
In compliance with the
Canadian Privacy Legislation

some supporting forms
may have been removed from

this dissertation.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the dissertation.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

University of Alberta

Class-Based Testing of Object-Oriented Framework Interface Classes

By

Jehad A1 Dallal

A thesis submitted to the Faculty o f Graduate Studies and Research in partial
fulfillment o f the requirements fo r the degree o f Doctor o f Philosophy

Department of Computing Science

Edmonton, Alberta

Fall 2003

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1*1 National Library
of Canada

Acquisitions and
Bibliographic Services

395 Wellington Street
Ottawa ON K1A 0N4
Canada

Bibliotheque nationale
du Canada

Acquisisitons et
services bibliographiques

395, rue Wellington
Ottawa ON K1A 0N4
Canada

Your file Votre reference
ISBN: 0-612-87928-3
Our file Notre reference
ISBN: 0-612-87928-3

The author has granted a non­
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur a accorde une licence non
exclusive permettant a la
Bibliotheque nationale du Canada de
reproduire, preter, distribuer ou
vendre des copies de cette these sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
electronique.

L'auteur conserve la propriete du
droit d'auteur qui protege cette these.
Ni la these ni des extraits substantiels
de celle-ci ne doivent etre imprimes
ou aturement reproduits sans son
autorisation.

Canada
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

University of Alberta

Library Release Form

Name of Authors Jehad A1 Dallal

Title of Thesis: Class-Based Testing of Object-Oriented Framework Interface Classes

Degree: Doctor of Philosophy

Year This Degree Granted: 2003

Permission is hereby granted to the University of Alberta Library to reproduce single

copies of this thesis and to lend or sell such copies for private, scholarly or scientific

research purposes only.

The author reserves all other publication and other rights in association with the

copyright in the thesis, and except as herein before provided, neither the thesis nor any

substantial portion thereof may be printed or otherwise reproduced in any material form

whatever without the author’s prior written permission.

Date: May 23 , 2003

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

University of Alberta

Faculty of Graduate Studies and Research

The undersigned certify that they have read, and recommended to the Faculty of Graduate

Studies and Research for acceptance, a thesis entitled Class-Based Testing o f Object-

Oriented Framework Interface Classes submitted by Jehad Sami Mohamed Saleh A1

Dallal in partial fulfillment of the requirements for the ^ § re e of Doctor of Philosophy.

Paul Sorenson, PrpfSssor
(Supervisor),, '̂"'""

James fifobver, Associate Professor

Ken Wong, Assists - t

(yS James Miller,

DaMel HojTms^i/Associate Professor
(External |bj^fiiner)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Abstract

An application framework provides a reusable design and implementation for a

family of software systems. Frameworks are introduced to reduce the cost of a product

line (i.e., family of products that share common features). Software testing is a time-

consuming, costly, and ongoing activity during the application software development

process. Generating reusable test cases for the framework applications at the framework

development stage and using the test cases to test part of the framework application

whenever the framework is used can reduce the application development time and cost

considerably.

This thesis focuses on testing framework applications at the class level using reusable

test cases. Specifically, it addresses how to generate the class-based test cases at the

framework development stage and use them effectively at the application development

stage. The thesis introduces a novel technique to automate the construction of the class-

based testing model using the method specifications provided in the hooks and introduces

a technique called all paths-state that uses the constructed testing model to generate the

class-based reusable test cases at the framework development stage.

At the application development stage, the application developers may need the

flexibility to ignore or modify part of the specifications used to generate the reusable

class-based test cases and add new specifications not covered by the reusable test cases.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The thesis shows how to deal effectively with such modifications so that testing becomes

easy and straightforward in application development.

The introduced techniques are evaluated using applications of four frameworks of two

different types. Case studies are used to show the applicability of the introduced

techniques and the effectiveness of providing the reusable test cases with the frameworks

in reducing the testing cost of the framework applications. The evaluation results also

establish the relation between the reusability of the test cases and the type of the

framework.

Finally, as part of this thesis research, a prototype tool was developed to support the

generation of the class-based reusable test cases at the framework development stage. The

tool also deploys, executes, and evaluates the test cases at the application development

stage.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Acknowledgement

First and foremost I am thankful to Allah the Almighty (God) for his grace and mercy.

I would like to express my sincere gratitude to my supervisor Dr. Paul Sorenson for his

patience, support and continuous encouragement throughout the course of this study. Dr.

Sorenson devoted his time and effort to make this study a success. I consider it a matter

of great privilege and a rare opportunity to work under his supervision.

I wish to extend my thanks to the supervisory committee members and my external

examiner for their time and effort in reading this thesis thoroughly and making many

helpful comments and suggestions.

Special thanks are to my parents for their continuous prayers. My thanks also go to my

wife and to my children, Ahmed and Usama, for their patience, encouragement and

support during this study. Finally, I should not forget to thank my best friend Dr. Samir

Ead for his continuous helpful advices.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table of Contents

Chapter 1 Introduction........ .. I

1.1. M otivation. 1

1.2. Thesis Fram ework 3

1.3. Generating Reusable Class-Based Test Cases6

1.4. Using the Reusable Test Cases ..7

1.5. Thesis Outline......t 9

Chapter 2 Background..11

2.1. Object-Oriented Fram ew orks 11

2.1.1. Framework types.............11

2.1.2. Framework documentation.... 12

2.2. Software Testing 15

2.2.1. Testing object-oriented software..... 15

2.2.2. Contracts as testing oracles........................ ...21

2.2.3. Object-oriented framework testing................ .23

2.2.4. Testing framework applications 24

2.2.5. Reusability of object-oriented tests cases 25

2.3. W hat Remains? 28

Chapter 3 Generating Reusable Class-Based Test Cases.. 30

3.1. Introduction.................................... 30

3.2. Automatic Construction of a Class-Based Testing M odel 30

3.2.1. Synthesizing the states of a F IC 35

3.2.2. Synthesizing the transitions of a F IC 38

3.2.3. Limitations.................................. 43

3.3. Generating Reusable Test Cases... 44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.3.1. Testing the FICs that do not extend framework classes.................. 44

3.3.2. Testing FICs that extend framework classes................. 52

3.3.3. Building test drivers 56

3*4, Sum m ary...58

Chapter 4 Using Reusable Class-Based Test Cases... 62

4.1. Introduction 62

4.2. Tackling the Ignored Specifications Problem.. 62

4.3. Tackling the Renaming Problem ..67

4.4. Tackling the Different Implementations of a FIC M ethod Problem..............70

4.5. Tackling the Method Param eter Update Problem .. 71

4.6. Tackling the Test Case Augmentation Problem.. 72

4.7. Invoking Test D rivers 78

4.8. Fault Detection............... 79

Chapter 5 Case Studies................... 82

5.1. Case Study 1: Generating Reusable Test Cases For Framework Applications:

Is I t W orth It?............ 83

5.1.1. Introduction83

5.1.2. Case study set-up............... 84

5.1.3. Case study results 85

5.1.4. Using multiple frameworks................... 87

5.1.5. Conclusions................ 88

5.2. Case Study 2: Testing CSF Applications...89

5.2.1. Generating reusable test drivers for C SF89

5.2.2. Testing CSF applications.............................. 91

5.2.3. Transition coverage results........................... 98

5.2.4. Conclusions99

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

53 . Case Study 3: Testing SalesPoint Framework Applications 99

5.3.1. Generating reusable test drivers for SalesPoint framework 100

5.3.2. Testing SalesPoint framework applications 100

5.3.3. Transition coverage results.................104

5.3.4. Conclusions 105

5.4. Case Study 4: All Patfas-State Coverage.. 106

5.4.1. Case study settings and results 106

5.4.2. Conclusions 108

5.5. Sum m ary..................... 109

Chapter 6 Tool Support.. . I l l

6.1. Introduction...... 111

6.2. The FIST2 T ool I l l ,

6.2.1. Using FIST2 at the framework development stage 112

6.2.2. Using FIST2 at the application development stage 116

6.3. Sum m ary..... Boa®aeai»Boo®oooofflooa3®ooe»oo®0Be®oooD«Boaooo®Be®(9oo®®eooo»o®o0Offl®DC!BooooBB0Ooo»®a®o0oooooofflO0aoo09®e®®®offi 121

Chapter 7 Contributions and Future Work.. 122

7.1. Contributions ... >®B0B8OB0eBBOO9®O®BO0OO®®OBBOOfflB®BOOOB®aBOOaO00BOOBe0OOO 122

7.1.1. Adding anew value to the hooks.................... 122

7.1.2. Introducing a state-based class testing model synthesis technique.............. 122

7.1.3. Developing a new coverage technique.................. 123

7.1.4. Studying the relation between the framework type and the reusability of the

FICs........... 123

7.1.5. Studying the reusability of the test cases developed at the framework

development stage 124

7.1.6. Speeding up framework application development 124

7.1.7. Development of a supporting tool 124

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7a2e 125

7.2.1. Modeling concurrent class behaviors.................................... 125

7.2.2. Evolving reusable test cases 125

7.2.3. Using framework test cases................................... 126

7.2.4. Conducting more case studies 126

7.2.5. Building reusable test cases at product line stages 127

7.2.6. Extending the supporting tool................................. 127

7.2.7. Generating and using reusable cluster-based test cases 128

References 132

Appendix A Example fo r constructing the all paths-state tree fo r a model free o f

guaranteed transitions.. 140

Appendix B Example fo r constructing the all paths-state tree fo r a model that has

guaranteed transitions.. 143

Appendix C The Syntax o f the Testable State-transition Model Description........... 148

Appendix D MyAccount FIC Example... 150

D .l. Framework Development Stage. aees*ea®eoeaB0®oaa oeeaooo oaoofflooea'jusaeeae&o&aissieB'&aenBaia.aO'Ooeooae 150

D.1.1. Tool Inputs 150

D.1.2. Tool Outputs 156

D.2. Application Development S tage ... 165

D.2.1. Tool Inputs............. 165

D.2.2. Tool Outputs... 170

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 1 Introduction

1.1. Motivation
A popular goal of software engineering is to develop techniques and tools to assist in

design and implementation to meet the market requirements. Meeting time-to-market

demands for a software product or application is often vital to the success of an

organization or project. In the highly competitive software market, customers seem to

demand less time for development while simultaneously expecting better products.

Object-oriented framework technology has assisted tremendously in meeting these

escalating demands by providing a reusable design and implementation for a family of

software systems that share common features [Beck+ 94]. Therefore, instead of designing

and implementing the applications from scratch, developers can reuse the design and

implementation of the suitable frameworks and complete or extend the frameworks to

build their particular applications. However, researchers commonly limit framework

reusability to only code and design, which forces the application developers to spend

considerable time and effort in testing their applications from scratch. In a typical

programming project, approximately half of the effort is spent on testing activities (i.e.,

validation and verification) [Saleh+ 01]. Therefore, extending the framework reusability

to test artifacts can potentially reduce the framework application testing time and increase

application quality. Providing the frameworks with reusable test cases makes the

frameworks more usable for and marketable to application developers.

Software testing is a critical and important stage of the application software

development life-cycle that affects the overall software quality. Typically, many

designers and programmers cooperate in developing commercial quality application

software. Due to the size and complexity of such applications, they are usually

susceptible to errors. By testing we cannot prove the absence of errors in the developed

software, but we can establish some degree of confidence that the software does what is

supposed to do and does not do what is not supposed to do. Although testing is a costly

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

and time consuming activity, it has to be performed to produce highly reliable software

applications. Application developers can reduce the software testing cost by reusing test

artifacts instead of having to develop new test suites from scratch. Reducing the software

testing cost while maintaining the same or better software quality reduces the software

development time and maintains or enhances the software quality.

The basic element in testing is a test case, which typically consists of a set of inputs,

execution conditions, and expected results. Building reusable test cases for the framework

applications at the framework development stage increases the framework development

time and cost. However, there exists a high probability that the original investment will

be recouped after producing a few framework applications. We believe that this

investment cannot be fully realized unless the reusable test cases are effective and easy to

use in testing the applications. The cost of reusing the test cases must be much lower than

the cost of building the test cases from scratch; otherwise, applications developers will

prefer to build their own test cases.

The reusability of test cases is shown to be useful in reducing the testing cost in

several testing areas including regression testing (e.g., [Harrold+ 01, Hsia+ 97, Kung+

94a, Kung+ 94b, Kung+ 96, Rothermel+ 94, Rothermel+ 00, White+ 97]), testing

subclasses (e.g., [Harrold+ 92, McDonald+ 96, Murray+ 97, Wilkin+ 02]), testing the use

of class libraries (e.g., [Binder 99]), testing software product-lines [McGregor 00,

McGregor 01]), and testing object-oriented framework applications [Wang+ 00]. In

regression testing, the test cases applied to test the original version of the software are

reused to test the modified version. Typically, developers do not consider the effect of the

possible modifications of the software when they build the test cases for the original

version of the software. Therefore, the reusability of the test cases in regression testing

depends greatly on the amount and type of the modifications applied on the software. In

subclass testing, the superclass test cases are reused to gain the confidence that the

inherited superclass features work properly in the context of the subclass. Therefore, the

reusable test cases are limited to testing the inherited features and new test cases have to

be created from scratch to test the subclass features. The test cases used in testing the

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

class libraries are supposed to be applied as-Is at the cluster testing level. The

implementation of the class library for which the reusable test cases are built does not

change from one application to another. This application independence is not present for

the framework application, which can differ from one application to another. Guidelines

for building and using reusable test cases for a software product-line are proposed in

[McGregor 00] and [McGregor 01]. However, due to the generality of the product-line

testing problem, it is difficult to introduce specific techniques for generating and using

reusable test cases for all types of software product-line. Finally, so far, the work

proposed in testing the framework applications using reusable test cases (i.e., [Wang-f-

00]) is limited to testing the inherited features of the framework classes in the context of

the application classes. This thesis extends the reusability of the test cases generated at

the framework development stage to test the features of the framework application

classes as well as the inherited ones.

1.2. Thesis Framework
To test an object-oriented application, four main testing levels have to be exercised

including method testing, class testing, cluster testing, and system testing [Chen+ 01], At

the method testing level, the method responsibilities are considered. At the class testing

level, the intraclass interactions and superclass/subclass interactions are examined. At the

cluster testing level, the collaborations and interactions between the system classes are

exercised. Finally, at the system level testing, the complete integrated system is exercised

usually based on acceptance testing requirements. Figure 1.1 depicts the total testing

space, showing how the frameworks and the applications developed using the

frameworks have to be tested at the four testing levels. This thesis does not address the

framework testing at all. Although some work has been completed on framework testing

techniques, such as [Binder 00] and [A! Dalial+ 02], much more work is required in this

area. Testing object-oriented applications at the method and system levels is similar to

conventional program testing [Chen+ 01]. Addressing the cluster testing of the

framework applications is considered as future work. This thesis focuses on testing the

framework applications at the class testing level only.

3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Method
testing

Class
testing

Cluster
testing

System
testing

Framework X X X X

Framework & jp FICs
4, jp A ,#

application X ^ jp th e r app­
lication classes

X X

Figure 1.1: The thesis framework

We have identified two types of framework application classes built at the application

development stage by application developers: (1) classes that use the framework classes

and (2) classes that do not. We call the classes that use the framework classes Framework

Interface Classes (FICs) because they act as interfaces between the framework classes

and the second type of the classes created by application developers. Instances of FICs

are called framework interface objects. FICs use the framework classes in two ways:

either by subclassing them or by using them without inheritance. Froehlich [Froehlich 02

and Froehlich+ 97] developed the concept of hooks to show how the framework can be

used. Because they define how to use the framework, hooks must also define the FICs

and specify the preconditions and postconditions of the FIC methods. Froehlich

[Froehlich 02] provided a special purpose language and grammar in which hook

descriptions can be written. A hook description includes the implementation steps and the

specifications (i.e., preconditions and postconditions) of the FIC methods. Hook points

are the places at which the framework users (i.e., application developers) can add their

own FICs using the hooks. Figure 1.2 shows the relation between the framework classes,

the hook points, the FICs, and the other application classes. In this thesis, we require the

framework to be hook-documented (i.e., a complete set of hook descriptions for each FIC

is provided). Otherwise, the missed specifications of the FIC methods have to be

provided using other framework specification documents or by communicating with the

framework developers.

4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Fr®Yi«wori< q
\

\ Framework
Interface
Classes

\ (FICs)Hook
points

Other application
classes d

Figure 1.2: Framework application classes

FICs are the only classes built at the application development stage using

specifications known at the framework development stage. At the framework

development stage, neither the specifications nor the implementations of the other

application classes are known. The goal of this thesis is to develop effective techniques

and tools for testing the FICs at the application development stage using reusable class-

based test cases built at the framework development stage. We focus our testing on the

FICs because they are the classes that are given specifications at the framework

development stage. Other application classes have to be tested from scratch using the

class-based testing techniques (e.g., [Doong+ 94, Hoffman+ 97, Chen+ 98, Binder 99,

Ball-f 00, Cheon+ 02, Daley+ 02]).

Testing the FICs achieves two main goals:

1. Increasing the confidence that the implemented methods of the FICs interact

properly as described in the hook descriptions.

2. Increasing the confidence that the inherited features of the framework classes

work properly in the context of the FICs that extend the framework classes.

FICs are classes built at the application development stage. The implementations of

the FICs do not exist at the framework development stage, therefore, we cannot test these

classes at that stage. Different implementations of a FIC in different framework

applications are developed using the same framework hooks. Therefore, the different

5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

implementations share common specifications provided at the framework development

stage. As a result, reusable test cases generated using the common specifications can be

built at the framework development stage and used as-is or customized at the application

development stage to test the implementations of the FICs.

1.3. Generating Reusable Class-Based Test Cases
In this thesis, we show how to generate reusable class-based test cases at the

framework development stage. The test cases are generated using the specifications (i.e.,

preconditions and postconditions) of the FIC methods provided in the hooks. In

specification-based testing, testers use specification testing models such as extended state

machines (e.g., [Hoffman+ 97, Binder 99]) or formal specifications (e.g., [Doong-i- 94,

Chen+ 01]) to generate the test cases. Therefore, two problems have to be considered

when generating class-based test cases for the FICs: (1) how to build class-based testing

models for the FICs and (2) how to use the models to generate effective test cases.

Unfortunately, the testing models for the FICs are not available at the framework

development stage, however, the specifications of the FIC methods are available. Method

specifications are typically used as testing oracles to evaluate the results of the test cases

(e.g., [Briand+ 02b, Boyapali-t- 02, Meyer 92, Cheon+ 02, Jcontract, iContract]). In this

thesis, we have extended the use of the method specification to synthesize the state class-

based testing models for the FICs. This reduces the chance of errors and cost of

generating the class-based test cases and provides a consistent state-based testing model

with respect to the specifications of the class methods. We make use of Binder’s work

[Binder 99] that shows how to express the class behavior using a testable state-based

model and we show how to use the specifications of the class methods in building the

required testable state-based model. Using the method specifications provided in the

hooks for testing purposes adds a new value for the hooks, which were initially

introduced for prescriptive documentation purposes. In this thesis, we are using the

information provided in the hook descriptions to synthesize the testing models and to

evaluate the results of the test cases.

6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The second problem in generating the test cases is how to use the synthesized testing

models in generating the test cases. There are several state-based test case generation

techniques introduced in the literature to achieve certain testing coverage for the

specification testing model of a class under test (e.g., [Chow 78, Offut+ 99, Binder 99,

Bogdanov+ 01, Abdurazik+ 00a]). However, based on specific requirements of an

application, an application developer can choose not to implement all the specifications

of the FICs, which can then affect the coverage of the already generated test cases using

the testing techniques introduced in the literature. This thesis introduces a novel

technique called all paths-state that extends round-trip path coverage [Binder 99] to

generate test cases from the synthesized class-based testing models of the FICs. The

technique solves the problem caused by not fully implemented FIC specifications and

therefore, increases the specification coverage of the test cases at the application

development stage. We have conducted an empirical evaluation that shows that if the

application developer ignores some FIC specifications introduced at the framework

development stage, the reusable test cases built using the all paths-state technique always

cover the reused specifications, which is not the case for the test cases built using other

known state-based testing techniques.

It is important to note that the effort required to build the testing models of the FICs

and generate the reusable test cases is expended once at the framework development

stage. Each time an application is developed using the framework, this one-time effort

spent at the framework development stage is recouped.

1.4. Using the Reusable Test Cases
When developing an application, the application developers need the flexibility to

ignore or modify part of the FIC specifications used to generate the reusable class-based

test cases and add new specifications not covered by the reusable test cases. In this thesis,

we have proposed easy and straightforward ways to use the reusable test cases

considering the flexibility that the developer has in modifying the FIC specifications. We

have identified the following five problems and proposed effective solutions for each of

them:

7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(1) How to find and discard the test cases for the ignored specifications.

(2) How to map the names of the implemented FIC methods to the names of the FIC

methods introduced in the hooks and used in the reusable test cases.

(3) How to test different implementations of the same FIC method introduced in the

hooks.

(4) How to deal with the flexibility that the user has in modifying the parameters of

the FIC methods introduced in the hooks.

(5) How to test the new specifications added by the application developer.

In addition, the thesis studies the fault coverage of the test cases applied at the

application development stage to test the FICs in comparison to the fault coverage of the

round-trip path test cases. The thesis also examines experimentally the specification

coverage of the reusable test cases and the relation between the percentage of the number

of FICs covered by the reusable test cases and the type of the framework which the

application uses. The case studies confirm that it is more worthwhile to provide reusable

class-based test cases for domain-oriented frameworks compared to application-oriented

frameworks.

Finally, we have designed and developed a prototype of a tool to support the

generation and the use of the reusable class-based test cases for the FICs. The tool uses

the Jcontract tool [Jcontract] to evaluate the test cases using the method specifications.

Figure 1.3 summarizes the FIC testing process as proposed in the thesis. At the

framework development stage, the specifications of the FIC methods are used to

synthesize the FIC class-based testing model. The model is used to generate the reusable

class-based test cases for the FIC. At the framework application development stage, the

test cases are used to test the implemented FICs. Finally, the specifications of the FIC

methods are used to evaluate the results of the test cases. In the tool prototype, we have

implemented the last three steps in the FIC testing process and left the implementation of

the first step for future work.

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Specifications of the FIC methods

Framework
development
stage

Application
development
stage

FIC class-based
.testing model

H(^reusaHeclass-
based test cases

FIC test case
results

Use the FIC reusable
class-based test cases

Synthesize FIC class-
based testing model

Evaluate the FIC
class-based test cases

Generate FIC reusable
class-based test cases

Passed/failed FIC test cases

Figure 1.3: The FIC testing process.

1.5. Thesis Outline
The remainder of this thesis is organized as follows. Chapter 2 gives an overview of

the related research in object-oriented framework technology and software testing. Based

on the background literature discussed in Chapter 2, we introduce effective techniques for

the generation and use of FIC reusable class-based test cases in chapters 3 and 4.

Specifically, Chapter 3 focuses on generating reusable class-based test cases for the FICs

at the framework development stage. First, we fill the gap between the inputs of the

testing process (i.e., the specifications of the FIC methods provided in the hooks) and the

generation process of the test cases by introducing algorithms to synthesize the FIC state-

based testing model using the inputs of the testing process. Second, we introduce the all

paths-state technique to generate the reusable test cases from the synthesized testing

model of the FIC. Chapter 4 proposes easy and straightforward ways to use the reusable

test cases generated using the techniques introduced in Chapter 3. In Chapter 5, we

present experimental studies to show the specification coverage of the techniques

introduced in Chapters 3 and 4. Chapter 6 introduces a tool that implements most of the

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

theoretical algorithms developed in chapters 3 and 4. Finally, Chapter 7 discusses the

thesis contributions and future work.

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2 Background

There are two main research directions related to the thesis area. The first one is

object-oriented frameworks, which includes types of frameworks and framework

documentation. The second area of research is software testing, which includes testing

object-oriented frameworks and their applications. Not all background material included

in this chapter is closely related to the thesis area; however, this chapter gives the reader

knowledge of the related work in. the broad area of the thesis. Therefore, the included

material is useful not only for the particular areas of the thesis, but is helpful in

understanding the areas related to some future work described in Section 7.2.

2.1. Object-Oriented Frameworks
An object-oriented framework is the reusable design and implementation of a system

or subsystem [Beck-b 94]. It contains a collection of reusable concrete and abstract

classes. The framework design provides the context in which the classes are used. The

framework itself is not complete. Users of the framework are supposed to complete or

extend the framework to build their particular applications. Places at which users can add

their own components are called hook points [Froeh!ich+ 98], Typically, hooks are

associated with problem domain classes. Problem domain classes [Binder 99] are

representations of external entities or concepts that are necessary for implementation-

independent models of the system. For example, in an order-processing system,

Customer, Order, and Product are problem domain classes; LinkedList is not. When the

framework is used to build an application, hooks are used to build classes that extend or

use the problem domain classes. We call these classes framework interface classes

(FICs). Problem domain classes are associated with the hot spot areas of the framework,

while the non-problem domain classes are in the frozen spot areas of the framework.

2.1.1. Framework types

Frameworks are classified according to their scope into three categories [Fayad+ 97]:

enterprise application frameworks, system infrastructure frameworks, and middleware

integration frameworks. The enterprise application frameworks are also known as domain

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

frameworks and they address different types of applications in a broad application

domain such as telecommunications, avionics, manufacturing, and financial engineering.

The system infrastructure frameworks are also known as application frameworks and they

address different types of applications in different application domains. Moreover, they

simplify the development of portable and efficient system infrastructure including

frameworks for user interfaces, communication frameworks, and operating systems.

Finally, the middleware integration frameworks are also known as support frameworks

and they are used to integrate distributed applications and components. ORB frameworks,

message-oriented middleware, and transactional databases are common examples of this

type of framework. This thesis studies the relationship between the reusability of the FICs

and the type of the framework used in building the application under test.

Frameworks are classified according to their customization method into two

categories [Johnson+ 88]: white box and black box. In white box frameworks, the

functionality is extended or customized by subclassing some existing framework classes.

In the black box frameworks, compositions and existing components are used without

inheritance. Gray-box frameworks contain the characteristics of both black and white-box

frameworks.

2.1,2. Framework documentation

According to Johnson [Johnson 92], there are three types of documentation needed

for any framework: documents that describe the purpose of the framework, the use of the

framework, and the design of the framework. Campbell and Islam [Campbell+ 92] have

worked on documenting the framework design. Design patterns [Gamma+ 95], and

exemplars [Gangopadhyay+ 95] are used also to describe the design of the framework.

Three papers dealing with the first two documentation types include cookbooks

[Krasner+ 88], Johnson’s patterns [Johnson 92], and motifs [Lajoie+ 94]. Froehlich et al.

[Froehlich+ 97] reported that cookbook solutions are narrative and not structured. The

pattern approach documents the purpose and the use of a framework as well as elements

of the design. The motifs technique combines the idea of design patterns with Johnson’s

patterns to provide a more complete description of a framework.

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In [Froehlich+ 97] and [Froehlich 02], the issue of documenting the purpose of a

framework and how it is intended to be used is described. This is done by using the

concept of hooks, which describe how to extend or customize parts of the framework to

build an application. Hooks deal with the last two documentation types (purpose and use)

in a structured and uniform way and provide an augmented view to design

documentation.

Froehlich [Froehlich 02] identified four levels of support provided for the adaptation

within the framework: option, template, open, and evolutionary. At the option level, a

number of pre-built components are provided within the framework and the developer

chooses one without requiring extensive knowledge about the framework. At the template

level, the developer supplies parameters to components and follows a well-supported

pattern of behavior. At the open level, the developer adds new properties to classes or

new classes to the framework or extends the framework functionality. At the evolutionary

level, the developer changes parts of the framework code or breaks invariants defined on

the framework. Using hook descriptions forces the framework designers to articulate

clearly the interfaces to their framework.

Froehlich [Froehlich 02] provided a special purpose language and grammar in which

the hook description can be written. Each hook description consists of the following

parts.

(1) A unique name.

(2) The requirement (i.e., the problem the hook is intended to help solve).

(3) The hook type.

(4) The other hooks required to use this hook.

(5) The components that participate in this hook.

(6) The preconditions (i.e., the constraints that must be true before the hook can be

used or the corresponding code is executed).

(7) The changes that should be made to develop the application.

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(3) The postconditions (i.e., constraints that must be true after the hook has been used

or the corresponding code is executed).

(9) A general comment section.

It is not necessary to have all the above parts for each hook.

Figure 2.1 shows a hook description example for the creation of an account In a

banking framework. The Initialize Account hook creates a constructor method for the

NewAccount class. In the constructor method, the account currency is selected. There are

three pre-built classes in the framework for money: USMoney, EURMoney, and Money.

Moreover, the user has to specify the bank branches in the system. Finally, the user has to

specify the maxPeriod variable value.

Name: Initialize Account
Requirement: Initialize an account (i.e., set the currency and bank branches).
Type: Template
Uses: None
Participants: Account(framework), NewAccount(app), Amoney(app);
Preconditions: amount>=0;
Changes:

NewAccountNewAccountant amount) extends Account.Account(int amount);
Choose AM from (Money, USMoney, EURMoney);
Create Object Amoney as AM() in MyAccount. NewAccount(int);
Create Object branches as BranchesQ in NewAccount. NewAccount(int);
Repeat as necessary {

Acquire BranchName: string
NewAccount.NewAccount(int) -> branch.addBranch(BranchName);

}
Acquire maxPeriod : integer domains :0-999999;
NewAccount.NewAccount(int) -> NewAccount.setMaxPeriod(maxPeriod);

Postconditions:
Operation NewAccount. NewAccount (inf);
NewAccount.balance>=0;
! NewAccount.frozen;
NewAccount.getUpdate()<NewAccount.MaxPeriod

Comments:

Figure 2.1; Description of the Initialize Account hook of a banking framework

The introduced hook description supports the framework application test design

through the identification of the FICs, their methods, and the preconditions and

postconditions of the FIC methods. These preconditions and postconditions are essential

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

to determine the FIC behaviors and sequential constraints. Moreover, postconditions hold

the expected outputs. The preconditions and postconditions of a method are called the

method specifications. When a FIC extends a framework class, the inherited methods are

either used in the context of the FIC without modifications or extended. For both cases,

the hook descriptions show how to use the inherited methods of the framework classes

and identify their pre- and postconditions in the context of the FICs. The thesis uses the

method specifications to synthesize the class testing models for the FICs. The testing

models are used to generate the reusable test cases for the FICs. In addition, the thesis

uses the method specifications to evaluate the results of the test cases.

2.2. Software Testing
Software testing is the process of executing a program with the intent of finding errors.

Testing is a time consuming and costly ongoing activity during the application software

development process. In a typical programming project, approximately half of the time

and cost is spent on testing related activities [Saleh+ 01]. Testing cannot prove the

absence of errors, but it increases the level of confidence in the developed software.

Central to the testing activities is the design of a test suite.

The basic element of a test suite is a test case that describes the input test data, the test

preconditions, and the expected output. [IEEE 829] introduces the typical elements of

application programming interface level test cases in SAF (Structured Analysis Form).

The syntax includes all necessary items to specify a test case: test identifier, description,

components under test, set up, input, and expected results. The expected results include

the resulting state, returned objects, output arguments, output messages, and exceptions.

2.2.1. Testing object-oriented software

Object-oriented languages reduce some kinds of errors; however, they increase the

chance of others and create new fault hazards. In object oriented programming languages,

such as C++ and Java, data and functions (i.e., operations on data) are encapsulated

within the object itself. Therefore, a simple assignment can lead to variety of actions.

Moreover, inheritance, dynamic binding, overriding and overloading are important

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

features of the object-oriented programming languages. Although these features make

object-oriented software appealing, they create serious difficulties in the testing process.

In object-oriented testing, four testing levels are considered: method, class, cluster,

and system. At the method-testing level, the responsibilities of the methods within classes

are tested. At the class-testing level, intraclass interactions and superclass/subclass

interactions are considered [Binder 99]. At the cluster-testing level, the interfaces among

the application classes are exercised to test their collaboration. Finally, at the system-

testing level, the actual system functionality is compared with the original requirements.

If the system is modified, regression testing is required to check that the modifications

have not caused unintended effects. Although this thesis focuses on the class testing level,

we provide a brief overview of the other testing levels.

• Method testing

To test the methods inside classes, conventional white and black box testing

techniques can be applied. In static white box testing [Beizer 90, Roper 94, Myers 79,

Binder 99], tools such as control flow graphs and data flow graphs are commonly used.

The control flow graph is a graphical representation of program’s control structure, using

nodes and direct edges. A node in the control flow graph can be a process, a decision, or a

junction node. A process node represents a sequence of program statements that are

uninterrupted by a decision or a junction. A decision node is a program point at which the

control flow diverges. Finally, a program point at which the control flow merges is called

a junction node. When states of program data objects (i.e., killed, defined, or used) are

attached to the control flow graph edges, the resultant graph is called a data-flow graph.

In dynamic white box testing, program instrumentation is the most commonly used

technique for programs written in conventional programming languages [Osterweil+ 78,

Chen+ 87, Chan+ 87, Price+ 85, Calliss+ 88] and object-oriented programming languages

[Chen-i- 95, Boujarwah-f- 00, Saleh+ 01]. At ran time, the results of the inserted probes are

tracked to find the errors.

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In black box testing, conventional black box testing techniques such as domain testing,

equivalence partitioning, and boundary value analysis can be used. A complete reference

on black box testing techniques can be found in [Myers 79, Beizer 95, Binder 99].

Binder [Binder 99] shows how the conventional black box testing techniques can be

adapted for object-oriented programs and discusses some other object-oriented specific

method testing techniques such as polymorphic message testing. In polymorphic message

testing, tests are developed for a client of a polymorphic server. These tests exercise all

client bindings to the server.

• Class testing

Research in generating test cases to test an implementation at class level can be

divided into two broad approaches: (1) generating test cases from the source code to

achieve a given level of statement, branch, or path coverage, and (2) generating test cases

from the formal specification of the implementation. Testing techniques that follow the

former approach are called implementation-based testing techniques (also sometimes

referred to as white-box testing techniques), while testing techniques that follow the latter

approach are called specification-based testing techniques (also sometimes referred to as

black-box testing techniques). In this thesis, since the specifications of the FICs are

provided, we follow the specification-based approach.

The specification of class behavior can be expressed using state-based models such as

finite state machines and UML statecharts [Binder 99]. State-based specifications

describe software in terms of states and transitions. A state of an object of a class is an

abstraction that models a set of instance variable value combinations that share some

property of interest. Typically, two special states have to be presented in any object state-

model: alpha and omega. The alpha state represents the object before being constructed.

The omega state represents the object after being destroyed. A transition is an allowable

two-state sequence. Each transition can be associated with (1) an event (i.e., a call for a

class method), (2) a set of predicates, and (3) a set of expected actions. To execute a

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

transition, the object must be In the accepting state of the transition, the event is executed,

and the predicates evaluate to true. The UML syntax for a transition is:

event-name argument-list {guard predicate}/'action-expression

There are several state-based specification coverage techniques proposed in the

literature including:

1. All-transitions coverage. In all-transitions coverage, each transition is covered at

least once in some test case. Therefore, to test a transition, the test case requires that

the object under test be in the accepting state of the transition. The technique does

not put any constraints on how to reach the accepting state. Chow [Chow 78]

introduced the all-transition coverage technique for finite state machines and Offut

et al. [Offut+ 99] adapted the technique for UML statecharts and compared it

experimentally with other specification coverage techniques. Bogdanov et al.

[Bogdanov+ 01] used the all-transitions coverage technique to derive test sequences

in the presence of hierarchical statecharts.

2. Transition-pair coverage. In transition-pair coverage, it is required to cover each

pair of adjacent transitions at least once in some test case [Offut+ 99,Chow

78,Abdurazik+ 00a]. Therefore, the transition-pair coverage subsumes the all­

transitions coverage.

3. Full predicate coverage. In full predicate coverage, it is required to cover each

clause in each predicate on every transition, if the clause independently affects the

value of the predicate [Offut+ 99, Abdurazik+ 00a]. Offut et al. [Offut+ 99]

compared experimentally the full predicate coverage and the transition-pair

coverage techniques in terms of fault coverage and showed that the full predicate

coverage is more effective than the transition-pair coverage in terms of fault

coverage. Abdurazik et al. [Abdurazik+ 00a] compared experimentally the

transition-pair coverage and the full predicate coverage in terms of cross scoring

(i.e., the difficulty of satisfying one criterion in terms of another) and test set size

(i.e., number of test cases required to satisfy the criterion). The comparison results

18

permission of the copyright owner. Further reproduction prohibited without permission.

showed that neither transition-pair coverage nor full predicate coverage had high

scores when compared to each other, implying that transition-pair tests offer

something different from full predicate tests. Moreover, the comparison results

showed that the test set size of the transition-pair coverage technique is larger than

the test set size of the full predicate coverage technique. This means that applying

the transition-pair coverage technique costs more than applying the full predicate

coverage technique.

4. Round-trip path coverage. In round-trip path coverage, transition sequences that

start and end with the same state and simple paths from alpha to omega state are

covered. A simple path includes only an iteration of a loop, if a loop exists in some

sequence. The round-trip path coverage guarantees that each transition in the model

is covered at least once and, therefore, it subsumes the all-transitions coverage. The

round-trip path strategy was proposed originally by Chow [Chow 78] and was

denoted as W-method. Binder [Binder 99] adapted the strategy to UML statecharts

and called it round-trip path testing. Antoniol et al. [Antoniol+ 02] showed

experimentally that the round-trip path testing strategy is reasonably effective at

detecting faults. Kim et al. [Kim+ 99] used a technique similar to the round-trip

path strategy to derive testing trees for testing control and data flow through states.

In Section 3.3, we discuss the weakness of the above coverage techniques when used

to generate reusable test cases for the FICs and we introduce a new coverage technique

that overcomes the weakness. In Section 5.4, the new technique is compared

experimentally, in terms of the transition coverage, with the all-transitions and round-trip

path coverage techniques.

In [Ball+ 00], an approach for automated testing of container classes based on

combinatorial algorithms for state generation is introduced. In [Hoffman+ 97], the

ClassBench framework is introduced to support a class-testing approach that traverses a

testgraph [Hoffman+ 94], which is a graph representing selected states and transitions of

the class under test. Daley et al. [Daley+ 02] introduced a class table-driven testing

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

approach and a supporting Roast framework for the testing of Java classes. In this

approach, effective test data for the test cases are generated automatically.

In [Binder 99], the class flow graph is introduced to provide a testable model for the

class behavior. The class flow graph combines the class state model with the control flow

graphs of the methods and, therefore, is used in integrated black and white box class

testing. In [Beydeda+ 01], the class specification implementation graph is introduced to

provide a testable model for the class behavior. The class specification implementation

graph combines the control flow graph generated on the basis of the method

specifications with the control flow graph generated on the basis of the method

implementation. The resulting graph is used in generating integrated black and white box

class-based test cases. The implementations of the framework application classes are not

available at the framework development stage when the reusable test cases are generated.

Therefore, the integrated black and white box class models and testing techniques cannot

be applied in our research.

• Cluster testing

Binder [Binder 99] discussed several cluster testing approaches such as the class

association test, round trip scenario test, controlled exception test, mode machine test,

polymorphic server, and modal hierarchy. In the class association test, a UML class

diagram is used to develop test cases to test the associations among classes. In the round

trip scenario test, a control flow model is extracted from a UML sequence diagram and

minimal branch and loop coverage is applied to develop the test cases. A Controlled

exception test verifies exception handling. In the mode machine test, the state behavior of

a cluster is modeled and a state-based test suite is developed. Finally, the polymorphic

server and modal hierarchy approaches are used to test the class hierarchy.

In [Wu+ 03] and [Badti+ 02], different UML diagrams are used at the cluster testing

level. To perform the cluster testing, Wu et al. [Wu+ 03] proposed exercising the direct

and indirect interactions between components caused by interface invocations or data

dependence relationships. To test these interactions, several approaches are proposed.

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The approaches use collaboration, sequence, and statechart UML diagrams. Finally,

UML-based test adequacy criteria that use UML models are proposed to build the

required test cases. Badri et al. [Badri+ 02] extended the collaboration diagram to capture

the specification of exclusion among several messages and the expression of iteration.

The extended collaboration diagram is described using the Collaboration Diagrams

Description Language, which is used in synthesizing the message control flow. The

message control flow is translated into a message tree that shows a l possible message

invocation sequences. Finally, the tree is used to generate test sequences.

• System testing

Binder [Binder 99] proposed two system testing level techniques: extended use cases

and covered in CRUD. The extended use cases technique develops test suites to cover

application input/output relationships. The covered in CRUD technique exercises all basic

operations (i.e., create, read, update, and delete). Briand et al, [Briand+ 02a] proposed a

technique to produce system-based test cases using three UML diagrams: use case

diagram, sequence diagram, and class diagram. In addition, collaboration diagrams

[Addurazik+ 00b] and UML statecharts [Hong+ 00] were found to be useful in testing

object-oriented software at system level.

[Binder 96a] is a comprehensive survey of research and practitioner work on testing

object-oriented software published up to the end of December 1994. The survey includes

over 140 publications.

2.2.2. Contracts as testing oracles

In software testing, it is required to develop oracles to evaluate the actual results of

the test cases as pass or no pass. Specification-based testing techniques that use formal

specifications support the automation of the output checking as well as input generation.

In [Doong+ 94], the prototype testing system ASTOOT is introduced to automatically

generate test drivers for Eiffel classes and evaluate the testing results using algebraic

specifications. In [Chen+ 98] and [Chen+ 01], integrated black and white class-based

testing approaches are introduced. The biack-box technique is used to select test cases.

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The white-box technique is used to decide whether two objects resulting from executing

the test cases are observationally equivalent and to select test cases in some situations.

The approaches are based on mathematical theorems. Ball et al. [Ball+ 02] reported that

the approaches based on formal specifications are hard to apply in practice because the

formal specifications for industrial software are usually unavailable.

Recently, testing researchers started to use an automatic error checking mechanism

called contracts [Briand+ 02b, Boyapali+ 02, Meyer 92, Cheon+ 02, Jcontract, iContract]

as a substitute to hard-coded testing oracles. Contracts are used to specify the

specifications (i.e., preconditions and postconditions) of the class methods and the class

invariants. Method preconditions are the conditions that must be true before the method is

executed. Method postconditions are the conditions that must be true after the method is

executed. Class invariants are the conditions that must exist for all methods. Contracts are

used at run-time to detect software faults.

In [Briand+ 02b], it is shown that contracts detect a large percentage of failures

(roughly 80% of the faults detected using hard-coded oracles). Moreover, it is shown that

the percentage of the detected faults depends on the precision of the contracts. Baudry et

al, [Baudiy+ 01] showed that the quality of the contracts is more important than their

quantity. Finally, in [Briand+ 02b], it is found that the effort involved in isolating a fault

is reduced eight fold for programs with contracts as compared to programs without

contracts.

There are several tools introduced to support specification-based testing and the use

of the contracts. Jcontract [Jcontract] and iContract [iContract] are tools used to evaluate

test cases generated for Java programs using Design-by-Contract (DbC) contracts. In

[Cheon+ 02], Java Modeling Language JML [Leavens+ 99, Leavens+ 01] is integrated

with Junit framework [Junit] to test Java methods. JML is also used in the Korat

framework [Boyapali+ 02], where the method specifications are used to generate

automatically test drivers (i.e., implementations of the test cases) for Java methods and to

check the correctness of the outputs. JTest [JTest] is a tool that uses the DbC contracts to

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

generate automatically test drivers for Java methods and to check the correctness of the

outputs. In [Fenkam+ 02], VDM-SL specification is used to generate black-box test

drivers and CORBA-supported VDM oracles for CORBA-compliant programming

languages.

In this thesis, we extend the use of the specifications (i.e., preconditions and

posconditions) of the FIC methods to synthesize the FIC testing model at the framework

development stage. The model is used to generate the reusable class-based test cases. At

application development stage, we use the method specifications as testing oracles.

Finally, the thesis introduces a tool that supports the generation and use of the reusable

class-based test cases. The tool uses the Jcontract tool to evaluate the test cases.

2.2.3. Object-oriented framework testing

In this thesis, we assume that the framework has been tested and we focus on testing

the FICs at the class level. Sparks et al., [Sparks+ 96] and Codenie et al., [Codenie-f- 97]

mentioned the difficulty of the framework-testing problem without proposing solutions.

Binder [Binder 99] suggested two different approaches for testing frameworks according

to the availability of application-specific instantiations. The first approach, called New

Framework Test, develops test cases for a framework that has few, if any, instantiations.

In this approach, four likely types of defects are checked: incomplete or missing behavior

or representation, broken association constraints, control defects, and infrastructure code

defects. The approach suggests building a demonstration application that provides a

minimal implementation of each use case. Test cases have to be developed to test the

demo application using extended use case test, class association test, and transition

coverage for state machine (N+ test strategy) or branch coverage on all sequence

diagrams.

The second approach, called Popular Framework Test, develops test cases for an

enhanced version of a framework that has many application-specific instantiations. Three

classes of defects are more likely in such frameworks: feature interaction defects,

compatibility defects, and latent defects not discovered before. Moreover, the new

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

features can suffer from the same types of defects that occur in any other system (i.e.,

types of defects checked in New Framework Test approach). To test the new features, the

four testing techniques used in testing new frameworks can be used. To test the feature

interaction (i.e., the effect of using the old and new features together), art application that

develops both old and new features has to be implemented. Finally, to test the feature

compatibility (i.e., ensuring that new features do not break old ones) an existing

application that implements the old features has to be executed.

Al Dallai et al [Al Dallal+ 02] proposed a technique called Testing Frameworks

Through Hooks (TFTH) to generate a test suite to test hook-documented object-oriented

frameworks at the system level. The test suite is designed to test the framework

implementation at the system level as well as the framework hooks. The technique uses

an extended state model to model the FICs and a construction flow graph to model the

construction sequence of the hook methods. Round-trip path trees are generated from the

state models of the FICs. The trees and the construction flow graphs are traversed to

produce the required test suite. The test suite includes test cases that test the framework’s

open functionalities. Such test cases can be applied at the application testing stage to test

whether the implemented open functionalities violate their constraints defined in the hook

descriptions. Using the TFTH technique, a large portion of the testing process is

automated. The scalability of the TFTH technique is not addressed. In addition, more

case studies are required to evaluate the fault coverage of the technique and to compare it

with other testing techniques such as the New Framework Test.

2.2.4. Testing framework applications

Binder [Binder 96b] suggested that the testing of framework applications should be

based on system requirements. The new classes and objects developed by the application

developer must be individually tested, which can be accomplished using the FREE test

design methodology [Binder 99]. Moreover, cluster testing should be applied to verify

that the developer objects are making correct use of the framework code. In this step, the

framework test suite could be extended to test the application extensions.

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Binder neither suggested a specific methodology that makes use of the framework test

suite to test the applications at the class or cluster level nor provided a discussion on

which framework test suite can be extended or how a framework test suite can be

extended.

Tsai et al. [Tsai-f- 99] discussed the issues of testing applications developed with

design patterns using object-oriented frameworks. They have classified the patterns into

static and extensible. Static patterns are the ones that do not allow easy extension. The

extensible patterns allow the functionality of the application to change. The paper

addressed the extensible patterns testing from two viewpoints: the framework developers

and the application designers. Framework developers should test that the extensible

patterns do allow the application developer to extend its functionality. The application

designers should verify that the extension points are properly coded and tested. The paper

introduced a technique to generate scenario templates that can be used to generate

different types of cluster-based test scenarios. These test scenarios are used to test

sequence constraints on the interaction between framework objects and custom objects.

Tsia et al’s work in testing framework applications is limited to cluster-level testing,

which is out of scope of this thesis.

Wang et al. [Wang+ 00] proposes providing the framework with reusable test cases

that can be applied at the application development stage. However, these test cases are

limited to testing that the inherited framework features work correctly in the context of

the application classes that inherit them and it does not address testing the features of the

application classes. This thesis extends the use of the reusable test cases to test the

features defined in the FICs as well as the inherited features.

2.2.5. Reusability of object-oriented tests cases

There are several testing areas for which reusability of test cases for object-oriented

software are proposed and discussed including regression testing, testing subclasses,

testing the use of class libraries, testing software product-iines, and testing object-

oriented framework applications.

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In regression testing, a modified version of the software is tested to provide

confidence that the changed parts are behaving as intended and the unchanged parts are

not affected by the modifications in an unforeseen way. The test suite used to test the

original version of the software or part of it is reused to test the modified version. In

attempting to reuse the test suite or part of it, two problems have to be tackled: which test

cases of the original test suite can or should be used to test the modified version and

which new test cases must be developed to test parts of the modified software [Harrold+

01]. A number of regression testing techniques have been developed for testing object-

oriented applications (e.g., [Harrold+ 01, Hsia+ 97, Kung+ 94a, Kung-f 94b, Kung+ 96,

Rothermel-t- 94, Rothermel+ 00, White-!- 97]). As far as we know, all regression testing

techniques are code-based (i.e., based on using the source code analysis to determine the

test cases). None of the proposed regression testing techniques determines the test cases

that have to be reapplied for the modified classes using the software specifications only.

Moreover, researchers in the area of regression testing have focused on finding the

original test cases that can or should be used to test the modified version of the software.

No specific approaches are proposed for the augmentation of the test cases to test new

software parts.

In subclass testing, the superclass test suite or part of it has to be reapplied to gain

confidence that the inherited superclass features work correctly in the context of the

subclass. In [Harrold-t- 92], the knowledge of how the subclass is derived from the

superclass is used to determine where the superclass test suite must be changed and

which superclass test cases have to be rerun to test the subclass. In [McDonald-!- 96], it is

shown how the superclass test suite should be changed to test the subclasses and a

framework is introduced to execute the test cases and check their results. In [Murray+

97], the Test Template Framework, a framework for specification-based testing, is

extended to include inheritance. Conditions under which superclass test cases can be

reapplied as-is or after some modifications are identified. In [Wiikin-f 02], JUnit, a

framework for Java unit testing, is extended such th a t' superclass test cases are

automatically extracted in subclass drivers. In subclassing, superclass features are

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

inherited without modifications, redefined, or extended. Therefore, the problem of

detecting broken test cases for ignored specifications is not applicable and, therefore, not

studied in reusing superclass test cases.

In testing the use of the class libraries and the frameworks, Binder [Binder 99] stated

that the class library user and the framework user can reuse the class libraries test suite

and the framework' test suite, respectively, at cluster testing level without introducing new

specific approaches.

In [McGregor 00] and [McGregor 01], the issue of product-line testing is considered.

It is suggested to build general reusable test cases, associate them with the software

specification, store them in a database at the product line level, and then specialize the

test cases for each product. This way of using the test cases is called vertical reuse. In

addition, each time a product is constructed and tested, the specialized test cases and the

new test cases applied for testing the product are stored in the database. Whenever, the

product components are used in building other products, the stored test cases are reused

as-is. This way of using the test cases is called horizontal reuse. Due to the generality of

the product-line testing problem, it is difficult to introduce specific techniques for

generating and using reusable test cases for all types of software product-line.

In [Homstein+ 02], it is suggested to put built-in-tests, in the form of methods that

provide information to test the component, inside the reusable components and to build

component testers. The component testers exercise the built-in-tests to test the

component. Whenever the components are used, the component testers can be used as-is

or modified to verify that the components work correctly in their deployment

environment. Three stages in which the component testers can be used are introduced:

when the component under test is deployed, during normal execution, and in

maintenance. This technique works well for the components used as-is, but it does not

work for the components that have their specifications modified at deployment time. In

this case, the modifications of the component specifications have to be reflected in the

reusable component testers. In [Wang+ 00], built-in tests are incorporated into object-

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

oriented frameworks and used when the framework classes are inherited at the

application development stage. The approach limits the reusability of the built-in tests to

verify that the inherited framework features work correctly in the context of the

application classes that inherit them. The work proposed in this thesis extends the

reusability of the test cases provided with the framework to test the FICs. Testing the

FICs includes testing the Inherited features from the framework classes in the context of

the FICs and testing the new FIC functionalities introduced in the hooks for the FICs.

Moreover, the thesis shows how to test the FICs that do not inherit framework classes

using reusable test cases.

23* What Remains?
Despite the fact that the framework application testing area has received some

attention, several related points are either poorly addressed or not addressed. In this

thesis, testing framework applications is addressed at the class level using reusable test

cases generated at the framework development stage. More specifically, the following

key issues are examined:

1. The construction of a class state-based testing model using the method

specifications (i.e., preconditions and postconditions) provided in the hook

descriptions.

2. The introduction of an effective test case generation technique in terms of fault

coverage and transition coverage of the constructed testing model. The

generation technique is used at the framework development stage to generate

the reusable test cases.

3. The provision of a straightforward and easy way to use the reusable test cases

at the framework application development stage.

4. The conducting of case studies to demonstrate the reduction of class testing

costs at the framework application testing stage using the reusable test cases.

5. The conducting of case studies to establish a relation between the number of

FICs in the framework applications and the type of the framework used.

28

with permission of the copyright owner. Further reproduction prohibited without permission.

6. The introduction of a supporting tool for generating the reusable test cases at

the framework development stage and deploying, executing, and evaluating the

test cases at the application development stage.

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3 Generating Reusable Class-Based Test Cases

3.1. Introduction
At the class testing level, a testing model has to be constructed and used to generate

the test cases. This chapter introduces a novel technique to synthesize a class state-based

testing model from the specifications (i.e., preconditions and postconditions) of the FIC

methods defined in the hooks. In addition, this chapter introduces a novel test case

generation technique called all paths-state to generate test cases that are effective at the

application testing stage in covering the reused FIC specifications. The test cases have at

least the same fault coverage as the test cases generated using the round-trip path

technique. In terms of the overall testing process, this chapter shows how to perform the

processes at the framework development stage shown in Figure 1.3.

The chapter is organized as follows. Section 3.2 introduces the class state-based

testing model construction technique. The all paths-state testing technique is introduced

in Section 3.3. Finally, Section 3.4 provides a summary discussion.

3.2. Automatic Construction of a Class-Based Testing Model
Building a testing model to express the behavior of a class is an essential step for the

generation of the class-based test cases. Object-oriented software is well suited to state-

based testing. A class behavior can be expressed in a state-transition model, which

consists of states and transitions and can be represented using State Transition Diagrams

(STD) or UML statecharts. A state-transition model can be easily understood and is

widely used in specification-based testing techniques.

As shown in Figure 1.3, the input to the testing process of the FICs is the

specifications of the FIC methods. Hook descriptions provide the specifications of the

FIC methods in terms of pre- and postconditions. There are two types of pre- and

postconditions: (1) construction ones and (2) execution ones and these are illustrated in

the example in Figure 3.1. The construction pre- and postconditions are the constraints

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

that must be satisfied before and after the hook is used, respectively, and they are

identified in the hook description by keywords such as Object, Class, and Operation. The

execution pre- and postconditions are the dynamic constraints that must be satisfied

before and after the methods defined in the hook are executed, respectively. The

construction pre- and postconditions, in contrast with the execution ones, do not describe

the behavior of the methods defined in the hooks and, therefore, cannot be used in

synthesizing the behavioral model of the FIC. The execution preconditions are described

in terms of class instance variables and method input parameters. The execution

postconditions are described in terms of class instance variables, input parameters, output

parameters, method return values, and method thrown exceptions. More precisely, the

execution method specifications (i.e., pre- and postconditions) check:

(1) whether class instance variables, method input parameters, method output

parameters, and method return values are within the allowed domain of values

and

(2) whether the relationships among the values of the class instance variables,

method input parameters, method output parameters, and method return values

are satisfied.

To help understand the relationship between the hooks and the FICs let us examine a

concrete example. Figure 3.1 shows the description of the Initialize Account hook of a

banking framework. In the Changes section of the hook, the FIC called NewAccount is

introduced. The hook specifies also one of the FIC methods, which is the constructor

method NewAccount(int amount). In the Preconditions and Postconditions sections of the

hook description, the preconditions and postconditions of the constructor method are

specified. The first stated postcondition is a construction postcondition because it

describes a condition that must be satisfied when the hook is used and it is identified by

the keyword Operation. The other pre- and postconditions are execution ones because

they describe the conditions that must be satisfied, respectively, before and after the

constructor method is executed. To determine the behavior of a FIC we have to consider

all the framework hooks that specify the FIC methods. Appendix D provides the hook

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

descriptions that specify the methods of the NewAccount FIC. For the rest of this thesis,

unless stated otherwise, all pre- and postconditions referred to are of type execution,

because these are the conditions in which we are most interested in building test cases.

Nam e: Initialize Account
R equirem ent: Initialize an account (i.e., set the currency and bank branches).

Preconditions: amount>=0;
Changes:

NewAccount.NewAccountant amount) extends Account.Accountant amount);

Postconditions:
1. Operation NewAccount. NewAccount (int);
2. NewAccount. balance>=0;
3. ! NewAccount.frozen;
4. NewAccount.getUpdate()< NewAccount.MaxPeriod

Figure 3.1: The description of the Initialize Account hook of a banking framework

In our concrete example, the hooks of the banking framework define several public

methods for the NewAccount FIC. The methods are as follows.

(1) NewAccount: a construction method.

(2) balance: to inquire about the balance of the NewAccount.

(3) deposit: to deposit money to the NewAccount.

(4) withdraw: to withdraw money from the NewAccount.

(5) freeze: to freeze the NewAccount.

(6) unfreeze: to unfreeze a frozen NewAccount.

(7) activate: to activate an inactive NewAccount.

The pre- and postconditions of the NewAccount FIC method defined in the hooks are

listed in Table 3.1. From the preconditions and postconditions, we synthesize the states

and transitions of the NewAccount class.

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Method Preconditions Postconditions
New Account(amount) amount>=0 NewAccount. balance>=0 && !

NewAccount.frozen &&
NewAccount. getUpdate()<
NewAccount.MaxPeriod

balanceQ
deposit(amount) ! NewAccountfrozen &&

NewAccount.getUpdate()<
NewAccount.MaxPeriod

NewAccount.balance=amount+
NewAccount.balance && !
NewAccount.frozen &&
NewAccount. getUpdate()<
NewAccount.MaxPeriod

withdraw(amount) NewAccount.balance>=0 && !
NewAccountfrozen &&
NewAccount.getUpdate()<
NewAccount.MaxPeriod

NewAccount.balance=
NewAccount.balance-amount
&& i NewAccount.frozen &&
NewAccount. getUpdate()<
NewAccount.MaxPeriod

freeze() ! New Account.frozen &&
NewAccount.balance>=0

NewAccount.frozen &&
NewAccount.batance>=0

unffeeze() NewAccount.frozen &&
NewAccount.baiance>=0

! NewAccount.frozen &&
NewAccount. balance>=0 &&
NewAccount.getUpdate()<
NewAccount.MaxPeriod

activate() NewAccount.balance>=0 &&
'.NewAccount.frozen
&&NewAccount.getUpdate()>=
NewAccount.MaxPeriod

NewAccount.balance>=0 &&
INewAccount.frozen &&
NewAccount.getUpdate()<
NewAccount.MaxPeriod

Table 3.1: The preconditions and postconditions of the NewAccount class methods.

Some class methods may not have preconditions, which means that they can be called

at any time during the object life cycle. There are three types of variables used in the

preconditions and postconditions: (1) non-static instance variable (i.e. an instance

variable whose value can change during the object life cycle), (2) static instance variable

(i.e. an instance variable whose value cannot be changed during the object life cycle), and

(3) local variable (i.e., a variable defined in the parameter list of the method). The return

of a method is considered as a non-static instance variable.

For example, in Table 3.1, balance() is a method that has no preconditions which

means that it can be called at any time during the object life cycle. MaxPeriod is a static

instance variable, amount is a local variable, and the variables balance, frozen, the return

of the balance() method, and the return of the getUpdate() method are non-static instance

variables. The balanceQ method returns the value of the balance instance variable. The

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

getUpdate method calculates the difference between the current date and the last activity

date.

Despite the fact that the method specifications hold the specifications for the class

behaviors, researchers seem to limit the method specification use to support the

automated detection of software failures and the isolation of faults, and to generate

method-based test cases. We are not aware of any work that uses the method

specifications to generate class-based test cases. For example, in [Cheon+ 02], to test a

class behavior, class behavior testing models (e.g., state-transition model or UML

statechart) used to generate the test drivers have to be pre-provided, and the method

specifications are used only as testing oracles. Hand-construction of the class behavior

testing model is expensive, error-prone, and may result in constructing an inconsistent

model with the specifications of the class methods, which misleads verification results.

In this thesis, a new technique is introduced to automatically synthesize the state-

transition testing model of the FIC sequential class behavior from the specifications of the

class methods. This reduces considerably the class testing cost and the chance of errors.

The result is a state-based testing model that is consistent with respect to the

specifications of the class methods. Therefore, using the introduced state-transition model

synthesis technique, only the specifications of the FIC methods have to be provided to

test the FIC behavior. The state-transition model is synthesized automatically from the

method specifications. After that, a specification-based testing technique can be applied

to derive the test drivers (i.e., implementations of the test cases) from the synthesized

state-transition model. Finally, the test drivers are executed and the method specifications

are used as testing oracles to evaluate the actual results of the test cases as pass or no

pass. Figure 3.2 compares the testing process that uses our proposed modeling technique

and the one that does not (e.g., [Binder 99, Offut+99, Abdurazik+ 00a]). In process (a),

the FIC testing model as well as the FIC method specifications have to be provided to test

the FICs, while in process (b), only the FIC method specifications have to be provided to

test the FICs and the FIC testing model is synthesized internally in the process.

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

FIC
method

specifications

FIC
testing
model

FIC

Instrumented FIC

Verified
FIC

testing
model

- FIC
testing
results

(a)

instnurient FIC Instrumented FIC

FIC
method-

specifications

Synthesize ! Build .
FIC FIC |: F ir : FIC

testing testing i. test test 1.
model jmodel i eases cases

FIC
testing
results

(b)

Figure 3.2: FIC behavior testing process using method specifications: (a) without

using the proposed modeling technique and (b) with using the proposed modeling

technique

3.2.1. Synthesizing the states of a FIC

To synthesize the states of a FIC, we have to construct the condition/instance-variable

table. In the table, the columns and rows represent the non-static instance-variables of the

FIC and the precondition/postconditions of the FIC methods that contain conditions

involving the non-static instance variables, respectively. In the table, we consider only the

non-static instance variables. The values of the static instance variables do not change

during the object life cycle and, therefore, they do not contribute in determining the

object states. Table 3.2 shows the condition/instance-variable table extracted from Table

3.1.

Finally, the table has to be optimized by eliminating redundant rows and unnecessary

information. To optimize the table follow these steps

Step 1: Delete any clause that depends on a dynamic variable (i.e., a variable that its

value is not assigned at compilation time or can change during the object

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

life-cycle) because the combinations of the instance variable values that

represent a state of a class are determined at compilation time and do not

change during the object life-cycle. The deleted clauses are considered later

in the transition synthesis process.

Step 2: Delete redundant rows.

Step 3: If the combinations of instance variable values in a row r/ overlap with the

combinations of instance variable values of another row rj, replace r/ and ri

with three rows: the first one contains the combinations of instance variable

values contained in rj and not contained in rz, the second one contains the

combinations of instance variable values contained in ri and not contained in

rj, and the third row contains the overlapping combinations of instance

variable values.

Step 4: Iterate through steps 2 and 3 until no redundant rows and no rows for which

Step 3 can be applied exist.

Condition
identifier

Source of the condition Non-static instance-variables
frozen balance getUpdate()

1 Postcondition of the NewAccount method,
precondition of the withdraw method,
postcondition of the unfreeze method, and
postcondition of the activate method

false >=0 <MaxPeriod

2 Precondition of the deposit method false <MaxPeriod
3 Postcondition of the deposit method false balance+amount <MaxPeriod
4 Postcondition of the withdraw method false balance-amount <MaxPeriod
5 Precondition of the freeze method false >=0
6 Postcondition of the freeze method and

precondition of the freeze method
true >=0

7 Precondition of the activate method false >=0 >=MaxPeriod

Table 3.2: The condition/instance-variable table extracted from Table 3.1

Each row in the optimized table represents a state of the object of that class during its

life-cycle based on the instance variable value combination shown in the row. Step 1

ensures that the states do not change during the object life-cycle (I.e.. a basic property of

the states of a class state-based model as described in [Binder 99]) and, therefore, each

remaining clause in the table has boundary values determined at compilation time. The

second step ensures that there are no redundant states in the synthesized model. Step 3

ensures that each synthesized state is exclusive (i.e., there is no overlapping states).

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Determining the overlapping combinations of instance variable values contained in two

rows is straightforward because the condition clauses in the rows have fixed boundary

values as ensured in Step 1. Finally, Step 4 holds the stopping criterion for the state

synthesis process.

When the optimization rules are applied on Table 3.2, according to Step 1,

‘balance+amounf and ‘balance-amounf are deleted from rows 3 and 4, respectively,

because they depend on dynamic variables. This makes rows 3 and 4 redundant with row

2 and, therefore, rows 3 and 4 are deleted according to Step 2. The combinations of

instance variable values contained in row 1 overlap with the combinations of instance

variable values contained in row 2. Therefore, to avoid the creation of overlapping states,

rows 1 and 2 are substituted with three rows. The first row contains the combinations of

instance variable values contained in row 1 and not contained in row 2. This row is

ignored because it does not contain any combination of instance variable values (i.e., all

the combinations of instance variable values contained in row 1 overlap with the

combinations of instance variable values contained in row 2). The second row contains

the combinations of instance variable values contained in row 2 and not contained in row

1 (i.e., the combinations of instance variable values that has balance<0). The third row

contains the overlapping combinations of instance variable values of rows 1 and 2 (i.e.,

the combinations of instance variable values that has balance >-0). Finally, the

combinations of instance variable values contained in the third row formed in the

previous step overlap with the combinations of instance variable values contained in row

5. Therefore, the two rows are replaced with three rows. The first row is ignored because

it does not contain any combination of instance variable values (i.e., all of the

combinations of instance variable values contained in the third row formed in the

previous step overlap with the combinations of instance variable values contained in row

5). The second row has getUpdate() >=MaxPeriod and the third row has getUpdate()

<MaxPeriod. This results in having the optimized table shown in Table 3.3. In this table,

each row represents a state that corresponds to the instance variable value combinations

given in the row. The combinations of instance variable values in each row are called the

state-invariants [Binder 99].

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

State Identifier Instance-variables
frozen balance getUpdate()

1 false >=0 <MaxPeriod
2 false <0 <MaxPeriod
3 false >=0 >=MaxPeriod
4 true >~0

Table 3.3: Optimized table constructed by applying optimization rules on Table 3.2.

3.2.2. Synthesizing the transitions of a FIC

To extract the transitions that model the legal behavior of a FIC, we have to map the

preconditions and postconditions of the FIC methods to the extracted state-invariants.

Each state in which its state-invariants satisfy the preconditions of a method is a source

state for the transition associated with the method call. Moreover, each state in which its

state-invariants satisfy the postconditions of a method is a destination state for the

transition associated with the method call. The procedure shown in Figure 3.3 explains

the mapping process and shows how to extract the predicates and actions of the

transitions. The source state of the constructor method is by default the alpha state. If no

destructor method is specified in the class, an unlabeled transition has to be added from

each state, other than the alpha state, to the omega state.

When the procedure shown in Figure 3.3 is applied on tables 3.1 and 3.3, the

transitions shown in Table 3.4 are extracted. For example, since the balance method has

no preconditions and its postcondition satisfies all the invariants of all states, a self-loop

transition associated with balance() event is added to each state (other than alpha and

omega). The postcondition of the balance method is not specified in any state and,

therefore, it is added as an action to all the self-loop transitions. For the withdraw

method, the preconditions satisfy the invariants of state 1 and the postconditions satisfy

the invariants of states 1 and 2. Therefore, two transitions associated with the withdraw

event are added as shown in Table 3.4. Note that the set of preconditions of the method is

the same as the invariants of state 1, which causes no predicates to be added at this step.

The set of postconditions of the withdraw method includes “baiance=balance-amount”

which is not included in the state invariants of states 1 and 2. Therefore, the postcondition

is added to both transitions as actions. Finally, since state 1 now has two outgoing

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

transitions that have the same labels, the difference between the invariants of the

destination states of the transitions has to be added as predicates to the transitions. The

difference between states 1 and 2 is that state 1 has balance>=0, while state 2 has

balanced). Therefore, “balance (at destination state) >=0” has to be added to one of the

transitions (from state 1 to state 1) and “balance (at destination state) <0” has to be added

to the other transition (from state 1 to state 2). Since the predicates are checked at the

source states, we can substitute “balance (at destination state)” by “balance-amount”.

Inputs: Invariants of the FIC states and the preconditions and postconditions of the

FIC methods.

Output: Transitions of the FIC state-based model.

Procedure:

1 .for each FIC method do

2. Search for all states whose state-invariants satisfy the preconditions of the

method.

3. Search for all states whose state-invariants satisfy the postconditions of the

method.

4. Create a transition from each state found in Step 2 to each state found in Step 3

and associate the method name with the transition as an event.

5. fo r each transition created in Step 4 do

6. i f the set of preconditions of the method is a superset of the set of state-

invariants of the source state of the transition then add the non-overlapped

portion of the set as predicates to the transition.

7. if the set of postconditions of the method is a superset of the set of state-

invariants of the destination state of the transition then add the non­

overlapped portion of the set as actions to the transition.

8. i f there is another transition that has the same source state, event, and

predicates then add to each of the transitions the difference between the

postconditions of the method called in the transition and the state-

invariants of the destination states as predicates to the transitions.

Figure 3.3: Construction process of the transitions of the FIC specification model.

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Since the transition synthesis method uses the method specifications to synthesize the

transitions, it is limited to event-driven transitions (i.e., transitions that have associated

events). For non-event-driven transitions, it is required to determine the source and

destination states first. The state-invariants of the destination state, which are different

than the state-invariants of the source state, are then added as predicates to the transition.

For the NewAccount class example, we have identified two non-event-driven transition

examples as shown in Table 3.5. The invariant of state 3, which is different than the

invariant of state 1, is “getUpdate()>=MaxPeriod”. Therefore, this difference is added as

a predicate to the non-event-driven transition that has the states 1 and 3 as source and

destination states, respectively. The same situation applies for the transition that has the

states 4 and 3 as source and destination states, respectively.

Transition
identifier

Source
state

identifier

Destination
state

identifier

Transition
event

Transition
predicates

Transition actions

1 alpha 1 NewAccount amount>=0
2 1 1 balance return balance
3 2 2 balance return balance
4 3 3 balance return balance
5 4 4 balance return balance
6 1 1 deposit balance+amount>=0 balance=balance+amount
7 1 2 deposit balance+amountcO balance=balance+amount
8 2 1 deposit balancer-amount>=0 balance=balance+amount
9 2 2 deposit balance+amountcO balance=balance+amount
10 1 1 withdraw balance-amount>=0 balance=balance-amount
11 1 2 withdraw balance-amountcO balance=balance-amount
12 1 4 freeze
13 3 4 freeze
14 4 1 unfreeze balance>=0
15 3 1 activate
16 1 Omega
17 2 Omega
18 ■*>

J Omega
19 4 Omega

Table 3.4: Transitions of the NewAccount FIC extracted using the procedure shown in

Figure 3.3

Transition
identifier

Source
state

identifier

Destination
state

identifier

Transition predicates Transition
actions

20 1 3 getUpdate()>=MaxPeriod -

21 4 3 getUpdate()>=MaxPeriod && 'frozen -

Table 3.5: Non-event-driven transitions of the NewAccount FIC

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 3.4 shows the synthesized state-transition model represented in a State

Transition Diagram (STD). In the diagram, states and transitions are represented by nodes

and edges, respectively. To make the diagram more understandable, meaningful names

can be associated to the states. In Figure 3.4, states numbered 1, 2, 3, and 4 are named

Open, Overdrawn, Inactive, and Frozen, respectively. The transitions are labeled by their

identifiers shown in tables 3.4 and 3.5.

Figure 3.4: STD of the synthesized state-transition model of the NewAccount FIC.

The STD given in Figure 3.4 shows the legal behavior of the NewAccount FIC. There

are several sources for the illegal behaviors of a class including invoking methods at

states that do not accept them and invoking methods while setting the environment in a

way that causes the methods to throw an exception. The procedure given in Figure 3.5

illustrates the synthesis method of the transitions that model the illegal behaviors of a

class. The procedure examines the events and predicates associated with the outgoing

transitions from each state other than the Alpha state. A self loop transition is added to

the state for each event not associated with any other outgoing transition from the state.

In addition, a self loop transition is added to a state for each event associated with an

outgoing transition from the state if the transition is associated with a predicate. In this

case, each of the added transitions is associated with a predicate that excludes the

conditions in the predicate associated with the outgoing transition. Finally, a self loop

Inactive W (Overdrawn,

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

transition is added to a state for each event associated with an outgoing transition from

the state if the event can throw an exception. In this case, the predicate of the added

transition is the cause for the exception to be thrown and the resulting action is throwing

the exception.

Inputs: Synthesized state-based testing model that models the FIC legal behaviors and

the signatures, extracted from the hook descriptions, of the FIC methods that

throw exceptions.

Output: State-based testing model that models the FIC legal and illegal behaviors.

Procedure:

1. form a set s that includes all the FIC methods identifiers (i.e., method names and

parameters).

2. for each state in the state transition model do

3. form a set sj that includes all the FIC method identifiers included in s that
identify methods not invoked in the events associated with the outgoing

transitions from the state

4. form a set S2 that includes the FIC method identifiers for the methods invoked

in the events associated with the outgoing transitions from the state only if the

transitions have predicates. Associate with each element in the set the

predicates that are associated with the corresponding transition.

5. form a set s? that includes the FIC method identifiers for the methods that

throw exceptions and are invoked by the events associated with the outgoing

transitions from the state.

6. for each element in the.sets si, S2 , and ss do

6.1. add a self loop transition to the state.

6.2. Associate the transition with the event that invokes the method identified

in the element.

6.3. i f the element is in set then add a predicate to the self loop transition that

excludes the conditions in the predicates associated with the element.

6.4. else i f the element is in set S3 then associate the cause for the exception to

be thrown to the self loop transition as a predicate. In addition, associate
the exception thrown to the self loop transition as an action.

Figure 3.5: Construction process of the illegal transitions of the FIC specification model.

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

For example, when the procedure shown in Figure 3.5 is applied to derive the illegal

transitions associated with the Frozen state of the NewAccount FIC example, five self

loop transitions are added to the state. Four of them are associated with the events

withdraw, deposit, freeze, and activate, respectively, because these events are not

associated with the outgoing transitions from the Frozen state. The fifth transition is

associated with the unfreeze event because one of the outgoing transitions from the

Frozen state is associated with the unfreeze event and “balance>=0” predicate.

Therefore, the fifth added self loop transition is associated with unfreeze event and

“balance<0” predicate (i.e., predicate that excludes the “balance>=0” condition). For

the rest of the thesis, the same analysis applied for the legal transitions to generate the test

cases can be applied for the illegal transitions. Adding the illegal transitions to the testing

model of our concrete example makes the example more complicated and the

understanding of the application of our introduced techniques on the example more

difficult for the reader to follow. At the same time, adding the transitions does not

introduce any additional cases not introduced for the legal transitions. Therefore, we

ignored the analysis for the illegal behaviors of the NewAccount FIC for the rest of

chapters 3 and 4.

3,2.3. Limitations

The introduced testing model synthesis technique does not guarantee synthesizing a

“free of infeasible paths” model. Infeasible paths are the ones that cannot be executed.

For example, in the STD of Figure 3.4, given that “amount>0” is true, the transition

labeled as “7” causes several infeasible paths since depositing a positive amount of

money cannot cause the balance that has a positive value to have a negative value. To

solve this problem, we have to either detect the infeasible paths and avoid using them in

generating the test drivers [Offutt+ 97] or we have to ignore any test driver that has

violated preconditions [Cheon+ 02].

The introduced testing model synthesis technique focuses on modeling classes that

have sequential behaviors. Further research is required to model classes that have

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

concurrent behaviors. To model such classes, synchronization contracts [Beugnard+ 99]

can be used.

33. Generating Reusable Test Cases
This section focuses on building reusable class-based test cases for the FICs. The test

cases are built using the state-based specification model constructed using the

preconditions and postconditions of the FIC methods. A novel technique that overcomes

the weaknesses of the existing state-based techniques is introduced. The technique works

effectively in testing the FICs that do not extend the framework classes and it is extended

to test the interactions between the framework classes and the FICs that extend them.

33.1. Testing the FICs that do not extend framework classes

Hooks can introduce FICs that do not subclass framework classes. In these FICs,

compositions and existing framework components are used without inheritance. This way

of customizing the framework is called black-box customization. The behavior of the FIC

can be expressed in a state-transition model. Figure 3.4 shows the STD representation of

a NewAccount banking framework interface object specification extracted from the

framework hooks as illustrated in Section 3.2. The STD contains two special states: alpha

and omega to represent the states of the object before being constructed and after being

destroyed. Moreover, the STD contains the Open, Overdrawn, Inactive, and Frozen states

to model the states of the object.

Since the state-transition model can be easily understood and is widely used in the

specification-based testing techniques, we have used it in modeling the FIC

specifications. In state-transition model-based testing, testers aim to achieve a certain

coverage criterion. There are several state-based specification coverage techniques

proposed in the literature such as all-transitions, transition-pair, full-predicate, and round-

trip path coverage.

FICs are not framework classes. They are not implemented unless an application

developer uses the framework hooks to implement them at the application development

stage. However, since the framework hooks introduce the specifications of the FICs, the

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

test cases that can be used to test the FICs at the application testing stage can be produced

once when the hooks are described and applied each time the FICs are used to develop an

application. When any of the existing coverage techniques, except the transition-pair

coverage, is applied to generate baseline test cases for FICs, only one transition sequence

is required to cover a transition. For the example STD given in Figure 3.4, in the all-

transitions technique, to cover the transition labeled 15, we can follow the path that has

the sequence of transitions (1,20,15) and we do not have to worry about any other paths

such as (1,12,21,15). In the transition-pair coverage, some but not all transition sequences

are used to cover a transition. For example, to cover the transition-pair (15,7), we can

follow the path that has the sequence of transitions (1,20,15,7) and we do not have to

worry about any other paths such as (1,12,21,15,7). The sequences of transitions are used

to derive the required test cases.

The application developer can decide to ignore some of the specifications for the FIC

behaviors because they are unnecessary in implementing the application. Therefore, any

baseline test case derived from a sequence of transitions that includes an unimplemented

transition is considered broken and cannot be used as-is. Consequently, the application

tester has to build new test cases or modify some baseline test cases to test the

implemented transitions that were supposed to be tested using the broken baseline test

cases.

For example, when the round-trip path strategy is used to derive test cases for the

NewAccount FIC (the STD is shown in Figure 3.4), the tree shown in Figure 3.6 is

constructed. Each path from the root node to a leaf node is used to build a test case. Since

there are 16 such paths, 16 test cases are built. If the application developer chooses not to

implement the transition originating from the Open state and ending at the Inactive state,

the test cases built using the round-trip paths that include the transition are considered

broken and, therefore, they cannot be used as-is. This results in breaking the test cases

built from the paths that include the transition sequences labeled as (1,20,13), (1,20,15),

(1,20,18), and (1,20,4). Note that the outgoing transitions from the Inactive state may be

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

implemented in the application, but none of the non-broken test cases, buiit using the

round-trip path strategy, can test them.

open
overdrawn]

open

open open

open

■ozen
inactive

jfr-ozen

oppn
inactive

inactive

Transitions
maybe
implemented
but not tested
if (open-
inactive)
transition is
ignored

Figure 3.6: Round-trip path tree of the STD example shown in Figure 3.4.

This introduces the need for a test case generation technique that considers all

sequences of transitions which can reach each state defined in the specification. A

sequence of transitions form a path to a state. To solve this problem, we introduce a new

coverage technique that ensures the coverage of all simple paths to each state in the state-

transition model. The technique is called all paths-state.

In the all paths-state technique, we construct a set of test cases T from a specification

graph SG (e.g., UML statechart or finite state machine of the FIC under test). T covers all

simple paths to each state in the SG. A simple path includes only one iteration of a loop,

if a loop exists in some sequence. Figure 3.7 provides a simple visualization of the idea.

The coverage criterion of the technique can be written precisely as follows:

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

For each state in the SG, T contains tests that traverse all simple transition sequences

to the state.

Test cases

TC TC,TC,

All («) possible simple paths from a state to a state

Figure 3.7: all paths-state technique idea

The set of paths that satisfy the criterion can be shown in a tree. The procedure shown

in Figure 3.8 describes how to construct the tree. The procedure starts from the alpha

state of the SG. In the process, whenever a state is reached the procedure traverses all the

outgoing transitions from the state. The process terminates when each root-leaf tree path

terminates at the omega state or a state already encountered on the path.

Figure 3.9 shows the all paths-state tree of the STD of Figure 3.4. Appendix A

illustrates the steps of constructing the all paths-state tree of the STD using the procedure

given in Figure 3.8. In the STD, if any transition is deleted, reachable states from the

deleted transition can still be reached by some other paths of the tree. For example, if all

paths-state technique is used to build the test cases and the application developer chooses

not to implement the transition originated from the Open state and ended at the Inactive

state, the test cases that include the transition are considered broken and, therefore, they

cannot be used as-is. This results in breaking the test cases built from the paths that

include the transition sequences labeled as (1,20,13,21), (1,20,13,14), (1,20,13,19),

(1,20,13,5), (1,20,15), (1,20,18), and (1,20,4). Note that the remaining test cases still

cover all outgoing transitions from the Inactive state and, therefore, can be deployed.

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Test cases are generated by traversing each path in the tree from the tree root to a ieaf

node. The number of generated test cases is equal to the number of leaf nodes in the tree.

The number of leaf nodes in the tree shown in Figure 3.9 is 22 and, therefore, the number

of generated test cases is 22. Section 3.3.3 will describe how to implement the test cases.

Input: A class state-based testing model

Output: The all paths-state tree of the class model.

Procedure:

1. Draw the root node of the tree to represent the alpha state.

2. Examine the state that corresponds to each non-terminal leaf node in the tree and

each outgoing transition from the state. At least one new edge will be drawn for

each transition. Each new edge and node represents an event and resultant state

reached by an outgoing transition.

a. If the transition is unguarded, the transition guard is a simple predicate, or the

transition guard is a complex predicate composed of only AND operators draw

one new edge.

b. If the transition guard is a complex predicate using one or more OR operators,

draw a new edge for each truth value combination that is sufficient to make

the guard TRUE.

3. For each edge and node drawn in step 2:

a. Record the corresponding transition event, guard, and action on the new

edge.

b. If the state that the new node represents has already been encountered on the

tree path that contains the new node or is the omega state, mark this node as a

terminal - no more transitions are drawn from this node.

4. Repeat steps 2 and 3 until all leaf nodes are marked final.

Figure 3.8: Produce an all paths-state tree from a state model.

The following properties show the relation between the all paths-state coverage and

the round-trip path coverage and the affect of deleting a transition from a state model that

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

has test cases built using the all paths-state technique. Each property is followed by a

rationale for why the property holds.

[open
•7 3 overdrawn

open

open
oven inactive

openji —J openopen
2? inactive

.[frozen
open

ozen
inactive

% open
1> frozen

open
inactive

inactive

Figure 3.9: All paths-state tree, constructed using the procedure shown in Figure 3.8, of

the STD example shown in Figure 3.4.

Property 3.1: In terms o f path coverage, the all paths-state coverage subsumes the round-

trip path coverage.

Rationale: The coverage of each of the all paths-state and round-trip path strategies is

represented by a tree. The only difference between the construction procedures of the two

types of trees is in the stopping criterion. In the round-trip path strategy, each path in the

tree ends in either a node that represents the omega state in the model or a node that

represents a state in the model already represented elsewhere in the tree. In the all-paths-

state strategy, each path in the tree ends by either a node that represents the omega state

in the model or a node n that represents a state in the model already represented

elsewhere in the path that contains node n. As a result, the stopping criterion imposed by

the all paths-state strategy is more constrained than the stopping criterion imposed by the

round-trip path strategy. Consequently, each path in the round-trip path tree is identical to

a sub-path in the all paths-state tree. Therefore, the all paths-state coverage subsumes the

round-trip path coverage in terms of path coverage. Figure 3.10 shows the path coverage

4 9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

hierarchy for three different strategies. The ail paths-state coverage technique covers the

same or more paths than the round-trip path coverage technique. The all paths-state

coverage technique covers the same or less paths than the exhaustive all paths coverage

criterion that covers all possible paths in a state machine.

All paths

All Paths-state
Paths

All Round-trip
Paths

Figure 3.10: Path coverage hierarchy

Property 3.2: When a transition in the state model is deleted, the non-broken test cases

built using the all paths-state technique cover all remaining transitions in the state model

initiated from the reachable states.

Rationale: Figure 3.11 shows the different possible groups of state model paths with

respect to a deleted transition. To show that the property always holds, we have to show

that the remaining transitions contained in each group of paths in the modified state

model are covered by the non-broken test cases as follows.

• Groups A, B, and C: Transitions contained in the paths of groups A, B, and C do

not contain the deleted transition and, therefore, the test cases that cover them are

not affected by the deleted transition. As a result, the transitions contained in the

paths of groups A, B, C are covered by the non-broken test cases.

• Group D: Paths of Group D exist in the modified model only if paths of Group C

exist. Otherwise, the model will have more than one omega state which violates

the definition of the model. Therefore, if a transition is deleted and the model does

not have any path of Group C, transitions contained in the paths of group D are

50

less
path
coverage

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

deleted consequently to preserve the definition of the model. On the other hand, if

a transition is deleted and the model has paths of group C, the transitions

contained in the paths of Group D are covered using the all paths-state technique

by test cases that do not contain the deleted transition. Therefore, these test cases

are not broken and they cover the transitions contained in the paths of Group D.

Paths of Group D

Paths of Group CPaths of Group A

Deleted
transition

Paths of Group B

Paths of Group E

Figure 3,11: The different possible groups of state model paths with respect to a

deleted transition.

• Group E: Paths of Group E exist in the modified model only if paths of Group B

exist. Otherwise, the paths of Group E would not be reached from the alpha state,

which violates the definition of the model. Therefore, if a transition is deleted and

the model does not have any path of Group B, transitions contained in the paths of

group E are deleted consequently to preserve the definition of the model. On the

other hand, if a transition is deleted and the model has paths of group B, the

transitions contained in the paths of Group E are covered using the all paths-state

technique by test cases that do not contain the deleted transition. Therefore, these

test cases are not broken and they cover the transitions contained in the paths of

Group E.

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

33.2. Testing FICs that extend framework classes

Hooks can introduce FICs that subclass framework classes. This way of customizing

the framework is called white-box customization. In this case, even if the application

developer does not implement the FIC methods that override the inherited framework

class methods, the inherited methods are accessible when the FIC is instantiated.

Therefore, the specifications of the inherited methods defined in the hooks cannot be

ignored. In terms of states and transitions, this results in having transitions that cannot be

broken (i.e., must be implemented) at the application development stage. We call such

transitions guaranteed. In Section 3.3.1, the analysis for the NewAccount class neglects

the fact that some transitions that model the class specification are guaranteed because the

NewAccount class extends the Account framework class and, therefore, the application

developer cannot ignore the specifications of the Account class. This produced

unnecessary nodes and transitions in the all paths-state tree as will be shown later in this

section.

When the all paths-state coverage technique is applied to build test cases for the FICs

that extend framework classes, some transitions may be covered using several paths.

Some of the paths from the alpha state to the source state of the transition are composed

of guaranteed transitions only. In this case, a path that contains only guaranteed

transitions cannot be broken at the application development stage and, therefore, it is

ineffective to cover the rest of the paths (i.e., paths that have not-guaranteed transitions)

from alpha state to the source state of the considered transition. For example, for the STD

shown in Figure 3.4, if the transitions from the alpha state to the open state and from the

open state to the inactive state are guaranteed, the outgoing transitions from the inactive

state are guaranteed to be reached by following the path of the guaranteed transitions.

Since this path cannot be broken at the application development stage, there is no need to

cover the other paths from the alpha state to the inactive state in the all paths-state tree to

ensure the coverage of the outgoing transitions from the inactive state.

In the state-transition diagram, if a path to a state has all transitions marked

guaranteed, we say that the state has a guaranteed path. In the all path-state tree, a state

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

can be represented by more than one node because we have to cover all simple paths to it

such that if one path to a state has a transition not used by the application developer, the

state remains reachable in the tree using other paths. Outgoing transitions from a state

that has a guaranteed path do not have to be covered in the tree using other paths, which

reduces the tree complexity. The procedure given in Figure 3.12 shows how to construct

the all paths-state tree from a state-transition model that has guaranteed transitions.

The procedure starts from the root state of the state-transition model. In the process,

whenever a state is reached the procedure traverses ail outgoing transitions from the state.

The procedure marks the tree nodes that have guaranteed paths as guaranteed nodes. The

procedure traverses the outgoing transitions from the states represented by guaranteed

nodes before the outgoing transitions from the other states. The process terminates when

each root-Jeaf tree path ends at the omega state, a state represented previously in the path,

or a state represented previously in the tree by a guaranteed node.

For example, suppose that the transitions that are necessary to implement the open

and inactive states (i.e., transitions labeled by 1, 2, 4, 6, 10, 15, 16, 18, and 20) shown in

Figure 3.4 are introduced by the Account class, which is a framework class. The rest of

the transitions are not defined in the Account class, but they are defined in the hooks. In

this case, the transitions labeled by 1, 2, 4, 6, 10, 15, 16, 18, and 20 are guaranteed

transitions. When the procedure shown in Figure 3.12 is applied, the tree shown in Figure

3.13 is constructed. Appendix B illustrates the steps of constructing the all pafhs-state tree

of the STD that has guaranteed transitions using the procedure given in Figure 3.12.

In Figure 3.13, the nodes that are reached by guaranteed paths are marked guaranteed.

In the tree of Figure 3.9, the outgoing transitions from the node labeled by inactive at the

end of the path labeled by (1->12->21) do not exist in Figure 3.13 because the state

represented by the node labeled by inactive is represented elsewhere in the tree by the

guaranteed node reached by the guaranteed path (l->20).

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Input: A class state-based testing model that has guaranteed transitions.

Output: The all paths-state tree of the class model.

Procedure:

1. Draw the root node of the tree to represent the alpha state. Mark the node as non­

terminal and guaranteed.

2. Search for a state that corresponds to a non-terminal guaranteed leaf node in the

tree. If none is found, search for a state that corresponds to a non-terminal not-

guaranteed leaf node in the tree.

3. Examine each outgoing transition from the state. At least one new edge will be

drawn for each outgoing transition from the state. Each new edge and node

represents an event and resultant state reached by an outgoing transition.

a. If the transition is unguarded, the transition guard is a simple predicate, or

the transition guard is complex predicate composed of only AND operators

draw one new edge.

b. If the transition guard is a complex predicate using one or more OR

operators, draw a new branch for each truth value combination that is

sufficient to make the guard TRUE.

4. For each edge and node drawn in step 3:

a. Note the corresponding transition event, guard, action, and guarantee

information on the new edge.

b. If the edge and its source node in the tree are marked guaranteed, mark the

destination node of the edge as guaranteed. Otherwise, mark it as not-

guaranteed.

c. If the state that the new node represents is the omega state, the state is

already represented by another node (in the path containing the new node),

or the state is represented somewhere else in the tree by a guaranteed

node, mark this node as a terminal - no more transitions are drawn from

this node. Otherwise, mark it as non-terminal.

5. Repeat steps 2, 3, and 4 until all leaf nodes are marked terminal.

Figure 3.12: Produce an all paths-state tree from a state model that includes guaranteed

transitions.

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

□
guaranteed

node

not-
guaranteed

no(|g

guaranteed
edge

overdrawn

overdrawn

inactive
not-

guaranteed
edge

inactive

inachv

inactiv

Figure 3.13: all paths-state tree, constructed using the procedure shown in Figure

3.12, of the STD example shown in Figure 3.4

The procedure given in Figure 3.14 shows how to generate the test cases from the all

paths-state tree that has guaranteed nodes. The test cases are generated in two rounds. In

the first round, each path from the root node to a leaf node is used to build a test case.

The number of test cases built in this round is equal to the number of leaf nodes. In the

second round, we search for all non-terminal nodes marked as guaranteed that have all

outgoing edges marked as not-guaranteed. For each of these nodes, we build a test case

that traverses the path from the root node to the node marked guaranteed. This round is

necessary because the application developer may not use any of the methods associated

with the outgoing edges from the state. In this case, all the test cases built from the paths

that include the unused edges are considered broken. This results in having no test cases

to test the transitions that have their destination states represented by guaranteed nodes in

the tree. Figure 3.15 depicts the problem. The node labeled by C is a non-terminal

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

guaranteed node and all its outgoing edges are marked as not-guaranteed. In the first

round of generating test cases, three test cases are generated to cover the paths (A->B),

(A->C->D), and (A->C->E). If the application developer decides not to use the methods

associated with the edges (C->D) and (C->E), the test cases generated from the paths (A-

>C->D), and (A->C->E) will be broken. Therefore, the edge (A->C) is not going to be

covered by the remaining test case. To overcome this problem, we have introduced the

second round. In the second round, the path (A->C) is used to build an additional test

case.

Input: All paths-state tree that has guaranteed nodes and edges.

Output: The test cases generated from the all paths-state tree.

Procedure:

1. fo r each path from the root node to a leaf node in the all paths-state tree do

Build a test case that traverses the path.

2. Search for all non-terminal nodes in the tree marked guaranteed and that have all

their outgoing edges marked as not-guaranteed.

3. fo r each node n found in Step 2 do

Build a test case that traverses the path from the root node to node n.

Figure 3.14: Generate test cases from the all paths-state tree that has guaranteed nodes

C 3 not-guaranteed node
O guaranteed node
 „ not-guaranteed edge
-► guaranteed edge

Figure 3.15: Non-terminal guaranteed node special case

3.3.3. Building test drivers

In the previous two subsections, we showed how to select the sequences of message

executions (i.e., sequences of transitions that form the all paths-state paths) to be tested.

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Each sequence of message executions forms a test case. To automate the testing process,

it is required to generate test drivers (i.e., implementations of the test cases). To execute

any message associated with a transition, it is required to set test values for the

parameters of the message and to execute the code required to satisfy the predicates of the

transition. We consider the general problem of the automatic generation of the test values

for the parameters of the message and the automatic generation of the code required to

satisfy the predicates of the transition as future work. In our work, we manually associate

the required code for the test values and predicates with the transitions of the testing

model.

After executing a transition, it is required to check whether the actions associated

with the transition are performed correctly and whether the transition leads to the

expected resulting state. Once the testing model is synthesized using the technique

introduced in Section 3.2, the transition actions and the state-invariants are associated

with the transitions and states of the model, respectively. When the test drivers are

developed, the checking of the code for the actions and state-invariants are instrumented

in the test drivers and executed at run time to evaluate the test cases.

There are two ways to implement the test cases: either to implement all of them in

one class or to implement each test case in a separate class. At the application

development stage, the test drivers that can be reused to test an implemented FIC are

determined. These test drivers are a subset of the test drivers provided with the

framework to test the FIC. If all test drivers are included in one class, the non-applicable

test drivers provided with the framework would be included in the class of the test drivers

and not used, which is an ineffective solution. In this thesis, we implement each test

driver in a separate class. This allows the application developer to maintain only the test

drivers that implement the applicable test cases instead of maintaining all the test drivers

provided with the framework.

The procedure given in Figure 3.16 shows how to construct the test drivers for

selected paths of a testing model. The procedure implements a class for each test case.

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Each class includes a constructor method. When the constructor method is invoked at test

time, the actual testing is performed. In the constructor method, the code for executing

the sequence of message executions is listed. For each message associated with a

transition, the code sets up the parameter values and includes the statements required to

satisfy the transition predicates. The setting-up code is followed by the message

invocation statement and checking statements for the resulting actions and the state-

invariants of the resulting state.

In this section and for the rest of this thesis, the examples used are coded in the Java

language; however, the introduced techniques are applicable for frameworks and

applications written in any other object-oriented language. Figure 3.17 shows two Java

test driver examples generated from the tree shown in Figure 3.9. The two test cases are

generated by traversing the paths that include the transition sequences labeled as (l->2)

and (1->12->14), respectively. The checking statements for the actions and the state-

invariants are written as Javadoc comments using the Design-by-Contract (DbC)

language [Meyer 92]. These Javadoc comments are translated at compilation time into

Java code using a tool called Jcontract [Jcontract], At run time, the Jcontract tool checks

the Java statements translated from the DbC statements and reports any violations.

Appendix D shows the remaining test drivers for the NewAccount FIC.

3.4. Summary
This chapter addresses the generation of the reusable test cases at the framework

development stage. These test cases are provided with the framework to test part of the

framework application whenever the framework is used at the application development

stage. FICs are the application classes for which reusable test cases can be built. First, the

chapter focuses on generating reusable class-based test cases for the FICs, which requires

the construction of a class-based testing model. We have introduced a novel technique to

synthesize the states and transitions of a class state-based testing model for the FICs from

the method specifications available in the hooks.

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Inputs: Paths in the FIC state-based model required to implement the test cases.

Outputs: FIC test drivers.

Procedure:

for each path required to implement a test case do

Create a new file

Create a class for the test driver in the file.

Create a constructor method in the class.

5 is the first state in the path.

Repeat

transition t is the outgoing transition from state s in the path

i f the method invoked by the transition t has parameters then add the code

require to set the test values of the parameters to the code of the

constructor method.

i f the transition t has predicates then add the code required to satisfy the

predicates to the code of the constructor method,

if the transition t is the first transition in the path then

insert a creation statement in the constructor method for the instance of the

FIC for which the reusable test drivers are constructed.

else insert a method call statement in the constructor method for the event

associated with the transition.

if the transition t has actions, insert statement(s) in the constructor method to

check whether the actions associated with the transition are performed.

Insert statement(s) in the constructor method to check whether the invariants

of the reached state by the transition t are satisfied.

s is the destination state of the transition t.

until state s is the last state in the path.

Figure 3.16: Construction procedure of the test drivers

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Test Case # 1 (covers transition sequence l->2)
public class TESTl_NewAccount{

public TESTl_NewAccount(){
/ * testing the transition labeled as "1" */
/* code for setting the parameter value */
float amount=l;
/* invoking the message associated with the transition */
NewAccount o = new NewAccount(amount);
/* DbC checking statement for the invariants of the resulting state:

Open */
/** ©assert((o.balance()>=0) && {(o.getCurrentDate()-

o.getLastActivityDate())< o .getMaxPeriod()) && !(o.isFrozen()}) */

/* testing the transition labeled as "2" */
/* invoking the message associated with the transition */
o.balance();
/* DbC checking statement for the invariants of the resulting state:

Open */
/** ©assert((o.balance()>=0) && ((o.getCurrentDate()-

o.getLastActivityDate())< o.getMaxPeriod()) && !(o.isFrozen())) */
}

}

Test Case # 12 (covers transition sequence 1->12->14)
public class TESTl2_NewAccount{

public TEST12_NewAccount(){
/* testing the transition labeled as "1" */
/* code for setting the parameter value */
float amount=l;
/* invoking the message associated with the transition */
NewAccount o = new NewAccount(amount);
/* DbC checking statement for the invariants of the resulting state:

Open */
/** ©assert((o.balance{)>=0) && ((o.getCurrentDate()-

o.getLastActivityDate())< o .getMaxPeriod()) && !(o.isFrozen())) */

/* testing the transition labeled as "12" */
/* invoking the message associated with the transition */
o .freeze();
/* DbC checking statement for the invariants of the resulting state:

Frozen */
/** ©assert((o.balance()>=0) && ((o.getCurrentDate()-

o.getLastActivityDate())< o .getMaxPeriod()) && (o.isFrozen())) */

/* testing the transition labeled as "14" */
/* invoking the message associated with the transition * I
©.unfreeze() ;
/ * DbC checking statement for the invariants of the resulting state:

Open */
/** ©assert((o.balance()>=0) && ({o .getCurrebtDate()-

o .getLastActivityDate())< o .getMaxPeriod()) && !(o.isFrozen())) */
}

}

Figure 3.17: Two test case examples generated from the tree shown in Figure 3.9

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Second, we have Introduced a specification coverage technique ■ that uses the

constructed state class-based testing model and produces test cases for FICs. The test

cases are sufficient to cover all the implemented transitions in the specification models of

the FICs under test. The introduced coverage technique is called all paths-state and it

covers all paths to each state in the specification model. The coverage technique builds

test cases such that when a transition In the state model is deleted, the non-broken test

cases built using the coverage technique cover all remaining transitions in the state model

initiated from the reachable states. Finally, the coverage technique is extended to build

test cases to test the interactions between the framework classes and the FICs that extend

them.

The all paths-state technique generates tests based on transition sequences and,

therefore, it is useful for classes that have constraints on transition sequences. FICs are

problem domain classes that often have constraints on transition sequences [Binder 99].

In contrast, the all paths-state technique may not be useful for classes that do not have

constraints on the transition sequence (i.e., can accept any transition in any state). For the

later classes, the test cases can be generated by analyzing the data flow in the state model

[Binder 99].

Although there are several elements to be provided by the framework developer when

the reusable test cases are generated, they need to be provided once and not every time an

application is developed. These elements are the hook descriptions, the values of the

parameters of the methods invoked in the test cases, the pieces of code required to satisfy

the predicates of the transitions, and the specifications of the non-event-driven transitions.

In addition, stubs used to isolate the FICs to perform class testing and testing oracles for

the generated test cases are reusable. All the reusable testing elements can be provided

with the framework to reduce the testing cost at the application development stage. The

way of using the test cases at the application development stage has to be easy and

straightforward to ensure considerable cost savings are realized when the application is

tested.

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4 Using Reusable Class-Based Test Cases

4.1. Introduction
This chapter introduces an effective way to use the reusable class-based test cases.

When application developers use FICs to implement their applications, they deal with the

specifications of the FICs introduced by the hooks in three ways: (1) use them as defined,

(2) Ignore specifications for the behaviors that are unnecessary in implementing the

application requirements, and (3) add new specifications for the added behaviors to meet

the application requirements. This way of using the FIC specifications creates the

following five main problems that have to be solved to apply the reusable test cases

effectively. The problems are discussed in the subsequent sections.

1. How to find and discard the test cases for the ignored specifications.

2. How to map the names of the implemented FIC methods to the names of the FIC

methods introduced in the hooks and used in the reusable test cases.

3. How to test the different implementations of the same FIC method introduced in

the hooks.

4. How to deal with the flexibility that the user has in modifying the parameters of

the FIC methods introduced in the hooks.

5. How to test the new specifications added by the application developers.

4.2. Tackling the Ignored Specifications Problem
Application developers have the flexibility to ignore FIC specifications introduced by

the hooks if these specifications are unnecessary in implementing the application

requirements. The transitions that model the ignored specifications have to be removed

from the FIC state-model. The all paths-state coverage technique produces test cases such

that if a transition is removed and, therefore, test cases are broken, the remaining test

cases still cover the remaining used transitions. Therefore, no test cases should have to be

created to test any of the reused transitions.

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

To find the broken test cases, it is required to associate the identifiers of the test cases

with the FIC model transitions that they cover at the framework development stage. The

procedure given in Figure 4.1 shows how to associate the identifiers of the test cases with

the FIC transitions. Steps 1 and 2 of the procedure associate with each edge in the all

paths-state tree, the identifiers of the test cases that cover the paths that contain the edge

in the tree. Steps 3 and 4 associate the identifiers of the test cases with the transitions of

the FIC model by mapping the edges of the tree to the transitions of the FIC model.

Inputs: The FIC state-based model, corresponding all paths-state tree, and

corresponding generated test cases.

Output: FIC state-based model with test case identifiers associated with the model

transitions.

Procedure:

1. Assign the empty set s of the test case identifiers to each edge in the all paths-state

tree.

2. For each path in the all paths-state tree do

2.1. Add the identifier of the test case that traverses the path to the set 5 of each

edge in the path.

3. Assign an empty set e of the test case identifiers to each transition in the FIC

testing model.

4. For each edge I in the all paths-state tree do

4.1. Search for the corresponding transition t in the FIC testing model.

4.2. et = et \J Si

Figure 4.1: Associating the test case identifiers to the transitions of the FIC model

In our concrete example, each path in the tree shown in Figure 3.9 is used to build a

test case as discussed in Section 3.3. Table 4.1 shows the test case identifiers and the

corresponding paths of the tree. Figure 4.2 shows the resulting all paths-state tree when

the test case identifiers are assigned to its edges according to the first two steps of the

procedure shown in Figure 4.1. For example, the edge from the node labeled Frozen to

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission

the node labeled Inactive in the path (Alpha->Open->Frozen->In active) in the tree shown

in Figure 4.1 is associated with the test case identifiers 8, 9, 10,. and 11 because the edge

is contained in the tree paths covered by these test cases. Figure 4.3 shows the resulting

STD of the NewAccount FIC when the test case identifiers are assigned to the transitions

according to steps 3 and 4 of the procedure shown in Figure 4.1. For example, the

transition from Frozen to co states is represented twice in the all paths-state tree shown in

Figure 4.2 by edges covered by the test cases that have identifiers 13 and 17, respectively.

Therefore, the transition is associated with a set of test case identifiers {13,17}. The test

case identifiers associated to each transition are shown also in the fifth column of Table

4.2.

Test case
identifier

Path

1 a , open, open
2 a, open, open
3 a, open, overdrawn, overdrawn
4 a, open, overdrawn, overdrawn
5 a, open, overdrawn, open
6 a, open, overdrawn, o>
7 a, open, open
8 a, open, frozen, inactive, inactive
9 a, open, frozen, inactive, open
10 a, open, frozen, inactive, frozen
11 a, open, frozen, inactive, o)
12 a, open, frozen, open
13 a, open, frozen, to
14 a, open, frozen, frozen
15 a , open, inactive, frozen, inactive
16 a, open, inactive, frozen, open
17 a, open, inactive, frozen, m
18 a, open, inactive, frozen, frozen
19 a , open, inactive, open
20 a , open, inactive, 0)
21 a , open, inactive, inactive
22 a, open, to

Table 4.1: identifiers of the test cases built from the paths of the tree of Figure 3.9.

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

opes overdrawn

-U-221

(3}x overdrawn’

a

overdrawn
r { 6 } _____ {8if inactive

3 - 6 } —-‘fcj / * --------------
/ / ooenl

inactive

{121 open
(1 1) N 0)

inactive

(15-21)

inactive
{18j\fg-0zen

inactive

Figure 4.2: All paths-state tree of the NewAccount FIC with identifiers of the test

cases assigned to the edges

{14,18} (^A lpha)
^ —< 1 1 -22}

Frozen

Inactive Overdrawn

{8,21}
16} (3)

Figure 4.3: The STD of Figure 3.4 with identifiers of the test cases assigned to the

transitions

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Transition
Identifier

Event Source
state

Destination
state

Test cases
identifiers

Test cases
identifiers after

removing
(frozen,inactive)

transition
1 New Account a open 1-22 1-7,12-14,16-22
2 balance open open 1 1
3 balance overdrawn overdrawn 3 3
4 balance inactive inactive 8,21 21
5 balance frozen frozen 14,18 14,18
6 deposit open open 2 2
8 deposit overdrawn open 5 5
9 deposit overdrawn overdrawn 4 4
10 withdraw open open 7 7
11 withdraw open overdrawn 3-6 3-6
12 freeze open frozen 8-14 12-14
13 freeze inactive frozen 10,15-18 16-18
14 unfreeze frozen open 12,16 12,16
15 activate inactive open 9,19 19
16 open 0) 22 22
17 overdrawn CO 6 6

G
O inactive CO 11,20 20

19 frozen CO 13,17 13,17
20 open inactive 15-21 16-21
21 frozen inactive 8-11,15

Table 4.2: Test case identifiers associated with the transitions of the STD of Figure 3.4.

At the application development stage, when the application developer ignores FIC

specifications, the transitions in the testing model corresponding to the ignored

specifications are removed. In addition, the transitions no longer contained in any path

from Alpha to Omega states are removed. The broken test cases are the ones whose

identifiers are associated with the removed transitions.

Let us look at an example. Suppose the application developer decides to remove the

transition that has identifier 21 in Table 4.2. From the fifth column of Table 4.2 we see

that the test cases that have identifiers 8, 9, 10, 11, and 15 cover the deleted transition

and, therefore, they are broken. The identifiers of the broken test cases have to be

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

removed from all cells in the fifth column of Table 4.2. The results of these removals are

shown in the last column of Table 4.2. The table shows that each of the remaining

transitions is covered by at least one test case.

In conclusion, in order to detect the broken test cases it is necessary to provide the

framework with the FIC models that have test case identifiers associated with their

transitions.

4.3. Tackling the Renaming Problem
One of the problems in reusing the test cases is that the test cases use the method

names introduced by the hooks, while the actual implementation to be tested uses method

names introduced by the application developer. For example, when the application

developer of the banking system framework implements the NewAccount class he can

rename it MyAccount and change some of the names of the class methods as shown in

Table 4.3. Test cases generated at the framework development stage would not use the

new class and method names and, therefore, could not be reused as-is directly.

Method declaration in
Banking System

framework hooks

Method declaration in

MyAccount class

NewAccount(float) MyAccount(float)
deposit(float) USdeposit(float)

EURdeposit(float)
withdraw(float) withdraw 100()

withdraw(float)
balance() getBalanceQ
freeze() freeze()
unfreezeQ unfreeze()
activate() activate()

Table 4.3: Method-name-mapping table for the MyAccount class

To solve this problem, a mapping class that has the same name as the FIC class

defined in the hooks has to be built. The mapping class inherits the implemented class

(e.g., the MyAccount class) and its methods map the methods introduced by the

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

framework hooks to the ones used in the actual implementation of the class. The mapping

is achieved by using a method-name-mapping table as illustrated in Table 4.3. Given the

method-name-mapping table, the generation of the mapping class is straightforward and

can be easily automated: whenever a method listed in the first column of the method-

name-mapping table is invoked by a test driver (i.e., implementation of a test case), the

invoked method in the mapping class invokes the corresponding method listed in the

second column of the table. For example, Figure 4.4 shows the NewAccount mapping

class that uses the method-name-mapping table shown in Table 4.3.

public class NewAccount extends MyAccount {
public NewAccountffloat amount) {

super(amount);
}
public float balance() {

return getBalance();
}
public void deposit(float amount) {

switch((new DRIVER_MyAccount()).getSwitchkey()) {
case 1:USdepos ite(amount);

break;
case 2 :EURdeposit(amount) ;

break;
}

}
public void withdraw!float amount) {

switch!(new DRIVER_MyAccount()).getSwitchkey()) {
case 1:super.withdraw(amount);

break;
case 2 : super.withdrawlOO();

break;
}

}
public void freeze() {

super.freeze{);
}
public void unfreeze() {

super.unfreeze() ;
}
public void activate(} {

super.activate{);
>

Figure 4.4: NewAccount mapping class

In the MyAccount class, the constructor method is renamed to match the name of the

new class name as shown in Table 4.3. Therefore, when test drivers call the NewAccount

constructor method, the MyAccount constructor method is called. In Java, the renaming

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

problem is not a problem for the constructor methods, because the constructor method of

the superclass is always invoked using the super keyword regardless of the superclass

name. However, the problem has to be solved as illustrated above when methods other

than the constructor method are renamed. For example, the balance method is renamed

getBalance in the MyAccount class. When test drivers call the balance method of the

NewAccount class, the method invokes the getBalance method as shown in Figure 4.4.

The mapping class is useful also when the application developer does not implement

an instance variable introduced in a hook description and the variable access method. If

the access method of the instance variable is used in the reusable test drivers to check the

state-invariants and not contained in the implemented FIC, the reusable test drivers would

not compile. In this case, the access method of the instance variable has to be

implemented in the mapping class. The method returns any value accepted at any of the

original FIC model states remaining in the modified model. For example, suppose the

application developer who uses the NewAccount FIC does not implement the frozen

instance variable and its access method isFrozen(). This causes the Frozen state and the

transitions associated to it to be removed from the STD shown in Figure 3.4. Despite the

fact that Test Case # 1 shown in Figure 3.17 does not cover any of the removed

transitions, it does not compile because it uses the isFrozen method not contained in the

implemented FIC to check the state-invariants. To solve this problem, the mapping class

should implement the isFrozen method as follows:

public boolean isFrozen()(return false; }

The method returns false because false is the accepted value of the frozen instance

variable in the STD states shown in Figure 3.4 and remaining in the model that represents

the implemented FIC.

In conclusion, we can reuse the test drivers generated at the framework development

stage as-is (i.e., without modifying them) by using a mapping class which maps the

methods invoked in the test drivers to the methods used in the actual implementation of

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the FIC. In addition, the mapping class implements access methods used in the test

drivers to check the state-invariants and not contained in the implemented FIC.

4.4. Tackling the Different Implementations of a FIC Method Problem
In some cases, the application developer can decide to have different implementations

for a method introduced by the hooks. For example, suppose that the application

developer of the MyAccount class decides to have two implementations for the deposit

method introduced by the banking framework hooks: one for depositing US money and

the other one for depositing EUR money. These different implementations have common

preconditions and postconditions introduced by the hooks because they are constructed

using the same hooks. The different implementations can have the same method name but

different parameters, or they can have the same parameters but different method names.

To test the different implementations, the test drivers that test the method should be

exercised as many times as the number of implemented versions of the method. To do so,

a SwitchKey global variable accessed by both the mapping class and the class that

invokes the test drivers is used to keep track of the order of the version to be called when

the test drivers are exercised.

As an example, suppose that the application developer of the MyAccount class

implements two versions of the deposit method as indicated earlier in Table 4.3. Each

version has a different method name. However, both versions have common

preconditions and postconditions provided in the hooks for the deposit method and,

therefore, the reusable test cases generated for the deposit method have to be applied for

both implemented versions. Thus, the following code is included in the NewAccount class

as shown in Figure 4.4:

public void deposit(amount) {

switch((new DRIVER JMyAccount). getSwitchkey()) {

case 1: USdeposit(amount);

break;

case 2:E(JRdeposit(amount);

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

break;

}

}

In the above code, the return value of the getSwitchKey method is used to determine

at run time which deposit method implementation to invoke. The getSwitchKey method is

defined in the driver class that invokes the test drivers as will be illustrated in Section 4.7.

This way of testing the different implementations of the same FIC method allows for

reusing the test drivers generated at the framework development stage as-is to test the

different implementations of the FIC methods. No test drivers have to be created from

scratch to solve the problem, thereby reducing the application class testing time.

4.5. Tackling the Method Parameter Update Problem
Application developers have the flexibility to add or remove parameters from the

parameter list of the FIC methods introduced by the hooks as long as they do not change

the preconditions and postconditions introduced in the hooks. When an application

developer removes one or more parameters from the implemented version of the method

introduced by a hook, the unused parameters are just ignored at the time the test drivers

invoke the method introduced by the hook. As an example, suppose that the MyAccount

class is implemented. In the implemented version of the withdraw method, the parameter

of the withdraw method introduced by the hook is removed to restrict withdrawals to only

a fixed amount of money. In the implementation of the withdraw 100 method, the

application developer decides to pass the parameter value hard-coded to the

super.withdraw method as follows:

public class MyAccount extends Account {

public void withdraw 100() {

supe r.withdraw! 100);

I

}

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In this case, as shown in Figure 4.4, the NewAccount mapping class ignores the

parameter value passed to the withdraw('float) method of the class when the

withdraw 100() method is invoked.

When the application developer adds more parameters to the parameter list of a method

introduced by a hook, the application developer has to pass a hard-coded value to the

added parameters when the method is invoked in the class that inherits the implemented

class. The application developer has to determine the values to be passed to such

parameters. If more than one test value has to be exercised, the application developer has

to find the test drivers that invoke the method and execute them with the other test values

of the parameter.

In conclusion, instead of modifying the reusable test drivers, the application developer

can use the mapping class to solve the method parameter update problem, which reduces

the cost of using the test drivers at the application development stage. However, in some

cases, changing the parameters of the methods introduced by the hooks implies adding

more constraint preconditions. In such cases, the application developer has to add

manually these more constraint preconditions as predicates to the transitions that invoke

the methods.

4.6. Tackling the Test Case Augmentation Problem
To develop an application using a framework, the application developers implement

the FICs. The specifications of the implemented FICs have two sources: (1) the

specifications introduced at the framework development stage in the hooks and (2) the

specifications of the new methods added to the FICs. The latter specifications are added

at the application development stage and, therefore, have no reusable test cases to cover

them. Covering these specifications may require augmenting reusable test cases or

creating new test cases from scratch.

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The placement of the transitions that model the added specifications determine

whether covering the added specifications requires augmenting reusable test cases or

creating test cases from scratch. If alpha is the source state of an added transition or all

the paths from the alpha state to the source state of the added transition consist of only

added transitions (i.e., as shown in Figure 4.5(b)), covering the added transition requires

creating a test case from scratch. Otherwise (i.e., as shown in Figure 4.5(a)), covering the

added transition can be achieved by augmenting a reusable test case.

Added transitions

Added state

(a .l) STD

(a.2) The round-trip path tree
o f the STD

(a) Adding a new transition
that requires a test case

augmentation

(b .l)S T D

(b.2) The round-trip path tree
o f the STD

(b) Adding new transitions
that require test case creations

Figure 4.5: Possible placements of the added transitions

The procedure given in Figure 4.6 illustrates how to augment and create test cases to

cover the added transitions. In this procedure, a round-trip path tree [Binder 99] is built as

illustrated in the procedure given in Figure 4.7 for the modified state-transition model

(i.e., the model that contains the added transition) and the non-broken test case identifiers

associated with the model transitions are associated with the corresponding tree edges.

The procedure either builds new test cases or augments reusable test cases to cover the

added transitions represented in the tree by edges not associated with any test case

identifiers.

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Inputs: The state-based model of the implemented FIC and the non-broken test cases.
Outputs: Test cases that cover the added transitions.
Procedure:
1. Build a round-trip path tree for the specification state-transition model of the

implemented FIC according to the procedure given in Figure 4.7.
2. Associate the non-broken test case identifiers to the edges of the round-trip path

tree as illustrated in steps 1 and 2 of the procedure given in Figure 4.1.
3. Pick an edge I not associated with any test case identifier
4. Count the number np of the root-leaf tree paths that contain the edge I.
5. If the source node of the edge is reached by an edge k with which test case

identifiers are associated then
5.1. Pick one of the test cases that its identifier is associated with the edge k.
5.2. Make np copies of the test case and give each of them different identifier.
5.3. for each copy t of the test cases do

5.3.1. Give the test case a new identifier.
5.3.2. In the implementation of the test case (i.e., test driver), search for the

statement s corresponding to the event associated with the edge k.
5.3.3. Remove all invocation statements after the statement s.
5.3.4. Select one of the np tree paths that some of its edges are not

associated with test case Identifiers.
5.3.5. Associate the edges of the selected tree path with the new identifier

of the test case t.
5.3.6. Insert the invocation statements for the events associated with the

edges that follow the edge k in the selected tree path.
6. else if the edge I is initiated from the root node of the tree do

6.1. Create np test cases from scratch. Each test case covers one of the np tree
paths that contain the edge I.

6.2. Associate the edges of the paths with the identifiers of the test cases that
cover the edges.

7. Repeat step 3, 4, 5, and 6 until each of the edges in the tree is associated with at
least one test case identifier.

Figure 4,6: Constructing test cases to cover added transitions

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

If the source node of the edge k not associated with test case identifiers is reached by

an edge associated with a test case identifier (i.e., as shown in Figure 4.5(a)), the test case

is augmented to cover the added transition represented by the edge k. Otherwise, if the

source node of the edge represents the alpha state (i.e., as shown in Figure 4.5(b)), a test

case is created from scratch to cover the added transition represented by the edge k.

Whenever a test case is augmented or created from scratch, the tree edges that represent

the transitions covered by the test case are associated with the identifier of the test case.

The procedure terminates when each of the edges of the tree is associated with at least

one test case identifier.

Input: A class state-based testing model
Output: The round-trip path tree of the class model.
Procedure:
1. The initial state is the root node of the tree. Use the alpha state if multiple

constructors produce behaviorally different initial states.
2. Search for a state that corresponds to non-terminal leaf node in the tree.
3. Examine each outgoing transition from the state. At least one new edge will be

drawn for each outgoing transition from the state. Each new edge and node
represents an event and resultant state reached by an outgoing transition.
a. If the transition is unguarded, draw one new branch.
b. If the transition guard is a simple predicate or a complex predicate composed

of only AND operators, draw one new branch.
c. If the transition guard is a complex predicate using one or more OR operators,

draw a new . branch for each truth value combination that is sufficient to make
the guard TRUE.

4. For each edge and node drawn in Step 2:
a. Note the corresponding transition event, guard, and action information on the

new edge.
b. If the state that the new node represents is a final state or the state is

represented somewhere else in the tree, mark this node as a terminal - no more
transitions are drawn from this node. Otherwise, mark it as non-terminal.

5. Repeat steps 2, 3, and 4 until all leaf nodes are marked terminal.

Figure 4.7: Constructing round-trip path tree [Binder 99]

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Let us look at an example. Suppose the application developer decides to develop the

MyAccount FIC and to add a method that inactivates an overdrawn account. This new

specification is modeled in the STD of Figure 3.4 by a transition from the overdrawn

state to the inactive state. Following steps 1 and 2 of the procedure given in Figure 4.6, as

shown in Figure 4.8, we construct the round-trip path tree of the modified model and

associate the edges of the tree with test case identifiers according to the STD shown in

Figure 4.3. In Step 3 of the procedure, we pick the edge that represents the added

transition because it is not associated with any test case identifier. According to Step 4,

the number of paths that contain the edge is one. The source node of the edge is reached

by an edge k associated with test case identifiers: 3, 4, 5, and 6. In steps 5.1 and 5.2, we

pick the test case identifier 3 and make a copy of it to be augmented. Figure 4.9 shows

the Java implementation of the test case. The augmented version of the test case is shown

in Figure 4.10. The identifier of the augmented test case is 23. According to Step 5.3.2,

the statement that corresponds to the event associated with the edge k is in line 13 of the

code listed in Figure 4.9 and, therefore, we apply Step 5.3.3 to remove any code

statement after line 13 (i.e., statements in lines 17-21). In steps 5.3.4 and 5.3.5 of the

procedure, we associate all the edges in the tree path that contains the edge that represents

the added transition with the test case identifier 23 (i.e., the identifier of the augmented

version of the test case). Finally, according to Step 5.3.6, we insert the invocation

statement of the inactivate method as shown in line 22 of the code listed in Figure 4.10.

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

{1}
open

Inactive

overdrawn]The link that represents
the added transition / (3} °P e° [/ X 4 ? | overdraw n

overdrawn

inactive

{111 open

frozen

{15-18}frozen{15-21}

inactive

{21}x inactive

Figure 4.8: The round-trip path tree of the modified version of the STD shown in Figure

4.3

1 public class TEST3_NewAccount{
2 public TEST3_NewAccount{){
3 /* Test transition: source state: Alpha, sink state: Open, event:
4 NewAccount(amount), predicates: amount>=0 */
5 float amount=l;
6 NewAccount o = new NewAccount(amount);
7 /** Sassert((o.balance()>=0) && ((o .getCurrentDate()-
8 o.getLastActivityDate())<o.getMaxPeriod()) && !(o.isFrozen ())) * /
9
10 /* Test transition: source state: Open, sink state: Overdrawn,
11 event: withdraw(amount), predicates: (balance - amount)<0 */
12 amount=l+o.balance!);
13 o .withdraw(amoun t);
14 / * * ©assert((o.balance()<0) && ((o.getCurrentDate()-
15 o.getLastActivityDate()}<o.getMaxPeriod()) && !(o.isFrozen()))*/
16
17 /* Test transition: source state: Overdrawn,sink state: Overdrawn,
18 event: balance!), predicates: none */
19 o.balance();
20 /** ©assert((o.balance()<0) && ((o.getCurrentDate()-
21 o.getLastActivityDate())<o.getMaxPeriod()) && !(o .isFrozen()))*/
22 }
23 }

Figure 4.9: The lava implementation of the test case that has identifier 3

77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1 public class TEST23_NewAecount{
2 public TEST23_NewAccount(){
3 /* Test transition: source state: Alpha, sink state: Open, event:
4 NewAccount(amount}, predicates: amount>=0 */
5 float amount=l;
6 NewAccount o = new NewAccount(amount);
7 /** ©assert((o.balance()>=0) && ((o.getCurrentDate()-
8 o.getLastActivityDate())<o.getMaxPeriod{}) && !(o.isFrozen()))*/
9
10 /* Test transition: source state: Open, sink state: Overdrawn,
11 event: withdraw!amount), predicates: (balance - amount)<0 */
12 amount=l+o.balance();
13 o.withdraw(amount);
14 /** ©assert((o.balance()<0) && ((o.getCurrentDate()-
15 o.getLastActivityDate())<o.getMaxPeriod()) && ! (o . isFrozen{)))*/
16
17 /* The following code implements the difference between the test
18 * driver shown in Figure 4.9 and the augmented version of the
19 * test driver */
29 /* Test transition: source state: Overdrawn,sink state: Overdrawn,
21 event: inactivate(), predicates: none */
22 o .inactivate();
23 /** ©assert((o.balance()<0) && ((o .getCurrentDate()-
24 o.getLastActivityDate())>=o.getMaxPeriod()) && !(o.isFrozen()))*/
25 }
26 }

Figure 4.10: The augmented version of the implementation of the test case shown in

Figure 4.9

4.7. Invoking Test Drivers
Finally, it is required to build a driver class for each implemented FIC to invoke the

non-broken reused as-is, augmented, and new test drivers that test the FIC. If the

switchKey global variable is required to allow for testing the different implementations of

a FIC method as illustrated in Section 4.4, the variable is defined as a global variable in

the driver class. In Java for example, the switchKey variable is declared private and static

and an access method is implemented to get the variable value. For example, part of the

driver class for the MyAccount test drivers is shown in Figure 4.11. As indicated in

Section 4.4, the deposit method introduced in the hooks has two different

implementations in the MyAccount FIC. Therefore, as shown in Figure 4.11, the driver

class declares the switchKey instance variable and its access method (i.e.,

getSwitchKeyO). From the second and fifth columns of Table 4.2, it is found that deposit

method is covered using the test cases that have identifiers 2, 4, and 5. As depicted in

Figure 4.11, the test cases that have identifiers 2, 4, and 5 are exercised twice: once after

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the value of the switchKey variable is set to “1” and once after the value of the variable is

set to “2”.

public class DRIVER_MyAccount{
private static int switchKey=l;
public int getSwitchKey() {

return switchKey;
}
public static void main(String args[]){

/* switchKey is already set to 1 */
/* Invoking the test drivers that cover the first

implementation of the deposit method */
new TEST2_NewAccount();

new TEST4_NewAccount();
new TEST5_NewAccount();

switchKey=2;
/* Invoking the test drivers that cover the second

implementation of the deposit method */
new TEST2_NewAccount ()
new TEST4_NewAccount();
new TEST5_NewAccount{);

}
}

Figure 4.11: Part of the DRIVER_MyAccount class

Figure 4.12 shows the class diagram that represents the relation between the

implemented FIC under test, the mapping class, the test drivers, and the driver class. The

mapping class extends the FIC under test and the test drivers depend on the mapping

class. Finally, the driver class depends on the test drivers. After implementing the driver

class, the driver has to be executed to perform the actual testing.

4.8. Fault Detection
The reusable test cases are generated using the all paths-state technique. As stated in

Property 3.1, the all paths-state coverage subsumes the round-trip path coverage in terms

of state machine path coverage. At the application development stage, some of the

reusable test cases are broken and cannot be used. Other reusable test cases are either

used as-is or augmented. In some cases, new test cases are created from scratch to test

new specifications. The following property compares the fault coverage of the resulting

test cases applied at the application development stage to test the implemented FICs with

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the fault coverage of the round-trip path test cases. In [Antoniol+ 02], it is shown that the

round-trip path test cases are reasonably effective in terms of fault coverage (i.e., 87%

average fault coverage). FICs are problem domain classes, which are often suitable for

testing with the round-trip path technique [Binder 99].

ImplementedFIC

TestDriver#! TestDriver#2

hr

DriverClass

TestDriverik

Figure 4.12: The class diagram of the FIC under test and the classes required in testing

Property 4.1: After removing the broken test cases, augmenting some test cases, using

some test cases as-is, and creating some test cases from scratch, the resulting test cases

applied at the application development stage to test the implemented FICs have at least

the same fault coverage as the round-trip path test cases.

Rationale: By definition, the all paths-state tree covers all simple transition sequences to

each state in the state model. When a transition is deleted, the paths that include it are

broken. Therefore, the rest of the paths in the resulting tree cover all simple transition

sequences to each state in the state model except for the sequences that include the

deleted transition. This means that the resulting tree covers all simple transition

sequences to each state in the updated state model and, therefore, it is an all paths-state

tree. Property 3.1 states that all paths-state coverage subsumes the round-trip path

coverage in terms of path coverage. Therefore, for the used as-is transitions, the non-

broken test cases covered by the resulting all paths-state tree have at least the same fault

coverage as the round-trip path test cases that cover the reused transitions.

80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The transitions added to the state model because of the new code added by the

application developer are covered using round-trip path strategy as illustrated in Section

4.6. As a result, after removing the broken test cases, augmenting some test cases, using

some test cases as-is, and creating some test cases from scratch, the resulting test cases

applied at the application development stage to test the implemented FICs have at least

the same fault coverage as the round-trip path test cases.

4.9. Summary
This chapter demonstrated how to use the reusable test cases by effectively

addressing five problems that could prevent test case reusability. The chapter also

demonstrated how to build a driver for the reusable test cases and showed that the

resulting test cases have at least the same fault coverage as the round-trip path test cases.

The proposed solutions fully automate the use of the test cases with the exception of the

case involving added parameters introduced by the application developer to the methods

introduced by the hooks. In this case, the application developer has to provide test data

for the added parameters.

All paths-state coverage technique builds redundant test cases in the sense that all

transitions covered by a test case can be covered by other test cases. For example, as

shown in Table 4.2, the test case number 15 covers the transitions that have identifiers 1,

13, 20, and 21. These transitions are covered by other test cases such as 1, 10, 16, and 8 ,

respectively. However, none of the redundant test cases are identical in the sense that the

test cases that cover the same transitions exercise the transitions using different paths.

Therefore, the redundant reusable test cases generated using all paths-state technique

have different fault detection capabilities and none of them should be removed at the

application development stage except for the broken ones.

81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5 Case Studies

This chapter describes experimental studies of the relationship between the type of

the framework and the use of the FICs in the framework applications to assist the

framework developer in deciding whether to build reusable test cases for the FICs or not.

Moreover, the case studies evaluate the proposed techniques with regard to test case

reusability and specification coverage in terms of the number of transitions in the state

model. In the evaluation, the practicality of the proposed test case generation and use

technique is shown using several examples. Finally, an empirical evaluation is conducted

to study the degree of coverage for the specifications of the implemented FICs, in terms

of the number of transitions in the state model, achieved using test cases generated using

the all paths-state technique comparing to test cases generated using the round-trip path

and the all-transitions techniques.

Fifteen applications developed using the following four frameworks were considered

in the case studies: Client-Server Framework (CSF) [CSF], Swing [Swing], SalesPoint

[SalesPoint], and WaveFront pattern frameworks [WaveFront Documentation]. CSF and

Swing are application frameworks, while SalesPoint and WaveFront pattern frameworks

are domain frameworks.

CSF is a communications framework written in Java and developed to support the

building of relatively small applications that require client-server or peer-to-peer

communication support. CSF also provides persistent storage capabilities and can handle

communications over a TCP/IP connection using a model similar to email. CSF deals

with synchronous and asynchronous messages sent between remote objects. The

framework code consists of 38 classes and about 1.4K lines of code (without

comments/blank lines). CSF hooks describe the behavior of ten FICs and show how they

can be implemented or customized.

Swing is a Java framework developed to support GUI applications. In Java 1.3.1,

Swing consists of 460 classes but no documented hooks are available. As we will explain

82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

later in Section 5.1.2, the FICs for this framework were derived from an analysis of the

application set used in the first case study.

SalesPoint is a framework written in Java and developed to create point-of-sale

simulation applications such as a ticket vending machine application or a big supermarket

with many departments application. The framework supports the management of the

relations between the business, the customers, and the administrative tasks like

accounting. The SalesPoint framework consists of 161 classes and it is provided with

hooks that describe the behavior of 78 FICs.

WaveFront pattern frameworks support the computation of dependent elements. The

frameworks are generated from the WaveFront Pattern (WFP) using the CO2P3S parallel

programming system [McDonald+ 97]. Two relatively small WaveFront pattern

frameworks are considered. Each of them consists of six classes and about 200 lines of

Java code (without comments/blank lines). For each of them, three hooks were provided

to document the way of using the framework. The hooks of each framework describe the

behavior of two FICs and show how they can be implemented or customized.

5.1. Case Study 1: Generating Reusable Test Cases For Framework

Applications: Is It Worth It?

5.1.1. Introduction

In this section, we measure the application class testing cost reduction using the

reusable test cases generated at the framework development stage. The cost reduction is

measured in terms of the number of implemented FICs in the applications and their total

number of lines of code (LOG) in comparison to the total number of classes implemented

at the application development stage and their total number of lines of code (LOC). We

count the number of LOC because it is a commonly used measurement for the size of

code.

83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission

The case study was conducted using thirteen randomly selected applications

developed using three frameworks: CSF, Swing, and SalesPoint. The former two

frameworks are application frameworks while the latter one is a domain framework. The

WaveFront frameworks are not used in this case study because their applications have

relatively small number of classes and, therefore, the results of applying the case study

analysis on them are not expected to be representative.

The results of the case study show that the percentage of use of the FICs in the

applications constructed using the domain framework is, on average, much higher than

the percentage of use of the FICs in the applications built using the application

frameworks. As a result, the reduction in class testing cost of the applications constructed

using the domain frameworks is, on average, much higher than the reduction in class

testing cost of the applications built using the application frameworks.

5.1.2, Case study set-up

Performing the analysis required in this case study for relatively large number of

applications requires exhaustive effort. Therefore, the case study was conducted using

thirteen randomly selected applications out of a pool of 39 applications. Five of the

applications use one framework and eight applications use two frameworks. As shown in

tables 5.1-5.4, the applications use the following frameworks: one application uses CSF

only, two applications use the Swing framework only, two applications use the SalesPoint

framework only, four applications use CSF and the Swing framework, and four

applications use the SalesPoint and Swing frameworks. The contents of these tables will

be explained in greater detail in the next two subsections.

The CSF applications were developed by fourth-year undergraduate students at the

University of Alberta. The SalesPoint framework applications were developed by second-

year undergraduate students at the University of the Federal Armed Forces Munich.

Finally the Swing applications were developed by a combination of the second and

fourth-year undergraduate students, in conjunction with their application development

activities on CSF and SalePoint.

84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

For each application, the classes implemented at the application development stage

were counted. The number of classes does not include the number of framework classes.

In addition, the number of LOC of the counted classes is also counted. These two figures

were counted using the LOCC tool [LOCC]. LOCC is a Java tool that produces size data

corresponding to the number of packages, the number of classes in each package, the

number of methods in each class, and the number of lines of code in each package, class,

and method. The LOCC tool does not count comments and blank lines as part of the lines

of code. Tables 5.1, 5.2, and 5.3 show the application name, the total number of

application classes not including framework classes, and the number of lines of code

(LOC) of each application. The FICs included in the applications were counted manually.

Since the Swing framework has no associated hooks, we used the definition of FIC stated

in Section 1.2 to find the implemented FICs and count them. Every class in the

considered applications that extends or uses a Swing class is an implemented FIC. For

each application developed using the Swing framework, we counted the implemented

Swing FICs. Finally, the total number of LOC for the FICs is the summation of the LOC

of each of the FICs counted using LOCC tool.

5.1.3. Case study results

For each application, the first column of tables 5.1, 5.2, and 5.3 shows the name of the

application. The second column shows the number of application classes not including

the framework classes. The third column shows the number of LOC of the classes

counted in the second column. The fourth column shows the number of FICs

implemented in the application and the percentage of the number of FICs in the

application. The last column shows the total number of LOC of FICs and the percentage

of the number of LOC of the FICs in the application.

For applications developed using application frameworks, Table 5.1 shows that an

average of 41.4% of the classes of the CSF applications are FICs. In terms of LOC, an

average of 28.3% of the LOC of the CSF applications are for FICs. Table 5.2 shows that

an average of 14.9% of the classes of the Swing framework applications are FICs. In

85

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

terms of LOC, an average of 13.9% of the LOC of the Swing framework applications are

for FICs. For applications developed using domain frameworks, much higher percentage

averages were found. Tabie 5.3 shows that an average of 68.5% of the classes of the

SalesPoint framework applications are FICs. In terms of LOC, an average of 75.5% of the

LOC of the SalesPoint framework applications are for FICs.

Application Name Number of
classes

Number of
LOC

Number of
FICs

Number of
LOC in FICs

Student management system 47 3887 31 (66%) 1568 (40.3%)
Chatting system 55 7464 3 (5.5%) 179 (2.4%)
Course management system 44 3191 17 (38.6%) 667 (20.9%)
StoneClash Strategy Game 106 5324 56 (52.8%) 2050 (38.5%)
Army Game 149 8792 66 (44.3%) 3449 (39.2%)
Average 80.2 5731.6 41.4% 28.3%

Table 5.1: Applications developed using CSF

Application Name Number of
classes

Number of
LOC

Number of
FICs

Number of
LOC in FICs

Hook Master 112 10520 9 (8%) 611 (5.8%)
Java Master 66 3846 4(6.1%) 251 (6.5%)
Chatting system 55 7464 21 (38.2%) 2639 (35.4%)
Course management system 44 3191 7 (15.9%) 425 (13.3%)
StoneClash Strategy Game 106 5324 23 (21.7%) 2117 (39.8%)
Army Game 149 8792 15 (10.1%) 1797 (20.4%)
Tiler shop system 39 3114 4 (10.3%) 159 (5.1%)
Photo-service system 76 8831 10(13.2%) 493 (5.6%)
Casino system 41 8859 2 (4.9%) 69 (0.8%)
Pizza shop system 59 4516 12 (20.3%) 182 (4%)
Average 74.7 6445.7 14.9% 13.7%

Table 5.2: Applications developed using the Swing framework

Application Name Number of
classes

Number of
LOC

Number of
FICs

Number of
LOC in FICs

Fast food shop system 18 i 161 13 (72.2%) 890 (76.7%)
Tiler shop system 39 3114 28 (71.8%) 2174 (69.8%)
Photo-service system 76 8831 41 (53.9%) 6659 (75.4%)
Casino system 41 8859 25 (60.1%) 5042 (56.9%)
Golf club system 50 5041 45 (90%) 4821 (95.6%)
Pizza shop system 59 4516 37 (62.7%) 3534 (78.3%)
Average 47.2 5253.7 68.5% 75.5%

Table 5.3: Applications developed using the SalesPoint framework

86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.1.4. Using multiple frameworks

When multiple frameworks are used to build an application, the number of FICs Is

equal to the summation of the number of FICs created using the hooks of each of the

frameworks. In our case study, eight applications use two frameworks. Table 5.4 shows

the application names, used frameworks, the total number of FICs, and their total LOC.

The last row of the table calculates the average of the total number of FICs by summing

the percentages of the corresponding columns in tables 5.1, 5.2, and 5.3 and dividing the

result by the total number of summed percentages. The same calculation method is

applied for the total number of LOC of the .FICs in the last row of the table.

Table 5.4 shows, not surprisingly, that the average of the total number of FICs

counted by considering all the frameworks used in the applications is much higher than

the average obtained by considering only one of the used frameworks for each

application. A similar result is found for the total number of LOC in the FICs. This means

that if an application uses multiple frameworks, considering the reusable test cases of all

of the used frameworks in an application can reduce the class testing time more, on

average, than considering the reusable test cases of one framework only.

Application Used frameworks Total number
of FICs

Total number of
LOC in FICs

Chatting system Swing & CSF 24 (43.6%) 2818 (37.8%)
Course management
system

Swing & CSF 24 (54.5%) 1092 (34.2%)

StoneClash Strategy
Game

Swing & CSF 79 (74.5%) 4167 (78.3%)

Army Game Swing & CSF 81 (54.4%) 5246 (59.7%)
Tiler shop system Swing and SalesPoint 32 (82.1%) 2333 (74.9%)
Photo-service system Swing and SalesPoint 51 (67.7%) 7152 (81%)
Casino system Swing and SalesPoint 27 (65.9%) 5111 (57.7%)
Pizza shop system Swing and SalesPoint 49 (83.1%) 3716 (82.3%)
Average 64.6% 63.2%
Average using one
framework

32.8% 31.7%

Table 5.4: Framework applications that use multiple frameworks

87

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.1.5. Conclusions

The case study examined the reusability of the FICs in several framework

applications. The case study showed that a high percentage of the classes of applications

developed using domain frameworks are FICs, while the percentage of the FICs in

applications developed using application frameworks varies largely according to the

specification domains of the framework and the applications. The results support the

hypothesis that the reusability of the FICs in the applications developed using domain

frameworks is likely to be greater than the reusability of the FICs in the applications

developed using application frameworks. At the framework development stage, reusable

test cases can be generated for the FICs to be used at the application development stage.

As the percentage of the FICs increases in the application, the part of the application

tested using the reusable test cases increases and the amount of testing work required at

the application development stage reduces.

Typically, building reusable test cases is a costly task. The case study results indicate

that it is worthwhile to build reusable test cases for applications developed using domain

frameworks as the original investment will be recouped after producing a few number of

framework applications. However, it might not be worthwhile to build reusable test cases

for some application frameworks because of the relatively low percentage of the FICs in

the applications developed using the frameworks. Finally, in cases involving multiple

frameworks, the case study results show that considering the reusable test cases provided

with all the frameworks used in an application can save more testing time than using the

reusable test cases provided with one framework.

Application developers can add new specifications to the FICs at the application

development stage. These specifications are not covered by the reusable test cases built at

the framework development stage. This means that the reusable test cases can cover part

of the implemented FICs but not all. In the next two case studies, we study the percentage

of the specifications, in terms of the number of transitions in the state model, of the

implemented FICs covered by the reusable test cases.

88

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.2. Case Study 2: Testing CSF Applications
This section evaluates the proposed test case generation and use techniques in terms

of practicality and reusability of test cases using five CSF applications. First, it discusses

a concrete example from one of the CSF applications. The example shows how the

proposed test case generation technique can be used to generate reusable test cases for

FICs of the CSF applications and shows how to use the test cases to test an implemented

FTC. In addition, the case study considers five CSF applications and measures the

percentage of the tested specifications of the implemented FICs using the reusable test

cases. The tested specifications are measured in terms of the number of covered

transitions in the state-transition testing model that specifies the FIC behavior. The results

show that, on average, a relatively high percentage of the testing model transitions of the

implemented FICs in the CSF applications are covered using the reusable test cases

determined at the CSF development stage, which therefore reduces the testing time

considerably for these applications. The introduced techniques in this thesis are applied

for the CSF and its applications manually, which takes considerable time. However, the

tool introduced in Chapter 6 can automate a large portion of the testing process, which

reduces the time required for applying the techniques.

5.2.1. Generating reusable test drivers for CSF

The CSF hooks describe the behavior of ten FICs and show how they can be

implemented or customized. However, the set of available hook descriptions does not

describe how to use all the methods of the extended framework classes, which forced us

to read the Javadoc document of the extended framework classes and even to go through

the framework code and communicate with the framework developer to write the

preconditions and postconditions of the FIC methods inherited from the framework

classes and not specified in the CSF hook descriptions. Specifically, the set of available

hook descriptions define 6 6 methods for the ten FICs out of 122. After that, we have

followed the rules explained in Section 3.2 to synthesize manually the testing models for

the ten FICs. The synthesized models consist of a total of 94 states and 2261 transitions.

Finally, we have determined the paths required to build the test cases using the all paths-

state technique. The actual test cases were not built because they are not required to

89

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

derive the required results and because it takes a considerable time, in the absence of a

supporting tool, to build test cases for the complex CSF FICs using the all paths-state

technique.

The most complex FIC example in the CSF is called NewCAO. The NewCAO FIC is a

class defined in the CSF hooks to extend the CommAwareObject CSF class. The

CommAwareObject framework class is used to create objects that can communicate

across the network. It consists of seven public methods that operate on a private instance

variable. The CSF hooks, which define the NewCAO class, also define 24 extra methods

that operate on three additional private instance variables. Moreover, the hooks specify

the name of the FIC (i.e., NewCAO), the names of the instance variables, the names of the

methods, the method parameters, and the method specifications. The class state-based

testing model synthesis technique was applied to build the class-testing model for the

CommAwareObject class using the hook descriptions [CSF], as described in Section 3.2.

The model consists of 50 states including alpha and omega states and 1820 transitions

[NewCAO Model].

Figure 5.1 shows a test driver example generated using the all paths-state technique.

The test driver checks whether the mail server of the NewCAO can be set as proposed by

the framework hooks. The name of the test driver class TEST16_NewCAO consists of (1)

the keyword TEST to indicate that the class is implemented for testing purposes, (2) the

test driver identifier within the test suite of the NewCAO FIC, and (3) the name of the FIC

for which the test driver is generated. The test driver class contains only a constructor

method NewCAO() in which a state-transition model path consists of two transitions is

traversed. In Line 3 of the test driver, the event associated with the first transition is

implemented and, in Line 4, the state-invariants of the resulting state are checked. In Line

5, the parameter of the event associated with the second transition is set and, in Line 6,

the event is implemented. Finally, in lines 7 and 8, the action associated with the second

transition and the state-invariants of the resulting state are checked.

90

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.2.2. Testing CSF applications

In this case study, five CSF applications developed by fourth-year undergraduate

students at the University of Alberta were randomly selected out of a pool of 15

applications. In an application called Chatting System, the application developer

implemented a NewCAO FIC. The implemented class is named MTA. This section shows

the implementation and testing steps of the MTA class.

1 public class TEST16_NewCAO{
2 public TEST16_NewCAO{){
3 NewCAO o = new NewCAO();
4 /** ©assert((o.getlnbox()==null)&& (o .getOutbox==nul1)&&

(o.getMailServer()==null)&& ...) */
5 Address add=new Address (" server11, 3 029 , 11 inbx") ;
6 o.setMailServer(add)?
7 /** ©assert(o.getMailServer().getAddress().equals(add)) */
8 /** ©assert((o.getlnbox()==null)&& (o.getOutbox==null}&&

(o.getMailServer()!=null)&& ...) */
8 }
9 }

Figure 5.1: Sample test driver generated for the NewCAO FIC.

• Implementing the MTA class

As shown in Table 5.5, in MTA class, the application developer renamed some of the

methods introduced by the hooks, removed some parameters of some methods, and

reused the name of some methods as-is. The application developer did not use the rest of

the methods defined in the CSF hooks in the MTA class implementation and, therefore,

these methods are not included in Table 5.5. MTA class extends the CommAwareObject

class and inherits its methods. The application developer customized some of the MTA

methods built using the hooks and added two instance variables and seven methods to the

MTA class. Figure 5.2 provides a partial listing of the code of the MTA class (i.e., the

contents of the method blocks are not listed because of space limitations).

• Testing the MTA class

To use the test cases built at the CSF development stage in testing the MTA class, the

contents of Table 5.5, the implemented MTA class, and the state-transition model created

at the framework development stage for the NewCAO “virtual” class have to be provided.

The contents of Table 5.5 are used to determine the reused transitions. We have removed

91

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the transitions corresponding to the ignored specifications from the state-transition mode!

of the NewCAO class. This results in six states and 57 transitions as shown in Table 5.6.

For the transitions, the table shows only the events associated with the transitions. The

predicates and actions associated with the transitions are not shown because of space

limitations. Each cell in the table lists the events associated with the transitions that have

the row source state and the column destination state. For example, the cell in the third

row and third column shows the events associated with the twelve transitions from state

s2 to the same state. Five of the transitions, indicated with asterisks, model illegal

behaviors. The other seven transitions model legal behaviors. As shown in the first

column of Table 5.5, there are two send methods that have different signatures defined in

the CSF hooks. Each of them throws an exception (i.e., illegal behavior). Therefore, there

are four transitions associated with the two send(...) events (i.e. one for each signature),

from state s2 to the same state: two model legal behaviors and the other two model illegal

behaviors.

Method declaration is CSF hooks Method declaration in MTA class
NewCAOO MTA()
getAddress() getAddress()
setOutbox(Address) setDefaultAddress(Address)
shutdown() shutdown()
send(Address,Address, String, Data) sendMessage(Address, Data)

sendMessage(Data)
sendSyncMessage(Address, Data)
sendSyncMessage(Data)

send(Vector, Address, String, Data) sendMessage(Vector, Address, String, Data)

Table 5.5: Methods defined in CSF hooks and used in MTA class

All test case identifiers associated with the removed transitions were removed from

the set of test case identifiers associated with the remaining transitions. The set of the test

case identifiers associated with the remaining transitions is the set of the reusable test

cases. All other test cases are not applicable for testing the MTA class.

The preconditions and postconditions of the added methods extracted from the MTA

class Java file were used to determine the states and transitions to be added to the

provided state-transition table. For our example, four transitions were added as self loop

92

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

transitions to each of the states s i, s2, s3, and s4 extracted for the NewCAO FIC. The

events associated with the transitions are shown in the first four columns of Table 5.7.

Moreover, it was found, using the model synthesis technique discussed in Section 3.2,

that the states s i, s2, s3, and s4 included in the provided model have to be partitioned

each into four states, which created sixteen more substates. For the added states, 72

transitions were added to model the added specifications as shown in Table 5.7. For each

of the superstates, the substates and transitions associated with them form a sub-state

transition model. The sub-state transition models for the four superstates are identical.

The table entries in the last four rows and last four columns of Table 5.7 show the sub­

state transition model of any of the superstates. In the table, s(l-4).l denotes the first

substate of any of the four superstates.

public class MTA extends CommAwareObject
{

//instance variables and methods implemented using the framework hooks
protected MailServer m_mai1Server;
protected Inbox m_inBox;
protected Outbox m_outBox;
protected SyncSend m_sync;
protected Address m_defaultRecipient;
public MTA {) { ... }
public Address getAddressO { ... }
public Address getDefaultAddress() { ... }
public void shutDown() { ... }
public void setDefaultRecipient (Address addr) { ... }
public void sendMessage(Address addr, Data msg) throws MTAException { ... }
public void sendMessage (Data msg) throws MTAException { ... }
public void sendMessage (Vector recipient, Data msg) throws MTAException {...}
public void sendSyncMessage (Address addr. Data msg) throws MTAException {...}
public void sendSyncMessage (Data msg) throws MTAException { ... }

// new instance variables and methods added by the application developer
protected Dispatcher m_dispatcher;
protected Vector m_monitors;
static public MTA getMTAO { ... }
public void registerHandler (ILocusHandler h) { ... }
public void unregisterHandler (ILocusHandler h) { ... }
public void registerMonitor (ILocusMonitor m) { ... }
public void unregisterMonitor (ILocusMonitor m) { ... }
public void notifyHandlers (Address from, LocusMsg msg) { ... }
public void sendFailed (SendException ex) { ... }

}

Figure 5.2: The MTA partial code

93

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

STATE alpha si s2 s3 s4 omega
alpha MTAQ* MTA()

si

setOutboxf...)*,se
nd(...)*,send(...)*,
handleMessage(...
)*,messageNotify(
...)*,shutdown!)*,
getAddress()*,mes
sageNotify(.. .),fm
alize(),handleMess
age(...),registerHa
ndler(...)

setOutbox()

dtar

s2

shutdown!) setOutboxf...)*,se
nd(...)*,send(...)*,
handleMessage(...
)*,messageNotify(
.. .)*,getAddressf),
send(...),send(...),
messageNotify(.. .)
,finalize!),handleM
essage(.. .),register
Handler!...)

setOutbox()

dtar

s3

setOutbox(...)*,se
nd(...)*,send(...)*,
handleMessagef...
)*,messageNotify(
...)*,shutdown!)*,
get Address!) *,mes
sageNotify(.. .),fin
alize(),handleMess
age(...),registerHa
ndler(...) dtar

s4

shutdown!) setOutbox(...)*,s
etOutbox(...),se
nd(...)*,send(...)
*,handleMessage
(...)*,messageN
otify (...)*, get Ad
dress() ,send(...),
send(...),messag
eNotify!-..),final
ize!),handleMess
age(...),register
Handler!-..) dtar

omega

Table 5.6: The state-transition table of the MTA excluding the added states and

transitions (* Transition that models an illegal behavior)

94

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

STATE s i s2 s3 s4 s(l-4).l s(l-4).2 s(l-4).3 s(l-4).4

si

register
Handler
(...),get
MTA(),
sendFai
led(...),
notifyH
andlers(

s2

registerHa
ndler(...),
getMTA()
,sendFaile
d(...),noti
fyHandler
s(...)

s3

registerHa
ndler(...),
getMTAQ
,sendFaile
d(...),noti
fyHandler
s(...)

s4

registerHa
ndler(...),
getMTA()
.sendFaile
d(...),noti
fyHandler
s(...)

s(l-4).l

unregisterH
andler(..)*,u
nregisterMo
nitor (...)*

registerHan
dler(...)

registerMon
itor(...)

s(l-4).2

UnregisterH
andler (...)

registerHan
dler(...),unr
egisterHandi
er(...)

registerMon
itor(...)

s(l-4).3

UnregisterM
onitor (...)

registerMon
itor(...),
UnregisterM
onitor(...)

RegisterHan
dler(...)

s(l-4).4

UnregisterM
onitor (...)

unregisterH
andler(...)

registerHan
dler(...),unr
egisterHandi
er(...),regist
erMonitor(
.. .),unregist
erMonitor(
...)

Table 5.7: The transitions that model the MTA class added specifications

(* Transition that models an illegal behavior)

95

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

To reuse the test cases built at the framework development stage, the mapping class

NewCAO shown in Figure 5.3 is developed using Table 5.5. This class inherits the

implemented class (i.e., MTA class) and maps the methods introduced by the CSF hooks

to the ones used in the MTA class. As an example, when the application developer

implemented the MTA class, the setOutbox method is renamed setDefaultRecipient.

Therefore, when test drivers call the setOutbox method, the setDef aultRecipient method

of MTA should be called. As shown is Figure 5.3, this is coded as:

public void setOutbox(Address Add) { super. setDefaultRecipient(Add); }

public class NewCAO extends MTA {
public NewCAO() {

super();
>
public void send(Address toAddr,Address retAddr,String tp,Data aData){

switch ((new DRIVER_MTA).getSwitchKey()) {
case 1:super.sendMessage(toAddr» aData);

break;
case 2:super.sendMessage(aData);

break;
case 3:super.sendSyncMessage(toAddr, aData),-

break,-
case 4:super.sendSyncMessage(aData);

break;
}

}
public void send(Vector v, Address retAddr, String tp, Data aData) {

super.sendMessage(v, retAddr,tp,aData);
}
public void setOutbox(Address Add) {

super.setDefaultRecipient(Add);
}
public Address getAddress() {

return super.getAddress();
}
public void shutDown() {

super.shutDown();
}

}

Figure 53: NewCAO mapping class

When the MTA class was implemented, some of the parameters introduced for the

send method were ignored. Therefore, in Figure 5.3, the implemented version of the send

method renamed sendMessage in the MTA class includes:

public void send(Address toAddr,Address retAddr, String tp, Data aData) {

96

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

case 1: super.sendMessage(toAddr, aData);

}

In the MTA class, the send(Address toAddr,Address retAddr, String tp, Data aData)

method introduced in the CSF hooks has four different implementations. To test the four

implementations using the reusable test cases, the following code is included in the

NewCAO class as shown in Figure 5.3:

public void send(Address toAddr,Address retAddr, String tp, Data aData) {

switch ((new DRIVER_MTA).getSwitchKey()) {

case 1:super.sendMessage(toAddr, aData); break;

case 2:super.sendMessage(aData); break;

case 3:super.sendSyncMessage(toAddr, aData); break;

case 4:super.sendSyncMessage(aData); break;

}

}

Finally, a driver class for the test drivers was implemented. The driver invokes the

constructor methods of the test drivers. Part of the driver class for the MTA test drivers is

shown in Figure 5.4. In our example, the NewCAO class uses the switchKey global

variable to determine which implementation to be exercised by the test drivers in case of

calling the send method. For example, the test drivers that exercise the send method are

invoked four times in the driver class as shown in Figure 5.4.

To perform the actual testing, the MTA class and the test drivers can be compiled

using the Jcontract [Icontract] compiler, which translates the DbC Javadoc comments

used to check the resulting actions and state-invariants into bytecode. The NewCAO and

DRIVER_MTA classes can be compiled using regular Java compiler. Finally, the

DRIVER__MTA class can be executed and the results of the code generated from the DbC

Javadoc comments can be checked at run time using the Jcontract tool, which reports the

testing results.

97

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

public class DRIVER_MTA{
private static int switchKey=l;
public int getSwitchkey{} {

return switchKey; }
public static void main(String args[]){

/* invoke all the applicable test drivers while the switchKey
value is set to 1 */

/* set switchKey value to 2 and invoke the test drivers that invoke
the send method */

switchKey=2
new TEST17_NewCA0();

/* set switchKey value to 3 and invoke the test drivers that invoke
the send method */

switchKey=3;
new TEST17_NewCAO();

/* set switchKey value to 4 and invoke the test drivers that invoke
the send method */

switchKey=4;
new TEST17_NewCA0();

>
}

Figure 5.4: Part of the DRIVER_MTA class

5.2.3. Transition coverage results

The analysis applied for the MTA class was also applied for all implemented FICs in

the five randomly selected applications of CSF. Table 5.8 shows the transition coverage

results when the proposed techniques were applied for testing the implemented FICs in

the CSF applications. The second column of the table provides the total number of classes

implemented at the application development stage and does not include the number of

used framework classes. The third column provides the number of implemented FICs in

the applications. The implemented FICs are part of the classes implemented at the

application development stage. The fourth column gives the total number of transitions in

the state-transition model of the implemented FICs in the applications. The fifth column

provides the total number of implemented FIC transitions covered by the reusable test

cases as-is (i.e., with no augmentation).

Table 5.8 shows that, on average, a considerable part of the implemented application

classes in the considered CSF applications (41.4%) is composed of FICs, which makes it

worthwhile to build reusable test cases at the framework development stage. Moreover,

98

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the table shows that, on average, a high percentage (76.9%) of the transitions in the state-

transition models of the FICs are covered using the reusable test cases without modifying

them. The coverage of the rest of the transitions requires augmenting some of the

reusable test cases. None of the transitions requires building test cases from scratch.

Application Number
of classes

Number of
FICs

Number of
transitions in

FICs

Number of FIC
transitions covered by

the test cases as-is
Student
management
system

47 31 (66%) 413 369 (89.3%)

Chatting
system

55 3 (5.5%) 113 6 8 (60.2%)

Course
management
system

44 17 (38.6%) 456 322 (70.6%)

StoneClash
Strategy
Game

106 56 (52.8%) 761 582 (76.5%)

Army Game 149 6 6 (44.3%) 1171 899 (76.8%)
Average 80.2 41.4% 583 76.9%

Table 5.8: The results of using the CSF reusable test cases for testing CSF applications

5.2.4. Conclusions

In this case study, a concrete example that applies the proposed techniques for the

generation and use of the reusable test cases on one of the implemented FICs in a CSF

application is illustrated. In addition, we have studied the coverage of the transitions in

the specification models of the implemented FICs in five CSF applications using the

reusable test cases. The results of the case study showed that, on average, 76.9% of the

transitions in the specification models of the implemented FICs in the considered CSF

applications are covered by the reusable test cases determined and used by the techniques

introduced in this thesis.

5.3. Case Study 3: Testing SalesPoint Framework Applications
This section provides one more case study that shows how to deploy the proposed test

case generation and use techniques in the context of the applications developed using the

99

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

SalesPoint framework. In addition, we evaluated the techniques proposed in this thesis

using the analysis method applied in Section 5.2 for the CSF application. Six applications

developed using the SalesPoint framework are considered.

5.3.1, Generating reusable test drivers for SalesPoint framework

First, we studied the six SalesPoint applications to find the FICs used in their

development. We found that only twenty out of the 78 FICs introduced by the framework

hooks were used in the considered framework applications. We followed the rules

explained in Section 3.2 to synthesize the testing models for the twenty FICs. The

synthesized models consist of a total of 70 states and 1552 transitions.

NewShop FIC is a class defined in the SalesPoint framework hooks to extend the

Shop SalesPoint framework class and it has to be implemented in each framework

application. The Shop class is responsible for central management tasks and for

persistence. It consists of 44 public methods that operate on 21 instance variables.

SalesPoint framework hooks, which define the NewShop class, describe how to use 12 of

the Shop class methods, which forced us to determine the specifications of the other

inherited methods using the framework documents. We have applied the class state-based

testing model synthesis technique to build the class-testing model for the NewShop class

using the specifications of the NewShop methods provided in the hook descriptions

[SalesPoint] and other framework documents for missed hooks. The synthesized model

consists of 5 states including alpha and omega states and 159 transitions as shown in

Table 5.9.

5.3.2. Testing SalesPoint framework applications

In this case study, six SalesPoint framework applications [SalesPoint applications]

developed by second year undergraduate students were randomly selected out of a pool of

22 applications. The following example shows how to use the reusable test cases to test

an implementation for the NewShop FIC in the FastFood System application.

100

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

STATE alpha Dead Running Suspended omega
alpha NewShopO

Dead

getCurrentUsers(),addActiveCustom
er(...),remove Ac tiveCustomer(...),on
CustomerQueued!.. .),onCustomerUn
Queued(. ..),onCustomerLoggedOn(..
.),onCustomerLoggedOff(...),addSale
sPoint(...),removeSaIesPoint(...),getS
alesPoints(),setCurrentSalesPoint(...)
,setCurrentSalesPoint(...),setCurrent
SalesPointIsAdjusting(),resetCurrent
SalesPointIsAdjusting(),isCurrentSal
esPoint Adj usting() ,getCurrentSaiesP
oint() ,getShopState() ,makePersistent
0,makePersistent()*,makePersistent(
)*,restore!),restore!)*,restore!)*,resto
re()*,setObjectPersistent(...),setObje
ctTransient(...),getPersistentObject(..
.),getPersistentObjects(),setShopFra
meT itle(...), setStatusFrameT itle(...),s
etStatusFrameVisible(...),isStatusFra
meVisible)), getT imer(),setTimer(...),
log(...),log(...)*,addStock(...),addStoc
k(...)*,removeStock(...),getStock(...),
addCatalog(...),addCatalog(...)*,remo
ve€atalog(...),getCatalog(...),getThe
Shop(),setTheShop(...),suspend()*,re
sume()*shutdown()*,start()

runProcess(...) .runBackground
Process!-..)

quit!)

Running

shutdown!-..) getCurrentUsers(),addActiveC
ustomer(.. .),remove Acti veCus
tomer(.. ,),onCustomerQueued
(...) ,onCustomerUnQueued(...)
,onCustomerLoggedOn(.. .),on
CustomerLoggedOff(...),addS
alesPoint!.. .),removeSalesPoin
t(...) ,getSalesPoints() ,setCurre
ntSalesPoint(...),setCurrentSaI
esPoint!-..),setCurrentSalesPoi
ntIsAdjustmg(),resetCurrentSa
lesPointIsAdjusting(),isCurren
tSalesPointAdjusting!),getCur
rentSalesPoint(),getShopState!
),makePersistent(),makePersis
tent()*,makePersistent()*,rest
ore(),restore!)*,restore!) *,rest
ore()*,setObjectPersistent!...),
set Obj ec tTransi ent(...), getPers
istentObject(.. .),getPersistent
Objects!), setShopFrameTitlef.
..),setStatusFrameTitle(...),set
StatusFrameVisible(...),

suspend!)

Table 5,9 (Part 1): The NewShop FIC state-transition table
(* Transition that models an illegal behavior)

101

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

STATE alpha Dead Running Suspended omega
isStatusFrameVisibleQ.getTimer
(),setTimer(...),log(...),log(...)*,a
ddStock(...),addStock(...)*,remo
veStock(...),getStock(...),addCat
alog(.. .),addCatalog(...)* .remove
Catalog(...),getCatalog(...),getTh
eShop(),setTheShop(.. .),nmProc
ess(...)*,runBackgroundProcess(
...)*,resume()*,startO*,quit()*,sh
utdown()*

Suspended

resumeQ get€urrentUsers(),addActiveCustom
er(...) .remove Acti veCustomer(...),on
CustomerQueued(...) .onCustomerUn
Queued(...),onCustomerLoggedOn(..
.),onCustomerLoggedOff(...),addSale
sPoint(...),removeSalesPoint(...),getS
alesPointsO, setCurrentSalesPoint(...)
,setCurrentSalesPoint(...),setCurrent
S alesPointls Adj usting() .resetCurrent
SalesPointlsAdj usting() .isCurrentSal
esPoint Adj ustingO .getCurrentSalesP
oint(),getShopState(),makePersistent
(),makePersistent()*,makePersistent(
)*,restore(),restore()*,restore()*,resto
re()*,setObjectPersistent(...) .setObj e
ctTransient(...),getPersistentObject(..
.),getPersistentObjects(),setShopFra
meTitle(...),setStatusFrameTitle(.. .),s
etStatusFrameVisibie(...),isStatusFra
meVisible(),getTimer(),setTimer(...),
log(...) ,log(.. ,)*,addStock(...) .addStoc
k(...)*,removeStock(...),getStock(...),
addCatalog(...) ,addCatalog(.. .)*,remo
veCatalog(...),getCatalog(...),getThe
Shop(),setTheShop(...),runProcess(...
)*,runBackgroundProcess(...)*,suspe
nd()*»start()*,quit()*,shutdown()*

omega

Table 5.9 (Part 2): The NewShop FIC state-transition table

(* Transition that models an illegal behavior)

102

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• Implementing the FastFood class

The application developer of the FastFood System application created an

implementation for the NewShop FIC and named it the FastFood class. As shown in

Figure 5.5, the class consists of three methods defined in the SalesPoint framework

hooks. Table 5.10 shows the mapping between the names of the implemented methods in

the FastFood class and the names of the methods introduced by the hooks. The state-

transition model of the FastFood class has the same states and transitions as the NewShop

FIC.

public class FastFood extends Shop {
public FastFood() { ... }
public MenuSheet createShopMenuSheet () { ... }
public void quit () { ... }

}

Figure 5.5: The FastFood class partial code

Method declaration in
SalesPoint framework hooks

Method declaration in the
FastFood class

NewShopO FastFood()
createShopMenuSheet() createS hopMenuSfaeetQ
quit() quit()

Table 5.10: The method-name-mapping table for the FastFood class

• Testing the FastFood class

To test the FastFood class, the contents of the method-name-mapping table given in

Table 5.10, the implemented FastFood class given partially in Figure 5.5, and the state-

transition model created at the framework development stage for the NewShop “virtual”

class shown in Table 5.9 are provided. The framework hooks do not introduce any new

methods for the NewShop FIC but the hooks show how to use some of the inherited

methods of the Shop framework class. Therefore, the FastFood class inherits all the

methods that determine the NewShop FIC (i.e., the FastFood class has the same states

and transitions shown in Table 5.9 except for the transition associated with the invocation

of the constructor method). All the reusable test cases for the NewShop FIC are applicable

for testing the FastFood class. All that is needed to use the test cases is a driver class to

103

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

invoke them and the mapping class shown in Figure 5.6 to map the names of the methods

used in the FastFood class to the ones used in the NewShop class and the test drivers.

public class NewShop extends FastFood {
public NewShop() {

super();
}
public MenuSheet createShopMenuSheet() {

return super.createShopMenuSheet{>;
}
public void quit() {

super.quit();
}

}

Figure 5.6: NewShop mapping class

53.3. Transition coverage results

A similar table to the one shown in Table 5.8 is drawn for the six applications

developed using the SalesPoint framework and considered in this case study. The

resulting table is shown in Table 5.11.

Application Number
of classes

Number of
FICs

Number of
transitions in

FICs

Number of FIC
transitions covered by
the test drivers as-is

FastFood
shop system

18 13 (72.2%) 1147 1135 (99%)

Tiler shop
system

39 28 (71.8%) 2605 2434 (93.4%)

Photo-service
■ system

76 41 (53.9%) 3465 3303 (95.3%)

Casino system 41 25 (60.1%) 3537 3337 (94.3%)
Golf club
system

50 45 (90%) 3994 3910 (97.9%)

Pizza shop
system

59 37 (62.7%) 3408 3264 (95.8%)

Average 47.2 68.5% 3026 96%

Table 5.11: The results of using the SalesPoint framework reusable test cases for

testing the SalesPoint framework applications

Table 5.11 shows that, on average, a considerable portion of the implemented

application classes (68.5%) is composed of FICs, which makes it worthwhile to build

reusable test cases at the framework development stage. Moreover, the table shows that,

104

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

on average, a very high percentage (96%) of the transitions in the state-transition models

of the FICs are covered using the reusable test cases without modifying them. The

coverage of the rest of the transitions (average of 4%) requires augmenting some of the

reusable test cases. None of the transitions requires building test cases from scratch.

5.3.4. Conclusions

In this case study, a concrete example that applies the proposed techniques for the

generation and use of the reusable test cases on one of the implemented FICs in a

SalesPoint framework application Is illustrated. In addition, we have studied the coverage

of the transitions in the specification models of the implemented FICs in six SalesPoint

framework applications using the reusable test cases. The results of the case study

showed that, on average, 96% of the transitions in the specification models of the

implemented FICs in the considered SalesPoint framework applications are covered by

the reusable test cases determined and used by the techniques introduced in this thesis.

On average, the percentage of the specifications of the FICs, in terms of the number

of transitions in the state-transition models, covered using the reusable test cases without

modifying them is greater in the SalesPoint framework applications than in the CSF

applications. Given the relative numbers, we believe that this is because the amount of

functionality already defined for the FICs of the SalesPoint framework by a combination

of the inherited framework classes and the hooks is larger than the amount of

functionality defined for the CSF FICs. One way to measure the amount of functionality

is by calculating the number of methods per FIC. For the FICs of the SalesPoint

framework considered in the case study, the total number of methods defined for the

twenty FICs is 570 (i.e., an average of 28.5 methods/FIC), while the total number of

methods defined for the ten FICs defined in the CSF hooks is 122 (i.e., an average of 12.2

methods/FIC). This gives an indication that, in general, as the amount of functionality of

the FICs defined in the Inherited framework classes or by the hooks increases, the amount

of functionality added by the application developer to the FICs decreases. Consequently,

as the amount of functionality of the FICs defined in the inherited framework class or by

105

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the hooks increases, the portion of the FICs tested by the reusable test cases as-is at the

application development stage increases.

5.4. Case Study 4; A ll Paths-State Coverage
In the fourth case study, we evaluate experimentally the all paths-state technique in

comparison to the round-trip path and the all-transitions techniques. The comparison is

performed in terms of the number of transitions covered in the updated state model after

deleting transitions. Two WaveFront Pattern frameworks derived using CO2P3S parallel

programming system [McDonaId+ 97] are considered in this study. The hooks of each

framework identify two FICs and their specifications. One of the FICs is very simple

(i.e., trivial) and, therefore, it is not considered in this study. The characteristics of the

statechart of the other one, for each framework, are shown in the first row of Table 5.12.

FIC of Framework 1 FIC of Framework 2
Statechart
No. of states 7 7
No. of transitions 37 35

Round-trip path tree
No. of nodes 38 36
No. of edges 37 35
No. of test cases 33 33

All transitions
No. of test cases 37 35

All paths-state tree
No. of nodes 116 151
No. of edges 115 150
No. of test cases 95 124

Table 5.12: High level descriptions of the used graphs

5.4.1. Case study settings and results

The case study considered three test case coverage techniques: round-trip path, all

transitions, and all paths-state. The trees corresponding to the round-trip path technique

and all paths-state technique are constructed from the statechart of the considered FICs.

For each of the two considered statecharts, there are four possible different round-trip

106

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

path trees that can be constructed from them using the round-trip path tree production

procedure [Binder 99], However, they all have the same number of states, nodes, and

number of generated test cases and these numbers are shown in Table 5.12. The all­

transitions technique generates a test case for each outgoing transition from a state in the

statechart. Since some states can be reached using different paths, we have to select one

path and write the corresponding test case. In our study, we followed the algorithm

provided in [Offut+ 99] to find a path to a state. If there is more than one path to a state,

the algorithm picks one of the paths. The selection of the path affects greatly the results

of the case study. Therefore, in our analysis we considered each path alone, obtained the

required results, and computed the average over all of the considered paths. For the

transitions of the FIC in the first and second framework, 136 and 140 paths were

considered, respectively. Finally, there is only one possible all paths-state tree for each

statechart and its characteristics are shown in the last row of Table 5.12.

The study considered an application for each framework. The applications were not

built for the purpose of the study. Statecharts were drawn for the implemented FICs in the

applications. The names of the implemented FICs in the first and second applications are

SkylineMatrixInterface and MatrixBlock, respectively. For each of the two implemented

FICs, three transitions of the original statecharts were removed because they are not

required in modeling the specifications of the implemented FICs. This results in having

34 and 32 reused transitions in the statecharts that specify the behaviors of the

SkylineMatrixInterface and MatrixBlock objects, respectively. The effect of the removed

transitions on the baseline test cases was analyzed for each of the three testing techniques.

In the analysis, all broken baseline test cases were discarded. Finally, we counted the

number of statechart transitions of the SkylineMatrixInterface and MatrixBlock objects

that are still covered using the non-broken test cases. Since there are four different

possible round-trip path trees for each of the statecharts, we have considered each round-

trip path tree alone and, then, we have computed the average number of transitions

covered by the non-broken test cases. We did the same analysis for the all-transitions test

cases, because there are different possible paths to each state.

107

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 5.7 shows the average number of the transitions of the implemented FICs

covered by the non-broken test cases when each of the three techniques is used to

produce test cases for SkylineMatrixInterface and MatrixBlock classes. For example, the

all paths-state coverage technique was used to generate test cases for the considered FIC

of Framework I. Table 5.12 shows that 95 test cases were required. The implementation

of the FIC, i.e., SkylineMatrixInterface class, reused 34 out of 37 transitions introduced

by the hooks. The test cases that cover the non-reused transitions (i.e., the transitions not

required in modeling the specifications of the implemented FICs) were discarded because

they cannot be used as-is. Figure 5.7 shows that the remaining test cases were able to

cover 34 reused transitions (i.e., all the reused transitions).

The results showed that the all paths-state technique produces test cases that are more

effective than the ones produced using the all-transitions and round-trip path techniques

in covering the reused transitions in the specification models of the implemented FICs.

34 32

-acu

o
B
te.£3
E
3

30

25

20 -

15 -

10 -

5 -

0

20
15.5

10 93

q Sky lineM atrix

□ MatrixBlock

All paths- All- Round-trip

state transitions path

Figure 5.7: Coverage comparison results

5.4.2. Conclusions

The main conclusion of this final case study is that the all paths-state technique

produces test cases that cover more transitions in the specification models of the

implemented FICs than the test cases generated using the round-trip path or all-transitions

techniques. In the case study, the test cases built using the all paths-state technique were

able to cover all the reused transitions in the applications. This supports experimentally

108

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Property 3.2 which states that when a transition in the state model is deleted, the non-

broken test cases built using the all paths-state technique cover all remaining transitions

in the state model initiated from the reachable states.

The degree of coverage for the transitions in the specification models of the

implemented FICs achieved using techniques other than the all paths-state technique

depends greatly on the topology of the state-transition model (i.e., the way in which the

model is connected). For example, for a model that has test cases built using the round-

trip path coverage technique, after deleting a transition from the model, all the transitions

of the updated model are guaranteed to be covered by the non-broken test cases if there is

only one path in the model from the alpha state to the destination state of the deleted

transition. Otherwise, the non-broken test cases may not cover all the reused transitions.

Performing the analysis done in this case study for the FICs that have a relatively

large number of states and transitions requires an exhaustive effort. In this case, a large

number of possible round-trip path trees have be constructed to perform the analysis for

the round-trip path technique and a huge number of possible paths to cover the transitions

have to be considered to perform the analysis for the all-transitions technique. Therefore,

although we did not repeat the case study for the FICs of other frameworks, we can

conclude from this case study that as the number of specifications that are ignored (i.e.,

not used) in application development increases, the same or better is the relative

performance of the all paths-state coverage technique.

5.5. Summary
This chapter studied the relationship between the type of the framework and the use

of the FICs in the framework applications. Moreover, it studied the specification size, in

terms of the number of transitions in the state-transition models, of the FICs typically

covered by the reusable test cases at the application development stage. Finally, the all

paths-state technique was compared to other coverage techniques in terms of the

coverage sensitivity of the test cases due to a transition deletion. Fifteen applications

109

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

developed using four frameworks were used in the case studies. The main conclusions

are:

1. In our case studies, the reusability of the FICs in the applications developed using

domain frameworks is greater than the reusability of the FICs in the applications

developed using application frameworks. Specifically, on average, 68.5% of the

classes in the considered applications developed using SalesPoint, a domain-

oriented framework, are FICs, while, on average, 14.9% and 41.4% of the classes

in the considered applications developed using the application-oriented

frameworks Swing and CSF, respectively, are FICs.

2. In the case studies, a high percentage (i.e., an average of 76.9% for CSF

applications and 96% for SalesPoint applications) of the transitions in the state-

transition models of the implemented FICs are tested using reusable test cases

built without modifications at the framework development stage. Therefore, a

considerable class-testing cost is saved at the application development stage when

the reusable test cases generated at the framework development stage are used.

3. In the case studies, the all paths-state technique produces test cases that cover

number of transitions in the specification models of the implemented FICs the

same as or more than the number of transitions covered by the test cases

generated using the round-trip path or all-transitions techniques. The relative

transition coverage of the all paths-state technique remains the same or increases

as the number of specifications that are ignored in application development

increases.

110

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6 Tool Support

6.1. Introduction
Automation is a vital issue in software testing. Typically, many test cases have to be

built and evaluated, which makes manual testing impractical for medium to large sized

software systems. In this thesis, we have seen how FICs introduced by the framework

hooks are the reusable classes for which reusable test cases can be built and applied. This

chapter addresses the automation issues related to the generation and use of the FIC

reusable test cases. For this purpose, a tool called Framework Interface State Transition

Tester (FIST2) is introduced and its prototype is developed. The tool generates reusable

test cases for Java framework FICs at the framework development stage. The tool also

deploys, executes, and evaluates the test cases at the application development stage.

6.2. The FIST2 Tool
FIST2 is a tool that supports testing the implemented FICs at the class-testing level

using reusable test cases. The tool supports the testing at two main stages: (1) framework

development stage and (2) application development stage. At the framework development

stage, the framework developer builds the framework, documents it, and uses the FIST2

tool to generate class state-based reusable test cases for the FICs. At the application

development stage, the application developer builds the application and uses the FIST2

tool to assist in building and testing the implemented FICs. In the following discussion,

all the FIST2 tool components and specifications are implemented in the prototype

version unless otherwise specified. Appendix D shows a complete example that uses the

tool at the framework development stage to generate reusable test cases for the

NewAccount FIC example and then reuses the test cases at the application development

stage to test an implemented version of the FIC.

I l l

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.2.1. Using FISTi at the framework development stage

At the framework development stage, the FIST2 tool supports the construction of the

state-transition models of the FICs and the generation of the reusable test drivers using

the constructed models.

• Tool Inputs

The HST2 tool requires several inputs at the framework development stage as follows:

1. Framework hooks. Framework hooks define the specifications (i.e., preconditions

and postconditions) of the FIC methods introduced by the hooks. These method

specifications are used to synthesize the state-based testing model of the FIC at the

framework development stage. In addition, they are used as test oracles at the

application development stage. In the prototype version of the tool, the method

specifications are not extracted from the hooks automatically because the module

responsible for constructing the state-transition model from the method

specifications is not yet implemented. Instead, the user has to construct the model

manually from the method specifications listed in the hooks using the algorithms

illustrated in Section 3.2. The user is, however, provided with a friendly GUI to

input the model description in a tabular form.

2. Non-event-driven transitions. Non-event-driven transitions cannot be synthesized

automatically using the algorithms illustrated in Section 3.2. The user of the tool

has to determine the source and destination states of the non-event-driven

transitions. The tool automatically produces the predicates of the transitions.

3. Predicate implementation. Recall from Section 3.2, transitions of the FIC

synthesized testing model can be associated with predicates that have to be

satisfied to execute the transitions. The predicates can be as simple as a variable

definition or they can involve defining a large data structure for which it is difficult

to generate code to satisfy the predicate. The user of the tool has to provide the

code required to satisfy the predicates of the transitions at the framework

development stage. Writing the pieces of code that implement complex predicates

112

with permission of the copyright owner. Further reproduction prohibited without permission.

can be a costly task; however, this cost cannot be avoided in any state-based

testing technique. The good news is that the implementation of the predicates is

provided just once at the framework development stage and reused each time an

application is developed at the application development stage. In most situations,

the original investment can be recouped after producing a few framework

applications.

• Tool Outputs

At the framework development stage, the FIST2 tool has several outputs. These

outputs are used later at the application development stage to test the framework

applications. The outputs are as follows.

1 . Class state-based testing model. The FIST2 tool synthesizes the class state-based

testing models of the FICs at the framework development stage. As mentioned

earlier, the prototype version of the tool interacts with the user to specify the

states and transitions of the model in a tabular form. The tool translates the tabular

form of the model into a text using a special purpose language, TSTMD (Testable

State-transition Model Description), described in Appendix C.

2. Model checking report. The FIST2 tool checks that the class state-based testing

model has one entry and one exit state and each state can be reached from the

entry state. It then reports the checking results.

3. FIC test drivers. The FIST2 tool uses the class state-based testing models of the

FICs to generate test drivers using the all paths-state coverage technique. The test

drivers are executed later at the application development stage to test the

implemented FICs in the framework applications.

4. Stubs. The FIST2 tool analyzes the hook descriptions and uses the information

provided in the changes section of the hook description to determine and generate

the stubs. These stubs are required at the application testing stage to isolate the

113

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

FICs. The developed prototype version of the tool does not produce the stubs;

instead, the user of the tool has to provide the stubs.

• Tool Components

Several tool components are used at the framework development stage as follows.

1. FIC state-transition table builder. The FIC state-transition table builder

component uses the method specifications of the FICs to synthesize the state-

transition models. The models are provided to the user in a tabular form to be

updated. As indicated earlier, this component is not implemented in the prototype

version of the tool. Instead, a component that translates the tabular form of the

model into a text using the TSTMD language is implemented.

2. Model checker. The model checker component checks the correctness of the FIC

model. In the developed prototype version of the tool, the model checker

component checks that there is only one entry and one exit state in the model. In

addition, the component checks that all the model states are reachable from the

entry state. The component can be further extended to check other state-based

model properties [Binder 99] such as each guard condition is mutually exclusive

of all other guards for a transition and the evaluation of the guard expression does

not produce any side effects in the class under test.

3. All paths-state test driver builder. The all paths-state test drivers builder

component applies the all paths-state coverage technique to produce the test

drivers for the FICs. In addition, it uses the hook descriptions to determine and

generate stubs required at the application testing stage to isolate the FICs. This

latter function is not implemented in the prototype version of the tool.

® Testing Process

Figure 6.1 shows the high-level design of the tool when used at the framework

development stage. The user (typically the framework developer in a test case generation

role) selects the framework. The framework is stored in a database that contains the

114

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

framework code and the descriptions of the hooks. The tool passes the hook descriptions

to the FIC state-transition table builder module. The FIC state-transition table builder

module parses the preconditions and postconditions of the FIC methods, analyzes them,

and produces the state-transition table for the FIC. The framework developer can edit the

generated table to add the code required to satisfy the predicates of the transitions and to

add the non-event-driven transitions. In the prototype version of the tool, the user

develops the state-transition model manually and then interacts with the tool to create the

table that describes the state-transition model. The tool translates the tabular form of the

state-transition model into a text using the TSTMD language and stores the text in a file

in the framework database. The user can use the Model Checker module of the FIST2 tool

to check the correctness of the model.

User
(framework
developer)

Framework 1
database

Framework 2
database

Framework n
database

Storage

.*■
Sb

&

r • s.-u
VK.tV..:.
■HH M

builderNon-event-
driven
transitioB$+ implem eu
tatkffls for predicate 5

FIC state-
: tM StM M s

table

Model stacking report

All gath-si :; ■'

FIC state-
traiisition

* ■ .

........

« t l e a k e r

H ST j Tool

Figure 6.1: The high-level design of the FIST2 tool (framework development stage)

The All paths-state test drivers builder component of the FIST2 tool uses the state-

transition table to generate the all paths-state test drivers and associates the test driver

identifiers with the model transitions. In addition, it uses the hook descriptions to

determine and generate the stubs required at the application testing stage to isolate the

115

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

FICs. The test drivers and stubs are stored in the framework database and provided to the

user. The prototype version of the tool does not generate stubs.

6 .2 .2 . Using FIST2 a t the application development stage

At the application development stage, the FIST2 tool supports the use of the reusable

test drivers generated at the framework development stage for Java framework FICs. The

tool interacts with the Hook Master tool to construct the updated state-transition tables for

the FICs, checks the correctness of the tables, determines the reusable test drivers,

augments some reusable test drivers, and generates new test drivers to test new

specifications. It then executes the test drivers and evaluates their results. In the prototype

version of the tool, the integration between the FIST2 tool and the Hook Master tool is not

implemented. The other tool functions are implemented.

• Tool Inputs

The FIST2 tool requires several inputs at the application development stage as follows:

1. FIC state-transition model. The FIC state-transition model stored in a text form at

the framework development stage is used at the application development stage to

model the specification of the implemented FIC.

2. Implemented FICs. Implemented FICs are the classes to be tested. These classes

are semi-automated using the Hook Master tool. In addition, the code is

instrumented by the method specifications written in the DbC language [Meyer

92] to be used as testing oracles.

3. FIC reusable test drivers and stubs. The FIC reusable test drivers and stubs

generated and provided at the framework development stage are used at the

application development stage to test the implemented FICs.

4. Method-name-mapping table. The method-name-mapping table is generated at the

application development stage using the Hook Master tool. The table is used to

generate the mapping class. The integration between the FIST2 tool and the Hook

116

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Master tool is not implemented in the prototype version of the tool and, therefore,

the use of the method-name-mapping table in generating the mapping class is not

implemented in the prototype version.

• Tool Outputs

At the application development stage, the FIST2 tool has several outputs.

1. Test drivers and stubs for the implemented FICs. The FIST2 tool determines the

reusable test drivers and stubs, augments test drivers as necessary, and generates

test drivers and stubs to test new code as necessary. The prototype version of the

tool does not determine the reusable stubs or create new stubs.

2. Driver class. The FIST2 tool generates a driver class to invoke the applicable test

drivers of the implemented FIC.

3. Class state-transition model o f the implemented FIC. The FIST2 tool uses the

specifications of the added methods to update the class state-transition model

synthesized at the framework development stage. This output is not produced

automatically in the prototype version of the tool. Instead, the user of the tool

updates the tabular representation of the model according to the specifications of

the implemented FIC.

4. FIC mapping class. The FIST2 tool generates the FIC mapping class using the

method-name-mapping table to map the methods defined in the hooks and used in

the generated test drivers to the ones implemented in the application under test. In

the prototype version of the tool, the mapping class is semi-automated. For the

mapping class, the tool generates the constructor methods and the methods called

in the reused transition events. The use of the method-name-mapping table in

generating the mapping class is not implemented in the prototype version of the

tool. Therefore, the methods of the generated FIC mapping class invoke the

methods of the implemented FIC assuming that no methods are renamed. The user

117

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

of the tool has to update the names of the invoked methods according to the

method-name-mapping table.

5. Testing results. The FIST2 tool executes the test drivers and uses the Jcontract tool

[Jcontract] to evaluate the testing results.

The test drivers, stubs, driver class, FIC mapping class, and the implemented FIC

under test are called the testing package.

• Tool Components

Several tool components are used at the application development stage as follows.

1. FIC state-transition table updater. The FIC state-transition table updater

component uses the specifications of the added methods to update the FIC state-

transition table generated at the framework development stage. This component is

not implemented in the prototype version of the tool. Instead, the user modifies

the FIC state-transition table manually and then interacts with the tool to input the

modifications of the FIC state-transition table.

2. Model checker. The model checker component is the same one used in the

framework development stage.

3. Application test drivers builder. The application test driver builder component

determines the reusable test drivers, augments test drivers as necessary, and

generates new test drivers as necessary. In addition, it generates a driver class for

the test drivers and uses the method-name-mapping table generated by Hook

Master to generate the FIC mapping class. Finally, the application test drivers

builder component produces necessary stubs. The use of the method-name-

mapping table and the generation of the necessary stubs are not implemented in

the prototype version of the tool.

118

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. Test driver executer. The test driver executer component compiles the classes of

the testing package, executes them, and uses the Jcontract tool to evaluate the

testing results.

• Testing Process

Figure 6.2 shows the high-level design of the tool when used at the application

development stage. The tester selects the framework stored in a database that contains the

framework code, the FIC state-transition tables, and the reusable test drivers. The user

uses Hook Master to semi-automate the implementation of the FICs. Hook Master

comments the Java code of the hook methods with the corresponding preconditions and

postconditions specified in the hook description. The preconditions and postconditions

are written in the DbC language. The user can add new code and specifications in DbC to

the Java code to complete the implementation of the FIC. Hook Master also produces the

method-name-mapping table that maps the methods defined in the hooks to the ones

implemented in the FIC.

The FIST2 tool gets from Hook Master the used FIC methods and the new methods to

update the FIC state-transition tables using the FIC state-transition table updater module.

This function is not implemented in the prototype version of the tool. Instead, the user

modifies the FIC state-transition table manually and then interacts with the tool to input

the modifications of the FIC state-transition table. The user can use the Model Checker

module of the FIST2 tool to check the correctness of the table. The tool stores the updated

table and passes it with the reusable test drivers to the Application test drivers builder

module, which detects the broken test drivers, augments some reusable test drivers, and

generates new ones to test the new specifications not covered in the augmented test

drivers. In addition, the Application test drivers builder module generates a driver class

for the test drivers and uses the method-name-mapping table generated by Hook Master

to generate the FIC mapping class. The Application test drivers builder module also

produces the necessary stubs. The generated classes and test drivers are stored in the

application database. The use of the method-name-mapping table and the generation of

the necessary stubs are not implemented in the prototype version of the tool.

119

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Hook
description

User
(application
developer)

databas database

l l l i i l i

Hbflk.f

Framework n
database

Option selection
+ parameter

values

All path state test drivers
+ stabs + aaplenwirtcdt
FIC methods^ nieitbd

mapping table
Updated FIC state-:
" itransition table

FIC state,
transition

 m a w ..

Updated
FIC state-
transition

*vt
Pftr
s ..

Appltcatioa)
test

drivers
builder

1 ■ : r... .

; FIC state-transitiion table Model
checkerModel cheeking report

. .Te.stite eac.kage

3P.as'se#fa3ed test drivers

Test
driver

Figure 6.2: The high-level design of the FIST tool (application development stage)

The Test driver executer module of the FIST2 tool compiles the test drivers and the

implemented FICs using the dbcjavac compiler of the Jcontract tool. The Jcontract

compiler checks the DbC specifications in the Javadoc comments, generates instrumented

.Java files with extra code to check the contracts (i.e., preconditions and postconditions)

in the Javadoc comments, and compiles the instrumented .java files with the j a v a c

compiler. The resulting .class files are instrumented with extra bytecodes to check the

contracts at runtime. Other classes, such as the mapping class and the driver class, are

compiled using the regular Java compiler. Finally, the FIST2 tool executes the test drivers

and uses Jcontract tool to check automatically the contracts at runtime and report any

violations found.

120

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.3. Summary
FIST2 is a tool that supports the generation of the reusable test drivers for Java FICs

at the framework development stage. In addition, it supports the use, the execution, and

the evaluation of the test drivers at the application development stage. The generation of

the test drivers at the framework development stage is semi-automated. The framework

hooks have to be provided and the user has to provide the code required to satisfy the

predicates of the state model transitions. The generation of the test drivers is performed in

two main steps: (1) the construction of the class state-based testing models and (2) the use

of the all paths-state coverage technique in generating the test drivers.

Once the application developer implements the FICs, typically, the use of the test

drivers at the application development stage is fully automated. At this stage, the tool

determines the non-broken test drivers, augments test drivers as necessary, generates new

test drivers as necessary, generates mapping classes, generates stubs, and generates driver

classes. Finally, the tool executes the test drivers and uses the Jcontract tool to evaluate

the testing results.

At the framework development stage, the prototype version of the tool automates the

generation of the reusable test cases from the state-transition model. At the application

development stage, the prototype version of the tool automates the detection of the non­

broken test cases, the augmentation of the test cases, the generation of the new test cases,

the execution of the test cases, and the evaluation of the test cases. However, the

prototype version of the tool does not build the state-transition model of the FIC

automatically. Instead it interacts with the user to describe the model provided by the

user. In addition, the tool does not produce stubs or interact with the Hook Master tool.

The implementation of these functions is left for future work, which is discussed in the

next chapter. Referring to Figures 6.1 and 6.2, the processes which are not fully

implemented have an in their upper right comer.

121

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 7 Contributions and Future Work

7.1. Contributions
This research .makes the following contributions in the area of OO-framework

application testing.

7.1.1. Adding a new value to the hooks

Hooks were originally introduced as an aid to show where and how to extend object-

oriented frameworks in constructing complete software applications. This thesis shows

that the hooks can be used also as an aid to build reusable class-based test cases for the

FICs implemented in the framework applications. The hooks introduce the specifications

of the FIC methods. These specifications can be used by specification based testing

techniques to generate test cases to test the methods as implemented in the JTest tool

[Jtest]. This thesis introduces a technique to construct the state-based class testing models

for the FICs using the method specifications introduced by the hooks. The method

specifications are used also as test oracles to evaluate the class-based test cases. Finally,

the hook descriptions identify the collaborations among the FICs and between the FICs

and the framework classes. This collaboration knowledge is useful at the cluster-testing

level of the framework applications. The use of the hooks in building cluster-based test

cases for the framework application is an interesting additional value for the hooks, left

for future work.

7.1.2. Introducing a state-based class testing model synthesis technique

The thesis introduced a new use for the method specifications. Method specifications

are used in the literature as testing oracles to evaluate the results of the test cases. In

addition, they are used as inputs for the process of generating method-based test cases.

This thesis introduced a technique to use the method specifications in constructing state-

based class testing models. These models are used to generate class-level test cases.

Therefore, this technique reduces considerably the class testing cost and the chance of

model construction errors and provides a consistent state-based testing model with

respect to the specifications of the class methods.

122

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7.13. Developing a new coverage technique

This thesis also introduces a new coverage technique to overcome the weaknesses of

existing testing techniques in building reusable test cases for the FICs. Existing testing

techniques, such as all-transitions, transition-pair, full predicate, and round-trip path, have

weaknesses in building reusable test cases for the specifications of the FICs. When these

testing techniques are used to build reusable test cases for the FICs at the framework

development stage, some transitions may not have reusable test cases to cover them at the

application testing stage because of some ignored specifications. The introduced

technique solves the problem and, therefore, increases the degree of coverage of the test

cases for the transitions of the models that represent the implemented FICs.

7.1.4. Studying the relation between the framework type and the reusability of the

FICs

In this thesis, the relationship between the framework type and the reusability of the

FICs is studied experimentally using three frameworks and fifteen applications. The

reusability of the FICs is measured in terms of the percentage of the number of

implemented FICs in the applications to the total number of classes implemented at the

application development stage. The case study showed that a high percentage (average of

68.5%) of the classes of the applications developed using domain frameworks are FICs,

while the percentage of the FICs in the applications developed using application

frameworks varies largely (4.9-66%) according to the specification domains of the

frameworks and the applications. In general, it was found that the reusability of the FICs

in applications developed using domain frameworks is greater than the reusability of the

FICs in the applications developed using application frameworks. As the percentage of

the FICs increases in the application, the part of the application tested using the reusable

test cases increases and, consequently, the amount of testing work required at the

application development stage decreases.

123

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7.1.5. Studying the reusability of the test cases developed at the framework

development stage

This thesis focuses on the generation of the class-based test cases for FICs

implemented at the application development stage. The test cases are generated using

state-transition models. Case studies were conducted to study experimentally the

percentage of the covered specifications of the implemented FICs using the reusable test

cases. The covered specifications are measured in terms of the number of covered

transitions in the state-transition testing model that specifies the FIC behavior. The results

of the case studies show that, on average, a high percentage (average of 87.3%) of the

specifications of the implemented FICs in the framework applications are tested using the

reusable test drivers generated at the framework development stage, which reduces the

application testing time considerably.

7.1.6. Speeding up framework application development

Frameworks provide reusable design and code which decreases the application

development cost considerably. Since software testing is a time consuming and labor-

intensive process, providing the framework with reusable test cases to test parts of the

applications makes frameworks more appealing and encourages application developers to

use the frameworks. Therefore, one of the main contributions of this thesis is in speeding

up framework application development. In the thesis, we have measured the saved time

indirectly by calculating the percentage of the number of FICs in the framework

applications and the percentage of the number of transitions of the FIC models covered

by the reusable test cases. For the considered CSF and SalesPoint framework

applications, on average, the percentages of the number of FICs are 41.4% and 68.5%,

respectively, and the percentages of the number of transitions in the FIC models are

76.9% and 96%, respectively.

7.1.7. Development of a supporting tool

Automation is a vital issue in software testing. Typically, many test cases have to be

built and evaluated, which makes manual testing impractical. Therefore, this thesis

introduces and develops a supporting tool that semi-automates the generation of the

124

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

reusable test cases at the framework developing stage. In addition, the tool automates the

use of the test cases and builds test cases to test new application functionalities at the

application development stage. The tool focuses on testing the FICs at the class-testing

level.

7.2. Future Work
A number of interesting problems related to our research have been identified during

the course of this thesis. A summary of the problems is as follows.

7.2.1. Modeling concurrent class behaviors

The proposed technique of generating the class behavior models using the method

specifications is limited to classes that have sequential behaviors. Classes that have

concurrent behaviors cannot be modeled using a finite state machine (FSM) model

because it does not have the capability to express concurrent behaviors. In [Al-Dallal+

97], the FSM model is extended to express concurrent behaviors. The extended FSM,

UML statecharts, and Petri Nets are examples of models that can be used to express the

concurrent behaviors of classes. Behavior contracts, which include method specifications,

are also limited to sequential behaviors and cannot be used to express concurrent

behaviors. Contracts used to express concurrent behaviors are called synchronization

contracts [Beugnard+ 99], Further research is required to show how to synthesize the

testing model used to express concurrent behaviors of a class from the synchronization

contracts of the class methods.

7.2.2. Evolving reusable test cases

In our research, reusable test cases are generated at the framework development stage

using the hook descriptions. As the framework evolves, the hook descriptions may also

evolve. Hook evolution includes adding new hook descriptions to introduce new FICs or

adding new functionalities to some existing FICs. In addition, the evolution can include

modifications to some existing hook descriptions. Introducing new FICs requires

generating test cases for them from scratch. Introducing new functionalities to some

existing FICs requires either augmenting some existing test cases or creating test cases

125

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

from scratch. In the former case, an effective way is needed to identify the test cases to be

augmented and then to augment them. Finally, modifying existing hook descriptions

requires identifying the affected test cases and modifying them.

7.23. Using framework test cases

FICs can extend some framework extensible classes. In our research, we have looked

at generating test cases for the FICs that extend framework classes using hook

descriptions. When application developers add new methods and attributes to the FICs to

implement the application requirements, new states and transitions can be added to the

state-transition models of the FICs. Therefore, some reusable test cases have to be

augmented or some new test cases have to be created from scratch to cover the new

specifications.

The same scenario can be applied for the framework extensible classes at the

framework development stage. FICs can introduce new methods and attributes to be used

with the ones inherited from the extensible framework classes. Therefore, instead of

generating the test cases for FICs from scratch, test cases generated for the framework

extensible classes can be augmented to cover portion of the specifications of the FICs and

new test cases can be added to cover the rest of the specifications. At the application

development stage, the test cases can be used as illustrated in this research.

To apply the latter technique, it is required to introduce a technique to integrate the

technique used in generating the framework test cases with the all paths-state technique

used to solve the ignored specification problem. In our work, the augmentation of the test

cases is delayed until the application development stage where all paths-state coverage is

no longer needed because once the application is developed no specifications are ignored

unless the application is modified.

7.2.4. Conducting more case studies

The experiments conducted in this research are valuable in showing the practicality of

the introduced approaches and in studying the relationship between the framework type

126

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

and the reusability of the test cases. However, we believe that more experiments should

be performed to confirm (or disprove) our results. In addition, more experiments can be

performed to directly measure the saving in application testing time when using the

reusable test cases provided with the framework.

7.2.5. Building reusable test cases at product line stages

In our research, framework application reusable test cases are generated at the

framework development stage. When framework applications are developed as part of a

product line and test cases are built to test the products, the test cases can be stored in a

database each time an application is developed. Whenever another product is developed,

the applicable test cases stored in the database are reused. In this case, the testing cost of

the first product is high, but the testing cost is expected to decrease gradually as more

products are developed.

The idea can be enhanced by combining it with the idea of generating test cases at the

framework development stage introduced in this thesis. In this case, the reusable test

cases are generated at the framework development stage as proposed in this thesis and

stored in a reusable test case database. Whenever a product is developed, the new test

cases are also stored in the reusable test case database, which can reduce the testing cost

for the following product line applications. In this case, the testing cost of the first

product is reduced because of the reusable test cases provided with the framework and

the testing costs of the following products are reduced much more as the number of

considered applications in the product line increases.

7.2.6. Extending the supporting tool

The prototype version of the FIST2 tool generates test cases at the framework

development stage using a state-transition table developed manually by the user by

applying the synthesizing algorithms for the FIC models as explained in Section 3.2. The

synthesizing algorithms are labor-intensive and, therefore, implementing them enhances

the tool. The second possible extension of the tool is to support the generation of the test

data and the code required to satisfy the predicates of the transitions. This generation is

127

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

performed manually in the prototype version of the tool and takes considerable time for

complex state-based models. The third possible extension of the tool is to integrate it with

the Hook Master tool. In this case, the FIST2 tool gets updates on the FIC specifications

introduced by the application developer directly from the Hook Master tool while the

application is being developed. The FIST2 tool can then update the state-transition table

of the FIC automatically. This process is performed manually in the prototype version of

the tool and took considerable effort and time in the conducted case studies. The fourth

possible extension of the tool is to determine the required stubs by analyzing the hook

descriptions and to generate the stubs. Finally, the FIST2 tool can be integrated with other

tools such as JTest [JTest], a supporting tool for method-based testing, and Test Mentor

[Test Mentor] and Jverify [Jverify], tools for supporting integration-based testing, to form

a Java testing environment in which FICs are tested at the method, class, and cluster

levels. To use the JTest tool it is required to build a FIC mapping class that includes the

declarations of all methods introduced by the hooks and instrument the class with the

specifications of the FIC methods written in DbC. To use the Jverify or Test Mentor tool,

it is required to write a piece of code to force the tool to Use the class-based test cases

generated using the FIST2 tool instead of using the class-based test cases generated by

Jverify or Test Mentor.

7.2.7. Generating and using reusable cluster-based test cases

The most important extension of the thesis is in the area of generating and using

reusable cluster-based test cases. At the class level testing, stubs are required to isolate

the class under test from other classes. From this point, the classes are added and tested

gradually. There are several forms of interactions between classes including method

invocations and global data sharing. Method invocations can be direct or indirect by

invoking a method that directly or indirectly invokes a method of another object. These

forms of interactions can exist in the methods defined in the hooks. These methods also

can access global data accessed by methods of other classes defined in the hooks or in the

framework. There are three areas related to the FICs for which cluster testing can be

applied.

128

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1. Integration between the FICs and the framework classes

Hooks can define methods that invoke methods of the framework classes directly

(e.g., the invocation statement in Line 13 of the code listed in Figure 7.1) or indirectly

(e.g., invoking Amethod declared in Line 8 of the code listed in Figure 7.1 indirectly by

the invocation statement in Line 13). The same situation applies for the methods of the

framework classes, where these methods can invoke the methods defined in the hooks

(e.g., the invocation of Amethod declared in Line 25 of the code listed in Figure 7.1 when

the statement in Line 21 is executed). Moreover, the hooks can define methods that share

the same global data with the methods of the framework classes (e.g., globalVar shared

between the methods declared in Lines 3 and 12 of the code listed in Figure 7.1). If any

of these forms of integration exist, cluster testing is required to test the interactions

between the FICs and the framework classes.

1 public AframeworkClass { / / a framework class
2 public static int globalVar;
3 public AframeworkClass() {
4 Amethod();
5
C

globalVar = 1;
O
7 }
8
Q

public void Amethod () { ... }
y
10 }
11 public FICA { //FIC
12 public FICAf) {
13 AframeworkClass var = new AframeworkClass();
14 var.globalVar = globalVar;
15
16 }
17
18 }
19 public FICB extends AframeworClass { //FIC
20 public FICB() {
21 super();
22 FICA var = new FICA();
23
24 }
25 public void Amethod() { ... >
26
27 }
28 public Aclass { //Application class which is not FIC
29 public Aclass {
30 FICA var = new FICAO ;
31
32 }
33
43 }

Figure 7.1: Java code example

129

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. Integration among the FICs

Hooks can define methods that invoke methods of other FICs directly (e.g., the

invocation statement in Line 22 of the code listed in Figure 7.1) or indirectly. Moreover,

hooks can define methods that share the same global data with the methods of other FICs.

If any of these forms of integration exist, cluster testing is required to test the interactions

among the FICs.

3. Integration between the FICs and other application classes

Application developers can add methods to the FICs and they also can add new

classes to the framework applications. The code of the new classes can include

invocations for methods of the FICs (e.g., the invocation statement in Line 30 of the code

listed in Figure 7.1) or share global data accessed by the FICs. Moreover, the new

methods added to the FICs at the application development stage can invoke the methods

of the added classes or access global data accessed by the added classes. If any of these

forms of integration exist, cluster testing is required to test the interactions between the

FICs and the added classes.

© Discussion

The knowledge about the integrations among the FICs and between the FICs and the

framework classes is defined in the hooks. Therefore, reusable cluster-based test cases

that test the integration among the FICs and between the FICs and the framework classes

can be built at the framework development stage and used at the cluster testing step of the

applications developed using the framework. However, the knowledge about the

integration between the FICs and the other application classes does not exist at the

framework development stage because the other application classes are not known at the

framework development stage. Therefore, no reusable cluster-based test cases can be

built at the framework development stage to test the integration between the FICs and the

other application classes.

130

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

There are several problems to be solved to build and use the reusable cluster-based

test cases that test the integration among the FICs and between the FICs and the

framework classes. The first problem is determining the suitable testing models that can

be used to build the test cases. Typically, researchers use the class, sequence, and

collaboration diagrams to generate cluster-based test cases (e.g., [Binder 99, Badri+ 02,

Wu+ 03]). The second problem is showing how to use the testing models in building the

reusable cluster-based test cases that have high coverage for the cluster relationships

implemented in the framework applications. The problem can be solved by merging an

existing cluster-based testing technique with the all paths-state coverage idea. The third

problem requires studying the affect of the modifications (e.g., ignoring or adding

specifications) performed at the application development stage on the reusable cluster-

based test cases.

131

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

References
[AJ DalJal-t- 97] I. A1 Dallal and K. Saleh, Synthesis of distributed and concurrent

protocol systems, Proc. O f the 15th Intern. Conf. On Information Super Highway

Trends and Impact, Saudi Arabia, November 1997, pp.665-678.

[AJ DalJal-f 02] J. A1 Dallal and P. Sorenson, System testing for object-oriented

frameworks using hook technology, Proc. o f the 17tn IEEE International

Conference on Automated Software Applications (ASE’02), Edinburgh, UK,

September 2002, pp. 231-236.

[Antoniol-f 02] G. Antonio!, L. Briand, M. Penta, and Y. Labiche, A case Study Using

the Round-Trip Strategy for State-based Class Testing, Carlton University TR SCE-

01-08, revised Jan. 2002.

[Abdurazik+ 00a] A. Abdurazik, P. Ammann, W. Ding, and J. Offutt, Evaluation of three

specification-based testing criteria, Sixth IEEE International Conference on

Engineering o f Complex Computer Systems (ICECCS '00), Tokyo, Japan,

September 2000, pp 179-187.

[Abdurazik+ 00b] A. Abdurazik and J. Offutt, Using UML collaboration diagrams for

static checking and test generation, Proc. O f The Third International Conference on

the Unified Modeling Language (UML ’00), York, UK, Oct. 2000, pp. 383-395.

[Badri+ 02] L. Badri and M. Badri, Test sequences generation from UML collaboration

diagrams: towards a formal approach, 1ASTED International Conference on

Software Engineering and Applications (SEA 2002), Cambridge, USA, November,

2002, pp. 477-483.

[Ball+ 00] T. Ball, D. Hoffman, F. Ruskey, R. Webber, and L. White, State generation

and automated class testing, Software Testing, Verification and Reliability, (10)

2000, pp. 149-170.

[Baudry+ 01] B. Baudry, Y. LeTraon, and J.-M. Jezequel, Robustness and diagnosability

of OO-systems designed by contracts, Proceedings o f Metrics’01, London, UK,

April 2001, pp. 272-283.

[Beck+ 94] K. Beck and R, Johnson. Patterns generate architectures, Proc. ofECOOP 94,

1994, pp. 139-149.

132

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[Beizer 90] B. Beizer. Software testing techniques, 2nQ ed. New York: International

Thompson Computer Press, 1990.

[Beizer 95] B. Beizer. Black-Box Testing, John Wiley, 1995.

[Beugnard+ 99] A. Beugnard, J.-M. Jezequel, N. Plouzeau, and D. Watkins, Making

components contract aware, IEEE Computer, 13(7), July 1999, pp. 38-45.

[Beydeda] S. Beydeda, V. Gruhn, and M. Stachorski, A graphical class representation for

integrated black- and white-box testing, IEEE International Conference on

Software Maintenance (ICSM’01), Florence, Italy, November, 2001, pp. 706-715.

[Binder 96a] R. Binder. Testing object-oriented software: A survey, Software Testing,

Verification and Reliability, 6(3/4), 1996, 125-252.

[Binder 96b] R. Binder. Testing for reuse: libraries and frameworks, Object Magazine,

August 1996, 77-80.

[Binder 99] R. Binder. Testing object-oriented systems, Addison Wesley, 1999.

[Bogdanov-t- 01] K. Bogdanov and M. Holcombe, Statechart testing method for aircraft

control systems, Software Testing, Verification and Reliability, Vol. 11(1), 2001,

pp. 39-54.

[Boujarwah+ 00] A. Boujarwah, K.Saleh, and I. Al-Dallal. Dynamic Data Flow Analysis

for Java Programs, Journal o f Information and Software Technology, Vol. 42, No.

11, August 2000, pp. 765-775.

[Boyapali+ 02] C. Boyapati, S. Khurshid, and D. Marinov, Korat: Automated Testing

Based on Java Predicates, International Symposium on Software Testing and

Analysis ISSTA, Rome, Italy, July 2002, pp. 123-133.

[Briand+ 02a] L. Briand and Y. Labiche, A UML-based approach to system testing,

Carlton University TR SCE-01-01, revised February 2002.

[Briand+ 02b] L. Briand, Y. Labiche, and H. Sun, Investigating the use of analysis

contracts to support fault isolation in object-oriented code, International

Symposium on Software Testing and Analysis ISSTA, Rome, Italy, July 2002, pp.

70-80.

[Calliss+ 8 8] F. W. Calliss and B.J. Cornelius. Dynamic data flow analysis of C

programs, Proceedings o f the 21st annual Hawaii international conference, Vol. 2,

1988, pp. 518-523.

133

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[Campbell* 92] R. H. Campbell and N. Islam. A Technique for documenting the

framework of an object-oriented system, Proceeding o f the 2nd InternationaI

Workshop on the Object-Oriented in Operating Systems, Paris, France, 1992,

[Chan* 87] F.T. Chan and T.Y. Chen. AIDA-a dynamic data flow anomaly detection

system for Pascal programs, Software-Practice and Experience, Vol. 17, 1987, pp.

227-239.

[Chen+ 87] T. Y. Chen, H. Kao, M.S. Luk, and W.C. Ying. COD-a dynamic data flow

analysis system for Cobol, Information and Management, Vol. 12, Feb 1987, pp.

65-72.

[Chen+ 95] T. Y. Chen and C.K. Low. Dynamic data flow analysis for C++, Proceeding

o f 1995 Asia Pacific Software Engineering Conference, 1995, pp. 22-28.

[Chen+ 98] H. Chen, T. Tse, F. Chan, and T. Chen, In black and white: an integrated

approach to class-level testing of object-oriented programs, ACM Transactions on

Software Engineering and Methodology, Vol. 7, No. 3, July 1998, pp. 250-295.

[Chen+ 01] H. Chen, T. Tse, and T. Chen, TACCLE: a methodology for object-oriented

software Testing At the Class and Cluster Levels, ACM Transactions on Software

Engineering and Methodology, Vol. 10, No.l, Jan. 2001, pp.56-109

[Cheon+ 02] Y. Cheon and G. Leavens, A simple and practical approach to unit testing:

the JML and JUnit way, Proc. o f the 16th European Conference on Object-

Oriented Programming (ECOOP2002), June 2002, pp. 231-254.

[Chow 78] T. Chow, Testing software design modeled by finite state machines, IEEE

Transactions on Software Engineering, Vol. EE-4(3), 1978, pp. 178-187.

[Codenie* 97] W. Codenie, K. De Hondt, P. Steyaert, and A. Vercammen. From custom

applications to domain-specific frameworks. Communications o f the ACM, Vol.

40(10), October 1997. pp. 71-77.

[CSF] CSF: Client-Server Framework, http://www.cs.ualberta.ca/~garry/framework,

December 2001.

[Daley+ 02] N. Daley, D. Hoffman, and P. Strooper, A framework for table driven testing

of Java classes, Software-Practice and Experience, 32, 2002, pp. 465-493.

134

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.cs.ualberta.ca/~garry/framework

[Doong+ 94] R. Doong and P. Frank!, The ASTOOT approach to testing object-oriented

programs, ACM Transactions on Software Engineering and Methodology, Vol. 3,

No. 2, April 1994, pp. 101-130.

[Fayad+ 97] E. M. Fayad and D. C. Schmidt. Object-oriented application frameworks,

Communications o f the ACM, October 1997, Vol. 40, No. 10, pp. 32-38.

[Fenkam-f 02] P. Fenkam, H. Gall and M. Jazayeri, Constructing corba-supported oracles

for testing: a case study, Proc. o f the 17th IEEE International Conference on

Automated Software Applications (ASE’02), Edinburgh, UK, September 2002, pp.

129-138.

[Froehlich 02] G. Froehlich, Hooks: an aid to the reuse of object-oriented frameworks,

Ph.D. Thesis, University of Alberta, Department of Computing Science, 2002.

[Froehlich+ 97] G. Froehlich, H.J. Hoover, L. Liu, and P.G. Sorenson. Hooking into

Object-Oriented Application Frameworks, Proc. 19th Int'l Conf. on Software

Engineering, Boston, May 1997, pp. 491-501.

[Froehlich+ 98] G. Froehlich, H.J. Hoover, L. Liu, and P.G. Sorenson, Using Object-

Oriented Frameworks, CRC Handbook o f Object Technology, CRC Press, 1998, pp.

26-1 - 26-22.

[Gamma+ 95] E. Gamma, R. Helm, R. Johnson and J. Vlissides. Design patterns:

elements o f reusable object-oriented software, Addison-Wesley, Reading, MA,

1995.

[Gangopadhyay-f- 95] D. Gangopadhyay and S. Nitra. Understanding frameworks by -

exploration of exemplars, Proceedings o f 7th International Workshop on Computer

Aided Software Engineering (CASE-95), Toronto, Canada, 1995, pp. 90-99.

[Harrold+ 92] M. Harroid, J. McGregor, and K. Fitzpatrick, Incremental testing of object-

oriented class structures, Proc o f the 14th international conference on Software

Engineering, 1992, pp. 68-80.

[Harrold+ 01] M. Harroid, J. Jones, T. Li, D. Liang, A. Orso, M. Pennings, S. Sinha, S.

Spoon, and A. Gujarathi, Regression test selection for Java software, Proc. o f the

2001 ACM SIGPLAN Conference on Object-Oriented Programming Systems,

Languages and Applications (OOPSLA 2001), Tampa, Florida, USA, October

2001, pp. 312-326.

135

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[Hoffman+ 94] D. Hoffman and P. Strooper, Graph-based class testing, The Australian

Computer Journal, Vol. 26, No. 4, Nov. 1994, pp. 158-163.

[Hoffman+ 97] D. Hoffman and P. S trooper, Classbench: a framework for automated

class testing, Software-Practice and Experience, 27(5), 1997, pp. 573-597.

[Hong+ 00] H. Hong, Y. Kim, S. Cha, D. Bae, H. Ural, A test sequence selection method

for statecharts, Software Testing, Verification and Reliability, 10/4, 2000, pp. 203-

227.

[Homstein+ 02] I. Homstein, H. Edler, Test reuse in CBSE using built-in tests,

Component-based Software Engineering Workshop: Composing Systems From

Components, (ECBS 2002), Lund, Sweden. April 2002.

[Hsia+ 97] P. Hsia, X. Li, D. Kung, C. Hsu, L..Li, Y.Toyoshima, and C.Chen, A

technique for the selective revalidation of OO software, Journal o f Software

Maintenance, Vol. 9, 1997, pp.217-233.

[iContract] iContract: the Java Design-by-Contract tool, http://www.reliable-

systems.com/tools/ iContract/iContract.htm, September, 2002.

[IEEE 829] ANSI/IEEE standard 610.12-1990: glossary o f software engineering

terminology. New York: The Institute of Electrical and Electronic Engineers, 1987.

[Jcontract] Jcontract, http://www.parasoft.com/jsp/products/home.jsp?product= Jcontract,

ParaSoft Corporation, April 2002.

[Johnson 92] R. Johnson. Documenting frameworks using patterns, Proceedings of

OOPSLA ’92, Vancouver, Canada, 1992, pp. 63-76.

[Johnson-t- 8 8] R. Johnson and B. Foote. Designing reusable classes, Journal of Object-

Oriented Programming, Vol. 2(1), 1988, pp.22-35.

[JTest] Jtest, http://www.parasoft.com/jsp/products/home.jsp?product=Jtest, ParaSoft

Corporation, September 2002.

[Junit] Junit, http://junit.sourceforge.net, December 2001.

[Jverify] JVerify, http://software.qip.us/jverify.htm, January, 2003

[Kim+ 99] Y. Kim, H. Hong, D. Bae, and S. Cha, Test cases generation from UML state

diagrams, 1EE Proc.-Software, Vol. 146, No. 4, 1999, pp. 187-192.

136

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.reliable-
http://www.parasoft.com/jsp/products/home.jsp?product=
http://www.parasoft.com/jsp/products/home.jsp?product=Jtest
http://junit.sourceforge.net
http://software.qip.us/jverify.htm

[Krasner+ 88] G. E. Krasner and S. T. Pope. A cookbook for using the model-view-

contrailer user interface paradigm in smalltalk-80, Journal o f Object-Oriented

Programming, 1(3), August-September 1988, 26-49.

[Kimg+ 94a] Kung, D., J.Gao, P.Hsia, Y.Toyoshima, and C.Chen, Firewall regression

testing and software maintenance of object-oriented systems, Journal of Object-

Oriented programming, 1994.

[Kung+ 94b] Kung, D., J.Gao, P.Hsia, F.Wem, Y.Toyoshima, and C.Chen, Change impact

identification in object oriented software maintenance, Proc. IEEE International

Conference on Software Maintenance, 1994, pp. 202 - 211.

[Kung+ 96] Kung, D., J.Gao, P.Hsia, F.Wen, Y.Toyoshima, and C.Chen, On regression

testing of object-oriented programs, The Journal of Systems and Software, 32(1),

January 1996, pp. 21-40.

[Lajoie+ 94] R. Lajoie and R. K. Keller. Design and reuse in object-oriented frameworks:

Patterns, contracts, and motifs in concert, Proceedings o f the 62nd Congress o f the

Association Canadienne Francaise pour FAvancement des Science, Montreal,

Canada, 1994.

[Leavens+ 99] G. Leavens, A. Baker, and C. Ruby, JML: a notation for detailed design.

In H. Kilov, B. Rupe, and I. Simmonds, editors, behavioral specifications o f

Businesses and Systems, chapter 12, Kluwer, 1999, pp. 175-188.

[Leavens+ 01] G. Leavens, A. Baker, and C. Ruby, Preliminary design of JML: a

behavioral interface specification language for Java, TR 98-06p, Iowa State

University, Department o f Computer Science, August 2001.

[LOCC] LOCC (software information), http://csdl.ics.hawaii.edu/Tools/LOCC/LOCC.

html, October 2002.

[McDona!d+ 96] J. McDonald and P. Strooper, Testing inheritance hierarchies in the

ClassBench framework, Proc. o f the Technology o f Object-Oriented Languages

and Systems (TOOLS USA ’96), August 1996.

[McDonald+ 97] S. McDonald, J. Schaeffer, and D. Szafron. Pattern-based object-

oriented parallel programming. Proceedings o f the First International Scientific

Computing in Object-Oriented Parallel Environments Conference (ISCOPE’97),

Vol. 1343 of Lecture Notes in Computer Science, 1997, pp. 167-274.

137

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://csdl.ics.hawaii.edu/Tools/LOCC/LOCC

[McGregor 00] J. McGregor, Building reusable test assets for a product line tutorial, First

Software Product Line Conference, Pittsburgh, Pa.: Software Engineering Institute,

Carnegie Mellon University, 2000.

[McGregor 01] I. McGregor, Testing a software product line, Technical Report

CMU/SEI-2001 -TR-022, Software Engineering Institute, Pittsburgh, PA, December

2001.

[Meyer 92] B. Meyer, Design by contracts, IEEE Computer, 1992, Vol. 25(10), 40-52.

[Myers 79] Myers. The Art o f Software Testing, John Wiley, 1979.

[Murray+ 97] L. Murray, D. Carrington, I. MacColl, and P. Strooper, Extending test

templates with inheritance, Proc. o f the Australian Software Engineering

Conference (ASWEC ’97), September 1997, pp. 80-87.

[NewCAO Model] http://www.cs.ualberta.ca/~jehad/CAO_model.xls

[Offutt+ 97] J. Offutt and J. Pan, Automatically detecting equivalent mutants and

infeasible paths, The Journal O f Software Testing, Verification, and Reliability,

7(3), September 1997, pp 165-192.

[Offut+ 99] J. Offut and A. Abdurazik, Generating tests from UML specifications,

Second International Conference on the Unified Modeling Language (UML99),

Fort Collins, CO, October 1999, 416-429.

[Osterweil+ 78] L. J. Osterweil and L. D. Fosdick. DAVE-a validation error detection

and documentation system for FORTRAN programs, Computer, Vol. 11, 1978, pp.

25-32.

[Price+ 85] D. A. Price. Program instrumentation for the detection of software anomalies,

M. Sc. Thesis, Department o f computer science, University o f Melbourne, 1985.

[Roper 94] M. Roper. Software Testing, McGraw-Hill, 1994.

[Rothermei+ 94] G. Rothermel and M. Harrold, Selecting regression tests for object-

oriented software, Proc. IEEE International Conference on Software Maintenance,

1994, p p .14-25.

[Rothermel+ 00] G. Rothermel, M. Harrold, and J. Dedhia, Regression test selection for

C++ softawrem Journal of software testing, Verification, and Reliability, 10(6),

January 2000, pp. 77-109.

138

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.cs.ualberta.ca/~jehad/CAO_model.xls

[Saleh+ 01] K. Saleh, A. Boujarwah and J. Al-Dallal, "Anomaly detection in concurrent

Java programs using dynamic data flow analysis", Journal o f Information and

Software Technology, Dec. 2001, Vol 43, No. 15, pp. 973-981.

[SalesPoint] The SalesPoint Framework V2.0 Homepage, http://ist.unibw-muerichen.de

/Lectures/S alesPoint/, November 2002.

[SalesPoint applications] SalesPoint applications, http://ist.unibw-muenchen.de/Lectures/

HT2001/Praktikum/Applications.htm, November 2002.

[Sparks-s- 96] S. Sparks, K. Benner, and C. Paris. Managing object-oriented frameworks

reuse. IEEE Computer, Vol 29(9), September 1996, pp. 52-61.

[Swing] Swing, Java 1.3.1, http://java.sun.eom/j2se/l.3/, October 2002.

[Test Mentor] Test Mentor - Java Edition by SilverMark, http://www.componentsource.

com/ProductCatalog/TestMentorJavaEdition.htm, January, 2003.

[Tsai+ 99] W. Tsai, Y. Tu, W. Shao, and E. Ebner. Testing extensible design patterns in

object-oriented frameworks through scenario templates, 23,d Annual International

Computer Software and Applications Conference, Phoenix, Arizona, October, 1999,

pp. 166-171.

[WaveFront Documentation] WaveFront Documentation, http://www.cs.ualberta.ca/

-janvik/thesis/Document.html, December 2001.

[Wang+ 00] Y. Wang, D. Patel, G. King, I. Court, G. Staples, M. Ross, and M. Fayad,

On built-in test reuse in object-oriented framework design, ACM Computing

Surveys (CSUR), Vol. 32(les), March 2000, pp. 7-12.

[Whiten- 97] L. White and K. Abdullah, A firewall approach for regression testing of

object-oriented software, Proc. of the 10th Annual Software Quality Week, May

1997.

[WilMn+ 02] S. Wilkin and D. Hoffman. JUnit extensions for documentation and

inheritance, Proc. o f the 2002 Pacific Northwest Software Quality Conference,

Protland, USA, October 2002, pp. 71-84.

[Wu+ 03] Ye Wu, Mei-Hwa Chen and Jeff Offutt, UML-based integration testing for

component-based software, The 2nd International Conference on COTS-Based

Software Systems (ICCBSS ’03), Ottawa, Canada, February 2003, 251-260.

139

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://ist.unibw-muerichen.de
http://ist.unibw-muenchen.de/Lectures/
http://java.sun.eom/j2se/l.3/
http://www.componentsource
http://www.cs.ualberta.ca/

Appendix A Example for constructing the all paths-state tree

for a model free of guaranteed transitions

Appendix A illustrates the steps of the procedure given in Figure 3.8 to construct the

all paths-state tree for the STD of the NewAccount FIC shown in Figure 3.4. First the root

node represents the Alpha state of the STD. In the first iteration of the repeat loop of the

procedure, an edge and a node are drawn to represent the outgoing transition from the

Alpha state and the destination state of the transition as shown in Figure A.I. Each time

an edge is drawn, the label associated with the transition is represented on the edge.

a -* open

Figure A.l: The results of applying the first iteration of the repeat loop of the procedure

given in Figure 3.8 for the STD shown in Figure 3.4

In the second iteration of the repeat loop, the outgoing transitions from the Open state

are represented in the tree by edges as shown in Figure A.2. In the figure, bolded nodes

represent terminal nodes (i.e., no more edges are drawn from these nodes). Figure A.2

shows four terminal nodes. These nodes are marked terminal because they are either

encountered on the tree paths that contain them or they represent the omega state. Figures

A.3 and A.4 show the results of applying the third and fourth iteration of the loop,

respectively. All the leaf nodes in Figure A.4 are marked terminal, which indicates that

the construction process of the tree is completed.

140

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

overdrawn'

open

ozen

,20

Figure A.2: The results of applying the second iteration of the repeat loop of the

procedure given in Figure 3.8 for the STD shown in Figure 3.4

drawnjover

overdrawn

overdrawn

a 1 open 10 open'J
21 inactive

f̂rozen

inactive

inactive

Figure A.3: The results of applying the third iteration of the repeat loop of the procedure

given in Figure 3.8 for the STD shown in Figure 3.4

141

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

overdrawn

a

/6 /E 3

open

over

overdrawn inactive

inactive

inactive

13* frozen

\ * inactive

inactive

Figure A.4: The results of applying the fourth iteration of the repeat loop of the

procedure given in Figure 3.8 for the STD shown in Figure 3.4

142

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix B Example for constructing the all paths-state tree

for a model that has guaranteed transitions

Appendix B illustrates the steps of the procedure given in Figure 3.12 to construct the

all paths-state tree for the STD of the NewAccount FIC shown in Figure 3.4 assuming that

the transitions necessary to implement the open and inactive states (i.e., the transitions

labeled by 1, 2, 4, 6, 10, 15, 16, 18, and 20) of Figure 3.4 are marked as guaranteed. First,

the root node represents the Alpha state of the STD. In the first iteration of the repeat

loop of the procedure, an edge and a node are drawn to represent the outgoing transition

from the Alpha state and the transition destination state as shown in Figure B.l. The two

nodes drawn in the first iteration are bolded. A bolded node and a bolded edge represent a

guaranteed node and a guaranteed edge, respectively. The alpha node is always marked

guaranteed. The outgoing edge from the alpha node is bolded because it represents a

guaranteed transition. Finally, the open node is marked guaranteed because it is a

destination node of a guaranteed edge initiated from a guaranteed node.

Figure B.l: The results of applying the first iteration of the repeat loop of the

procedure given in Figure 3.12 for the STD shown in Figure 3.4

In the second iteration of the repeat loop, the outgoing transitions from the Open state

are represented in the tree by edges as shown in Figure B.2. In the tree drawn so far in

Figure A.2, nodes reached by the edges labeled by 2, 6, 10, and 16 are marked terminal

(i.e., no more edges are drawn from them) because they are either previously encountered

on the tree paths that contain them or they represent the omega state. In addition, nodes

reached by the edges labeled by 2, 6, 10, 20 and 16 are marked guaranteed because they

are destination nodes of guaranteed edges initiated from a guaranteed node.

143

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

16

Figure B.2: The results of applying the second iteration of the repeat loop of the

procedure given in Figure 3.12 for the STD shown in Figure 3.4

The tree shown in Figure B.2 contains one node marked as non-terminal guaranteed,

which is the node that represents the Inactive state. Therefore, in the third iteration of the

repeat loop, edges that represent the outgoing transitions from Inactive state and the

nodes that represent the states reached from the Inactive state are drawn as shown in

Figure B.3. Three of the drawn nodes in the third iteration (i.e., open, omega, and

inactive) are marked terminal because they are either previously encountered on the tree

paths that contain them or they represent the omega state. In addition, these nodes are

marked guaranteed because they are destination nodes of guaranteed edges initiated from

a guaranteed node. The fourth node (i.e., frozen) is marked non-terminal and not-

guaranteed.

144

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

■ozen

■ozen
open

inactivi

inactive!

Figure B3: The results of applying the third iteration of the repeat loop of the procedure

given in Figure 3.12 for the STD shown in Figure 3.4

All the non-terminal leaf nodes drawn so far in Figure B.3 are marked not-guaranteed.

Therefore, in the fourth iteration we can pick any of the states that represent each of

them. In the example, we picked the node that represents the overdrawn state. In the

fourth iteration, edges that represent the outgoing transitions from the overdrawn state

and the nodes that represent the states reached from the overdrawn state are drawn as

shown in Figure B.4. All the drawn nodes are marked terminal because they are either

previously encountered on the tree paths that contain them or they represent the omega

state. In addition, these nodes are marked not-guaranteed because they are reached by

not-guaranteed edges.

All the non-terminal leaf nodes drawn so far in Figure B.4 are marked not-guaranteed.

Therefore, in the fifth iteration, we can pick any of the states that represent each of them.

In the example, we picked the node that represents the frozen state reached by the edge

labeled as 12. Edges that represent the outgoing transitions from the frozen state and the

nodes that represent the states reached from the frozen state are drawn as shown in Figure

145

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

B.5. Three of the drawn nodes (i.e., open, omega, and frozen) are marked terminal

because they are either previously encountered on the tree paths that contain them or they

represent the omega state. The fourth drawn node (i.e., inactive) is marked terminal

because it represents a state represented in the tree by a guaranteed node. The four nodes

are marked not-guaranteed because they are reached by not-guaranteed edges.

open
overdrawn

open overdrawn

 open
overdrawn " '" ^ 7 ------

open open

•ozen

ozen
open

inactivi

inactive!

Figure B.4: The results of applying the fourth iteration of the repeat loop of the

procedure given in Figure 3.12 for the STD shown in Figure 3.4

Only one leaf node in the tree (i.e., frozen) shown in Figure B.5 is marked non­

terminal. Edges that represent the outgoing transitions from the frozen state and the nodes

that represent the states reached from the frozen state are drawn in the sixth iteration as

shown in Figure B.6. All the drawn nodes are marked terminal because they are either

previously encountered on the tree paths that contain them or they represent the omega

state. In addition, these nodes are marked not-guaranteed because they are reached by

not-guaranteed edges. All the leaf nodes in Figure B.6 are marked terminal, which

indicates that the construction process of the tree is completed.

146

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

open

4 open
overdrawn

open open

open

(frozen

13* frozen,20
open

inactiv*

inactivi

Figure B.5: The results of applying the fifth iteration of the repeat loop of the procedure

given in Figure 3.12 for the STD shown in Figure 3.4

overdrawn

overdrawnj

overdrawn

inactive
n o t

g u a r a n te e d
edge

L_ inactive
frozen

inactiv

mactiv

Figure B.6: The results of applying the sixth iteration of the repeat loop of the procedure

given in Figure 3.12 for the STD shown in Figure 3.4

147

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix C The Syntax of the Testable State-transition

Model Description

The FIST2 tool uses the following syntax for the Testable State-transition Model

Description (TSTMD) language to maintain the testable state-transition model description

in a text file. An example for a use of the language is shown in Appendix D.

<Model_desc>:: <State_desc>[, ..» <State_desc>]
<State_trans>[, ..,<State_trans>]

<State_desc>:: <state_name>{
<state_invariant>
<app_specific>

}
<state_name>::= <string>
<state_invariant>::= var_invariant = <string>
<app_specific>::= app_specific= <boolean>
<State_trans>::= <source_state> => <destination_state>{

'<event>
[, ..,<parameter>]
[, . . ,<predicate>]
[, . . ,<action>]
<guaranteed>
<app_specific>
[<test_cases_covered>]
}

<source_state>::= <state_name>
<destination_state>::= <state_name>
<event>::= event = <string>
<parameter>::= parameter = <param_name>:<param_type>
<param_name>::= <string>
<param_type>::= <string>
<predicate>::= condition = <var><oper><var>;[(script)]
<var>::= <string>
<oper>::= > | < | = | <= | >=
<script>::= <string>

148

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

<action>::= action = <action_type>:<value>;[<script>]
<action_type>::= return j exception | message | others
<value> :: = <string>
<guaranteed> :: = guaranteed = <boolean>
<boolean> r: = true | false
<test_cases_covered> ::= [(, <test_case_id>)]
<test_case_id> ::= <string>

149

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix D My Account FIC Example

Appendix D shows the application of the FIST2 tool for testing the MyAccount FIC class

as follows.

D.l. Framework Development Stage

D.1.1. Tool Inputs

The following hook descriptions define the NewAccount FIC.

Name: Initialize Account
Requirement: Initialize an account (i.e., set the currency and bank branches).

Preconditions: amount>=0;
Changes:

NewAccount.NewAccountant amount) extends Account.Accountant amount);

Postconditions:
1. Operation NewAccount. NewAccount (int);
2. NewAccount.balance()>=0;
3. ! NewAccount.isFrozen();
4. NewAccount. getCurrentDate()-NewAccount.getLastActivityDate() <

NewAccount.MaxPeriod

Name: Get Account Balance
Requirement: inquire about the balance

Preconditions:
1. NewAccount subclass of Account;

Changes:
NewAccount.balanceO reads supper.balanced;

Postconditions:
1. Operation New'Account, balanced;

Name: Deposit Money
Requirement: deposit money in an account.

Preconditions:
1. NewAccount subclass of Account
2. ! NewAccount.isFrozenQ;

150

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. NewAccount. getCurrentDate()-NewAccount.getLastActivityDate() <
NewAccount-MaxPeriod

Changes:
NewAccoimt.deposit(int amount) extends Account.deposit(int amount);

Postconditions:
1. Operation NewAccount. deposit (int);
2. NewAccount.balance()=amount+ NewAccount.balance();
3. i NewAccount.isFrozen();
4. NewAccount. getCurrentDate()-NewAccount.getLastActivityDate() <

NewAccount.MaxPeriod

Name: Withdraw Money
Requirement: withdraw money from an account.

Preconditions:
1. NewAccount subclass of Account
2. NewAccount.balance()>=0
3. ! NewAccount.isFrozen();
4. NewAccount. getCurrentDate()-NewAccount.getLastActivityDate() <

NewAccount.MaxPeriod
Changes:

New Account. withdraw(int amount) extends Account. withdraw(int amount);

Postconditions:
1. Operation NewAccount. withdraw (int);
2. NewAccount.balance()=NewAccount.balance()-amount;
3. ! NewAccount.isFrozen();
4. NewAccount. getCurrentDate()-NewAccount.getLastActivityDate() <

NewAccount.MaxPeriod

Name: Freeze Account
Requirement: Freeze an account.

Preconditions:
1. NewAccount subclass of Account
2. NewAccount.balance()>=0
3.! NewAccount.isFrozen();

Changes:
New Operation NewAccount.freeze();

Postconditions:
1. Operation NewAccount. freeze ();
2. NewAccount.ba!ance()>=0;
3. NewAccount.isFrozen();

151

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Name: Unfreeze Account
Requirement: Unfreeze an account.

Preconditions:
1. NewAccount subclass of Account
2. NewAccount.balance()>=0
3. NewAccount. isFrozenQ;

Changes:
New Operation NewAccount.unfreeze();

Postconditions:
1. Operation NewAccount. unfreeze ();
2. NewAccount.balance()>=0;
3. ! NewAccount.isFrozen();
4. NewAccount. getCurrentDate()-NewAccount.getLastActivityDate() <

NewAccount.MaxPeriod

Name: Activate Account
Requirement: Activate an account.

Preconditions:
1. NewAccount subclass of Account
2. NewAccount.balance()>=0
3. ! NewAccount.isFrozen();
4. NewAccount. getCurrentDate()-NewAccount.getLastActivityDate() >=

NewAccount.MaxPeriod
Changes:

New Operation NewAccount. activateQ;

Postconditions:
1. Operation NewAccount. activate ();
2. NewAccount.balance()>=0;
3. i New Account. isFrozen();
4. NewAccount. getCurrentDate()-NewAccoont.getLastActivityDate() <

NewAccount.MaxPeriod

In the current prototype version of the FISTa tool, we are not yet able to use the hook

descriptions to synthesize automatically the FIC model. Instead the user has to create the

FIC model manually as illustrated in Section 3.2 and interacts with the tool to fill a table

that describes the model. Figure D.l shows the filled table for the NewAccount FIC.

152

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

< i v n i iA ipha _ (O v erd raw n __ iQ p e n Hnaciive iF rp zen
 ;A iph3 _ [_ _ ! _ _ f l o a t i _ ! ___
 .O v e rd ra w n > _ Liege, s i t (£1 G a f t f jde^esiftf.floy.'ft'S _[• ___ i __ _

•; : n ]_ •jwifthdr-rwCfl o a t) pierces it? _££i s a t I [t i {jdtCurE&rvfeDate j£E*es-s £ _
........... .in a c tiv e _ _ _ [_ _ iacftiyaft* ,:____ ibai ax ic ij ̂ ___________ :_
........... _ j__________ __ _____ j _ _ _ junf g e e se lk a.1 ar^ci [(g e t C~ir s e n tS at-a ;b al an.e e ;

Omega ■ > ;

Figure D .l : The tabular form of the NewAccount FIC

The FIST2 tool translates the tabular form of the model to the following model description

form using the TSTMD language. The Java implementations of the predicates are

associated with the transitions.

"Alpha"{
var„invariant = ""
app_specific = false
}"

”Overdrawn"{
var_invariant = "(o.balance()<0) && ((o.getCurrentDate()-
o .getLastActivityDate()}<0 .getMaxPeriod()) && !(o.isFrozen())"

app_specific = false
}

"Open"{
var_invariant = "(o.balance()>=0) && ((o .getCurrentDate()-
o .getLastActivityDate())<0 .getMaxPeriod()) && !(o.isFrozen())"
app_specific = false
}

11 Inactive" {
var_invariant = "(o.balance()>=0) && ((o.getCurrentDate()-
o.getLastActivityDate())>=0 .getMaxPeriod()) && !(o.isFrozen())"

app_specific = false
}

“Frozen"{
var_invariant = "(o.balance()>=0) && (o.isFrozen(})"
app__specif ic = false
}

"Omega"{
var_invariant = "((o. balance()<0.01)&&(o.balance{)>-0 . 01)) "
app_specific = false
}

"Alpha"=>"Open"{
event = "NewAccount"

153

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

parameter = "amount":"float"
condition = "amount" >= "0";[("float amount=1;"1]
guaranteed = true
app_specific = false
}

"Overdrawn"=>"Overdrawn“{
event = "deposit"
parameter = "amount":"float"
condition = "(balance + amount)" < "0";[("amount=

o.balance();")]
guaranteed = true
app_specific = false
}

"Overdrawn"=>"Overdrawn"{
event = "balance"
guaranteed = true
app_specific = false
}

"Overdrawn"=>“Open"{
event = "deposit"
parameter = "amount” float"
condition = " (balance + amount) " >= "0" [("amount=l-

o.balance {);'')]
guaranteed = true
app_specific = false
}

11 Overdrawn" =>" Omega" {
event = "close"
guaranteed = true
app_specific = false
}

"Open"=>"Overdrawn“{
event = "withdraw"
parameter = "amount":"float"
condition = "(balance - amount)" < "0";[("amount=l+

o.balance{);“)]
guaranteed = true
app_specific = false
}

"Open"=>"Open"{
event = "deposit"
parameter = "amount":"float"
condition = "amount" = "1.0"; [("amount=l,- ")]
action = other:"balance";[("balance()=@pre balance()

+amount")]
guaranteed = true
app_specific = false
}

"Open"=>"Open"{
event = "withdraw"
parameter = "amount":"amount"
condition = "(balance{)-amount)" >= "0";[("amount=

o.balance();")]
guaranteed = true
app_specific = false
}

"Open"=>"Open"{

154

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

event = "balance"
guaranteed = true
app_specific = false
}

“Open" =>"Inactive" {
event = “"
condition = "(getCurrentDate() - getLastActivityDate{))

"getMaxPeriod(} " ; f{“o .setLastActivityDate
(o.getCurrentDate()-o.getMaxPeriod!));")]

guaranteed = false
app_specific = false
}

"Open”= > "Fro z en"{
event = “freeze"
guaranteed = false
app_specific = false
}

“Open"=>"Omega”{
event = "close"
guaranteed = true
app_specific = false
}

"Inactive"=>"Open"{
event = "activate”
guaranteed = false
aP P _specific = false
}

"Inactive"=>"Inactive"{
event = "balance"
guaranteed = false
app_specific = false
}

*' Inactive"=>" Frozen" {
event = "freeze"
guaranteed = false
aPP_specific = false
}

"Inactive"=>"Omega"{
event = "close”
guaranteed = false
app_specific = false
}

"Frozen"=>"Open"{
event = "unfreeze"
condition = "balance" >= "0" ;

[(“/* The following is a predicate assertion */

/** ©assert(o.balance{)>=0) */")]
guaranteed = false
aPP— specific = false
}

”Frozen"=>"Inactive"{
event = ""
condition = “(getCurrentDate() - getLastActivityDate(})

"getMaxPeriod() f("o.setLastActivityDate(
o .getCurrentDate()-o.getMaxPeriod());")]

guaranteed = false

155

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

app_specific = false
}

"Frozen"=>"Frozen"{
event = "balance"
guaranteed = false
app_specific = false
}

"Frozen"=>"Omega”{
event = "close"
guaranteed = false
app_specific = false
}

D.1.2. Tool Outputs

The prototype version of the FIST2 tool checked the given model description of the

NewAccount FIC for the existence of one entry and one exit state and that all the states

are reachable from the entry state. The results are provided to the user as shown in Figure

D.2. In addition, the tool generated the following 22 Java test drivers from the

NewAccount testable model using the all paths-state technique.

1 No Problems are found

Figure D.2: Checking model result

public class TESTl_NewAccount{
public TESTl_NewAccount{){

/* Test transition: source state: Alpha, sink state: Open, event:
NewAccount(amount), predicates: amount>=0 */

float amount=l;
NewAccount o = new NewAccount(amount);

/** ©assert((o.balance()>=0) && ((o.getCurrentDate()-
o.getLastActivityDate())< o .getMaxPeriod{)) && !(o.isFrozen())) */

/* Test transition: source state: Open, sink state: Open, event:
balance(), predicates: none */

o.balance() ;

/** ©assert((o.balance{)>=0) && ((o.getCurrentDate()-
o .getLastActivityDate())< o .getMaxPeriod()) && !(o.isFrozen())) * /

}
}

156

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

public class TEST2_NewAccount{
public TEST2_NewAccount(){

/'* Test transition: source state: Alpha, sink state: Open, event:
NewAccount (amount) , predicates: amount>=0 */

float amount=l;
NewAccount o = new NewAccount(amount) ;

/** ©assert((o.balance()>=0) && ((o.getCurrentDate() -
o .getLastActivityDate()}<o.getMaxPeriod()) && i{o .isFrozen())} *

/* Test transition: source state: Open, sink state: Open, event:
deposit(amount), predicates: amount=l.0 */

amount=l;
o .deposit(amount);

/ ** ©assert((o.balance()>=0) && ((o .getCurrentDate()-
o.getLastActivityDate())<o.getMaxPeriod()) && !(o.isFrozen())) */

}
}

public class TEST3_NewAccount{
public TEST3_NewAccount(){

/* Test transition: source state: Alpha, sink state: Open, event:
NewAccount(amount), predicates: amount>=0 */

float amount=l;
NewAccount o = new NewAccount(amount);

/** ©assert((o.balance()>=0) && ((o.getCurrentDate()-
o .getLastActivityDate())<o.getMaxPeriod()) && !(o .isFrozen())) */

/* T e s t transition: source state: Open, sink state: Overdrawn, event
withdraw(amount), predicates: (balance - amount)<0 */

amount=l+o.balance();
o.withdraw(amount);

/** ©assert((o.balance()<0) && ((o.getCurrentDate()-
o .getLastActivityDate())< o .getMaxPeriod()) && !(o.isFrozen())) */

/* Test transition: source state: Overdrawn, sink state: Overdrawn,
event: balance!), predicates: none */

o.balance();

/** ©assert((o.balance()<0) && ((o.getCurrentDate!)-
o.getLastActivityDate())<o.getMaxPeriod()) && !(o.isFrozen())) */

}
}

public class TEST4_NewAccount{
public TEST4_NewAccount(){

/* Test transition: source state: Alpha, sink state: Open, event:
NewAccount{amount), predicates: amount>=0 */

float amount=l;
NewAccount o = new NewAccount(amount);

/ * * ©assert((o.balance()>=0) && ((o .getCurrentDate()-
o.getLastActivityDate())<o .getMaxPeriod()) && !(o.isFrozen())) */

/* Test transition: source state: Open, sink state: Overdrawn, event
withdraw(amount), predicates: (balance - amount)<0 */

amount=l+o .balance () ,-
o .withdraw(amount) ,-

/** ©assert((o.balance()<0) && ((o.getCurrentDate()-
o.getLastActivityDate())< o .getMaxPeriod()) && !(o.isFrozen())) * /

/ * Test transition: source state: Overdrawn, sink state: Overdrawn,
event: deposit(amount), predicates: (balance + amount)<0 */

amount=o.balance();

157

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

o .deposit(amount);

/** ©assert((o.balance()<0! && ((o.getCurrentDate!)-
o .getLastActivityDate(})<o .getMaxPeriod()) && !(o.isFrozen()]) */

}
}

public class TEST5_KewAccount{
public TEST5_NewAccount(){

/* Test transition: source state: Alpha, sink state: Open, event:
NewAccount(amount), predicates: amount>=0 */
float amount=l;
NewAccount o = new NewAccount(amount);

/** ©assert{(o.balance()>=0) && ((o.getCurrentDate()-
o .getLastActivityDate())<o .getMaxPeriod()) && !{o .isFrozen())) */

/* Test transition: source state: Open, sink state: Overdrawn, event:
wi their aw (amount) , predicates: (balance - amount) <0 */

amount=l+o.balance () ,-
o .withdraw(amoun t);

/** ©assert((o.balance()<0) && ((o.getCurrentDate()-
o .getLastActivityDate())<o.getMaxPeriod()) && !(o.isFrozen{))) */

/* Test transition: source state: Overdrawn, sink state: Open, event:
deposit(amount), predicates: (balance + amount)>=0 */

amount=l-o.balance{);
o .deposi t (amount);

/ * * ©assert((o.balance()>=0) && ((o.getCurrentDatef}-
o.getLastActivityDate())<o.getMaxPeriod()) && !(o.isFrozen())) */

}
}

public class TESTS_NewAccount{
public TEST6_NewAccount(){

/* Test transition: source state: Alpha, sink state: Open, event:
NewAccount(amount), predicates: amount>=0 */

float amount=1;
NewAccount o = new NewAccount(amount);

/** ©assert((o.balance()>=0) && ((o .getCurrentDate()-
o .getLastActivityDate())< o .getMaxPeriod()) && !(o.isFrozen())) */

/* Test transition: source state: Open, sink state: Overdrawn, event:
withdraw(amount>, predicates: (balance - amount)<0 */

amount=l+o.balance() ,-
o .wi thdraw(amount);

/** ©assert((o.balance()<0) && ((o .getCurrentDate()-
o .getLastActivityDate())<o.getMaxPeriod()) && !(o.isFrozen())) */

/* Test transition: source state: Overdrawn, sink state: Omega, event:
close(), predicates: none */

o . close(!;

/** ©assert(((o.balance()<0.01)&&(o.balance()>-0.01))) */
}

}

public class TEST7_NewAccount{
public TEST7_NewAccount(){

/ * Test transition: source state: Alpha, sink state: Open, event:
NewAccount(amount), predicates: amount>=0 */

float amount=l;
NewAccount o = new NewAccount(amount);

158

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

/** ©assert{(o.balance{)>=0) && ((o.getCurrentDate()-
o.getLastActivityDate <))<o.getMaxPeriod{)) && !(o.isFrozen !))) */

/* Test transition: source state: Open, sink state: Open, event:
withdraw(amount), predicates: (balance()-amount)>=0 */

amount=o.balance();
o . wi thdraw (amoun t) ;

/* * ©assert((o.balance(}>=0) && {(o .getCurrentDate()-
o.getLastActivityDate())< o .getMaxPeriod(}) && !(o.isFrozen{))) */

public class TEST8_NewAccount{
public TEST8_NewAccount() {

/* Test transition: source state: Alpha, sink state: Open, event:
NewAccount(amount), predicates: amount>=0 */

float amount=l;
NewAccount o = new NewAccount(amount);

/** ©assert((o.balance()>=0) && ((o.getCurrentDate() -
o .getLastActivityDate())< o .getMaxPeriod()) && !(o.isFrozen())) */

/* Test transition: source state: Open, sink state: Frozen, event:
freeze)), predicates: none */

o .freeze();

/** ©assert((o .balance()>=0) && (o.isFrozen())) */
/* Test transition: source state: Frozen, sink state: Inactive, event:

none, predicates: (getCurrentDate() -
getLastActivityDate())>=getMaxPeriod() */

o .setLastActivityDate(o.getCurrentDate()-o.getMaxPeriod());

/ * * ©assert((o.balance()>=0) && ((o.getCurrentDate()-
o .getLastActivityDate())>=o.getMaxPeriod()) && !(o.isFrozen())) */

/* Test transition: source state: Inactive, sink state: Inactive, event
balance(), predicates: none */

o.balance();

/ * * ©assert((o.balance()>=0) && ((o .getCurrentDate()-
o .getLastActivityDate())>=o.getMaxPeriod()) && !(o.isFrozen())) */

}
}

public class TEST9_NewAccount{
public TEST9_NewAccount(){

/* Test transition: source state: Alpha, sink state: Open, event:
NewAccount(amount), predicates: amount>=0 */

float amount=l;
NewAccount o = new NewAccount(amount);

/** ©assert{(o.balance()>=0) && ((o.getCurrentDate()-
o.getLastActivityDate())< o .getMaxPeriod()) && !(o.isFrozen())) */

f * Test transition: source state: Open, sink state: Frozen, event:
freeze!), predicates: none */

o .freeze();

/** ©assert((o.balance()>=0) && (o.isFrozen{))) */
/* Test transition: source state: Frozen, sink state: Inactive, event:

none, predicates: (getCurrentDate!) -
getLastActivityDate())>=getMaxPeriod() */

o .setLastActivityDate(o.getCurrentDate()-o.getMaxPeriod());

159

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

/'** ©assert ((o .balance {) >=0) && ((o.getCurrentDate() -
o.getLastActivityDate())>=o.getMaxPeriod()) && !(o.isFrozen())} */

/* Test transition: source state: Inactive, sink state: Open, event:
activate(), predicates: none */

o . activate{};

/** ©assert!(o.balance()>=0) && ((o .getCurrentDate(}-
o .getLastActivityDate())<o .getMaxPeriod()) && !(o.isFrozen{))) */

}
}

public class TEST10_NewAccount{
public TEST10_NewAccount(){

/* Test transition: source state: Alpha, sink state: Open, event:
NewAccount(amount), predicates: amount>=0 */

float amount=l;
NewAccount o = new NewAccount(amount);

/** ©assert((o.balance()>=0) && ((o.getCurrentDate()-
o .getLastActivityDate())< o .getMaxPeriod()) && !(o.isFrozen(})) * /

/* Test transition: source state: Open, sink state: Frozen, event:
freeze!), predicates: none */

o.freeze();

/** ©assert((o.balance()>=0) && (o.isFrozen())) */
/* Test transition: source state: Frozen, sink state: Inactive, event

none, predicates: (getCurrentDate() -
getLastActivityDate())>=getMaxPeriod() */

o.setLastActivityDate(o.getCurrentDate()-o.getMaxPeriod());

/** ©assert((o.balance()>=0) && ((o.getCurrentDate()-
o.getLastActivityDate())>=o.getMaxPeriod()) && !(o.isFrozen())) */

/* Test transition: source state: Inactive, sink state: Frozen, event
freeze!), predicates: none */

o.freeze();

/** ©assert((o.balance()>=0) && (o.isFrozen())) */
}

}

public class TESTll_NewAccount{
public TESTll_NewAccount(){

/* Test transition: source state: Alpha, sink state: Open, event:
NewAccount(amount) , predicates: amount>=0 */

float amount=1;
NewAccount o = new NewAccount(amount);

/** ©assert((o.balance()>=0) && ((o .getCurrentDate()-
o .getLastActivityDate())< o .getMaxPeriod()) && !(o.isFrozen())) */

/* Test transition: source state: Open, sink state: Frozen, event:
freeze(), predicates: none */

o.freeze();

/** ©assert!(o.balance()>=0) && (o.isFrozen())) */
/* Test transition: source state: Frozen, sink state: Inactive, event

none, predicates: (getCurrentDate() -
getLastActivityDate!))>=getMaxPeriod() */

o .setLastActivityDate(o.getCurrentDate()-o.getMaxPeriod());

160

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

/** ©assert({o .balance()>=0) && ({o .getCurrentDate()-
o .getLastActivityDate{))>=o.getMaxPeriod()) && !(o.isFrozen())) */

/* Test transition: source state: Inactive, sink state: Omega, event:
close(), predicates: none */

o.close();

/** Sassert(((o.balance()<0.01)&&(o.balance{) >-0 . 01))) */
}

}

public class TEST12_NewAccount{
public TEST12_NewAccount(){

/* Test transition: source state: Alpha, sink state: Open, event:
NewAccount(amount), predicates: amount>=0 */

float amount=l;
NewAccount o = new NewAccount(amount);

/** Uassert((o.balance()>=0) && ((o.getCurrentDate()-
o .getLastActivityDate())< o .getMaxPeriod()) && !(o.isFrozen())) */

/* Test transition: source state: Open, sink state: Frozen, event:
freezeO, predicates: none */

o.freeze();

/** ©assert((o.balance()>=0) && (o.isFrozen())) */
/* Test transition: source state: Frozen, sink state: Open, event:

unfreeze!), predicates: balance>=0 */
/* The following is a predicate assertion */
/** ©assert(o.balance()>=0) */
o .unfreeze();

/** ©assert((o.balance()>=0) && ((o.getCurrentDate()-
o .getLastActivityDate())< o .getMaxPeriod()) && !(o.isFrozen())) */

}
}

public class TEST13_NewAccount{
public TEST13_NewAccount(){

/* Test transition: source state: Alpha, sink state: Open, event:
NewAccount(amount), predicates: amount>=0 */

float amount=l;
NewAccount o = new NewAccount (amount) ,-

/** ©assert((o.balance()>=0) && ((o.getCurrentDate!)-
o .getLastActivityDate())< o .getMaxPeriod()) && !(o.isFrozen())) */

/* Test transition: source state: Open, sink state: Frozen, event:
freeze(), predicates: none * /

o .freeze{) ;

/** ©assert((o.balance()>=0) && (o.isFrozen())) */
/* Test transition: source state: Frozen, sink state: Omega, event:

close(), predicates: none */
o .close() ;

/** ©assert(((o.balance(><0.01}&&(o-balance()>-0.01))) */
}

}

public class TEST14_NewAccount{
public TEST14_NewAccount(){

/* Test transition: source state: Alpha, sink state: Open, event:
NewAccount(amount), predicates: amount>=0 */

float amount=l;
NewAccount o = new NewAccount(amount);

161

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

/** ©assert((o.balance()>=0) && ((o.getCurrentDate()-
o .getLastActivityDate{))<o .getMaxPeriod.()) && ! (o.IsFrozen())) */

/ * Test transition: source state: Open, sink state: Frozen, event:
freeze!), predicates: none */

o .freeze();

/** ©assert((o.balance()>=0) && (o.isFrozen{))) */
/* Test transition: source state: Frozen, sink state: Frozen, event:

balance!), predicates: none */
o.balance{);

/ * * ©assert((o.balance()>=0) && (o.isFrozen()}) */
}

}

public class TEST15__NewAccount{
public TEST15_NewAccount(){

/* Test transition: source state: Alpha, sink state: Open, event:
NewAccount(amount), predicates: amount>=0 */

float amount=l;
NewAccount o = new NewAccount(amount) ;

/ * * ©assert!(o.balance()>=0) && ((o .getCurrentDate()-
o.getLastActivityDate())<o.getMaxPeriod()) && !(o.isFrozen())) */

/* Test transition: source state: Open, sink state: Inactive, event:
none, predicates: (getCurrentDate!) -
getLastActivityDate())>=getMaxPeriod() */

o .setLastActivityDate(o.getCurrentDate()-o.getMaxPeriod());

/** ©assert((o.balance()>=0) && ((o.getCurrentDate()-
o.getLastActivityDate())> = o .getMaxPeriod()) && !(o.isFrozen())) */

/* Test transition: source state: Inactive, sink state: Frozen, event
freeze!), predicates: none */

o .freeze();

/** ©assert((o.balance()>=0) && (o.isFrozen())) */
/* Test transition: source state: Frozen, sink state: Inactive, event

none, predicates: (getCurrentDate!) -
getLastActivityDate!))>=getMaxPeriod() */

o .setLastActivityDate(o.getCurrentDate()-o.getMaxPeriod());

/ * * ©assert((o.balance()>=0) && ((o.getCurrentDate()-
o.getLastActivityDate())>=o.getMaxPeriod()) && !(o.isFrozen())) */

}
}

public class TEST16_NewAccount{
public TEST16_NewAccount(){

/* Test transition: source state: Alpha, sink state: Open, event:
NewAccount(amount), predicates: amount>=0 */

float amount=l;
NewAccount o = new NewAccount(amount);

/** ©assert((o.balance{)>=0) && ((o.getCurrentDate()-
o .getLastActivityDate())<o.getMaxPeriod()) && !(o.isFrozen())) * /

/* Test transition: source state: Open, sink state: Inactive, event:
none, predicates: (getCurrentDate() -
getLastActivityDate())>=getMaxPeriod() */

o .setLastActivityDate(o.getCurrentDate()-o.getMaxPeriod()i;

162

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

/ * * ©assert{(o.balance{)>=0) && ({o.getCurrentDate()-
o .getLastActivityDate())>=o.getMaxPeriod()} && !(o.isFrozen())) */

/* Test transition: source state: Inactive, sink state: Frozen, event
freeze{), predicates: none */

o .freeze{);

/** ©assert((o.balance()>=0) && (o.isFrozen()}) */
/* Test transition: source state: Frozen, sink state: Open, event:

unfreeze(), predicates: balance>=0 */
/* The following is a predicate assertion */
/* * ©assert(o.balance()>=0) */
o.unfreeze();

/** ©assert((o.balance()>=0) && ((o.getCurrentDate()-
o .getLastActivityDate())<o.getMaxPeriod()) && !(o.isFrozen())) */

}
}

public class TEST17_NewAccount{
public TEST17_NewAccount{){

/* Test transition: source state: Alpha, sink state: Open, event:
NewAccount(amount), predicates: amount>=0 */

float amount=l;
NewAccount o = new NewAccount(amount);

/** ©assert((o.balance()>=0) && ((o.getCurrentDate()-
o .getLastActivityDate())<o .getMaxPeriod()) && !(o.isFrozen())) */

/* Test transition: source state: Open, sink state: Inactive, event:
none, predicates: (getCurrentDate!) -
getLastActivityDate{))>=getMaxPeriod() * /

o .setLastActivityDate(o.getCurrentDate()-o.getMaxPeriod!));

/** ©assert((o.balance()>=0) && ((o.getCurrentDate()-
o .getLastActivityDate())>=o.getMaxPeriod()) && !(o.isFrozen())) */

/* Test transition: source state: Inactive, sink state: Frozen, event
freeze!), predicates: none */

o.freeze();

/** ©assert((o.balance()>=0) && (o.isFrozen())) */
/* Test transition: source state: Frozen, sink state: Omega, event:

close!), predicates: none */
o .close();

/** ©assert(((o.balance{)<0.01)&&(o.balance()>-0.01))) */
}

}

public class TEST18_NewAccount{
public TEST18_NewAccount(){

/* Test transition: source state: Alpha, sink state: Open, event:
NewAccount(amount), predicates: amount>=0 */

float amount=l;
NewAccount o = new NewAccount(amount);

/** ©assert((o.balance()>=0) && ((o.getCurrentDate()-
o.getLastActivityDate())<o.getMaxPeriod()) && !(o.isFrozen())) */

/* Test transition: source state: Open, sink state: Inactive, event:
none, predicates: (getCurrentDate!) -
getLastActivityDate())>=getMaxPeriod() */

o . setLastActivityDate(o.getCurrentDate()-o.getMaxPeriod());

163

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

/** ©assert((©.balance()>=0) && ((o .getCurrentDate()-
o.getLastActivityDate())>=o.getMaxPeriod()) && ! (o.isFrozen{))) */

/* Test transition: source state: Inactive, sink state: Frozen, event
freeze !) , predicates: none */

o .freeze{);

/** ©assert{(o.balance()>=0) && (o.isFrozen())) */
/* Test transition: source state: Frozen, sink state: Frozen, event:

balance!), predicates: none */
o.balance();

/** ©assert((o .balance()>=0) && (o.isFrozen())) */
}

}

public class TEST19_NewAccount{
public TESTl9_NewAccount(){

/* Test transition: source state: Alpha, sink state: Open, event:
NewAccount(amount), predicates: amount>=0 */

float amount=l;
NewAccount o = new NewAccount{amount);

/** ©assert((o.balance{)>=0) && ({o.getCurrentDate()-
o .getLastActivityDate())<o.getMaxPeriod()) && !(o.isFrozen())) */

/* Test transition: source state: Open, sink state: Inactive, event:
none, predicates: (getCurrentDate() -
getLastActivityDate())>=getMaxPeriod() */

o.setLastActivityDate(o.getCurrentDate()-o.getMaxPeriod());

/** Qassert{<o.balance I)>=0) && ((o.getCurrentDate()-
o.getLastActivityDate())>=o.getMaxPeriod!)) && !(o.isFrozen())) */

/* Test transition: source state: Inactive, sink state: Open, event:
activate!), predicates: none */

o.activate();

/** ©assert((o.balance()>=0) && {(o.getCurrentDate()-
o .getLastActivityDate())<o.getMaxPeriod()) && !(o.isFrozen())) */

}
}

public class TEST20_NewAccount{
public TEST20_NewAccount(){

/ * Test transition: source state: Alpha, sink state: Open, event:
NewAccount(amount), predicates: amount>=0 */

float amount=1;
NewAccount o = new NewAccount(amount);

/** ©assert{(o.balance()>=0) && ((o.getCurrentDate!!-
o .getLastActivityDate())<o .getMaxPeriod()) && !(o.isFrozen())) */

/* Test transition: source state: Open, sink state: Inactive, event:
none, predicates: (getCurrentDate!) -
getLastActivityDate{))>=getMaxPeriod() */

o .setLastActivityDate(o .getCurrentDate()-o.getMaxPeriod());

/** ©assert((o .balance()>=0) && ((o .getCurrentDate()-
o .getLastActivityDate())>=o.getMaxPeriod()) && !(o.isFrozen())) */

/* Test transition: source state: Inactive, sink state: Omega, event:
close(), predicates: none * /

o . close();

164

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

/** ©assert(((o.balance()<0.01)&&(o.balance()>-0 . 01))) */
}

}

public class TEST2l_NewAccount{
public TEST21__NewAccount () {

/* Test transition: source state: Alpha, sink state: Open, event:
NewAccount(amount) , predicates: amount>=0 */

float amount=l;
NewAccount o = new NewAccount(amount);

/** ©assert((o.balance()>=0) && ((o.getCurrentDate()-
o.getLastActivityDate{))<o.getMaxPeriod()) && !(o.isFrozen())) */

/* Test transition: source state: Open, sink state: Inactive, event:
none, predicates: (getCurrentDate() -
getLastActivityDate())>=getMaxPeriod() */

o .setLastActivityDate(o.getCurrentDate()-o.getMaxPeriod()) ;

/** ©assert((o.balance()>=0) && ((o.getCurrentDate()-
o .getLastActivityDate())>=o.getMaxPeriod()) && !(o.isFrozen())) */

/* Test transition: source state: Inactive, sink state: Inactive, event:
balance(), predicates: none */

o.balance();

/** ©assert((o.balance()>=0) && ((o.getCurrentDateO-
o.getLastActivityDate())>=o.getMaxPeriod()) && !(o.isFrozen())) */

}
}

public class TEST22_NewAccount{
public TEST22_NewAccount(){

/* Test transition: source state: Alpha, sink state: Open, event:
NewAccount(amount) , predicates: amount>=0 */

float amount=l;
NewAccount o = new NewAccount(amount);

/** ©assert((o.balance()>=0) && ((o.getCurrentDate()-
o .getLastActivityDate{))< o .getMaxPeriod()) && !(o.isFrozen())) */

/* Test transition: source state: Open, sink state: Omega, event:
closet) , predicates: none */

o .close();

/** ©assert(((o.balance()<0.01)&&(o.balance()>-0.01))) * /

D.2. Application Development Stage

D.2.1. Tool Inputs

We have used the prototype version of the FIST2 tool to test an implementation example

of the FIC: MyAccount class. The MyAccount class can be implemented using the Hook

Master tool. The freeze and unfreeze methods are not implemented in the MyAccount

class and, therefore, the test drivers that cover them cannot be used to test the MyAccount

165

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

class. In addition, the application developer added a new method: PrintStatement that can

be invoked at any model state. The prototype version of the tool is not integrated yet with

the Hook Master tool to reflect the specification ignorance and addition performed when

implementing the FIC. In our example, using the prototype version, the user deleted the

Frozen state and the transitions associated with it and added the transitions for the

specifications of the PrintStatement method (i.e., a self loop transition associated with the

method call as an event was added to the open, inactive, and overdrawn states). This

results in having the following model description written using the syntax listed in

Appendix C.

"Alpha"{
var_invariant = ""
app_specific = false
}

"Overdrawn"{
var_invariant = "(o.balance()<0) && ((o.getCurrentDate()-
o .getLastActivityDate())<o.getMaxPeriod()) && !(o.isFrozen())"
app_specific = false
}

"Open"{
var_invariant = "(o.balance()>=0) && ((o.getCurrentDate () -
o .getLastActivityDate())<o.getMaxPeriod()) && ! (o.isFrozen())”
app_specific = false
}

"Inactive”{
var_invariant = ”(o.balance()>=0) && ((o.getCurrentDate()-
o .getLastActivityDate())>=o.getMaxPeriod{)) && !(o.isFrozen(>)”
app_specific = false
}

"Omega"{
var_invariant = "((o .balance () <0 . 01) && (o. balance {) >-0 . 01)) ''
app_specific = false
}

"Alpha"= >"Open"{
event = "NewAccount"
parameter = "amount":"float"
condition = "amount" >= "0”;[("float amount=l;")]
guaranteed = true
app_specific = false
}

"Overdrawn"=>"Overdrawn"{
event = "deposit"
parameter = "amount"float”

166

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

condition = “(balance + amount)" < ”0";[("amount=
o.balance();")]

guaranteed = true
aPP—specific = false
}

”Overdrawn"=>“Overdrawn"{
event = "balance"
guaranteed = true
app_specific = false
}

"Overdrawn ”=>"Open"{
event = "deposit"
parameter = "amountfloat“
condition = "{balance + amount)" >= "0";[("amount=l-

o .balance ();'')]
guaranteed = true
app_specific = false
}

"Overdrawn"=>"Omega"{
event = "close"
guaranteed = true
app_specific = false
}

“Open"=>"Overdrawn"{
event = "withdraw"
parameter = "amount":"float"
condition = "(balance - amount)" < "0";[("amount=l+

o .balance();")]
guaranteed = true
app_specific = false
}

"Open"=>"Open"{
event = "deposit”
parameter = "amount":"float”
condition = "amount" = "1.0";[("amount=l;")]
action = other;"balance";(("balance()=@pre balance()

+amount">]
guaranteed = true
app_specific = false
}

”Open11 =>”Open" {
event = "withdraw"
parameter = "amount”:"amount"
condition = "(balance{)-amount)" >= "0";[("amount=

o .balance();”)]
guaranteed = true
app_specific = false
}

"Open"=>"Open"{
event = "balance"
guaranteed = true
app_specific = false
}

"Open"= >“Inac t ive"{
event = ""
condition = "(getCurrentDate() - getLastActivityDate()} "

"getMaxPeriod()";[("o .setLastActivityDate

167

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(o.getCurrentDate{)-o.getMaxPeriod());")]
guaranteed = false
app_specific = false
}

"Open"=>"Omega"{
event = "close"
guaranteed = true
app_specific = false
}

"Inactive"=>"Open"{
event = "activate"
guaranteed = false
app_specific = false
}

"Inactive"=>"Inactive"{
event = "balance"
guaranteed = false
app_spec i f i c = false
}

"Inactive"=>"Omega"{
event = "close"
guaranteed = false
app_specific = false
}

"Open"=>"Open"{
event = "PrintStatement"
guaranteed = true
app_specific = true
}

"Overdrawn"=>"Overdrawn"{
event = "PrintStatement"
guaranteed = true
app_specific = true
}

"Inactive"=>"Inactive"{
event = “PrintStatement"
guaranteed = false
app_specific = true
}

The generated test drivers given in Appendix D.1.2, from which the tool selected the

non-broken test drivers, are input to the tool at the application development stage. The

following code provides the Java implementation of the framework extended class (i.e.,

Account) and the implemented FIC (i.e., MyAccount). The MyAccount class is

instrumented with Javadoc comments written in DbC for test case evaluation purposes.

The instrumentation was done manually and will be automated when the tool is integrated

with the Hook Master tool.

168

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

public class Account {
Account(float amount) {

this.Balance=amount;
}
float balance{) {

return Balance;
}
void withdraw(float amount) {

Balance=balance()-amount;
}
void deposit(float amount) {

Balance=balance()+amount;
}
float Balance;

public class MyAccount extends Account{
/** ©post ((balance()<amount+0.01)&&(balance()>amount-0.01)) */
MyAccount(float amount) {

super(amount);

}
float balance() {

return super.balance();
}
/ * * ©post (balance()> ($pre(float,balance())-0.01-amount))&&(balance()

($pre(float,balance())+0.01-amount))*/
void withdraw(float amount) {

super.withdraw(amount);
}

/** ©post (balance()> (amount+$pre(float,balance())-0.01))&&(balance()
(amount+$pre(float,balance())+0.01))*/

void deposit(float amount) {
super.deposit(amount);

}

int getLastActivityDate() {
return lastActivityDate ;

}
/** ©post(getLastActivityDate()==year)*/
void setLastActivityDate(int year) {

lastActivityDate=year;
}
/** ©post Sresult == 5 */
int getMaxPeriod() {

return 5;
}

int getCurrentDate() {

}
boolean isFrozen() {

return frozen;
}
/** @pre (getCurrentDate()-getLastActivityDate())>=getMaxPeriod()*/
/** ©post (getLastActivityDate()-getCurrentDate())==0*/
void activate() {

lastActivityDate=getCurrentDate();
}
/* ©post (balance()<0.01)&&(balance()>-0.01)*/
void close() {

169

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

withdraw (balance (}) ,-
}
void PrintStatement() {

}
int lastActivityDate;
boolean frozen;

D.2.2. Tool Outputs

1. Applicable test drivers

The tool found that the test drivers numbered 1-7 and 19-22 are applicable for testing the

MyAccount class. In addition, the FIST2 tool augmented three test cases to cover the new

transitions associated with PrintStatement event. The following classes generated by the

tool implement the augmented test cases. The added statements are bolded.

public class TEST23_NewAccount{
public TESTl_NewAccount(){

/* Test transition: source state: Alpha, sink state: Open, event:
NewAccount(amount), predicates: amount>=0 */

float amount=l;
NewAccount o = new NewAccount(amount);

/** Sassert((o.balance()>=0) && ((o.getCurrentDate()-
o.getLastActivityDate())<0 .getMaxPeriod()) && !(o.isFrozen())) */

/* Test transition: source state: Open, sink state: Open, event:
PrintStatment() , predicates: none * /

o . PrintStatment();

/** ©assert((o.balance()>=0) && ((o .getCurrentDate()-
o.getLastActivityDateO)<o„getMaxPeriod()) && 1(o.isFrozen())) * /

)
}

public class TEST24_NewAccount{
public TEST3_NewAccount(){

/* Test transition: source state: Alpha, sink state: Open, event:
NewAccount(amount), predicates: amount>=0 * !

float amount=l;
NewAccount o = new NewAccount(amount);

/ * * ©assert((o.balance()>=0) && {(o.getCurrentDate()-
o.getLastActivityDate())< o .getMaxPeriod()) && !(o.isFrozen())) */

/* Test transition: source state: Open, sink state: Overdrawn, event:
withdraw(amount), predicates: (balance - amount)<0 */

amount=l+o.balance();
o .withdraw(amount);

/* * ©assert((o.balance{)<0) && ((o.getCurrentDate()-
o.getLastActivityDate{))<o.getMaxPeriod()) && ■(o.isFrozen())) */

/ * Test transition: source states Overdrawn, sink states Overdrawn,
event: PrintStatment(), predicates: none */

o .PrintStatment();

170

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

/** ©assertC{o.balance()<0) && {(o.getCurrentDate<)-
o .getLastActivityDate())<o.getMaxPeriod()) && I(o.isFrozen{))) * I

}

public class TEST25_MewAccount{
public TEST21_NewAccount{){

/* Test transition: source state: Alpha, sink state: Open, event:
NewAccount(amount), predicates: amount>=0 */

float amount=l;
NewAccount o = new NewAccount(amount);

/** @assert((o.balance()>=0) && ((o.getCurrentDate{)-
o.getLastActivityDate())<o .getMaxPeriod()) && !(o.isFrozen())) */

/* Test transition: source state: Open, sink state: Inactive, event:
none, predicates: (getCurrentDate{) -
getLastActivityDate())>=getMaxPeriod() */

o .setLastActivityDate(o.getCurrentDate()-o.getMaxPeriod(});

/** Sassert((o.balance()>=0) && ((o.getCurrentDate()-
o .getLastActivityDate())>=o.getMaxPeriod()) && !(o.isFrozen())) */

/* Test transition: source state: Inactive, sink state: Inactive, event:
PrintStatment(), predicates: none */

o.PrintStatment() ();

/** ©assert((o.balance()> = 0) && ((o .getCurrentDate()-
o.getLastActivityDate())>=o.getMaxPeriod()) && i(o.isFrozen())) */

}
>

2. Driver class

The FIST2 tool detected the broken test drivers and generates the following driver to

invoke the non-broken and augmented test drivers.

public class DRIVER_MyAccount{
public static void main(String args[]){

//invoking non-broken test drivers
new TESTl_NewAccount();
new TEST2_NewAccount();
new TEST3_NewAccount();
new TEST4_NewAccount();
new TEST5_NewAccount{);
new TEST6_NewAccount();
new TEST7_NewAccount();
new TEST19_NewAccount();
new TEST2 0_NewAccount();
new TEST21_NewAccount();
new TEST22_NewAccount();

//invoking augmented test drivers
new TEST23_NewAccount();
new TEST2 4_NewAccount();
new TEST2 5_NewAccount();

}
}

171

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. FIC mapping class

The FIST2 tool generated the following mapping class
public class NewAccount extends MyAccount{

public NewAccount{float amount) {
super(amount);

}
float balance() {

return super.balance();
}
void withdraw{float amount) {

super.withdraw(amount);
}
void deposit(float amount) {

super.deposit(amount);
}
void activate() {

super.activate();
}
void close() {

super.close();
}

/ the following method is not generated automatically in the prototype
version of the tool */

public boolean isFrozen () { return false; }

4. Testing Results

The FIST2 tool compiled the non-broken test drivers, the driver class, the FIC mapping

class, and the implemented FIC. Finally, the tool executed the driver class and used the

Jcontract tool to produce the testing results shown in Figure D.3. The results are also

stored in a log file as follows.

Jcontract: Version 1.5 -- Copyright (C) 2000-2002 ParaSoft
Jcontract: Environment:

java.version = 1.3.1_01

user.dir = C:\texnp FICXMy Account!inputs to FIST thesis
Jcontract: Started on: 13/03/03 6:24 PM

Jcontract:
Jcontract:
Jcontract:
Jcontract:
Jcontract:
Jcontract:
Jcontract:
Jcontract:
Jcontract:
Jcontract:
Jcontract:
Jcontract:
Jcontract:
Jcontract:
Jcontract:

Loaded
Loaded
Loaded
Loaded
Loaded
Loaded
Loaded
Loaded
Loaded
Loaded
Loaded
Loaded
Loaded
Loaded
Loaded

instrumented
instrumented
instrumented
instrumented
instrumented
ins trumented
instrumented
instrumented
instrumented
instrumented
instrumented
ins trumented
ins trumented
ins trumented
instrumented

class: TESTl_NewAccount
class: MyAccount
class: TEST2_NewAccount
class: TEST3_NewAccount
class: TEST4_NewAccount
class: TEST5_NewAccount
class: TEST6_NewAccount
class: TEST7_NewAccount
class: TEST19_NewAccount
class: TEST20_NewAccount
class: TEST2l_NewAccount
class: TEST22_NewAccount
class: TEST23_NewAccount
class: TEST2 4_NewAccount
class: TEST25_NewAc c oun t

172

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Jcontract: Ended on: 13/03/03 5:24 PM

Jcontract: Runtime Statistics:
Instrumented classes loaded: 15
@pre checks: 1
©post checks: 122
©invariant checks: 0
©concurrency checks: 0
©assert checks: 37

*> ■ .lcontra»:l M ontlw ■ l t f»11.>N ew A rnuun t

p ie Edit risip:

-# R untim e P ro g re s s
■» [01 C ontract V iolations

00 00 00 t P; jgran- at-Sed

luntime Progress
♦ in s tru m en ted C la s s e s loaded: 15
♦ © p re checks: 1

© p o s t checks: 122
■* © invarian t c h eck s : 0

 ♦ © concu rrency ch eck s: 0
 ♦ © a s s e r t ch eck s: 37

f l lO J Contract Violations

Figure D.3: The MyAccount class testing results produced using the Jcontract tool

173

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

