little dog in the park' would assign two syntactic labels to 'in the

park', maintaining ambiguity. Karlsson states that in maintaining surface

ambiguity the parser processes less information and is therefore more

efficient.

Furthermore, Karlsson claims that this manner of processing

information is psychologically realistic, as is probabilistic parsing and the

optimization of the lexicon to include low-frequency words, new words

and proper names specific to a text being parsed. However, despite this

claim of psychological plausibility, Karlsson is forced to make a design

compromise based on computational efficiency. The lexicon must also list

words that are morphologically ambiguous to exclude them from parsing

analysis. See Karlsson's example parses for the Swedish word frukosten in

(5), below.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

33

(5)

i) frukost + en
ii) frukost_en
iii) fru _k ost_en
iv) fru _k ost + en
v) fru _k o_sten

‘the breakfast’
‘breakfast ju n ip er’
‘w ife nutrition ju n ip er’
‘the w ife nutrition’
‘w ife co w s to n e ’

In example (5) (Karlsson, p. 20), the string en matches both an affix and

the low-frequency noun 'juniper'. Without a method for constraining

output, the CGP parser will analyze frukosten as a compound noun that

contains the low-frequency noun en 'juniper'. Karlsson states,

In order to avoid excessive over-generation of spurious compound
readings [such as (5) iii, above)], the noun EN 'juniper' must not
participate freely in the productive process of compound
formation. Consequently, nouns containing the noun EN as non-
first element must be listed in the lexicon, (p. 28)

By including all compounds of low-frequency words in the lexicon, the

lexicon increases in size. This example illustrates that although in theory,

the lexicon and rules are separate, in some instances, rules are inefficient

and it is preferable to simply list forms in the lexicon. However, such

design decisions are motivated, not by psychological reality, but by

computational efficiency. In the case of the CGP parser, lists are not

created in order to conform to any theory of storage in the mental lexicon

but rather to ease the parsing process.

Further compromising his ideal of psychologically realistic parsing,

Karlsson admits that in order to achieve computational efficiency, the

more infrequent hom onym of any hom onymous pair should not be

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

34

considered productive, as in the case of the noun 'en' above. Therefore,

the more infrequent hom onym will have all forms listed in the lexicon.

Karlsson claims that the parser is a universal parser. He states,

The formalism should have no bias in favour of some particular
language type, and it should, in a demonstrable way and without
ad hoc changes to the formalism or the program code, be
applicable to several languages belonging to different language
families, (p. 3)

In fact, the CGP can parse languages of various types. Unfortunately,

Karlsson's descriptions of the parsing routine do not include examples

drawn from agglutinative, polysynthetic languages.

Another of Karlsson's design objectives is to design a parser that is

easily available to the research community. He states that anyone who

sends him a 300-word text will receive the parsing results for that text (p.

18). However, this makes the results of the parser available, not the parser

itself.

3.2.3 KOVAL (Koval et al. 2000)

The KOVAL parser is a parser for English, Portuguese, Russian,

Turkish, Japanese, Finnish and Arabic, designed primarily to allow

morphological analysis on an IBM-compatible desktop computer. The

KOVAL parser is in principle a TWOL system (Koval et al., 2000, p. 145),

although the finite state network is created at runtime, not encoded state

by state into a network. For example, in a traditional TWOL system, a

parser would move, character-by-character from state to state, whereas in

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

35

KOVAL, each transition in the network is made by a legal string or

substring (root or affix) and each state is a step in the parsing process.

AFFIX ROOT AFFIX AFFIX

STEP 1 STEP 2 STEP 3 STEP 4 STEP 5

Figure 3-6. KOVAL as a Virtual Finite State Automaton

Koval et al. describe how the KOVAL parser creates a virtual finite state

network at runtime:

The notion of continuation classes is widely exploited in [Linguistic
Automaton] morphotactics and the tabular representation of
ranked affixes is nothing but a source for compiling a virtual finite
state automaton [at runtime], (p. 145)

The authors remark that their method of morphological analysis deviates

from the TWOL model in some respects due to processing constraints.

The authors state that these deviations from the model will be resolved in

future versions of KOVAL.

In the parsing routine, KOVAL relies on the assumption that the

left-edge is the root edge. Once the root is identified, each segment can

occupy an ordered 'slot' in relation to the root. A slot may remain empty.

Only one affix may occupy a slot (each set of legal slot occupants is a

morphological paradigm). The content of these slots are matched against

the suffix tables at runtime. In this way, the KOVAL parser is order-

dependent.

Koval et al. make no sweeping claims that the KOVAL parser is a

universal parser. The authors state,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

36

The experience of the... group's work on the upgrading of the first-
generation [machine translation] systems revealed some general
principals of creating computer morphology common to most
languages. (Koval et al., 2000, p. 133)

Koval et al. go on to state that their system is best suited to languages

with suffixal morphology.

3.2.4 ALEGRIA (Alegria et al. 1996)

Alegria et al. (1996) describe the automatic morphological analyzer

that is the core module of tools such as XUXEN, a ing-checker for Basque

described in Aduriz et al. (1997) and Agirre et al. (1992). The spelling-

checker requires a morphological parser in order to correctly identify

legal root and morpheme combinations.

ALEGRIA is 'designed with the objectives of being neutral in

relation to linguistic formalisms, flexible, open and easy to use' (Alegria et

al., 1996, p. 198). Ease-of-use is an important design goal because it places

the needs of the user above other considerations such as computational

efficiency.

ALEGRIA was built using the Xerox tools (for more information

see Beesley and Karttunen's Finite State Morphology, 2003). The parser is

a TWOL-based parser for Basque designed to parse a variety of Basque

dialects, and it extends the TWOL system in order to account for long­

distance morphological dependencies (such as circumfixation). In order to

account for non-contiguous segment dependencies, Alegria et al. extend

the TWOL model's continuation classes by adding bans and continuation

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

37

trees (Alegria et al., p. 9). The bans are restrictions on the combinations of

morphemes. For example, a continuation class lists the continuation

classes with which it does not co-occur. The continuation trees are rules

that specify alternative paths through a network for words that include a

given morpheme. This is to propagate the rule throughout the network

without encoding it repeatedly. Continuation trees are an example of

order dependency. When a root grammatical category is recognized, the

continuation class associated with that category restricts the search

domain for continued morphological parsing.

Unlike other TWOL parsers, ALEGRIA relies on a lexical database

(described in Agirre et al., 1995) instead of a lexical network. ALEGRIA

allows user input into the parsing process. The most important difference

between ALEGRIA and other TWOL parsers is that the user can update

the lexicon. The user has access to a 'user lexicon' that can be updated by

the user or automatically updated by the parser. New words are added to

either the user-specific lexicon or the general lexicon. Allowing user input

gives the user control of the lexicon.

Complex rules are used to manipulate input strings or decompose

phonological processes such as morphophonemic alternations and

orthographic processes. These manipulations are evidence of order

dependency.

ALEGRIA is able to parse dialectal variations of words in the

general and user lexicons by implementing a set of "non-standard"

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

38

m orphemes and a set of rules that account for regular morphological

variations and common competence errors. For linguists working in a

language with dialectal variation, this flexibility is highly useful.

3.3 Other Parsers

The parsers in this section, unlike the parsers in the previous

section, do not share a theoretical model. These parsers were designed

either for a specific purpose (a class resource), to exemplify a particular

theory, or to parse a specific language. A varied group of parsers will

better inform the design of a new parser than a set of similar parsers.

3.3.1 BITC (Sprouse, 2000)

The objective in creating BITC was to provide a resource for

multiple field linguists working on collecting and interlinearizing texts for

an endangered language with complex morphology. Users can create new

files such as concordance and search result files using BITC.

Although BITC is included here for analysis, BITC is a not a true

parser in that it does not decompose or analyze forms. BITC relies on the

user to provide functionality normally provided by other parsers such as

root recognition, discovery of novel forms and decomposition into

segments. Although BITC's functionality is limited to matching the input

forms against a corpus and outputting interlinearized forms, BITC

provides the user with a simple and useful interface that returns matching

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

39

forms from the corpus or the lexicon. The BITC GUI is shown in Figure

3.77

File: rec:
/e x p o r t/h o m e 2 /c h e c h e n /B !T C _ d a ta /g o o d /S o lta n -5 ~ 2 7 -0 2 .d b 123

U pdate ph rase ' Prev ' ' aJI' 'N e x t ' , Add p h rase '

SENTENCE:

TRANSLATION:

NOTES:

PARAGRAPH:

SPEAKER;

COMPILER:

Ahwmad, tykana *a vaghna, c’a ve'ara.
A hm ed wen? to th e sto re and cam e hom e.

C lause chaining.

p h ra se s ta r ts a new p a rag rap h

Soltan

1C SOURCE: Elicitation

Keywords: clause chaining

Good exs: clause chaining

|in g y Ahwm ad, 1___ _ _ _ _ _ i
tykana 'a ..

ENG Ahm ed store.DAT , 4 s-.-.i

i [keep typed] [keep typed] [keep typed]

U ST ;
i

Ahm ed store.DAT &

NO TE; j case a ss igned by ve'ara
. iHi [vaghna, H | c’a H I ve 'ara. H j

1H | V.go.CVant fffijfhouse IM§| V.come.WP IB
[keep typed)
V.go.CVant

[keep typed]
hom e
house

[keep typed]
V.come.WP

chaining u se of CVant

Figure 3-7. BITC Graphical User Interface.

The GUI indicates that the user is interlinearizing a sentence in Ingush.

Notice that the second w ord in the sentence, tykana, is being

interlinearized as 'store.DAT' and that the list of results for tykana in the

corpus includes 'home' and 'house'. Each successful match from the

7 Figure 3-7 is reproduced from Good & Sprouse (2003).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

corpus includes the corpus forms as well as other data such as its

metadata. An example is the transcriber (called the compiler in the GUI

above). In this way, BITC matches all words identified by the user to a

corpus of words. The user can choose from previous interlinearizations

for the input form. Any novel forms discovered by the user are added to

the lexicon and the parsed and interlinearized text is added to the corpus.

The BITC module can be installed on a personal computer for

individual research or on a network server for group collaboration over

the Internet. Consider the example record from Good & Sprouse (2000)

reproduced in (6):

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

41

(6)

<record id=1>

<source>Pacchahw
Liir</source>

<compiler>JN 11-22-
99</compiler>

<speaker>Liir</speaker>

<incl_level>1 </incl_level>

<translation>
I can't speak.</translation>

<word id=0>Q'ameal</word
id=0>

<interlin id=0>
conversation</interlin id=0>

<word id=1>dulac</word id=1>

<interlin id=1>
D.do.POT.NEG</interlin

id=1>

<note id=1>
/dielac/ is how this form is

actually
pronounced.</note id=1>

</record id=1>

This example (enclosed in a <record /> tag) is a line from the play King

Lear (Pacchahw Liir in Ingush). The researcher who collected this data

(<compiler />) and the date of collection are recorded. The record includes

the information that the speaker is Lear (this refers to the speaker in the

play, not the language consultant providing the transcription) and the

confidence level (<incl_level />) of the compiler for this record is 1 (highest

confidence in transcription). The record shows the line of text, (<word />),

the interlinearization (<interlin />) and the gloss (<translation />). A note

usually corresponds to a sentence

source of this record

identifies who compiled the record

identifies person speaking

records compiler's confidence in the
analysis

free translation of whole record

first word

aligned interlinear gloss of first word

second word

aligned interlinear gloss of second
word

note concerning second word

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

42

regarding the line is also included in the <note /> tag. This example record

clearly shows BITC's underlying extensible Markup Language (XML)-like

tagging scheme. Using extensible Stylesheet Language Transformation

(XSLT) transformations, users can transform a database produced from

texts entered through BITC into an XML database. Furthermore, BITC is

open-source software under the Artistic License and the source code is

freely available from the author via the Ingush Project website. With

some PERL programming ability, researchers can implement BITC for

any language. The separation of the text and lexical databases from the

collection, formatting and search modules of BITC allows researchers to

benefit from corpus-based interlinearization tools while maintaining

separate text and lexical databases.

3.3.2 DOLAN (Dolan, 1988)

DOLAN is designed to parse Indonesian. Indonesian has a small

number of phonological and morphophonological rules and a small

number of affixes. These affixes are monosyllabic (Dolan, 1988, p. 89). The

DOLAN parser runs a pre-parsing routine to rewrite the input string to

'undo' any phonological processes. The parser then performs a syllable-

based parsing routine that uses information about long distance

dependencies between morphemes to produce a candidate parse.

The parser moves from left to right across the word, categorizing

each syllable as a potential affix or root (or part of a root). All possible

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

43

combinations are candidates. The parser then performs a second routine

that searches for the root. If the root is found, a third routine assesses the

grammaticality of the remaining candidates. The parser output is all

candidate parses that have legal affix and root combinations.

For each input string, DOLAN performs a 'pre-parse' routine that

rewrites the input string. Any input string m ust be syllabified by the user

and then input to the parser. The parser then re-writes syllables in groups

of three; in this way the parser analyzes syllables in the context of their

adjacent syllables. In Dolan's example (reproduced here as (7)), three

candidates are generated for a two-syllable word. In (7a), the parser

assumes that the surface form is the same as the underlying form. In (b)

and (c), the parser applies phonological rules to generate candidate second

syllables from the surface representation.8

(7)
(a) msnu

msnu
ROOT

(b) manu
maN -nu
PREFIX -ROOT

(c) manu
maN -tu
PREFIX -ROOT

A second pre-parsing routine checks for reduplication. At this stage in the

parsing process, the parser has a list of possible root-affix combinations

8 Example (7a-c) adapted from Dolan, p. 96.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

44

generated from the application of phonological rules and the presence or

absence of reduplication.

The parser now searches for the root. If a root is found, the

syntactic class of the root determines the legality of subsequent affix

matches. This step eliminates the large num ber of possible parses

generated by the pre-parser that do not contain the matched root. Dolan

provides an example syllabified input string, bdrkdliaran. The pre-parse

routine identifies six possible candidates, shown in (8).9

(8) barkaliaran

(a) bar -ko -liar -an
PREFIX PREFIX ROOT SUFFIX

(b) bar -ka -liaran
PREFIX PREFIX ROOT

(c) bar -kaliar -an
PREFIX ROOT SUFFIX

(d) bar -kaliaran
PREFIX ROOT

(e) barkaliar -an
ROOT SUFFIX

(f) barkaliaran
ROOT

The parser then performs a root search for each candidate in (8). Of the six

candidates, only one contains a successful root match; (8a) contains the

root liar, Tree, wild'. The other candidates are rejected. The final parsing

routine checks the remaining parse in (8a) against twenty-seven legal

9 Example (8a-f) adapted from Dolan (p. 96).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

45

morphological combinations. The morphemes in (a) can be grouped in the

following ways:10

(9)

(a) bar -ka -liar -an
CIRCUMFIX ADJ ADJ CIRCUMFIX

(b) bar -ka -liar -an
PREFIX PREFIX ADJ ADJ

(c) bar -ka -liar -an
PREFIX CIRCUMFIX ADJ CIRC

The parser checks the legal combinations for each candidate in (9), and

checks for the possible groups generated by the forms (b-f) in (8). For

example, the groups generated by (9a), PREFIX PREFIX ROOT s u f f i x , match

the analyses in (10).11

(1 0)

(a) borkoliaran
bar -ka Tiaran
PREFIX PREFIX NOUN

(b) barkaliaran
bar -kaliaran
PREFIX NOUN

In (10a), the noun is derived from a rule that declares that nouns are

generated by the combination ADJ+ an and in (b), the noun is derived

from a similar rule that holds that nouns are generated by the

combination of adjectives with the circumfix ke+ROOT+an. However, (10a)

fails a second application of the rules because ke cannot combine with

10 Example (9a-c) adapted from Dolan (p. 96)
11 Example (10a-b) adapted from Dolan (p. 98).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

46

nouns. The successful parse is (10b), a legal parse, because by another rule

bar combines with nominal stems to create intransitive verbs. As the

parser runs a series of parsing routines, each one generating the input for

the next, the parser employs order-dependent parsing.

Dolan states that his parsing approach has several advantages of

over TWOL approaches. These advantages include the ability to parse

words with long-distance dependencies; for example, DOLAN adequately

parses circumfixes, infixes and reduplication by applying rules that

constrain morpheme combinations. Dolan quotes Koskenniemi, stating

that Koskenniemi admits, "that his system would require 'extensions or

revisions... for an adequate descriptions (sic) of languages possessing

extensive infixation or reduplication'" (Dolan, p. 89). Dolan also notes that

his approach allows the parser to have access to the entire string during

the parsing process, whereas the TWOL model only parses character-by-

character or segment-by-segment.

Dolan's objective is to create a parser that is 'psycholinguistically

plausible' and computationally efficient. However, the Dolan parser relies

on language-specific features such as monosyllabic affixes and a small

number of productive affixes. A language that does not share these

features would be difficult, if not impossible, to parse with a similarly

designed parser because morpheme boundaries do not coincide with

syllable boundaries in every language. Furthermore, the necessity of

encoding a rule-set for phonological processes and morphological

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

47

combinations in order to perform parses rules out DOLAN as a model

parser for field linguists.

3.3.3 SOLAK (Solak & O flazer, 1993)

Solak and Olazer's parser, here called SOLAK, parses Turkish. The

design objective is to create a morphological parser embedded within a

spelling-checker for Turkish. The authors state,

In order to check the spelling of a Turkish word, it is necessary to
make significant phonological and morphological analyses. (Solak
& Oflazer, 1993, p. 114).

The SOLAK parser can be embedded in other applications.

The parsing routine relies on the fact that Turkish is an exclusively

suffixal language. In Turkish, the root always begins at the left-edge of the

input string; therefore, the problem of root-recognition is trivial. The first

step in the parsing routine is to identify the root. If no root is identified,

characters are stripped from the right edge until a match is found in the

lexicon. A vowel harmony check is then performed. The input string is

then analyzed by either a noun or a verb parser (depending on the class

of the root). If the resulting input string (root + affixes) does not result in a

successful parse, a new root is sought by removing characters from the

right edge of the previous root match until a new root match is made.

Some string sequences indicate possible morphophonemic alternations; in

these cases, strings containing these sequences are manipulated according

to the appropriate rules during the parsing routine. In order for the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

48

manipulated input string to result in a successful root match, the root's

entry m ust indicate that the root can undergo phonological processes in

conjunction with the affixes indicated by the parsing routine.

The parser was built using pre-existing software tools

(middleware). The authors incorporate the publicly available Lex and Yacc

UNIX tools into the parser to perform part of the parsing task. Lex splits a

source file into tokens and Yacc, given a context-free grammar, generates

a parser. In SOLAK, Lex separates the input string into a root and a list of

suffixes and Yacc parses the suffixes generated by Lex using a set of rules

for Turkish provided by the authors (Solak & Oflazer, 1993, pp. 119-120).

Two Lex and Yacc specifications are implemented in SOLAK, one for

nouns and one for verbs. Lex and Yacc are now open-platform and open-

source, and are available for download from Sun Microsystems as Javacc

3.2 (Sun Microsystems, 2003)). The vowel harmony checks and

morphophonemic checks mentioned above are performed by other

parsing routines.

SOLAK is designed to be extensible, although programming

expertise would be required to modify the source code. The authors

intended the parser to be embedded in other applications or used as a

stand-alone application; they designed a text-editor for the UNIX platform

that utilized the parser as part of a spelling-checker. However, as the

SOLAK parser does not recognize new words or allow new paradigms or

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

49

new roots to be added to the parser database, its usefulness for the field

linguist is limited.

3.3.4 WWM (N euval & Fulop, 2002)

The Word Formation Strategy/W hole W ord Morphology parser

for English and French (WWM) is designed to discover the morphological

'relatedness' of words. The design objective is to model human cognition

based on the Whole Word Morphology or Seamless Morphology theory

developed by Alan Ford and Rajendra Singh (Neuval & Fulop, 2002).

WWM relies on orthography to perform its analysis. Every w ord in

the WWM's small lexicon of 1000 to 5000 words is listed with its syntactic

and morphological category. Each word is then segmented into substrings

based on orthographic similarities in substrings of other words. For

example, the string reception is segmented into rece and ption based on the

string receive, which is segmented into rece and ive. In parsing a string,

WWM classifies substrings into sets; for example, the word-initial

substring rece- may be classified into the set of all strings that are followed

by the affix -ive; or the word-final substring -ption may be classified into

the set of segments that are preceded by the string rece-. The authors

describe this segmentation as an analysis that "parses any complex word

into a variable and a non-variable component" (Neuval & Fulop, 2002).

The parser then acquires Word-Formation Strategies (a central

term in Whole W ord Morphology) from the relationship between these

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

50

lists and a corpus of successful previous parses. As the parser discovers

the differences between two words that share a segment, it learns

morphological strategies for generating similar words. Therefore, if it has

acquired receive and reception, it can recognize the relationship between

deceive and deception. However, the Neuval admits that this strategy is

limited for languages with complex morphology such as infixation or

suppletion (Neuval, 2002, p. 459) or for discovering the relations between

words such as am and was (Neuval & Fulop, 2002, p. 9).

The parser then generates new words based on the entries and

word formation strategies it has discovered. For example, if the lexicon

contains perceive, receive and reception, the parser will be able to generate

perception.

The parsing edge, regardless of parsing technique, is bi-directional

to allow partial matches of the whole form beginning from either edge.

The parser's main functions are to derive word formation strategies and

generate new lexicon items.

The authors distinguish their parser from TWOL systems on two

points. Firstly, the parser does not decompose strings into substrings but

rather classifies substrings into two categories. Secondly, the parser

acquires word formation rules from the corpus and therefore a parse of

an input string can change over time given new words in the corpus.

However, the theory specificity of the parser results in a parser that

cannot perform universally without modification.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

51

3.3.5 Qpop (Wallace, 1988)

Qpop parses Bolivian Quechua, a suffixing language; therefore,

root recognition is easily performed by searching for n-length substrings

of the input string in the lexicon.

Qpop manipulates the input string to account for the application of

any phonological rules. Matching the manipulated string against a lexicon

produces candidate stems. The candidate stems are matched against a list

of derivational morphemes. All successful matches are rewritten to 'undo'

any phonological changes and then, if there are unmatched characters

remaining in the string, the string is matched against a list of inflectional

morphemes. All successful parses comprise the parser output. Thus, Qpop

is order-dependent. Qpop's distinction between derivational and

inflectional morphology is inherent in the parsing routine.

Wallace states that her parser design is based on Hankamer's

approach to parsing based on morpheme ordering (1986). Due to the type

of morpheme combinations in Bolivian Quechua, the parsing routines

must parse non-contiguous segments. Wallace states (as did Dolan) that

TWOL models are unable to handle these long-distance dependencies.12

Wallace's parsing objective and parser design are not suitable for the field

linguist because the language-specific parsing routines would be difficult

to implement for other languages.

12 For an up-to-date description of TWOL models and non-contiguous
segment parsing strategies, see Beesley and Kartunnen, 2001.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

52

3.3.6 M orpheus (Crane, 1991)

Crane program m ed Morpheus specifically to perform powerful

searches of Classical Greek texts. Crane states that using information

retrieval methods to search Classical Greek texts required the addition of

'morphological intelligent retrieval tools' (Crane, 1991, p. 243). Morpheus

uses a three-tiered function to perform morphological analysis of input

strings to compensate for floating diacritics, suppletion and dialectal

variation. Morpheus has since been implemented for Latin and Italian.

However, the current program m ers predict problems adapting Morpheus

to languages that are not primarily suffixal. Indeed, plans to adapt

Morpheus to Arabic, which has template morphology, include a new

morphological parser engine (Mahoney, Rydberg-Cox, Smith & Wulfman,

2000).

Morpheus has three parsing strategies. Crane describes the first

strategy, 'big bang', as a modified form of the Unix fgrep utility, a fixed-

string search function.13 'Big bang' generates all possible word forms

based on the root form of the input string and then uses FSAs to locate

these in a corpus. The output is all matched word forms. The second

strategy, based on David Packard's MORPH algorithm (Packard, 1977), is

to strip affixes from the right edge of the word until a root can be

matched against lexicon strings. The input string is manipulated and new

strings are generated from which to continue parsing. The third strategy

13 Fgrep is now obsolete. It is replaced in Unix by grep -f.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

53

is a rule-based system that allows the program m er to add rules that apply

to the system as a whole. Crane describes a hierarchy of 'generators' that

can generate the majority of legal strings in the database, given the

appropriate input strings. Crane envisions a user who inputs a string and

receives as output all forms with that root in the database.

One drawback in the design is that it is difficult to add new forms.

Crane states, "New words constantly exhibited peculiarities which forced

us to revise our model of Greek morphology." These revisions required

reprogramm ing of basic data structures (Crane, 1991, p. 245). This is a

serious drawback because the user must be certain that all words in the

language are included in the lexicon in order to implement the parser.

Morpheus has grown from a one-programmer, language-specific

application in C++ to a multi-programmer Java application. Morpheus is

integrated with the Perseus Digital Library (Crane, n.d.), the Suda On Line

(Whitehead, 2001) and the Chicago Hom er (Kahane & Mueller, n.d.). It is

not expected that the Morpheus parser engine will be available for

linguistic fieldwork applications. Nevertheless, the design philosophy,

parser model and extensibility make Morpheus a good example of parser

design.

3.4 Results o f Evaluation

An analysis of the ten parsers described above provides insight on

features a parser can provide the user, types of morphological analysis

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

54

that a computational parser can perform, different parsing algorithms and

different approaches to parser design.

3.4.1 Parser Universality

All parsers but one of those described above parse agglutinative,

polysynthetic languages. Some of the parsers were implemented in

languages from more than one typological class: these are universal

parsers. Table 3-4 shows the languages parsed by the parsers evaluated

above.

Table 3-4 Parsers by Languages Parsed

P A R S E R L A N G U A G E S

A L E G R IA B asq u e

B IT C Ingush

D O L A N Indonesian

C G P E n g lish , G erm an, S w ed ish , F inn ish , D an ish , R ussian , E stonian.

K O V A L E n glish , P ortuguese, R ussian , T urkish , Japanese, F innish , A rab ic

M orpheus C lassica l G reek , Latin, Italian

P C -K IM M O
E n glish , F innish , G reek, Japanese, H ebrew , K asem , T a g a lo g ,
T urkish

Q pop B o liv ia n Q uechua

S O L A K T urkish

W W M E n glish , French

The parsers above are implemented for agglutinative, polysynthetic

languages, with the exception of Morpheus, which is implemented for a

fusional-synthetic language, Greek and WWM, which is implemented in

English and French. PC-KIMMO, KOVAL, CGP, Morpheus and PC-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

55

KIMMO are implemented in several languages. Four of the ten parsers

are designed to parse a specific language; these are useful as models for

specific design features rather than for specific parsing algorithms. The

authors claim, for five of the parsers, that their parser can be implemented

for almost any language. These are BITC, CGP, KOVAL, PC-KIMMO and

WWM. Of these, CGP and KOVAL require large lexicons and grammars

in order to implement and PC-KIMMO requires specialized knowledge of

TWOL rule writing. Clearly, as all three have several implementations in a

wide variety of languages, these parsers are of use in the linguistic

community.

3.4.2 Parsing Edge

Despite the expectation that TWOL system-based parsers would

take advantage of the bi-directional parsing theoretically available in the

model, none of the TWOL parsers parse from right-to-left. Only two

parsers parse from both the left and the right edge, the WWM parser and

Morpheus. Seven of the ten parsers are dependent on the root edge being

the left edge of the word (word-initial). Nine of the parsers perform an

automatic analysis in search of the root; BITC is the only parser that does

not search for the root but rather relies on the user to isolate the root in

the input string. However, BITC does aid the linguist in performing

interlinearizations. The graphical user interface (GUI) allows the user to

input a word and segment that word using the lexicon and an affix table

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

56

as resources. As each segment is typed into a table cell, BITC lists previous

interlinearizations for that segment below it. This allows the user to select

the appropriate interlinearization while maintaining a consistent

interlinearization across the corpus for that segment. Although BITC does

not perform an analysis and therefore does not have a parsing edge, as a

parsing aid it searches from the left edge of each identified segment. The

parsing edge of each parser is shown below in Table 3-5.

Table 3-5 Parser Edge of Each Parser

PARSER ROOT EDGE PARSING
DIRECTION

TWOL Parsers ALEGRIA Unknown —►

CGP Unknown —►

KOVAL Unknown —►

Morpheus Unknown

PC-KIMMO Unknown —►

Other Parsers BITC Unknown No analysis

DOLAN Unknown —►

Q-pop Left-edge —►

SOLAK Left-edge —►

WWM Unknown

The parsers that rely on the root edge to be the left-edge are not language

independent, while parsers that do not rely on a left-edge root to

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

57

successfully parse an input string are language independent. While the

TWOL parsers are less likely to be language dependent (three of the five

parsers are implemented in more than three languages), or to rely on

word-initial roots (like Q-pop and SOLAK) or well-defined root edges (like

DOLAN and BITC), TWOL parsers require that the user have a lexicon

and rule set prior to implementation. After eliminating TWOL parsers and

parsers that rely on word-initial roots, the remaining parsers are WWM,

BITC and DOLAN. BITC requires user input to perform root

identification. DOLAN's automatic parsing tests all possible candidate root

forms.

3.4.3 Parser Functionality

The parsers have different functions that improve the accuracy of

their parses (order-dependent and data-incorporating parsing and

phonological processing are described below). DOLAN uses syllabification

rules to better identify morpheme and root edges. This function is

unfortunately language specific. The CGP parser uses frequency data to

predict the best candidate parse. This is an excellent strategy, especially

when coupled with other strategies to eliminate error when a seldom-

used form is parsed. ALEGRIA and Morpheus can parse inputs with

dialectal variation. ALEGRIA even allows the user to build dialect-specific

lexicons. Allowing the user to parse different dialects of the same

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

58

language means that the user does not require a separate parser for each

dialect.

3.4.4 Order D ependency and Data Incorporation

The data-incorporating parsers are those parsers that can

incorporate data from a parsing routine into their databases. For example,

WWM acquires new word formation rules that are added to its databases.

Of the ten parsers, nine have order dependent parsing and four have

data-incorporation (where the author does not state that the parser allows

the addition of new lexemes or rules to its database via the parser

interface, I assume that it does not). These results are summarized in Table

3-6, below.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

59

Table 3-6 Parsers by Data Incorporation and Order Dependency

PARSER DATA
INCORPORATING

ORDER
DEPENDENT TOTAL PARSERS

ALEGRIA 1 1 1

BITC 1 0 1

CGP 0 1 1

DOLAN 0 1 1

KOVAL ? 1 1

Morpheus 0 1 1

PC-
KIMMO 1 1 1

Qpop ? 1 1

SOLAK 0 1 1

WWM 1 1 1

TOTAL
PARSERS 4 9 10

The inability of a parser to acquire new forms in any other way than by

manually updating the lexicon, rule set or other parser database is a

serious limitation. Only ALEGRIA allows the user to easily add new

lexemes to the database via the parser.

3.4.5 Phonological Processing

Of the parsers evaluated above, seven perform a phonological

analysis of input strings as described in Chapter Two. BITC and WWM do

not perform phonological analysis of input strings (I could not determine

if SOLAK performed a phonological analysis). Phonological processing

may be perform ed before the input string is analyzed by the parser

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

60

(DOLAN, CGP) or during the parsing routine (ALEGRIA). Phonological

processing of the input string rewrites that string to reflect an underlying

representation of affixes and roots. This allows the parser to match these

affixes and roots to its databases and to apply rules that determine the

legality of the input string.

3.4.6 Suitability for Field Linguists

A parser for field linguists must meet certain computational and

linguistic criteria. The parser should ideally be freely or easily available

and platform independent, such as PC-KIMMO. The parser should not

require specialized knowledge to run; for example, PC-KIMMO requires

the mastery of a complicated rule writing system. The parser should be

extensible and modifiable, such as BITC or SOLAK, yet not require

programming knowledge to implement. BITC requires Perl

programming knowledge to implement. From the standpoint of a field

linguist, none of the parsers evaluated are suitable for fieldwork on the

basis of computational criteria. PC-KIMMO is the most easily available

and requires the least amount of specialized knowledge to implement;

however, it is currently unsupported by the developers and the Macintosh

version is deprecated. A parser for field linguists must also meet linguistic

criteria. The parser should be language independent: only four of the

parsers evaluated above are language independent. None of the authors

above state whether their parser accepts special characters with the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

61

exception of Crane, whose Classical Greek and Italian data include accents

and diacritics. On the basis of linguistic criteria, BITC requires the least

data encoding: there is no set of rules to add to a parsing routine and the

lexicon is not used for parsing purposes. It seems the field linguist must

encode his data in a special format if he wants it to be machine-readable:

all the parsers require lexical or other databases that are encoded in a

special format. Perhaps of the most importance to a field linguist after

ease of implementation and fitness to task is the ability to update the

parser database automatically such as ALEGRIA or via an easy interface

such as BITC's. Only four of the ten parsers include automatic updating or

updating via the parser interface. Although PC-KIMMO is deprecated, it is

the only parser that a field linguist could download, implement and begin

using in the field for morphological analysis.

3.5 Evaluation Summary

In sum, the evaluation of the universal parsers above shows the

trend toward TWOL system solutions to morphology parsing as well as a

trend toward project specific or commercial applications. Currently there

is no free, supported or open-source parsing tool available. The majority

of the parsers analyzed above are unidirectional parsers that are either

TWOL model-based or function similarly to TWOL systems. As TWOL

systems require rules in order to parse, such parsers would be difficult or

impossible for a field linguist to implement during data collection.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Furthermore, the majority of the parsers analyzed here apply

phonological rules to the input, either through pre-parsing routines or

some other mechanism. Again, any parser that requires rules in order to

parse would be difficult to implement during data collection. Root

recognition remains a parsing concern, as evidenced by the suffixing-only

language choice of DOLAN, KOVAL, SOLAK and Qpop. An ideal parser

would not be limited to suffixing-only languages. Few of the parsers allow

the user to add input during the parsing process or modify the lexicon

after implementing the parser, due to the pre-coded nature of finite-state

networks. User input during parsing or user modifications to the parser

databases after implementation are desirable features.

This evaluation can inform the design of a universal parser

intended for the field linguist. The parsers that do not require the user to

encode rules or extensive lexicons best suit the needs of a field linguist in

the data collection stage of a language documentation project. Although a

TWOL system is an ideal computational model of a language, the rules

necessary to model the language are complex and therefore difficult to

implement for the task of interlinearization. A corpus-based system that

relies on frequency data provides the most accurate parsing (CGP can

parse large amounts of data accurately); however, without an extensive

corpus, listing examples of previous parses allows the user to select the

relevant parse (for example, BITC). Data incorporating, order dependent

parsing eliminates spurious parses. A modular parser that outputs data in

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

63

a standards-compliant format would eliminate the problem of legacy data

generated by now-unsupported applications such as PC-KIMMO.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

64

4 Parser X D esign and Implementation

A successful parser designed for the field linguist must meet both

computational and linguistic criteria. To meet computational criteria, it

must be open source, platform independent and easily and freely

available. Open source and platform independent program s are

extensible, allowing the user to modify the software or embed it within

other software. The user can contact the developers regarding software

problems or improve the software, or request increased functionality

from the developers. To meet linguistic criteria, the parser must be

language independent, allow user input to the parser databases, and meet

current archiving standards. The parser I am proposing, Parser X, meets

these criteria and is designed to be maximally useful for the field linguist

at the data collection stage of a documentation project.

The problems identified in Chapter Three regarding the use of

TWOL system, single-language parsers for data collection preclude basing

Parser X on a TWOL model. Instead, Parser X matches string segments to

the corpus to build a candidate parse (BITC uses a similar strategy). Parser

X's parsing approach is weakly based in Exemplar Theory (Brooks, 1978).

Exemplar Theory holds that knowledge is learned over time and updated

through experience. In Parser X this is operationalized in that the

candidate parse and corpus types returned for a given input form will

change over time as new tokens added to Parser X. In Exemplar Theory,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

65

when a person encounters something new he first thinks of all the similar

things he might have come across in the past. Similarly, in response to an

input string, the parser searches for all words with similar affixes.

Secondly, the person thinks of a specific thing and draws an analogy

between the new object and the specific exemplar in his memory.

Similarly, the parser takes from the words with matching affix strings the

affix strings with the most frequently appearing matching analysis and

builds a candidate parse from these and the root of the input string.

4.2 Parser X Implementation

Parser X is program m ed in the Java programming language. The

files containing the dictionary and text information are XML files. These

choices make Parser X platform independent. Parser X accesses the XML

files using Castor and Java files generated by Castor (Guttman et al. 2004).

Castor is a data binding framework that allows Java programs to access

and modify XML files. The files generated by Castor allow Parser X to

easily and quickly access the information in the XML files with a minimum

of programming on the part of the programmer. In addition, if changes

need to be made to the basic programming of the parser or the encoding

of the data it is easy to use the automated tools in Castor to create Java

representations of the XML data. Parser X is therefore platform

independent, extensible, and modifiable by a user with programming

knowledge. The parser can be freely obtained from the author and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

66

requires no program m ing knowledge to install and run. Thus, Parser X

meets the computational requirements of the field linguist.

To implement Parser X, I used Upper Necaxa Totonac data

collected by David Beck for the Upper Necaxa Totonac Project. This data is

stored in a database: a large text file of Upper Necaxa Totonac language

data (a dictionary and corpus of texts) encoded in Extensible Markup

Language (XML) and an XML Schema file that describes the encoding of

that data. These files were designed and created by David Beck. I used

transformation files to re-encode the database using my own simplified

schema. This re-encoding eliminated approximately one third of the data;

for example, most metadata associated with each dictionary entry or text

such as speaker name, recording file name or date of collection was

eliminated. Although this data is important, it is not used by the parser.

4.2 Parser X Design

The parser design is modular. In order to implement the parser for

a particular language, the user adds a num ber of XML files: a dictionary

file, an affix file, and an index file. The schema files for all XML-encoded

files are found in Appendix B. The index file is a list of corpus tokens with

their frequency data created from the user's corpus with a helper

application called Indexer. Once these files are added, the application can

be run. New files can be appended to the corpus and Indexer can be re­

run to update the index file. The dictionary and affix files must be

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

67

manually encoded and updated. Figure 4-1 illustrates the basic design of

Parser X.

TEXTS
I

CORPUS
I

INDEXER

NDEX

PARSER X

DICTIONARY

PARSER INDEX

AFFIXES

Figure 4-1. Schematic of Parser X Design.

This schematic shows the relationship between two applications, the

Indexer application and the Parser X application. The user creates a corpus

file from the texts and adds it to the Indexer application folder. The

Indexer application generates the index file. The user adds the index,

dictionary and affix files to the Parser X folder. Parser X is comprised of

these files, the parser code and the graphical user interface (GUI)

generated by that code. The Parser X code and files are described in detail

below. Note that the Indexer application generates the index file, but that

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

68

the index file must be manually added to the Parser X application folder

by the user.

4.2.1 Texts and Corpus

The corpus is a re-encoding of three texts from the Upper Necaxa

Totonac database. Although these texts are in XML format, plain text

versions were used to create the corpus. The texts were recorded in the

field and transcribed by a native speaker aided by a trained linguist. Each

line of the texts is written out in a standard orthography and

interlinearized. An excerpt of one of the texts used to create the corpus is

shown in example (11).

(11) Totonac
nakintamaxki: la'hatln ixkawa:yuj
na-kin-ta-maxkl: la'ha-tm ix-kawa:yuj
fut-lobj-3pl.subj-give cls-one 3po-horse
'they are going to give me one of their horses'

In example (11), the first tier is in a standard orthography designed by

David Beck. The second tier is a morphological breakdown written out by

the linguist performing the transcription. The third line is the

morphological tier that uses both conventional abbreviations for

morphemes and novel abbreviations for those m orphemes that have no

conventional abbreviation in the literature. The final line is a gloss in

English. Regardless of the form at of the original texts, the Indexer

requires a corpus that is specifically formatted in accordance with rules set

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

69

down in an associated schema document. The corpus is used by the

Indexer to generate the index file.

4.2.2 Indexer

In order to accelerate processing, the corpus is indexed using the

Indexer. The Indexer is currently a command line tool; however, in future

releases it will be embedded in the parser.

The Indexer requires the corpus be formatted in XML. For

example, the text excerpt in example (11) is converted to the XML code

shown in example (12).14

(1 2)

<Lineblock>
<Line><w>nakintamaxki:</w><w>la'hatm</w><w>ixkawa:yuj</w>
</Line>
<Mrph><w>na+kin-ta+maxki:</w><w>la'ha+tm</w>

<w>ix+kawa:yuj</w></Mrph>
<IG><w>FUT+10BJ+3PL.SUBJ+give</w><w>CLS+one</w>

<w>3PO-horse</w></IG>
<Gloss><w>they</w><w>are</w><w>going</w><w>to</w>

<w>give</w><w>me</w><w>one</w><w>of</w>
<w>their</w><w>horse></w></Gloss>

</Lineblock>

This excerpt is then indexed using Indexer into the index fragment in

example (13).

14 Although the Upper Necaxa Totonac XML database designed by David
Beck has XML-encoded texts, I manually encoded the plain text versions
of the texts into XML. Theoretically it is possible to transform the original
XML texts into the form at required by the indexer with XSLT.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

70

(1 3)

<?xml version="1.0" encoding="UTF-8"?>
<result lb-count="9" valid="true" xmlns="">

<lb title-count="0" valid="true" freq="1,,>
<iw>FUT+1 OBJ+3PL.SUBJ+give</iw>
<lw>nakintamaxkl:</lw>
<mw>na+kin+ta+maxki:</mw>
</lb>

<lb title-count="0" valid="true" freq="2">
<iw>CLS+one </iw>
<lw>la'hatm:</lw>
<mw>la'hatm:</mw>

</lb>
<lb title-count="0" valid="true" freq="1">

<iw>3PO-horse </iw>
<lw> ixkawa:yuj</lw>
<mw>ix+kawa:yuj</mw>

</lb>
</result>

The <result /> tag contains all the unique words in the corpus. The

attributes of the <result /> tag are Ib-count, valid and xmlns. The Ib-count

attribute denotes the num ber of lines in the corpus; in (13) there are nine

lines as indicated by lb-count="9”). The valid attribute indicates that the

result file is valid against the schema. The xmlns attribute would indicate a

namespace attribute, if there were one. Each of the other tags corresponds

to a part of the interlinear gloss in (11). The <lb /> tag refers to a w ord and

its interlinear gloss elements and corresponds to a word within the <w />

tags contained by the <Line /> element in (12). The title-count attribute

would indicate the num ber of the text in the corpus, if more than one text

were indexed. Note that the indexer currently only accepts one file. In

(13), each <lb /> tag contains an attribute freq: this attribute contains the

tally of appearances in the corpus for the w ord tagged by <lw />. For

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

71

example, in (13) the attribute tag for la'hatin has the value '2' because

la'hatm appears twice in the corpus. It is only listed once in the index. The

<iw /> tag refers to the interlinear gloss of the word contained by a word

in the <IG /> element and the <mw /> tag refers to the morpheme-by-

morpheme breakdown of the word contained in the <Mrph /> element.

4.2.3 Index

The index is the output of the Indexer. The index lists each word in

the corpus (each type) along with the morphological breakdown, the

morphological abbreviations and the word frequency (number of tokens

or unique words in the corpus). The index is the list of types from the

corpus. These types are the exemplars presented to the user and selected

as candidate parses by the parser based on their frequency in the corpus.

Against this list, the parser matches substrings of the input form and each

token's part-of-speech membership.

4.2.4 Dictionary

The Parser X dictionary is an abbreviated form of the data from the

HyperCard Electronic Dictionary by David Beck. The transformation

between XML encodings is performed by using an extensible Stylesheet

Language Transformation (XSLT) processor and an XSLT document that

defines the mapping from the tags in the source document to the tags in

the target document to generate a file using the target encoding. In the

Parser X dictionary, each entry is a headword, part of speech and set of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

72

definitions. The dictionary is encoded in XML and validated against an

associated schema. Example (14) is an example of a dictionary file showing

two entries.

(14)
<?xml version="1.0" encoding="UTF-8"?>
<Entries>

<Entry>
<Name>a:</Name>
<POS>adv</POS>
<Def>over here</Def>

</Entry>
<Entry>

<Name>a:chaj</Name>
<POS>n</POS>
<Def>axe</Def>

</Entry>
</Entries>

The dictionary file can contain thousands of entries. The current

implementation has approximately 8,000 entries.

4.2.5 Affix List

The Upper Necaxa Totonac database includes a list of affixes. In this

implementation of Parser X, the affixes from this list were encoded in an

XML file. Example (15) is an example of an affix file showing two entries.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

73

(1 5)

<?xml version="1.0" encoding="UTF-8"?>
<affixes>

<affix>
<abbr>impf</abbr>
<type>imperfective</type>
<name>a</name>
<position>suffix</position>

</affix>
<affix>

<abbr>each</abbr>
<type>one by one</type>
<name>a'</name>
<position>prefix</position>

</affix>
</affixes>

Each morpheme is encoded by an <affix / > element. Allomorphs of one

morpheme are encoded in separate <affix /> elements and there is no

indication of a relationship between them other than that they share an

abbreviation, type and position. The affixes must be listed in alphabetical

order so that the parser will display them in this order in the graphical

user interface (GUI). Although the parser displays the affix list, it does not

use the affix list in order to parse. The purpose of the affix list is the same

as the dictionary's: to allow the user to search for morphemes or roots as

an interlinearizing aid.

4.2.6 Parser

The user enters input strings to the parser through the GUI. The

parser then searches the dictionary and the index for matching dictionary

headwords or words in the corpus; all matches are output to the user. If

there are no matches, the parser prom pts the user to input a root for the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

74

input string in a pop-up window. The parser returns any dictionary

matches for the root input by the user, a candidate parse of the input

string based on that root and the maximum affix string match in the

corpus. The user also has the option of receiving all words in the index

whose affixes match those in the input string. Consider the sample parse

of the word milakstin ('my children') in example (16), below.

(16)

Input: milakstin
Root entered: lakstin

Output:
Dictionary matches:

lakstin (adj) small (plural)

lakstin (n)
1. children, offspring, seedlings
2. (ni) sons/daughters

Candidate parse:
milakstin
mi+lakstin
2po+ROOT

Maximum prefix match:
misandia
mi+sandia
2po+watermelon

In example (16), the user input the string milakstin. After failing to find a

match for milakstin in the corpus, the parser prom pts the user for the root

form. If a root is entered that has no match in the dictionary, the parser

requests another root. If the user cannot identify another possible root in

the input string, the user must cancel the parsing routine. In example (16),

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

75

the user enters the root lakstin and the parser returns the two dictionary

entries that match the root. The parser also returns a candidate parse: note

that the candidate parse does not gloss the root on the interlinear gloss

line, instead giving the term ROOT. The dictionary does not contain a one-

w ord gloss as part of each entry to allow the parser to complete the

interlinear gloss. In part, this is due to the difficulty in selecting a term that

is appropriate for all contexts. The parser has found a match for the root

lakstin, and continues to the next step. The parser searches for the string mi

as an <mw /> element, where it would be separated by the symbol '+'

from the root: mi+lakstin. This is to avoid returning as matches words that

contain the string mi as part of the root or as a substring of another

morpheme. The most frequently appearing w ord in the corpus that

contains the matched affix mi is returned with its interlinear gloss as an

exemplar for the user. This allows the user to evaluate the candidate

parse. In addition, the user sees all the words in the index with matching

affixes in the results window. In the above example, mi is unambiguous;

therefore, the maximum prefix string match is also the only prefix string

match. In a case where an affix string is ambiguous, the most frequent

instance will be returned as the candidate parse and all other instances are

returned as exemplars for the user.

Let us assume that the user is entering words from a text that he

wishes to inter linearize. When the user inputs a string to be parsed, the

parsing routine follows an algorithm that tries to match the whole input

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

76

string or substrings of the input string. If no matching w ord is found in

the index, the parser first searches for the matching substring of the

prefixes and suffixes along with the user-identified root. In the above

example, the parser returned the substring mi. The parser sometimes

returns an incorrect affix analysis, as shown in example (17).

(17)

Input string: ixchik
Candidate parse:

ixchik
ix+chik
*pst+house

In this case, the correct morphological gloss for ixchik is 3PO+house. Due to

the hom ophony between ix- '3po' and ix- 'P A ST ', the parser has two

options from which to create the candidate parse. The parser chooses the

most frequently-occuring gloss. The user has the option of scanning the

other words that have matching affixes but different analyses that are

returned in the results. In this case, the parser also returns an example that

contains a matching affix with the correct analysis, shown in (18).

(18)

ixpuska:t
3po+woman

The user is then able to interlinearize ixchik using the result in (18) as an

exemplar.

The parser does not have a rules component to rule out verbal

morphology on nouns. The parser returns the m ost frequently appearing

affix match but this is not necessarily the correct affix match. The decision

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

77

to rely on frequency information can sometimes result in incorrect parses.

Any solution to this problem will involve the addition of a rules

component. As the goal is to aid the field linguist in interlinearizing data

from the beginning of a project when the rules are not yet known, this

solution will not be implemented. The user must use the candidate parse,

the exemplar parses and the affix table to make decisions about

interlinearizations.

If there are multiple affixes in the input string, the parser will return

candidates based on matches from the index and dictionary for the root

and matches from the index for all recognized affixes. The word

nakila'htzm has multiple prefixes as shown in Example (19).

(19) Upper Necaxa Totonac

nakila'htzm
na -ki -la'htzln
'he will see me'

Example (20) shows the parser results for nakila'htzin when the root string is

entered as la'hztin.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

78

(20)
SEARCH START

Input: nakila'htzm
•Dictionary matches: 0
OCorpus types: 0

ROOT ENTERED
Root entered: la'htzin

•la'htzin
vt
1. see something
2. guard something, watch over something
3. pay attention to something, watch out for something
4. have a certain attitude towards something
5. treat someone

Candidate parse:
nakila'htzm
na+ki+la'htzin
fut+1obj+ROOT

Maximum prefix match:
Prefix: naki
nakili:wa'ya'
na+ki+li:+wa'+ya'
fut+1obj+inst+eat+impf:2sg.subj

All 4 prefix matches:
nakpueblo
nak+pueblo
loc+village

nama'hta'ha'lha
na+ma'hta'ha'lh+a
fut+guard+impf

naklern
na+k+le:n
fut+1sg.subj+take

nakili:wa'ya'
na+ki+li:+wa'+ya'
fut+1obj+inst+eat+impf:2sg.subj

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

79

The candidate parse is built from the matching substring naki- and the

user-identified root. The parser returns the candidate parse and the

exemplar w ord containing the matching prefix string naki- in the prefix

match and the maximum prefix match. This word, nakilviva'ya' (21-b), has

the same initial prefix string as nakila'htzm (21-a).

(2 1)

(a) nakila'htzm
na-ki-la'htzin
fut-lobj-see
'he will see me'

(b) nakili:wa'ya'
na-ki-li:-wa'-ya'
f ut-1 obj -inst-eat-impf: 2sg. subj
'you will eat me'

As the parser returns all unique matches, all words with matching word-

initial or word-final segments are included in the results.

4.2.7 Graphical User Interface

The Graphical User Interface (GUI) is the application window that

allows the user to interact with the parser. The GUI is shown in Figure 4-2

below.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

80

r \ r \ f \ ParserX

* Set ac tio n fo r zero m atches 1 Q A utoparse 5$ Ask fo r Root

a:chaj
a:chuia:

a. 0:
a'Kachixft ja:ka
a'hachoh
a'hachu.ya:
a 'hahexm i't-
a’haM_

A b b rev ia tio n Type N am e P osition
i m p f i m p e r f e c t i v e a
e a c h o n e by one a'
add additive a:
sim simultarte... ha:'
lsub j firstperso... ik
pst past ix
sbj subju naive ka
place place of X ka
plob] plural obj... ka:

ix

suffix
prefix
prefix
prefix
prefix
prefix
prefix
prefix
prefix

Figure 4-2. Parser X Graphical User Interface.

The GUI presents the parser's dictionary as a scrollable list (labeled 'D').

This is the same dictionary that the parser uses to search for roots. The

dictionary contains approximately eight thousand entries. If the user

selects a dictionary word, that word, its part of speech and definitions

appear in a small text area next to the list (labeled 'E'). Each search result

remains visible in that scrollable window to allow the user to review his

dictionary searches for that session. Below the dictionary is a table of

affixes (labeled 'F'). This is merely an aide-memoire for the user, as the affix

list is not used by the parser in any parsing routines. The corpus affixes do

not include the information about linguistic terms and their abbreviations.

As the user identifies the root for the parser, the user can scan the affix list

and search the dictionary to determine roots. The GUI has a text field

(labeled 'B') for the user to input words to be parsed and an output text

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

area (labeled 'C') for the user to view parser results. Note that the menu

bar (labeled 'A') offers the user the option to 'set actions for zero

matches.' This refers to the case where the initial input returns no matches

from the corpus. Currently, the only program m ed option is 'ask for root';

this prompts the user for the root of the input term. The other option,

'autoparse' is currently not programmed.

As described in the beginning of the chapter, Parser X meets the

computational requirements of a parser for field linguists. Parser X also

meets the linguistic requirements of the field linguist. Parser X is language

independent in that it does not require a fixed parsing edge from which to

run an analysis routine. Parser X displays all Unicode (UTF-8) characters

and all the Parser X databases are in UTF-8. Apart from the database

encoding that is outlined in the schema documents in Appendix B, the

parser can be used without having to use a special format or learn a set of

parser commands. Parser X can be easily updated with new data by

appending new texts to the corpus file and re-running the Indexer. After a

new index is generated, the user can add this to the Parser X folder. The

dictionary and affix files can be directly updated manually by the user. In

future versions of Parser X these updates will be possible via the parser

interface. Thus, Parser X meets the computational and linguistic criteria

required by the field linguist.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

82

5 Use Case Scenarios

The use case scenarios in this section show how different users

interact with Parser X to achieve specific parsing goals. The two types of

users described in this chapter are field linguists collecting and analyzing

data and child language acquisition researchers analyzing data. Both users

have similar needs; they need to collect and analyze raw data and ensure

that their data is consistently encoded. However, these users also have

different needs. For example, the field linguist may be collecting data in a

previously undocumented language, whereas the child language

researcher m ost likely already has access to adult language data such as a

dictionary and grammar. The field linguist's corpus may be a collection of

stories from adult speakers, stories told specifically for the field linguist to

record. The child language acquisition researcher's data is a collection of

video transcripts: the speakers may be children and adults interacting in a

variety of natural contexts. The child language researcher therefore needs

access to a video record as well as to an audio record in order to analyze

his data. It is also particularly important for the child language researcher

to encode his data consistently because child language data contains

utterances that can be transcribed or analyzed in different ways and the

analysis of the data depends on a consistent analysis of these utterances.

While both users are creating interlinear glosses for their texts, the user's

needs are different.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

83

5.1 First Scenario: Field D ata Interline arizing A id

The primary use of Parser X is to aid the field linguist in

interlinearizing corpus texts. After texts are recorded, transcribed and

translated, the linguist can interlinearize that text by adding a

morphological analysis. In order to add an interlinear gloss to a text or

text fragment, the linguist must refer to a set of resources: a list of affixes,

a set of morphological paradigms, a gram m ar and a dictionary. Often, the

linguist also reviews the audio or video recording from which the

transcript is generated. The linguist glosses each word individually, in

sequence, until the end of the document is reached. This practice can result

in inconsistent encoding or the perpetuation of errors in orthographic

representation. As Parser X can return all parses of a particular word and

all parses of similar constructions, the use of Parser X will result in more

consistent encoding by allowing the linguist to review previous analyses

of similar strings.

In this use case scenario, a field linguist must interlinearize the

transcript of an interview conducted between two native speakers in the

field. This interview is a plain text document and the user is

interlinearizing it using Parser X and a text editor. The user has an audio

recording of the interview in case he needs to verify a particular word.

In order to implement Parser X in his target language, the linguist

must create the dictionary and index files. The linguist is part of on-going

research, therefore a substantial dictionary is already complete and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

several texts are already completely inter linearized. First, the linguist must

re-encode the corpus by transforming the corpus data into the correct

format. In this case, the data is encoded in XML and the user must

transform from the original XML encoding into the form accepted by

Parser X by mapping the original tag set onto the Parser X tag set in an

XSL file and using an XSLT processor (as described in 4.2.4) or by

manually re-tagging the corpus. It is important to note that Parser X

encoding does not use white space to separate words, it uses the XML tag

<w />. After encoding the corpus, the field linguist must generate a corpus

index for Parser X by running the command line tool, Indexer. In addition,

the linguist must create the dictionary file needed by Parser X by

transforming a dictionary to meet the rules set out in the dictionary

schema for Parser X (manually or with XSLT). In addition, the linguist

must create an XML-encoded list of affixes for the affix table. After

creating the index, dictionary and affix files, the linguist can now add these

to the Parser X directory. In this example, two fully interlinearized texts

comprise the corpus and the dictionary has approximately 8,000 words.

Once the linguist has added the index, dictionary and affix files to

the correct directory, he can begin to use the application. The example of

use in this scenario is the addition of an interlinear gloss to an interview

transcript. In order to effectively add a gloss using Parser X, the linguist

also needs a text editor to create the transcript document and a media

player to listen to the original recording. He listens to the interview as he

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

85

interlinearizes the transcript. The linguist interlinearizes each word in the

text individually. After the interview is interlinearized and encoded in

XML, the linguist appends it to the corpus file and runs the Indexer to re­

index the corpus. Ideally, in future versions of Parser X the Indexer will be

integrated into Parser X, allowing the user to update the index while the

parser is in use.

The text resources offered by Parser X are open in that the

dictionary, affixes table and corpus can be updated by the user. Another

benefit of using Parser X as an interlinearizing aid is that it allows the user

a dynamic view of affixes, corpus search results and dictionary entries. If

the user does not recognize an affix or is having trouble isolating the root

in the input form, he can scroll through the list of affixes to find more

information about the affixes in the target language. If the user does not

accept the candidate parse of the input string, he can scroll through the list

of words that contain matching affix strings in the results window. If the

user prefers to look up roots in the dictionary before inputting the root

string to the parser, the user can scroll through the dictionary or scroll

through the dictionary search results window to look at the results of

previous dictionary searches. Parser X incorporates these text resources in

a simple viewer. Figure 5-1, below, is a screenshot of Parser X in use.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

86

/"■-i r'% ParserX

j Set action for zero m atches! £ j Autoparse g5 Ask for Root

Input; ixchik

•Dictionary matches: 0

oCorpus types; 0

ROOT ENTERED

Root entered, chik

•chi'k
n
house, home

Candidate parse:

ixchik
ix + c h ik
pst+ROOT

Maximum prefix match.
Prefix: ix

ixtawi:lana:!h
ix+ta+wi:ta+na:+lh
pst + 3subj+sit+st.pl+pfv

All 2 prefix matches:

ixtawi:lana:lh
ix+ta+wi:la+na:+lh
pst + 3subj+sit+st.pl+pfv

ixpuska t
ix+puska.t
3po+woman

chijchinkiwtilu

chikaj
chiki:
chikichi
chiki:nf
chikkntn
rM£tKMeJi

I Entry: !i:wanat ni

Definition: size

Entry: chik n

Definition: house, home
u

Name Abbreviation Type Pos
a im pf im perfective suffix
a' eac h one by one prefix
a: a d d add itive prefix
h a ,' sim sim u ltaneous prefix
ik ls u b j firs tp e rso n ... p refix
ix p s t p a s t p refix
ka sb j sub junctive prefix
ka: p lace p lace o f X prefix
ka: p lobj p lu ra l o b je c t prefix
ki: rt rou n d trip prefix
kin lo b j firs tp e rso n ... p refix
la: rep rec ip roca l p refix
la’h d is t d istribu tive prefix
la 'h goal goal o f m oti... p refix
lak ap l ad jec tiv e p i... p refix
tak d is t d istribu tive prefix
li: int in s tru m en t prefix
m a 'h a je n o a je n o prefix
m 'ah a es2 stim ulus prefix
na fut fu ture prefix
nak loc location; p i... p refix
pu: c td co n ta in ed w ... prefix
suffix dim dim inutive prefix
ta inch inchoative prefix
ta 3 p su b j th ird p e rso n ... prefix
la tnm transitive n ... p refix
ta: cm t com Ita tive prefix
te: p th p a s s th ro u g ... prefix
ti c tf co u n te rfac tu a l prefix
xa d e t d e te rm in e r prefix
m a cs causa tive prefix

Figure 5-1. View of Parser X in Use

Parser X's GUI window can be resized by dragging on the bottom right

corner to best fit into a desktop environment. For example, the Parser X

GUI, a text editor and an audio or video player can all be running and

visible to the user on the screen at the same time.

The parser's search results display a variety of information. For

example, the first search result is the best candidate parse based on

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

87

matching prefixes and suffixes in the corpus. Subsequent results include

the corpus type with the longest matching prefix and suffix and all results

with unique prefix and suffix matches. By reviewing unique prefix and

suffix matches, the user can avoid coding inconsistencies. Coding

inconsistencies can be difficult to find in a large corpus without a

concordance view or a fuzzy search function (for example, one that

ignores accents). In Parser X, the search results include words with

matching affixes if their interlinear glosses for those affixes are different

from each other, making the inconsistency of encoding an affix with more

than one morphological gloss more evident. However, Parser X is not

designed to catch all coding inconsistencies, for example if words with the

target affix strings contain misspelled affix strings or affix strings that are

altered by phonological processes they will not be matched and therefore

not returned in search results. Parser X could be enhanced by fuzzy

searching to allow the user to see, for example, all unique affixes encoded

as third person plural.

5.2 Second Scenario: Child Language Acquisition Researcher

In this scenario, a child language researcher with CHAT encoded

transcripts of child language recordings is using the CLANX text editor

and Parser X to analyze his data using the CHILDES system of analysis.

Parser X contributes to the interlinearization process in three ways.

Primarily, Parser X aids the linguist by performing the type of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

88

morphological analysis described in the first use case scenario. This usage

has been described above in detail and I describe it briefly in this new

context. I describe in detail how Parser X eliminates one type of CHAT

encoding inconsistency and aids the linguist in eliminating another type of

coding inconsistency.

In order to explain how Parser X aids the child language researcher,

first it is necessary to understand why this researcher might choose Parser

X to perform the morphological analysis. In this scenario, the researcher

has an adult language corpus on which to base his analysis, a child

language corpus he is in the process of analyzing, a dictionary and an affix

list for the target language, Upper Necaxa Totonac. He is using the

CHILDES system to interlinearize his database of transcripts. The

CHILDES system is described on the CHILDES Web site as a system of

tools for the study of conversational interactions. This system consists of a

database, CHAT encoding and CLANX analysis. CHAT is a data archiving

and encoding standard that has been used by child language acquisition

researchers for many years. The user annotates a CHAT-encoded

transcript using CLANX, a text editor and data analysis application

developed specifically for the CHILDES system. Users can download

CLANX as it is a freely available and multi-platform text editing and

analysis program. CLANX ensures a strict adherence to the CHAT

encoding standard. Unlike Parser X, CLANX does not incorporate a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

89

dictionary or a corpus as an aid in interlinear glossing. CLANX, however,

does have a built-in parser called the MOR module.

Despite MacWhinney's claims that the MOR module of the CLAN

analysis engine is language independent (2000, p. 113), the early

programming focus on English limits the parser's effectiveness for

languages with more complex morphology. In CLAN, all language-

specific information is isolated in a series of files (2000, p. 113). However,

the basic system underlying the MOR module originally listed the rules

for English (Hausser, 1989, p. 2). Since English has a limited num ber of

inflectional morphemes, the file sizes were small and did not significantly

affect processing speed. For a highly inflected language, the file size would

be large and impractical. Without modification to the parser structure, the

MOR module of the CLAN engine is restricted to parsing analytic,

isolating languages. In addition, the MOR module requires that the user

create a rules file for the target language. If the child language acquisition

researcher wants to analyze his data, CLANX does not provide a well-

designed tool for languages with complex morphology. The user can

perform morphological analysis of his transcripts using Parser X with an

adult corpus index while interlinearizing his child language transcripts in

the CLANX text editor.

Before the child language acquisition researcher can begin using

Parser X to interlinearize data using his child language transcripts as the

corpus (or as part of the corpus), he must re-encode his data in the Parser

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

90

X format. The user can easily encode his CHAT transcripts in Parser X

format because the two encoding formats have a one-to-one relationship

between elements, with the exception of the <w /> elements which can

easily be inserted using a search-and-replace function. Manually

performing this encoding should be straightforward. Example (22) shows

an excerpt of CLANX encoded data file YON220704.CHA (collected and

transcribed by Vianey Varela under the direction of David Beck and

Johanne Paradis for the Upper Necaxa Totonac Project and translated by

Catalina Fuentes-Munoz):

(2 2)

*CHI: naklakpusa: kila ja:tze
%bre: na-ik-?? kila ja:tzej
%mor: FUT-1SUBJ-VT|?? POS|mine ADJ|bad
%spa: lo voy a hacer pedazo el mlo no sirve
%eng: I'm gonna break mine in pieces, it is bad
%tim: 25:04
*CHI: ay
%bre: ay
%mor: INTJ|ay
%spa: ay
%eng: ay
%tim: 25:26
*SIS: bebe tu:chu:
%bre: bebe tu.chu:
%mor: N|baby PRN|what_thing
%spa: bebe ^que cosa es?
%eng: baby, what is this?
%tim: 25:38

This encoding corresponds to Indexer corpus encoding in the following

way:

• Each utterance and its associated tiers correspond to a

<Lineblock /> element.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

91

• *CHI and *SIS denotes the speaker of the line block and

introduces the line. This corresponds to the <Line /> tag.

• %bre denotes the morphological breakdown of the line. This

corresponds to <Mrph /> tag. All hyphens on this tier must

be replaced by the '+' symbol.

• %mor denotes the interlinear gloss of the line. This

corresponds to the <IG /> tag.

• %spa denotes the gloss in Spanish of the line. This line is not

used by Parser X.

• %eng denotes it in English. In this example, the %eng tag

corresponds to the <Gloss /> tag

• %tim denotes the time of the utterance in the recording; this

information is not encoded for Parser X.

The above transcript excerpt in (22), manually re-encoded for use with the

Indexer, is shown in (23).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

92

(23)

<Lineblock>
<Line><w>naklakpusa:</w><w>kila</w><w>ja:tze</w>
</Line>
<Mrph><w>na-ik-??</w><w>kila</w><w>ja:tzej<w>
</Mrph>
<IG><w>FUT-1SUBJ-VT|??</w><w>P0S|mine</w>
<w>ADJ|bad</w></IG>
<Gloss><w>rm gonna break mine in pieces, it is bad</w>
</Gloss>

</Lineblock>
<Lineblock>

<Line><w>ay</w></Line>
<Mrph><w>ay</w></Mrph>
<IG><w>INTJ|ay</w></IG>
<Gloss><w>ay</w></Gloss>

</Lineblock>
<Lineblock>

<Line><w>bebe</w><w>tu:chu:</w></Line>
<Mrph><w>bebe</w><w>tu:chu:</w></Mrph>
<IG><w>N|baby</w><w>PRN|what_thing</w></IG>
<Gloss><w>baby, what is this?</w></Gloss>

<Lineblock>

Although the CHAT format appears to easily map onto the Parser X

encoding, CHAT allows inconsistencies between the speaker (here, *CHI

or *SIS) and *MOR tiers that are not allowed in Parser X encoding.

Running the Indexer on the Parser X encoded transcripts will

eliminate the type of data inconsistency allowed in the CHAT form at that

is not allowed in the Parser X format. In CHAT encoding, the speaker tier

that contains the utterance can contain a different num ber of words than

in the associated tiers, such as the interlinear gloss tier. Parser X has a

more restrictive encoding format than CHAT. For example, consider the

following lines:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

93

(2 4)

*SIS: juwa.mamankala'htzi
%bre: ju: wama: xma:n ka-la'htzi1
%mor: MTV|look DEM|this ADV|only.OPT-VT|see
%spa: mira este nomas miralo
%eng: look this, just look at it
%???: check paradigm
%com: she is showing him a flower
%tim: 25:46

Notice that the first line was transcribed as a single string without word

boundaries. In this instance, let us assume this is a transcriber error. The

user must edit the first line to include w ord boundaries as shown in

Example (25).

(25)

*SIS: ju wa:ma man kala'htzi

These word boundaries must be consistent with the other tiers for that

utterance in the CHAT transcript. The example in (26) is re-encoded

manually by the user as the following element <Lineblock /> for the

Indexer:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

94

(26)

<Lineblock>
<Line><w>ju</w><w>wa:ma</w><w>man</w>

<w>kala'htzi</w></Line>
<M rph><w>j u: </w><w>wama: </w><w>xma: n</w>

<w>ka+la'htzi'</w></Mrph>
<IG><w>MTV|look</w><w>DEM|this</w>

<w>AD V| on ly</w> <w>0 PT-VT| see</w> </l G >
<Gloss><w>mira este nomas miralo</w></Gloss>

</Lineblock>

Although the <Line /> element in (26) appears similar to the %bre tier in

(24), the %bre tier cannot be transformed into the <Line /> element unless

the user first removes all hyphens between morphemes. The <Line />

element must contain an orthographic representation of the line with each

word contained in a <w /> element. If the speaker tier (in (24) the *SIS

tier) included all word breaks, it could be transformed into the <Line / >

element because it does not contain hyphens. In the CHILDES system, the

user is able to create tiers that are specific to her project. In this use case

scenario, the %bre tier is used for a type of morphological frequency

analysis performed by CLANX that requires the use of these symbols.

Normally this type of analysis would be performed on the %mor tier;

however, in this use case scenario the researcher has created a new tier

that breaks the information on the speaker tier down into m orphemes for

project-specific reasons. The user must decide which tier will best

correspond to the <Line / > element. By running the Indexer on the Parser

X encoded transcript, the child language acquisition researcher verifies

that each <Line /> element has the same num ber of words as the <IG>

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

95

and the <Mrph /> elements and eliminates the type of inconsistency

shown in (24). The Indexer will return the line number, starting at zero, in

the original transcript if the num ber of words between tiers is

inconsistent.

(27)

Error in Lineblock 0: the line or morph tier differs from the interlinear
gloss tier in word number.

After manually correcting any inconsistencies, the user appends the

corrected transcript to the existing adult corpus and creates a new corpus

index using the Indexer. Although the CLANX parser can perform

without this consistency, the inconsistency between the utterance and its

analysis must be eliminated or accounted for in a more overt fashion in

order to create data that can be shared with other researchers or maintain

a digital archive of his transcripts.

A second type of coding inconsistency is the case where the

researcher has decided that several words must be transcribed as one

word for a specific reason, unlike the case above where we assumed that

the utterance was transcribed as one word in error. The child language

acquisition researcher can decide that a certain series of words in adult

language are one word in child language. For example, the words 'w hat is

it?', in adult speech tu: chu:, may be considered one word tu:chu: in a

child's speech. The researcher may notice that in the child's utterances, tu:

is always followed by chu:, and decide that the child has acquired the

'chunk' tuxhu:. If the child were to utter tu: in different contexts, then the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

96

child can be said to have acquired tu:. The user has several coding options

for such an instance. One option is to indicate that tu: chu: is one 'chunk'

by writing it as tu:chu:. The researcher purposefully leaves out the white

space in the utterance to indicate that tuxhu: is one 'child word'. In this

use case scenario, the user has decided to start analyzing tu: chu: as tuxhu:

as in (28) from YON220704.CHA.

(28)

*SIS: tu:chu:
%bre: tuichu:
%mor: PRN|what_thing
%spa: ^que es?
%eng: what is (it)?
%tim: 25:44

As tu: chu: is now analyzed as tu:chu:r the following excerpt in (29) from

the file YON220703.CHA now contains a transcription error on the

speaker tier (the first tier).

(29)

*SIS: bebe tu: chu: wa.ma
%bre: bebe tuxhu: wama:
%mor: N|baby PRN|what_thing DEM|this
%spa: bebe ^que cosa es esto?
%eng: baby, what thing is this?
%tim: 25:42

The instances of tu: chu: in transcripts for this child can be corrected using

Parser X. This kind of inconsistency is possible with CLANX because in

this use case scenario, the first line is not important to any subsequent

analysis performed by CLANX. In this case, the student researcher relies

on the %bre tier for speaker data as described above. Data encoded with

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

97

the kind of inconsistency shown in examples (29) is problematic for

researchers who rely on data consistency for their analyses, such as

corpus linguists. This is one instance of the program influencing the data

collection in a negative fashion. The Indexer will reject (29) because the

number of words on the <Line /> element is different from the num ber of

words in the <Mrph /> element. Parser X helps the researcher to correct

these inconsistencies by finding the tiers with errors in coding. If the

researcher changes his criteria of analysis, Parser X can help locate these

inconsistencies.

However, the above example of tuxhu: illustrates a problematic

aspect of CHAT encoding. Let us reconsider the utterance in Example (24).

(30)

*SIS: ju:wa:mamankala'htzi
%bre: ju: wama: xma:n ka-la'htzi'
%mor: MTV|look DEM|this ADV|only OPT-VT|see
%eng: look this, just look at it

In (30), the child language is on the first line and the adult language forms

are implied by the morpheme boundaries indicated in the analysis on the

subsequent two lines. If the researcher decides that ju:wa:mdmankala'htzi is

a one word utterance that is analyzed as if it were separate words, he will

not be able to re-encode these lines in Parser X encoding and run the

Indexer successfully to create an index. If the user plans to use Parser X to

perform automated parsing, he can use Parser X with an adult-language

corpus index to analyze his data and CLANX to maintain his corpus of

child language transcripts. As the researcher is using an adult language

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

98

corpus for the analysis, he must be aware of the adult forms of the words

he has chosen to analyze as child-words because he will not find corpus

matches for the child words. Once the researcher has successfully run the

Indexer on his transcripts, he can add the index to the parser files. After

adding the index files to the Parser X folder, he can begin using Parser X

to analyze a transcript.

In the case that the user adds his child language files to the corpus,

he can use Parser X in conjunction with CLANX to ensure coding accuracy

for difficult tokens. In example (9), the user has inconsistently analyzed

the form wa'a: in the corpus.

(31)

(a) wa'a:
wa'a:
DEM | over.there

(b) wa'a:
wama:
DEM I t h is

If the user searches for wa'a:, Parser X will return both analyses shown in

(9) because it returns all corpus matches and their analyses. Thus, a second

type of coding inconsistency can be revealed in the parsing results.

One problem for the child language researcher using Parser X is the

lack of metadata for each exemplar. The Parser X schemas do not include

any elements that would correspond to linguistic metadata; nor do the

Indexer or Parser X include the code to return such data. If the researcher

is including in the indexed corpus files from a variety of adults and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

99

children or children of different ages or linguistic ability, the researcher

might find it important to know which speaker uttered which exemplar.

Ideally, future versions of Parser X would include metadata with each

exemplar.

Child language data differs from adult language data in that the

data contains errors in both competence and performance. The corpus

collected by the child language acquisition researcher may contain many

variants for words uttered by different children at different stages of

development and also by adults. If the researcher were able to search only

the index of texts for a specific speaker, the researcher would be able to

get search results that include only that speaker's utterances. A feature

that allows the child language acquisition researcher to restrict his search

to a particular set of texts would allow the researcher to easily search for

coding inconsistencies or for changes in the child's speech over time.

Another useful feature for the child language researcher would be

a program to transform the CHAT encoded files into XML files that are

valid according to the schema used by Parser X. As CHAT encoding is

regular and rule-bound, this type of feature would be trivial to

implement. If future versions of Parser X were to include such a re­

encoding feature, Parser X would become more valuable to the child

language acquisition research community. XML-encoded databases allow

researchers to easily reuse data and encoding data in XML is a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

100

recommended best practice by the Electronic Metastructure for

Endangered Languages Data Project (E-MELD).15

A tool such as Parser X, that returns all previous parses for a

particular input string, enhances consistency for forms that can be

analyzed in more than one way. Parser X would benefit from the addition

of features tailored to the needs of child language acquisition researchers,

such as the automatic re-encoding of CHAT files into Parser X files and the

inclusion of metadata for each exemplar. Overall, Parser X is a useful tool

for the child language researcher analyzing a transcript using CLANX for

two main reasons: it requires XML encoding of the data and encourages

consistency of interlinear glosses in the corpus.

5.2 Evaluation o f Parser X

There are drawbacks to using Parser X in comparison to other

software solutions. The most serious drawback is the necessity for

encoding all the data in a new format. Every user of Parser X must encode

at least three files in Parser X's encoding format described by the schema

documents in Appendix B; therefore, this user must have some

knowledge of XML, schemas and, if his data is already in XML format,

XML transformations. However, this requirement ensures that even a

small amount of data conforms to the best practices for digital language

data set by E-MELD in that it requires XML-encoded data.

15 For more information on E-MELD and best practices, see the E-MELD
School of Best Practices in Digital Language Documentation Web site.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

101

Parser X's most important asset is that it is open source and freely

available. Parser X can be easily obtained and modified by the end user.

Open source projects allow a community of users to alter a particular

program to meet the needs of the group, to improve upon the original

code and to offer support to users. Open source software that retains a

user base over time can outlast the original developers and migrate to

new platforms. The parsers evaluated above that grew from single

program m er projects to commercial projects are no longer available for

linguists to use (one exception to this trend are the Xerox tools, which are

newly available for limited use via Beesley and Karttunen's Finite State

Morphology). Parsers such as PC-KIMMO are now legacy software, for

example, and the Macintosh versions are no longer supported and do not

run on the current Macintosh operating system. Ideally, Parser X will

continue to be developed by a community of users.

Parser X meets the design goals set out in the beginning of the

chapter by being open source, platform independent and easily and freely

available. In addition, the parser is language-independent and allows user

input. Furthermore, the parser's data encoding format meets current

encoding standards. Parser X is useful for linguists at the beginning stages

of data collection and analysis, as described in the use case scenarios in this

chapter.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

102

6 Conclusion

6.1 Summary

The goal of this thesis was to discuss the design and

implementation of a universal morphological parser for field linguists

based on the evaluation of parsers designed for a variety of purposes. I

evaluated ten parsers, four based on TWOL models and six that represent

a variety of other theoretical models. The evaluation described the success

or failure of a variety of parser features and the suitability of different

parsing approaches to the parsing needs of field linguists. These needs

include computational and linguistic criteria.

The parsers evaluated in Chapter Three are not intended for use by

the field linguist and only one of the parsers is intended for language

documentation and analysis (BITC). Only two of the ten parsers are easily

available for a linguist to install and use, PC-KIMMO and BITC.

Unfortunately, PC-KIMMO is not only deprecated but also requires

specialized knowledge of TWOL rule writing and BITC requires extensive

programming knowledge to implement. Ideally, a parser for field

linguists would be easy to acquire and require only a minimum of

specialized knowledge to set up and use. Another drawback to the parsers

I evaluated is that several of the parsers are language specific (Qpop,

DOLAN, SOLAK and ALEGRIA), relying on features of the target

language to perform parsing (DOLAN relies on the syllable structure of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

103

Indonesian, Qpop relies on the suffixing-only morphology of Bolivian

Quechua). Language-specific parsers are of no use to a field linguist

documenting a new language. However, some of the language-specific

parsers have desirable features such as automatic updating of new roots

(ALEGRIA) or extensible programming (SOLAK) that informed the

design of Parser X.

Several design criteria are successfully implemented in Parser X.

Like PC-KIMMO, Parser X is easy to freely download and install on a

personal computer running the m ost popular platforms. Like SOLAK,

Parser X is also modular and extensible. Furthermore, like some of the

parsers evaluated in Chapter Three, Parser X is language independent.

Parser X is also standards compliant in that it requires an XML database.

Like BITC, Parser X needs only a minimal amount of linguistic data to

implement.

Parser X implements the design criteria described in Chapter Two.

Parser X is freely and easily available. It can be downloaded from the

Parser X Website, installed from the software accompanying this thesis or

obtained from the author. Parser X is platform-independent; it can be

installed on a personal computer running Windows, Mac OS or Unix.

Parser X is open-source; therefore, any user with programming

knowledge can modify the source code for his own use or embed the

source code in his own application. In addition, the parser does not

require program m ing knowledge to implement. Once the user has added

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

104

the data files (index, dictionary and affix files) to the parser folder, the

parser is ready to use. This step requires a basic knowledge of XML.

Parser X is language independent; the parser can be successfully

implemented in any language, as it does not rely on language-specific

features as part of the parsing routine. Parser X does not utilize a set of

morphological or phonological rules, so no rules component is added or

derived from the data. This means that unlike most of the parsers

evaluated in Chapter Three, Parser X does not have order dependent

parsing. Parser X does not perform any type of phonological analysis and

is therefore not data incorporating. While both order dependent and data

incorporating parsing can improve the accuracy of results, they require

rules components and these are difficult to implement without special rule

writing routines (like PC-KIMMO), language specific programming (like

Qpop) or an extensive rules component program m ed by the user (like

CGP and Morpheus). Although Parser X does not automatically add new

roots to its index file, new data can be added easily to the parser data files

when the user updates the corpus and adds a new index to the parser

folder. Parser X implements both the computational and linguistic criteria

that determine suitability for the field linguist.

6.2 Future Work

Parser X's shortcomings, for the most part, can be overcome

through future work. The primary shortcoming is the need for the user to

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

105

re-encode his data in the Parser X form at in order to implement Parser X.

This requires that the user be familiar with XML. Although XML is

recommended for digital language database encoding, not all field

linguists are familiar with it. Those who are may not be familiar with

XSLT, which is used to map one XML encoding onto another one.

The data re-encoding cannot be avoided, but the difficulty for

novice users can be overcome through the addition of a form-style

interface that allows the user to input his data directly into the parser GUI.

The parser can then create the XML file and add it to the parser files. For

researchers using the CHILDES system, Parser X should be able to import

and re-encode CHAT documents. The only difficulty in adding such a

feature would be in implementing an interface through which the user can

correct coding errors in the original CHAT document. Nevertheless,

future implementations of Parser X should include interfaces that allow

users to input or re-encode their data via the parser. This requires major

additional programming.

The data encoding itself must also be changed in future releases to

allow the user to access the metadata from the interface. Currently, the

XML encoding used by Parser X is purposefully quite simple: the novice

XML coder can easily master it. However, this design decision eliminated

all metadata associated with the corpus index. This information may be

necessary for certain users, for example, if the user wants to know the

dialect or speaker of a given exemplar. The database must include

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

106

metadata for each index item. The user should have the to option to

display metadata with each result. Instituting these changes will require

new schema documents and minor additional programming.

Another change that will require new schemas and more

programming is the needed redesign of the affix table. The affix table

should list each m orpheme and all the allomorphs of that morpheme.

Currently, the only way to indicate the underlying morpheme is to

circumvent the encoding system and name each allomorph morpheme:

allomorph or something similar. The affix table should be modified to allow

a new column showing the allomorphs of each morpheme and the

columns should be able to be sorted and re-ordered. This requires minor

programming and some changes to the affix schema file.

Switching between two applications as described in the use case

scenarios can be frustrating to the user. The addition of a text editor to

Parser X will increase functionality. The parser will be embedded in a

simple text editor that saves files in plain text or XML format. This

addition requires major additional programming that will make Parser X

much easier to use for interlinearizing texts. An incorporated media

player would also enhance Parser X's use to the field linguist. However,

by not incorporating a media player, Parser X is not tied to a specific

media format. This allows the user a wider choice of encoding formats, as

many media encoding formats are platform specific. Furthermore, adding

media player functionality would require a substantial change to the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

107

programming code of Parser X. There are many free software solutions

available to the user for playing sound and video files.

The Parser interface gives the user the option to have each search

parsed automatically. However, if the user selects this feature he is

informed that the autoparse feature is not complete. When the user enters

an input string to be parsed, the parser returns an interlinearization of

that string from the corpus index. If there is no match, the user must enter

the root segment of the string because the parser does not identify roots.

The parsing algorithm that identifies roots efficiently from the corpus or

dictionary is complex and has not yet been program m ed into Parser X.

The algorithm as it is currently designed is not computationally efficient

for languages with words of more than 17 characters. Obviously, more

work is needed to refine the algorithm before it can be program m ed into

the parser. Completion of an automatic parsing feature is a priority.

Another serious drawback to Parser X is the long startup time. The

startup time from starting the program to being able to use the program

depends on the size of the dictionary and index. However, return speed of

the results is quite fast. These times are not empirically measured; they are

perceptions of the end user. In comparison, commercially available

software such as Adobe Photoshop or Microsoft W ord has approximately

the same loading times. This drawback can be addressed by restricting

corpus and dictionary material to domain-specific texts or by having a

large database.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

108

In order to make Parser X more useful for field linguists, additional

programming is necessary. Yet as it is, the parser described in this thesis

has a variety of features that together aid the field linguist in encoding and

interlinearizing texts. For example, the parser can be implemented with a

small amount of data in a simple XML format. It displays not only a

candidate parser but also all results in the corpus index for each input

string. This information aids the user in selecting the best candidate parse.

In addition, it allows the user to see if there are inconsistencies in previous

analyses. It provides the user with a dictionary and a list of affixes with

their abbreviations for reference during interlinearization. It is my hope

that my design of Parser X itself is useful to other linguists working with

endangered language data.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

109

Bibliography

Aduriz I., Agirre E., Aldezabal I., Arregi X., Arriola J., Artola Zubillaga

X., et al. (2000, May 31-June 2). A Word-Level Morphosyntactic

Analyzer for Basque. Paper presented at the Second International

Conference on Language Resources and Evaluation, Athens,

Greece.

Aduriz, I., Urkia, M., Alegria, I., Artola, X., Ezeiza, N. & Sarasola, K. (1997).

A Spelling Corrector for Basque Based on Morphology. Literary and

Linguistic Computing, 12 (1), 31-36.

Agirre, E., Alegria, I., Arregi, X., Artola, X., Diaz de Ilarraza, A., Maritxalar,

M. et al. (1992, April 1-3). XUXEN: A Spelling Checker/Correcter for

Basque Based on Two-Level Morphology. Paper presented at the Third

Conference on Applied Natural Language Processing, Trento, Italy.

Agirre, E., Arregi, X., Arriola, J. M., Artola, X., Diaz de Ilarraza, A.,

Insausti, J. M., et al. (1995, June). Different issues in the design of a

general purpose lexical database for Basque. Paper presented at the

First International W orkshop on Application of Natural Language

to Data Bases, Versailles, France.

Alegria, I., Artola, X., Sarasola, K. & Urkia, M. (1996). Automatic

Morphological Analysis of Basque. Literary and Linguistic

Computing, 11 (4), 193-203.

Alembic Workbench. [Computer program], Bedford, MA: Natural

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

110

Language Group at Mitre. <http://w w w .m itre .o rg /tech/alembic-

w orkbench/>

Anderson, S. R. (1988). Morphology as a Parsing Problem. In K. Wallace

(ed.), Morphology as a Computational Problem (pp. 1-21). Los Angeles,

CA: UCLA Occasional Papers in Linguistics, Volume 7.

Antworth, E. L. (1993). Glossing Text with the PC-Kimmo Morphological

Parser. Computers and the Humanities, 26, 389-398.

Beck, D. (n.d.). Upper Necaxa Totonac Dictionary. Ms, University of Alberta.

Beesley, K. R. & Karttunnen, L. (2001). A Short History of Two-Level

Morphology. Paper presented at the 13th European Summer

School in Logic, Language and Information. Helsinki, Finland.

Retrieved on September 10th, 2006 from the University of Helsinki

Web site: <http://www.ling.helsinki.fi/~koskenni/esslli-2001-

karttunen/>

Beesley, K. R. & Karttunen, L. (2003). Finite State Morphology. Stanford, CA:

CSLI Publications.

Bouda, P. & Rempt, B. (2006). "Turkish Examples 2." Kura, A Multi-User

Open-Source Linguistic Database. Retrieved March 21, 2006, from

<http ://w w w .ats.lm u.de/kura/sam ples/ turkish2.html>

Brooks, L.R. (1978). Nonanalytic Concept Formation and Memory for

Instances. In E. Rosch & B. B. Lloyd (Eds.). Cognition and

Categorization. Hillsdale, NJ: Erlbaum.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.mitre.org/tech/alembic-%e2%80%a8workbench/
http://www.mitre.org/tech/alembic-%e2%80%a8workbench/
http://www.ling.helsinki.fi/~koskenni/esslli-2001-
http://www.ats.lmu.de/kura/samples/%20turkish2.html

I l l

Charras, C & Lecroq, T. (1997). Exact String Matching Algorithms.

Retrieved April 21, 2006, from <http://w w w -igm .univ-

m lv .fr/-lec roq /s tring /> Path: Brute Force Algorithm.

CHILDES Web site, (n.d.) Retrieved September 24th, 2006, from

<http:/ /childes.psy .cmu.edu/>

CLAN Manual. (2004). Retrieved August 30th, 2004, from

<http://childes.psy.em u.edu/m anuals/CLAN.pdf>

Cohen, W. (2004) Minor Third [computer program]. Pittsburgh, PA:

Center for Automated Learning and Discovery. Retrieved from:

<h ttp :/ / minorthird.sourceforge.net >

Crane, G. (1991). Generating and Parsing Classical Greek. Literary and

Linguistic Computing 6 (4), 243-245

Crane, G. (Ed.). (n.d.). Perseus Digital Library. Tufts University. Retrieved on

September 10th, 2006 from Tufts University Web site:

<http://www.perseus.tufts.edu/>

Dolan, W. B. (1988). A Syllable-Based Parallel Processing Model For

Parsing Indonesian Morphology. In K. Wallace (ed.), Morphology as

a Computational Problem (pp. 75-106). Los Angeles, CA: UCLA

Occasional Papers in Linguistics, Volume 7.

Electronic Meta-structure for Endangered Languages Data (E-MELD)

Homepage. (2006). Wayne State University. Retrieved on April 21,

2006 from <http://E-MELD.org/index.cfm>

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www-igm.univ-%e2%80%a8mlv.fr/-lecroq/string/
http://www-igm.univ-%e2%80%a8mlv.fr/-lecroq/string/
http://childes.psy.emu.edu/manuals/CLAN.pdf
http://%20minorthird.sourceforge.net
http://www.perseus.tufts.edu/
http://E-MELD.org/index.cfm

112

E-MELD School of Best Practice: About XML. (2006). E-MELD. Retrieved on

September 15th, 2006 from the E-MELD Web site:

<http://linguistlist.org/E-MELD/school/classroom/xml/index.html>

Ford, A., Singh, R. and Martohardjono, G. (1997). Pace Panini. New York:

Peter Lang.

Good, J & Sprouse, R. (2000, December 12-15). SGML Markup of

Dictionaries With Special Reference to Comparative and

Etymological Data. Paper presented at the workshop on Web-

Based Language Documentation and Description, Philadelphia,

USA. Retrieved on August 29, 2006 from the University of

Pennsylvania Web site: <h ttp ://www.ldc.upenn.edu/

exploration/expl2000/papers/goodsprouse/GoodSprouse.html.>

Good, J. & Sprouse, R. (2003). The Berkeley Interlinear Text Collector (BITC).

E-MELD Language Digitization Project Conference 2003.

W orkshop on Digitizing & Annotating Texts & Field Recordings.

LSA Institute, Michigan State University, July llth-13th. Retrieved

on Sept. 15th, 2006 from the E-MELD Web site: <http://w w w .E-

MELD.org/ w orkshop/2003/good-demo.html>

Guttman, W., Visco, C., Joachim, R., Fawcett, A., Synder, B. et al. (2004)

Castor, [computer program] <http ://w w w .castor.o rg />

Hankamer, J. (1986, June 1). Finite State Morphology and Left to Right

Phonology. Paper presented at the Fifth West Coast Conference on

Formal Linguistics, Stanford, CA.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://linguistlist.org/E-MELD/school/classroom/xml/index.html
http://www.ldc.upenn.edu/%e2%80%a8exploration/expl2000/papers/goodsprouse/GoodSprouse.html.
http://www.ldc.upenn.edu/%e2%80%a8exploration/expl2000/papers/goodsprouse/GoodSprouse.html.
http://www.E-%e2%80%a8MELD.org/%20workshop/2003/good-demo.html
http://www.E-%e2%80%a8MELD.org/%20workshop/2003/good-demo.html
http://www.castor.org/

113

Hankamer, J. (hank@ucsc.edu). "2 questions re Turkish and keCi." E-mail

to Recipient (isabel.klint@gmail.com). 1 May 2006.

Hausser, R. (1989). Principles of Computational Morphology. Technical Report,

Laboratory for Computational Linguistics, Carnegie Mellon

University, Pittsburg, PA.

Hoijer, H. (2000). Harry Hoijer's Chiricahua and Mescalero Apache Texts.

Reproduced from Hoijer, H. (1938). Rpt. of Chiricahua and Mescalero

Apache Texts. Chicago: University of Chicago. Retrieved on April

21, 2006 from the University of Virginia Web site:

<h ttp ://etext.virginia.edu/ apache/ >

Ingush Project, The. (2003) University of California. Retrieved on October

30, 2003 from the University of California Web site:

<http://ingush.berkeley.edu:7012>

Johnson, C. D. (1972). Formal Aspects of Phonological Description. The Hague:

Mouton.

Jurafsky, D. & Martin, J. (2000). Speech and Language Processing: An

Introduction to Natural Language Processing, Computational Linguistics,

and Speech Recognition. New Jersey: Prentice-Hall.

Kahane, A. & Mueller, M. (Eds.), (n.d.). Chicago Homer. Retrieved from the

Northwestern University Web site:

<h ttp ://w w w .library.northw estern.edu/hom er/>

Karlsson, F. (1995). Designing a Parser for Unrestricted Text. In Karlsson,

F., Voutilainen, A., Heikkila, J. & Anttila, A. (Eds.). Constraint

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

mailto:hank@ucsc.edu
mailto:isabel.klint@gmail.com
http://etext.virginia.edu/%20apache/
http://ingush.berkeley.edu:7012
http://www.library.northwestern.edu/homer/

114

Grammar: A Language-Independent System for Parsing Unrestricted

Text. Volume 4, Natural Language Processing (pp. 1-39). New York:

Mouton de Gruyter.

Koskenniemi, K. (1983a). Two-Level Model for Morphological Analysis. In

A. Bundy (Ed.), Proceedings of the Eighth International Joint

Conference on Artificial Intelligence, (pp. 683-685). Karlsruhe, West

Germany.

Koskenniemi, K. (1983b). Two-Level Morphology: A General

Computational Model for W ord-form Recognition and Production,

in Publication 11 (p. 160). Helsinki: University of Helsinki.

Koskenniemi, K. (1984). A General Computational Model for Word Form

Recognition and Production. In Proceedings of COLING-84, (pp.

178-181). Stanford University, California.

Koval, S., Beliaeva, L., Kogan, L ., Mikhailov, A., Nikolaev, V., Piotrowski,

R. et al. (2000). Morphological Representation in PC-Based Text

Processing Systems. Literary and Linguistic Computing, 15 (2), 131-

155.

MacWhinney, B. (2000). The CHILDES Project: Tools for Analyzing Talk. 3rd

Edition. Mahwah, NJ: Lawrence Erlbaum Associates.

Mahoney, A., Rydberg-Cox, J. A., Smith, D. A. & Wulfman, C.E. (2000).

Generalizing the Perseus XML Document Manager. In Linguistic

Exploration: Workshop on Web-based Eanguage Documentation and

Description. Philadelphia, PA. Retrieved August 21st, 2006 from the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

115

University of Pennsylvania Linguist Data Consortium Web site:

<h ttp ://www .ldc.upenn.edu/ exploration/ expl2000/ papers/m aho

ney / mahoney.htm>

Neuval, S. (2002). Whole word morphologizer: expanding the word-based

lexicon: a nonstochastic computational approach. Brain Lang, 81 (1-

3), 454-463.

Neuval, S. & Fulop, S. (2002). Unsupervised Learning of Morphology Without

Morphemes. Morphological and Phonological Learning: Proceedings

of the 6th Workshop of the ACL Special Interest Group in

Computational Phonology (SIGPHON), Philadelphia, July 2002, pp.

31-40. Association for Computational Linguistics. Retrieved on

August 30th, 2004 from <h ttp ://a rx iv .o rg /abs/cs.CL/0205072>

Oflazer, K. (1996). Error-Tolerant Finite-State Recognition. Computational

Linguistics, 22 (1), 73-89.

Packard, D.W. (1977). Computer-Assisted Morphological Analysis of

Ancient Greek, Proceedings of the 5th conference on

Computational linguistics (pp. 343-355), August 27-September 01,

1973, Pisa, Italy.

Parser X Web site, (n.d.) Retrieved September 24th, 2006 from: <

h ttp ://isabel.klint.googlepages.com/ >

Petasis, Georgios (2005). Ellogon. [computer program] Attiki, Greece:

Thesi Goritsa Aspropirgou. <h ttp ://w w w .ellogon.org/ >

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.ldc.upenn.edu/%20exploration/%20expl2000/%20papers/maho%e2%80%a8ney/%20mahoney.htm
http://www.ldc.upenn.edu/%20exploration/%20expl2000/%20papers/maho%e2%80%a8ney/%20mahoney.htm
http://arxiv.org/abs/cs.CL/0205072
http://isabel.klint.googlepages.com/
http://www.ellogon.org/

116

Poibeau, T. (1990). Bi-directional Automata to Extract Complex Phrases from

Texts. Automata Implementation, WIA '98, Rouen, France. In J.-M.

Champarnaud, D. Maurel and D. Ziadi (Eds.) Lecture Notes in

Computer Science, Vol. 1660 (pp. 110-120). Berlin: Springer.

Shoebox 5. Computer Software. (2006). The Linguist's Shoebox. SIL

International: Partners in Language Development. Retrieved on

April 12, 2006 from <http://w w w .sil.o rg /com puting/shoebox/>

Simons, G. (1998). The Nature of Linguistic Data and the Requirements of

a Computing Environment for Linguistic Research. In Ed. John M.

Lawler and H. Aristar Dry. Using Computers in Linguistics: A

Practical Guide (pp. 10-25). London & New York: Routledge.

Solak A. & Oflazer, K. (1993) Design and Implementation of a Spelling

Checker for Turkish. Literary and Linguistic Computing, 8 (3), 113-

130.

Sprouse, R. (2000, December 12-15). Data Types for Interlinear text. Paper

presented at the W orkshop on Web-based Language

Documentation and Description. Philadelphia, U.S.A., Retrieved

September 18th, 2004 from the University of Pennsylvania Linguist

Data Consortium Web site: <http://w w w .ldc.upenn.edu/

exploration/ expl2000/ papers/sprouse/ interlin_data_model.html>

Sun Microsystems (2003). Javacc Project Home. Retrieved on November

18th, 2004 from <https://javacc.dev.java.net/>

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.sil.org/computing/shoebox/
http://www.ldc.upenn.edu/%e2%80%a8exploration/%20expl2000/%20papers/sprouse/%20interlin_data_model.html
http://www.ldc.upenn.edu/%e2%80%a8exploration/%20expl2000/%20papers/sprouse/%20interlin_data_model.html
https://javacc.dev.java.net/

117

Wallace, K. (1988). Parsing Quechua Morphology For Syntactic Analysis.

In K. Wallace (e<±), Morphology as a Computational Problem (pp. 145-

161). Los Angeles, CA: UCLA Occasional Papers in Linguistics,

Volume 7.

Whitehead, D. (Ed.). Suda On Line. (2001). Retrieved September 10th, 2006

from the Stoa Consortium Web site: <h ttp ://w w w .stoa.org /so l/>

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.stoa.org/sol/

118

Appendix A. Abbreviations

SUBJ Subject
SUFFIX Suffix
TRANS Transitive
V Verb

1 1st person
2 2nd person
3 3rd person
CAUS Causative
CIRCUMFIX Circumfix
DAT Dative
DEM Demonstrative
DIST Distal
DU Dual
EMPH Emphatic
FUT Future
IMPF Imperfective
INST Instrumental
INTJ Interjection
IO Indirect Object
LOC Locative
MTV ???
N Noun
NEG Negative
OBJ Object
PASS Passive
PL Plural
POLITE Polite
POSS Possessive
POT Potential
PREFIX Prefix
PRN Pronoun
PRS Present
QTV Quota tive
ROOT Root
SG Singular

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

119

Appendix B. XML Schema Files

Corpus Schema: Textl.xsd

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
elementFormDefault="qualified">

<xs:element name="Text">
<xs:complexType>

<xs:sequence>
<xs:element ref="Title"/>
<xs:element maxOccurs="unbounded" ref="Lineblock"/>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name="Title" type="xs:string"/>
<xs:element name="Lineblock">

<xs:complexType>
<xs:sequence>

<xs:element ref="Line"/>
<xs:element ref="Mrph"/>
<xs:element ref="IG"/>
<xs:element ref="Gloss"/>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name="Line">

<xs:complexType>
<xs:sequence>

<xs:element maxOccurs-'unbounded" ref="w"/>
</xs:sequence>

</xs:complexType>
</xs:element>
<xs:element name="Mrph">

<xs:complexType>
<xs:sequence>

<xs:element minOccurs="0" maxOccurs-'unbounded"
ref="w"/>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name="IG">

<xs:complexType>
<xs:sequence>

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.w3.org/2001/XMLSchema

120

<xs:element minOccurs="0" maxOccurs="unbounded"
ref="w"/>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name="Gloss">

<xs:complexType>
<xs:sequence>

<xs:element maxOccurs="unbounded" ref="w"/>
</xs:sequence>

</xs:complexType>
</xs:element>
<xs:element name="w" type="xs:string"/>

</xs:schema>

Index Schema: index.xsd

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
elementFormDefault="qualified">

<xs:element name="result">
<xs:complexType>

<xs:sequence>
<xs:element maxOccurs="unbounded" ref="lb"/>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name="lb">

<xs:complexType>
<xs:sequence>

<xs:element ref="lw"/>
<xs:element ref="mw"/>
<xs:element ref="iw"/>
<xs:element maxOccurs="unbounded" ref="title"/>
<xs:element ref="freq"/>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name="lw" type="xs:string"/>
<xs:element name="mw" type="xs:string"/>
<xs:element name="iw" type="xs:string"/>
<xs:element name="title" type="xs:string"/>
<xs:element name="freq" type="xs:integer"/>

</xs:schema>

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.w3.org/2001/XMLSchema

121

Dictionary Entries Schema: entries.xsd

<?xml version-"!.0" encoding="UTF-8,,?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
elementFormDefault="qualified">

<xs:element name="Entries">
<xs:complexType>

<xs:sequence>
<xs:element maxOccurs="unbounded" ref="Entry"/>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name="Entry">

<xs:complexType>
<xs:sequence>

<xs:element ref="Name"/>
<xs:element ref="POS"/>
<xs:element maxOccurs-'unbounded" ref="Def'/>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name="Name" type="xs:string"/>
<xs:element name="POS" type="xs:string'7>
<xs:element name="Def type="xs:string"/>

</xs:schema>

Affix L is t Schema: affixes.xsd

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
elementFormDefault="qualified">

<xs:element name="affixes">
<xs:complexType>

<xs:sequence>
<xs:element maxOccurs-'unbounded" ref="affix"/>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name="affix">

<xs:complexType>
<xs:sequence>

<xs:element ref="abbr"/>

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.w3.org/2001/XMLSchema
http://www.w3.org/2001/XMLSchema

122

<xs:element ref="type'7>
<xs:element ref="name"/>
<xs:element ref="position"/>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name="abbr" type="xs:string"/>
<xs:element name="type" type="xs:string"/>
<xs:element name="name" type="xs:string"/>
<xs:element name-'position" type="xs:NCName"/>

</xs:schema>

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

