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Abstract

An application framework provides a reusable design and implementation for a 

family of software systems. Frameworks are introduced to reduce the cost of a product 

line (i.e., family of products that share common features). Software testing is a time- 

consuming, costly, and ongoing activity during the application software development 

process. Generating reusable test cases for the framework applications at the framework 

development stage and using the test cases to test part of the framework application 

whenever the framework is used can reduce the application development time and cost 

considerably.

This thesis focuses on testing framework applications at the class level using reusable 

test cases. Specifically, it addresses how to generate the class-based test cases at the 

framework development stage and use them effectively at the application development 

stage. The thesis introduces a novel technique to automate the construction of the class- 

based testing model using the method specifications provided in the hooks and introduces 

a technique called all paths-state that uses the constructed testing model to generate the 

class-based reusable test cases at the framework development stage.

At the application development stage, the application developers may need the 

flexibility to ignore or modify part of the specifications used to generate the reusable 

class-based test cases and add new specifications not covered by the reusable test cases.
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The thesis shows how to deal effectively with such modifications so that testing becomes 

easy and straightforward in application development.

The introduced techniques are evaluated using applications of four frameworks of two 

different types. Case studies are used to show the applicability of the introduced 

techniques and the effectiveness of providing the reusable test cases with the frameworks 

in reducing the testing cost of the framework applications. The evaluation results also 

establish the relation between the reusability of the test cases and the type of the 

framework.

Finally, as part of this thesis research, a prototype tool was developed to support the 

generation of the class-based reusable test cases at the framework development stage. The 

tool also deploys, executes, and evaluates the test cases at the application development 

stage.
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Chapter 1 Introduction

1.1. Motivation
A popular goal of software engineering is to develop techniques and tools to assist in 

design and implementation to meet the market requirements. Meeting time-to-market 

demands for a software product or application is often vital to the success of an 

organization or project. In the highly competitive software market, customers seem to 

demand less time for development while simultaneously expecting better products. 

Object-oriented framework technology has assisted tremendously in meeting these 

escalating demands by providing a reusable design and implementation for a family of 

software systems that share common features [Beck+ 94]. Therefore, instead of designing 

and implementing the applications from scratch, developers can reuse the design and 

implementation of the suitable frameworks and complete or extend the frameworks to 

build their particular applications. However, researchers commonly limit framework 

reusability to only code and design, which forces the application developers to spend 

considerable time and effort in testing their applications from scratch. In a typical 

programming project, approximately half of the effort is spent on testing activities (i.e., 

validation and verification) [Saleh+ 01]. Therefore, extending the framework reusability 

to test artifacts can potentially reduce the framework application testing time and increase 

application quality. Providing the frameworks with reusable test cases makes the 

frameworks more usable for and marketable to application developers.

Software testing is a critical and important stage of the application software 

development life-cycle that affects the overall software quality. Typically, many 

designers and programmers cooperate in developing commercial quality application 

software. Due to the size and complexity of such applications, they are usually 

susceptible to errors. By testing we cannot prove the absence of errors in the developed 

software, but we can establish some degree of confidence that the software does what is 

supposed to do and does not do what is not supposed to do. Although testing is a costly

1
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and time consuming activity, it has to be performed to produce highly reliable software 

applications. Application developers can reduce the software testing cost by reusing test 

artifacts instead of having to develop new test suites from scratch. Reducing the software 

testing cost while maintaining the same or better software quality reduces the software 

development time and maintains or enhances the software quality.

The basic element in testing is a test case, which typically consists of a set of inputs, 

execution conditions, and expected results. Building reusable test cases for the framework 

applications at the framework development stage increases the framework development 

time and cost. However, there exists a high probability that the original investment will 

be recouped after producing a few framework applications. We believe that this 

investment cannot be fully realized unless the reusable test cases are effective and easy to 

use in testing the applications. The cost of reusing the test cases must be much lower than 

the cost of building the test cases from scratch; otherwise, applications developers will 

prefer to build their own test cases.

The reusability of test cases is shown to be useful in reducing the testing cost in 

several testing areas including regression testing (e.g., [Harrold+ 01, Hsia+ 97, Kung+ 

94a, Kung+ 94b, Kung+ 96, Rothermel+ 94, Rothermel+ 00, White+ 97]), testing 

subclasses (e.g., [Harrold+ 92, McDonald+ 96, Murray+ 97, Wilkin+ 02]), testing the use 

of class libraries (e.g., [Binder 99]), testing software product-lines [McGregor 00, 

McGregor 01]), and testing object-oriented framework applications [Wang+ 00]. In 

regression testing, the test cases applied to test the original version of the software are 

reused to test the modified version. Typically, developers do not consider the effect of the 

possible modifications of the software when they build the test cases for the original 

version of the software. Therefore, the reusability of the test cases in regression testing 

depends greatly on the amount and type of the modifications applied on the software. In 

subclass testing, the superclass test cases are reused to gain the confidence that the 

inherited superclass features work properly in the context of the subclass. Therefore, the 

reusable test cases are limited to testing the inherited features and new test cases have to 

be created from scratch to test the subclass features. The test cases used in testing the

2
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class libraries are supposed to be applied as-Is at the cluster testing level. The 

implementation of the class library for which the reusable test cases are built does not 

change from one application to another. This application independence is not present for 

the framework application, which can differ from one application to another. Guidelines 

for building and using reusable test cases for a software product-line are proposed in 

[McGregor 00] and [McGregor 01]. However, due to the generality of the product-line 

testing problem, it is difficult to introduce specific techniques for generating and using 

reusable test cases for all types of software product-line. Finally, so far, the work 

proposed in testing the framework applications using reusable test cases (i.e., [Wang-f- 

00]) is limited to testing the inherited features of the framework classes in the context of 

the application classes. This thesis extends the reusability of the test cases generated at 

the framework development stage to test the features of the framework application 

classes as well as the inherited ones.

1.2. Thesis Framework
To test an object-oriented application, four main testing levels have to be exercised 

including method testing, class testing, cluster testing, and system testing [Chen+ 01], At 

the method testing level, the method responsibilities are considered. At the class testing 

level, the intraclass interactions and superclass/subclass interactions are examined. At the 

cluster testing level, the collaborations and interactions between the system classes are 

exercised. Finally, at the system level testing, the complete integrated system is exercised 

usually based on acceptance testing requirements. Figure 1.1 depicts the total testing 

space, showing how the frameworks and the applications developed using the 

frameworks have to be tested at the four testing levels. This thesis does not address the 

framework testing at all. Although some work has been completed on framework testing 

techniques, such as [Binder 00] and [A! Dalial+ 02], much more work is required in this 

area. Testing object-oriented applications at the method and system levels is similar to 

conventional program testing [Chen+ 01]. Addressing the cluster testing of the 

framework applications is considered as future work. This thesis focuses on testing the 

framework applications at the class testing level only.

3
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Figure 1.1: The thesis framework

We have identified two types of framework application classes built at the application 

development stage by application developers: (1) classes that use the framework classes 

and (2) classes that do not. We call the classes that use the framework classes Framework 

Interface Classes (FICs) because they act as interfaces between the framework classes 

and the second type of the classes created by application developers. Instances of FICs 

are called framework interface objects. FICs use the framework classes in two ways: 

either by subclassing them or by using them without inheritance. Froehlich [Froehlich 02 

and Froehlich+ 97] developed the concept of hooks to show how the framework can be 

used. Because they define how to use the framework, hooks must also define the FICs 

and specify the preconditions and postconditions of the FIC methods. Froehlich 

[Froehlich 02] provided a special purpose language and grammar in which hook 

descriptions can be written. A hook description includes the implementation steps and the 

specifications (i.e., preconditions and postconditions) of the FIC methods. Hook points 

are the places at which the framework users (i.e., application developers) can add their 

own FICs using the hooks. Figure 1.2 shows the relation between the framework classes, 

the hook points, the FICs, and the other application classes. In this thesis, we require the 

framework to be hook-documented (i.e., a complete set of hook descriptions for each FIC 

is provided). Otherwise, the missed specifications of the FIC methods have to be 

provided using other framework specification documents or by communicating with the 

framework developers.

4
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FICs are the only classes built at the application development stage using 

specifications known at the framework development stage. At the framework 

development stage, neither the specifications nor the implementations of the other 

application classes are known. The goal of this thesis is to develop effective techniques 

and tools for testing the FICs at the application development stage using reusable class- 

based test cases built at the framework development stage. We focus our testing on the 

FICs because they are the classes that are given specifications at the framework 

development stage. Other application classes have to be tested from scratch using the 

class-based testing techniques (e.g., [Doong+ 94, Hoffman+ 97, Chen+ 98, Binder 99, 

Ball-f 00, Cheon+ 02, Daley+ 02]).

Testing the FICs achieves two main goals:

1. Increasing the confidence that the implemented methods of the FICs interact 

properly as described in the hook descriptions.

2. Increasing the confidence that the inherited features of the framework classes 

work properly in the context of the FICs that extend the framework classes.

FICs are classes built at the application development stage. The implementations of 

the FICs do not exist at the framework development stage, therefore, we cannot test these 

classes at that stage. Different implementations of a FIC in different framework 

applications are developed using the same framework hooks. Therefore, the different

5
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implementations share common specifications provided at the framework development 

stage. As a result, reusable test cases generated using the common specifications can be 

built at the framework development stage and used as-is or customized at the application 

development stage to test the implementations of the FICs.

1.3. Generating Reusable Class-Based Test Cases
In this thesis, we show how to generate reusable class-based test cases at the 

framework development stage. The test cases are generated using the specifications (i.e., 

preconditions and postconditions) of the FIC methods provided in the hooks. In 

specification-based testing, testers use specification testing models such as extended state 

machines (e.g., [Hoffman+ 97, Binder 99]) or formal specifications (e.g., [Doong-i- 94, 

Chen+ 01]) to generate the test cases. Therefore, two problems have to be considered 

when generating class-based test cases for the FICs: (1) how to build class-based testing 

models for the FICs and (2) how to use the models to generate effective test cases.

Unfortunately, the testing models for the FICs are not available at the framework 

development stage, however, the specifications of the FIC methods are available. Method 

specifications are typically used as testing oracles to evaluate the results of the test cases 

(e.g., [Briand+ 02b, Boyapali-t- 02, Meyer 92, Cheon+ 02, Jcontract, iContract]). In this 

thesis, we have extended the use of the method specification to synthesize the state class- 

based testing models for the FICs. This reduces the chance of errors and cost of 

generating the class-based test cases and provides a consistent state-based testing model 

with respect to the specifications of the class methods. We make use of Binder’s work 

[Binder 99] that shows how to express the class behavior using a testable state-based 

model and we show how to use the specifications of the class methods in building the 

required testable state-based model. Using the method specifications provided in the 

hooks for testing purposes adds a new value for the hooks, which were initially 

introduced for prescriptive documentation purposes. In this thesis, we are using the 

information provided in the hook descriptions to synthesize the testing models and to 

evaluate the results of the test cases.

6
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The second problem in generating the test cases is how to use the synthesized testing 

models in generating the test cases. There are several state-based test case generation 

techniques introduced in the literature to achieve certain testing coverage for the 

specification testing model of a class under test (e.g., [Chow 78, Offut+ 99, Binder 99, 

Bogdanov+ 01, Abdurazik+ 00a]). However, based on specific requirements of an 

application, an application developer can choose not to implement all the specifications 

of the FICs, which can then affect the coverage of the already generated test cases using 

the testing techniques introduced in the literature. This thesis introduces a novel 

technique called all paths-state that extends round-trip path coverage [Binder 99] to 

generate test cases from the synthesized class-based testing models of the FICs. The 

technique solves the problem caused by not fully implemented FIC specifications and 

therefore, increases the specification coverage of the test cases at the application 

development stage. We have conducted an empirical evaluation that shows that if the 

application developer ignores some FIC specifications introduced at the framework 

development stage, the reusable test cases built using the all paths-state technique always 

cover the reused specifications, which is not the case for the test cases built using other 

known state-based testing techniques.

It is important to note that the effort required to build the testing models of the FICs 

and generate the reusable test cases is expended once at the framework development 

stage. Each time an application is developed using the framework, this one-time effort 

spent at the framework development stage is recouped.

1.4. Using the Reusable Test Cases
When developing an application, the application developers need the flexibility to 

ignore or modify part of the FIC specifications used to generate the reusable class-based 

test cases and add new specifications not covered by the reusable test cases. In this thesis, 

we have proposed easy and straightforward ways to use the reusable test cases 

considering the flexibility that the developer has in modifying the FIC specifications. We 

have identified the following five problems and proposed effective solutions for each of 

them:

7
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(1) How to find and discard the test cases for the ignored specifications.

(2) How to map the names of the implemented FIC methods to the names of the FIC 

methods introduced in the hooks and used in the reusable test cases.

(3) How to test different implementations of the same FIC method introduced in the 

hooks.

(4) How to deal with the flexibility that the user has in modifying the parameters of 

the FIC methods introduced in the hooks.

(5) How to test the new specifications added by the application developer.

In addition, the thesis studies the fault coverage of the test cases applied at the 

application development stage to test the FICs in comparison to the fault coverage of the 

round-trip path test cases. The thesis also examines experimentally the specification 

coverage of the reusable test cases and the relation between the percentage of the number 

of FICs covered by the reusable test cases and the type of the framework which the 

application uses. The case studies confirm that it is more worthwhile to provide reusable 

class-based test cases for domain-oriented frameworks compared to application-oriented 

frameworks.

Finally, we have designed and developed a prototype of a tool to support the 

generation and the use of the reusable class-based test cases for the FICs. The tool uses 

the Jcontract tool [Jcontract] to evaluate the test cases using the method specifications.

Figure 1.3 summarizes the FIC testing process as proposed in the thesis. At the 

framework development stage, the specifications of the FIC methods are used to 

synthesize the FIC class-based testing model. The model is used to generate the reusable 

class-based test cases for the FIC. At the framework application development stage, the 

test cases are used to test the implemented FICs. Finally, the specifications of the FIC 

methods are used to evaluate the results of the test cases. In the tool prototype, we have 

implemented the last three steps in the FIC testing process and left the implementation of 

the first step for future work.

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Specifications of the FIC methods

Framework
development
stage

Application
development
stage

FIC class-based 
.testing model

H(^reusaHeclass- 
based test cases

FIC test case
results

Use the FIC reusable 
class-based test cases

Synthesize FIC class- 
based testing model

Evaluate the FIC 
class-based test cases

Generate FIC reusable 
class-based test cases

Passed/failed FIC test cases 

Figure 1.3: The FIC testing process.

1.5. Thesis Outline
The remainder of this thesis is organized as follows. Chapter 2 gives an overview of 

the related research in object-oriented framework technology and software testing. Based 

on the background literature discussed in Chapter 2, we introduce effective techniques for 

the generation and use of FIC reusable class-based test cases in chapters 3 and 4. 

Specifically, Chapter 3 focuses on generating reusable class-based test cases for the FICs 

at the framework development stage. First, we fill the gap between the inputs of the 

testing process (i.e., the specifications of the FIC methods provided in the hooks) and the 

generation process of the test cases by introducing algorithms to synthesize the FIC state- 

based testing model using the inputs of the testing process. Second, we introduce the all 

paths-state technique to generate the reusable test cases from the synthesized testing 

model of the FIC. Chapter 4 proposes easy and straightforward ways to use the reusable 

test cases generated using the techniques introduced in Chapter 3. In Chapter 5, we 

present experimental studies to show the specification coverage of the techniques 

introduced in Chapters 3 and 4. Chapter 6 introduces a tool that implements most of the

9
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theoretical algorithms developed in chapters 3 and 4. Finally, Chapter 7 discusses the 

thesis contributions and future work.
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Chapter 2 Background

There are two main research directions related to the thesis area. The first one is 

object-oriented frameworks, which includes types of frameworks and framework 

documentation. The second area of research is software testing, which includes testing 

object-oriented frameworks and their applications. Not all background material included 

in this chapter is closely related to the thesis area; however, this chapter gives the reader 

knowledge of the related work in. the broad area of the thesis. Therefore, the included 

material is useful not only for the particular areas of the thesis, but is helpful in 

understanding the areas related to some future work described in Section 7.2.

2.1. Object-Oriented Frameworks
An object-oriented framework is the reusable design and implementation of a system 

or subsystem [Beck-b 94]. It contains a collection of reusable concrete and abstract 

classes. The framework design provides the context in which the classes are used. The 

framework itself is not complete. Users of the framework are supposed to complete or 

extend the framework to build their particular applications. Places at which users can add 

their own components are called hook points [Froeh!ich+ 98], Typically, hooks are 

associated with problem domain classes. Problem domain classes [Binder 99] are 

representations of external entities or concepts that are necessary for implementation- 

independent models of the system. For example, in an order-processing system, 

Customer, Order, and Product are problem domain classes; LinkedList is not. When the 

framework is used to build an application, hooks are used to build classes that extend or 

use the problem domain classes. We call these classes framework interface classes 

(FICs). Problem domain classes are associated with the hot spot areas of the framework, 

while the non-problem domain classes are in the frozen spot areas of the framework.

2.1.1. Framework types

Frameworks are classified according to their scope into three categories [Fayad+ 97]: 

enterprise application frameworks, system infrastructure frameworks, and middleware 

integration frameworks. The enterprise application frameworks are also known as domain
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Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



frameworks and they address different types of applications in a broad application 

domain such as telecommunications, avionics, manufacturing, and financial engineering. 

The system infrastructure frameworks are also known as application frameworks and they 

address different types of applications in different application domains. Moreover, they 

simplify the development of portable and efficient system infrastructure including 

frameworks for user interfaces, communication frameworks, and operating systems. 

Finally, the middleware integration frameworks are also known as support frameworks 

and they are used to integrate distributed applications and components. ORB frameworks, 

message-oriented middleware, and transactional databases are common examples of this 

type of framework. This thesis studies the relationship between the reusability of the FICs 

and the type of the framework used in building the application under test.

Frameworks are classified according to their customization method into two 

categories [Johnson+ 88]: white box and black box. In white box frameworks, the 

functionality is extended or customized by subclassing some existing framework classes. 

In the black box frameworks, compositions and existing components are used without 

inheritance. Gray-box frameworks contain the characteristics of both black and white-box 

frameworks.

2.1,2. Framework documentation

According to Johnson [Johnson 92], there are three types of documentation needed 

for any framework: documents that describe the purpose of the framework, the use of the 

framework, and the design of the framework. Campbell and Islam [Campbell+ 92] have 

worked on documenting the framework design. Design patterns [Gamma+ 95], and 

exemplars [Gangopadhyay+ 95] are used also to describe the design of the framework. 

Three papers dealing with the first two documentation types include cookbooks 

[Krasner+ 88], Johnson’s patterns [Johnson 92], and motifs [Lajoie+ 94]. Froehlich et al. 

[Froehlich+ 97] reported that cookbook solutions are narrative and not structured. The 

pattern approach documents the purpose and the use of a framework as well as elements 

of the design. The motifs technique combines the idea of design patterns with Johnson’s 

patterns to provide a more complete description of a framework.
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In [Froehlich+ 97] and [Froehlich 02], the issue of documenting the purpose of a 

framework and how it is intended to be used is described. This is done by using the 

concept of hooks, which describe how to extend or customize parts of the framework to 

build an application. Hooks deal with the last two documentation types (purpose and use) 

in a structured and uniform way and provide an augmented view to design 

documentation.

Froehlich [Froehlich 02] identified four levels of support provided for the adaptation 

within the framework: option, template, open, and evolutionary. At the option level, a 

number of pre-built components are provided within the framework and the developer 

chooses one without requiring extensive knowledge about the framework. At the template 

level, the developer supplies parameters to components and follows a well-supported 

pattern of behavior. At the open level, the developer adds new properties to classes or 

new classes to the framework or extends the framework functionality. At the evolutionary 

level, the developer changes parts of the framework code or breaks invariants defined on 

the framework. Using hook descriptions forces the framework designers to articulate 

clearly the interfaces to their framework.

Froehlich [Froehlich 02] provided a special purpose language and grammar in which 

the hook description can be written. Each hook description consists of the following 

parts.

(1) A unique name.

(2) The requirement (i.e., the problem the hook is intended to help solve).

(3) The hook type.

(4) The other hooks required to use this hook.

(5) The components that participate in this hook.

(6) The preconditions (i.e., the constraints that must be true before the hook can be 

used or the corresponding code is executed).

(7) The changes that should be made to develop the application.
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(3) The postconditions (i.e., constraints that must be true after the hook has been used 

or the corresponding code is executed).

(9) A general comment section.

It is not necessary to have all the above parts for each hook.

Figure 2.1 shows a hook description example for the creation of an account In a 

banking framework. The Initialize Account hook creates a constructor method for the 

NewAccount class. In the constructor method, the account currency is selected. There are 

three pre-built classes in the framework for money: USMoney, EURMoney, and Money. 

Moreover, the user has to specify the bank branches in the system. Finally, the user has to 

specify the maxPeriod variable value.

Name: Initialize Account
Requirement: Initialize an account (i.e., set the currency and bank branches).
Type: Template 
Uses: None
Participants: Account(framework), NewAccount(app), Amoney(app); 
Preconditions: amount>=0;
Changes:

NewAccountNewAccountant amount) extends Account.Account(int amount); 
Choose AM from (Money, USMoney, EURMoney);
Create Object Amoney as AM() in MyAccount. NewAccount(int);
Create Object branches as BranchesQ in NewAccount. NewAccount(int); 
Repeat as necessary {

Acquire BranchName: string
NewAccount.NewAccount(int) -> branch.addBranch(BranchName);

}
Acquire maxPeriod : integer domains :0-999999;
NewAccount.NewAccount(int) -> NewAccount.setMaxPeriod(maxPeriod); 

Postconditions:
Operation NewAccount. NewAccount (inf);
NewAccount.balance>=0;
! NewAccount.frozen;
NewAccount.getUpdate()<NewAccount.MaxPeriod

Comments:

Figure 2.1; Description of the Initialize Account hook of a banking framework

The introduced hook description supports the framework application test design 

through the identification of the FICs, their methods, and the preconditions and 

postconditions of the FIC methods. These preconditions and postconditions are essential
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to determine the FIC behaviors and sequential constraints. Moreover, postconditions hold 

the expected outputs. The preconditions and postconditions of a method are called the 

method specifications. When a FIC extends a framework class, the inherited methods are 

either used in the context of the FIC without modifications or extended. For both cases, 

the hook descriptions show how to use the inherited methods of the framework classes 

and identify their pre- and postconditions in the context of the FICs. The thesis uses the 

method specifications to synthesize the class testing models for the FICs. The testing 

models are used to generate the reusable test cases for the FICs. In addition, the thesis 

uses the method specifications to evaluate the results of the test cases.

2.2. Software Testing
Software testing is the process of executing a program with the intent of finding errors. 

Testing is a time consuming and costly ongoing activity during the application software 

development process. In a typical programming project, approximately half of the time 

and cost is spent on testing related activities [Saleh+ 01]. Testing cannot prove the 

absence of errors, but it increases the level of confidence in the developed software. 

Central to the testing activities is the design of a test suite.

The basic element of a test suite is a test case that describes the input test data, the test 

preconditions, and the expected output. [IEEE 829] introduces the typical elements of 

application programming interface level test cases in SAF (Structured Analysis Form). 

The syntax includes all necessary items to specify a test case: test identifier, description, 

components under test, set up, input, and expected results. The expected results include 

the resulting state, returned objects, output arguments, output messages, and exceptions.

2.2.1. Testing object-oriented software

Object-oriented languages reduce some kinds of errors; however, they increase the 

chance of others and create new fault hazards. In object oriented programming languages, 

such as C++ and Java, data and functions (i.e., operations on data) are encapsulated 

within the object itself. Therefore, a simple assignment can lead to variety of actions. 

Moreover, inheritance, dynamic binding, overriding and overloading are important
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features of the object-oriented programming languages. Although these features make 

object-oriented software appealing, they create serious difficulties in the testing process.

In object-oriented testing, four testing levels are considered: method, class, cluster, 

and system. At the method-testing level, the responsibilities of the methods within classes 

are tested. At the class-testing level, intraclass interactions and superclass/subclass 

interactions are considered [Binder 99]. At the cluster-testing level, the interfaces among 

the application classes are exercised to test their collaboration. Finally, at the system- 

testing level, the actual system functionality is compared with the original requirements. 

If the system is modified, regression testing is required to check that the modifications 

have not caused unintended effects. Although this thesis focuses on the class testing level, 

we provide a brief overview of the other testing levels.

• Method testing

To test the methods inside classes, conventional white and black box testing 

techniques can be applied. In static white box testing [Beizer 90, Roper 94, Myers 79, 

Binder 99], tools such as control flow graphs and data flow graphs are commonly used. 

The control flow graph is a graphical representation of program’s control structure, using 

nodes and direct edges. A node in the control flow graph can be a process, a decision, or a 

junction node. A process node represents a sequence of program statements that are 

uninterrupted by a decision or a junction. A decision node is a program point at which the 

control flow diverges. Finally, a program point at which the control flow merges is called 

a junction node. When states of program data objects (i.e., killed, defined, or used) are 

attached to the control flow graph edges, the resultant graph is called a data-flow graph.

In dynamic white box testing, program instrumentation is the most commonly used 

technique for programs written in conventional programming languages [Osterweil+ 78, 

Chen+ 87, Chan+ 87, Price+ 85, Calliss+ 88] and object-oriented programming languages 

[Chen-i- 95, Boujarwah-f- 00, Saleh+ 01]. At ran time, the results of the inserted probes are 

tracked to find the errors.
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In black box testing, conventional black box testing techniques such as domain testing, 

equivalence partitioning, and boundary value analysis can be used. A complete reference 

on black box testing techniques can be found in [Myers 79, Beizer 95, Binder 99].

Binder [Binder 99] shows how the conventional black box testing techniques can be 

adapted for object-oriented programs and discusses some other object-oriented specific 

method testing techniques such as polymorphic message testing. In polymorphic message 

testing, tests are developed for a client of a polymorphic server. These tests exercise all 

client bindings to the server.

• Class testing

Research in generating test cases to test an implementation at class level can be 

divided into two broad approaches: (1) generating test cases from the source code to 

achieve a given level of statement, branch, or path coverage, and (2) generating test cases 

from the formal specification of the implementation. Testing techniques that follow the 

former approach are called implementation-based testing techniques (also sometimes 

referred to as white-box testing techniques), while testing techniques that follow the latter 

approach are called specification-based testing techniques (also sometimes referred to as 

black-box testing techniques). In this thesis, since the specifications of the FICs are 

provided, we follow the specification-based approach.

The specification of class behavior can be expressed using state-based models such as 

finite state machines and UML statecharts [Binder 99]. State-based specifications 

describe software in terms of states and transitions. A state of an object of a class is an 

abstraction that models a set of instance variable value combinations that share some 

property of interest. Typically, two special states have to be presented in any object state- 

model: alpha and omega. The alpha state represents the object before being constructed. 

The omega state represents the object after being destroyed. A transition is an allowable 

two-state sequence. Each transition can be associated with (1) an event (i.e., a call for a 

class method), (2) a set of predicates, and (3) a set of expected actions. To execute a
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transition, the object must be In the accepting state of the transition, the event is executed, 

and the predicates evaluate to true. The UML syntax for a transition is:

event-name argument-list {guard predicate}/'action-expression

There are several state-based specification coverage techniques proposed in the 

literature including:

1. All-transitions coverage. In all-transitions coverage, each transition is covered at 

least once in some test case. Therefore, to test a transition, the test case requires that 

the object under test be in the accepting state of the transition. The technique does 

not put any constraints on how to reach the accepting state. Chow [Chow 78] 

introduced the all-transition coverage technique for finite state machines and Offut 

et al. [Offut+ 99] adapted the technique for UML statecharts and compared it 

experimentally with other specification coverage techniques. Bogdanov et al. 

[Bogdanov+ 01] used the all-transitions coverage technique to derive test sequences 

in the presence of hierarchical statecharts.

2. Transition-pair coverage. In transition-pair coverage, it is required to cover each 

pair of adjacent transitions at least once in some test case [Offut+ 99,Chow 

78,Abdurazik+ 00a]. Therefore, the transition-pair coverage subsumes the all­

transitions coverage.

3. Full predicate coverage. In full predicate coverage, it is required to cover each 

clause in each predicate on every transition, if the clause independently affects the

value of the predicate [Offut+ 99, Abdurazik+ 00a]. Offut et al. [Offut+ 99] 

compared experimentally the full predicate coverage and the transition-pair 

coverage techniques in terms of fault coverage and showed that the full predicate 

coverage is more effective than the transition-pair coverage in terms of fault 

coverage. Abdurazik et al. [Abdurazik+ 00a] compared experimentally the 

transition-pair coverage and the full predicate coverage in terms of cross scoring 

(i.e., the difficulty of satisfying one criterion in terms of another) and test set size 

(i.e., number of test cases required to satisfy the criterion). The comparison results

18

permission of the copyright owner. Further reproduction prohibited without permission.



showed that neither transition-pair coverage nor full predicate coverage had high 

scores when compared to each other, implying that transition-pair tests offer 

something different from full predicate tests. Moreover, the comparison results 

showed that the test set size of the transition-pair coverage technique is larger than 

the test set size of the full predicate coverage technique. This means that applying 

the transition-pair coverage technique costs more than applying the full predicate 

coverage technique.

4. Round-trip path coverage. In round-trip path coverage, transition sequences that 

start and end with the same state and simple paths from alpha to omega state are 

covered. A simple path includes only an iteration of a loop, if a loop exists in some 

sequence. The round-trip path coverage guarantees that each transition in the model 

is covered at least once and, therefore, it subsumes the all-transitions coverage. The 

round-trip path strategy was proposed originally by Chow [Chow 78] and was 

denoted as W-method. Binder [Binder 99] adapted the strategy to UML statecharts 

and called it round-trip path testing. Antoniol et al. [Antoniol+ 02] showed 

experimentally that the round-trip path testing strategy is reasonably effective at 

detecting faults. Kim et al. [Kim+ 99] used a technique similar to the round-trip 

path strategy to derive testing trees for testing control and data flow through states.

In Section 3.3, we discuss the weakness of the above coverage techniques when used 

to generate reusable test cases for the FICs and we introduce a new coverage technique 

that overcomes the weakness. In Section 5.4, the new technique is compared 

experimentally, in terms of the transition coverage, with the all-transitions and round-trip 

path coverage techniques.

In [Ball+ 00], an approach for automated testing of container classes based on 

combinatorial algorithms for state generation is introduced. In [Hoffman+ 97], the 

ClassBench framework is introduced to support a class-testing approach that traverses a 

testgraph [Hoffman+ 94], which is a graph representing selected states and transitions of 

the class under test. Daley et al. [Daley+ 02] introduced a class table-driven testing
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approach and a supporting Roast framework for the testing of Java classes. In this 

approach, effective test data for the test cases are generated automatically.

In [Binder 99], the class flow graph is introduced to provide a testable model for the 

class behavior. The class flow graph combines the class state model with the control flow 

graphs of the methods and, therefore, is used in integrated black and white box class 

testing. In [Beydeda+ 01], the class specification implementation graph is introduced to 

provide a testable model for the class behavior. The class specification implementation 

graph combines the control flow graph generated on the basis of the method 

specifications with the control flow graph generated on the basis of the method 

implementation. The resulting graph is used in generating integrated black and white box 

class-based test cases. The implementations of the framework application classes are not 

available at the framework development stage when the reusable test cases are generated. 

Therefore, the integrated black and white box class models and testing techniques cannot 

be applied in our research.

• Cluster testing

Binder [Binder 99] discussed several cluster testing approaches such as the class 

association test, round trip scenario test, controlled exception test, mode machine test, 

polymorphic server, and modal hierarchy. In the class association test, a UML class 

diagram is used to develop test cases to test the associations among classes. In the round 

trip scenario test, a control flow model is extracted from a UML sequence diagram and 

minimal branch and loop coverage is applied to develop the test cases. A Controlled 

exception test verifies exception handling. In the mode machine test, the state behavior of 

a cluster is modeled and a state-based test suite is developed. Finally, the polymorphic 

server and modal hierarchy approaches are used to test the class hierarchy.

In [Wu+ 03] and [Badti+ 02], different UML diagrams are used at the cluster testing 

level. To perform the cluster testing, Wu et al. [Wu+ 03] proposed exercising the direct 

and indirect interactions between components caused by interface invocations or data 

dependence relationships. To test these interactions, several approaches are proposed.
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The approaches use collaboration, sequence, and statechart UML diagrams. Finally, 

UML-based test adequacy criteria that use UML models are proposed to build the 

required test cases. Badri et al. [Badri+ 02] extended the collaboration diagram to capture 

the specification of exclusion among several messages and the expression of iteration. 

The extended collaboration diagram is described using the Collaboration Diagrams 

Description Language, which is used in synthesizing the message control flow. The 

message control flow is translated into a message tree that shows a l  possible message 

invocation sequences. Finally, the tree is used to generate test sequences.

• System testing

Binder [Binder 99] proposed two system testing level techniques: extended use cases 

and covered in CRUD. The extended use cases technique develops test suites to cover 

application input/output relationships. The covered in CRUD technique exercises all basic 

operations (i.e., create, read, update, and delete). Briand et al, [Briand+ 02a] proposed a 

technique to produce system-based test cases using three UML diagrams: use case 

diagram, sequence diagram, and class diagram. In addition, collaboration diagrams 

[Addurazik+ 00b] and UML statecharts [Hong+ 00] were found to be useful in testing 

object-oriented software at system level.

[Binder 96a] is a comprehensive survey of research and practitioner work on testing 

object-oriented software published up to the end of December 1994. The survey includes 

over 140 publications.

2.2.2. Contracts as testing oracles

In software testing, it is required to develop oracles to evaluate the actual results of 

the test cases as pass or no pass. Specification-based testing techniques that use formal 

specifications support the automation of the output checking as well as input generation. 

In [Doong+ 94], the prototype testing system ASTOOT is introduced to automatically 

generate test drivers for Eiffel classes and evaluate the testing results using algebraic 

specifications. In [Chen+ 98] and [Chen+ 01], integrated black and white class-based 

testing approaches are introduced. The biack-box technique is used to select test cases.

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



The white-box technique is used to decide whether two objects resulting from executing 

the test cases are observationally equivalent and to select test cases in some situations. 

The approaches are based on mathematical theorems. Ball et al. [Ball+ 02] reported that 

the approaches based on formal specifications are hard to apply in practice because the 

formal specifications for industrial software are usually unavailable.

Recently, testing researchers started to use an automatic error checking mechanism 

called contracts [Briand+ 02b, Boyapali+ 02, Meyer 92, Cheon+ 02, Jcontract, iContract] 

as a substitute to hard-coded testing oracles. Contracts are used to specify the 

specifications (i.e., preconditions and postconditions) of the class methods and the class 

invariants. Method preconditions are the conditions that must be true before the method is 

executed. Method postconditions are the conditions that must be true after the method is 

executed. Class invariants are the conditions that must exist for all methods. Contracts are 

used at run-time to detect software faults.

In [Briand+ 02b], it is shown that contracts detect a large percentage of failures 

(roughly 80% of the faults detected using hard-coded oracles). Moreover, it is shown that 

the percentage of the detected faults depends on the precision of the contracts. Baudry et 

al, [Baudiy+ 01] showed that the quality of the contracts is more important than their 

quantity. Finally, in [Briand+ 02b], it is found that the effort involved in isolating a fault 

is reduced eight fold for programs with contracts as compared to programs without 

contracts.

There are several tools introduced to support specification-based testing and the use 

of the contracts. Jcontract [Jcontract] and iContract [iContract] are tools used to evaluate 

test cases generated for Java programs using Design-by-Contract (DbC) contracts. In 

[Cheon+ 02], Java Modeling Language JML [Leavens+ 99, Leavens+ 01] is integrated 

with Junit framework [Junit] to test Java methods. JML is also used in the Korat 

framework [Boyapali+ 02], where the method specifications are used to generate 

automatically test drivers (i.e., implementations of the test cases) for Java methods and to 

check the correctness of the outputs. JTest [JTest] is a tool that uses the DbC contracts to
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generate automatically test drivers for Java methods and to check the correctness of the 

outputs. In [Fenkam+ 02], VDM-SL specification is used to generate black-box test 

drivers and CORBA-supported VDM oracles for CORBA-compliant programming 

languages.

In this thesis, we extend the use of the specifications (i.e., preconditions and 

posconditions) of the FIC methods to synthesize the FIC testing model at the framework 

development stage. The model is used to generate the reusable class-based test cases. At 

application development stage, we use the method specifications as testing oracles. 

Finally, the thesis introduces a tool that supports the generation and use of the reusable 

class-based test cases. The tool uses the Jcontract tool to evaluate the test cases.

2.2.3. Object-oriented framework testing

In this thesis, we assume that the framework has been tested and we focus on testing 

the FICs at the class level. Sparks et al., [Sparks+ 96] and Codenie et al., [Codenie-f- 97] 

mentioned the difficulty of the framework-testing problem without proposing solutions. 

Binder [Binder 99] suggested two different approaches for testing frameworks according 

to the availability of application-specific instantiations. The first approach, called New 

Framework Test, develops test cases for a framework that has few, if any, instantiations. 

In this approach, four likely types of defects are checked: incomplete or missing behavior 

or representation, broken association constraints, control defects, and infrastructure code 

defects. The approach suggests building a demonstration application that provides a 

minimal implementation of each use case. Test cases have to be developed to test the 

demo application using extended use case test, class association test, and transition 

coverage for state machine (N+ test strategy) or branch coverage on all sequence 

diagrams.

The second approach, called Popular Framework Test, develops test cases for an 

enhanced version of a framework that has many application-specific instantiations. Three 

classes of defects are more likely in such frameworks: feature interaction defects, 

compatibility defects, and latent defects not discovered before. Moreover, the new
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features can suffer from the same types of defects that occur in any other system (i.e., 

types of defects checked in New Framework Test approach). To test the new features, the 

four testing techniques used in testing new frameworks can be used. To test the feature 

interaction (i.e., the effect of using the old and new features together), art application that 

develops both old and new features has to be implemented. Finally, to test the feature 

compatibility (i.e., ensuring that new features do not break old ones) an existing 

application that implements the old features has to be executed.

Al Dallai et al [Al Dallal+ 02] proposed a technique called Testing Frameworks 

Through Hooks (TFTH) to generate a test suite to test hook-documented object-oriented 

frameworks at the system level. The test suite is designed to test the framework 

implementation at the system level as well as the framework hooks. The technique uses 

an extended state model to model the FICs and a construction flow graph to model the 

construction sequence of the hook methods. Round-trip path trees are generated from the 

state models of the FICs. The trees and the construction flow graphs are traversed to 

produce the required test suite. The test suite includes test cases that test the framework’s 

open functionalities. Such test cases can be applied at the application testing stage to test 

whether the implemented open functionalities violate their constraints defined in the hook 

descriptions. Using the TFTH technique, a large portion of the testing process is 

automated. The scalability of the TFTH technique is not addressed. In addition, more 

case studies are required to evaluate the fault coverage of the technique and to compare it 

with other testing techniques such as the New Framework Test.

2.2.4. Testing framework applications

Binder [Binder 96b] suggested that the testing of framework applications should be 

based on system requirements. The new classes and objects developed by the application 

developer must be individually tested, which can be accomplished using the FREE test 

design methodology [Binder 99]. Moreover, cluster testing should be applied to verify 

that the developer objects are making correct use of the framework code. In this step, the 

framework test suite could be extended to test the application extensions.
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Binder neither suggested a specific methodology that makes use of the framework test 

suite to test the applications at the class or cluster level nor provided a discussion on 

which framework test suite can be extended or how a framework test suite can be 

extended.

Tsai et al. [Tsai-f- 99] discussed the issues of testing applications developed with 

design patterns using object-oriented frameworks. They have classified the patterns into 

static and extensible. Static patterns are the ones that do not allow easy extension. The 

extensible patterns allow the functionality of the application to change. The paper 

addressed the extensible patterns testing from two viewpoints: the framework developers 

and the application designers. Framework developers should test that the extensible 

patterns do allow the application developer to extend its functionality. The application 

designers should verify that the extension points are properly coded and tested. The paper 

introduced a technique to generate scenario templates that can be used to generate 

different types of cluster-based test scenarios. These test scenarios are used to test 

sequence constraints on the interaction between framework objects and custom objects. 

Tsia et al’s work in testing framework applications is limited to cluster-level testing, 

which is out of scope of this thesis.

Wang et al. [Wang+ 00] proposes providing the framework with reusable test cases 

that can be applied at the application development stage. However, these test cases are 

limited to testing that the inherited framework features work correctly in the context of 

the application classes that inherit them and it does not address testing the features of the 

application classes. This thesis extends the use of the reusable test cases to test the 

features defined in the FICs as well as the inherited features.

2.2.5. Reusability of object-oriented tests cases

There are several testing areas for which reusability of test cases for object-oriented 

software are proposed and discussed including regression testing, testing subclasses, 

testing the use of class libraries, testing software product-iines, and testing object- 

oriented framework applications.
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In regression testing, a modified version of the software is tested to provide 

confidence that the changed parts are behaving as intended and the unchanged parts are 

not affected by the modifications in an unforeseen way. The test suite used to test the 

original version of the software or part of it is reused to test the modified version. In 

attempting to reuse the test suite or part of it, two problems have to be tackled: which test 

cases of the original test suite can or should be used to test the modified version and 

which new test cases must be developed to test parts of the modified software [Harrold+ 

01]. A number of regression testing techniques have been developed for testing object- 

oriented applications (e.g., [Harrold+ 01, Hsia+ 97, Kung+ 94a, Kung-f 94b, Kung+ 96, 

Rothermel-t- 94, Rothermel+ 00, White-!- 97]). As far as we know, all regression testing 

techniques are code-based (i.e., based on using the source code analysis to determine the 

test cases). None of the proposed regression testing techniques determines the test cases 

that have to be reapplied for the modified classes using the software specifications only. 

Moreover, researchers in the area of regression testing have focused on finding the 

original test cases that can or should be used to test the modified version of the software. 

No specific approaches are proposed for the augmentation of the test cases to test new 

software parts.

In subclass testing, the superclass test suite or part of it has to be reapplied to gain 

confidence that the inherited superclass features work correctly in the context of the 

subclass. In [Harrold-t- 92], the knowledge of how the subclass is derived from the 

superclass is used to determine where the superclass test suite must be changed and 

which superclass test cases have to be rerun to test the subclass. In [McDonald-!- 96], it is 

shown how the superclass test suite should be changed to test the subclasses and a 

framework is introduced to execute the test cases and check their results. In [Murray+ 

97], the Test Template Framework, a framework for specification-based testing, is 

extended to include inheritance. Conditions under which superclass test cases can be 

reapplied as-is or after some modifications are identified. In [Wiikin-f 02], JUnit, a 

framework for Java unit testing, is extended such th a t' superclass test cases are 

automatically extracted in subclass drivers. In subclassing, superclass features are
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inherited without modifications, redefined, or extended. Therefore, the problem of 

detecting broken test cases for ignored specifications is not applicable and, therefore, not 

studied in reusing superclass test cases.

In testing the use of the class libraries and the frameworks, Binder [Binder 99] stated 

that the class library user and the framework user can reuse the class libraries test suite 

and the framework' test suite, respectively, at cluster testing level without introducing new 

specific approaches.

In [McGregor 00] and [McGregor 01], the issue of product-line testing is considered. 

It is suggested to build general reusable test cases, associate them with the software 

specification, store them in a database at the product line level, and then specialize the 

test cases for each product. This way of using the test cases is called vertical reuse. In 

addition, each time a product is constructed and tested, the specialized test cases and the 

new test cases applied for testing the product are stored in the database. Whenever, the 

product components are used in building other products, the stored test cases are reused 

as-is. This way of using the test cases is called horizontal reuse. Due to the generality of 

the product-line testing problem, it is difficult to introduce specific techniques for 

generating and using reusable test cases for all types of software product-line.

In [Homstein+ 02], it is suggested to put built-in-tests, in the form of methods that 

provide information to test the component, inside the reusable components and to build 

component testers. The component testers exercise the built-in-tests to test the 

component. Whenever the components are used, the component testers can be used as-is 

or modified to verify that the components work correctly in their deployment 

environment. Three stages in which the component testers can be used are introduced: 

when the component under test is deployed, during normal execution, and in 

maintenance. This technique works well for the components used as-is, but it does not 

work for the components that have their specifications modified at deployment time. In 

this case, the modifications of the component specifications have to be reflected in the 

reusable component testers. In [Wang+ 00], built-in tests are incorporated into object-
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oriented frameworks and used when the framework classes are inherited at the 

application development stage. The approach limits the reusability of the built-in tests to 

verify that the inherited framework features work correctly in the context of the 

application classes that inherit them. The work proposed in this thesis extends the 

reusability of the test cases provided with the framework to test the FICs. Testing the 

FICs includes testing the Inherited features from the framework classes in the context of 

the FICs and testing the new FIC functionalities introduced in the hooks for the FICs. 

Moreover, the thesis shows how to test the FICs that do not inherit framework classes 

using reusable test cases.

23* What Remains?
Despite the fact that the framework application testing area has received some 

attention, several related points are either poorly addressed or not addressed. In this 

thesis, testing framework applications is addressed at the class level using reusable test 

cases generated at the framework development stage. More specifically, the following 

key issues are examined:

1. The construction of a class state-based testing model using the method 

specifications (i.e., preconditions and postconditions) provided in the hook 

descriptions.

2. The introduction of an effective test case generation technique in terms of fault

coverage and transition coverage of the constructed testing model. The

generation technique is used at the framework development stage to generate 

the reusable test cases.

3. The provision of a straightforward and easy way to use the reusable test cases

at the framework application development stage.

4. The conducting of case studies to demonstrate the reduction of class testing

costs at the framework application testing stage using the reusable test cases.

5. The conducting of case studies to establish a relation between the number of

FICs in the framework applications and the type of the framework used.
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6. The introduction of a supporting tool for generating the reusable test cases at 

the framework development stage and deploying, executing, and evaluating the 

test cases at the application development stage.
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Chapter 3 Generating Reusable Class-Based Test Cases

3.1. Introduction
At the class testing level, a testing model has to be constructed and used to generate 

the test cases. This chapter introduces a novel technique to synthesize a class state-based 

testing model from the specifications (i.e., preconditions and postconditions) of the FIC 

methods defined in the hooks. In addition, this chapter introduces a novel test case 

generation technique called all paths-state to generate test cases that are effective at the 

application testing stage in covering the reused FIC specifications. The test cases have at 

least the same fault coverage as the test cases generated using the round-trip path 

technique. In terms of the overall testing process, this chapter shows how to perform the 

processes at the framework development stage shown in Figure 1.3.

The chapter is organized as follows. Section 3.2 introduces the class state-based 

testing model construction technique. The all paths-state testing technique is introduced 

in Section 3.3. Finally, Section 3.4 provides a summary discussion.

3.2. Automatic Construction of a Class-Based Testing Model
Building a testing model to express the behavior of a class is an essential step for the 

generation of the class-based test cases. Object-oriented software is well suited to state- 

based testing. A class behavior can be expressed in a state-transition model, which 

consists of states and transitions and can be represented using State Transition Diagrams 

(STD) or UML statecharts. A state-transition model can be easily understood and is 

widely used in specification-based testing techniques.

As shown in Figure 1.3, the input to the testing process of the FICs is the 

specifications of the FIC methods. Hook descriptions provide the specifications of the 

FIC methods in terms of pre- and postconditions. There are two types of pre- and 

postconditions: (1) construction ones and (2) execution ones and these are illustrated in 

the example in Figure 3.1. The construction pre- and postconditions are the constraints
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that must be satisfied before and after the hook is used, respectively, and they are 

identified in the hook description by keywords such as Object, Class, and Operation. The 

execution pre- and postconditions are the dynamic constraints that must be satisfied 

before and after the methods defined in the hook are executed, respectively. The 

construction pre- and postconditions, in contrast with the execution ones, do not describe 

the behavior of the methods defined in the hooks and, therefore, cannot be used in 

synthesizing the behavioral model of the FIC. The execution preconditions are described 

in terms of class instance variables and method input parameters. The execution 

postconditions are described in terms of class instance variables, input parameters, output 

parameters, method return values, and method thrown exceptions. More precisely, the 

execution method specifications (i.e., pre- and postconditions) check:

(1) whether class instance variables, method input parameters, method output 

parameters, and method return values are within the allowed domain of values 

and

(2) whether the relationships among the values of the class instance variables, 

method input parameters, method output parameters, and method return values 

are satisfied.

To help understand the relationship between the hooks and the FICs let us examine a 

concrete example. Figure 3.1 shows the description of the Initialize Account hook of a 

banking framework. In the Changes section of the hook, the FIC called NewAccount is 

introduced. The hook specifies also one of the FIC methods, which is the constructor

method NewAccount(int amount). In the Preconditions and Postconditions sections of the 

hook description, the preconditions and postconditions of the constructor method are 

specified. The first stated postcondition is a construction postcondition because it 

describes a condition that must be satisfied when the hook is used and it is identified by 

the keyword Operation. The other pre- and postconditions are execution ones because 

they describe the conditions that must be satisfied, respectively, before and after the 

constructor method is executed. To determine the behavior of a FIC we have to consider 

all the framework hooks that specify the FIC methods. Appendix D provides the hook
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descriptions that specify the methods of the NewAccount FIC. For the rest of this thesis, 

unless stated otherwise, all pre- and postconditions referred to are of type execution, 

because these are the conditions in which we are most interested in building test cases.

Nam e: Initialize Account
R equirem ent: Initialize an account (i.e., set the currency and bank branches).

Preconditions: amount>=0;
Changes:

NewAccount.NewAccountant amount) extends Account.Accountant amount);

Postconditions:
1. Operation NewAccount. NewAccount (int);
2. NewAccount. balance>=0;
3. ! NewAccount.frozen;
4. NewAccount.getUpdate()< NewAccount.MaxPeriod

Figure 3.1: The description of the Initialize Account hook of a banking framework

In our concrete example, the hooks of the banking framework define several public 

methods for the NewAccount FIC. The methods are as follows.

(1) NewAccount: a construction method.

(2) balance: to inquire about the balance of the NewAccount.

(3) deposit: to deposit money to the NewAccount.

(4) withdraw: to withdraw money from the NewAccount.

(5) freeze: to freeze the NewAccount.

(6) unfreeze: to unfreeze a frozen NewAccount.

(7) activate: to activate an inactive NewAccount.

The pre- and postconditions of the NewAccount FIC method defined in the hooks are 

listed in Table 3.1. From the preconditions and postconditions, we synthesize the states 

and transitions of the NewAccount class.
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Method Preconditions Postconditions
New Account( amount) amount>=0 NewAccount. balance>=0 && ! 

NewAccount.frozen &&
NewAccount. getUpdate()< 
NewAccount.MaxPeriod

balanceQ
deposit(amount) ! NewAccountfrozen &&

NewAccount.getUpdate()<
NewAccount.MaxPeriod

NewAccount.balance=amount+ 
NewAccount.balance && ! 
NewAccount.frozen && 
NewAccount. getUpdate()< 
NewAccount.MaxPeriod

withdraw(amount) NewAccount.balance>=0 && ! 
NewAccountfrozen && 
NewAccount.getUpdate()< 
NewAccount.MaxPeriod

NewAccount.balance= 
NewAccount.balance-amount 
&& i NewAccount.frozen && 
NewAccount. getUpdate()< 
NewAccount.MaxPeriod

freeze() ! New Account.frozen && 
NewAccount.balance>=0

NewAccount.frozen && 
NewAccount.batance>=0

unffeeze() NewAccount.frozen &&
NewAccount.baiance>=0

! NewAccount.frozen && 
NewAccount. balance>=0 && 
NewAccount.getUpdate()< 
NewAccount.MaxPeriod

activate() NewAccount.balance>=0 && 
'.NewAccount.frozen 
&&NewAccount.getUpdate()>= 
NewAccount.MaxPeriod

NewAccount.balance>=0 && 
INewAccount.frozen && 
NewAccount.getUpdate()< 
NewAccount.MaxPeriod

Table 3.1: The preconditions and postconditions of the NewAccount class methods.

Some class methods may not have preconditions, which means that they can be called 

at any time during the object life cycle. There are three types of variables used in the 

preconditions and postconditions: (1) non-static instance variable (i.e. an instance 

variable whose value can change during the object life cycle), (2) static instance variable 

(i.e. an instance variable whose value cannot be changed during the object life cycle), and

(3) local variable (i.e., a variable defined in the parameter list of the method). The return 

of a method is considered as a non-static instance variable.

For example, in Table 3.1, balance() is a method that has no preconditions which 

means that it can be called at any time during the object life cycle. MaxPeriod is a static 

instance variable, amount is a local variable, and the variables balance, frozen, the return 

of the balance() method, and the return of the getUpdate() method are non-static instance 

variables. The balanceQ method returns the value of the balance instance variable. The
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getUpdate method calculates the difference between the current date and the last activity 

date.

Despite the fact that the method specifications hold the specifications for the class 

behaviors, researchers seem to limit the method specification use to support the 

automated detection of software failures and the isolation of faults, and to generate 

method-based test cases. We are not aware of any work that uses the method 

specifications to generate class-based test cases. For example, in [Cheon+ 02], to test a 

class behavior, class behavior testing models (e.g., state-transition model or UML 

statechart) used to generate the test drivers have to be pre-provided, and the method 

specifications are used only as testing oracles. Hand-construction of the class behavior 

testing model is expensive, error-prone, and may result in constructing an inconsistent 

model with the specifications of the class methods, which misleads verification results.

In this thesis, a new technique is introduced to automatically synthesize the state- 

transition testing model of the FIC sequential class behavior from the specifications of the 

class methods. This reduces considerably the class testing cost and the chance of errors. 

The result is a state-based testing model that is consistent with respect to the 

specifications of the class methods. Therefore, using the introduced state-transition model 

synthesis technique, only the specifications of the FIC methods have to be provided to 

test the FIC behavior. The state-transition model is synthesized automatically from the 

method specifications. After that, a specification-based testing technique can be applied 

to derive the test drivers (i.e., implementations of the test cases) from the synthesized 

state-transition model. Finally, the test drivers are executed and the method specifications 

are used as testing oracles to evaluate the actual results of the test cases as pass or no 

pass. Figure 3.2 compares the testing process that uses our proposed modeling technique 

and the one that does not (e.g., [Binder 99, Offut+99, Abdurazik+ 00a]). In process (a), 

the FIC testing model as well as the FIC method specifications have to be provided to test 

the FICs, while in process (b), only the FIC method specifications have to be provided to 

test the FICs and the FIC testing model is synthesized internally in the process.
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Figure 3.2: FIC behavior testing process using method specifications: (a) without 

using the proposed modeling technique and (b) with using the proposed modeling

technique

3.2.1. Synthesizing the states of a  FIC

To synthesize the states of a FIC, we have to construct the condition/instance-variable 

table. In the table, the columns and rows represent the non-static instance-variables of the 

FIC and the precondition/postconditions of the FIC methods that contain conditions 

involving the non-static instance variables, respectively. In the table, we consider only the 

non-static instance variables. The values of the static instance variables do not change 

during the object life cycle and, therefore, they do not contribute in determining the 

object states. Table 3.2 shows the condition/instance-variable table extracted from Table

3.1.

Finally, the table has to be optimized by eliminating redundant rows and unnecessary

information. To optimize the table follow these steps

Step 1: Delete any clause that depends on a dynamic variable (i.e., a variable that its 

value is not assigned at compilation time or can change during the object
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life-cycle) because the combinations of the instance variable values that 

represent a state of a class are determined at compilation time and do not 

change during the object life-cycle. The deleted clauses are considered later 

in the transition synthesis process.

Step 2: Delete redundant rows.

Step 3: If the combinations of instance variable values in a row r/ overlap with the 

combinations of instance variable values of another row rj, replace r/ and ri 

with three rows: the first one contains the combinations of instance variable 

values contained in rj and not contained in rz, the second one contains the 

combinations of instance variable values contained in ri and not contained in 

rj, and the third row contains the overlapping combinations of instance 

variable values.

Step 4: Iterate through steps 2 and 3 until no redundant rows and no rows for which 

Step 3 can be applied exist.

Condition
identifier

Source of the condition Non-static instance-variables
frozen balance getUpdate()

1 Postcondition of the NewAccount method, 
precondition of the withdraw method, 
postcondition of the unfreeze method, and 
postcondition of the activate method

false >=0 <MaxPeriod

2 Precondition of the deposit method false <MaxPeriod
3 Postcondition of the deposit method false balance+amount <MaxPeriod
4 Postcondition of the withdraw method false balance-amount <MaxPeriod
5 Precondition of the freeze method false >=0
6 Postcondition of the freeze method and 

precondition of the freeze method
true >=0

7 Precondition of the activate method false >=0 >=MaxPeriod

Table 3.2: The condition/instance-variable table extracted from Table 3.1

Each row in the optimized table represents a state of the object of that class during its 

life-cycle based on the instance variable value combination shown in the row. Step 1 

ensures that the states do not change during the object life-cycle (I.e.. a basic property of 

the states of a class state-based model as described in [Binder 99]) and, therefore, each 

remaining clause in the table has boundary values determined at compilation time. The 

second step ensures that there are no redundant states in the synthesized model. Step 3 

ensures that each synthesized state is exclusive (i.e., there is no overlapping states).
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Determining the overlapping combinations of instance variable values contained in two 

rows is straightforward because the condition clauses in the rows have fixed boundary 

values as ensured in Step 1. Finally, Step 4 holds the stopping criterion for the state 

synthesis process.

When the optimization rules are applied on Table 3.2, according to Step 1, 

‘balance+amounf and ‘balance-amounf are deleted from rows 3 and 4, respectively, 

because they depend on dynamic variables. This makes rows 3 and 4 redundant with row 

2 and, therefore, rows 3 and 4 are deleted according to Step 2. The combinations of 

instance variable values contained in row 1 overlap with the combinations of instance 

variable values contained in row 2. Therefore, to avoid the creation of overlapping states, 

rows 1 and 2 are substituted with three rows. The first row contains the combinations of 

instance variable values contained in row 1 and not contained in row 2. This row is 

ignored because it does not contain any combination of instance variable values (i.e., all 

the combinations of instance variable values contained in row 1 overlap with the 

combinations of instance variable values contained in row 2). The second row contains 

the combinations of instance variable values contained in row 2 and not contained in row 

1 (i.e., the combinations of instance variable values that has balance<0). The third row 

contains the overlapping combinations of instance variable values of rows 1 and 2 (i.e., 

the combinations of instance variable values that has balance >-0). Finally, the 

combinations of instance variable values contained in the third row formed in the 

previous step overlap with the combinations of instance variable values contained in row

5. Therefore, the two rows are replaced with three rows. The first row is ignored because 

it does not contain any combination of instance variable values (i.e., all of the 

combinations of instance variable values contained in the third row formed in the 

previous step overlap with the combinations of instance variable values contained in row 

5). The second row has getUpdate() >=MaxPeriod and the third row has getUpdate() 

<MaxPeriod. This results in having the optimized table shown in Table 3.3. In this table, 

each row represents a state that corresponds to the instance variable value combinations 

given in the row. The combinations of instance variable values in each row are called the 

state-invariants [Binder 99].
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State Identifier Instance-variables
frozen balance getUpdate()

1 false >=0 <MaxPeriod
2 false <0 <MaxPeriod
3 false >=0 >=MaxPeriod
4 true >~0

Table 3.3: Optimized table constructed by applying optimization rules on Table 3.2.

3.2.2. Synthesizing the transitions of a FIC

To extract the transitions that model the legal behavior of a FIC, we have to map the 

preconditions and postconditions of the FIC methods to the extracted state-invariants. 

Each state in which its state-invariants satisfy the preconditions of a method is a source 

state for the transition associated with the method call. Moreover, each state in which its 

state-invariants satisfy the postconditions of a method is a destination state for the 

transition associated with the method call. The procedure shown in Figure 3.3 explains 

the mapping process and shows how to extract the predicates and actions of the 

transitions. The source state of the constructor method is by default the alpha state. If no 

destructor method is specified in the class, an unlabeled transition has to be added from 

each state, other than the alpha state, to the omega state.

When the procedure shown in Figure 3.3 is applied on tables 3.1 and 3.3, the 

transitions shown in Table 3.4 are extracted. For example, since the balance method has 

no preconditions and its postcondition satisfies all the invariants of all states, a self-loop 

transition associated with balance() event is added to each state (other than alpha and 

omega). The postcondition of the balance method is not specified in any state and, 

therefore, it is added as an action to all the self-loop transitions. For the withdraw 

method, the preconditions satisfy the invariants of state 1 and the postconditions satisfy 

the invariants of states 1 and 2. Therefore, two transitions associated with the withdraw 

event are added as shown in Table 3.4. Note that the set of preconditions of the method is 

the same as the invariants of state 1, which causes no predicates to be added at this step. 

The set of postconditions of the withdraw method includes “baiance=balance-amount” 

which is not included in the state invariants of states 1 and 2. Therefore, the postcondition 

is added to both transitions as actions. Finally, since state 1 now has two outgoing
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transitions that have the same labels, the difference between the invariants of the 

destination states of the transitions has to be added as predicates to the transitions. The 

difference between states 1 and 2 is that state 1 has balance>=0, while state 2 has 

balanced). Therefore, “balance (at destination state) >=0” has to be added to one of the 

transitions (from state 1 to state 1) and “balance (at destination state) <0” has to be added 

to the other transition (from state 1 to state 2). Since the predicates are checked at the 

source states, we can substitute “balance (at destination state)” by “balance-amount”.

Inputs: Invariants of the FIC states and the preconditions and postconditions of the 

FIC methods.

Output: Transitions of the FIC state-based model.

Procedure:

1 .for  each FIC method do

2. Search for all states whose state-invariants satisfy the preconditions of the 

method.

3. Search for all states whose state-invariants satisfy the postconditions of the 

method.

4. Create a transition from each state found in Step 2 to each state found in Step 3

and associate the method name with the transition as an event.

5. fo r  each transition created in Step 4 do

6. i f  the set of preconditions of the method is a superset of the set of state-

invariants of the source state of the transition then add the non-overlapped 

portion of the set as predicates to the transition.

7. if the set of postconditions of the method is a superset of the set of state-

invariants of the destination state of the transition then add the non­

overlapped portion of the set as actions to the transition.

8. i f  there is another transition that has the same source state, event, and

predicates then add to each of the transitions the difference between the 

postconditions of the method called in the transition and the state-

invariants of the destination states as predicates to the transitions.

Figure 3.3: Construction process of the transitions of the FIC specification model.
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Since the transition synthesis method uses the method specifications to synthesize the 

transitions, it is limited to event-driven transitions (i.e., transitions that have associated 

events). For non-event-driven transitions, it is required to determine the source and 

destination states first. The state-invariants of the destination state, which are different 

than the state-invariants of the source state, are then added as predicates to the transition. 

For the NewAccount class example, we have identified two non-event-driven transition 

examples as shown in Table 3.5. The invariant of state 3, which is different than the 

invariant of state 1, is “getUpdate()>=MaxPeriod”. Therefore, this difference is added as 

a predicate to the non-event-driven transition that has the states 1 and 3 as source and 

destination states, respectively. The same situation applies for the transition that has the 

states 4 and 3 as source and destination states, respectively.

Transition
identifier

Source
state

identifier

Destination
state

identifier

Transition
event

Transition
predicates

Transition actions

1 alpha 1 NewAccount amount>=0
2 1 1 balance return balance
3 2 2 balance return balance
4 3 3 balance return balance
5 4 4 balance return balance
6 1 1 deposit balance+amount>=0 balance=balance+amount
7 1 2 deposit balance+amountcO balance=balance+amount
8 2 1 deposit balancer-amount>=0 balance=balance+amount
9 2 2 deposit balance+amountcO balance=balance+amount
10 1 1 withdraw balance-amount>=0 balance=balance-amount
11 1 2 withdraw balance-amountcO balance=balance-amount
12 1 4 freeze
13 3 4 freeze
14 4 1 unfreeze balance>=0
15 3 1 activate
16 1 Omega
17 2 Omega
18 ■*>

J Omega
19 4 Omega

Table 3.4: Transitions of the NewAccount FIC extracted using the procedure shown in

Figure 3.3

Transition
identifier

Source
state

identifier

Destination
state

identifier

Transition predicates Transition
actions

20 1 3 getUpdate()>=MaxPeriod -

21 4 3 getUpdate()>=MaxPeriod && 'frozen -

Table 3.5: Non-event-driven transitions of the NewAccount FIC
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Figure 3.4 shows the synthesized state-transition model represented in a State 

Transition Diagram (STD). In the diagram, states and transitions are represented by nodes 

and edges, respectively. To make the diagram more understandable, meaningful names 

can be associated to the states. In Figure 3.4, states numbered 1, 2, 3, and 4 are named 

Open, Overdrawn, Inactive, and Frozen, respectively. The transitions are labeled by their 

identifiers shown in tables 3.4 and 3.5.

Figure 3.4: STD of the synthesized state-transition model of the NewAccount FIC.

The STD given in Figure 3.4 shows the legal behavior of the NewAccount FIC. There 

are several sources for the illegal behaviors of a class including invoking methods at 

states that do not accept them and invoking methods while setting the environment in a 

way that causes the methods to throw an exception. The procedure given in Figure 3.5 

illustrates the synthesis method of the transitions that model the illegal behaviors of a 

class. The procedure examines the events and predicates associated with the outgoing 

transitions from each state other than the Alpha state. A self loop transition is added to 

the state for each event not associated with any other outgoing transition from the state. 

In addition, a self loop transition is added to a state for each event associated with an 

outgoing transition from the state if the transition is associated with a predicate. In this 

case, each of the added transitions is associated with a predicate that excludes the 

conditions in the predicate associated with the outgoing transition. Finally, a self loop

Inactive W  (Overdrawn,
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transition is added to a state for each event associated with an outgoing transition from 

the state if the event can throw an exception. In this case, the predicate of the added 

transition is the cause for the exception to be thrown and the resulting action is throwing 

the exception.

Inputs: Synthesized state-based testing model that models the FIC legal behaviors and 

the signatures, extracted from the hook descriptions, of the FIC methods that 

throw exceptions.

Output: State-based testing model that models the FIC legal and illegal behaviors.

Procedure:

1. form a set s that includes all the FIC methods identifiers (i.e., method names and 

parameters).

2. for each state in the state transition model do

3. form a set sj that includes all the FIC method identifiers included in s that 
identify methods not invoked in the events associated with the outgoing 

transitions from the state

4. form a set S2 that includes the FIC method identifiers for the methods invoked 

in the events associated with the outgoing transitions from the state only if the 

transitions have predicates. Associate with each element in the set the 

predicates that are associated with the corresponding transition.

5. form a set s? that includes the FIC method identifiers for the methods that

throw exceptions and are invoked by the events associated with the outgoing 

transitions from the state.

6. for each element in the.sets si, S2 , and ss do

6.1. add a self loop transition to the state.

6.2. Associate the transition with the event that invokes the method identified 

in the element.

6.3. i f  the element is in set then add a predicate to the self loop transition that

excludes the conditions in the predicates associated with the element.

6.4. else i f  the element is in set S3 then associate the cause for the exception to 

be thrown to the self loop transition as a predicate. In addition, associate 
the exception thrown to the self loop transition as an action.

Figure 3.5: Construction process of the illegal transitions of the FIC specification model.
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For example, when the procedure shown in Figure 3.5 is applied to derive the illegal 

transitions associated with the Frozen state of the NewAccount FIC example, five self 

loop transitions are added to the state. Four of them are associated with the events 

withdraw, deposit, freeze, and activate, respectively, because these events are not 

associated with the outgoing transitions from the Frozen state. The fifth transition is 

associated with the unfreeze event because one of the outgoing transitions from the 

Frozen state is associated with the unfreeze event and “balance>=0” predicate. 

Therefore, the fifth added self loop transition is associated with unfreeze event and 

“balance<0” predicate (i.e., predicate that excludes the “balance>=0” condition). For 

the rest of the thesis, the same analysis applied for the legal transitions to generate the test 

cases can be applied for the illegal transitions. Adding the illegal transitions to the testing 

model of our concrete example makes the example more complicated and the 

understanding of the application of our introduced techniques on the example more 

difficult for the reader to follow. At the same time, adding the transitions does not 

introduce any additional cases not introduced for the legal transitions. Therefore, we 

ignored the analysis for the illegal behaviors of the NewAccount FIC for the rest of 

chapters 3 and 4.

3,2.3. Limitations

The introduced testing model synthesis technique does not guarantee synthesizing a 

“free of infeasible paths” model. Infeasible paths are the ones that cannot be executed. 

For example, in the STD of Figure 3.4, given that “amount>0” is true, the transition 

labeled as “7” causes several infeasible paths since depositing a positive amount of 

money cannot cause the balance that has a positive value to have a negative value. To 

solve this problem, we have to either detect the infeasible paths and avoid using them in 

generating the test drivers [Offutt+ 97] or we have to ignore any test driver that has 

violated preconditions [Cheon+ 02].

The introduced testing model synthesis technique focuses on modeling classes that 

have sequential behaviors. Further research is required to model classes that have
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concurrent behaviors. To model such classes, synchronization contracts [Beugnard+ 99] 

can be used.

33. Generating Reusable Test Cases
This section focuses on building reusable class-based test cases for the FICs. The test 

cases are built using the state-based specification model constructed using the 

preconditions and postconditions of the FIC methods. A novel technique that overcomes 

the weaknesses of the existing state-based techniques is introduced. The technique works 

effectively in testing the FICs that do not extend the framework classes and it is extended 

to test the interactions between the framework classes and the FICs that extend them.

33.1. Testing the FICs that do not extend framework classes

Hooks can introduce FICs that do not subclass framework classes. In these FICs, 

compositions and existing framework components are used without inheritance. This way 

of customizing the framework is called black-box customization. The behavior of the FIC 

can be expressed in a state-transition model. Figure 3.4 shows the STD representation of 

a NewAccount banking framework interface object specification extracted from the 

framework hooks as illustrated in Section 3.2. The STD contains two special states: alpha 

and omega to represent the states of the object before being constructed and after being 

destroyed. Moreover, the STD contains the Open, Overdrawn, Inactive, and Frozen states 

to model the states of the object.

Since the state-transition model can be easily understood and is widely used in the 

specification-based testing techniques, we have used it in modeling the FIC 

specifications. In state-transition model-based testing, testers aim to achieve a certain 

coverage criterion. There are several state-based specification coverage techniques 

proposed in the literature such as all-transitions, transition-pair, full-predicate, and round- 

trip path coverage.

FICs are not framework classes. They are not implemented unless an application 

developer uses the framework hooks to implement them at the application development 

stage. However, since the framework hooks introduce the specifications of the FICs, the
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test cases that can be used to test the FICs at the application testing stage can be produced 

once when the hooks are described and applied each time the FICs are used to develop an 

application. When any of the existing coverage techniques, except the transition-pair 

coverage, is applied to generate baseline test cases for FICs, only one transition sequence 

is required to cover a transition. For the example STD given in Figure 3.4, in the all- 

transitions technique, to cover the transition labeled 15, we can follow the path that has 

the sequence of transitions (1,20,15) and we do not have to worry about any other paths 

such as (1,12,21,15). In the transition-pair coverage, some but not all transition sequences 

are used to cover a transition. For example, to cover the transition-pair (15,7), we can 

follow the path that has the sequence of transitions (1,20,15,7) and we do not have to 

worry about any other paths such as (1,12,21,15,7). The sequences of transitions are used 

to derive the required test cases.

The application developer can decide to ignore some of the specifications for the FIC 

behaviors because they are unnecessary in implementing the application. Therefore, any 

baseline test case derived from a sequence of transitions that includes an unimplemented 

transition is considered broken and cannot be used as-is. Consequently, the application 

tester has to build new test cases or modify some baseline test cases to test the 

implemented transitions that were supposed to be tested using the broken baseline test 

cases.

For example, when the round-trip path strategy is used to derive test cases for the 

NewAccount FIC (the STD is shown in Figure 3.4), the tree shown in Figure 3.6 is 

constructed. Each path from the root node to a leaf node is used to build a test case. Since 

there are 16 such paths, 16 test cases are built. If the application developer chooses not to 

implement the transition originating from the Open state and ending at the Inactive state, 

the test cases built using the round-trip paths that include the transition are considered 

broken and, therefore, they cannot be used as-is. This results in breaking the test cases 

built from the paths that include the transition sequences labeled as (1,20,13), (1,20,15), 

(1,20,18), and (1,20,4). Note that the outgoing transitions from the Inactive state may be
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implemented in the application, but none of the non-broken test cases, buiit using the 

round-trip path strategy, can test them.

open
overdrawn]

open

open open

open

■ozen
inactive

jfr-ozen

oppn
inactive

inactive

Transitions 
maybe 
implemented 
but not tested 
if  (open- 
inactive) 
transition is 
ignored

Figure 3.6: Round-trip path tree of the STD example shown in Figure 3.4.

This introduces the need for a test case generation technique that considers all 

sequences of transitions which can reach each state defined in the specification. A 

sequence of transitions form a path to a state. To solve this problem, we introduce a new 

coverage technique that ensures the coverage of all simple paths to each state in the state- 

transition model. The technique is called all paths-state.

In the all paths-state technique, we construct a set of test cases T from a specification 

graph SG (e.g., UML statechart or finite state machine of the FIC under test). T covers all 

simple paths to each state in the SG. A simple path includes only one iteration of a loop, 

if a loop exists in some sequence. Figure 3.7 provides a simple visualization of the idea. 

The coverage criterion of the technique can be written precisely as follows:

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



For each state in the SG, T contains tests that traverse all simple transition sequences

to the state.

Test cases

TC TC,TC,

All («) possible simple paths from a  state to a state

Figure 3.7: all paths-state technique idea

The set of paths that satisfy the criterion can be shown in a tree. The procedure shown 

in Figure 3.8 describes how to construct the tree. The procedure starts from the alpha 

state of the SG. In the process, whenever a state is reached the procedure traverses all the 

outgoing transitions from the state. The process terminates when each root-leaf tree path 

terminates at the omega state or a state already encountered on the path.

Figure 3.9 shows the all paths-state tree of the STD of Figure 3.4. Appendix A 

illustrates the steps of constructing the all paths-state tree of the STD using the procedure 

given in Figure 3.8. In the STD, if any transition is deleted, reachable states from the 

deleted transition can still be reached by some other paths of the tree. For example, if all 

paths-state technique is used to build the test cases and the application developer chooses 

not to implement the transition originated from the Open state and ended at the Inactive 

state, the test cases that include the transition are considered broken and, therefore, they 

cannot be used as-is. This results in breaking the test cases built from the paths that 

include the transition sequences labeled as (1,20,13,21), (1,20,13,14), (1,20,13,19), 

(1,20,13,5), (1,20,15), (1,20,18), and (1,20,4). Note that the remaining test cases still 

cover all outgoing transitions from the Inactive state and, therefore, can be deployed.
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Test cases are generated by traversing each path in the tree from the tree root to a ieaf 

node. The number of generated test cases is equal to the number of leaf nodes in the tree. 

The number of leaf nodes in the tree shown in Figure 3.9 is 22 and, therefore, the number 

of generated test cases is 22. Section 3.3.3 will describe how to implement the test cases.

Input: A class state-based testing model

Output: The all paths-state tree of the class model.

Procedure:

1. Draw the root node of the tree to represent the alpha state.

2. Examine the state that corresponds to each non-terminal leaf node in the tree and 

each outgoing transition from the state. At least one new edge will be drawn for 

each transition. Each new edge and node represents an event and resultant state 

reached by an outgoing transition.

a. If the transition is unguarded, the transition guard is a simple predicate, or the 

transition guard is a complex predicate composed of only AND operators draw 

one new edge.

b. If the transition guard is a complex predicate using one or more OR operators, 

draw a new edge for each truth value combination that is sufficient to make 

the guard TRUE.

3. For each edge and node drawn in step 2:

a. Record the corresponding transition event, guard, and action on the new 

edge.

b. If the state that the new node represents has already been encountered on the 

tree path that contains the new node or is the omega state, mark this node as a 

terminal -  no more transitions are drawn from this node.

4. Repeat steps 2 and 3 until all leaf nodes are marked final.

Figure 3.8: Produce an all paths-state tree from a state model.

The following properties show the relation between the all paths-state coverage and 

the round-trip path coverage and the affect of deleting a transition from a state model that
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has test cases built using the all paths-state technique. Each property is followed by a 

rationale for why the property holds.

[open
•7 3 overdrawn

open

open
oven inactive

openji —J  openopen
2? inactive

.[frozen
open

ozen
inactive

% open
1>  frozen

open
inactive

inactive

Figure 3.9: All paths-state tree, constructed using the procedure shown in Figure 3.8, of

the STD example shown in Figure 3.4.

Property 3.1: In terms o f path coverage, the all paths-state coverage subsumes the round- 

trip path coverage.

Rationale: The coverage of each of the all paths-state and round-trip path strategies is 

represented by a tree. The only difference between the construction procedures of the two 

types of trees is in the stopping criterion. In the round-trip path strategy, each path in the 

tree ends in either a node that represents the omega state in the model or a node that 

represents a state in the model already represented elsewhere in the tree. In the all-paths- 

state strategy, each path in the tree ends by either a node that represents the omega state 

in the model or a node n that represents a state in the model already represented 

elsewhere in the path that contains node n. As a result, the stopping criterion imposed by 

the all paths-state strategy is more constrained than the stopping criterion imposed by the 

round-trip path strategy. Consequently, each path in the round-trip path tree is identical to 

a sub-path in the all paths-state tree. Therefore, the all paths-state coverage subsumes the 

round-trip path coverage in terms of path coverage. Figure 3.10 shows the path coverage
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hierarchy for three different strategies. The ail paths-state coverage technique covers the 

same or more paths than the round-trip path coverage technique. The all paths-state 

coverage technique covers the same or less paths than the exhaustive all paths coverage 

criterion that covers all possible paths in a state machine.

All paths

All Paths-state 
Paths

All Round-trip 
Paths

Figure 3.10: Path coverage hierarchy

Property 3.2: When a transition in the state model is deleted, the non-broken test cases 

built using the all paths-state technique cover all remaining transitions in the state model 

initiated from the reachable states.

Rationale: Figure 3.11 shows the different possible groups of state model paths with 

respect to a deleted transition. To show that the property always holds, we have to show 

that the remaining transitions contained in each group of paths in the modified state 

model are covered by the non-broken test cases as follows.

• Groups A, B, and C: Transitions contained in the paths of groups A, B, and C do 

not contain the deleted transition and, therefore, the test cases that cover them are 

not affected by the deleted transition. As a result, the transitions contained in the 

paths of groups A, B, C are covered by the non-broken test cases.

• Group D: Paths of Group D exist in the modified model only if paths of Group C 

exist. Otherwise, the model will have more than one omega state which violates 

the definition of the model. Therefore, if a transition is deleted and the model does 

not have any path of Group C, transitions contained in the paths of group D are
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deleted consequently to preserve the definition of the model. On the other hand, if 

a transition is deleted and the model has paths of group C, the transitions 

contained in the paths of Group D are covered using the all paths-state technique 

by test cases that do not contain the deleted transition. Therefore, these test cases 

are not broken and they cover the transitions contained in the paths of Group D.

Paths of Group D

Paths of Group CPaths of Group A

Deleted
transition

Paths of Group B

Paths of Group E

Figure 3,11: The different possible groups of state model paths with respect to a

deleted transition.

• Group E: Paths of Group E exist in the modified model only if paths of Group B 

exist. Otherwise, the paths of Group E would not be reached from the alpha state, 

which violates the definition of the model. Therefore, if a transition is deleted and 

the model does not have any path of Group B, transitions contained in the paths of 

group E are deleted consequently to preserve the definition of the model. On the 

other hand, if a transition is deleted and the model has paths of group B, the 

transitions contained in the paths of Group E are covered using the all paths-state 

technique by test cases that do not contain the deleted transition. Therefore, these 

test cases are not broken and they cover the transitions contained in the paths of 

Group E.
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33.2. Testing FICs that extend framework classes

Hooks can introduce FICs that subclass framework classes. This way of customizing 

the framework is called white-box customization. In this case, even if the application 

developer does not implement the FIC methods that override the inherited framework 

class methods, the inherited methods are accessible when the FIC is instantiated. 

Therefore, the specifications of the inherited methods defined in the hooks cannot be 

ignored. In terms of states and transitions, this results in having transitions that cannot be 

broken (i.e., must be implemented) at the application development stage. We call such 

transitions guaranteed. In Section 3.3.1, the analysis for the NewAccount class neglects 

the fact that some transitions that model the class specification are guaranteed because the 

NewAccount class extends the Account framework class and, therefore, the application 

developer cannot ignore the specifications of the Account class. This produced 

unnecessary nodes and transitions in the all paths-state tree as will be shown later in this 

section.

When the all paths-state coverage technique is applied to build test cases for the FICs 

that extend framework classes, some transitions may be covered using several paths. 

Some of the paths from the alpha state to the source state of the transition are composed 

of guaranteed transitions only. In this case, a path that contains only guaranteed 

transitions cannot be broken at the application development stage and, therefore, it is 

ineffective to cover the rest of the paths (i.e., paths that have not-guaranteed transitions) 

from alpha state to the source state of the considered transition. For example, for the STD 

shown in Figure 3.4, if the transitions from the alpha state to the open state and from the 

open state to the inactive state are guaranteed, the outgoing transitions from the inactive 

state are guaranteed to be reached by following the path of the guaranteed transitions. 

Since this path cannot be broken at the application development stage, there is no need to 

cover the other paths from the alpha state to the inactive state in the all paths-state tree to 

ensure the coverage of the outgoing transitions from the inactive state.

In the state-transition diagram, if a path to a state has all transitions marked 

guaranteed, we say that the state has a guaranteed path. In the all path-state tree, a state
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can be represented by more than one node because we have to cover all simple paths to it 

such that if one path to a state has a transition not used by the application developer, the 

state remains reachable in the tree using other paths. Outgoing transitions from a state 

that has a guaranteed path do not have to be covered in the tree using other paths, which 

reduces the tree complexity. The procedure given in Figure 3.12 shows how to construct 

the all paths-state tree from a state-transition model that has guaranteed transitions.

The procedure starts from the root state of the state-transition model. In the process, 

whenever a state is reached the procedure traverses ail outgoing transitions from the state. 

The procedure marks the tree nodes that have guaranteed paths as guaranteed nodes. The 

procedure traverses the outgoing transitions from the states represented by guaranteed 

nodes before the outgoing transitions from the other states. The process terminates when 

each root-Jeaf tree path ends at the omega state, a state represented previously in the path, 

or a state represented previously in the tree by a guaranteed node.

For example, suppose that the transitions that are necessary to implement the open 

and inactive states (i.e., transitions labeled by 1, 2, 4, 6, 10, 15, 16, 18, and 20) shown in 

Figure 3.4 are introduced by the Account class, which is a framework class. The rest of 

the transitions are not defined in the Account class, but they are defined in the hooks. In 

this case, the transitions labeled by 1, 2, 4, 6, 10, 15, 16, 18, and 20 are guaranteed 

transitions. When the procedure shown in Figure 3.12 is applied, the tree shown in Figure 

3.13 is constructed. Appendix B illustrates the steps of constructing the all pafhs-state tree 

of the STD that has guaranteed transitions using the procedure given in Figure 3.12.

In Figure 3.13, the nodes that are reached by guaranteed paths are marked guaranteed. 

In the tree of Figure 3.9, the outgoing transitions from the node labeled by inactive at the 

end of the path labeled by (1->12->21) do not exist in Figure 3.13 because the state 

represented by the node labeled by inactive is represented elsewhere in the tree by the 

guaranteed node reached by the guaranteed path (l->20).
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Input: A class state-based testing model that has guaranteed transitions.

Output: The all paths-state tree of the class model.

Procedure:

1. Draw the root node of the tree to represent the alpha state. Mark the node as non­

terminal and guaranteed.

2. Search for a state that corresponds to a non-terminal guaranteed leaf node in the 

tree. If none is found, search for a state that corresponds to a non-terminal not- 

guaranteed leaf node in the tree.

3. Examine each outgoing transition from the state. At least one new edge will be 

drawn for each outgoing transition from the state. Each new edge and node 

represents an event and resultant state reached by an outgoing transition.

a. If the transition is unguarded, the transition guard is a simple predicate, or 

the transition guard is complex predicate composed of only AND operators 

draw one new edge.

b. If the transition guard is a complex predicate using one or more OR 

operators, draw a new branch for each truth value combination that is 

sufficient to make the guard TRUE.

4. For each edge and node drawn in step 3:

a. Note the corresponding transition event, guard, action, and guarantee 

information on the new edge.

b. If the edge and its source node in the tree are marked guaranteed, mark the 

destination node of the edge as guaranteed. Otherwise, mark it as not- 

guaranteed.

c. If the state that the new node represents is the omega state, the state is 

already represented by another node (in the path containing the new node), 

or the state is represented somewhere else in the tree by a guaranteed 

node, mark this node as a terminal -  no more transitions are drawn from 

this node. Otherwise, mark it as non-terminal.

5. Repeat steps 2, 3, and 4 until all leaf nodes are marked terminal.

Figure 3.12: Produce an all paths-state tree from a state model that includes guaranteed

transitions.
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Figure 3.13: all paths-state tree, constructed using the procedure shown in Figure 

3.12, of the STD example shown in Figure 3.4

The procedure given in Figure 3.14 shows how to generate the test cases from the all 

paths-state tree that has guaranteed nodes. The test cases are generated in two rounds. In 

the first round, each path from the root node to a leaf node is used to build a test case. 

The number of test cases built in this round is equal to the number of leaf nodes. In the 

second round, we search for all non-terminal nodes marked as guaranteed that have all 

outgoing edges marked as not-guaranteed. For each of these nodes, we build a test case 

that traverses the path from the root node to the node marked guaranteed. This round is 

necessary because the application developer may not use any of the methods associated 

with the outgoing edges from the state. In this case, all the test cases built from the paths 

that include the unused edges are considered broken. This results in having no test cases 

to test the transitions that have their destination states represented by guaranteed nodes in 

the tree. Figure 3.15 depicts the problem. The node labeled by C is a non-terminal
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guaranteed node and all its outgoing edges are marked as not-guaranteed. In the first 

round of generating test cases, three test cases are generated to cover the paths (A->B), 

(A->C->D), and (A->C->E). If the application developer decides not to use the methods 

associated with the edges (C->D) and (C->E), the test cases generated from the paths (A- 

>C->D), and (A->C->E) will be broken. Therefore, the edge (A->C) is not going to be 

covered by the remaining test case. To overcome this problem, we have introduced the 

second round. In the second round, the path (A->C) is used to build an additional test 

case.

Input: All paths-state tree that has guaranteed nodes and edges.

Output: The test cases generated from the all paths-state tree.

Procedure:

1. fo r  each path from the root node to a leaf node in the all paths-state tree do

Build a test case that traverses the path.

2. Search for all non-terminal nodes in the tree marked guaranteed and that have all 

their outgoing edges marked as not-guaranteed.

3. fo r  each node n found in Step 2 do

Build a test case that traverses the path from the root node to node n.

Figure 3.14: Generate test cases from the all paths-state tree that has guaranteed nodes

C 3 not-guaranteed node 
O  guaranteed node
 „ not-guaranteed edge
-► guaranteed edge

Figure 3.15: Non-terminal guaranteed node special case

3.3.3. Building test drivers

In the previous two subsections, we showed how to select the sequences of message 

executions (i.e., sequences of transitions that form the all paths-state paths) to be tested.
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Each sequence of message executions forms a test case. To automate the testing process, 

it is required to generate test drivers (i.e., implementations of the test cases). To execute 

any message associated with a transition, it is required to set test values for the 

parameters of the message and to execute the code required to satisfy the predicates of the 

transition. We consider the general problem of the automatic generation of the test values 

for the parameters of the message and the automatic generation of the code required to 

satisfy the predicates of the transition as future work. In our work, we manually associate 

the required code for the test values and predicates with the transitions of the testing 

model.

After executing a transition, it is required to check whether the actions associated 

with the transition are performed correctly and whether the transition leads to the 

expected resulting state. Once the testing model is synthesized using the technique 

introduced in Section 3.2, the transition actions and the state-invariants are associated 

with the transitions and states of the model, respectively. When the test drivers are 

developed, the checking of the code for the actions and state-invariants are instrumented 

in the test drivers and executed at run time to evaluate the test cases.

There are two ways to implement the test cases: either to implement all of them in 

one class or to implement each test case in a separate class. At the application 

development stage, the test drivers that can be reused to test an implemented FIC are 

determined. These test drivers are a subset of the test drivers provided with the 

framework to test the FIC. If all test drivers are included in one class, the non-applicable 

test drivers provided with the framework would be included in the class of the test drivers 

and not used, which is an ineffective solution. In this thesis, we implement each test 

driver in a separate class. This allows the application developer to maintain only the test 

drivers that implement the applicable test cases instead of maintaining all the test drivers 

provided with the framework.

The procedure given in Figure 3.16 shows how to construct the test drivers for 

selected paths of a testing model. The procedure implements a class for each test case.
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Each class includes a constructor method. When the constructor method is invoked at test 

time, the actual testing is performed. In the constructor method, the code for executing 

the sequence of message executions is listed. For each message associated with a 

transition, the code sets up the parameter values and includes the statements required to 

satisfy the transition predicates. The setting-up code is followed by the message 

invocation statement and checking statements for the resulting actions and the state- 

invariants of the resulting state.

In this section and for the rest of this thesis, the examples used are coded in the Java 

language; however, the introduced techniques are applicable for frameworks and 

applications written in any other object-oriented language. Figure 3.17 shows two Java 

test driver examples generated from the tree shown in Figure 3.9. The two test cases are 

generated by traversing the paths that include the transition sequences labeled as (l->2) 

and (1->12->14), respectively. The checking statements for the actions and the state- 

invariants are written as Javadoc comments using the Design-by-Contract (DbC) 

language [Meyer 92]. These Javadoc comments are translated at compilation time into 

Java code using a tool called Jcontract [Jcontract], At run time, the Jcontract tool checks 

the Java statements translated from the DbC statements and reports any violations. 

Appendix D shows the remaining test drivers for the NewAccount FIC.

3.4. Summary
This chapter addresses the generation of the reusable test cases at the framework 

development stage. These test cases are provided with the framework to test part of the 

framework application whenever the framework is used at the application development 

stage. FICs are the application classes for which reusable test cases can be built. First, the 

chapter focuses on generating reusable class-based test cases for the FICs, which requires 

the construction of a class-based testing model. We have introduced a novel technique to 

synthesize the states and transitions of a class state-based testing model for the FICs from 

the method specifications available in the hooks.
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Inputs: Paths in the FIC state-based model required to implement the test cases.

Outputs: FIC test drivers.

Procedure:

for each path required to implement a test case do

Create a new file

Create a class for the test driver in the file.

Create a constructor method in the class.

5 is the first state in the path.

Repeat

transition t is the outgoing transition from state s in the path 

i f  the method invoked by the transition t has parameters then add the code 

require to set the test values of the parameters to the code of the 

constructor method. 

i f  the transition t has predicates then add the code required to satisfy the 

predicates to the code of the constructor method, 

if the transition t is the first transition in the path then 

insert a creation statement in the constructor method for the instance of the 

FIC for which the reusable test drivers are constructed. 

else insert a method call statement in the constructor method for the event 

associated with the transition. 

if  the transition t has actions, insert statement(s) in the constructor method to 

check whether the actions associated with the transition are performed. 

Insert statement(s) in the constructor method to check whether the invariants 

of the reached state by the transition t are satisfied. 

s is the destination state of the transition t. 

until state s is the last state in the path.

Figure 3.16: Construction procedure of the test drivers
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Test Case # 1 (covers transition sequence l->2) 
public class TESTl_NewAccount{ 

public TESTl_NewAccount(){
/ *  testing the transition labeled as "1" */
/* code for setting the parameter value */ 
float amount=l;
/* invoking the message associated with the transition */
NewAccount o = new NewAccount(amount);
/* DbC checking statement for the invariants of the resulting state: 

Open */
/** ©assert((o.balance()>=0) && {(o.getCurrentDate()-

o.getLastActivityDate())< o .getMaxPeriod()) && !(o.isFrozen()}) */

/* testing the transition labeled as "2" */
/* invoking the message associated with the transition */ 
o.balance();
/* DbC checking statement for the invariants of the resulting state: 

Open */
/** ©assert((o.balance()>=0) && ((o.getCurrentDate()- 

o.getLastActivityDate())< o.getMaxPeriod()) && !(o.isFrozen())) */
}

}

Test Case # 12 (covers transition sequence 1->12->14)
public class TESTl2_NewAccount{ 

public TEST12_NewAccount(){
/* testing the transition labeled as "1" */
/* code for setting the parameter value */ 
float amount=l;
/* invoking the message associated with the transition */
NewAccount o = new NewAccount(amount);
/* DbC checking statement for the invariants of the resulting state: 

Open */
/** ©assert((o.balance{)>=0) && ((o.getCurrentDate()-

o.getLastActivityDate())< o .getMaxPeriod()) && !(o.isFrozen())) */

/* testing the transition labeled as "12" */
/* invoking the message associated with the transition */ 
o .freeze();
/* DbC checking statement for the invariants of the resulting state: 

Frozen */
/** ©assert((o.balance()>=0) && ((o.getCurrentDate()-

o.getLastActivityDate())< o .getMaxPeriod()) && (o.isFrozen())) */

/* testing the transition labeled as "14" */
/* invoking the message associated with the transition * I  
©.unfreeze() ;
/ *  DbC checking statement for the invariants of the resulting state:

Open */
/** ©assert((o.balance()>=0) && ({o .getCurrebtDate()-

o .getLastActivityDate())< o .getMaxPeriod()) && !(o.isFrozen())) */
}

}

Figure 3.17: Two test case examples generated from the tree shown in Figure 3.9
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Second, we have Introduced a specification coverage technique ■ that uses the 

constructed state class-based testing model and produces test cases for FICs. The test 

cases are sufficient to cover all the implemented transitions in the specification models of 

the FICs under test. The introduced coverage technique is called all paths-state and it 

covers all paths to each state in the specification model. The coverage technique builds 

test cases such that when a transition In the state model is deleted, the non-broken test 

cases built using the coverage technique cover all remaining transitions in the state model 

initiated from the reachable states. Finally, the coverage technique is extended to build 

test cases to test the interactions between the framework classes and the FICs that extend 

them.

The all paths-state technique generates tests based on transition sequences and, 

therefore, it is useful for classes that have constraints on transition sequences. FICs are 

problem domain classes that often have constraints on transition sequences [Binder 99]. 

In contrast, the all paths-state technique may not be useful for classes that do not have 

constraints on the transition sequence (i.e., can accept any transition in any state). For the 

later classes, the test cases can be generated by analyzing the data flow in the state model 

[Binder 99].

Although there are several elements to be provided by the framework developer when 

the reusable test cases are generated, they need to be provided once and not every time an 

application is developed. These elements are the hook descriptions, the values of the 

parameters of the methods invoked in the test cases, the pieces of code required to satisfy 

the predicates of the transitions, and the specifications of the non-event-driven transitions. 

In addition, stubs used to isolate the FICs to perform class testing and testing oracles for 

the generated test cases are reusable. All the reusable testing elements can be provided 

with the framework to reduce the testing cost at the application development stage. The 

way of using the test cases at the application development stage has to be easy and 

straightforward to ensure considerable cost savings are realized when the application is 

tested.
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Chapter 4 Using Reusable Class-Based Test Cases

4.1. Introduction
This chapter introduces an effective way to use the reusable class-based test cases. 

When application developers use FICs to implement their applications, they deal with the 

specifications of the FICs introduced by the hooks in three ways: (1) use them as defined, 

(2) Ignore specifications for the behaviors that are unnecessary in implementing the 

application requirements, and (3) add new specifications for the added behaviors to meet 

the application requirements. This way of using the FIC specifications creates the 

following five main problems that have to be solved to apply the reusable test cases 

effectively. The problems are discussed in the subsequent sections.

1. How to find and discard the test cases for the ignored specifications.

2. How to map the names of the implemented FIC methods to the names of the FIC 

methods introduced in the hooks and used in the reusable test cases.

3. How to test the different implementations of the same FIC method introduced in 

the hooks.

4. How to deal with the flexibility that the user has in modifying the parameters of 

the FIC methods introduced in the hooks.

5. How to test the new specifications added by the application developers.

4.2. Tackling the Ignored Specifications Problem
Application developers have the flexibility to ignore FIC specifications introduced by 

the hooks if these specifications are unnecessary in implementing the application 

requirements. The transitions that model the ignored specifications have to be removed 

from the FIC state-model. The all paths-state coverage technique produces test cases such 

that if a transition is removed and, therefore, test cases are broken, the remaining test 

cases still cover the remaining used transitions. Therefore, no test cases should have to be 

created to test any of the reused transitions.
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To find the broken test cases, it is required to associate the identifiers of the test cases 

with the FIC model transitions that they cover at the framework development stage. The 

procedure given in Figure 4.1 shows how to associate the identifiers of the test cases with 

the FIC transitions. Steps 1 and 2 of the procedure associate with each edge in the all 

paths-state tree, the identifiers of the test cases that cover the paths that contain the edge 

in the tree. Steps 3 and 4 associate the identifiers of the test cases with the transitions of 

the FIC model by mapping the edges of the tree to the transitions of the FIC model.

Inputs: The FIC state-based model, corresponding all paths-state tree, and 

corresponding generated test cases.

Output: FIC state-based model with test case identifiers associated with the model 

transitions.

Procedure:

1. Assign the empty set s of the test case identifiers to each edge in the all paths-state 

tree.

2. For each path in the all paths-state tree do

2.1. Add the identifier of the test case that traverses the path to the set 5  of each 

edge in the path.

3. Assign an empty set e of the test case identifiers to each transition in the FIC 

testing model.

4. For each edge I in the all paths-state tree do

4.1. Search for the corresponding transition t in the FIC testing model.

4.2. et = et \J Si

Figure 4.1: Associating the test case identifiers to the transitions of the FIC model

In our concrete example, each path in the tree shown in Figure 3.9 is used to build a 

test case as discussed in Section 3.3. Table 4.1 shows the test case identifiers and the 

corresponding paths of the tree. Figure 4.2 shows the resulting all paths-state tree when 

the test case identifiers are assigned to its edges according to the first two steps of the 

procedure shown in Figure 4.1. For example, the edge from the node labeled Frozen to
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the node labeled Inactive in the path (Alpha->Open->Frozen->In active) in the tree shown 

in Figure 4.1 is associated with the test case identifiers 8, 9, 10,. and 11 because the edge 

is contained in the tree paths covered by these test cases. Figure 4.3 shows the resulting 

STD of the NewAccount FIC when the test case identifiers are assigned to the transitions 

according to steps 3 and 4 of the procedure shown in Figure 4.1. For example, the 

transition from Frozen to co states is represented twice in the all paths-state tree shown in 

Figure 4.2 by edges covered by the test cases that have identifiers 13 and 17, respectively. 

Therefore, the transition is associated with a set of test case identifiers {13,17}. The test 

case identifiers associated to each transition are shown also in the fifth column of Table

4.2.

Test case 
identifier

Path

1 a , open, open
2 a, open, open
3 a, open, overdrawn, overdrawn
4 a, open, overdrawn, overdrawn
5 a, open, overdrawn, open
6 a, open, overdrawn, o>
7 a, open, open
8 a, open, frozen, inactive, inactive
9 a, open, frozen, inactive, open
10 a, open, frozen, inactive, frozen
11 a, open, frozen, inactive, o)
12 a, open, frozen, open
13 a, open, frozen, to
14 a, open, frozen, frozen
15 a , open, inactive, frozen, inactive
16 a, open, inactive, frozen, open
17 a, open, inactive, frozen, m
18 a, open, inactive, frozen, frozen
19 a , open, inactive, open
20 a , open, inactive, 0 )
21 a , open, inactive, inactive
22 a, open, to

Table 4.1: identifiers of the test cases built from the paths of the tree of Figure 3.9.
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Figure 4.2: All paths-state tree of the NewAccount FIC with identifiers of the test

cases assigned to the edges
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Figure 4.3: The STD of Figure 3.4 with identifiers of the test cases assigned to the

transitions
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Transition
Identifier

Event Source
state

Destination
state

Test cases 
identifiers

Test cases 
identifiers after 

removing 
(frozen,inactive) 

transition
1 New Account a open 1-22 1-7,12-14,16-22
2 balance open open 1 1
3 balance overdrawn overdrawn 3 3
4 balance inactive inactive 8,21 21
5 balance frozen frozen 14,18 14,18
6 deposit open open 2 2
8 deposit overdrawn open 5 5
9 deposit overdrawn overdrawn 4 4
10 withdraw open open 7 7
11 withdraw open overdrawn 3-6 3-6
12 freeze open frozen 8-14 12-14
13 freeze inactive frozen 10,15-18 16-18
14 unfreeze frozen open 12,16 12,16
15 activate inactive open 9,19 19
16 open 0) 22 22
17 overdrawn CO 6 6

G
O inactive CO 11,20 20

19 frozen CO 13,17 13,17
20 open inactive 15-21 16-21
21 frozen inactive 8-11,15

Table 4.2: Test case identifiers associated with the transitions of the STD of Figure 3.4.

At the application development stage, when the application developer ignores FIC 

specifications, the transitions in the testing model corresponding to the ignored 

specifications are removed. In addition, the transitions no longer contained in any path 

from Alpha to Omega states are removed. The broken test cases are the ones whose 

identifiers are associated with the removed transitions.

Let us look at an example. Suppose the application developer decides to remove the 

transition that has identifier 21 in Table 4.2. From the fifth column of Table 4.2 we see 

that the test cases that have identifiers 8, 9, 10, 11, and 15 cover the deleted transition 

and, therefore, they are broken. The identifiers of the broken test cases have to be
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removed from all cells in the fifth column of Table 4.2. The results of these removals are 

shown in the last column of Table 4.2. The table shows that each of the remaining 

transitions is covered by at least one test case.

In conclusion, in order to detect the broken test cases it is necessary to provide the 

framework with the FIC models that have test case identifiers associated with their 

transitions.

4.3. Tackling the Renaming Problem
One of the problems in reusing the test cases is that the test cases use the method 

names introduced by the hooks, while the actual implementation to be tested uses method 

names introduced by the application developer. For example, when the application 

developer of the banking system framework implements the NewAccount class he can 

rename it MyAccount and change some of the names of the class methods as shown in 

Table 4.3. Test cases generated at the framework development stage would not use the 

new class and method names and, therefore, could not be reused as-is directly.

Method declaration in 
Banking System 

framework hooks

Method declaration in 

MyAccount class

NewAccount(float) MyAccount(float)
deposit(float) USdeposit(float)

EURdeposit(float)
withdraw(float) withdraw 100() 

withdraw(float)
balance() getBalanceQ
freeze() freeze()
unfreezeQ unfreeze()
activate() activate()

Table 4.3: Method-name-mapping table for the MyAccount class

To solve this problem, a mapping class that has the same name as the FIC class 

defined in the hooks has to be built. The mapping class inherits the implemented class 

(e.g., the MyAccount class) and its methods map the methods introduced by the
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framework hooks to the ones used in the actual implementation of the class. The mapping 

is achieved by using a method-name-mapping table as illustrated in Table 4.3. Given the 

method-name-mapping table, the generation of the mapping class is straightforward and 

can be easily automated: whenever a method listed in the first column of the method- 

name-mapping table is invoked by a test driver (i.e., implementation of a test case), the 

invoked method in the mapping class invokes the corresponding method listed in the 

second column of the table. For example, Figure 4.4 shows the NewAccount mapping 

class that uses the method-name-mapping table shown in Table 4.3.

public class NewAccount extends MyAccount { 
public NewAccountffloat amount) { 

super(amount);
}
public float balance() {

return getBalance();
}
public void deposit(float amount) {

switch((new DRIVER_MyAccount()).getSwitchkey()) {
case 1:USdepos ite(amount); 

break;
case 2 :EURdeposit(amount) ; 

break;
}

}
public void withdraw!float amount) {

switch!(new DRIVER_MyAccount()).getSwitchkey()) { 
case 1:super.withdraw(amount); 

break;
case 2 :  super.withdrawlOO(); 

break;
}

}
public void freeze() {

super.freeze{);
}
public void unfreeze() {

super.unfreeze() ;
}
public void activate(} {

super.activate{);
>

Figure 4.4: NewAccount mapping class

In the MyAccount class, the constructor method is renamed to match the name of the 

new class name as shown in Table 4.3. Therefore, when test drivers call the NewAccount 

constructor method, the MyAccount constructor method is called. In Java, the renaming
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problem is not a problem for the constructor methods, because the constructor method of 

the superclass is always invoked using the super keyword regardless of the superclass 

name. However, the problem has to be solved as illustrated above when methods other 

than the constructor method are renamed. For example, the balance method is renamed 

getBalance in the MyAccount class. When test drivers call the balance method of the 

NewAccount class, the method invokes the getBalance method as shown in Figure 4.4.

The mapping class is useful also when the application developer does not implement 

an instance variable introduced in a hook description and the variable access method. If 

the access method of the instance variable is used in the reusable test drivers to check the 

state-invariants and not contained in the implemented FIC, the reusable test drivers would 

not compile. In this case, the access method of the instance variable has to be 

implemented in the mapping class. The method returns any value accepted at any of the 

original FIC model states remaining in the modified model. For example, suppose the 

application developer who uses the NewAccount FIC does not implement the frozen 

instance variable and its access method isFrozen(). This causes the Frozen state and the 

transitions associated to it to be removed from the STD shown in Figure 3.4. Despite the 

fact that Test Case #  1 shown in Figure 3.17 does not cover any of the removed 

transitions, it does not compile because it uses the isFrozen method not contained in the 

implemented FIC to check the state-invariants. To solve this problem, the mapping class 

should implement the isFrozen method as follows: 

public boolean isFrozen()( return false; }

The method returns false because false is the accepted value of the frozen instance 

variable in the STD states shown in Figure 3.4 and remaining in the model that represents

the implemented FIC.

In conclusion, we can reuse the test drivers generated at the framework development 

stage as-is (i.e., without modifying them) by using a mapping class which maps the 

methods invoked in the test drivers to the methods used in the actual implementation of

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



the FIC. In addition, the mapping class implements access methods used in the test 

drivers to check the state-invariants and not contained in the implemented FIC.

4.4. Tackling the Different Implementations of a FIC Method Problem
In some cases, the application developer can decide to have different implementations 

for a method introduced by the hooks. For example, suppose that the application 

developer of the MyAccount class decides to have two implementations for the deposit 

method introduced by the banking framework hooks: one for depositing US money and 

the other one for depositing EUR money. These different implementations have common 

preconditions and postconditions introduced by the hooks because they are constructed 

using the same hooks. The different implementations can have the same method name but 

different parameters, or they can have the same parameters but different method names.

To test the different implementations, the test drivers that test the method should be 

exercised as many times as the number of implemented versions of the method. To do so, 

a SwitchKey global variable accessed by both the mapping class and the class that 

invokes the test drivers is used to keep track of the order of the version to be called when 

the test drivers are exercised.

As an example, suppose that the application developer of the MyAccount class 

implements two versions of the deposit method as indicated earlier in Table 4.3. Each 

version has a different method name. However, both versions have common 

preconditions and postconditions provided in the hooks for the deposit method and, 

therefore, the reusable test cases generated for the deposit method have to be applied for 

both implemented versions. Thus, the following code is included in the NewAccount class 

as shown in Figure 4.4:

public void deposit(amount) {

switch((new DRIVER JMyAccount). getSwitchkey()) { 

case 1: USdeposit( amount); 

break;

case 2:E(JRdeposit(amount);
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break;

}

}

In the above code, the return value of the getSwitchKey method is used to determine 

at run time which deposit method implementation to invoke. The getSwitchKey method is 

defined in the driver class that invokes the test drivers as will be illustrated in Section 4.7.

This way of testing the different implementations of the same FIC method allows for 

reusing the test drivers generated at the framework development stage as-is to test the 

different implementations of the FIC methods. No test drivers have to be created from 

scratch to solve the problem, thereby reducing the application class testing time.

4.5. Tackling the Method Parameter Update Problem
Application developers have the flexibility to add or remove parameters from the 

parameter list of the FIC methods introduced by the hooks as long as they do not change 

the preconditions and postconditions introduced in the hooks. When an application 

developer removes one or more parameters from the implemented version of the method 

introduced by a hook, the unused parameters are just ignored at the time the test drivers 

invoke the method introduced by the hook. As an example, suppose that the MyAccount 

class is implemented. In the implemented version of the withdraw method, the parameter 

of the withdraw method introduced by the hook is removed to restrict withdrawals to only 

a fixed amount of money. In the implementation of the withdraw 100 method, the 

application developer decides to pass the parameter value hard-coded to the 

super.withdraw method as follows:

public class MyAccount extends Account {

public void withdraw 100() { 

supe r.withdraw! 100);

I

}
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In this case, as shown in Figure 4.4, the NewAccount mapping class ignores the 

parameter value passed to the withdraw('float) method of the class when the 

withdraw 100() method is invoked.

When the application developer adds more parameters to the parameter list of a method 

introduced by a hook, the application developer has to pass a hard-coded value to the 

added parameters when the method is invoked in the class that inherits the implemented 

class. The application developer has to determine the values to be passed to such 

parameters. If more than one test value has to be exercised, the application developer has 

to find the test drivers that invoke the method and execute them with the other test values 

of the parameter.

In conclusion, instead of modifying the reusable test drivers, the application developer 

can use the mapping class to solve the method parameter update problem, which reduces 

the cost of using the test drivers at the application development stage. However, in some 

cases, changing the parameters of the methods introduced by the hooks implies adding 

more constraint preconditions. In such cases, the application developer has to add 

manually these more constraint preconditions as predicates to the transitions that invoke 

the methods.

4.6. Tackling the Test Case Augmentation Problem
To develop an application using a framework, the application developers implement 

the FICs. The specifications of the implemented FICs have two sources: (1) the 

specifications introduced at the framework development stage in the hooks and (2) the 

specifications of the new methods added to the FICs. The latter specifications are added 

at the application development stage and, therefore, have no reusable test cases to cover 

them. Covering these specifications may require augmenting reusable test cases or 

creating new test cases from scratch.
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The placement of the transitions that model the added specifications determine 

whether covering the added specifications requires augmenting reusable test cases or 

creating test cases from scratch. If alpha is the source state of an added transition or all 

the paths from the alpha state to the source state of the added transition consist of only 

added transitions (i.e., as shown in Figure 4.5(b)), covering the added transition requires 

creating a test case from scratch. Otherwise (i.e., as shown in Figure 4.5(a)), covering the 

added transition can be achieved by augmenting a reusable test case.

Added transitions

Added state

(a .l) STD

(a.2) The round-trip path tree 
o f the STD

(a) Adding a  new transition
that requires a test case 

augmentation

(b .l)S T D

(b.2) The round-trip path tree 
o f  the STD

(b) Adding new transitions 
that require test case creations

Figure 4.5: Possible placements of the added transitions

The procedure given in Figure 4.6 illustrates how to augment and create test cases to 

cover the added transitions. In this procedure, a round-trip path tree [Binder 99] is built as 

illustrated in the procedure given in Figure 4.7 for the modified state-transition model 

(i.e., the model that contains the added transition) and the non-broken test case identifiers 

associated with the model transitions are associated with the corresponding tree edges. 

The procedure either builds new test cases or augments reusable test cases to cover the 

added transitions represented in the tree by edges not associated with any test case 

identifiers.
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Inputs: The state-based model of the implemented FIC and the non-broken test cases. 
Outputs: Test cases that cover the added transitions.
Procedure:
1. Build a round-trip path tree for the specification state-transition model of the 

implemented FIC according to the procedure given in Figure 4.7.
2. Associate the non-broken test case identifiers to the edges of the round-trip path 

tree as illustrated in steps 1 and 2 of the procedure given in Figure 4.1.
3. Pick an edge I not associated with any test case identifier
4. Count the number np of the root-leaf tree paths that contain the edge I.
5. If the source node of the edge is reached by an edge k  with which test case 

identifiers are associated then
5.1. Pick one of the test cases that its identifier is associated with the edge k.
5.2. Make np copies of the test case and give each of them different identifier.
5.3. for each copy t of the test cases do

5.3.1. Give the test case a new identifier.
5.3.2. In the implementation of the test case (i.e., test driver), search for the 

statement s corresponding to the event associated with the edge k.
5.3.3. Remove all invocation statements after the statement s.
5.3.4. Select one of the np tree paths that some of its edges are not

associated with test case Identifiers.
5.3.5. Associate the edges of the selected tree path with the new identifier

of the test case t.
5.3.6. Insert the invocation statements for the events associated with the 

edges that follow the edge k in the selected tree path.
6. else if the edge I is initiated from the root node of the tree do

6.1. Create np test cases from scratch. Each test case covers one of the np tree 
paths that contain the edge I.

6.2. Associate the edges of the paths with the identifiers of the test cases that 
cover the edges.

7. Repeat step 3, 4, 5, and 6 until each of the edges in the tree is associated with at 
least one test case identifier.

Figure 4,6: Constructing test cases to cover added transitions
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If the source node of the edge k not associated with test case identifiers is reached by 

an edge associated with a test case identifier (i.e., as shown in Figure 4.5(a)), the test case 

is augmented to cover the added transition represented by the edge k. Otherwise, if the 

source node of the edge represents the alpha state (i.e., as shown in Figure 4.5(b)), a test 

case is created from scratch to cover the added transition represented by the edge k. 

Whenever a test case is augmented or created from scratch, the tree edges that represent 

the transitions covered by the test case are associated with the identifier of the test case. 

The procedure terminates when each of the edges of the tree is associated with at least 

one test case identifier.

Input: A class state-based testing model
Output: The round-trip path tree of the class model.
Procedure:
1. The initial state is the root node of the tree. Use the alpha state if multiple

constructors produce behaviorally different initial states.
2. Search for a state that corresponds to non-terminal leaf node in the tree.
3. Examine each outgoing transition from the state. At least one new edge will be

drawn for each outgoing transition from the state. Each new edge and node
represents an event and resultant state reached by an outgoing transition.
a. If the transition is unguarded, draw one new branch.
b. If the transition guard is a simple predicate or a complex predicate composed 

of only AND operators, draw one new branch.
c. If the transition guard is a complex predicate using one or more OR operators, 

draw a new . branch for each truth value combination that is sufficient to make 
the guard TRUE.

4. For each edge and node drawn in Step 2:
a. Note the corresponding transition event, guard, and action information on the 

new edge.
b. If the state that the new node represents is a final state or the state is 

represented somewhere else in the tree, mark this node as a terminal -  no more 
transitions are drawn from this node. Otherwise, mark it as non-terminal.

5. Repeat steps 2, 3, and 4 until all leaf nodes are marked terminal.

Figure 4.7: Constructing round-trip path tree [Binder 99]
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Let us look at an example. Suppose the application developer decides to develop the 

MyAccount FIC and to add a method that inactivates an overdrawn account. This new 

specification is modeled in the STD of Figure 3.4 by a transition from the overdrawn 

state to the inactive state. Following steps 1 and 2 of the procedure given in Figure 4.6, as 

shown in Figure 4.8, we construct the round-trip path tree of the modified model and 

associate the edges of the tree with test case identifiers according to the STD shown in 

Figure 4.3. In Step 3 of the procedure, we pick the edge that represents the added 

transition because it is not associated with any test case identifier. According to Step 4, 

the number of paths that contain the edge is one. The source node of the edge is reached 

by an edge k associated with test case identifiers: 3, 4, 5, and 6. In steps 5.1 and 5.2, we 

pick the test case identifier 3 and make a copy of it to be augmented. Figure 4.9 shows 

the Java implementation of the test case. The augmented version of the test case is shown 

in Figure 4.10. The identifier of the augmented test case is 23. According to Step 5.3.2, 

the statement that corresponds to the event associated with the edge k is in line 13 of the 

code listed in Figure 4.9 and, therefore, we apply Step 5.3.3 to remove any code 

statement after line 13 (i.e., statements in lines 17-21). In steps 5.3.4 and 5.3.5 of the 

procedure, we associate all the edges in the tree path that contains the edge that represents 

the added transition with the test case identifier 23 (i.e., the identifier of the augmented 

version of the test case). Finally, according to Step 5.3.6, we insert the invocation 

statement of the inactivate method as shown in line 22 of the code listed in Figure 4.10.
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Figure 4.8: The round-trip path tree of the modified version of the STD shown in Figure

4.3

1 public class TEST3_NewAccount{
2 public TEST3_NewAccount{){
3 /* Test transition: source state: Alpha, sink state: Open, event:
4 NewAccount(amount), predicates: amount>=0 */
5 float amount=l;
6 NewAccount o = new NewAccount(amount);
7 /** Sassert((o.balance()>=0) && ((o .getCurrentDate()-
8 o.getLastActivityDate())<o.getMaxPeriod()) && !(o.isFrozen ( ) ) ) * /
9
10 /* Test transition: source state: Open, sink state: Overdrawn,
11 event: withdraw(amount), predicates: (balance - amount)<0 */
12 amount=l+o.balance!);
13 o .withdraw(amoun t);
14 / * *  ©assert((o.balance()<0) && ((o.getCurrentDate()-
15 o.getLastActivityDate()}<o.getMaxPeriod()) && !(o.isFrozen()))*/
16
17 /* Test transition: source state: Overdrawn,sink state: Overdrawn,
18 event: balance!), predicates: none */
19 o.balance();
20 /** ©assert((o.balance()<0) && ((o.getCurrentDate()-
21 o.getLastActivityDate())<o.getMaxPeriod()) && !(o .isFrozen()))*/
22 }
23 }

Figure 4.9: The lava implementation of the test case that has identifier 3
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1 public class TEST23_NewAecount{
2 public TEST23_NewAccount(){
3 /* Test transition: source state: Alpha, sink state: Open, event:
4 NewAccount(amount}, predicates: amount>=0 */
5 float amount=l;
6 NewAccount o = new NewAccount(amount);
7 /** ©assert((o.balance()>=0) && ((o.getCurrentDate()-
8 o.getLastActivityDate())<o.getMaxPeriod{}) && !(o.isFrozen()))*/
9
10 /* Test transition: source state: Open, sink state: Overdrawn,
11 event: withdraw!amount), predicates: (balance - amount)<0 */
12 amount=l+o.balance();
13 o.withdraw(amount);
14 /** ©assert((o.balance()<0) && ((o.getCurrentDate()-
15 o.getLastActivityDate())<o.getMaxPeriod()) && ! (o . isFrozen{)))*/
16
17 /* The following code implements the difference between the test
18 * driver shown in Figure 4.9 and the augmented version of the
19 * test driver */
29 /* Test transition: source state: Overdrawn,sink state: Overdrawn,
21 event: inactivate(), predicates: none */
22 o .inactivate();
23 /** ©assert((o.balance()<0) && ((o .getCurrentDate()-
24 o.getLastActivityDate())>=o.getMaxPeriod() ) && !(o.isFrozen()))*/
25 }
26  }

Figure 4.10: The augmented version of the implementation of the test case shown in

Figure 4.9

4.7. Invoking Test Drivers
Finally, it is required to build a driver class for each implemented FIC to invoke the 

non-broken reused as-is, augmented, and new test drivers that test the FIC. If the 

switchKey global variable is required to allow for testing the different implementations of 

a FIC method as illustrated in Section 4.4, the variable is defined as a global variable in 

the driver class. In Java for example, the switchKey variable is declared private and static 

and an access method is implemented to get the variable value. For example, part of the 

driver class for the MyAccount test drivers is shown in Figure 4.11. As indicated in 

Section 4.4, the deposit method introduced in the hooks has two different 

implementations in the MyAccount FIC. Therefore, as shown in Figure 4.11, the driver 

class declares the switchKey instance variable and its access method (i.e., 

getSwitchKeyO). From the second and fifth columns of Table 4.2, it is found that deposit 

method is covered using the test cases that have identifiers 2, 4, and 5. As depicted in 

Figure 4.11, the test cases that have identifiers 2, 4, and 5 are exercised twice: once after
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the value of the switchKey variable is set to “1” and once after the value of the variable is 

set to “2”.

public class DRIVER_MyAccount{
private static int switchKey=l; 
public int getSwitchKey() {

return switchKey;
}
public static void main(String args[]){

/* switchKey is already set to 1 */
/* Invoking the test drivers that cover the first

implementation of the deposit method */
new TEST2_NewAccount();

new TEST4_NewAccount(); 
new TEST5_NewAccount();

switchKey=2;
/* Invoking the test drivers that cover the second

implementation of the deposit method */
new TEST2_NewAccount () 
new TEST4_NewAccount(); 
new TEST5_NewAccount{);

}
}

Figure 4.11: Part of the DRIVER_MyAccount class

Figure 4.12 shows the class diagram that represents the relation between the 

implemented FIC under test, the mapping class, the test drivers, and the driver class. The 

mapping class extends the FIC under test and the test drivers depend on the mapping 

class. Finally, the driver class depends on the test drivers. After implementing the driver 

class, the driver has to be executed to perform the actual testing.

4.8. Fault Detection
The reusable test cases are generated using the all paths-state technique. As stated in 

Property 3.1, the all paths-state coverage subsumes the round-trip path coverage in terms 

of state machine path coverage. At the application development stage, some of the 

reusable test cases are broken and cannot be used. Other reusable test cases are either 

used as-is or augmented. In some cases, new test cases are created from scratch to test 

new specifications. The following property compares the fault coverage of the resulting 

test cases applied at the application development stage to test the implemented FICs with

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



the fault coverage of the round-trip path test cases. In [Antoniol+ 02], it is shown that the 

round-trip path test cases are reasonably effective in terms of fault coverage (i.e., 87% 

average fault coverage). FICs are problem domain classes, which are often suitable for 

testing with the round-trip path technique [Binder 99].

ImplementedFIC

TestDriver#! TestDriver#2

hr

DriverClass

TestDriverik

Figure 4.12: The class diagram of the FIC under test and the classes required in testing

Property 4.1: After removing the broken test cases, augmenting some test cases, using 

some test cases as-is, and creating some test cases from scratch, the resulting test cases 

applied at the application development stage to test the implemented FICs have at least 

the same fault coverage as the round-trip path test cases.

Rationale: By definition, the all paths-state tree covers all simple transition sequences to 

each state in the state model. When a transition is deleted, the paths that include it are 

broken. Therefore, the rest of the paths in the resulting tree cover all simple transition 

sequences to each state in the state model except for the sequences that include the 

deleted transition. This means that the resulting tree covers all simple transition 

sequences to each state in the updated state model and, therefore, it is an all paths-state 

tree. Property 3.1 states that all paths-state coverage subsumes the round-trip path 

coverage in terms of path coverage. Therefore, for the used as-is transitions, the non- 

broken test cases covered by the resulting all paths-state tree have at least the same fault 

coverage as the round-trip path test cases that cover the reused transitions.
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The transitions added to the state model because of the new code added by the 

application developer are covered using round-trip path strategy as illustrated in Section

4.6. As a result, after removing the broken test cases, augmenting some test cases, using 

some test cases as-is, and creating some test cases from scratch, the resulting test cases 

applied at the application development stage to test the implemented FICs have at least 

the same fault coverage as the round-trip path test cases.

4.9. Summary
This chapter demonstrated how to use the reusable test cases by effectively 

addressing five problems that could prevent test case reusability. The chapter also 

demonstrated how to build a driver for the reusable test cases and showed that the 

resulting test cases have at least the same fault coverage as the round-trip path test cases. 

The proposed solutions fully automate the use of the test cases with the exception of the 

case involving added parameters introduced by the application developer to the methods 

introduced by the hooks. In this case, the application developer has to provide test data 

for the added parameters.

All paths-state coverage technique builds redundant test cases in the sense that all 

transitions covered by a test case can be covered by other test cases. For example, as 

shown in Table 4.2, the test case number 15 covers the transitions that have identifiers 1, 

13, 20, and 21. These transitions are covered by other test cases such as 1, 10, 16, and 8 , 

respectively. However, none of the redundant test cases are identical in the sense that the 

test cases that cover the same transitions exercise the transitions using different paths. 

Therefore, the redundant reusable test cases generated using all paths-state technique 

have different fault detection capabilities and none of them should be removed at the 

application development stage except for the broken ones.
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Chapter 5 Case Studies

This chapter describes experimental studies of the relationship between the type of 

the framework and the use of the FICs in the framework applications to assist the 

framework developer in deciding whether to build reusable test cases for the FICs or not. 

Moreover, the case studies evaluate the proposed techniques with regard to test case 

reusability and specification coverage in terms of the number of transitions in the state 

model. In the evaluation, the practicality of the proposed test case generation and use 

technique is shown using several examples. Finally, an empirical evaluation is conducted 

to study the degree of coverage for the specifications of the implemented FICs, in terms 

of the number of transitions in the state model, achieved using test cases generated using 

the all paths-state technique comparing to test cases generated using the round-trip path 

and the all-transitions techniques.

Fifteen applications developed using the following four frameworks were considered 

in the case studies: Client-Server Framework (CSF) [CSF], Swing [Swing], SalesPoint 

[SalesPoint], and WaveFront pattern frameworks [WaveFront Documentation]. CSF and 

Swing are application frameworks, while SalesPoint and WaveFront pattern frameworks 

are domain frameworks.

CSF is a communications framework written in Java and developed to support the 

building of relatively small applications that require client-server or peer-to-peer 

communication support. CSF also provides persistent storage capabilities and can handle 

communications over a TCP/IP connection using a model similar to email. CSF deals 

with synchronous and asynchronous messages sent between remote objects. The 

framework code consists of 38 classes and about 1.4K lines of code (without 

comments/blank lines). CSF hooks describe the behavior of ten FICs and show how they 

can be implemented or customized.

Swing is a Java framework developed to support GUI applications. In Java 1.3.1, 

Swing consists of 460 classes but no documented hooks are available. As we will explain
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later in Section 5.1.2, the FICs for this framework were derived from an analysis of the 

application set used in the first case study.

SalesPoint is a framework written in Java and developed to create point-of-sale 

simulation applications such as a ticket vending machine application or a big supermarket 

with many departments application. The framework supports the management of the 

relations between the business, the customers, and the administrative tasks like 

accounting. The SalesPoint framework consists of 161 classes and it is provided with 

hooks that describe the behavior of 78 FICs.

WaveFront pattern frameworks support the computation of dependent elements. The 

frameworks are generated from the WaveFront Pattern (WFP) using the CO2P3S parallel 

programming system [McDonald+ 97]. Two relatively small WaveFront pattern 

frameworks are considered. Each of them consists of six classes and about 200 lines of 

Java code (without comments/blank lines). For each of them, three hooks were provided 

to document the way of using the framework. The hooks of each framework describe the 

behavior of two FICs and show how they can be implemented or customized.

5.1. Case Study 1: Generating Reusable Test Cases For Framework 

Applications: Is It Worth It?

5.1.1. Introduction

In this section, we measure the application class testing cost reduction using the 

reusable test cases generated at the framework development stage. The cost reduction is 

measured in terms of the number of implemented FICs in the applications and their total 

number of lines of code (LOG) in comparison to the total number of classes implemented 

at the application development stage and their total number of lines of code (LOC). We 

count the number of LOC because it is a commonly used measurement for the size of 

code.
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The case study was conducted using thirteen randomly selected applications 

developed using three frameworks: CSF, Swing, and SalesPoint. The former two 

frameworks are application frameworks while the latter one is a domain framework. The 

WaveFront frameworks are not used in this case study because their applications have 

relatively small number of classes and, therefore, the results of applying the case study 

analysis on them are not expected to be representative.

The results of the case study show that the percentage of use of the FICs in the 

applications constructed using the domain framework is, on average, much higher than 

the percentage of use of the FICs in the applications built using the application 

frameworks. As a result, the reduction in class testing cost of the applications constructed 

using the domain frameworks is, on average, much higher than the reduction in class 

testing cost of the applications built using the application frameworks.

5.1.2, Case study set-up

Performing the analysis required in this case study for relatively large number of 

applications requires exhaustive effort. Therefore, the case study was conducted using 

thirteen randomly selected applications out of a pool of 39 applications. Five of the 

applications use one framework and eight applications use two frameworks. As shown in 

tables 5.1-5.4, the applications use the following frameworks: one application uses CSF 

only, two applications use the Swing framework only, two applications use the SalesPoint 

framework only, four applications use CSF and the Swing framework, and four 

applications use the SalesPoint and Swing frameworks. The contents of these tables will 

be explained in greater detail in the next two subsections.

The CSF applications were developed by fourth-year undergraduate students at the 

University of Alberta. The SalesPoint framework applications were developed by second- 

year undergraduate students at the University of the Federal Armed Forces Munich. 

Finally the Swing applications were developed by a combination of the second and 

fourth-year undergraduate students, in conjunction with their application development 

activities on CSF and SalePoint.
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For each application, the classes implemented at the application development stage 

were counted. The number of classes does not include the number of framework classes. 

In addition, the number of LOC of the counted classes is also counted. These two figures 

were counted using the LOCC tool [LOCC]. LOCC is a Java tool that produces size data 

corresponding to the number of packages, the number of classes in each package, the 

number of methods in each class, and the number of lines of code in each package, class, 

and method. The LOCC tool does not count comments and blank lines as part of the lines 

of code. Tables 5.1, 5.2, and 5.3 show the application name, the total number of 

application classes not including framework classes, and the number of lines of code 

(LOC) of each application. The FICs included in the applications were counted manually. 

Since the Swing framework has no associated hooks, we used the definition of FIC stated 

in Section 1.2 to find the implemented FICs and count them. Every class in the 

considered applications that extends or uses a Swing class is an implemented FIC. For 

each application developed using the Swing framework, we counted the implemented 

Swing FICs. Finally, the total number of LOC for the FICs is the summation of the LOC 

of each of the FICs counted using LOCC tool.

5.1.3. Case study results

For each application, the first column of tables 5.1, 5.2, and 5.3 shows the name of the 

application. The second column shows the number of application classes not including 

the framework classes. The third column shows the number of LOC of the classes 

counted in the second column. The fourth column shows the number of FICs 

implemented in the application and the percentage of the number of FICs in the 

application. The last column shows the total number of LOC of FICs and the percentage 

of the number of LOC of the FICs in the application.

For applications developed using application frameworks, Table 5.1 shows that an 

average of 41.4% of the classes of the CSF applications are FICs. In terms of LOC, an 

average of 28.3% of the LOC of the CSF applications are for FICs. Table 5.2 shows that 

an average of 14.9% of the classes of the Swing framework applications are FICs. In
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terms of LOC, an average of 13.9% of the LOC of the Swing framework applications are 

for FICs. For applications developed using domain frameworks, much higher percentage 

averages were found. Tabie 5.3 shows that an average of 68.5% of the classes of the 

SalesPoint framework applications are FICs. In terms of LOC, an average of 75.5% of the 

LOC of the SalesPoint framework applications are for FICs.

Application Name Number of
classes

Number of 
LOC

Number of 
FICs

Number of
LOC in FICs

Student management system 47 3887 31 (66%) 1568 (40.3%)
Chatting system 55 7464 3 (5.5%) 179 (2.4%)
Course management system 44 3191 17 (38.6%) 667 (20.9%)
StoneClash Strategy Game 106 5324 56 (52.8%) 2050 (38.5%)
Army Game 149 8792 66 (44.3%) 3449 (39.2%)
Average 80.2 5731.6 41.4% 28.3%

Table 5.1: Applications developed using CSF

Application Name Number of 
classes

Number of 
LOC

Number of 
FICs

Number of 
LOC in FICs

Hook Master 112 10520 9 (8%) 611 (5.8%)
Java Master 66 3846 4(6.1%) 251 (6.5%)
Chatting system 55 7464 21 (38.2%) 2639 (35.4%)
Course management system 44 3191 7 (15.9%) 425 (13.3%)
StoneClash Strategy Game 106 5324 23 (21.7%) 2117 (39.8%)
Army Game 149 8792 15 (10.1%) 1797 (20.4%)
Tiler shop system 39 3114 4 (10.3%) 159 (5.1%)
Photo-service system 76 8831 10(13.2%) 493 (5.6%)
Casino system 41 8859 2 (4.9%) 69 (0.8%)
Pizza shop system 59 4516 12 (20.3%) 182 (4%)
Average 74.7 6445.7 14.9% 13.7%

Table 5.2: Applications developed using the Swing framework

Application Name Number of
classes

Number of 
LOC

Number of 
FICs

Number of 
LOC in FICs

Fast food shop system 18 i 161 13 (72.2%) 890 (76.7%)
Tiler shop system 39 3114 28 (71.8%) 2174 (69.8%)
Photo-service system 76 8831 41 (53.9%) 6659 (75.4%)
Casino system 41 8859 25 (60.1%) 5042 (56.9%)
Golf club system 50 5041 45 (90%) 4821 (95.6%)
Pizza shop system 59 4516 37 (62.7%) 3534 (78.3%)
Average 47.2 5253.7 68.5% 75.5%

Table 5.3: Applications developed using the SalesPoint framework
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5.1.4. Using multiple frameworks

When multiple frameworks are used to build an application, the number of FICs Is 

equal to the summation of the number of FICs created using the hooks of each of the 

frameworks. In our case study, eight applications use two frameworks. Table 5.4 shows 

the application names, used frameworks, the total number of FICs, and their total LOC. 

The last row of the table calculates the average of the total number of FICs by summing 

the percentages of the corresponding columns in tables 5.1, 5.2, and 5.3 and dividing the 

result by the total number of summed percentages. The same calculation method is 

applied for the total number of LOC of the .FICs in the last row of the table.

Table 5.4 shows, not surprisingly, that the average of the total number of FICs 

counted by considering all the frameworks used in the applications is much higher than 

the average obtained by considering only one of the used frameworks for each 

application. A similar result is found for the total number of LOC in the FICs. This means 

that if an application uses multiple frameworks, considering the reusable test cases of all 

of the used frameworks in an application can reduce the class testing time more, on 

average, than considering the reusable test cases of one framework only.

Application Used frameworks Total number 
of FICs

Total number of 
LOC in FICs

Chatting system Swing & CSF 24 (43.6%) 2818 (37.8%)
Course management
system

Swing & CSF 24 (54.5%) 1092 (34.2%)

StoneClash Strategy 
Game

Swing & CSF 79 (74.5%) 4167 (78.3%)

Army Game Swing & CSF 81 (54.4%) 5246 (59.7%)
Tiler shop system Swing and SalesPoint 32 (82.1%) 2333 (74.9%)
Photo-service system Swing and SalesPoint 51 (67.7%) 7152 (81%)
Casino system Swing and SalesPoint 27 (65.9%) 5111 (57.7%)
Pizza shop system Swing and SalesPoint 49 (83.1%) 3716 (82.3%)
Average 64.6% 63.2%
Average using one
framework

32.8% 31.7%

Table 5.4: Framework applications that use multiple frameworks
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5.1.5. Conclusions

The case study examined the reusability of the FICs in several framework 

applications. The case study showed that a high percentage of the classes of applications 

developed using domain frameworks are FICs, while the percentage of the FICs in 

applications developed using application frameworks varies largely according to the 

specification domains of the framework and the applications. The results support the 

hypothesis that the reusability of the FICs in the applications developed using domain 

frameworks is likely to be greater than the reusability of the FICs in the applications 

developed using application frameworks. At the framework development stage, reusable 

test cases can be generated for the FICs to be used at the application development stage. 

As the percentage of the FICs increases in the application, the part of the application 

tested using the reusable test cases increases and the amount of testing work required at 

the application development stage reduces.

Typically, building reusable test cases is a costly task. The case study results indicate 

that it is worthwhile to build reusable test cases for applications developed using domain 

frameworks as the original investment will be recouped after producing a few number of 

framework applications. However, it might not be worthwhile to build reusable test cases 

for some application frameworks because of the relatively low percentage of the FICs in 

the applications developed using the frameworks. Finally, in cases involving multiple 

frameworks, the case study results show that considering the reusable test cases provided 

with all the frameworks used in an application can save more testing time than using the 

reusable test cases provided with one framework.

Application developers can add new specifications to the FICs at the application 

development stage. These specifications are not covered by the reusable test cases built at 

the framework development stage. This means that the reusable test cases can cover part 

of the implemented FICs but not all. In the next two case studies, we study the percentage 

of the specifications, in terms of the number of transitions in the state model, of the 

implemented FICs covered by the reusable test cases.
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5.2. Case Study 2: Testing CSF Applications
This section evaluates the proposed test case generation and use techniques in terms 

of practicality and reusability of test cases using five CSF applications. First, it discusses 

a concrete example from one of the CSF applications. The example shows how the 

proposed test case generation technique can be used to generate reusable test cases for 

FICs of the CSF applications and shows how to use the test cases to test an implemented 

FTC. In addition, the case study considers five CSF applications and measures the 

percentage of the tested specifications of the implemented FICs using the reusable test 

cases. The tested specifications are measured in terms of the number of covered 

transitions in the state-transition testing model that specifies the FIC behavior. The results 

show that, on average, a relatively high percentage of the testing model transitions of the 

implemented FICs in the CSF applications are covered using the reusable test cases 

determined at the CSF development stage, which therefore reduces the testing time 

considerably for these applications. The introduced techniques in this thesis are applied 

for the CSF and its applications manually, which takes considerable time. However, the 

tool introduced in Chapter 6  can automate a large portion of the testing process, which 

reduces the time required for applying the techniques.

5.2.1. Generating reusable test drivers for CSF

The CSF hooks describe the behavior of ten FICs and show how they can be 

implemented or customized. However, the set of available hook descriptions does not 

describe how to use all the methods of the extended framework classes, which forced us 

to read the Javadoc document of the extended framework classes and even to go through 

the framework code and communicate with the framework developer to write the 

preconditions and postconditions of the FIC methods inherited from the framework 

classes and not specified in the CSF hook descriptions. Specifically, the set of available 

hook descriptions define 6 6  methods for the ten FICs out of 122. After that, we have 

followed the rules explained in Section 3.2 to synthesize manually the testing models for 

the ten FICs. The synthesized models consist of a total of 94 states and 2261 transitions. 

Finally, we have determined the paths required to build the test cases using the all paths- 

state technique. The actual test cases were not built because they are not required to
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derive the required results and because it takes a considerable time, in the absence of a 

supporting tool, to build test cases for the complex CSF FICs using the all paths-state 

technique.

The most complex FIC example in the CSF is called NewCAO. The NewCAO FIC is a 

class defined in the CSF hooks to extend the CommAwareObject CSF class. The 

CommAwareObject framework class is used to create objects that can communicate 

across the network. It consists of seven public methods that operate on a private instance 

variable. The CSF hooks, which define the NewCAO class, also define 24 extra methods 

that operate on three additional private instance variables. Moreover, the hooks specify 

the name of the FIC (i.e., NewCAO), the names of the instance variables, the names of the 

methods, the method parameters, and the method specifications. The class state-based 

testing model synthesis technique was applied to build the class-testing model for the 

CommAwareObject class using the hook descriptions [CSF], as described in Section 3.2. 

The model consists of 50 states including alpha and omega states and 1820 transitions 

[NewCAO Model].

Figure 5.1 shows a test driver example generated using the all paths-state technique. 

The test driver checks whether the mail server of the NewCAO can be set as proposed by 

the framework hooks. The name of the test driver class TEST16_NewCAO consists of (1) 

the keyword TEST to indicate that the class is implemented for testing purposes, (2) the 

test driver identifier within the test suite of the NewCAO FIC, and (3) the name of the FIC 

for which the test driver is generated. The test driver class contains only a constructor 

method NewCAO() in which a state-transition model path consists of two transitions is 

traversed. In Line 3 of the test driver, the event associated with the first transition is 

implemented and, in Line 4, the state-invariants of the resulting state are checked. In Line 

5, the parameter of the event associated with the second transition is set and, in Line 6, 

the event is implemented. Finally, in lines 7 and 8, the action associated with the second 

transition and the state-invariants of the resulting state are checked.
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5.2.2. Testing CSF applications

In this case study, five CSF applications developed by fourth-year undergraduate 

students at the University of Alberta were randomly selected out of a pool of 15 

applications. In an application called Chatting System, the application developer 

implemented a NewCAO FIC. The implemented class is named MTA. This section shows 

the implementation and testing steps of the MTA class.

1 public class TEST16_NewCAO{
2 public TEST16_NewCAO{){
3 NewCAO o = new NewCAO();
4 /** ©assert((o.getlnbox()==null)&& (o .getOutbox==nul1)&&

(o.getMailServer()==null)&& ...) */
5 Address add=new Address (" server11, 3 029 , 11 inbx") ;
6 o.setMailServer(add)?
7 /** ©assert(o.getMailServer().getAddress().equals(add)) */
8 /** ©assert((o.getlnbox()==null)&& (o.getOutbox==null}&&

(o.getMailServer()!=null)&& ...) */
8 }
9 }

Figure 5.1: Sample test driver generated for the NewCAO FIC.

• Implementing the MTA class

As shown in Table 5.5, in MTA class, the application developer renamed some of the 

methods introduced by the hooks, removed some parameters of some methods, and 

reused the name of some methods as-is. The application developer did not use the rest of 

the methods defined in the CSF hooks in the MTA class implementation and, therefore, 

these methods are not included in Table 5.5. MTA class extends the CommAwareObject 

class and inherits its methods. The application developer customized some of the MTA 

methods built using the hooks and added two instance variables and seven methods to the 

MTA class. Figure 5.2 provides a partial listing of the code of the MTA class (i.e., the 

contents of the method blocks are not listed because of space limitations).

• Testing the MTA class

To use the test cases built at the CSF development stage in testing the MTA class, the 

contents of Table 5.5, the implemented MTA class, and the state-transition model created 

at the framework development stage for the NewCAO “virtual” class have to be provided. 

The contents of Table 5.5 are used to determine the reused transitions. We have removed
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the transitions corresponding to the ignored specifications from the state-transition mode! 

of the NewCAO class. This results in six states and 57 transitions as shown in Table 5.6. 

For the transitions, the table shows only the events associated with the transitions. The 

predicates and actions associated with the transitions are not shown because of space 

limitations. Each cell in the table lists the events associated with the transitions that have 

the row source state and the column destination state. For example, the cell in the third 

row and third column shows the events associated with the twelve transitions from state 

s2 to the same state. Five of the transitions, indicated with asterisks, model illegal 

behaviors. The other seven transitions model legal behaviors. As shown in the first 

column of Table 5.5, there are two send methods that have different signatures defined in 

the CSF hooks. Each of them throws an exception (i.e., illegal behavior). Therefore, there 

are four transitions associated with the two send(...) events (i.e. one for each signature), 

from state s2 to the same state: two model legal behaviors and the other two model illegal 

behaviors.

Method declaration is CSF hooks Method declaration in MTA class
NewCAOO MTA()
getAddress() getAddress()
setOutbox(Address) setDefaultAddress(Address)
shutdown() shutdown()
send(Address,Address, String, Data) sendMessage( Address, Data) 

sendMessage(Data) 
sendSyncMessage( Address, Data)
sendSyncMessage(Data)

send(Vector, Address, String, Data) sendMessage(Vector, Address, String, Data)

Table 5.5: Methods defined in CSF hooks and used in MTA class

All test case identifiers associated with the removed transitions were removed from 

the set of test case identifiers associated with the remaining transitions. The set of the test 

case identifiers associated with the remaining transitions is the set of the reusable test 

cases. All other test cases are not applicable for testing the MTA class.

The preconditions and postconditions of the added methods extracted from the MTA 

class Java file were used to determine the states and transitions to be added to the 

provided state-transition table. For our example, four transitions were added as self loop
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transitions to each of the states s i, s2, s3, and s4 extracted for the NewCAO FIC. The 

events associated with the transitions are shown in the first four columns of Table 5.7. 

Moreover, it was found, using the model synthesis technique discussed in Section 3.2, 

that the states s i, s2, s3, and s4 included in the provided model have to be partitioned 

each into four states, which created sixteen more substates. For the added states, 72 

transitions were added to model the added specifications as shown in Table 5.7. For each 

of the superstates, the substates and transitions associated with them form a sub-state 

transition model. The sub-state transition models for the four superstates are identical. 

The table entries in the last four rows and last four columns of Table 5.7 show the sub­

state transition model of any of the superstates. In the table, s(l-4).l denotes the first 

substate of any of the four superstates.

public class MTA extends CommAwareObject 
{

//instance variables and methods implemented using the framework hooks
protected MailServer m_mai1Server;
protected Inbox m_inBox;
protected Outbox m_outBox;
protected SyncSend m_sync;
protected Address m_defaultRecipient;
public MTA {) { ... }
public Address getAddressO { ... } 
public Address getDefaultAddress() { ... } 
public void shutDown() { ... }
public void setDefaultRecipient (Address addr) { ... }
public void sendMessage(Address addr, Data msg) throws MTAException { ... }
public void sendMessage (Data msg) throws MTAException { ... } 
public void sendMessage (Vector recipient, Data msg) throws MTAException {...}
public void sendSyncMessage (Address addr. Data msg) throws MTAException {...}
public void sendSyncMessage (Data msg) throws MTAException { ... }

// new instance variables and methods added by the application developer 
protected Dispatcher m_dispatcher; 
protected Vector m_monitors;
static public MTA getMTAO { ... }
public void registerHandler (ILocusHandler h) { ... }
public void unregisterHandler (ILocusHandler h) { ... }
public void registerMonitor (ILocusMonitor m) { ... }
public void unregisterMonitor (ILocusMonitor m) { ... }
public void notifyHandlers (Address from, LocusMsg msg) { ... }
public void sendFailed (SendException ex) { ... }

}

Figure 5.2: The MTA partial code
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STATE alpha si s2 s3 s4 omega
alpha MTAQ* MTA()

si

setOutboxf...)*,se
nd(...)*,send(...)*,
handleMessage(...
)*,messageNotify(
...)*,shutdown!)*,
getAddress()*,mes
sageNotify(.. .),fm
alize(),handleMess
age(...),registerHa
ndler(...)

setOutbox()

dtar

s2

shutdown!) setOutboxf...)*,se 
nd(...)*,send(...)*, 
handleMessage(... 
)*,messageNotify(
.. .)*,getAddressf), 
send(...),send(...), 
messageNotify(.. .) 
,finalize!),handleM 
essage(.. .),register 
Handler!...)

setOutbox()

dtar

s3

setOutbox(...)*,se 
nd(...)*,send(...)*, 
handleMessagef... 
)*,messageNotify( 
...)*,shutdown!)*, 
get Address!) *,mes 
sageNotify(.. .),fin 
alize(),handleMess 
age(...),registerHa 
ndler(...) dtar

s4

shutdown!) setOutbox(...)*,s
etOutbox(...),se
nd(...)*,send(...)
*,handleMessage
(...)*,messageN 
otify (...)*, get Ad 
dress() ,send(...), 
send(...),messag 
eNotify!-..),final 
ize!),handleMess 
age(...),register 
Handler!-..) dtar

omega

Table 5.6: The state-transition table of the MTA excluding the added states and 

transitions (* Transition that models an illegal behavior)
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STATE s i s2 s3 s4 s(l-4).l s(l-4).2 s(l-4).3 s(l-4).4

si

register 
Handler 
(...),get 
MTA(), 
sendFai 
led(...), 
notifyH 
andlers(

s2

registerHa
ndler(...),
getMTA()
,sendFaile
d(...),noti
fyHandler
s(...)

s3

registerHa
ndler(...),
getMTAQ
,sendFaile
d(...),noti
fyHandler
s(...)

s4

registerHa
ndler(...),
getMTA()
.sendFaile
d(...),noti
fyHandler
s(...)

s(l-4).l

unregisterH 
andler(..)*,u 
nregisterMo 
nitor (...)*

registerHan
dler(...)

registerMon
itor(...)

s(l-4).2

UnregisterH 
andler (...)

registerHan
dler(...),unr
egisterHandi
er(...)

registerMon
itor(...)

s(l-4).3

UnregisterM 
onitor (...)

registerMon
itor(...),
UnregisterM
onitor(...)

RegisterHan
dler(...)

s(l-4).4

UnregisterM
onitor (...)

unregisterH
andler(...)

registerHan
dler(...),unr
egisterHandi
er(...),regist
erMonitor(
.. .),unregist 
erMonitor(
...)

Table 5.7: The transitions that model the MTA class added specifications 

(* Transition that models an illegal behavior)
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To reuse the test cases built at the framework development stage, the mapping class 

NewCAO shown in Figure 5.3 is developed using Table 5.5. This class inherits the 

implemented class (i.e., MTA class) and maps the methods introduced by the CSF hooks 

to the ones used in the MTA class. As an example, when the application developer 

implemented the MTA class, the setOutbox method is renamed setDefaultRecipient. 

Therefore, when test drivers call the setOutbox method, the setDef aultRecipient method 

of MTA should be called. As shown is Figure 5.3, this is coded as:

public void setOutbox(Address Add) { super. setDefaultRecipient(Add); }

public class NewCAO extends MTA { 
public NewCAO() {

super();
>
public void send(Address toAddr,Address retAddr,String tp,Data aData){ 

switch ((new DRIVER_MTA).getSwitchKey()) {
case 1:super.sendMessage(toAddr» aData); 

break;
case 2:super.sendMessage(aData); 

break;
case 3:super.sendSyncMessage(toAddr, aData),- 

break,-
case 4:super.sendSyncMessage(aData); 

break;
}

}
public void send(Vector v, Address retAddr, String tp, Data aData) { 

super.sendMessage(v, retAddr,tp,aData);
}
public void setOutbox(Address Add) {

super.setDefaultRecipient(Add);
}
public Address getAddress() {

return super.getAddress();
}
public void shutDown() {

super.shutDown();
}

}

Figure 53: NewCAO mapping class

When the MTA class was implemented, some of the parameters introduced for the 

send method were ignored. Therefore, in Figure 5.3, the implemented version of the send 

method renamed sendMessage in the MTA class includes:

public void send(Address toAddr,Address retAddr, String tp, Data aData) {
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case 1: super.sendMessage(toAddr, aData);

}

In the MTA class, the send(Address toAddr,Address retAddr, String tp, Data aData) 

method introduced in the CSF hooks has four different implementations. To test the four 

implementations using the reusable test cases, the following code is included in the 

NewCAO class as shown in Figure 5.3:

public void send(Address toAddr,Address retAddr, String tp, Data aData) { 

switch ((new DRIVER_MTA).getSwitchKey()) {

case 1:super.sendMessage(toAddr, aData); break; 

case 2:super.sendMessage(aData); break; 

case 3:super.sendSyncMessage(toAddr, aData); break; 

case 4:super.sendSyncMessage(aData); break;

}

}

Finally, a driver class for the test drivers was implemented. The driver invokes the 

constructor methods of the test drivers. Part of the driver class for the MTA test drivers is 

shown in Figure 5.4. In our example, the NewCAO class uses the switchKey global 

variable to determine which implementation to be exercised by the test drivers in case of 

calling the send method. For example, the test drivers that exercise the send method are 

invoked four times in the driver class as shown in Figure 5.4.

To perform the actual testing, the MTA class and the test drivers can be compiled 

using the Jcontract [Icontract] compiler, which translates the DbC Javadoc comments 

used to check the resulting actions and state-invariants into bytecode. The NewCAO and 

DRIVER_MTA classes can be compiled using regular Java compiler. Finally, the 

DRIVER__MTA class can be executed and the results of the code generated from the DbC 

Javadoc comments can be checked at run time using the Jcontract tool, which reports the 

testing results.
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public class DRIVER_MTA{
private static int switchKey=l; 
public int getSwitchkey{} {

return switchKey; } 
public static void main(String args[]){

/* invoke all the applicable test drivers while the switchKey 
value is set to 1 */

/* set switchKey value to 2 and invoke the test drivers that invoke 
the send method */ 

switchKey=2 
new TEST17_NewCA0();

/* set switchKey value to 3 and invoke the test drivers that invoke 
the send method */ 

switchKey=3; 
new TEST17_NewCAO();

/* set switchKey value to 4 and invoke the test drivers that invoke 
the send method */ 

switchKey=4; 
new TEST17_NewCA0();

>
}

Figure 5.4: Part of the DRIVER_MTA class

5.2.3. Transition coverage results

The analysis applied for the MTA class was also applied for all implemented FICs in 

the five randomly selected applications of CSF. Table 5.8 shows the transition coverage 

results when the proposed techniques were applied for testing the implemented FICs in 

the CSF applications. The second column of the table provides the total number of classes 

implemented at the application development stage and does not include the number of 

used framework classes. The third column provides the number of implemented FICs in 

the applications. The implemented FICs are part of the classes implemented at the 

application development stage. The fourth column gives the total number of transitions in 

the state-transition model of the implemented FICs in the applications. The fifth column 

provides the total number of implemented FIC transitions covered by the reusable test 

cases as-is (i.e., with no augmentation).

Table 5.8 shows that, on average, a considerable part of the implemented application 

classes in the considered CSF applications (41.4%) is composed of FICs, which makes it 

worthwhile to build reusable test cases at the framework development stage. Moreover,
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the table shows that, on average, a high percentage (76.9%) of the transitions in the state- 

transition models of the FICs are covered using the reusable test cases without modifying 

them. The coverage of the rest of the transitions requires augmenting some of the 

reusable test cases. None of the transitions requires building test cases from scratch.

Application Number
of classes

Number of 
FICs

Number of 
transitions in

FICs

Number of FIC 
transitions covered by 

the test cases as-is
Student
management
system

47 31 (66%) 413 369 (89.3%)

Chatting
system

55 3 (5.5%) 113 6 8  (60.2%)

Course
management
system

44 17 (38.6%) 456 322 (70.6%)

StoneClash
Strategy
Game

106 56 (52.8%) 761 582 (76.5%)

Army Game 149 6 6  (44.3%) 1171 899 (76.8%)
Average 80.2 41.4% 583 76.9%

Table 5.8: The results of using the CSF reusable test cases for testing CSF applications

5.2.4. Conclusions

In this case study, a concrete example that applies the proposed techniques for the 

generation and use of the reusable test cases on one of the implemented FICs in a CSF 

application is illustrated. In addition, we have studied the coverage of the transitions in 

the specification models of the implemented FICs in five CSF applications using the 

reusable test cases. The results of the case study showed that, on average, 76.9% of the 

transitions in the specification models of the implemented FICs in the considered CSF 

applications are covered by the reusable test cases determined and used by the techniques 

introduced in this thesis.

5.3. Case Study 3: Testing SalesPoint Framework Applications
This section provides one more case study that shows how to deploy the proposed test 

case generation and use techniques in the context of the applications developed using the
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SalesPoint framework. In addition, we evaluated the techniques proposed in this thesis 

using the analysis method applied in Section 5.2 for the CSF application. Six applications 

developed using the SalesPoint framework are considered.

5.3.1, Generating reusable test drivers for SalesPoint framework

First, we studied the six SalesPoint applications to find the FICs used in their 

development. We found that only twenty out of the 78 FICs introduced by the framework 

hooks were used in the considered framework applications. We followed the rules 

explained in Section 3.2 to synthesize the testing models for the twenty FICs. The 

synthesized models consist of a total of 70 states and 1552 transitions.

NewShop FIC is a class defined in the SalesPoint framework hooks to extend the 

Shop SalesPoint framework class and it has to be implemented in each framework 

application. The Shop class is responsible for central management tasks and for 

persistence. It consists of 44 public methods that operate on 21 instance variables. 

SalesPoint framework hooks, which define the NewShop class, describe how to use 12 of 

the Shop class methods, which forced us to determine the specifications of the other 

inherited methods using the framework documents. We have applied the class state-based 

testing model synthesis technique to build the class-testing model for the NewShop class 

using the specifications of the NewShop methods provided in the hook descriptions 

[SalesPoint] and other framework documents for missed hooks. The synthesized model 

consists of 5 states including alpha and omega states and 159 transitions as shown in 

Table 5.9.

5.3.2. Testing SalesPoint framework applications

In this case study, six SalesPoint framework applications [SalesPoint applications] 

developed by second year undergraduate students were randomly selected out of a pool of 

22 applications. The following example shows how to use the reusable test cases to test 

an implementation for the NewShop FIC in the FastFood System application.
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STATE alpha Dead Running Suspended omega
alpha NewShopO

Dead

getCurrentUsers(),addActiveCustom
er(...),remove Ac tiveCustomer( ...),on
CustomerQueued!.. .),onCustomerUn
Queued(. ..),onCustomerLoggedOn(..
.),onCustomerLoggedOff(...),addSale
sPoint(...),removeSaIesPoint(...),getS
alesPoints(),setCurrentSalesPoint(...)
,setCurrentSalesPoint(...),setCurrent
SalesPointIsAdjusting(),resetCurrent
SalesPointIsAdjusting(),isCurrentSal
esPoint Adj usting() ,getCurrentSaiesP
oint() ,getShopState() ,makePersistent
0,makePersistent()*,makePersistent(
)*,restore!),restore!)*,restore!)*,resto
re()*,setObjectPersistent(...),setObje
ctTransient(...),getPersistentObject(..
.),getPersistentObjects(),setShopFra
meT itle(...), setStatusFrameT itle(...),s
etStatusFrameVisible(...),isStatusFra
meVisible)), getT imer(),setTimer(...),
log(...),log(...)*,addStock(...),addStoc
k(...)*,removeStock(...),getStock(...),
addCatalog(...),addCatalog(...)*,remo
ve€atalog(...),getCatalog(...),getThe
Shop(),setTheShop(...),suspend()*,re
sume()*shutdown()*,start()

runProcess(...) .runBackground
Process!-..)

quit!)

Running

shutdown!-..) getCurrentUsers(),addActiveC 
ustomer(.. .),remove Acti veCus 
tomer(.. ,),onCustomerQueued 
(...) ,onCustomerUnQueued(...) 
,onCustomerLoggedOn(.. .),on 
CustomerLoggedOff(...),addS 
alesPoint!.. .),removeSalesPoin 
t(...) ,getSalesPoints() ,setCurre 
ntSalesPoint(...),setCurrentSaI 
esPoint!-..),setCurrentSalesPoi 
ntIsAdjustmg(),resetCurrentSa 
lesPointIsAdjusting(),isCurren 
tSalesPointAdjusting!),getCur 
rentSalesPoint(),getShopState! 
),makePersistent(),makePersis 
tent()*,makePersistent()*,rest 
ore(),restore!)*,restore!) *,rest 
ore()*,setObjectPersistent!...), 
set Obj ec tTransi ent(...), getPers 
istentObject(.. .),getPersistent 
Objects!), setShopFrameTitlef. 
..),setStatusFrameTitle(...),set 
StatusFrameVisible(...),

suspend!)

Table 5,9 (Part 1): The NewShop FIC state-transition table 
(* Transition that models an illegal behavior)
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STATE alpha Dead Running Suspended omega
isStatusFrameVisibleQ.getTimer 
(),setTimer(...),log(...),log(...)*,a 
ddStock(...),addStock(...)*,remo 
veStock(...),getStock(...),addCat 
alog(.. .),addCatalog( ...)* .remove 
Catalog(...),getCatalog(...),getTh 
eShop(),setTheShop(.. .),nmProc 
ess(...)*,runBackgroundProcess( 
...)*,resume()*,startO*,quit()*,sh 
utdown()*

Suspended

resumeQ get€urrentUsers(),addActiveCustom
er(...) .remove Acti veCustomer( ...),on
CustomerQueued(...) .onCustomerUn
Queued(...),onCustomerLoggedOn(..
.),onCustomerLoggedOff(...),addSale
sPoint(...),removeSalesPoint(...),getS
alesPointsO, setCurrentSalesPoint(...)
,setCurrentSalesPoint(...),setCurrent
S alesPointls Adj usting() .resetCurrent
SalesPointlsAdj usting() .isCurrentSal
esPoint Adj ustingO .getCurrentSalesP
oint(),getShopState(),makePersistent
(),makePersistent()*,makePersistent(
)*,restore(),restore()*,restore()*,resto
re()*,setObjectPersistent(...) .setObj e
ctTransient(...),getPersistentObject(..
.),getPersistentObjects(),setShopFra
meTitle(...),setStatusFrameTitle(.. .),s
etStatusFrameVisibie(...),isStatusFra
meVisible(),getTimer(),setTimer(...),
log(...) ,log(.. ,)*,addStock(...) .addStoc
k(...)*,removeStock(...),getStock(...),
addCatalog(...) ,addCatalog(.. .)*,remo
veCatalog(...),getCatalog(...),getThe
Shop(),setTheShop(...),runProcess(...
)*,runBackgroundProcess(...)*,suspe
nd()*»start()*,quit()*,shutdown()*

omega

Table 5.9 (Part 2): The NewShop FIC state-transition table 

(* Transition that models an illegal behavior)
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• Implementing the FastFood class

The application developer of the FastFood System application created an 

implementation for the NewShop FIC and named it the FastFood class. As shown in 

Figure 5.5, the class consists of three methods defined in the SalesPoint framework 

hooks. Table 5.10 shows the mapping between the names of the implemented methods in 

the FastFood class and the names of the methods introduced by the hooks. The state- 

transition model of the FastFood class has the same states and transitions as the NewShop 

FIC.

public class FastFood extends Shop { 
public FastFood() { ... }
public MenuSheet createShopMenuSheet () { ... }
public void quit () { ... }

}

Figure 5.5: The FastFood class partial code

Method declaration in 
SalesPoint framework hooks

Method declaration in the 
FastFood class

NewShopO FastFood()
createShopMenuSheet() createS hopMenuSfaeetQ
quit() quit()

Table 5.10: The method-name-mapping table for the FastFood class

• Testing the FastFood class

To test the FastFood class, the contents of the method-name-mapping table given in 

Table 5.10, the implemented FastFood class given partially in Figure 5.5, and the state- 

transition model created at the framework development stage for the NewShop “virtual” 

class shown in Table 5.9 are provided. The framework hooks do not introduce any new 

methods for the NewShop FIC but the hooks show how to use some of the inherited 

methods of the Shop framework class. Therefore, the FastFood class inherits all the 

methods that determine the NewShop FIC (i.e., the FastFood class has the same states 

and transitions shown in Table 5.9 except for the transition associated with the invocation 

of the constructor method). All the reusable test cases for the NewShop FIC are applicable 

for testing the FastFood class. All that is needed to use the test cases is a driver class to
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invoke them and the mapping class shown in Figure 5.6 to map the names of the methods 

used in the FastFood class to the ones used in the NewShop class and the test drivers.

public class NewShop extends FastFood {
public NewShop() { 

super();
}
public MenuSheet createShopMenuSheet() {

return super.createShopMenuSheet{>;
}
public void quit() {

super.quit();
}

}

Figure 5.6: NewShop mapping class 

53.3. Transition coverage results

A similar table to the one shown in Table 5.8 is drawn for the six applications 

developed using the SalesPoint framework and considered in this case study. The 

resulting table is shown in Table 5.11.

Application Number 
of classes

Number of 
FICs

Number of 
transitions in

FICs

Number of FIC 
transitions covered by
the test drivers as-is

FastFood 
shop system

18 13 (72.2%) 1147 1135 (99%)

Tiler shop 
system

39 28 (71.8%) 2605 2434 (93.4%)

Photo-service 
■ system

76 41 (53.9%) 3465 3303 (95.3%)

Casino system 41 25 (60.1%) 3537 3337 (94.3%)
Golf club 
system

50 45 (90%) 3994 3910 (97.9%)

Pizza shop 
system

59 37 (62.7%) 3408 3264 (95.8%)

Average 47.2 68.5% 3026 96%

Table 5.11: The results of using the SalesPoint framework reusable test cases for 

testing the SalesPoint framework applications

Table 5.11 shows that, on average, a considerable portion of the implemented 

application classes (68.5%) is composed of FICs, which makes it worthwhile to build 

reusable test cases at the framework development stage. Moreover, the table shows that,
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on average, a very high percentage (96%) of the transitions in the state-transition models 

of the FICs are covered using the reusable test cases without modifying them. The 

coverage of the rest of the transitions (average of 4%) requires augmenting some of the 

reusable test cases. None of the transitions requires building test cases from scratch.

5.3.4. Conclusions

In this case study, a concrete example that applies the proposed techniques for the 

generation and use of the reusable test cases on one of the implemented FICs in a 

SalesPoint framework application Is illustrated. In addition, we have studied the coverage 

of the transitions in the specification models of the implemented FICs in six SalesPoint 

framework applications using the reusable test cases. The results of the case study 

showed that, on average, 96% of the transitions in the specification models of the 

implemented FICs in the considered SalesPoint framework applications are covered by 

the reusable test cases determined and used by the techniques introduced in this thesis.

On average, the percentage of the specifications of the FICs, in terms of the number 

of transitions in the state-transition models, covered using the reusable test cases without 

modifying them is greater in the SalesPoint framework applications than in the CSF 

applications. Given the relative numbers, we believe that this is because the amount of 

functionality already defined for the FICs of the SalesPoint framework by a combination 

of the inherited framework classes and the hooks is larger than the amount of 

functionality defined for the CSF FICs. One way to measure the amount of functionality 

is by calculating the number of methods per FIC. For the FICs of the SalesPoint 

framework considered in the case study, the total number of methods defined for the 

twenty FICs is 570 (i.e., an average of 28.5 methods/FIC), while the total number of 

methods defined for the ten FICs defined in the CSF hooks is 122 (i.e., an average of 12.2 

methods/FIC). This gives an indication that, in general, as the amount of functionality of 

the FICs defined in the Inherited framework classes or by the hooks increases, the amount 

of functionality added by the application developer to the FICs decreases. Consequently, 

as the amount of functionality of the FICs defined in the inherited framework class or by

105

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



the hooks increases, the portion of the FICs tested by the reusable test cases as-is at the 

application development stage increases.

5.4. Case Study 4; A ll Paths-State Coverage
In the fourth case study, we evaluate experimentally the all paths-state technique in 

comparison to the round-trip path and the all-transitions techniques. The comparison is 

performed in terms of the number of transitions covered in the updated state model after 

deleting transitions. Two WaveFront Pattern frameworks derived using CO2P3S parallel 

programming system [McDonaId+ 97] are considered in this study. The hooks of each 

framework identify two FICs and their specifications. One of the FICs is very simple 

(i.e., trivial) and, therefore, it is not considered in this study. The characteristics of the 

statechart of the other one, for each framework, are shown in the first row of Table 5.12.

FIC of Framework 1 FIC of Framework 2
Statechart
No. of states 7 7
No. of transitions 37 35

Round-trip path tree
No. of nodes 38 36
No. of edges 37 35
No. of test cases 33 33

All transitions
No. of test cases 37 35

All paths-state tree
No. of nodes 116 151
No. of edges 115 150
No. of test cases 95 124

Table 5.12: High level descriptions of the used graphs

5.4.1. Case study settings and results

The case study considered three test case coverage techniques: round-trip path, all 

transitions, and all paths-state. The trees corresponding to the round-trip path technique 

and all paths-state technique are constructed from the statechart of the considered FICs. 

For each of the two considered statecharts, there are four possible different round-trip
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path trees that can be constructed from them using the round-trip path tree production 

procedure [Binder 99], However, they all have the same number of states, nodes, and 

number of generated test cases and these numbers are shown in Table 5.12. The all­

transitions technique generates a test case for each outgoing transition from a state in the 

statechart. Since some states can be reached using different paths, we have to select one 

path and write the corresponding test case. In our study, we followed the algorithm 

provided in [Offut+ 99] to find a path to a state. If there is more than one path to a state, 

the algorithm picks one of the paths. The selection of the path affects greatly the results 

of the case study. Therefore, in our analysis we considered each path alone, obtained the 

required results, and computed the average over all of the considered paths. For the 

transitions of the FIC in the first and second framework, 136 and 140 paths were 

considered, respectively. Finally, there is only one possible all paths-state tree for each 

statechart and its characteristics are shown in the last row of Table 5.12.

The study considered an application for each framework. The applications were not 

built for the purpose of the study. Statecharts were drawn for the implemented FICs in the 

applications. The names of the implemented FICs in the first and second applications are 

SkylineMatrixInterface and MatrixBlock, respectively. For each of the two implemented 

FICs, three transitions of the original statecharts were removed because they are not 

required in modeling the specifications of the implemented FICs. This results in having 

34 and 32 reused transitions in the statecharts that specify the behaviors of the 

SkylineMatrixInterface and MatrixBlock objects, respectively. The effect of the removed 

transitions on the baseline test cases was analyzed for each of the three testing techniques. 

In the analysis, all broken baseline test cases were discarded. Finally, we counted the 

number of statechart transitions of the SkylineMatrixInterface and MatrixBlock objects 

that are still covered using the non-broken test cases. Since there are four different 

possible round-trip path trees for each of the statecharts, we have considered each round- 

trip path tree alone and, then, we have computed the average number of transitions 

covered by the non-broken test cases. We did the same analysis for the all-transitions test 

cases, because there are different possible paths to each state.
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Figure 5.7 shows the average number of the transitions of the implemented FICs 

covered by the non-broken test cases when each of the three techniques is used to 

produce test cases for SkylineMatrixInterface and MatrixBlock classes. For example, the 

all paths-state coverage technique was used to generate test cases for the considered FIC 

of Framework I. Table 5.12 shows that 95 test cases were required. The implementation 

of the FIC, i.e., SkylineMatrixInterface class, reused 34 out of 37 transitions introduced 

by the hooks. The test cases that cover the non-reused transitions (i.e., the transitions not 

required in modeling the specifications of the implemented FICs) were discarded because 

they cannot be used as-is. Figure 5.7 shows that the remaining test cases were able to 

cover 34 reused transitions (i.e., all the reused transitions).

The results showed that the all paths-state technique produces test cases that are more 

effective than the ones produced using the all-transitions and round-trip path techniques 

in covering the reused transitions in the specification models of the implemented FICs.
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Figure 5.7: Coverage comparison results

5.4.2. Conclusions

The main conclusion of this final case study is that the all paths-state technique 

produces test cases that cover more transitions in the specification models of the 

implemented FICs than the test cases generated using the round-trip path or all-transitions 

techniques. In the case study, the test cases built using the all paths-state technique were 

able to cover all the reused transitions in the applications. This supports experimentally
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Property 3.2 which states that when a transition in the state model is deleted, the non- 

broken test cases built using the all paths-state technique cover all remaining transitions 

in the state model initiated from the reachable states.

The degree of coverage for the transitions in the specification models of the 

implemented FICs achieved using techniques other than the all paths-state technique 

depends greatly on the topology of the state-transition model (i.e., the way in which the 

model is connected). For example, for a model that has test cases built using the round- 

trip path coverage technique, after deleting a transition from the model, all the transitions 

of the updated model are guaranteed to be covered by the non-broken test cases if there is 

only one path in the model from the alpha state to the destination state of the deleted 

transition. Otherwise, the non-broken test cases may not cover all the reused transitions.

Performing the analysis done in this case study for the FICs that have a relatively 

large number of states and transitions requires an exhaustive effort. In this case, a large 

number of possible round-trip path trees have be constructed to perform the analysis for 

the round-trip path technique and a huge number of possible paths to cover the transitions 

have to be considered to perform the analysis for the all-transitions technique. Therefore, 

although we did not repeat the case study for the FICs of other frameworks, we can 

conclude from this case study that as the number of specifications that are ignored (i.e., 

not used) in application development increases, the same or better is the relative 

performance of the all paths-state coverage technique.

5.5. Summary
This chapter studied the relationship between the type of the framework and the use 

of the FICs in the framework applications. Moreover, it studied the specification size, in 

terms of the number of transitions in the state-transition models, of the FICs typically 

covered by the reusable test cases at the application development stage. Finally, the all 

paths-state technique was compared to other coverage techniques in terms of the 

coverage sensitivity of the test cases due to a transition deletion. Fifteen applications
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developed using four frameworks were used in the case studies. The main conclusions 

are:

1. In our case studies, the reusability of the FICs in the applications developed using 

domain frameworks is greater than the reusability of the FICs in the applications 

developed using application frameworks. Specifically, on average, 68.5% of the 

classes in the considered applications developed using SalesPoint, a domain- 

oriented framework, are FICs, while, on average, 14.9% and 41.4% of the classes 

in the considered applications developed using the application-oriented 

frameworks Swing and CSF, respectively, are FICs.

2. In the case studies, a high percentage (i.e., an average of 76.9% for CSF 

applications and 96% for SalesPoint applications) of the transitions in the state- 

transition models of the implemented FICs are tested using reusable test cases 

built without modifications at the framework development stage. Therefore, a 

considerable class-testing cost is saved at the application development stage when 

the reusable test cases generated at the framework development stage are used.

3. In the case studies, the all paths-state technique produces test cases that cover 

number of transitions in the specification models of the implemented FICs the 

same as or more than the number of transitions covered by the test cases 

generated using the round-trip path or all-transitions techniques. The relative 

transition coverage of the all paths-state technique remains the same or increases 

as the number of specifications that are ignored in application development 

increases.
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Chapter 6 Tool Support

6.1. Introduction
Automation is a vital issue in software testing. Typically, many test cases have to be 

built and evaluated, which makes manual testing impractical for medium to large sized 

software systems. In this thesis, we have seen how FICs introduced by the framework 

hooks are the reusable classes for which reusable test cases can be built and applied. This 

chapter addresses the automation issues related to the generation and use of the FIC 

reusable test cases. For this purpose, a tool called Framework Interface State Transition 

Tester (FIST2 ) is introduced and its prototype is developed. The tool generates reusable 

test cases for Java framework FICs at the framework development stage. The tool also 

deploys, executes, and evaluates the test cases at the application development stage.

6.2. The FIST2 Tool
FIST2 is a tool that supports testing the implemented FICs at the class-testing level 

using reusable test cases. The tool supports the testing at two main stages: (1) framework 

development stage and (2) application development stage. At the framework development 

stage, the framework developer builds the framework, documents it, and uses the FIST2 

tool to generate class state-based reusable test cases for the FICs. At the application 

development stage, the application developer builds the application and uses the FIST2 

tool to assist in building and testing the implemented FICs. In the following discussion, 

all the FIST2 tool components and specifications are implemented in the prototype 

version unless otherwise specified. Appendix D shows a complete example that uses the 

tool at the framework development stage to generate reusable test cases for the 

NewAccount FIC example and then reuses the test cases at the application development 

stage to test an implemented version of the FIC.
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6.2.1. Using FISTi at the framework development stage

At the framework development stage, the FIST2 tool supports the construction of the 

state-transition models of the FICs and the generation of the reusable test drivers using 

the constructed models.

• Tool Inputs

The HST2 tool requires several inputs at the framework development stage as follows:

1. Framework hooks. Framework hooks define the specifications (i.e., preconditions

and postconditions) of the FIC methods introduced by the hooks. These method 

specifications are used to synthesize the state-based testing model of the FIC at the 

framework development stage. In addition, they are used as test oracles at the 

application development stage. In the prototype version of the tool, the method 

specifications are not extracted from the hooks automatically because the module 

responsible for constructing the state-transition model from the method 

specifications is not yet implemented. Instead, the user has to construct the model 

manually from the method specifications listed in the hooks using the algorithms 

illustrated in Section 3.2. The user is, however, provided with a friendly GUI to 

input the model description in a tabular form.

2. Non-event-driven transitions. Non-event-driven transitions cannot be synthesized 

automatically using the algorithms illustrated in Section 3.2. The user of the tool

has to determine the source and destination states of the non-event-driven

transitions. The tool automatically produces the predicates of the transitions.

3. Predicate implementation. Recall from Section 3.2, transitions of the FIC 

synthesized testing model can be associated with predicates that have to be 

satisfied to execute the transitions. The predicates can be as simple as a variable 

definition or they can involve defining a large data structure for which it is difficult 

to generate code to satisfy the predicate. The user of the tool has to provide the 

code required to satisfy the predicates of the transitions at the framework 

development stage. Writing the pieces of code that implement complex predicates
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can be a costly task; however, this cost cannot be avoided in any state-based 

testing technique. The good news is that the implementation of the predicates is 

provided just once at the framework development stage and reused each time an 

application is developed at the application development stage. In most situations, 

the original investment can be recouped after producing a few framework 

applications.

• Tool Outputs

At the framework development stage, the FIST2 tool has several outputs. These 

outputs are used later at the application development stage to test the framework 

applications. The outputs are as follows.

1 . Class state-based testing model. The FIST2 tool synthesizes the class state-based 

testing models of the FICs at the framework development stage. As mentioned 

earlier, the prototype version of the tool interacts with the user to specify the 

states and transitions of the model in a tabular form. The tool translates the tabular 

form of the model into a text using a special purpose language, TSTMD (Testable 

State-transition Model Description), described in Appendix C.

2. Model checking report. The FIST2 tool checks that the class state-based testing 

model has one entry and one exit state and each state can be reached from the 

entry state. It then reports the checking results.

3. FIC test drivers. The FIST2 tool uses the class state-based testing models of the 

FICs to generate test drivers using the all paths-state coverage technique. The test 

drivers are executed later at the application development stage to test the 

implemented FICs in the framework applications.

4. Stubs. The FIST2 tool analyzes the hook descriptions and uses the information 

provided in the changes section of the hook description to determine and generate 

the stubs. These stubs are required at the application testing stage to isolate the
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FICs. The developed prototype version of the tool does not produce the stubs; 

instead, the user of the tool has to provide the stubs.

• Tool Components

Several tool components are used at the framework development stage as follows.

1. FIC state-transition table builder. The FIC state-transition table builder 

component uses the method specifications of the FICs to synthesize the state- 

transition models. The models are provided to the user in a tabular form to be 

updated. As indicated earlier, this component is not implemented in the prototype 

version of the tool. Instead, a component that translates the tabular form of the 

model into a text using the TSTMD language is implemented.

2. Model checker. The model checker component checks the correctness of the FIC 

model. In the developed prototype version of the tool, the model checker 

component checks that there is only one entry and one exit state in the model. In 

addition, the component checks that all the model states are reachable from the 

entry state. The component can be further extended to check other state-based 

model properties [Binder 99] such as each guard condition is mutually exclusive 

of all other guards for a transition and the evaluation of the guard expression does 

not produce any side effects in the class under test.

3. All paths-state test driver builder. The all paths-state test drivers builder 

component applies the all paths-state coverage technique to produce the test 

drivers for the FICs. In addition, it uses the hook descriptions to determine and 

generate stubs required at the application testing stage to isolate the FICs. This 

latter function is not implemented in the prototype version of the tool.

® Testing Process

Figure 6.1 shows the high-level design of the tool when used at the framework 

development stage. The user (typically the framework developer in a test case generation 

role) selects the framework. The framework is stored in a database that contains the
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framework code and the descriptions of the hooks. The tool passes the hook descriptions 

to the FIC state-transition table builder module. The FIC state-transition table builder 

module parses the preconditions and postconditions of the FIC methods, analyzes them, 

and produces the state-transition table for the FIC. The framework developer can edit the 

generated table to add the code required to satisfy the predicates of the transitions and to 

add the non-event-driven transitions. In the prototype version of the tool, the user 

develops the state-transition model manually and then interacts with the tool to create the 

table that describes the state-transition model. The tool translates the tabular form of the 

state-transition model into a text using the TSTMD language and stores the text in a file 

in the framework database. The user can use the Model Checker module of the FIST2 tool 

to check the correctness of the model.
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Figure 6.1: The high-level design of the FIST2 tool (framework development stage)

The All paths-state test drivers builder component of the FIST2 tool uses the state- 

transition table to generate the all paths-state test drivers and associates the test driver 

identifiers with the model transitions. In addition, it uses the hook descriptions to 

determine and generate the stubs required at the application testing stage to isolate the

115

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



FICs. The test drivers and stubs are stored in the framework database and provided to the 

user. The prototype version of the tool does not generate stubs.

6 .2 .2 . Using FIST2 a t the application development stage

At the application development stage, the FIST2 tool supports the use of the reusable 

test drivers generated at the framework development stage for Java framework FICs. The 

tool interacts with the Hook Master tool to construct the updated state-transition tables for 

the FICs, checks the correctness of the tables, determines the reusable test drivers, 

augments some reusable test drivers, and generates new test drivers to test new 

specifications. It then executes the test drivers and evaluates their results. In the prototype 

version of the tool, the integration between the FIST2 tool and the Hook Master tool is not 

implemented. The other tool functions are implemented.

• Tool Inputs

The FIST2 tool requires several inputs at the application development stage as follows:

1. FIC state-transition model. The FIC state-transition model stored in a text form at 

the framework development stage is used at the application development stage to 

model the specification of the implemented FIC.

2. Implemented FICs. Implemented FICs are the classes to be tested. These classes 

are semi-automated using the Hook Master tool. In addition, the code is 

instrumented by the method specifications written in the DbC language [Meyer 

92] to be used as testing oracles.

3. FIC reusable test drivers and stubs. The FIC reusable test drivers and stubs 

generated and provided at the framework development stage are used at the 

application development stage to test the implemented FICs.

4. Method-name-mapping table. The method-name-mapping table is generated at the 

application development stage using the Hook Master tool. The table is used to 

generate the mapping class. The integration between the FIST2 tool and the Hook
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Master tool is not implemented in the prototype version of the tool and, therefore, 

the use of the method-name-mapping table in generating the mapping class is not 

implemented in the prototype version.

• Tool Outputs

At the application development stage, the FIST2 tool has several outputs.

1. Test drivers and stubs for the implemented FICs. The FIST2 tool determines the 

reusable test drivers and stubs, augments test drivers as necessary, and generates

test drivers and stubs to test new code as necessary. The prototype version of the 

tool does not determine the reusable stubs or create new stubs.

2. Driver class. The FIST2 tool generates a driver class to invoke the applicable test 

drivers of the implemented FIC.

3. Class state-transition model o f the implemented FIC. The FIST2 tool uses the 

specifications of the added methods to update the class state-transition model 

synthesized at the framework development stage. This output is not produced 

automatically in the prototype version of the tool. Instead, the user of the tool 

updates the tabular representation of the model according to the specifications of 

the implemented FIC.

4. FIC mapping class. The FIST2 tool generates the FIC mapping class using the 

method-name-mapping table to map the methods defined in the hooks and used in 

the generated test drivers to the ones implemented in the application under test. In 

the prototype version of the tool, the mapping class is semi-automated. For the 

mapping class, the tool generates the constructor methods and the methods called 

in the reused transition events. The use of the method-name-mapping table in 

generating the mapping class is not implemented in the prototype version of the 

tool. Therefore, the methods of the generated FIC mapping class invoke the 

methods of the implemented FIC assuming that no methods are renamed. The user
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of the tool has to update the names of the invoked methods according to the 

method-name-mapping table.

5. Testing results. The FIST2 tool executes the test drivers and uses the Jcontract tool 

[Jcontract] to evaluate the testing results.

The test drivers, stubs, driver class, FIC mapping class, and the implemented FIC 

under test are called the testing package.

• Tool Components

Several tool components are used at the application development stage as follows.

1. FIC state-transition table updater. The FIC state-transition table updater 

component uses the specifications of the added methods to update the FIC state- 

transition table generated at the framework development stage. This component is 

not implemented in the prototype version of the tool. Instead, the user modifies 

the FIC state-transition table manually and then interacts with the tool to input the 

modifications of the FIC state-transition table.

2. Model checker. The model checker component is the same one used in the 

framework development stage.

3. Application test drivers builder. The application test driver builder component 

determines the reusable test drivers, augments test drivers as necessary, and 

generates new test drivers as necessary. In addition, it generates a driver class for 

the test drivers and uses the method-name-mapping table generated by Hook 

Master to generate the FIC mapping class. Finally, the application test drivers 

builder component produces necessary stubs. The use of the method-name- 

mapping table and the generation of the necessary stubs are not implemented in 

the prototype version of the tool.
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4. Test driver executer. The test driver executer component compiles the classes of 

the testing package, executes them, and uses the Jcontract tool to evaluate the 

testing results.

• Testing Process

Figure 6.2 shows the high-level design of the tool when used at the application 

development stage. The tester selects the framework stored in a database that contains the 

framework code, the FIC state-transition tables, and the reusable test drivers. The user 

uses Hook Master to semi-automate the implementation of the FICs. Hook Master 

comments the Java code of the hook methods with the corresponding preconditions and 

postconditions specified in the hook description. The preconditions and postconditions 

are written in the DbC language. The user can add new code and specifications in DbC to 

the Java code to complete the implementation of the FIC. Hook Master also produces the 

method-name-mapping table that maps the methods defined in the hooks to the ones 

implemented in the FIC.

The FIST2 tool gets from Hook Master the used FIC methods and the new methods to 

update the FIC state-transition tables using the FIC state-transition table updater module. 

This function is not implemented in the prototype version of the tool. Instead, the user 

modifies the FIC state-transition table manually and then interacts with the tool to input 

the modifications of the FIC state-transition table. The user can use the Model Checker 

module of the FIST2 tool to check the correctness of the table. The tool stores the updated 

table and passes it with the reusable test drivers to the Application test drivers builder 

module, which detects the broken test drivers, augments some reusable test drivers, and 

generates new ones to test the new specifications not covered in the augmented test 

drivers. In addition, the Application test drivers builder module generates a driver class 

for the test drivers and uses the method-name-mapping table generated by Hook Master 

to generate the FIC mapping class. The Application test drivers builder module also 

produces the necessary stubs. The generated classes and test drivers are stored in the 

application database. The use of the method-name-mapping table and the generation of 

the necessary stubs are not implemented in the prototype version of the tool.
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Figure 6.2: The high-level design of the FIST tool (application development stage)

The Test driver executer module of the FIST2 tool compiles the test drivers and the 

implemented FICs using the dbcjavac compiler of the Jcontract tool. The Jcontract 

compiler checks the DbC specifications in the Javadoc comments, generates instrumented 

.Java files with extra code to check the contracts (i.e., preconditions and postconditions) 

in the Javadoc comments, and compiles the instrumented .java files with the j a v a c  

compiler. The resulting .class files are instrumented with extra bytecodes to check the 

contracts at runtime. Other classes, such as the mapping class and the driver class, are 

compiled using the regular Java compiler. Finally, the FIST2 tool executes the test drivers 

and uses Jcontract tool to check automatically the contracts at runtime and report any 

violations found.
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6.3. Summary
FIST2 is a tool that supports the generation of the reusable test drivers for Java FICs 

at the framework development stage. In addition, it supports the use, the execution, and 

the evaluation of the test drivers at the application development stage. The generation of 

the test drivers at the framework development stage is semi-automated. The framework 

hooks have to be provided and the user has to provide the code required to satisfy the 

predicates of the state model transitions. The generation of the test drivers is performed in 

two main steps: (1) the construction of the class state-based testing models and (2) the use 

of the all paths-state coverage technique in generating the test drivers.

Once the application developer implements the FICs, typically, the use of the test 

drivers at the application development stage is fully automated. At this stage, the tool 

determines the non-broken test drivers, augments test drivers as necessary, generates new 

test drivers as necessary, generates mapping classes, generates stubs, and generates driver 

classes. Finally, the tool executes the test drivers and uses the Jcontract tool to evaluate 

the testing results.

At the framework development stage, the prototype version of the tool automates the 

generation of the reusable test cases from the state-transition model. At the application 

development stage, the prototype version of the tool automates the detection of the non­

broken test cases, the augmentation of the test cases, the generation of the new test cases, 

the execution of the test cases, and the evaluation of the test cases. However, the 

prototype version of the tool does not build the state-transition model of the FIC 

automatically. Instead it interacts with the user to describe the model provided by the 

user. In addition, the tool does not produce stubs or interact with the Hook Master tool. 

The implementation of these functions is left for future work, which is discussed in the 

next chapter. Referring to Figures 6.1 and 6.2, the processes which are not fully 

implemented have an in their upper right comer.
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Chapter 7 Contributions and Future Work

7.1. Contributions
This research .makes the following contributions in the area of OO-framework 

application testing.

7.1.1. Adding a new value to the hooks

Hooks were originally introduced as an aid to show where and how to extend object- 

oriented frameworks in constructing complete software applications. This thesis shows 

that the hooks can be used also as an aid to build reusable class-based test cases for the 

FICs implemented in the framework applications. The hooks introduce the specifications 

of the FIC methods. These specifications can be used by specification based testing 

techniques to generate test cases to test the methods as implemented in the JTest tool 

[Jtest]. This thesis introduces a technique to construct the state-based class testing models 

for the FICs using the method specifications introduced by the hooks. The method 

specifications are used also as test oracles to evaluate the class-based test cases. Finally, 

the hook descriptions identify the collaborations among the FICs and between the FICs 

and the framework classes. This collaboration knowledge is useful at the cluster-testing 

level of the framework applications. The use of the hooks in building cluster-based test 

cases for the framework application is an interesting additional value for the hooks, left 

for future work.

7.1.2. Introducing a state-based class testing model synthesis technique

The thesis introduced a new use for the method specifications. Method specifications 

are used in the literature as testing oracles to evaluate the results of the test cases. In 

addition, they are used as inputs for the process of generating method-based test cases. 

This thesis introduced a technique to use the method specifications in constructing state- 

based class testing models. These models are used to generate class-level test cases. 

Therefore, this technique reduces considerably the class testing cost and the chance of 

model construction errors and provides a consistent state-based testing model with 

respect to the specifications of the class methods.
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7.13. Developing a new coverage technique

This thesis also introduces a new coverage technique to overcome the weaknesses of 

existing testing techniques in building reusable test cases for the FICs. Existing testing 

techniques, such as all-transitions, transition-pair, full predicate, and round-trip path, have 

weaknesses in building reusable test cases for the specifications of the FICs. When these 

testing techniques are used to build reusable test cases for the FICs at the framework 

development stage, some transitions may not have reusable test cases to cover them at the 

application testing stage because of some ignored specifications. The introduced 

technique solves the problem and, therefore, increases the degree of coverage of the test 

cases for the transitions of the models that represent the implemented FICs.

7.1.4. Studying the relation between the framework type and the reusability of the 

FICs

In this thesis, the relationship between the framework type and the reusability of the 

FICs is studied experimentally using three frameworks and fifteen applications. The 

reusability of the FICs is measured in terms of the percentage of the number of 

implemented FICs in the applications to the total number of classes implemented at the 

application development stage. The case study showed that a high percentage (average of 

68.5%) of the classes of the applications developed using domain frameworks are FICs, 

while the percentage of the FICs in the applications developed using application 

frameworks varies largely (4.9-66%) according to the specification domains of the 

frameworks and the applications. In general, it was found that the reusability of the FICs 

in applications developed using domain frameworks is greater than the reusability of the 

FICs in the applications developed using application frameworks. As the percentage of 

the FICs increases in the application, the part of the application tested using the reusable 

test cases increases and, consequently, the amount of testing work required at the 

application development stage decreases.
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7.1.5. Studying the reusability of the test cases developed at the framework 

development stage

This thesis focuses on the generation of the class-based test cases for FICs 

implemented at the application development stage. The test cases are generated using 

state-transition models. Case studies were conducted to study experimentally the 

percentage of the covered specifications of the implemented FICs using the reusable test 

cases. The covered specifications are measured in terms of the number of covered 

transitions in the state-transition testing model that specifies the FIC behavior. The results 

of the case studies show that, on average, a high percentage (average of 87.3%) of the 

specifications of the implemented FICs in the framework applications are tested using the 

reusable test drivers generated at the framework development stage, which reduces the 

application testing time considerably.

7.1.6. Speeding up framework application development

Frameworks provide reusable design and code which decreases the application 

development cost considerably. Since software testing is a time consuming and labor- 

intensive process, providing the framework with reusable test cases to test parts of the 

applications makes frameworks more appealing and encourages application developers to 

use the frameworks. Therefore, one of the main contributions of this thesis is in speeding 

up framework application development. In the thesis, we have measured the saved time 

indirectly by calculating the percentage of the number of FICs in the framework 

applications and the percentage of the number of transitions of the FIC models covered 

by the reusable test cases. For the considered CSF and SalesPoint framework 

applications, on average, the percentages of the number of FICs are 41.4% and 68.5%, 

respectively, and the percentages of the number of transitions in the FIC models are 

76.9% and 96%, respectively.

7.1.7. Development of a  supporting tool

Automation is a vital issue in software testing. Typically, many test cases have to be 

built and evaluated, which makes manual testing impractical. Therefore, this thesis 

introduces and develops a supporting tool that semi-automates the generation of the
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reusable test cases at the framework developing stage. In addition, the tool automates the 

use of the test cases and builds test cases to test new application functionalities at the 

application development stage. The tool focuses on testing the FICs at the class-testing 

level.

7.2. Future Work
A number of interesting problems related to our research have been identified during 

the course of this thesis. A summary of the problems is as follows.

7.2.1. Modeling concurrent class behaviors

The proposed technique of generating the class behavior models using the method 

specifications is limited to classes that have sequential behaviors. Classes that have 

concurrent behaviors cannot be modeled using a finite state machine (FSM) model 

because it does not have the capability to express concurrent behaviors. In [Al-Dallal+ 

97], the FSM model is extended to express concurrent behaviors. The extended FSM, 

UML statecharts, and Petri Nets are examples of models that can be used to express the 

concurrent behaviors of classes. Behavior contracts, which include method specifications, 

are also limited to sequential behaviors and cannot be used to express concurrent 

behaviors. Contracts used to express concurrent behaviors are called synchronization 

contracts [Beugnard+ 99], Further research is required to show how to synthesize the 

testing model used to express concurrent behaviors of a class from the synchronization 

contracts of the class methods.

7.2.2. Evolving reusable test cases

In our research, reusable test cases are generated at the framework development stage 

using the hook descriptions. As the framework evolves, the hook descriptions may also 

evolve. Hook evolution includes adding new hook descriptions to introduce new FICs or 

adding new functionalities to some existing FICs. In addition, the evolution can include 

modifications to some existing hook descriptions. Introducing new FICs requires 

generating test cases for them from scratch. Introducing new functionalities to some 

existing FICs requires either augmenting some existing test cases or creating test cases
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from scratch. In the former case, an effective way is needed to identify the test cases to be 

augmented and then to augment them. Finally, modifying existing hook descriptions 

requires identifying the affected test cases and modifying them.

7.23. Using framework test cases

FICs can extend some framework extensible classes. In our research, we have looked 

at generating test cases for the FICs that extend framework classes using hook 

descriptions. When application developers add new methods and attributes to the FICs to 

implement the application requirements, new states and transitions can be added to the 

state-transition models of the FICs. Therefore, some reusable test cases have to be 

augmented or some new test cases have to be created from scratch to cover the new 

specifications.

The same scenario can be applied for the framework extensible classes at the 

framework development stage. FICs can introduce new methods and attributes to be used 

with the ones inherited from the extensible framework classes. Therefore, instead of 

generating the test cases for FICs from scratch, test cases generated for the framework 

extensible classes can be augmented to cover portion of the specifications of the FICs and 

new test cases can be added to cover the rest of the specifications. At the application 

development stage, the test cases can be used as illustrated in this research.

To apply the latter technique, it is required to introduce a technique to integrate the 

technique used in generating the framework test cases with the all paths-state technique 

used to solve the ignored specification problem. In our work, the augmentation of the test 

cases is delayed until the application development stage where all paths-state coverage is 

no longer needed because once the application is developed no specifications are ignored 

unless the application is modified.

7.2.4. Conducting more case studies

The experiments conducted in this research are valuable in showing the practicality of 

the introduced approaches and in studying the relationship between the framework type
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and the reusability of the test cases. However, we believe that more experiments should 

be performed to confirm (or disprove) our results. In addition, more experiments can be 

performed to directly measure the saving in application testing time when using the 

reusable test cases provided with the framework.

7.2.5. Building reusable test cases at product line stages

In our research, framework application reusable test cases are generated at the 

framework development stage. When framework applications are developed as part of a 

product line and test cases are built to test the products, the test cases can be stored in a 

database each time an application is developed. Whenever another product is developed, 

the applicable test cases stored in the database are reused. In this case, the testing cost of 

the first product is high, but the testing cost is expected to decrease gradually as more 

products are developed.

The idea can be enhanced by combining it with the idea of generating test cases at the 

framework development stage introduced in this thesis. In this case, the reusable test 

cases are generated at the framework development stage as proposed in this thesis and 

stored in a reusable test case database. Whenever a product is developed, the new test 

cases are also stored in the reusable test case database, which can reduce the testing cost 

for the following product line applications. In this case, the testing cost of the first 

product is reduced because of the reusable test cases provided with the framework and 

the testing costs of the following products are reduced much more as the number of 

considered applications in the product line increases.

7.2.6. Extending the supporting tool

The prototype version of the FIST2 tool generates test cases at the framework 

development stage using a state-transition table developed manually by the user by 

applying the synthesizing algorithms for the FIC models as explained in Section 3.2. The 

synthesizing algorithms are labor-intensive and, therefore, implementing them enhances 

the tool. The second possible extension of the tool is to support the generation of the test 

data and the code required to satisfy the predicates of the transitions. This generation is
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performed manually in the prototype version of the tool and takes considerable time for 

complex state-based models. The third possible extension of the tool is to integrate it with 

the Hook Master tool. In this case, the FIST2 tool gets updates on the FIC specifications 

introduced by the application developer directly from the Hook Master tool while the 

application is being developed. The FIST2 tool can then update the state-transition table 

of the FIC automatically. This process is performed manually in the prototype version of 

the tool and took considerable effort and time in the conducted case studies. The fourth 

possible extension of the tool is to determine the required stubs by analyzing the hook 

descriptions and to generate the stubs. Finally, the FIST2 tool can be integrated with other 

tools such as JTest [JTest], a supporting tool for method-based testing, and Test Mentor 

[Test Mentor] and Jverify [Jverify], tools for supporting integration-based testing, to form 

a Java testing environment in which FICs are tested at the method, class, and cluster 

levels. To use the JTest tool it is required to build a FIC mapping class that includes the 

declarations of all methods introduced by the hooks and instrument the class with the 

specifications of the FIC methods written in DbC. To use the Jverify or Test Mentor tool, 

it is required to write a piece of code to force the tool to Use the class-based test cases 

generated using the FIST2 tool instead of using the class-based test cases generated by 

Jverify or Test Mentor.

7.2.7. Generating and using reusable cluster-based test cases

The most important extension of the thesis is in the area of generating and using 

reusable cluster-based test cases. At the class level testing, stubs are required to isolate 

the class under test from other classes. From this point, the classes are added and tested 

gradually. There are several forms of interactions between classes including method 

invocations and global data sharing. Method invocations can be direct or indirect by 

invoking a method that directly or indirectly invokes a method of another object. These 

forms of interactions can exist in the methods defined in the hooks. These methods also 

can access global data accessed by methods of other classes defined in the hooks or in the 

framework. There are three areas related to the FICs for which cluster testing can be 

applied.
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1. Integration between the FICs and the framework classes

Hooks can define methods that invoke methods of the framework classes directly 

(e.g., the invocation statement in Line 13 of the code listed in Figure 7.1) or indirectly 

(e.g., invoking Amethod declared in Line 8 of the code listed in Figure 7.1 indirectly by 

the invocation statement in Line 13). The same situation applies for the methods of the 

framework classes, where these methods can invoke the methods defined in the hooks 

(e.g., the invocation of Amethod declared in Line 25 of the code listed in Figure 7.1 when 

the statement in Line 21 is executed). Moreover, the hooks can define methods that share 

the same global data with the methods of the framework classes (e.g., globalVar shared 

between the methods declared in Lines 3 and 12 of the code listed in Figure 7.1). If any 

of these forms of integration exist, cluster testing is required to test the interactions 

between the FICs and the framework classes.

1 public AframeworkClass { / / a  framework class
2 public static int globalVar;
3 public AframeworkClass() {
4 Amethod();
5
C

globalVar = 1;
O
7 }
8
Q

public void Amethod () { ... }
y
10 }
11 public FICA { //FIC
12 public FICAf) {
13 AframeworkClass var = new AframeworkClass();
14 var.globalVar = globalVar;
15
16 }
17
18 }
19 public FICB extends AframeworClass { //FIC
20 public FICB() {
21 super();
22 FICA var = new FICA();
23
24 }
25 public void Amethod() { ... >
26
27 }
28 public Aclass { //Application class which is not FIC
29 public Aclass {
30 FICA var = new FICAO ;
31
32 }
33
43 }

Figure 7.1: Java code example
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2. Integration among the FICs

Hooks can define methods that invoke methods of other FICs directly (e.g., the 

invocation statement in Line 22 of the code listed in Figure 7.1) or indirectly. Moreover, 

hooks can define methods that share the same global data with the methods of other FICs. 

If any of these forms of integration exist, cluster testing is required to test the interactions 

among the FICs.

3. Integration between the FICs and other application classes

Application developers can add methods to the FICs and they also can add new 

classes to the framework applications. The code of the new classes can include 

invocations for methods of the FICs (e.g., the invocation statement in Line 30 of the code 

listed in Figure 7.1) or share global data accessed by the FICs. Moreover, the new 

methods added to the FICs at the application development stage can invoke the methods 

of the added classes or access global data accessed by the added classes. If any of these 

forms of integration exist, cluster testing is required to test the interactions between the 

FICs and the added classes.

© Discussion

The knowledge about the integrations among the FICs and between the FICs and the 

framework classes is defined in the hooks. Therefore, reusable cluster-based test cases 

that test the integration among the FICs and between the FICs and the framework classes 

can be built at the framework development stage and used at the cluster testing step of the 

applications developed using the framework. However, the knowledge about the 

integration between the FICs and the other application classes does not exist at the 

framework development stage because the other application classes are not known at the 

framework development stage. Therefore, no reusable cluster-based test cases can be 

built at the framework development stage to test the integration between the FICs and the 

other application classes.
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There are several problems to be solved to build and use the reusable cluster-based 

test cases that test the integration among the FICs and between the FICs and the 

framework classes. The first problem is determining the suitable testing models that can 

be used to build the test cases. Typically, researchers use the class, sequence, and 

collaboration diagrams to generate cluster-based test cases (e.g., [Binder 99, Badri+ 02, 

Wu+ 03]). The second problem is showing how to use the testing models in building the 

reusable cluster-based test cases that have high coverage for the cluster relationships 

implemented in the framework applications. The problem can be solved by merging an 

existing cluster-based testing technique with the all paths-state coverage idea. The third 

problem requires studying the affect of the modifications (e.g., ignoring or adding 

specifications) performed at the application development stage on the reusable cluster- 

based test cases.

131

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



References
[AJ DalJal-t- 97] I. A1 Dallal and K. Saleh, Synthesis of distributed and concurrent 

protocol systems, Proc. O f the 15th Intern. Conf. On Information Super Highway 

Trends and Impact, Saudi Arabia, November 1997, pp.665-678.

[AJ DalJal-f 02] J. A1 Dallal and P. Sorenson, System testing for object-oriented 

frameworks using hook technology, Proc. o f the 17tn IEEE International 

Conference on Automated Software Applications (ASE’02), Edinburgh, UK, 

September 2002, pp. 231-236.

[Antoniol-f 02] G. Antonio!, L. Briand, M. Penta, and Y. Labiche, A case Study Using 

the Round-Trip Strategy for State-based Class Testing, Carlton University TR SCE- 

01-08, revised Jan. 2002.

[Abdurazik+ 00a] A. Abdurazik, P. Ammann, W. Ding, and J. Offutt, Evaluation of three 

specification-based testing criteria, Sixth IEEE International Conference on 

Engineering o f Complex Computer Systems (ICECCS '00), Tokyo, Japan, 

September 2000, pp 179-187.

[Abdurazik+ 00b] A. Abdurazik and J. Offutt, Using UML collaboration diagrams for 

static checking and test generation, Proc. O f The Third International Conference on 

the Unified Modeling Language (UML ’00), York, UK, Oct. 2000, pp. 383-395.

[Badri+ 02] L. Badri and M. Badri, Test sequences generation from UML collaboration 

diagrams: towards a formal approach, 1ASTED International Conference on 

Software Engineering and Applications (SEA 2002), Cambridge, USA, November, 

2002, pp. 477-483.

[Ball+ 00] T. Ball, D. Hoffman, F. Ruskey, R. Webber, and L. White, State generation 

and automated class testing, Software Testing, Verification and Reliability, (10) 

2000, pp. 149-170.

[Baudry+ 01] B. Baudry, Y. LeTraon, and J.-M. Jezequel, Robustness and diagnosability 

of OO-systems designed by contracts, Proceedings o f Metrics’01, London, UK, 

April 2001, pp. 272-283.

[Beck+ 94] K. Beck and R, Johnson. Patterns generate architectures, Proc. ofECOOP 94, 

1994, pp. 139-149.

132

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



[Beizer 90] B. Beizer. Software testing techniques, 2nQ ed. New York: International 

Thompson Computer Press, 1990.

[Beizer 95] B. Beizer. Black-Box Testing, John Wiley, 1995.

[Beugnard+ 99] A. Beugnard, J.-M. Jezequel, N. Plouzeau, and D. Watkins, Making 

components contract aware, IEEE Computer, 13(7), July 1999, pp. 38-45.

[Beydeda] S. Beydeda, V. Gruhn, and M. Stachorski, A graphical class representation for 

integrated black- and white-box testing, IEEE International Conference on 

Software Maintenance (ICSM’01), Florence, Italy, November, 2001, pp. 706-715.

[Binder 96a] R. Binder. Testing object-oriented software: A survey, Software Testing, 

Verification and Reliability, 6(3/4), 1996, 125-252.

[Binder 96b] R. Binder. Testing for reuse: libraries and frameworks, Object Magazine, 

August 1996, 77-80.

[Binder 99] R. Binder. Testing object-oriented systems, Addison Wesley, 1999.

[Bogdanov-t- 01] K. Bogdanov and M. Holcombe, Statechart testing method for aircraft 

control systems, Software Testing, Verification and Reliability, Vol. 11(1), 2001, 

pp. 39-54.

[Boujarwah+ 00] A. Boujarwah, K.Saleh, and I. Al-Dallal. Dynamic Data Flow Analysis 

for Java Programs, Journal o f Information and Software Technology, Vol. 42, No. 

11, August 2000, pp. 765-775.

[Boyapali+ 02] C. Boyapati, S. Khurshid, and D. Marinov, Korat: Automated Testing 

Based on Java Predicates, International Symposium on Software Testing and 

Analysis ISSTA, Rome, Italy, July 2002, pp. 123-133.

[Briand+ 02a] L. Briand and Y. Labiche, A UML-based approach to system testing, 

Carlton University TR SCE-01-01, revised February 2002.

[Briand+ 02b] L. Briand, Y. Labiche, and H. Sun, Investigating the use of analysis 

contracts to support fault isolation in object-oriented code, International 

Symposium on Software Testing and Analysis ISSTA, Rome, Italy, July 2002, pp. 

70-80.

[Calliss+ 8 8 ] F. W. Calliss and B.J. Cornelius. Dynamic data flow analysis of C 

programs, Proceedings o f the 21st annual Hawaii international conference, Vol. 2,

1988, pp. 518-523.

133

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



[Campbell* 92] R. H. Campbell and N. Islam. A Technique for documenting the 

framework of an object-oriented system, Proceeding o f the 2nd InternationaI 

Workshop on the Object-Oriented in Operating Systems, Paris, France, 1992,

[Chan* 87] F.T. Chan and T.Y. Chen. AIDA-a dynamic data flow anomaly detection 

system for Pascal programs, Software-Practice and Experience, Vol. 17, 1987, pp. 

227-239.

[Chen+ 87] T. Y. Chen, H. Kao, M.S. Luk, and W.C. Ying. COD-a dynamic data flow 

analysis system for Cobol, Information and Management, Vol. 12, Feb 1987, pp. 

65-72.

[Chen+ 95] T. Y. Chen and C.K. Low. Dynamic data flow analysis for C++, Proceeding 

o f 1995 Asia Pacific Software Engineering Conference, 1995, pp. 22-28.

[Chen+ 98] H. Chen, T. Tse, F. Chan, and T. Chen, In black and white: an integrated 

approach to class-level testing of object-oriented programs, ACM Transactions on 

Software Engineering and Methodology, Vol. 7, No. 3, July 1998, pp. 250-295.

[Chen+ 01] H. Chen, T. Tse, and T. Chen, TACCLE: a methodology for object-oriented 

software Testing At the Class and Cluster Levels, ACM Transactions on Software 

Engineering and Methodology, Vol. 10, No.l, Jan. 2001, pp.56-109

[Cheon+ 02] Y. Cheon and G. Leavens, A simple and practical approach to unit testing: 

the JML and JUnit way, Proc. o f the 16th European Conference on Object- 

Oriented Programming (ECOOP2002), June 2002, pp. 231-254.

[Chow 78] T. Chow, Testing software design modeled by finite state machines, IEEE 

Transactions on Software Engineering, Vol. EE-4(3), 1978, pp. 178-187.

[Codenie* 97] W. Codenie, K. De Hondt, P. Steyaert, and A. Vercammen. From custom 

applications to domain-specific frameworks. Communications o f the ACM, Vol. 

40(10), October 1997. pp. 71-77.

[CSF] CSF: Client-Server Framework, http://www.cs.ualberta.ca/~garry/framework, 

December 2001.

[Daley+ 02] N. Daley, D. Hoffman, and P. Strooper, A framework for table driven testing 

of Java classes, Software-Practice and Experience, 32, 2002, pp. 465-493.

134

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.cs.ualberta.ca/~garry/framework


[Doong+ 94] R. Doong and P. Frank!, The ASTOOT approach to testing object-oriented 

programs, ACM Transactions on Software Engineering and Methodology, Vol. 3, 

No. 2, April 1994, pp. 101-130.

[Fayad+ 97] E. M. Fayad and D. C. Schmidt. Object-oriented application frameworks, 

Communications o f the ACM, October 1997, Vol. 40, No. 10, pp. 32-38.

[Fenkam-f 02] P. Fenkam, H. Gall and M. Jazayeri, Constructing corba-supported oracles 

for testing: a case study, Proc. o f the 17th IEEE International Conference on 

Automated Software Applications (ASE’02), Edinburgh, UK, September 2002, pp. 

129-138.

[Froehlich 02] G. Froehlich, Hooks: an aid to the reuse of object-oriented frameworks, 

Ph.D. Thesis, University of Alberta, Department of Computing Science, 2002.

[Froehlich+ 97] G. Froehlich, H.J. Hoover, L. Liu, and P.G. Sorenson. Hooking into 

Object-Oriented Application Frameworks, Proc. 19th Int'l Conf. on Software 

Engineering, Boston, May 1997, pp. 491-501.

[Froehlich+ 98] G. Froehlich, H.J. Hoover, L. Liu, and P.G. Sorenson, Using Object- 

Oriented Frameworks, CRC Handbook o f Object Technology, CRC Press, 1998, pp. 

26-1 - 26-22.

[Gamma+ 95] E. Gamma, R. Helm, R. Johnson and J. Vlissides. Design patterns: 

elements o f reusable object-oriented software, Addison-Wesley, Reading, MA, 

1995.

[Gangopadhyay-f- 95] D. Gangopadhyay and S. Nitra. Understanding frameworks by - 

exploration of exemplars, Proceedings o f 7th International Workshop on Computer 

Aided Software Engineering (CASE-95), Toronto, Canada, 1995, pp. 90-99.

[Harrold+ 92] M. Harroid, J. McGregor, and K. Fitzpatrick, Incremental testing of object- 

oriented class structures, Proc o f the 14th international conference on Software 

Engineering, 1992, pp. 68-80.

[Harrold+ 01] M. Harroid, J. Jones, T. Li, D. Liang, A. Orso, M. Pennings, S. Sinha, S. 

Spoon, and A. Gujarathi, Regression test selection for Java software, Proc. o f the 

2001 ACM SIGPLAN Conference on Object-Oriented Programming Systems, 

Languages and Applications (OOPSLA 2001), Tampa, Florida, USA, October 

2001, pp. 312-326.

135

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



[Hoffman+ 94] D. Hoffman and P. Strooper, Graph-based class testing, The Australian 

Computer Journal, Vol. 26, No. 4, Nov. 1994, pp. 158-163.

[Hoffman+ 97] D. Hoffman and P. S trooper, Classbench: a framework for automated 

class testing, Software-Practice and Experience, 27(5), 1997, pp. 573-597.

[Hong+ 00] H. Hong, Y. Kim, S. Cha, D. Bae, H. Ural, A test sequence selection method 

for statecharts, Software Testing, Verification and Reliability, 10/4, 2000, pp. 203- 

227.

[Homstein+ 02] I. Homstein, H. Edler, Test reuse in CBSE using built-in tests, 

Component-based Software Engineering Workshop: Composing Systems From 

Components, (ECBS 2002), Lund, Sweden. April 2002.

[Hsia+ 97] P. Hsia, X. Li, D. Kung, C. Hsu, L..Li, Y.Toyoshima, and C.Chen, A 

technique for the selective revalidation of OO software, Journal o f Software 

Maintenance, Vol. 9, 1997, pp.217-233.

[iContract] iContract: the Java Design-by-Contract tool, http://www.reliable-

systems.com/tools/ iContract/iContract.htm, September, 2002.

[IEEE 829] ANSI/IEEE standard 610.12-1990: glossary o f software engineering 

terminology. New York: The Institute of Electrical and Electronic Engineers, 1987.

[Jcontract] Jcontract, http://www.parasoft.com/jsp/products/home.jsp?product= Jcontract, 

ParaSoft Corporation, April 2002.

[Johnson 92] R. Johnson. Documenting frameworks using patterns, Proceedings of 

OOPSLA ’92, Vancouver, Canada, 1992, pp. 63-76.

[Johnson-t- 8 8 ] R. Johnson and B. Foote. Designing reusable classes, Journal of Object- 

Oriented Programming, Vol. 2(1), 1988, pp.22-35.

[JTest] Jtest, http://www.parasoft.com/jsp/products/home.jsp?product=Jtest, ParaSoft 

Corporation, September 2002.

[Junit] Junit, http://junit.sourceforge.net, December 2001.

[Jverify] JVerify, http://software.qip.us/jverify.htm, January, 2003

[Kim+ 99] Y. Kim, H. Hong, D. Bae, and S. Cha, Test cases generation from UML state 

diagrams, 1EE Proc.-Software, Vol. 146, No. 4, 1999, pp. 187-192.

136

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.reliable-
http://www.parasoft.com/jsp/products/home.jsp?product=
http://www.parasoft.com/jsp/products/home.jsp?product=Jtest
http://junit.sourceforge.net
http://software.qip.us/jverify.htm


[Krasner+ 88] G. E. Krasner and S. T. Pope. A cookbook for using the model-view- 

contrailer user interface paradigm in smalltalk-80, Journal o f Object-Oriented 

Programming, 1(3), August-September 1988, 26-49.

[Kimg+ 94a] Kung, D., J.Gao, P.Hsia, Y.Toyoshima, and C.Chen, Firewall regression 

testing and software maintenance of object-oriented systems, Journal of Object- 

Oriented programming, 1994.

[Kung+ 94b] Kung, D., J.Gao, P.Hsia, F.Wem, Y.Toyoshima, and C.Chen, Change impact 

identification in object oriented software maintenance, Proc. IEEE International 

Conference on Software Maintenance, 1994, pp. 202 -  211.

[Kung+ 96] Kung, D., J.Gao, P.Hsia, F.Wen, Y.Toyoshima, and C.Chen, On regression 

testing of object-oriented programs, The Journal of Systems and Software, 32(1), 

January 1996, pp. 21-40.

[Lajoie+ 94] R. Lajoie and R. K. Keller. Design and reuse in object-oriented frameworks: 

Patterns, contracts, and motifs in concert, Proceedings o f the 62nd Congress o f the 

Association Canadienne Francaise pour FAvancement des Science, Montreal, 

Canada, 1994.

[Leavens+ 99] G. Leavens, A. Baker, and C. Ruby, JML: a notation for detailed design. 

In H. Kilov, B. Rupe, and I. Simmonds, editors, behavioral specifications o f  

Businesses and Systems, chapter 12, Kluwer, 1999, pp. 175-188.

[Leavens+ 01] G. Leavens, A. Baker, and C. Ruby, Preliminary design of JML: a 

behavioral interface specification language for Java, TR 98-06p, Iowa State 

University, Department o f Computer Science, August 2001.

[LOCC] LOCC (software information), http://csdl.ics.hawaii.edu/Tools/LOCC/LOCC. 

html, October 2002.

[McDona!d+ 96] J. McDonald and P. Strooper, Testing inheritance hierarchies in the 

ClassBench framework, Proc. o f the Technology o f Object-Oriented Languages 

and Systems (TOOLS USA ’96), August 1996.

[McDonald+ 97] S. McDonald, J. Schaeffer, and D. Szafron. Pattern-based object- 

oriented parallel programming. Proceedings o f the First International Scientific 

Computing in Object-Oriented Parallel Environments Conference (ISCOPE’97), 

Vol. 1343 of Lecture Notes in Computer Science, 1997, pp. 167-274.

137

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://csdl.ics.hawaii.edu/Tools/LOCC/LOCC


[McGregor 00] J. McGregor, Building reusable test assets for a product line tutorial, First 

Software Product Line Conference, Pittsburgh, Pa.: Software Engineering Institute, 

Carnegie Mellon University, 2000.

[McGregor 01] I. McGregor, Testing a software product line, Technical Report 

CMU/SEI-2001 -TR-022, Software Engineering Institute, Pittsburgh, PA, December 

2001.

[Meyer 92] B. Meyer, Design by contracts, IEEE Computer, 1992, Vol. 25(10), 40-52.

[Myers 79] Myers. The Art o f Software Testing, John Wiley, 1979.

[Murray+ 97] L. Murray, D. Carrington, I. MacColl, and P. Strooper, Extending test 

templates with inheritance, Proc. o f the Australian Software Engineering 

Conference (ASWEC ’97), September 1997, pp. 80-87.

[NewCAO Model] http://www.cs.ualberta.ca/~jehad/CAO_model.xls

[Offutt+ 97] J. Offutt and J. Pan, Automatically detecting equivalent mutants and 

infeasible paths, The Journal O f Software Testing, Verification, and Reliability, 

7(3), September 1997, pp 165-192.

[Offut+ 99] J. Offut and A. Abdurazik, Generating tests from UML specifications, 

Second International Conference on the Unified Modeling Language (UML99), 

Fort Collins, CO, October 1999, 416-429.

[Osterweil+ 78] L. J. Osterweil and L. D. Fosdick. DAVE-a validation error detection 

and documentation system for FORTRAN programs, Computer, Vol. 11, 1978, pp. 

25-32.

[Price+ 85] D. A. Price. Program instrumentation for the detection of software anomalies, 

M. Sc. Thesis, Department o f computer science, University o f Melbourne, 1985.

[Roper 94] M. Roper. Software Testing, McGraw-Hill, 1994.

[Rothermei+ 94] G. Rothermel and M. Harrold, Selecting regression tests for object- 

oriented software, Proc. IEEE International Conference on Software Maintenance, 

1994, p p .14-25.

[Rothermel+ 00] G. Rothermel, M. Harrold, and J. Dedhia, Regression test selection for 

C++ softawrem Journal of software testing, Verification, and Reliability, 10(6), 

January 2000, pp. 77-109.

138

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.cs.ualberta.ca/~jehad/CAO_model.xls


[Saleh+ 01] K. Saleh, A. Boujarwah and J. Al-Dallal, "Anomaly detection in concurrent 

Java programs using dynamic data flow analysis", Journal o f Information and 

Software Technology, Dec. 2001, Vol 43, No. 15, pp. 973-981.

[SalesPoint] The SalesPoint Framework V2.0 Homepage, http://ist.unibw-muerichen.de 

/Lectures/S alesPoint/, November 2002.

[SalesPoint applications] SalesPoint applications, http://ist.unibw-muenchen.de/Lectures/ 

HT2001/Praktikum/Applications.htm, November 2002.

[Sparks-s- 96] S. Sparks, K. Benner, and C. Paris. Managing object-oriented frameworks 

reuse. IEEE Computer, Vol 29(9), September 1996, pp. 52-61.

[Swing] Swing, Java 1.3.1, http://java.sun.eom/j2se/l.3/, October 2002.

[Test Mentor] Test Mentor - Java Edition by SilverMark, http://www.componentsource. 

com/ProductCatalog/TestMentorJavaEdition.htm, January, 2003.

[Tsai+ 99] W. Tsai, Y. Tu, W. Shao, and E. Ebner. Testing extensible design patterns in 

object-oriented frameworks through scenario templates, 23,d Annual International 

Computer Software and Applications Conference, Phoenix, Arizona, October, 1999, 

pp. 166-171.

[WaveFront Documentation] WaveFront Documentation, http://www.cs.ualberta.ca/ 

-janvik/thesis/Document.html, December 2001.

[Wang+ 00] Y. Wang, D. Patel, G. King, I. Court, G. Staples, M. Ross, and M. Fayad, 

On built-in test reuse in object-oriented framework design, ACM Computing 

Surveys (CSUR), Vol. 32(les), March 2000, pp. 7-12.

[Whiten- 97] L. White and K. Abdullah, A firewall approach for regression testing of 

object-oriented software, Proc. of the 10th Annual Software Quality Week, May 

1997.

[WilMn+ 02] S. Wilkin and D. Hoffman. JUnit extensions for documentation and 

inheritance, Proc. o f the 2002 Pacific Northwest Software Quality Conference, 

Protland, USA, October 2002, pp. 71-84.

[Wu+ 03] Ye Wu, Mei-Hwa Chen and Jeff Offutt, UML-based integration testing for 

component-based software, The 2nd International Conference on COTS-Based 

Software Systems (ICCBSS ’03), Ottawa, Canada, February 2003, 251-260.

139

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://ist.unibw-muerichen.de
http://ist.unibw-muenchen.de/Lectures/
http://java.sun.eom/j2se/l.3/
http://www.componentsource
http://www.cs.ualberta.ca/


Appendix A Example for constructing the all paths-state tree

for a model free of guaranteed transitions

Appendix A illustrates the steps of the procedure given in Figure 3.8 to construct the 

all paths-state tree for the STD of the NewAccount FIC shown in Figure 3.4. First the root 

node represents the Alpha state of the STD. In the first iteration of the repeat loop of the 

procedure, an edge and a node are drawn to represent the outgoing transition from the 

Alpha state and the destination state of the transition as shown in Figure A.I. Each time 

an edge is drawn, the label associated with the transition is represented on the edge.

a -* open

Figure A.l: The results of applying the first iteration of the repeat loop of the procedure 

given in Figure 3.8 for the STD shown in Figure 3.4

In the second iteration of the repeat loop, the outgoing transitions from the Open state 

are represented in the tree by edges as shown in Figure A.2. In the figure, bolded nodes 

represent terminal nodes (i.e., no more edges are drawn from these nodes). Figure A.2 

shows four terminal nodes. These nodes are marked terminal because they are either 

encountered on the tree paths that contain them or they represent the omega state. Figures

A.3 and A.4 show the results of applying the third and fourth iteration of the loop, 

respectively. All the leaf nodes in Figure A.4 are marked terminal, which indicates that 

the construction process of the tree is completed.
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ozen

,20

Figure A.2: The results of applying the second iteration of the repeat loop of the 

procedure given in Figure 3.8 for the STD shown in Figure 3.4

drawnjover

overdrawn

overdrawn

a 1 open 10 open'J
21 inactive

f̂rozen

inactive

inactive

Figure A.3: The results of applying the third iteration of the repeat loop of the procedure 

given in Figure 3.8 for the STD shown in Figure 3.4
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Figure A.4: The results of applying the fourth iteration of the repeat loop of the 

procedure given in Figure 3.8 for the STD shown in Figure 3.4
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Appendix B Example for constructing the all paths-state tree

for a model that has guaranteed transitions

Appendix B illustrates the steps of the procedure given in Figure 3.12 to construct the 

all paths-state tree for the STD of the NewAccount FIC shown in Figure 3.4 assuming that 

the transitions necessary to implement the open and inactive states (i.e., the transitions 

labeled by 1, 2, 4, 6, 10, 15, 16, 18, and 20) of Figure 3.4 are marked as guaranteed. First, 

the root node represents the Alpha state of the STD. In the first iteration of the repeat 

loop of the procedure, an edge and a node are drawn to represent the outgoing transition 

from the Alpha state and the transition destination state as shown in Figure B.l. The two 

nodes drawn in the first iteration are bolded. A bolded node and a bolded edge represent a 

guaranteed node and a guaranteed edge, respectively. The alpha node is always marked 

guaranteed. The outgoing edge from the alpha node is bolded because it represents a 

guaranteed transition. Finally, the open node is marked guaranteed because it is a 

destination node of a guaranteed edge initiated from a guaranteed node.

Figure B.l: The results of applying the first iteration of the repeat loop of the 

procedure given in Figure 3.12 for the STD shown in Figure 3.4

In the second iteration of the repeat loop, the outgoing transitions from the Open state 

are represented in the tree by edges as shown in Figure B.2. In the tree drawn so far in 

Figure A.2, nodes reached by the edges labeled by 2, 6, 10, and 16 are marked terminal 

(i.e., no more edges are drawn from them) because they are either previously encountered 

on the tree paths that contain them or they represent the omega state. In addition, nodes 

reached by the edges labeled by 2, 6, 10, 20 and 16 are marked guaranteed because they 

are destination nodes of guaranteed edges initiated from a guaranteed node.
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16

Figure B.2: The results of applying the second iteration of the repeat loop of the 

procedure given in Figure 3.12 for the STD shown in Figure 3.4

The tree shown in Figure B.2 contains one node marked as non-terminal guaranteed, 

which is the node that represents the Inactive state. Therefore, in the third iteration of the 

repeat loop, edges that represent the outgoing transitions from Inactive state and the 

nodes that represent the states reached from the Inactive state are drawn as shown in 

Figure B.3. Three of the drawn nodes in the third iteration (i.e., open, omega, and 

inactive) are marked terminal because they are either previously encountered on the tree 

paths that contain them or they represent the omega state. In addition, these nodes are 

marked guaranteed because they are destination nodes of guaranteed edges initiated from 

a guaranteed node. The fourth node (i.e., frozen) is marked non-terminal and not- 

guaranteed.
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■ozen

■ozen
open

inactivi

inactive!

Figure B3: The results of applying the third iteration of the repeat loop of the procedure 

given in Figure 3.12 for the STD shown in Figure 3.4

All the non-terminal leaf nodes drawn so far in Figure B.3 are marked not-guaranteed. 

Therefore, in the fourth iteration we can pick any of the states that represent each of 

them. In the example, we picked the node that represents the overdrawn state. In the 

fourth iteration, edges that represent the outgoing transitions from the overdrawn state 

and the nodes that represent the states reached from the overdrawn state are drawn as 

shown in Figure B.4. All the drawn nodes are marked terminal because they are either 

previously encountered on the tree paths that contain them or they represent the omega 

state. In addition, these nodes are marked not-guaranteed because they are reached by 

not-guaranteed edges.

All the non-terminal leaf nodes drawn so far in Figure B.4 are marked not-guaranteed. 

Therefore, in the fifth iteration, we can pick any of the states that represent each of them. 

In the example, we picked the node that represents the frozen state reached by the edge 

labeled as 12. Edges that represent the outgoing transitions from the frozen state and the 

nodes that represent the states reached from the frozen state are drawn as shown in Figure
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B.5. Three of the drawn nodes (i.e., open, omega, and frozen) are marked terminal 

because they are either previously encountered on the tree paths that contain them or they 

represent the omega state. The fourth drawn node (i.e., inactive) is marked terminal 

because it represents a state represented in the tree by a guaranteed node. The four nodes 

are marked not-guaranteed because they are reached by not-guaranteed edges.

open
overdrawn

open overdrawn

 open
overdrawn " '" ^ 7  ------

open open

•ozen

ozen
open

inactivi

inactive!

Figure B.4: The results of applying the fourth iteration of the repeat loop of the 

procedure given in Figure 3.12 for the STD shown in Figure 3.4

Only one leaf node in the tree (i.e., frozen) shown in Figure B.5 is marked non­

terminal. Edges that represent the outgoing transitions from the frozen state and the nodes 

that represent the states reached from the frozen state are drawn in the sixth iteration as 

shown in Figure B.6. All the drawn nodes are marked terminal because they are either 

previously encountered on the tree paths that contain them or they represent the omega 

state. In addition, these nodes are marked not-guaranteed because they are reached by 

not-guaranteed edges. All the leaf nodes in Figure B.6 are marked terminal, which 

indicates that the construction process of the tree is completed.
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Figure B.5: The results of applying the fifth iteration of the repeat loop of the procedure 

given in Figure 3.12 for the STD shown in Figure 3.4
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g u a r a n te e d  
edge

L_ inactive
frozen

inactiv

mactiv

Figure B.6: The results of applying the sixth iteration of the repeat loop of the procedure 

given in Figure 3.12 for the STD shown in Figure 3.4
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Appendix C The Syntax of the Testable State-transition 

Model Description

The FIST2 tool uses the following syntax for the Testable State-transition Model 

Description (TSTMD) language to maintain the testable state-transition model description 

in a text file. An example for a use of the language is shown in Appendix D.

<Model_desc>:: <State_desc>[, ..» <State_desc>]
<State_trans>[, ..,<State_trans>]

<State_desc>:: <state_name>{
<state_invariant>
<app_specific>

}
<state_name>::= <string>
<state_invariant>::= var_invariant = <string>
<app_specific>::= app_specific= <boolean>
<State_trans>::= <source_state> => <destination_state>{

'<event>
[, ..,<parameter>]
[, . . ,<predicate>]
[, . . ,<action>]
<guaranteed>
<app_specific>
[<test_cases_covered>]
}

<source_state>::= <state_name>
<destination_state>::= <state_name>
<event>::= event = <string>
<parameter>::= parameter = <param_name>:<param_type>
<param_name>::= <string>
<param_type>::= <string>
<predicate>::= condition = <var><oper><var>;[(script)]
<var>::= <string>
<oper>::= > | < | = | <= | >=
<script>::= <string>
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<action>::= action = <action_type>:<value>;[<script>] 
<action_type>::= return j exception | message | others 
<value> :: = <string>
<guaranteed> :: = guaranteed = <boolean>
<boolean> r: = true | false
<test_cases_covered> ::= [(, <test_case_id>)]
<test_case_id> ::= <string>
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Appendix D My Account FIC Example

Appendix D shows the application of the FIST2 tool for testing the MyAccount FIC class 

as follows.

D.l. Framework Development Stage

D.1.1. Tool Inputs

The following hook descriptions define the NewAccount FIC.

Name: Initialize Account
Requirement: Initialize an account (i.e., set the currency and bank branches).

Preconditions: amount>=0;
Changes:

NewAccount.NewAccountant amount) extends Account.Accountant amount);

Postconditions:
1. Operation NewAccount. NewAccount (int);
2. NewAccount.balance()>=0;
3. ! NewAccount.isFrozen();
4. NewAccount. getCurrentDate()-NewAccount.getLastActivityDate() < 

NewAccount.MaxPeriod

Name: Get Account Balance 
Requirement: inquire about the balance

Preconditions:
1. NewAccount subclass of Account;

Changes:
NewAccount.balanceO reads supper.balanced;

Postconditions:
1. Operation New'Account, balanced;

Name: Deposit Money
Requirement: deposit money in an account.

Preconditions:
1. NewAccount subclass of Account
2. ! NewAccount.isFrozenQ;
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3. NewAccount. getCurrentDate()-NewAccount.getLastActivityDate() < 
NewAccount-MaxPeriod

Changes:
NewAccoimt.deposit(int amount) extends Account.deposit(int amount);

Postconditions:
1. Operation NewAccount. deposit (int);
2. NewAccount.balance()=amount+ NewAccount.balance();
3. i NewAccount.isFrozen();
4. NewAccount. getCurrentDate()-NewAccount.getLastActivityDate() < 

NewAccount.MaxPeriod

Name: Withdraw Money
Requirement: withdraw money from an account.

Preconditions:
1. NewAccount subclass of Account
2. NewAccount.balance()>=0
3. ! NewAccount.isFrozen();
4. NewAccount. getCurrentDate()-NewAccount.getLastActivityDate() <

NewAccount.MaxPeriod
Changes:

New Account. withdraw(int amount) extends Account. withdraw(int amount);

Postconditions:
1. Operation NewAccount. withdraw (int);
2. NewAccount.balance()=NewAccount.balance()-amount;
3. ! NewAccount.isFrozen();
4. NewAccount. getCurrentDate()-NewAccount.getLastActivityDate() < 

NewAccount.MaxPeriod

Name: Freeze Account 
Requirement: Freeze an account.

Preconditions:
1. NewAccount subclass of Account
2. NewAccount.balance()>=0
3.! NewAccount.isFrozen();

Changes:
New Operation NewAccount.freeze();

Postconditions:
1. Operation NewAccount. freeze ();
2. NewAccount.ba!ance()>=0;
3. NewAccount.isFrozen();

151

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Name: Unfreeze Account 
Requirement: Unfreeze an account.

Preconditions:
1. NewAccount subclass of Account
2. NewAccount.balance()>=0
3. NewAccount. isFrozenQ;

Changes:
New Operation NewAccount.unfreeze();

Postconditions:
1. Operation NewAccount. unfreeze ();
2. NewAccount.balance()>=0;
3. ! NewAccount.isFrozen();
4. NewAccount. getCurrentDate()-NewAccount.getLastActivityDate() < 

NewAccount.MaxPeriod

Name: Activate Account 
Requirement: Activate an account.

Preconditions:
1. NewAccount subclass of Account
2. NewAccount.balance()>=0
3. ! NewAccount.isFrozen();
4. NewAccount. getCurrentDate()-NewAccount.getLastActivityDate() >=

NewAccount.MaxPeriod
Changes:

New Operation NewAccount. activateQ;

Postconditions:
1. Operation NewAccount. activate ();
2. NewAccount.balance()>=0;
3. i New Account. isFrozen();
4. NewAccount. getCurrentDate()-NewAccoont.getLastActivityDate() < 

NewAccount.MaxPeriod

In the current prototype version of the FISTa tool, we are not yet able to use the hook 

descriptions to synthesize automatically the FIC model. Instead the user has to create the 

FIC model manually as illustrated in Section 3.2 and interacts with the tool to fill a table 

that describes the model. Figure D.l shows the filled table for the NewAccount FIC.
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Figure D .l : The tabular form of the NewAccount FIC

The FIST2 tool translates the tabular form of the model to the following model description 

form using the TSTMD language. The Java implementations of the predicates are 

associated with the transitions.

"Alpha"{
var„invariant = "" 
app_specific = false 
}"

”Overdrawn"{
var_invariant = "(o.balance()<0) && ((o.getCurrentDate()- 
o .getLastActivityDate()}<0 .getMaxPeriod()) && !(o.isFrozen())" 

app_specific = false 
}

"Open"{
var_invariant = "(o.balance()>=0) && ((o .getCurrentDate()- 
o .getLastActivityDate())<0 .getMaxPeriod()) && !(o.isFrozen())" 
app_specific = false 
}

11 Inactive" {
var_invariant = "(o.balance()>=0) && ((o.getCurrentDate()- 
o.getLastActivityDate())>=0 .getMaxPeriod()) && !(o.isFrozen())" 

app_specific = false 
}

“Frozen"{
var_invariant = "(o.balance()>=0) && (o.isFrozen(})" 
app__specif ic = false 
}

"Omega"{
var_invariant = "((o. balance()<0.01)&&(o.balance{)>-0 . 01)) " 
app_specific = false 
}

"Alpha"=>"Open"{
event = "NewAccount"
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parameter = "amount":"float"
condition = "amount" >= "0";[("float amount=1;"1] 
guaranteed = true 
app_specific = false
}

"Overdrawn"=>"Overdrawn“{
event = "deposit" 
parameter = "amount":"float"
condition = "(balance + amount)" < "0";[("amount= 

o.balance();")] 
guaranteed = true 
app_specific = false
}

"Overdrawn"=>"Overdrawn"{
event = "balance" 
guaranteed = true 
app_specific = false
}

"Overdrawn"=>“Open"{
event = "deposit" 
parameter = "amount” float"
condition = " (balance + amount) " >= "0" [ ("amount=l- 

o.balance {);'')] 
guaranteed = true 
app_specific = false 
}

11 Overdrawn" =>" Omega" {
event = "close" 
guaranteed = true 
app_specific = false 
}

"Open"=>"Overdrawn“{
event = "withdraw" 
parameter = "amount":"float"
condition = "(balance - amount)" < "0";[("amount=l+ 

o.balance{);“)] 
guaranteed = true 
app_specific = false 
}

"Open"=>"Open"{
event = "deposit" 
parameter = "amount":"float"
condition = "amount" = "1.0"; [ ("amount=l,- ") ] 
action = other:"balance";[("balance()=@pre balance() 

+amount")] 
guaranteed = true 
app_specific = false 
}

"Open"=>"Open"{
event = "withdraw" 
parameter = "amount":"amount"
condition = "(balance{)-amount)" >= "0";[("amount= 

o.balance();")] 
guaranteed = true 
app_specific = false 
}

"Open"=>"Open"{
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event = "balance" 
guaranteed = true 
app_specific = false 
}

“Open" =>"Inactive" {
event = “"
condition = "(getCurrentDate() - getLastActivityDate{)) 

"getMaxPeriod( } " ;  f{“o .setLastActivityDate 
(o.getCurrentDate()-o.getMaxPeriod!));")] 

guaranteed = false 
app_specific = false 
}

"Open”= > "Fro z en"{
event = “freeze" 
guaranteed = false 
app_specific = false 
}

“Open"=>"Omega”{
event = "close" 
guaranteed = true 
app_specific = false 
}

"Inactive"=>"Open"{
event = "activate” 
guaranteed = false 
aP P _specific = false 
}

"Inactive"=>"Inactive"{
event = "balance" 
guaranteed = false 
app_specific = false 
}

*' Inactive"=>" Frozen" {
event = "freeze" 
guaranteed = false 
aPP_specific = false 
}

"Inactive"=>"Omega"{
event = "close” 
guaranteed = false 
app_specific = false 
}

"Frozen"=>"Open"{
event = "unfreeze" 
condition = "balance" >= "0" ;

[(“/* The following is a predicate assertion */

/** ©assert(o.balance{)>=0) */")] 
guaranteed = false 
aPP— specific = false 
}

”Frozen"=>"Inactive"{ 
event = ""
condition = “(getCurrentDate() - getLastActivityDate(}) 

"getMaxPeriod( ) f("o.setLastActivityDate( 
o .getCurrentDate()-o.getMaxPeriod());")] 

guaranteed = false
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app_specific = false 
}

"Frozen"=>"Frozen"{
event = "balance" 
guaranteed = false 
app_specific = false 
}

"Frozen"=>"Omega”{
event = "close" 
guaranteed = false 
app_specific = false 
}

D.1.2. Tool Outputs

The prototype version of the FIST2 tool checked the given model description of the 

NewAccount FIC for the existence of one entry and one exit state and that all the states 

are reachable from the entry state. The results are provided to the user as shown in Figure 

D.2. In addition, the tool generated the following 22 Java test drivers from the 

NewAccount testable model using the all paths-state technique.

1 No Problems are found

Figure D.2: Checking model result

public class TESTl_NewAccount{ 
public TESTl_NewAccount{){

/* Test transition: source state: Alpha, sink state: Open, event: 
NewAccount(amount), predicates: amount>=0 */ 

float amount=l;
NewAccount o = new NewAccount(amount);

/** ©assert((o.balance()>=0) && ((o.getCurrentDate()-
o.getLastActivityDate())< o .getMaxPeriod{)) && !(o.isFrozen())) */ 

/* Test transition: source state: Open, sink state: Open, event: 
balance(), predicates: none */ 

o.balance( )  ;

/** ©assert((o.balance{)>=0) && ((o.getCurrentDate()-
o .getLastActivityDate())< o .getMaxPeriod()) && !(o.isFrozen())) * /

}
}
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public class TEST2_NewAccount{ 
public TEST2_NewAccount(){

/'* Test transition: source state: Alpha, sink state: Open, event: 
NewAccount (amount) , predicates: amount>=0 */ 

float amount=l;
NewAccount o = new NewAccount(amount) ;

/** ©assert((o.balance()>=0) && ((o.getCurrentDate() -
o .getLastActivityDate()}<o.getMaxPeriod()) && i{o .isFrozen())} *

/* Test transition: source state: Open, sink state: Open, event: 
deposit(amount), predicates: amount=l.0 */ 

amount=l;
o .deposit(amount);

/ ** ©assert((o.balance()>=0) && ((o .getCurrentDate()- 
o.getLastActivityDate())<o.getMaxPeriod()) && !(o.isFrozen())) */

}
}

public class TEST3_NewAccount{ 
public TEST3_NewAccount(){

/* Test transition: source state: Alpha, sink state: Open, event: 
NewAccount(amount), predicates: amount>=0 */ 

float amount=l;
NewAccount o = new NewAccount(amount);

/** ©assert((o.balance()>=0) && ( (o.getCurrentDate()-
o .getLastActivityDate())<o.getMaxPeriod()) && !(o .isFrozen())) */

/* T e s t  transition: source state: Open, sink state: Overdrawn, event 
withdraw(amount), predicates: (balance - amount)<0 */

amount=l+o.balance(); 
o.withdraw(amount);

/** ©assert((o.balance()<0) && ((o.getCurrentDate()-
o .getLastActivityDate())< o .getMaxPeriod()) && !(o.isFrozen())) */ 

/* Test transition: source state: Overdrawn, sink state: Overdrawn, 
event: balance!), predicates: none */ 

o.balance();

/** ©assert((o.balance()<0) && ((o.getCurrentDate!)-
o.getLastActivityDate())<o.getMaxPeriod()) && !(o.isFrozen())) */

}
}

public class TEST4_NewAccount{ 
public TEST4_NewAccount(){

/* Test transition: source state: Alpha, sink state: Open, event: 
NewAccount{amount), predicates: amount>=0 */ 

float amount=l;
NewAccount o = new NewAccount(amount);

/ * *  ©assert((o.balance()>=0) && ((o .getCurrentDate()-
o.getLastActivityDate())<o .getMaxPeriod()) && !(o.isFrozen())) */ 

/* Test transition: source state: Open, sink state: Overdrawn, event 
withdraw(amount), predicates: (balance - amount)<0 */

amount=l+o .balance () ,- 
o .withdraw(amount) ,-

/** ©assert((o.balance()<0) && ((o.getCurrentDate()- 
o.getLastActivityDate())< o .getMaxPeriod()) && !(o.isFrozen())) * /

/ *  Test transition: source state: Overdrawn, sink state: Overdrawn, 
event: deposit(amount), predicates: (balance + amount)<0 */

amount=o.balance();
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o .deposit(amount);

/** ©assert((o.balance()<0! && ((o.getCurrentDate!)-
o .getLastActivityDate(})<o .getMaxPeriod()) && !(o.isFrozen()]) */

}
}

public class TEST5_KewAccount{ 
public TEST5_NewAccount(){

/* Test transition: source state: Alpha, sink state: Open, event: 
NewAccount(amount), predicates: amount>=0 */ 
float amount=l;
NewAccount o = new NewAccount(amount);

/** ©assert{(o.balance()>=0) && ((o.getCurrentDate()- 
o .getLastActivityDate())<o .getMaxPeriod()) && !{o .isFrozen())) */

/* Test transition: source state: Open, sink state: Overdrawn, event: 
wi their aw (amount) , predicates: (balance - amount) <0 */

amount=l+o.balance () ,- 
o .withdraw(amoun t);

/** ©assert((o.balance()<0) && ((o.getCurrentDate()-
o .getLastActivityDate())<o.getMaxPeriod()) && !(o.isFrozen{))) */

/* Test transition: source state: Overdrawn, sink state: Open, event: 
deposit(amount), predicates: (balance + amount)>=0 */

amount=l-o.balance{); 
o .deposi t (amount);

/ * *  ©assert((o.balance()>=0) && ((o.getCurrentDatef}-
o.getLastActivityDate())<o.getMaxPeriod()) && !(o.isFrozen())) */

}
}

public class TESTS_NewAccount{ 
public TEST6_NewAccount(){

/* Test transition: source state: Alpha, sink state: Open, event: 
NewAccount(amount), predicates: amount>=0 */ 

float amount=1;
NewAccount o = new NewAccount(amount);

/** ©assert((o.balance()>=0) && ((o .getCurrentDate()-
o .getLastActivityDate())< o .getMaxPeriod()) && !(o.isFrozen())) */

/* Test transition: source state: Open, sink state: Overdrawn, event: 
withdraw(amount>, predicates: (balance - amount)<0 */

amount=l+o.balance() ,- 
o .wi thdraw(amount);

/** ©assert((o.balance()<0) && ((o .getCurrentDate()-
o .getLastActivityDate())<o.getMaxPeriod()) && !(o.isFrozen())) */

/* Test transition: source state: Overdrawn, sink state: Omega, event: 
close(), predicates: none */ 

o . close(!;

/** ©assert(((o.balance()<0.01)&&(o.balance()>-0.01))) */
}

}

public class TEST7_NewAccount{ 
public TEST7_NewAccount(){

/ *  Test transition: source state: Alpha, sink state: Open, event: 
NewAccount(amount), predicates: amount>=0 */ 

float amount=l;
NewAccount o = new NewAccount(amount);
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/** ©assert{(o.balance{)>=0) && ((o.getCurrentDate()-
o.getLastActivityDate <))<o.getMaxPeriod{)) && !(o.isFrozen !))) */

/* Test transition: source state: Open, sink state: Open, event: 
withdraw(amount), predicates: (balance()-amount)>=0 */

amount=o.balance(); 
o . wi thdraw (amoun t) ;

/* * ©assert((o.balance(}>=0) && {(o .getCurrentDate()-
o.getLastActivityDate())< o .getMaxPeriod(}) && !(o.isFrozen{))) */

public class TEST8_NewAccount{ 
public TEST8_NewAccount() {

/* Test transition: source state: Alpha, sink state: Open, event: 
NewAccount(amount), predicates: amount>=0 */ 

float amount=l;
NewAccount o = new NewAccount(amount);

/** ©assert((o.balance()>=0) && ((o.getCurrentDate() -
o .getLastActivityDate())< o .getMaxPeriod()) && !(o.isFrozen())) */

/* Test transition: source state: Open, sink state: Frozen, event: 
freeze)), predicates: none */ 

o .freeze();

/** ©assert((o .balance()>=0) && (o.isFrozen())) */
/* Test transition: source state: Frozen, sink state: Inactive, event: 

none, predicates: (getCurrentDate() -
getLastActivityDate())>=getMaxPeriod() */ 

o .setLastActivityDate(o.getCurrentDate()-o.getMaxPeriod());

/ * *  ©assert((o.balance()>=0) && ((o.getCurrentDate()-
o .getLastActivityDate())>=o.getMaxPeriod()) && !(o.isFrozen())) */

/* Test transition: source state: Inactive, sink state: Inactive, event 
balance(), predicates: none */ 

o.balance();

/ * *  ©assert((o.balance()>=0) && ((o .getCurrentDate()-
o .getLastActivityDate())>=o.getMaxPeriod()) && !(o.isFrozen())) */

}
}

public class TEST9_NewAccount{ 
public TEST9_NewAccount(){

/* Test transition: source state: Alpha, sink state: Open, event: 
NewAccount(amount), predicates: amount>=0 */ 

float amount=l;
NewAccount o = new NewAccount(amount);

/** ©assert{(o.balance()>=0) && ((o.getCurrentDate()-
o.getLastActivityDate())< o .getMaxPeriod()) && !(o.isFrozen())) */ 

f *  Test transition: source state: Open, sink state: Frozen, event: 
freeze!), predicates: none */ 

o .freeze();

/** ©assert((o.balance()>=0) && (o.isFrozen{))) */
/* Test transition: source state: Frozen, sink state: Inactive, event: 

none, predicates: (getCurrentDate!) -
getLastActivityDate())>=getMaxPeriod() */ 

o .setLastActivityDate(o.getCurrentDate()-o.getMaxPeriod());
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/'** ©assert ( (o .balance {) >=0) && ( (o.getCurrentDate() -
o.getLastActivityDate())>=o.getMaxPeriod()) && !(o.isFrozen())} */ 

/* Test transition: source state: Inactive, sink state: Open, event: 
activate(), predicates: none */ 

o . activate{};

/** ©assert!(o.balance()>=0) && ((o .getCurrentDate(}-
o .getLastActivityDate())<o .getMaxPeriod()) && !(o.isFrozen{))) */

}
}

public class TEST10_NewAccount{ 
public TEST10_NewAccount(){

/* Test transition: source state: Alpha, sink state: Open, event: 
NewAccount(amount), predicates: amount>=0 */ 

float amount=l;
NewAccount o = new NewAccount(amount);

/** ©assert((o.balance()>=0) && ((o.getCurrentDate()-
o .getLastActivityDate())< o .getMaxPeriod()) && !(o.isFrozen(})) * /

/* Test transition: source state: Open, sink state: Frozen, event: 
freeze!), predicates: none */ 

o.freeze();

/** ©assert((o.balance()>=0) && (o.isFrozen())) */
/* Test transition: source state: Frozen, sink state: Inactive, event 

none, predicates: (getCurrentDate() -
getLastActivityDate())>=getMaxPeriod() */ 

o.setLastActivityDate(o.getCurrentDate()-o.getMaxPeriod());

/** ©assert((o.balance()>=0) && ((o.getCurrentDate()-
o.getLastActivityDate())>=o.getMaxPeriod()) && !(o.isFrozen())) */ 

/* Test transition: source state: Inactive, sink state: Frozen, event 
freeze!), predicates: none */ 

o.freeze();

/** ©assert((o.balance()>=0) && (o.isFrozen())) */
}

}

public class TESTll_NewAccount{ 
public TESTll_NewAccount(){

/* Test transition: source state: Alpha, sink state: Open, event: 
NewAccount(amount) , predicates: amount>=0 */ 

float amount=1;
NewAccount o = new NewAccount(amount);

/** ©assert((o.balance()>=0) && ((o .getCurrentDate()-
o .getLastActivityDate())< o .getMaxPeriod()) && !(o.isFrozen())) */

/* Test transition: source state: Open, sink state: Frozen, event: 
freeze(), predicates: none */ 

o.freeze();

/** ©assert!(o.balance()>=0) && (o.isFrozen())) */
/* Test transition: source state: Frozen, sink state: Inactive, event 

none, predicates: (getCurrentDate() -
getLastActivityDate!))>=getMaxPeriod() */ 

o .setLastActivityDate(o.getCurrentDate()-o.getMaxPeriod());
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/** ©assert({o .balance()>=0) && ({o .getCurrentDate()-
o .getLastActivityDate{))>=o.getMaxPeriod()) && !(o.isFrozen())) */ 

/* Test transition: source state: Inactive, sink state: Omega, event: 
close(), predicates: none */ 

o.close();

/** Sassert(((o.balance()<0.01)&&(o.balance{) >-0 . 01))) */
}

}

public class TEST12_NewAccount{ 
public TEST12_NewAccount(){

/* Test transition: source state: Alpha, sink state: Open, event: 
NewAccount(amount), predicates: amount>=0 */ 

float amount=l;
NewAccount o = new NewAccount(amount);

/** Uassert((o.balance()>=0) && ((o.getCurrentDate()-
o .getLastActivityDate())< o .getMaxPeriod()) && !(o.isFrozen())) */

/* Test transition: source state: Open, sink state: Frozen, event: 
freezeO, predicates: none */ 

o.freeze();

/** ©assert((o.balance()>=0) && (o.isFrozen())) */
/* Test transition: source state: Frozen, sink state: Open, event: 

unfreeze!), predicates: balance>=0 */
/* The following is a predicate assertion */
/** ©assert(o.balance()>=0) */ 
o .unfreeze();

/** ©assert((o.balance()>=0) && ((o.getCurrentDate()-
o .getLastActivityDate())< o .getMaxPeriod()) && !(o.isFrozen())) */

}
}

public class TEST13_NewAccount{ 
public TEST13_NewAccount(){

/* Test transition: source state: Alpha, sink state: Open, event: 
NewAccount(amount), predicates: amount>=0 */ 

float amount=l;
NewAccount o = new NewAccount (amount) ,-

/** ©assert((o.balance()>=0) && ((o.getCurrentDate!)-
o .getLastActivityDate())< o .getMaxPeriod()) && !(o.isFrozen())) */ 

/* Test transition: source state: Open, sink state: Frozen, event: 
freeze(), predicates: none * /  

o .freeze{) ;

/** ©assert((o.balance()>=0) && (o.isFrozen())) */
/* Test transition: source state: Frozen, sink state: Omega, event: 

close(), predicates: none */ 
o .close() ;

/** ©assert(((o.balance(><0.01}&&(o-balance()>-0.01))) */
}

}

public class TEST14_NewAccount{ 
public TEST14_NewAccount(){

/* Test transition: source state: Alpha, sink state: Open, event: 
NewAccount(amount), predicates: amount>=0 */ 

float amount=l;
NewAccount o = new NewAccount(amount);
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/** ©assert((o.balance()>=0) && ((o.getCurrentDate()-
o .getLastActivityDate{))<o .getMaxPeriod.()) && ! (o.IsFrozen())) */

/ *  Test transition: source state: Open, sink state: Frozen, event: 
freeze!), predicates: none */ 

o .freeze();

/** ©assert((o.balance()>=0) && (o.isFrozen{))) */
/* Test transition: source state: Frozen, sink state: Frozen, event: 

balance!), predicates: none */ 
o.balance{);

/ * *  ©assert((o.balance()>=0) && (o.isFrozen()}) */
}

}

public class TEST15__NewAccount{ 
public TEST15_NewAccount(){

/* Test transition: source state: Alpha, sink state: Open, event: 
NewAccount(amount), predicates: amount>=0 */ 

float amount=l;
NewAccount o = new NewAccount(amount ) ;

/ * *  ©assert!(o.balance()>=0) && ((o .getCurrentDate()-
o.getLastActivityDate())<o.getMaxPeriod()) && !(o.isFrozen())) */ 

/* Test transition: source state: Open, sink state: Inactive, event: 
none, predicates: (getCurrentDate!) -
getLastActivityDate())>=getMaxPeriod() */ 

o .setLastActivityDate(o.getCurrentDate()-o.getMaxPeriod());

/** ©assert((o.balance()>=0) && ((o.getCurrentDate()-
o.getLastActivityDate())> = o .getMaxPeriod()) && !(o.isFrozen())) */ 

/* Test transition: source state: Inactive, sink state: Frozen, event 
freeze!), predicates: none */ 

o .freeze();

/** ©assert((o.balance()>=0) && (o.isFrozen())) */
/* Test transition: source state: Frozen, sink state: Inactive, event 

none, predicates: (getCurrentDate!) -
getLastActivityDate!))>=getMaxPeriod() */ 

o .setLastActivityDate(o.getCurrentDate()-o.getMaxPeriod());

/ * *  ©assert((o.balance()>=0) && ((o.getCurrentDate()-
o.getLastActivityDate())>=o.getMaxPeriod()) && !(o.isFrozen())) */

}
}

public class TEST16_NewAccount{ 
public TEST16_NewAccount(){

/* Test transition: source state: Alpha, sink state: Open, event: 
NewAccount(amount), predicates: amount>=0 */ 

float amount=l;
NewAccount o = new NewAccount(amount);

/** ©assert((o.balance{)>=0) && ((o.getCurrentDate()-
o .getLastActivityDate())<o.getMaxPeriod()) && !(o.isFrozen())) * /

/* Test transition: source state: Open, sink state: Inactive, event: 
none, predicates: (getCurrentDate() -
getLastActivityDate())>=getMaxPeriod() */ 

o .setLastActivityDate(o.getCurrentDate()-o.getMaxPeriod()i;
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/ * *  ©assert{(o.balance{)>=0) && ({o.getCurrentDate()-
o .getLastActivityDate())>=o.getMaxPeriod()} && !(o.isFrozen())) */ 

/* Test transition: source state: Inactive, sink state: Frozen, event 
freeze{), predicates: none */ 

o .freeze{);

/** ©assert((o.balance()>=0) && (o.isFrozen()}) */
/* Test transition: source state: Frozen, sink state: Open, event: 

unfreeze(), predicates: balance>=0 */
/* The following is a predicate assertion */
/* * ©assert(o.balance()>=0) */ 
o.unfreeze();

/** ©assert((o.balance()>=0) && ((o.getCurrentDate()-
o .getLastActivityDate())<o.getMaxPeriod()) && !(o.isFrozen())) */

}
}

public class TEST17_NewAccount{ 
public TEST17_NewAccount{){

/* Test transition: source state: Alpha, sink state: Open, event: 
NewAccount(amount), predicates: amount>=0 */ 

float amount=l;
NewAccount o = new NewAccount(amount);

/** ©assert((o.balance()>=0) && ((o.getCurrentDate()-
o .getLastActivityDate())<o .getMaxPeriod()) && !(o.isFrozen())) */

/* Test transition: source state: Open, sink state: Inactive, event: 
none, predicates: (getCurrentDate!) -
getLastActivityDate{))>=getMaxPeriod() * / 

o .setLastActivityDate(o.getCurrentDate()-o.getMaxPeriod!));

/** ©assert((o.balance()>=0) && ((o.getCurrentDate()-
o .getLastActivityDate())>=o.getMaxPeriod()) && !(o.isFrozen())) */ 

/* Test transition: source state: Inactive, sink state: Frozen, event 
freeze!), predicates: none */ 

o.freeze();

/** ©assert((o.balance()>=0) && (o.isFrozen())) */
/* Test transition: source state: Frozen, sink state: Omega, event: 

close!), predicates: none */ 
o .close();

/** ©assert(((o.balance{)<0.01)&&(o.balance()>-0.01))) */
}

}

public class TEST18_NewAccount{ 
public TEST18_NewAccount(){

/* Test transition: source state: Alpha, sink state: Open, event: 
NewAccount(amount), predicates: amount>=0 */ 

float amount=l;
NewAccount o = new NewAccount(amount);

/** ©assert((o.balance()>=0) && ((o.getCurrentDate()-
o.getLastActivityDate())<o.getMaxPeriod()) && !(o.isFrozen())) */

/* Test transition: source state: Open, sink state: Inactive, event: 
none, predicates: (getCurrentDate!) -
getLastActivityDate())>=getMaxPeriod() */ 

o . setLastActivityDate(o.getCurrentDate()-o.getMaxPeriod());
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/** ©assert((©.balance()>=0) && ((o .getCurrentDate()-
o.getLastActivityDate())>=o.getMaxPeriod()) && ! (o.isFrozen{))) */ 

/* Test transition: source state: Inactive, sink state: Frozen, event 
freeze ! ) ,  predicates: none */ 

o .freeze{);

/** ©assert{(o.balance()>=0) && (o.isFrozen())) */
/* Test transition: source state: Frozen, sink state: Frozen, event: 

balance!), predicates: none */ 
o.balance();

/** ©assert((o .balance()>=0) && (o.isFrozen())) */
}

}

public class TEST19_NewAccount{ 
public TESTl9_NewAccount(){

/* Test transition: source state: Alpha, sink state: Open, event: 
NewAccount(amount), predicates: amount>=0 */ 

float amount=l;
NewAccount o = new NewAccount{amount);

/** ©assert((o.balance{)>=0) && ({o.getCurrentDate()-
o .getLastActivityDate())<o.getMaxPeriod()) && !(o.isFrozen())) */

/* Test transition: source state: Open, sink state: Inactive, event: 
none, predicates: (getCurrentDate() -
getLastActivityDate())>=getMaxPeriod() */ 

o.setLastActivityDate(o.getCurrentDate()-o.getMaxPeriod());

/** Qassert{<o.balance I)>=0) && ((o.getCurrentDate()-
o.getLastActivityDate())>=o.getMaxPeriod!)) && !(o.isFrozen())) */ 

/* Test transition: source state: Inactive, sink state: Open, event: 
activate!), predicates: none */ 

o.activate();

/** ©assert((o.balance()>=0) && {(o.getCurrentDate()-
o .getLastActivityDate())<o.getMaxPeriod()) && !(o.isFrozen())) */

}
}

public class TEST20_NewAccount{ 
public TEST20_NewAccount(){

/ *  Test transition: source state: Alpha, sink state: Open, event: 
NewAccount(amount), predicates: amount>=0 */ 

float amount=1;
NewAccount o = new NewAccount(amount);

/** ©assert{(o.balance()>=0) && ((o.getCurrentDate!!-
o .getLastActivityDate())<o .getMaxPeriod()) && !(o.isFrozen())) */ 

/* Test transition: source state: Open, sink state: Inactive, event: 
none, predicates: (getCurrentDate!) -
getLastActivityDate{))>=getMaxPeriod() */ 

o .setLastActivityDate(o .getCurrentDate()-o.getMaxPeriod());

/** ©assert((o .balance()>=0) && ((o .getCurrentDate()-
o .getLastActivityDate())>=o.getMaxPeriod()) && !(o.isFrozen())) */ 

/* Test transition: source state: Inactive, sink state: Omega, event: 
close(), predicates: none * /  

o . close();
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/** ©assert(((o.balance()<0.01)&&(o.balance()>-0 . 01) ) ) */
}

}

public class TEST2l_NewAccount{ 
public TEST21__NewAccount () {

/* Test transition: source state: Alpha, sink state: Open, event: 
NewAccount(amount) , predicates: amount>=0 */ 

float amount=l;
NewAccount o = new NewAccount(amount);

/** ©assert((o.balance()>=0) && ((o.getCurrentDate()-
o.getLastActivityDate{))<o.getMaxPeriod()) && !(o.isFrozen())) */ 

/* Test transition: source state: Open, sink state: Inactive, event: 
none, predicates: (getCurrentDate() -
getLastActivityDate())>=getMaxPeriod() */ 

o .setLastActivityDate(o.getCurrentDate()-o.getMaxPeriod() ) ;

/** ©assert((o.balance()>=0) && ((o.getCurrentDate()-
o .getLastActivityDate())>=o.getMaxPeriod()) && !(o.isFrozen())) */

/* Test transition: source state: Inactive, sink state: Inactive, event: 
balance(), predicates: none */ 

o.balance();

/** ©assert((o.balance()>=0) && ((o.getCurrentDateO-
o.getLastActivityDate())>=o.getMaxPeriod()) && !(o.isFrozen())) */

}
}

public class TEST22_NewAccount{ 
public TEST22_NewAccount(){

/* Test transition: source state: Alpha, sink state: Open, event: 
NewAccount(amount) , predicates: amount>=0 */ 

float amount=l;
NewAccount o = new NewAccount(amount);

/** ©assert((o.balance()>=0) && ((o.getCurrentDate()-
o .getLastActivityDate{))< o .getMaxPeriod()) && !(o.isFrozen())) */ 

/* Test transition: source state: Open, sink state: Omega, event: 
closet ) , predicates: none */ 

o .close();

/** ©assert(((o.balance()<0.01)&&(o.balance()>-0.01))) * /

D.2. Application Development Stage 

D.2.1. Tool Inputs

We have used the prototype version of the FIST2 tool to test an implementation example 

of the FIC: MyAccount class. The MyAccount class can be implemented using the Hook

Master tool. The freeze and unfreeze methods are not implemented in the MyAccount 

class and, therefore, the test drivers that cover them cannot be used to test the MyAccount
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class. In addition, the application developer added a new method: PrintStatement that can 

be invoked at any model state. The prototype version of the tool is not integrated yet with 

the Hook Master tool to reflect the specification ignorance and addition performed when 

implementing the FIC. In our example, using the prototype version, the user deleted the 

Frozen state and the transitions associated with it and added the transitions for the 

specifications of the PrintStatement method (i.e., a self loop transition associated with the 

method call as an event was added to the open, inactive, and overdrawn states). This 

results in having the following model description written using the syntax listed in 

Appendix C.

"Alpha"{
var_invariant = "" 
app_specific = false 
}

"Overdrawn"{
var_invariant = "(o.balance()<0) && ((o.getCurrentDate()- 
o .getLastActivityDate())<o.getMaxPeriod()) && !(o.isFrozen())" 
app_specific = false 
}

"Open"{
var_invariant = "(o.balance()>=0) && ((o.getCurrentDate () - 
o .getLastActivityDate())<o.getMaxPeriod()) && ! (o.isFrozen())” 
app_specific = false 
}

"Inactive”{
var_invariant = ”(o.balance()>=0) && ((o.getCurrentDate()- 
o .getLastActivityDate())>=o.getMaxPeriod{)) && !(o.isFrozen(>)” 
app_specific = false
}

"Omega"{
var_invariant = "( (o .balance () <0 . 01) && (o. balance {) >-0 . 01) ) '' 
app_specific = false
}

"Alpha"= >"Open"{
event = "NewAccount" 
parameter = "amount":"float"
condition = "amount" >= "0”;[("float amount=l;")] 
guaranteed = true 
app_specific = false 
}

"Overdrawn"=>"Overdrawn"{
event = "deposit" 
parameter = "amount"float”
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condition = “(balance + amount)" < ”0";[("amount= 
o.balance();")] 

guaranteed = true 
aPP—specific = false 
}

”Overdrawn"=>“Overdrawn"{
event = "balance" 
guaranteed = true 
app_specific = false 
}

"Overdrawn ”=>"Open"{
event = "deposit" 
parameter = "amountfloat“
condition = "{balance + amount)" >= "0";[("amount=l- 

o .balance ();'')] 
guaranteed = true 
app_specific = false 
}

"Overdrawn"=>"Omega"{
event = "close" 
guaranteed = true 
app_specific = false 
}

“Open"=>"Overdrawn"{
event = "withdraw" 
parameter = "amount":"float"
condition = "(balance - amount)" < "0";[("amount=l+ 

o .balance();") ] 
guaranteed = true 
app_specific = false 
}

"Open"=>"Open"{
event = "deposit” 
parameter = "amount":"float”
condition = "amount" = "1.0";[("amount=l;")] 
action = other;"balance";(("balance()=@pre balance()

+amount">] 
guaranteed = true 
app_specific = false 
}

”Open11 =>”Open" {
event = "withdraw" 
parameter = "amount”:"amount"
condition = "(balance{)-amount)" >= "0";[("amount= 

o .balance();”)] 
guaranteed = true 
app_specific = false
}

"Open"=>"Open"{
event = "balance" 
guaranteed = true 
app_specific = false 
}

"Open"= >“Inac t ive"{
event = ""
condition = "(getCurrentDate() - getLastActivityDate()} " 

"getMaxPeriod()";[("o .setLastActivityDate
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(o.getCurrentDate{)-o.getMaxPeriod());")] 
guaranteed = false 
app_specific = false 
}

"Open"=>"Omega"{
event = "close" 
guaranteed = true 
app_specific = false 
}

"Inactive"=>"Open"{
event = "activate" 
guaranteed = false 
app_specific = false 
}

"Inactive"=>"Inactive"{
event = "balance" 
guaranteed = false 
app_spec i f i c = false 
}

"Inactive"=>"Omega"{
event = "close" 
guaranteed = false 
app_specific = false 
}

"Open"=>"Open"{
event = "PrintStatement" 
guaranteed = true 
app_specific = true 
}

"Overdrawn"=>"Overdrawn"{
event = "PrintStatement" 
guaranteed = true 
app_specific = true 
}

"Inactive"=>"Inactive"{
event = “PrintStatement" 
guaranteed = false 
app_specific = true 
}

The generated test drivers given in Appendix D.1.2, from which the tool selected the 

non-broken test drivers, are input to the tool at the application development stage. The 

following code provides the Java implementation of the framework extended class (i.e., 

Account) and the implemented FIC (i.e., MyAccount). The MyAccount class is 

instrumented with Javadoc comments written in DbC for test case evaluation purposes. 

The instrumentation was done manually and will be automated when the tool is integrated 

with the Hook Master tool.
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public class Account {
Account(float amount) {

this.Balance=amount;
}
float balance{) {

return Balance;
}
void withdraw(float amount) {

Balance=balance()-amount;
}
void deposit(float amount) {

Balance=balance()+amount;
}
float Balance;

public class MyAccount extends Account{
/** ©post ((balance()<amount+0.01)&&(balance()>amount-0.01)) */ 
MyAccount(float amount) { 

super(amount);

}
float balance() {

return super.balance();
}
/ * *  ©post (balance()> ($pre(float,balance())-0.01-amount))&&(balance() 

($pre(float,balance())+0.01-amount))*/ 
void withdraw(float amount) { 

super.withdraw(amount);
}

/** ©post (balance()> (amount+$pre(float,balance())-0.01))&&(balance() 
(amount+$pre(float,balance())+0.01))*/ 

void deposit(float amount) { 
super.deposit(amount);

}

int getLastActivityDate() {
return lastActivityDate ;

}
/** ©post(getLastActivityDate()==year)*/ 
void setLastActivityDate(int year) { 

lastActivityDate=year;
}
/** ©post Sresult == 5 */ 
int getMaxPeriod() {

return 5;
}

int getCurrentDate() {

}
boolean isFrozen() {

return frozen;
}
/** @pre (getCurrentDate()-getLastActivityDate())>=getMaxPeriod()*/
/** ©post (getLastActivityDate()-getCurrentDate())==0*/ 
void activate() {

lastActivityDate=getCurrentDate();
}
/* ©post (balance()<0.01)&&(balance()>-0.01)*/ 
void close() {
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withdraw (balance (} ) ,-
}
void PrintStatement() {

}
int lastActivityDate; 
boolean frozen;

D.2.2. Tool Outputs

1. Applicable test drivers

The tool found that the test drivers numbered 1-7 and 19-22 are applicable for testing the 

MyAccount class. In addition, the FIST2 tool augmented three test cases to cover the new 

transitions associated with PrintStatement event. The following classes generated by the 

tool implement the augmented test cases. The added statements are bolded.

public class TEST23_NewAccount{ 
public TESTl_NewAccount(){

/* Test transition: source state: Alpha, sink state: Open, event: 
NewAccount(amount), predicates: amount>=0 */ 

float amount=l;
NewAccount o = new NewAccount(amount);

/** Sassert((o.balance()>=0) && ((o.getCurrentDate()-
o.getLastActivityDate())<0 .getMaxPeriod()) && !(o.isFrozen())) */

/* Test transition: source state: Open, sink state: Open, event: 
PrintStatment( ) ,  predicates: none * /  

o . PrintStatment();

/** ©assert((o.balance()>=0) && ((o .getCurrentDate()-
o.getLastActivityDateO)<o„getMaxPeriod()) && 1(o.isFrozen())) * /

)
}

public class TEST24_NewAccount{ 
public TEST3_NewAccount(){

/* Test transition: source state: Alpha, sink state: Open, event: 
NewAccount(amount), predicates: amount>=0 * !  

float amount=l;
NewAccount o = new NewAccount(amount);

/ * *  ©assert((o.balance()>=0) && {(o.getCurrentDate()-
o.getLastActivityDate())< o .getMaxPeriod()) && !(o.isFrozen())) */ 

/* Test transition: source state: Open, sink state: Overdrawn, event: 
withdraw(amount), predicates: (balance - amount)<0 */

amount=l+o.balance(); 
o .withdraw(amount);

/* * ©assert((o.balance{)<0) && ((o.getCurrentDate()-
o.getLastActivityDate{))<o.getMaxPeriod()) && ■(o.isFrozen())) */

/ *  Test transition: source states Overdrawn, sink states Overdrawn, 
event: PrintStatment(), predicates: none */ 

o .PrintStatment();
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/** ©assertC{o.balance()<0) && {(o.getCurrentDate<)-
o .getLastActivityDate())<o.getMaxPeriod()) && I(o.isFrozen{))) * I

}

public class TEST25_MewAccount{ 
public TEST21_NewAccount{){

/* Test transition: source state: Alpha, sink state: Open, event: 
NewAccount(amount), predicates: amount>=0 */ 

float amount=l;
NewAccount o = new NewAccount(amount);

/** @assert((o.balance()>=0) && ((o.getCurrentDate{)-
o.getLastActivityDate())<o .getMaxPeriod()) && !(o.isFrozen())) */ 

/* Test transition: source state: Open, sink state: Inactive, event: 
none, predicates: (getCurrentDate{) -
getLastActivityDate())>=getMaxPeriod() */ 

o .setLastActivityDate(o.getCurrentDate()-o.getMaxPeriod(});

/** Sassert((o.balance()>=0) && ((o.getCurrentDate()-
o .getLastActivityDate())>=o.getMaxPeriod()) && !(o.isFrozen())) */

/* Test transition: source state: Inactive, sink state: Inactive, event: 
PrintStatment(), predicates: none */ 

o.PrintStatment() ();

/** ©assert((o.balance()> = 0 ) && ((o .getCurrentDate()-
o.getLastActivityDate())>=o.getMaxPeriod()) && i(o.isFrozen())) */

}
>

2. Driver class

The FIST2 tool detected the broken test drivers and generates the following driver to 

invoke the non-broken and augmented test drivers.

public class DRIVER_MyAccount{
public static void main(String args[]){ 

//invoking non-broken test drivers 
new TESTl_NewAccount(); 
new TEST2_NewAccount(); 
new TEST3_NewAccount(); 
new TEST4_NewAccount(); 
new TEST5_NewAccount{); 
new TEST6_NewAccount(); 
new TEST7_NewAccount(); 
new TEST19_NewAccount(); 
new TEST2 0_NewAccount(); 
new TEST21_NewAccount(); 
new TEST22_NewAccount();

//invoking augmented test drivers 
new TEST23_NewAccount(); 
new TEST2 4_NewAccount(); 
new TEST2 5_NewAccount();

}
}

171

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



3. FIC mapping class

The FIST2 tool generated the following mapping class
public class NewAccount extends MyAccount{

public NewAccount{float amount) { 
super(amount);

}
float balance() {

return super.balance();
}
void withdraw{float amount) { 

super.withdraw(amount);
}
void deposit(float amount) { 

super.deposit(amount);
}
void activate() {

super.activate();
}
void close() {

super.close();
}

/ the following method is not generated automatically in the prototype 
version of the tool */ 

public boolean isFrozen () { return false; }

4. Testing Results

The FIST2 tool compiled the non-broken test drivers, the driver class, the FIC mapping 

class, and the implemented FIC. Finally, the tool executed the driver class and used the 

Jcontract tool to produce the testing results shown in Figure D.3. The results are also 

stored in a log file as follows.

Jcontract: Version 1.5 -- Copyright (C) 2000-2002 ParaSoft 
Jcontract: Environment:

java.version = 1.3.1_01

user.dir = C:\texnp FICXMy Account!inputs to FIST thesis 
Jcontract: Started on: 13/03/03 6:24 PM

Jcontract: 
Jcontract: 
Jcontract: 
Jcontract: 
Jcontract: 
Jcontract: 
Jcontract: 
Jcontract: 
Jcontract: 
Jcontract: 
Jcontract: 
Jcontract: 
Jcontract: 
Jcontract: 
Jcontract:

Loaded
Loaded
Loaded
Loaded
Loaded
Loaded
Loaded
Loaded
Loaded
Loaded
Loaded
Loaded
Loaded
Loaded
Loaded

instrumented 
instrumented 
instrumented 
instrumented 
instrumented 
ins trumented 
instrumented 
instrumented 
instrumented 
instrumented 
instrumented 
ins trumented 
ins trumented 
ins trumented 
instrumented

class: TESTl_NewAccount 
class: MyAccount 
class: TEST2_NewAccount 
class: TEST3_NewAccount 
class: TEST4_NewAccount 
class: TEST5_NewAccount 
class: TEST6_NewAccount 
class: TEST7_NewAccount 
class: TEST19_NewAccount 
class: TEST20_NewAccount 
class: TEST2l_NewAccount 
class: TEST22_NewAccount 
class: TEST23_NewAccount 
class: TEST2 4_NewAccount 
class: TEST25_NewAc c oun t
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Jcontract: Ended on: 13/03/03 5:24 PM

Jcontract: Runtime Statistics:
Instrumented classes loaded: 15 
@pre checks: 1
©post checks: 122
©invariant checks: 0
©concurrency checks: 0
©assert checks: 37

*> ■ .lcontra»:l M ontlw  ■ l t f»11.>N ew A rnuun t

p ie  Edit risip:

-# R untim e P ro g re s s  
■» [01 C ontract V iolations

00 00 00 t P; jgran- at-Sed

luntime Progress
♦  in s tru m en ted  C la s s e s  loaded: 15
♦  © p re  checks: 1 

© p o s t checks: 122
■* © invarian t c h eck s : 0

 ♦  © concu rrency  ch eck s: 0
 ♦  © a s s e r t  ch eck s: 37

f l lO J  Contract Violations

Figure D.3: The MyAccount class testing results produced using the Jcontract tool
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