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Abstract 

Multi-period planning is a cost efficient method for designing backbone networks and has 

been widely used for many years. To ensure the quality of the network service, network 

survivability has also become a critical requirement in network planning and design. The 

purpose of this thesis is to take multi-period incremental demands, network survivability 

and economies of scale into account, and to focus on the optimization of network 

topology design, working demand routing, and spare capacity allocation. To fulfill this 

objective, an integer linear programming (ILP) model for a multi-period survivable 

network augmentation (MPSNA) problem is developed, and the shared backup path 

protection (SBPP) mechanism is used. However, the MPSNA problem is very 

time-consuming to solve even for a very small network. To overcome this difficulty, a 

four-stage ILP-based heuristic method is developed to solve the MPSNA problem. In 

addition, the effectiveness of the implementation of the Dantzig-Wolfe decomposition for 

solving the MPSNA is also investigated. 
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Chapter 1: Introduction 

1.1 Background  

Telecommunication networks play a very important role in modern society. They also 

have experienced significant traffic increases. For example, global Internet traffic in 2008 

was more than twice as much as it was in 2006. The availability of television programs 

on network websites and different kinds of online services are leading to a dramatic 

increase in bandwidth demand [1].  

With the explosion of telecommunication technologies in areas like personal life, 

business activity, banking systems and government work, survivable networks are deeply 

depended upon by society [2]. Once a network failure occurs, the loss caused by the 

failure can be immeasurable. Table 1 shows varying degrees of impacts of network 

service outage. As one can see, if the outage time is longer than 10 seconds, the failure 

will affect a business, which can lead to a huge loss. However, network failure does 

indeed happen frequently [3]. Hence, how to ensure the survivability of 

telecommunication networks has become a popular research topic. Meanwhile, many 

failure protection and restoration techniques have also been developed. As a reference [4], 

the author gives a detailed introduction to these survivability principles, such as 

automatic protection switching (APS), shared-backup path protection (SBPP), span 

restoration, path restoration, p-cycles, etc. 
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Table 1: Service outage impacts [5]. 

Time of 
outage 

(second) 
0.01-0.1 0.1-1 1-10 10-100 100-5000 5000-1000

Service 
impact 
severity 

No 
impact. 

 

5% voice 
disconnect.

Minor 
delays, 

some voice 
calls 

dropped, 
video 

degradation.

Business 
impacts. 
All voice 
call lost 

Business 
impacts. 

Application 
timeout 

Severe 
business 
impacts. 

Based on the geographic scale, telecommunication networks can be divided into local 

area network (LAN), metropolitan area network (MAN) and wide area network (WAN) 

[6]. In general terms, telecommunication networks break down to backbone networks [7] 

and access networks [8]. An access network usually directly connects to an end user or 

customers. A backbone network interconnects diverse access networks, collects all the 

information and provides paths for exchanging information between different access 

networks so that it is usually made up of high-speed and high-capacity links. The 

relationship between a backbone network and access networks is visualized in Figure 1. 
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hand, with the dramatic growth in bandwidth demand, how to plan a network to adapt to 

this dynamic and increasing demand is still a challenge.  

So far, there are many papers that study the survivable network design problem. Some 

articles such as [12] and [13] focus on the network topology design issue. Some articles 

such as [14]-[16] concentrate on the issue of working and spare capacity placement with 

given network topology. However, these studies all focus on the one period network 

planning that cannot satisfy the dynamic and incremental demands. 

In order to plan networks that adapt to the growth in demand and find a cost efficient way 

to build a robust backbone network, multi-period network design [17], which refers to 

network design problems that span over a time horizon, is recommended . We also study 

the topic in this study. 

1.2 Thesis Outline 

The thesis is organized as follows: 

In Chapter 1, we give a brief introduction of our research topic, followed by the thesis 

outline. 

In Chapter 2, we give an introduction to optimization. First, we introduce integer linear 

programming (ILP). Then, we introduce some classical optimization techniques such as 
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branch-and-bound, column generation, Dantzig-Wolfe decomposition and unimodularity. 

In the end, meta-heuristic techniques and some custom heuristics are introduced. 

In Chapter 3, we introduce network survivability mechanisms and network design 

paradigms. In addition, we give a review of previous works about optimization of SBPP 

problems, network topological design and optimization, and multi-period network design 

and optimization.  

In Chapter 4, we describe the motivation and research goals. The proposed methodology 

is also presented in the chapter. 

In Chapter 5, we develop an ILP model for the multi-period survivable network 

augmentation (MPSNA) problem, discuss the complexity of the MPSNA problem, and 

provide experimental networks that will be used in the chapter and remaining chapters. In 

addition, we also discuss the experimental study method and present the benchmark 

solutions of MPSNA problems. Our benchmark solutions show that the MPSNA problem 

is very time-consuming to solve even for a small network. For example, it takes 24 hours 

to only get a solution with a 32% optimality gap for even a small 12-node test network. 

In Chapter 6, to reduce the solution runtime of the MPSNA problem, we apply a 

four-stage ILP-based heuristic approach based on specific structural characteristics of the 

MPSNA model to solve this problem. The details of this approach and experimental study 
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method are presented, followed by results and discussion. Our results show that the 

four-stage ILP-based heuristic approach is very effective for solving the MPSNA problem 

with a reasonable optimality gap. 

In Chapter 7, we investigate the effectiveness of implementing of the Dantzig-Wolfe 

decomposition to improve the four-stage ILP-based heuristic approach. We find that the 

ILP model of the MPSNA problem is suitable for Dantzig-Wolfe decomposition and 

reformulate the ILP model of the MPSNA problem with the implementation of the 

Dantzig-Wolfe decomposition algorithm. Our experimental results demonstrate that 

Dantzig-Wolfe decomposition is not an effective algorithm for solving a problem whose 

sub-problems are unimodular. A detailed results analysis is discussed in the chapter. 

In Chapter 8, we summarize this thesis and list contributions of this study, followed by a 

brief description of possible future research opportunities. 
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Chapter 2: Introduction to Optimization 

2.1 Integer Linear Programming 

A linear programming (LP) problem is an optimization problem in which we attempt to 

maximize (or minimize) a linear function of the continuous decision variables and the 

values of the continuous decision variable must satisfy a set of constraints [18]. The 

algebraic form of a LP is as follows: 

Objective function:  Maximize: i i
i

z c x             (2.1) 

Constraints:    Subject to: ij i j
i

a x b   ( 1 2 )j , ,......n        (2.2) 

Bounds:        0ix     ( 1 2 )i , ,......m        (2.3) 

ci, aij, bj are the model parameters and xi is a decision variable. If one or more variables 

are restricted to integer values in the above model, we can call this model an integer 

linear programming (ILP) problem [19]. 

It is common to see that many ILP problems have a huge number of variables and 

constraints. Those ILP problems occurring in practice can be extremely large and very 

hard to solve. In order to effectively solve the large-scale ILP problems, a variety of 

tactics can be used at the solution phase. For example, adding valid constraints and 

bounds to the original problem can reduce the ILP problem's search space, or relaxing 
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certain integer variables can also help speed up solutions, or a user-defined MIP gap and 

runtime limits can be set when we use some solvers such as CPLEX and Gurobi to solve 

ILP problems [4]. Besides, there are many advanced techniques developed to help solve 

large-scale ILP problems. In the following sections, we give a description of these 

techniques. 

2.2 Classical Optimization Techniques 

2.2.1 Branch-and-bound 

Branch-and-bound [20] is a basic and widely used technique for solving ILP problems. 

The first step of the branch-and-bound approach is to solve a LP relaxation of an ILP 

problem. LP relaxation means all integer variables in an ILP problem should be relaxed to 

continues variables. After solving the LP relaxation of an ILP problem, if the results are 

integer solutions, we can stop as the solutions are optimal. However, if the results are 

fractional solutions, one real-valued integer variable needs to be selected for branching. 

Then two new sub-problems are generated, each with more restrictive bounds for the 

branching variables. We continue to solve each sub-problem and branch the fractional 

solutions until all branches are formed. Cutting plane algorithm [21] is another widely 

used technique to tighten the LP relaxation. It can be integrated with the 

branch-and-bound approach to generate a new algorithm, which is called branch-and-cut 
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[22]. Nowadays, some commercial ILP solvers such as CPLEX and Gurobi usually use a 

branch-and-cut algorithm to solve ILP problems, as in [18], [23] and [24].  

2.2.2 Lagrangian Relaxation 

Lagrangian relaxation [25] is a mathematical programming relaxation method that is 

being increasingly used in large-scale ILP applications. The general idea of Lagrangian 

relaxation is to relax the problem by removing the “hard” (difficult) constraints and 

putting them into the objective function with appropriate Lagrangian multipliers (weights) 

by which we are penalized for not satisfying the hard constraints. The relaxed problem of 

maximizing or minimizing the objective function of the Lagrangian multipliers is called 

the Lagrangian dual problem. Properly solving the Lagrangian dual problem and 

selecting an appropriate set of values for Lagrangian multipliers can result in a tight 

bound. In practice, the relaxed problem can be often solved more easily than the original 

problem as the “hard” constraints have been moved to an objective function. After 

solving the relaxed problem, a lower or upper bound for the original problem can be 

acquired. Adding this bound back to the original problem can reduce the solution space, 

thereby speeding up solutions [4][25]. 

2.2.3 Column Generation 

Column generation [26] is an efficient algorithm for solving large-scale LP problems that 

contain huge numbers of variables (columns). For those problems, the value of most of 
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the variables is zero in the optimal solutions; only a subset of variables needs to be 

considered. As a result, it is not necessary to tabulate all columns when we use column 

generation to solve LP problems. With the application of the column generation algorithm, 

the original LP problem is divided into a master problem and a sub-problem. The master 

problem is solved with a small set of variables. Then, the sub-problem is solved to decide 

which other variables are needed to access to the master problem. Column generation 

repeats this process until its solution is optimal [18][27]. In order to effectively solve 

large-scale ILP problems with a huge number of variables, the column generation 

algorithm can be integrated with the branch-and-bound approach. The combination of 

these two algorithms generates a new algorithm called branch-and-price. The main idea 

of branch-and-price is to apply column generation at each branch-and-bound tree [27]. 

One of the most successful applications of column generation or branch-and-price is to 

solve the LP or ILP cutting-stock problem [27]. 

2.2.4 Dantzig-Wolfe Decomposition 

Dantzig-Wolfe decomposition [29] is another efficient technique for solving large-scale 

LP problems whose coefficient matrices have a block angular structure. The description 

of a block angular structure is visually expressed in Figure 2. As shown in Figure 2, the A 

matrix represents the coupling constraints and each B represents the independent 

sub-matrices. In a LP model, if we can find one or more independent constraints linked 

by coupling constraints, then this model can be effectively solved by Dantzig-Wolfe 
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decomposition algorithm. This approach translates an original problem to an equivalent 

master problem that has fewer constraints but much more columns than the original 

problem. The equivalent master problem can be solved by the column generation 

algorithm [19][27]. The Dantzig-Wolfe decomposition algorithm will be discussed in 

detail in this section, as it is one of the algorithms used in this study. 

1 2

1

2

n

n

A A ... A

B

B

... B
 

Figure 2: An example of the block angular structure. 

The development of the Dantzig-Wolfe decomposition algorithm depends on the 

theorems on convex combination and the column generation algorithm, respectively [27]. 

Consider a LP problem whose constraint matrix has a block angular structure:  

Original problem: 

Minimize   z cx                  (2.4) 

Subject to   1Ax d   (the number of m coupling constraints)       (2.5) 

     2Bx d   (the number of n independent constraints)      (2.6) 
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     0x                   (2.7) 

c, d1, d2 are all vectors and A and B are coefficient matrices. We call this problem the 

original problem. 

Assume that the convex polyhedron is bounded. 

     2{ 0}S x | Bx d ,x                (2.8) 

According to the theorem of convex combination, any elements x  in S  can be written 

as 

     j
j

j

x x                 (2.9) 

where     1j
j

  , 0j               (2.10) 

Substituting constraint (2.9) into (2.4) and (2.5) and combining constraint (2.10) are seen 

to comprise a linear program in λj. We call this reformulated problem the master problem, 

which is equivalent to the original problem. 

Master problem: 

Minimize   ( )j
j

j

cx                 (2.11) 

Subject to   1( )j
j

j

Ax d               (2.12) 
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     1j
j

                 (2.13) 

     0j                  (2.14) 

xj are the extreme points of the region S, and λj becomes new variable in the master 

problem [18][19][27]. 

The master problem is equivalent to the original problem. However, it only has m+1 

constraints, which are much less than the number of constraints m+n in the original 

problem. If n is large, there will be a sizable saving. On the other hand, the master 

problem will have many columns as the polyhedron S  has a huge number of extreme 

points if n is large. Rather than tabulating all these columns, we can generate columns to 

enter the basis as needed by solving a column generation sub-problem: 

Sub-problem: 

Minimize:   ( )c A x                 (2.15) 

Subject to:   2Bx d                 (2.16) 

     0x                  (2.17) 

π and ρ are the shadow prices of constraints (2.12) and (2.13), respectively [26]. Here, we 

perform an operation called pricing out [26] to calculate the objective function. 



14 
 

For an ILP problem, if it has a block angular structure and the sub-problems are bounded, 

we can also reformulate it using the Dantzig-Wolfe decomposition algorithm. In this case, 

the bounded polyhedron in the LP problem is changed to a finite integer set in the ILP 

problem. The way of reformulating a pure integer problem using Dantzig-Wolfe 

decomposition is presented by Vanderbeck [30] and is briefly described below. 

If we restrict the variable x in the original problem to an integer and assume that the 

integer polyhedron is bounded. 

     2{ 0 }S x | Bx d ,x and int eger             (2.18) 

Then any elements x  in S  can be written as 

     j
j

j

x x                (2.19) 

where     1j
j

  , {0,1}j              (2.20) 

Accordingly, formulations of master and sub-problem of the ILP problem take the 

following forms. 

Master problem of the ILP problem: 

Minimize   ( )j
j

j

cx                 (2.21) 

Subject to:   1( )j
j

j

Ax d               (2.22) 
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     1j
j

                 (2.23) 

     {0 1}j ,                 (2.24) 

Sub-problem of the ILP problem: 

Minimize   ( )c A x                 (2.25) 

Subject to:   2Bx d                 (2.26) 

     0x  and integer             (2.27) 

If we compare the master and sub-problem of the ILP problem with the ones of the LP 

problem, we can see that the formulations are almost the same, except that λj becomes a 

binary variable rather than a continuous variable and x is restricted to an integer. 

It is obvious that the reformulation of the ILP problem gives rise to an integer master 

problem. But we can solve the LP relaxation of the ILP master problem by using column 

generation, which provides a tighter bound for the original ILP problem since the LP 

relaxation of ILP master problem is actually equivalent to the Lagrangian dual problem 

[30][31]. In addition, the Dantzig-Wolfe decomposition algorithm can also be integrated 

with branch-and-bound techniques to solve ILP problems [30][32]. Cutting planes can 

also be added to strengthen the relaxation of each node of branch and bound tree, which 

is called branch-price-and-cut. Even though there are many successful applications of 
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branch-and-price and branch-price-and-cut in industry [33], there are still some 

challenges when we implement these techniques in practice due to the difficulties of 

branching [32]. However, we can at least get a tighter bound for the original ILP problem 

if only the LP relaxation of the ILP master problem is solved by column generation. In 

other words, the column generation is implemented only in the root node rather than each 

node of the branch-and-bound tree [32]. 

In this work, we take the advantage of the block angular structure of the multi-period 

survivable network augmentation (MPSNA) problem to reformulate the ILP instance of 

this problem, followed by solving the LP relaxation of the ILP master problem by column 

generation to get a tight bound. Then, we will add this tight bound back to the original 

ILP problem and resolve the MPSNA problem. 

2.2.5 Unimodularity 

Generally, it is hard to solve an ILP problem because of the integer variable. However, 

there are some exceptions. For example, if one integer problem has the property of 

unimodularity [34], it can be solved as a linear programming (LP) problem and the 

results can still be kept in integer form. 

A matrix is unimodular if every square sub-matrix has determinant 0, 1 or -1 [34]. For an 

ILP problem, if its coefficient matrix has this property, then this ILP problem is 
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unimodular. The detailed sufficient conditions for a matrix to be unimodular are given in 

[35]. 

Unimodularity is a useful property for solving ILP problems because the ILP problems 

with this property can be solved as LP problems. In other words, the results of variables 

are still integers even though the integrality of variables is relaxed. Therefore, if an ILP 

problem is unimodular (e.g., the minimum-cost network flow problem is unimodular 

naturally) or if it can be modified to a related unimodular problem, then the ILP problem 

can be solved easily taking advantage of the unimodularity. 

2.3 Meta-heuristic Techniques 

The optimization algorithms discussed in the previous section such as Lagrangian 

relaxation, column generation and Dantzig-Wolfe decomposition can be classified as 

deterministic optimization algorithms. Correspondingly, the meta-heuristic algorithms are 

classified as stochastic optimization algorithms. A meta-heuristic algorithm is a basic 

framework and a high-level strategy for optimization that seeks to improve on candidate 

solutions until a near optimal solution is found. Meta-heuristic algorithms have been 

widely used in recent years since they are applicable to a variety of different problems by 

only expressing problems in their frameworks with no other dependence on particular 

problem specifics [3][4]. Genetic algorithm, tabu search and simulated annealing are 

three well-developed and most commonly used meta-heuristic algorithms [4], [36]-[38].  
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Genetic algorithm is inspired by ideas of natural evolution. The basic idea of genetic 

algorithm is that they start from a population of randomly generated individuals and then 

improve the fitness of all individuals in the population through producing more 

generations. The problems that can be presented in binary are often solved effectively by 

genetic algorithms [4][37]. Tabu search is another widely used meta-heuristic algorithm. 

It starts with an initial feasible solution and then continues to search for better solutions 

in the neighborhood. One of the features of tabu search is that it avoids searching the 

solutions that have been previously visited through use of a tabu list, which contains a 

number of rules to disallow certain moves [38]. Simulated annealing is inspired by the 

concept of annealing, which is a technique of heating and slowly cooling the metal to 

strengthen its crystalline structure in a particular fashion [3], and it is designed to search 

for the global minimum among the local minima. The typical feature of simulated 

annealing is that it not only accepts the improvements but also accepts deteriorations with 

some probability to escape local minima, as seen in [3], [4] and [39]. In practice, 

meta-heuristic algorithms were recently applied to a multi-period network design 

problem [40]. 

Meta-heuristic algorithms can also be combined with other algorithms to solve some 

complicated problems. For example, a new heuristic method has been developed that 

combines the genetic algorithm and the shortest path algorithm to solve a long-term 

network design problem [41].  
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Meta-heuristics have been the promising and popular algorithms in recent years as they 

are not problem-specific. However, they still have some drawbacks. For example, the 

main disadvantage of meta-heuristics is that they cannot guarantee an optimal solution or 

even a feasible solution and they cannot know how far from optimal solutions their 

results are [3][4]. 

2.4 Other Heuristic Techniques 

2.4.1 Custom Heuristics 

Besides the meta-heuristic algorithms discussed above, there are some other custom 

heuristic algorithms. In practice, well-developed custom heuristics can provide a good 

solution for problems. However, most custom heuristics are designed to fit specific 

problems rather than a variety of different problems [42]. Custom Heuristic algorithms 

are also developed to solve network design problems. For example, an ultra-fast heuristic 

algorithm is developed based on statistical analysis of experimental data for finding 

working paths to solve a shared backup path protection problem. The results showed that 

their proposed custom heuristic algorithm had better overall performance than its ILP 

[43]. 
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2.4.2 ILP-based Heuristics  

The last technique discussed in this section is the ILP-based heuristic method. As the 

name implies, the ILP-based heuristic method is developed based on the problem’s ILP 

model. The key idea of the ILP-based heuristic method is to reduce the complexity of the 

original ILP model and then to resolve the simplified ILP model [3]. ILP-based heuristic 

method is easy to use since only little effort is needed for code development. In addition, 

the ILP-based heuristic method can often outperform pure heuristics for the same 

problem [4]. Researchers also have discussed different classed of such heuristics [4]. 

ILP-based heuristic methods are also widely used to solve network design problems. For 

example, some researchers usually generate limited numbers of eligible route candidates 

instead of all distinct routs to reduce the complexity of problems when they use the 

arc-path approach [3][4] to formulate their network design problems. This widely used 

tactic is one class of ILP-based heuristics. A three-stage ILP-based heuristic solution 

method is developed to solve a topological transport network design problem [13]. This 

approach aims to form a smaller topology space when compared to the full network by 

generating working span first and then augmenting backup spans. In this study, we will 

slightly modify this three-stage ILP-based heuristic solution method and use the modified 

heuristic approach, which is called the four-stage ILP-based heuristic approach, to solve 

the multi-period survivable network augmentation (MPSNA) problem. 
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Chapter 3: Network Survivability and 
Network Design and Optimization 

3.1 Network Survivability 

3.1.1 Introduction 

As we briefly discussed in Chapter 1, today's society highly depends on a survivable 

network, and network survivability has been one of the critical requirements of network 

planning and design. As a result, many failure protection and restoration techniques have 

been developed in recent years. General speaking, there are two kinds of survivability 

mechanisms. They are protection scheme and restoration scheme, respectively. A 

protection schemes should assign backup paths in advance of failure and be dedicated to 

protecting against a specific failure such as 1+1 APS, 1:1 APS and shared backup path 

protection (SBPP) mechanisms. On the other hand, a restoration scheme in when backup 

paths do not need to be pre-defined but can be configured when a failure arises, such as 

span restoration and path restoration [3]. The main difference between failure protection 

schemes and restoration schemes is that the restoration paths used to protect the failure 

span are nominally re-routed or cross-connected in real time, rather than pre-defined and 

possibly pre-connected. The main advantage of a restoration scheme is that it is generally 

more flexible than a protection scheme, and it is easier to adapt to unexpected changes in 

the network. However, a restoration scheme is often slower than a protection scheme. 
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Though these differences were once well understand and defined, the differences of these 

two types of survivability schemes are now more “fuzzy” than their original meanings, 

with substantial overlap between the two. For instance, many restoration mechanisms can 

be modified into pre-planned protection mechanisms depending on their specific 

implementations [3]. 

In this chapter, we will briefly discuss the following widely used survivability 

mechanisms: 1+1 APS, 1:1 APS, SBPP, span restoration and path restoration. All of these 

survivability mechanisms work under a mesh network [44].  

3.1.2 Automatic Protection Switching (APS) 

The automatic protection switching (APS) system [4] can be considered as the simplest 

class of network survivability schemes in the event of network failure. 1+1 APS [4] is the 

simplest and most basic one among different kind of APS system [3][45][46]. In 1+1 APS, 

the same traffic signals are dual-fed into two disjoint paths simultaneously. If a failure 

occurs on one of two disjoint paths, the receiver will choose traffic signals from the other 

path. Otherwise, the receiver will utilize signals from any one of two paths and give up 

another signal. 1+1 APS is an end-to-end path protection scheme and the protection path 

is pre-defined before the failure arises. The basic operation of 1+1 APS is illustrated in 

Figure 3, where path 1 and path 2 are two disjoint paths and carry the same traffic signals. 

Because 1+1 APS is a very simple survivability mechanism, it is widely used when 
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this path can be switched to another standby path. However, the protection speed of 1:1 

APS is slower than 1+1 APS because the transmit signal is not always bridged for the 

protection path [4]. 

3.1.3 Shared Backup Path Protection (SBPP) 

The shared backup path protection (SBPP) [47] is similar to 1+1 APS. It is also an 

end-to-end path protection mechanism and each working path has a fully disjoint backup 

path that is pre-determined at path-provisioning time. If there is no failure on the network, 

the traffic signals are carried on the working path only; the shared backup (protection) 

path is only activated when there is a failure in one of those working paths. Since the 

same backup path is activated regardless of where the single failure occurs on the 

working path, SBPP is also called failure-independent path protection (FIPP) [3].  

The operation of SBPP is illustrated in Figure 4. A-B (blue line) and C-D (blue line) are 

two fully disjoint working paths. A-B and C-D in red lines are two backup (protection) 

paths for A-B and C-D working paths, respectively. In SBPP, the path E-D (dash line) can 

be used to protect both A-B and C-D working paths since we only consider the 

single-span failure on the network.  
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shared backup capacity. It is even slightly more efficient than span restoration since 

protection is performed between O-D pair nodes instead of between end nodes of the 

failed span [48]. Moreover, because of the pre-planned response to the failure, the 

protection speed of SBPP is faster, and the operability is simpler than those restoration 

schemes such as span restoration and path restoration. Overall, SBPP is an end-to-end 

protection mechanism that attempts to balance capacity efficiency and operation 

complexity. Due to the advantages of SBPP, this survivability mechanism is adopted in 

this study for the design of multi-period survivable networks. 

3.1.4 Span Restoration 

Span restoration [49] is one kind of restoration scheme, where restoration paths re-route 

locally between the end-nodes of the failed span. Figure 6 illustrates the operation of span 

restoration. As one can see, for each working channel on the failed span E-F, the 

restoration path is established between the end-nodes of the failed span and is formed 

through any number of distinct routes (e.g., routes E-A-B-F and E-C-D-F). The 

advantage of span restoration is that the quality of the optical path can be more easily 

controlled under span restoration when compared to the path-oriented scheme. The 

drawback of this scheme is that the span restoration network needs more spare capacity 

than path-oriented protection or restoration network (except for APS) due to its localized 

response to failure [4]. 
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3.2 Network Design Paradigms 

Network survivability has been one of the critical requirements in network planning and 

design since it can maintain the quality of network service under failure scenarios. There 

are two classical network design problems that are under the consideration of 

survivability schemes. They are the spare capacity allocation (SCA) problem and the 

joint capacity allocation (JCA) problem. In some papers, they are also called spare 

capacity placement (SCP) and joint capacity placement (JCP). The SCA problem aims to 

find a least costly way to assign sufficient spare capacity to spans for full restorability on 

a network where the working demands have already been routed [4]. There are many 

studies related to this topic. For example, in [51], the authors develop a spare capacity 

assignment model with hop limit; and in [52], two heuristic strategies are developed to 

solve the SCA problem. In contrast to SCA, the JCA aims to minimize the total cost of 

working and spare capacity. JCA design usually outperforms SCA since it can reduce 

total capacity through intelligent working flow balance [4]. On the other hand, the JCA 

problem is much more complex than the SCA problem, especially for a SBPP network. A 

detailed literature review of the optimization of the SBPP problem is presented in the 

following section, as it is the mechanism studied in this study. 

Many network design problems are studied based on a fixed network topology space, and 

the cost of the network depends only on the capacity assigned to spans. However, with 

the dramatic growth in demand, new capacities, new spans or even new nodes may need 
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to be added to an existing network topology. It is well known that adding new spans is 

expensive and topology change (e.g., deletion of spans) is disruptive to existing services. 

Hence, network topological design is another concern in the network design problem, 

especially for long-term (multi-period) network design [4][53]. Network topological 

design determines where to place the components (nodes) and fibers (spans). Moreover, 

the problem of topological design with the consideration of network survivability can 

globally minimize the cost of span installation and capacity placement. 

Compared to one period network design, multi-period network design is more flexible 

and responsive to the incremental demand since the spans can be augmented and 

capacities can also be expended with the growth in demand over a time horizon In 

addition, many studies (e.g., [54] and [55]) have shown that multi-period planning can 

provide cost efficient solutions for long-term operated networks such as backbone 

networks when compared to single-period network design. Hence, multi-period planning 

approach is recommended for finding a cost efficient way to build a robust backbone 

network. Meanwhile, various multi-period planning approaches have also been developed. 

For example, all-periods approach, incremental approach, end-of-life (EoL) approach 

and begin-of-life (BoL) approach are four basic and widely used approaches among 

different kinds of multi-period planning approaches. According to the planning 

conditions and aims, network designers can decide which approach to use for a specific 

multi-period network design problem [56]. 
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3.3 Optimization of the SBPP Problem 

As we have discussed in Section 3.1.2.2, SBPP is a simple but efficient protection 

survivability mechanism and is widely implemented in survivable network design 

problems. Many studies have proven that the SBPP is an NP-hard optimization problem 

[43], [57]-[59], and so there have been a number of algorithms that have been developed 

in order to quickly solve this problem [43], [57]-[63]. 

In [59], a two-phase heuristic approach is developed to solve the SBPP problem. In the 

first phase, a backtracking-based heuristic method, called CAFES, is used to find a 

feasible solution (i.e., an eligible pair of working paths and backup paths) for every 

lightpath request; and in the second phase, a general optimization procedure, called OPT, 

is applied to the feasible solution found in the first phase to minimize the total cost of 

working and backup paths. The results show that their two-phase heuristic algorithm 

leads to better backup sharing than another effective algorithm called full information 

routing (FIR), which is illustrated in [62]. Work in [60] applies the column generation 

algorithm to solve a LP relaxation of the SBPP problem. The results show that the 

medium-sized networks (up to 37 nodes and 57 links) can be solved to optimality within 

5 hours. However, for ILP SBPP problems, it takes a longer time to solve. The authors in 

[57] present a new multi-flow SBPP-type protection mechanism and an accompanying 

multi-flow optimization ILP model. The difference between the conventional SBPP and 

the multi-flow SBPP scheme is that the traffic between a single demand pair of a 
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multi-flow SBPP can be routed on multiple working paths rather than a single working 

path and each working path can be protected by multiple backup paths. The authors also 

point out that the multi-flow SBPP ILP model is much easier to solve to optimality and 

there is an average 1.7% of capacity cost reduction compare to the conventional SBPP 

model. In [58], the authors compare different heuristic algorithms (e.g., naive two-step 

algorithm, simulated annealing and adaptive large neighborhood search) for solving the 

SBPP problem and they also present a novel lower-bound method to improve the 

performance of the heuristics. In above papers, the SBPP problem is usually formulated 

using an arc-path approach. In [63], an arc-flow approach is used to formulate the SBPP 

model and a variable-aggregation method is developed to reduce the complexity of the 

arc-flow formulations. 

3.4 Network Topological Design and Optimization 

Topological design has been studied for quite a long time. A lot of work has made 

contributions to this topic, such as [64]-[66], addressing issues of topological design of 

ring networks, local area networks, and wide area (backbone) networks, respectively. 

Different types of network topological design problems such as the node location 

problem, the joint node location and link connectivity problem are introduced in [53]. In 

[4], besides the topological design model, some widely used algorithms for the network 

topological design such as the branch exchange algorithm, the cut saturation algorithm 

and the MENTOR algorithm are also discussed. In the early stage, some research 
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regarding this topic only focused on the network topological design, and some research 

considered the link capacity design with the topology design simultaneously; however, 

very little research took the network survivability into consideration. In studies [3] and 

[13], the authors developed an ILP model for a survivable network topological design 

problem which is specifically called the mesh topology, routing and sparing (MTRS) 

problem based on the fixed charge plus routing (FCR) problem. In their work, the MTRS 

problem is formulated using the arc-flow approach with the consideration of span 

restoration mechanism and is proven an NP-hard problem. For instance, for a 20n40s1 

full-mesh network, 24 hours of runtime can only provide a solution with an 81.8% 

optimality gap. As a result, an ILP-based heuristic approach is developed to solve the 

MTRS problem. 

3.5 Multi-period Network Design and Optimization 

Many models and algorithms for multi-period design have been developed [53]. The 

multi-period model for network design is possibly first discussed in [55]. This paper 

presents a heuristic technique that attempts to satisfy the growth in flow requirement for a 

dynamic model of the long-haul communication network. When compared to the early 

work on the design of static multi-flow commodity networks, this dynamic network 

model makes a great improvement in cost saving. However, this dynamic model is 

non-restorable. In [67], the authors consider the uncertainties of the demand forecast in a 

multi-period planning network to optimize the allocation of capacities. They also analyze 
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the trade-off between the method of installing capacity earlier and the method of 

installing capacity later. However, this study only considers the communication between 

two nodes rather than a mesh network, and the network restoration is not considered. 

In [40] and [68]-[72], the authors focus on using different heuristic methods to solve 

various cases of multi-period network design problems. In [40], the authors develop a 

new generic auto-calibrating local search algorithm to solve a multi-period network 

expansion problem that aims to decide which arc's capacity should be expanded. In this 

paper, the genetic algorithm, the hybrid algorithm, genetic/tabu search and 

genetic/simulated annealing are implemented to solve this problem. The computational 

experiments show that the performance of the new generic auto-calibrating local search 

algorithm is much better than other algorithms. In [68], the authors formulate an 

optimization model for the capacitated network design with multiple time periods 

problem with the consideration of traffic uncertainty, and they propose a hybrid primal 

heuristic approach to solve this problem. Through testing on a set of 30 instances, their 

results showed that the hybrid primal heuristic approach outperformed CPLEX. In [69] 

and [70], in order to solve a multi-period capacity expansion problem for a local 

telecommunication network with a tree topology, different heuristics are proposed. First, 

the authors propose a local search heuristic to solve this problem based on different cost 

and demand structures; and then, they use a genetic algorithm to further improve the 

solution. In [71], the authors prove that the local access telecommunication network 
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expansion problem (LATNEP) is weakly NP-hard, and they propose a 

pseudo-polynomial dynamic programming algorithm to solve this problem. Their results 

indicate that this dynamic programming algorithm is very efficient for solving the 

LATNEP problem and can solve a real-life problem instance to optimality within minutes. 

In [72], the fiber optic network expansion problem (NEP) is shown to be strongly 

NP-complete and three heuristic algorithms are proposed in order to effectively solve the 

NEP. Through comparing the performance of three heuristic algorithms, the simple 

greedy algorithm is verified to be an effective method to solve the NEP. However, these 

papers all study tree-like topology networks and don't take the network survivability into 

account. 

In addition, there are some other articles such as [56] and [73]-[75] concentrate on studies 

of different multi-period planning approaches’ cost impacts on network design. For 

instance, [56] gives an overview on different multi-period planning approaches and 

investigates the impacts of input parameters on multi-period network design; [73] aims to 

develop a new design orientation based on cost optimization and limited budget; [74] 

proposes a controlled shortest path routing approach for multi-period network design; and 

[75] compares three multi-period planning approaches based on the considerations of 

multi-period aspects of uncertainty, reduction of component cost over time and so on. 

The three approaches are the end-of life-planning approach, incremental planning with 
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forecast approach and incremental planning without forecast approach. The drawback of 

the above references is that they all neglect the network failure protection or restoration. 

Since network survivability is one of the critical requirements in network planning and 

design, some researchers have begun to consider this factor when they designed 

multi-period networks in recent years. For example, in [54] the authors develop a 

multi-period planning model with the consideration of 1+1 APS mechanism for WDM 

networks, and they also compare the performance of a sequential single-period approach 

and an integrated multi-period approach for the long-term network design. The paper 

concludes that the integrated multi-period approach results in an average 4.4% cost 

saving in comparison with the sequential single-period approach through testing on a 

variety of problem instances. In [76], the authors analyze the cost impact of different 

multi-period planning techniques on the requirements of WDM systems and optical 

transponders. A medium-sized national network that contains 16 nodes and 25 links is 

considered as an experimental network; however, in order to reduce the complexity of the 

problem, the traffic of this network is taken as a mix between half unprotected and half 

1+1 optical path protected demands. In this paper, the experimental results show that 

varied design parameters such as different traffic distribution and volume evolution 

projections can strongly affect the results. In [54] and [76], due to the complexity of the 

multi-period network design problem, only the simplest survivability mechanism, the 1+1 

APS mechanism, is considered. However, as we discussed before, the efficiency of the 
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1+1 APS mechanism is pretty low and the redundancy is up to 100%. In [77], the authors 

presents an ILP formulation and give an optimal solution for a demand-wise shared 

protection (DSP) survivable network augmentation problem. But, only an 8-node network 

is tested because of the complexity of the problem. The authors in [78] investigates the 

suitability of two different protection schemes (1+1 APS scheme and SBPP scheme) for 

multi-period network design using two different multi-period approaches (incremental 

planning approach and end-of-life planning approach). In this paper, a 14-node-21-edge 

network is considered as a experimental network and five protection strategies (1+1 APS 

incrementally planned, 1+1 APS with EoL planning, SBPP incrementally planned with 

fixed backup path routing, etc) are compared in terms of overall network costs and 

demand volume. Their results show that the SBPP scheme outperforms 1+1 APS in terms 

of both flexibility and cost efficiency. However, the main objective of this paper is to 

analyze two protection schemes’ suitability for multi-period networks rather than to focus 

on the solution quality and solution runtime, and only a 14-node-21-edge network is 

tested. 
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Chapter 4: Research Goals and Methodology 

4.1 Motivation and Goals 

To find a cost efficient way to design robust and survivable networks, the network 

survivability should be taken into account and multi-period planning is recommended, 

especially for the design of backbone networks. So far most studies related to 

multi-period network design mainly focus on developing different heuristic algorithms to 

solve this NP-hard problem and analyzing the cost impact of different multi-period 

planning techniques on network design, but neglect the network survivability. 

Only few papers consider the network survivability for multi-period network design. 

However, because of the complexity of the problem, these papers usually adopt the most 

basic and simplest protection scheme (1+1 APS) while the redundancy of spare capacity 

of 1+1 APS is 100% and is the highest compared with other survivability mechanisms. 

More recently, a demand-wise shared protection (DSP) mechanism is chosen for a 

multi-period network augmentation design. But, only an 8-node network is solved.  

SBPP is another popular and promising form of network protection mechanism and it is 

much more efficient than the 1+1 APS mechanism as the spare capacity on the backup 

path can be shared between fully disjoint working paths. As we have discussed in 

Chapter 3, there has been a significant amount of work done with SBPP in recent years. 
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To our knowledge, however, multi-period network design with the consideration of an 

SBPP mechanism has not been well studied so far. 

The purpose of this study is to take multi-period incremental demands, network 

survivability and economies of scale into account, and focus on the optimization of 

network topology design, working demand routing, and spare capacity allocation. To 

fulfill this objective, we develop an integer linear programming (ILP) model for the 

multi-period survivable network augmentation (MPSNA) problem, using the shared 

backup path protection (SBPP) mechanism. It has been shown that the topological design 

problem and the working and spare capacity allocation problem in an SBPP network are 

both NP-hard problems, [58] and [79]. The MPSNA model not only combines these two 

problems, but also incorporates multi-period planning. This makes the MPSNA model 

very time-consuming to solve even for a very small network. Therefore, a primary goal of 

the work herein is to reduce the computational time by applying a problem-specific 

ILP-based heuristic technique and the Dantzig-Wolfe decomposition algorithm. 

In summary, the goals of this work can be briefly described as follows: 

 Develop an ILP model for the MPSNA problem using the SBPP mechanism. 

 Develop a problem-specific ILP-based heuristic method to solve the MPSNA 

problem to achieve the purpose of reducing the computational time. 
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 Investigate the effectiveness of the Dantzig-Wolfe decomposition algorithm for 

solving the MPSNA problem. 

4.2 Proposed Methodology  

The intent of this study is to develop an ILP model and the associated effective solution 

procedure for solving the MPSNA problem. More specifically, we adopted the following 

methodologies in this work: 

 Formulation methods: the arc-flow approach and all-periods of multi-period 

planning approach are adopted to formulate the ILP model for the MPSNA 

problem. 

 Solving method: All ILP formulations are implemented in AMPL (a mathematical 

programming language), and are solved using Gurobi Optimizer 6.0.3. 

 Algorithms: A four-stage ILP-based heuristic approach is applied to solve the 

MPSNA problem, followed by an implementation of the Dantzig-Wolfe 

decomposition algorithm that aims to get a lower bound for the above problem. 
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Chapter 5: Multi-period Survivable Network 
Augmentation (MPSNA) Problem 

5.1 Problem Description 

5.1.1 Introduction 

It is defined in [53] that “multi-period design refers to network design problems that span 

over a time horizon in terms of weeks to months, and sometimes even to several years.” 

For instance, we assume the entire planning period is nine years which can be divided 

into three three-year periods, with new (incremental) demand for each time period, to 

plan the network to adapt to the incremental demands, one can add either new capacity or 

new spans in each period [53]. In other words, multi-period design allows each span to 

increase in capacity and allows new spans to come in and meet the growth in demand 

over time. As we have discussed before, multi-period planning can provide a cost 

efficient solution for backbone networks. Hence, it is necessary to use multi-period 

planning to design backbone networks. 

5.1.2 Adopted Approaches 

Arc-path and arc-flow are two basic approaches widely used to formulate network design 

problems. Which approach network design takes usually depends on specific conditions. 

For example, if the network topology is fixed and pre-defined, an arc-path approach is 
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preferred as we can control the number of the eligible working and restoration routes. As 

we have discussed in Section 2.1.4, generating a limited number of eligible routes can 

reduce the complexity of problems. However, if the network topology itself is a decision 

variable, the preliminary processing required for an arc-path formulation becomes 

untenable since the number of possible combinations of edges selected (topology space) 

is huge and it is hard to generate eligible routes for all these combinations [3][4]. This 

work adopts the arc-flow approach to formulate the multi-period survivable network 

augmentation (MPSNA) problem since the network topology itself is a decision variable. 

In this case, the arc-flow approach can avoid generating working and restoration routes 

ahead. 

As we discussed in Section 2.3, there are many multi-period planning approaches such as 

all-periods approach, incremental approach, end-of-life (EoL) approach and begin-of-life 

(BoL) approach. Among these techniques, we adopt the all-periods approach, to minimize 

the total network costs over all periods of time at once. Even though an all-periods 

approach to formulating the ILP model for the MPSNA problem increases its 

computational complexity because the topology expansion is included in this problem 

and it necessitates an arc-flow ILP design, this approach leads to an optimal overall 

solution which is useful when comparing other approaches. In addition, a greenfield 

situation is assumed for the MPSNA problem in this work. 
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5.1.3 Economic Considerations 

Since we take the long-term incremental demand into account, economic factors should 

be considered. However, they are very complex in reality, as is the MPSNA problem. In 

this study, we consider the following three important economic factors.  

 Time value of money. The multi-period network design problem spans several 

periods. The basic idea of multi-period design is to install most of the capacity and 

spans in the first period according to that period’s demand, and then augment them in 

subsequent periods with the growth in demand. In other words, one does not install 

capacity and spans all at once, but augments them continuously. In our problem, we 

need to minimize total network costs over all periods of time at once. However, 

today's dollar is worth more than next year’s dollar due to its earn capacity. Hence, 

our model applies a discount rate to convert future value to present value. 

 Capacity cost reduction. Besides the economic factor of time value of money, with 

the rapid innovation of technology (such as WDM), capacity cost will decrease with 

time. As a result, an effective discount rate which combines the capacity cost 

reduction rate with the discount rate of time value of money is applied in our model.  

  Modularity and economies of scale. WDM technology is now widely used in 

today’s backbone networks, and the capacity is expected to be highly modular in 

WDM networks since the adoption of modular capacities can aid both users and 
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system designers [4]. Studies [80] have also shown that the modular capacity and the 

economy of scale have great influences on network topological design, and it also 

recommend that the WDM network design should move to the truly modular 

formulation. Economies of scale are another consideration that comes into play when 

designing a network over multiple time periods, but the effects can be more 

convoluted than those of time value of money [79]. While there may be an incentive 

to place larger amount of capacity early due to decreasing per-unit costs as the 

amount of capacity placed goes up, the granular nature of capacity in various 

technology options (and perhaps also the unavailability of some technologies or sizes 

until later time periods) will provide an impulse in the opposite direction. Thus, this 

work also considers modularity and economies of scale. In [4], one finds a detailed 

explanation of both terms. Here, we give a simple example, suppose two different 

sizes of modular capacity systems are available in a backbone network. They are 12 

units system and 48 units system, respectively. If the requirement of working 

capacity on a given span is 22 units, then one 48 units system or two 12 units 

systems may be required since only the modular capacity can be placed on the given 

span. To represent economies of scale, we use the notation “N times Y times”. For 

example, a 4-times-2-times cost-scaling factor means that four times of capacity 

results in a doubling of cost. In this case, the cost of 48 units system is two times that 

of 12 units system (not four times). 
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5.2 Basic ILP Model 

Suppose we have a given network G with node set N and span set S. Any two nodes 

constitute each O-D pair. All spans in network G are candidates for installation and 

expansion with incremental demands over T time periods. To provide a reliable network 

against fiber cuts, SBPP mechanism is considered. In addition, this model implements the 

arc-flow approach and the all-periods approach. 

5.2.1 Notations 

The ILP model of the MPSNA problem uses following notations: 

Sets: 

 N  is the set of nodes in network G, and is indexed by n. 

 S  is the set of candidate edges (spans) in network G, and is indexed by s.	 If the 

network is a full mesh network, it usually includes N(N-1) spans. However, the 

number of spans in network G is 2N since we assume all experimental networks have 

the following character where the number of spans is twice as many as the number of 

nodes. 
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 T  is the set of time periods in the planning horizon, and is indexed by t. The period 

t-1 represents the previous period of period t. The period t = 0 represents the initial 

network infrastructure which is before the first period. 

 D  is the set of all O-D pairs in the network, and is indexed by r. Each O-D pair r 

has an origin node and a destination node. 

 nS S  is the set of all spans connected to node n, and is also indexed by s.  

 rO N  is the set of origin node of O-D pair r, and is also indexed by n. 

 rD N  is the set of destination node of O-D pair r, and is also indexed by n. 

 M  is the set of different module capacities, and is indexed by m. 

Input Parameters: 

 1M  is an extremely large number. In our model, 1= r
t

r D t T

M d
 
 , which means M1 is 

equal to the sum of traffics of each demand pair r over t time periods. 

 
,m s

tc  is the cost of a module of the mth size on span s at time period t. In our model, 

there are three different sizes of modules; hence, m  = 1, 2, 3. Modular sizes 1, 2 

and 3 contain 12 units, 24 units and 48 units of capacity, respectively. In our work, 

the cost of modular capacity includes the associated cost of lighting the fiber 
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channels, channel interfaces, generation and modulation equipment, and an average 

distance-amortized cost for modular capacity regenerators [4]. 

 
mz  is the number of capacity units of the module of the mth size. 

 
s

tf  is the cost of establishing fibers on span s at time period t. In our work, s
tf  

includes the cost of rights-of-way acquisition, ducting, cable and fibers, nodal 

equipment (WDM multiplexors, de-multiplexors, etc.), and the installation cost of 

this equipment [4]. 

 
r
td  is the number of units of traffic demand for O-D pair r at time period t, and the 

demand unit increases over time. 

Decision Variables 

 {0,1}s
t   is a topological variable. It is 1 if a fiber is installed on span s at time 

period t; otherwise, it is 0. 

 
, 0m s

tn   is the number of modules of mth size placed on span s at time period t, and 

this variable is restricted to integers. 

 
s

tF  is the fixed cost of span s at time period t. If there is a fiber which has been 

installed on span s at time period t-1 already, there will be no fixed cost for span s at 

time period t; otherwise, if there is no fiber installed on span s at time period t-1 and 
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a fiber is needed to be installed on span s at time period t, there will be a charge for 

the fiber installation on span s at time period t. 

 
s
tC  is the total cost of module capacity on span s at time period t. The expression of 

s
tC  is similar to s

tF . If a cost for the placement of a module has been charged on 

span s at time period t-1 already, there will be no cost for this module on span s at 

time period t; and only if new modules are added on span s at time period t, there will 

be a cost. 

 0s
tw   is the number of units of working capacity assigned on span s at time period 

t, and this variable is restricted to integers. 

 0s
tp   is the number of units of protection capacity assigned on span s at time 

period t, and this variable is restricted to integers. 

 
s
ta  is the total capacity (i.e., the sum of working capacity and protection capacity) of 

span s at time period t. Since s
tw  and s

tp  are all integer variables and s
ta  is the 

sum of s
tw  and s

tp , s
ta  is also an integer variable. Since M1 is defined as an 

extremely large number, 1
s
ta M . 

 , {0,1}s
r tw   is a binary variable. It is 1 if the working flow is routed on span s at time 

period t for O-D pair r; otherwise, it is 0. 
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 , {0,1}s
r tp   is a binary variable. It is 1 if the protection flow on span s at time period 

t is routed for O-D pair r; otherwise, it is 0. 

 
,
, {0,1}s sf

r tx   is an auxiliary variable, and act as a proxy to the product of ,
sf
r tw  and 

,
s
r tp  (that is, ,

, , ,
s sf sf s
r t r t r tx w p  ). It represents the required protection flow routed on 

span s if span sf (failed span) fails for O-D pair r at time period t. If ,
, 1s sf

r tx  , then 

the protection flow is routed on span s to restore the working flows passing over the 

failed span sf for O-D pair r at time period t. If ,
, 0s sf

r tx  , then there are three 

situations. The first is that if , =0sf
r tw  and , =0s

r tp , that means neither working flow 

nor protection flow is routed on span sf and s at time period t, respectively. The 

second is that if , =0sf
r tw  and , =1s

r tp , the protection flow routed on span s is not used 

to restore the working flows routed on the failed span sf but another failed span. The 

third is that if , =1sf
r tw  and , =0s

r tp , there is no protection flow routed on span s to 

restore the working flows routed on the failed span sf for O-D pair r at time period t. 

 , {0,1}n
r tw   is a binary variable. It is 1 if the working flow is routed over node n at 

time period t for O-D pair r; otherwise, it is 0. 

 , {0,1}n
r tp   is a binary variable. It is 1 if the protection flow is routed over node n at 

time period t for O-D pair r; otherwise, it is 0. 
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As we mentioned in Section of Input Parameters, the period t = 0 represents the initial 

network infrastructure (before the first period). In our model, there are some input 

parameters related to period t = 0, such as 0
s  and ,

0
m sc . Since this model is formulated 

based on a greenfield situation, the value of these variables are all zero. 

5.2.1 ILP Model Formulation 

The ILP model of the MPSNA problem can be stated as follows. 

Minimize ( )s s
t t

s S t T

F C
 

                     (5.1) 

Subject to:  

1( )s s s s
t t t tF f          s S   t T             (5.2) 

1 1( ) ( )s m,s m,s m,s m,s
t t t t t

m M m M

C c n c n 
 

      s S   t T               (5.3) 

1
s s
t ta M         s S   t T             (5.4) 

( )s m,s m
t t

m M

a n z


       s S   t T              (5.5) 

1
s s
t ta a         s S   t T             (5.6) 

, ,
1

m s m s
t tn n         s S   t T   m M             (5.7) 

1
s s
t t          s S   t T             (5.8) 



51 
 

s s s
t t ta w p         s S   t T             (5.9) 

( )s s r
t r ,t t

r D

w w d


       s S   t T            (5.10) 

( )s s ,sf r
t r ,t t

r D

p x d


       s S   sf S   s sf    t T       (5.11) 

1s ,sf sf s
r ,t r ,t r ,tx w p      r D   s S   sf S   s sf    t T       (5.12) 

1
n

j
r ,t

j S

w


        r D   rn O   t T         (5.13) 

1
n

j
r ,t

j S

w


        r D   rn D   t T              (5.14) 

2
n

j n
r ,t r ,t

j S

w w


       r D   { }r rn N | n O ,D    t T      (5.15) 

1
n

j
r ,t

j S

p


        r D    rn O   t T          (5.16) 

1
n

j
r ,t

j S

p


        r D   rn D   t T         (5.17) 

2
n

j n
r ,t r ,t

j S

p p


        r D   { }r rn N | n O ,D    t T      (5.18) 

1s s
r ,t r ,tw p         r D   s S   t T          (5.19) 

1n n
r ,t r ,tw p         r D   { }r rn N | n O ,D    t T       (5.20) 

Constraints in equation (5.1) seek to minimize total span installation and capacity costs 

over all time periods. Note that time value of money effects do not explicitly appear in 
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the equations; rather, they are simply incorporated into the costs as they are calculated. 

Furthermore, economies of scale are applied in subsequent constraints where capacity 

costs are calculated. Constraints in equations (5.2) through (5.8) describe the multi-period 

network topology design and capacity modularity. Constraints in equations (5.9) through 

(5.20) describe the working flow routing and the spare capacity allocation based on SBPP 

mechanism. The detailed explanation of each equation is presented below. 

Constraints in equations (5.2) and (5.3) calculate the span installation cost and the 

capacity cost of span s at period t, respectively. In equation (5.4), the span decision 

variables are forced to be 1 as long as capacity is assigned on span s at period t. 

Constraints in equation (5.5) assign a sufficient number of capacity modules for each size 

on span s. Constraints in equations (5.6) and (5.7) ensure there is no downgrade for each 

span’s real capacity and the number of each module on span s at period t, respectively. In 

other words, once the capacity or a module is assigned on span s at time period t-1, it 

cannot be removed on span s at time period t. Constraints in equation (5.8) ensure that if 

one span is selected at time period t-1, it must be also selected at time period t.  

Constraints in equation (5.9) indicate the total capacity on span s at time period t. The 

total capacity is the sum of working capacity and protection capacity. Equation (5.10) 

ensures that enough working capacity is assigned to span s at time period t to 

accommodate all working flows passing over it. Equation (5.11) ensures that enough 
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protection capacity is assigned to span s at time period t to accommodate the largest 

concurrent protection flows for any span failure. Constraints in equation (5.12) calculate 

the concurrent spare flow on span s at time period t for restoring the working flow on 

failed span sf for O-D pair r. The function of equation (5.12) is to transfer the non-liner 

equation ( ,
, , ,

s sf sf s
r t r t r tx w p  ) to a linear one. In [3], the author presents a classic arc-path 

formulation of the SBPP problem. A similar equation and a detailed explanation of this 

equation can be found in this reference. Constraint in equations (5.13) and (5.14) ensure 

that working demands for original nodes and destination nodes are routed. Constraints in 

equation (5.15) ensure working nodes have two spans connecting to them. Constraints in 

equations (5.16) and (5.17) ensure that protection demands for original nodes and 

destination nodes are routed. Constraints in equation (5.18) ensure that rest nodes also 

have two spans connecting to them. Constraints in equations (5.19) and (5.20) force 

working routes and protection routes to be fully disjoint.  

5.3 A Discussion on MPSNA Complexity 

When we look at the detailed structure of the MPSNA problem, its complexity becomes 

very clear. If we only consider one time period (T = 1), the MPSNA problem reduces to a 

combined topology and capacity design problem [41][54]. It includes two problems, a 

topological design problem and a working and sparing capacity allocation problem in a 

SBPP network. Many studies have shown that the topological design and SBPP problem 

are both NP-hard problems. For example, in [81], a mesh network topological 
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optimization and routing problem is proven NP-hard and a heuristic algorithm which is 

called MENTOR is developed to solve this topological design problem. The authors in 

[57], [58], [61]-[63] and [82] all show that the SBPP problem is a NP-hard optimization 

problem, and different kinds of heuristic or meta-heuristic algorithms emerged in these 

papers to effectively solve it. However, the MPSNA problem not only combines these 

two problems, but also involves multi-period planning, which makes it very 

time-consuming to solve even for a small network. 

The complexity of the MPSNA problem can be reflected in the integrality of its variables. 

In this problem, all variables are restricted to integer variables since it is not realistic to 

allow capacity variables or the variable of number of units of modules to take on real 

(non-integer) value. In addition, most of integer variables are binary variables such as 

span-selection (topological) variable s
t , flow variables ,

s
r tw  and so on. It is generally 

known that a binary variable can only take value 1 or 0. Take the topological variable s
t  

as an example, if it is 1, then a fiber is installed on span s at time period t; otherwise, it is 

0. If we allow this binary variable to take on real value, there will be no meaning for the 

network span selection. As a result, the integrality of binary variables cannot be relaxed. 

However, there is no doubt that these binary variables increase the complexity of the 

MPSNA problem. 
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In addition, the complexity of the MPSNA problem can also be expressed in terms of 

numbers of variables and constraints contained in this model [3]. In a small network with 

8 nodes and 16 spans, if we set the long-term planning horizon is three time periods, there 

will be 12,360 integer variables (11,976 binary variables) and 12,844 constraints involved 

in the MPSNA model. With the increase in the number of candidate spans, the number of 

variables and constraints grows exponentially. If we take a 30n60s1 network as an 

example; there will be 2,409,588 integer variables (2,408,148 binary variables) and 

2,402,124 constraints in the MPSNA problem. The number of variables and constraints in 

network 30n60s1 is almost 200 times that in network 8n16s1. As networks become larger 

and larger, the Gurobi Optimizer cannot solve the MPSNA problem directly. Thus, one 

recommends decomposition or heuristic approaches to solve it effectively. The detailed 

algorithm implementation is discussed in Chapter 6. 

5.4 Experimental Networks 

The ILP model of the MPSNA problem presented in this chapter and the heuristic 

algorithm described in the following chapters are all validated through simulations 

conducted on six networks. These networks are created as test network topologies by our 

group members. They are not real transport networks, while they show the characteristic 

of real transport networks [3].  
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The networks are named as 8n16s1, 12n24s1, 15n30s1, 20n40s1, 25n50s1 and 30n60s1, 

respectively. The name of networks indicates the number of nodes and spans in their 

graph. For example, network 8n16s1 contains 8 nodes and 16 spans. The average nodal 

degree of these networks is 4 [2][3][57], and the number of spans is two times the 

number of nodes. Figure 7 shows the topologies of these six experimental networks. 
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5.5 Experimental Study Method and Considerations 

5.5.1 Experimental Study Method 

The ILP model of the MPSNA problem was implemented in AMPL (a mathematical 

programming language), and solved by Gurobi Optimizer 6.0.3 on a Mac Pro server with 

a 3.5 GHZ processor and a 32 GB RAM. Since an arc-flow approach is used to formulate 

the ILP model in this work, pre-processing for eligible working and protection routes was 

not required. However, the data files, which contain some information about network 

topologies and other input parameters, were prepared on a Lenovo laptop with a 2.4GHZ 

dual core processor and a 6 GB RAM. Due to the complexity of the MPSNA problem, the 

experimental cases were solved with time-limited Gurobi runs with various optimality 

gaps ranging from 1% to 52%. The optimality gap of 1% means the solution is 

guaranteed to be within 1% of optimal. If we set the optimality gap to be 1%, the solver 

will stop as soon as it finds a feasible integer solution proved to be within 1% of optimal. 

To accurately record the solution runtime of each experimental test, no other task is 

running when the Gurobi is running (that is, the computer is devoted to the Gurobi task 

full time [3]), and the Gurobi runs only one test each time. 

5.5.2 Experimental Study Considerations 

This work makes a number of assumptions and considerations due to the characteristics 

of the MPSNA problem. 
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 The greenfield situation is assumed. To be specific, there is no span or capacity 

pre-existing at the beginning of the design. But, it is not hard to formulate the ILP 

model with some existing spans or capacities. For example, we can just easily add 

parameters 0 1s  , which represents that the span s is pre-existing to the data file. 

For the term of the existing capacities, we can add parameters 0
sa  which 

represents the value of capacity pre-installed on span s before the first time period 

to the data file, and since we take the modular capacity into account, we also need 

to add a constraint 0 0
s m,s m

m M

a (n z )


   to the model to make sure there are enough 

number of different sizes of modules to accommodate the initial capacities. 

 Three time periods ( 3T  ) are used as the planning horizon in this work. One 

period can represent one or several years, depending on the requirements of the 

specific problem. Network designers will consider a number of factors when they 

select a specific length of time: the network planning budget, the data of demand 

forecast, etc. If a company has enough available funds and accurate demand data 

for a short time period, network designers can select one year or even several 

months as one time period to design a network. Otherwise, they may select a much 

longer time, even several years. However, one thing we need to know is that the 

MPSNA problem becomes more complicated when the value of T becomes bigger 

and bigger. 
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 Half of a full mesh of demands is used in each test case network (wherein half of 

all node pairs exchange traffic, randomized), where each demand is a uniformly 

random integer between 1 and 10. Demands increase randomly on each span such 

that the average increase is a doubling of demand in subsequent periods, as per 

[77]. 

 As we discussed in Section 5.1.3, the economic consideration, time value of money, 

should be taken into account due to the characteristics of the multi-period network 

planning. As is typical in many business applications, a discount rate of 10% is 

used to discount the future value to present value, while this value may vary from 

one industry to another [77]. Formula (5.21) shows how to calculate the present 

value of a future value. 

        
(1 )t

FV
PV

i



          (5.21) 

where PV is the present value, FV is the future value, i denotes the discount rate 

and t describes the number of periods. 

 As we discussed in Section 5.1.3, with the innovation of the technology, the cost of 

capacity decreases over time in reality. For capacity cost, an effective discount rate 

of 25% is applied in this work, where the effective discount rate is the combination 

of the discount rate of time value of money and the capacity cost reduction rate. 
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Same as the discount rate, the value of the effective discount rate may vary between 

different organizations and industries [77]. The formula (4.22) calculates the 

capacity cost at time period t+1. 

        1 (1 )
t

t t

c
c

 


          (5.22) 

where ct represents the capacity cost at time period t, ct+1 represents the capacity 

cost at time period t+1, σ is the effective discount rate and t is the number of 

periods. 

 In term of modularity, three module sizes are used in this work. They are 12, 24 and 

48 units, respectively. In term of economies of scale, the cost-scaling rule of 

4-times-2-times is employed. We assume the cost of 12 units is 12 at the first time 

period, and costs for other modules at the first time period are generated according 

to the 4-times-2-times rule. Table 2 shows the cost of all modules. 

Table 2: The cost of three sized modules at the first time period [80]. 

Cost Scheme Module size 1 
(12 units) 

Module size 2 
(24 units) 

Module size 3 
(48 units) 

4-times-2times 12 17 24 
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5.6 Benchmark Solutions 

The MPSNA model is tested on six experimental networks. They are 8n16s1, 12n24s1, 

15n30s1, 20n40s1, 25n50s1 and 30n60s1, respectively. As we mentioned before, the ILP 

model of the MPSNA problem was implemented in AMPL, and was solved by Gurobi 

Optimizer 6.0.3 on a Mac Pro server with a 3.5 GHZ processor and a 32 GB RAM.  

Table 3 summarizes the benchmark solutions. These solutions are produced through 

solving the ILP model of the MPSNA problem directly. In this table, the “Network” 

column represents experimental networks tested in this work. The “Cost” column 

represents the total cost of installing fibers and capacity for all time periods. The “Runtime” 

and “Optimality gap” columns represent the Gurobi runtimes and optimality gaps of the 

MPSNA solutions, respectively. As shown in Table 3, it takes 0.62 hours to solve an 

8-node network to a 1% optimality gap. However, the complexity of the problem scales in 

an exponential-like fashion with the size of the network; the optimality gap increases up to 

52% after 48 hours of solution time on the 20-node network. For the 25-node and 30-node 

test case networks, even feasible solutions were not achievable after 3 weeks of solution 

time. 

The benchmark solutions of experimental networks demonstrate the complexity of the 

MPSNA problem. As we discussed in Section 5.3, to solve the MPSNA problem 

efficiently, decomposition or heuristic approaches appear best. In this study, a four-stage 
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ILP-based heuristic approach and the Dantzig-Wolfe decomposition algorithm are 

applied to solve the MPSNA problem. The detailed algorithm implementation is 

discussed in following two chapters. 

Table 3: Benchmark solutions of experimental networks. 

Benchmark 
Network Cost Runtime Optimality gap 
8n16s1 1,936,223 0.62 hours 1.0% 
12n24s1 1,069,105 24 hours 32.0% 
15n30s1 3,452,152 36 hours 45.8% 
20n40s1 3,479,002 48 hours 51.7% 
25n50s1 N/A 3 weeks N/A 
30n60s1 N/A >3 weeks N/A 

To have a better understanding about the MPSNA problem, we take an 8-node 

experimental network as an example to show the augmentation of capacity and spans 

with the growth in demand over time. Figure 8 illustrates the topology of an 8-node 

network, all spans of which are considered as candidate spans for augmentation. Figure 9 

through Figure 11 illustrate network topologies and the number of modules installed on 

span s at each time period (M1, M2 and M3 in these figures represent the module size 1, 

2 and 3, respectively.). 
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As shown in Figure 9 through Figure 11, nine spans are selected at the first period for 

routing the working & spare capacity and only module size 3 is assigned on each span 

because of the effect of the economies of scale. We also find that there is no new capacity 

and spans added to the network at the second time period. The reason is that there is 

enough capacity at the first period to accommodate the demand of the second time period. 

As the demand grows continuously at the third period, the new capacity and a new span 

are added. For example, one unit of module size 1 is added to span 3, one unit of module 

size 2 is added to span 6 and a new span, span 10, with two units of module size 3 joins 

the network. 

Another observation we can find from Figure 8 through Figure 11 is that the near-optimal 

(1% optimality gap) 8-node network topology at each time period tend to be quite sparser 

than the topology of the experimental 8n16s1 network. The number of spans selected at 

the third period should be the most one among the three time periods; however, only 11 

spans are selected at the third time period, which is a 31.25% span reduction compared to 

16 spans of 8n16s1 network. In other words, there are 5 candidate spans not useful during 

the whole process of the multi-period network design; however, they definitely increase 

the complexity of the MPSNA problem since the number of variables and constraints of 

the MPSNA problem grows exponentially with the increase in the number of candidate 

spans. In addition, as discussed in [3], for the topological design problem, the solver has 

to spend a considerable amount of time looking for a bi-connected graph before it can 



67 
 

perform the working and spare routing and capacity placement. There are at least 614 

million possible span-selection combinations even for a 15-node-30-span network 

( 15 16 30
30 30 30c c ... c   ), but only a few of them can form bi-connected graphs that the solver 

need to spend large amount of time looking for. For the 8n16s1 network, if we remove 

the 5 useless candidate spans and resolve this problem, we expect that there is a 

considerable runtime saving due to two benefits obtained from the reduction of the 

number of candidate spans. The first benefit is a sizeable saving of the number of 

variables and constraints. The second is a sizeable saving of the number of span-selected 

combinations and therefore of time looking for bi-connected graphs. As a result, if we can 

find a high-merit smaller topology space when compared to the full network topology 

space and solve a restricted version of the MPSNA problem using only a subset of 

eligible spans rather than all candidate spans, the solution runtime may decrease greatly. 

In addition, we compared the total cost of single-period and multi-period network 

planning on the 8-node network. We solved the single-period problem using only the 

demand in the final time period, but the assumption is that the costs are all incurred at the 

present, so time value of money had no bearing on this solution. More specifically, 

single-period planning refers to a network design in which all spans and capacity are 

installed all at once rather than augmenting topology and capacity over time. 
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Table 4 summarizes the cost comparison of single-period planning and multi-period 

planning of one 8-node network. As we can see, multi-period planning is nearly 4% less 

costly than single-period planning. This validates our assertion that multi-period planning 

is more cost efficient than single-period planning. 

Table 4: The cost comparison of single-period planning and multi-period planning. 

Network 
Single-period planning Multi-period planning 

Total cost 
(the value of the objective function)

Total cost 
(the value of the objective function)

8n16s1 2,012,466 1,936,223 
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Chapter 6: Four-stage ILP-based Heuristic 
Approach 

6.1 Approach Description 

As we discussed in Section 5.6, the number of variables and constraints of the MPSNA 

problem grows exponentially with the number of candidate spans, which greatly increase 

the complexity of the MPSNA problem. So does the number of span-selection 

combinations; thus, the solver has to spend much more time looking for bi-connected 

graphs among the larger number of span-selection combinations. As a consequence, 

finding a high-merit and small topology with only subset of candidate spans for each 

experimental network may be an effective way to decrease the complexity of the MPSNA 

problem. 

In [3] and [13], a three-stage heuristic solution method is developed to solve the mesh 

topology, routing, and sparing (MTRS) problem, and the experimental results show that 

this ILP-based heuristic is very effective for solving the MTRS problem. The basic idea 

of this approach is to form a smaller topology compared to the full network by generating 

working span first and then augmenting backup spans. As we discussed before, we expect 

that we can find an effective and high-merit small topology for each experimental 

network to efficiently solve the MPSNA problem. The three-stage heuristic solution 

method is exactly the approach which we are looking for. As a result, we will follow the 
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basic idea of the three-stage heuristic solution method and modify this approach slightly 

for the MPSNA problem. The modified three-stage heuristic solution method is called the 

four-stage ILP-based heuristic approach in this study, and has four steps. 

 Step 1: Identify good spans for working light path routing alone (i.e., no 

survivability), based on the demands in the final time period in isolation. In this 

step, we solve a fixed charge plus routing (FCR) problem which aims to determine 

the network topology and minimize the span selection cost and optimal working 

capacity routing cost simultaneously. The spans identified in this step is expected 

to be of high merit for consideration in the MPSNA design since they are play an 

important role in serving the working demand flows [3] [13]. 

 Step 2: Augment good spans for spare capacity based on the demands in the final 

time period in isolation. In this step, we solve a reserve network fixed charge and 

sparing (RN-FCS) problem which aims to minimize the total cost of spare capacity 

and installation of additional spans to augment the topology from step 1 to become 

a bi-connected graph and to ensure full restorability of the working flows from step 

1 [3] [13]. 

 Step 3: Refine the spans inherited from step 1 and step 2 based on the demands in 

the final time period in isolation. In this step, we solve an one-period topological 

SBPP (OPT-SBPP) problem which aims to refine the spans inherited from step 1 
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and step 2 under the interaction of the working and spare capacity. In other words, 

some spans inherited from step 1 and step 2 may be eliminated in this step since 

we consider the placement of working and spare capacity simultaneously. 

 Step 4: Resolve a restricted version of the MPSNA problem using only a subset of 

eligible spans from step 3, rather than all spans from the experimental networks. 

The subset of eligible spans from 3 forms a smaller bi-connected graph when 

compared to the topology of the complete MPSNA problem. We assume that this 

smaller bi-connected graph is a high-quality sub-graph for consideration of the 

complete MPSNA design since the spans selected for routing working capacity and 

spare capacity are all expected to be of high merit for the complete MPSNA 

problem by virtue of their key role in step 1 and step 2. As we discussed before, 

since the growth of number of candidate spans dramatically increases the 

complexity of MPSNA problem, reducing the number of candidate spans will result 

in a runtime saving to a great extent. 

The differences between the four-stage ILP-based heuristic approach modified in this 

work and the three-stage heuristic solution method developed in [3] and [13] are that the 

span selection in step 1 and step 2 in this work is based on the demand in the final time 

period; and before we resolve a restricted version of the MPSNA problem using only a 
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subset of eligible spans inherited from step 1 and step 2, we add one more step called step 

3 to refine the network topology in order to get a more high-merit topology. 

With the growth of demands over time, we expect that new spans are installed and 

capacities are expanded gradually as time progresses, and so each subsequent time period 

will make use of a set of spans that is at least as large as that from the previous time 

period. In other words, if we consider only one time period (i.e., T=1), it is obvious that 

the number of spans selected based on the demand in the final time period is larger or at 

least equal to the one of previous time period. Since the core of our approach is to form a 

smaller topology space (bi-connected sub-graph) when compared to the full network, it is 

reasonable to generate this high-merit small topology space by using the demand of the 

final time period. The ILP formulation of each step is presented in the following section. 

6.2 Four-stage ILP-based Heuristic Approach 

6.2.1 Step 1: Identify Good Spans for Working Capacity 

In step 1, we solve a topology design with working capacity allocation problem without 

the consideration of survivability, and this kind of problem is usually called fixed charge 

plus routing (FCR) problem. The purpose of step 1 is to identify high-merit spans for 

routing working capacity. Since we only consider the allocation of working capacity with 

no concern for network restoration, the network topology of step 1 is expected to be 

tree-like. In step 1, all spans in network G are candidate spans for selection. The 



73 
 

information which is generated from this step and will be forwarded to step 2 is the 

solutions of variables of span selection (λs), working flow routed on span s for demand r 

( s
rw ) and working flow routed over node n for demand r ( n

rw ).  

As authors discussed in [3] and [13], the FCR problem involved in step 1 is also a 

difficult problem. In order to speed up step 1, some tactics can be applied in this step. 

Firstly, since the solutions of variables of working capacity (ws) and the number of 

modules (nm,s) are useless for the following steps, the integrality of ws and nm,s can be 

relaxed. In addition, it is also acceptable to solve the FCR problem with a reasonable 

optimality gap since the purpose of the step 1 is to identify high-merit edges rather than 

to get optimal solutions. 

The ILP model for step 1 uses the same notations defined in Chapter 5. The difference 

between the FCR model in this step and the complete MPSNA model is that all variables 

and constraints related to restoration are removed since the FCR problem doesn't consider 

the network survivability. In addition, because we only consider one time period in this 

step, the time-related subscript, t, is eliminated.   

The formulation is expressed as follows: 

Minimize  ( )s s

s S

F C


                 (6.1) 

Subject to: 
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s s sF f          s S              (6.2) 

( )s m,s m,s

m M

C c n


        s S              (6.3) 

1
s sw M          s S              (6.4) 

( )s m,s m

m M

w n z


        s S                (6.5) 

s s r
r

r D

w w d


         s S              (6.6) 
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
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w


         r D   rn D           (6.8) 
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n

j n
r r

j S

w w


        r D   { }r rn N | n O ,D         (6.9) 

The objective function (6.1) seeks to minimize the sum of the span installation and 

capacity costs. Constraints in equation (6.2) calculate the span installation cost. If λs=1, 

there will be a span installation cost for span s. If λs=0, the span installation cost for span 

s will be zero. Constraints in equation (6.3) calculate the capacity cost. Constraints in 

equation (6.4) force the topological variable, λs, to be 1 as long as there is any working 

capacity assigned to span s. Equation (6.5) assigns a sufficient number of modules of 

each size on span s to accommodate the working capacity. Constraints in equation (6.6) 

through (6.9) describe the strategy of routing working capacity. They are similar to 
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equations (5.10), (5.13), (5.14) and (5.15) formulated in Chapter 5. But the key difference 

is that we only consider one time period in this step. Equation (6.6) calculates the 

working capacity assigned to span s. Constraints in equations (6.7) and (6.8) ensure that 

there is only one span selected to carry the working flow for the origin node of O-D pair r 

and the destination node of O-D pair r, respectively. Equation (6.9) ensures that there are 

two spans connecting to the working nodes (excludes the origin node and destination 

node of O-D pair r). 

6.2.2 Step 2: Augment Good Spans for Spare Capacity 

Step 2 aims to augment the network by adding spans as needed for routing backup paths, 

thereby creating a bi-connected (i.e., restorable) topology space. In step 2, we will solve a 

topology design with sparing capacity allocation problem which is also called reserve 

network fixed charge and sparing (RN-FCS) problem [3]. Only spans inherited from step 

1 are considered for failure scenarios in this step, and the working paths are as routed in 

step 1. All candidate spans in the network are considered as restoration spans. In addition, 

we also need to know the span installation cost of the spans inherited from step 1 is zero in 

step 2. 

The ILP model for step 2 also uses the same notation defined in Chapter 5. The 

time-related subscript, t, is eliminated here as well because only a single time period is 
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considered. s
rw  and n

rw  become parameters in this step (with values obtained from step 

1). In addition, one new set is used here: 

wS S is the set of spans in network G for which λs=1 in the solution of step 1. Spans 

in set Sw are the working spans identified in step 1 and only these spans are considered 

for failure scenarios in step 2. 

The formulation is expressed as follows: 

Minimize  
w

s s

s Ss S|s S

F C
 

                (6.10) 

Subject to: 

s s sF f          ws S | s S            (6.11) 

( )s m,s m,s

m M

C c n


         s S             (6.12) 

1
s sp M          ws S | s S            (6.13) 

( )s m,s m

m M

p n z


        s S             (6.14) 

( )s s ,sf r
r

r D

p x d


        s S   wsf S   s sf         (6.15) 

1s ,sf sf s
r r rx w p         r D   s S   
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

        r D   { }r rn N | n O ,D        (6.19) 

1s s
r rw p          r D   s S           (6.20) 

1n n
r rw p          r D   { }r rn N | n O ,D        (6.21) 

The objective function in (6.10) minimizes the sum of span installation cost (the cost of 

installing new spans) and capacity costs. Constraints in equation (6.11) to (6.14) have the 

similar function as constraints in equations (6.2) to (6.5). The only difference is that spare 

capacity is considered here, rather than working capacity. Constraints in equations (6.15) 

and (6.16) have the similar function as constraints in equations (5.11) and (5.12), but only 

a single time period is considered here and only spans generated from step 1 are iterated 

over for the failure scenarios. For example, equation (6.15) ensures that enough protection 

capacity is assigned to span s  to accommodate the largest concurrent protection flows 

for span s in set Sw. Equation (6.16) calculates the concurrent spare flows on span s for 

restoring the working flow on failed span sf. Constraints in equation (6.17) to (6.21) have 

the similar function as constraints (5.16) to (5.20), but only a single time period is used. 

6.2.3 Step 3: Refine the Spans Inherited from Step 1 and 2 

In step 3, we refine the network topology generated from steps 1 and 2 via a one-period 

topological SBPP problem. In step 1 and step 2, we only consider the assignment of 
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working and spare capacity, respectively. However, in step 3, we take them into account 

simultaneously. As a result, some spans may be eliminated and a more high-merit 

network topology can be produced. In addition, time-related subscript, t, is eliminated 

here as well, as we produce a single period design appropriate for demands from the final 

time period only. 

The formulation is expressed as follows: 

Minimize  ( )s s

s S

F C


                (6.22) 

Subject to: 

s s sF f          s S             (6.23) 
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
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1
s sa M          s S             (6.25) 
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

        s S               (6.26) 

s s sa w p          s S             (6.27) 
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r
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
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r D
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

        s S   sf S   s sf         (6.29) 
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1n n
r rw p          r D   { }r rn N | n O ,D        (6.38) 

The model in step 3 is nearly identical to the full MPSNA model described by (6.1) 

through (6.20), but there are two key differences. The first difference is that time-related 

subscript, t, is eliminated, since only a single time period (the final one) is considered. 

The second difference is that the constraints in equation (5.6) through (5.8) have no 

counterparts here, since those constraints deal with interactions between subsequent time 

period (as noted, we only consider a single time period here). 
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6.2.4 Step 4: Resolve the MPSNA Problem with a Smaller 

Candidate Topology 

In the final step, we solve the full MPSNA model described by (5.1) through (5.20) in its 

entirety. However, the difference is that the set of eligible spans, S, consists of only those 

spans for which λs=1 after step 3 is solved (i.e., this is the set of high-merit spans). To be 

proper, we could define this set of high-merit spans with some new notation, say S', and 

express the model for step 4 using equations (5.1) through (5.20) except we replace all 

instances of S with S'. Since the number of candidate spans (S') here are less than the 

number of spans in original network G, the solution runtime of a restricted version of the 

MPSNA problem is expected to be reduced dramatically.  

The ILP model in step 4 is totally same as the MPSNA model formulated in chapter 5, 

except that we use a smaller topology space as a candidate topology rather than the 

original network G. 

In conclusion, the four-stage ILP-based heuristic approach can be described briefly as 

follows. 

 Step 1: Identify good spans for working light path routing alone based on the 

demands in the final time period in isolation. 
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 Step2: Augment good spans for spare capacity based on the demands in the final 

time period in isolation. 

 Step 3: Refine the spans inherited from step 1 and step 2 based on the demands in the 

final time period in isolation. 

 Step 4: Resolve a restricted version of the MPSNA problem using only the subset of 

eligible spans inherited from step 3, rather than all spans. 

6.3 Experimental Study Method 

In order to verify the efficiency of the four-stage ILP-based heuristic approach, we 

validate this approach through simulations which are conducted on the same six networks 

presented in Chapter 5. 

All ILP formulations were all implemented in AMPL, and were solved by Gurobi 

Optimizer 6.0.3 on a Mac Pro server with a 3.5 GHZ processor and a 32 GB RAM. Since 

an arc-flow approach is used to formulate the ILP model in this work, pre-processing for 

eligible working and protection routes was not required. However, some results in step 1 

would be forwarded to step 2 as the input parameters, and data files of step 3 and step 4 

also need to be processed because of the reduction of the candidate edges. As a result, 

pre-processing of data was completed on a Lenovo laptop with a 2.4GHZ dual core 

processor and a 6 GB RAM. All of the various steps in the heuristic are run to completion 
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with various optimality gaps (as specified in the results and discussion). In order to 

accurately record the solution runtime of each experimental test, there is no other task 

running when the Gurobi is running (i.e., the computer is devoted to the Gurobi task full 

time [3]), and the Gurobi runs only one test each time. 

6.4 Results and Discussion 

The four-stage ILP-based heuristic solution characteristics are illustrated in Table 5, which 

summarizes the experimental networks, number of spans selected or eliminated in each 

step and the associated solution runtimes and optimality gaps. 

Due to the complexity of the ILP problem in each step, we used optimality gap settings 

ranging from 1% to 25% in step 1, 1% in step 2, 1% to 15% in step 3, and 1% in step 4 (a 

setting of 1% means the solution will terminate when it is guaranteed to be within 1% of 

optimal). Larger optimality gaps are acceptable in steps 1 through 3 because those steps 

are merely selecting for high-merit spans, and so a strictly optimal solution isn’t required 

in any of those individual steps (and experience has shown us that optimality of the 

overall solution is not largely affected). The smallest network, 8-node network, can be 

solved in seconds (or less), while the 30-node network took approximately 3.3 hours of 

solution time. Steps 1 and 3 appear to be the most computationally challenging for test 

case networks. The reason for that is the fixed charge plus routing (FCR) problem in step 

1 and the one-period topological SBPP (OPT-SBPP) problem in step 3 are both NP-hard 
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problem which are known to be difficult to solve. However, these two problems have been 

widely studied for many years. Prior work can be applied to them to improve the quality 

of solution and runtime as needed. In contrast to step 1 and step 3, the step 2 and step 4 

can be solved very quickly. For instance, in most test cases, these two steps can be solved 

in few seconds to a 1% optimality gap. The reason of step 2 being easily solved is that 

only number of |Sw| spans is considered for failure scenarios in this step instead of number 

of |S| spans. There are two reasons for explaining why the step 4 can be easily solved. The 

first reason is that we resolve the MPSNA problem in step 4 by using only a subset of 

high-merit spans rather than all candidate spans in the original networks. As we can see 

from the solution of step 4, the number of high-merit candidate spans is much less than the 

number of candidate spans in the original networks. For example, in test case of 8n16s1 

network, the number of candidate spans in step 4 is 9 which is much less than 16 (the 

number of candidate spans in the original network). The other reason is that the average 

nodal degree of the candidate topologies in step 4 is around d=2.2 which is much smaller 

than the nodal degree of the original networks (d=4). It is obvious that the problem with a 

small nodal degree can be easily solved. 

For all test case networks, the topology (i.e., subset of spans) selected in step 1 was 

augmented (by 2 to 12 spans) in step 2. That topology was subsequently reduced (by 2 to 

6 spans) in four of the six networks in step 3, while the topology remained the same in 

two of the networks. Finally, the topologies in all six test case networks remained 
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unchanged in step 4 relative to the topologies of high-merit spans selected by step 3, 

though the constituent working and backup routing and associated working and spare 

capacities were quite different. 

Table 5: ILP-based heuristic approach solutions of all six experimental networks. 

Network 

Step 1 Step 2 

No. of 
spans 

Runtime 
(Seconds)

Optimality 
gap 

No. of 
new 

spans 

Runtime 
(Seconds) 

Optimality 
gap 

8n16s1 7 0.19 1% 2 0.02 1% 
12n24s1 11 6.36 1% 4 0.17 1% 
15n30s1 14 200 1% 3 0.42 1% 
20n40s1 19 833 15% 8 3.63 1% 
25n50s1 24 590 20% 8 48.74 1% 
30n60s1 30 1136 25% 12 4201 1% 

Network 

Step 3 Step 4 
No. of 

eliminated 
spans 

Runtime 
(Seconds)

Optimality 
gap 

No. of 
spans 

Runtime 
(Seconds) Optimality

8n16s1 0 0.03 1% 9 0.15 1% 
12n24s1 2 0.27 1% 13 0.46 1% 
15n30s1 0 0.49 1% 17 1.95 1% 
20n40s1 5 1915 1% 22 5.77 1% 
25n50s1 4 2068 12% 28 421 1% 
30n60s1 6 5148 15% 36 1266 1% 

Table 6 summarizes the total costs (i.e., objective function values) and solution times for 

all of the full MPSNA solutions (benchmark) and heuristic solutions. Meanwhile, the 

percentage improvement of cost saving is calculated. In the smallest test case, where the 

benchmark solution can be solved to completion in less than 40 minutes with a 1% 

optimality gap, the heuristic solution was achievable in just four seconds with a 6.65% 
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loss in optimality. Results for the 12-node network were similar (i.e., substantial 

reduction in solution time with a modest loss in optimality). For those small network test 

cases, the users can choose the approach according to their needs. If they focus on best 

solutions, they can choose to solve the MPSNA problem directly; if they pay more 

attention to the solution runtime and can accept a good solution but not best one, they can 

use the four-stage ILP-based heuristic approach. For middle and large networks, the 

four-stage ILP-based heuristic has a good performance in terms of both solution runtimes 

and solution quality. In the 15-node and 20-node networks, the heuristic solutions showed 

solution quality improvements of over 11% in only a small fraction of the time required 

for the full MPSNA solutions. For the two largest test cases networks, where the full 

benchmark solutions were not obtainable at all, the heuristic solution times were 51 

minutes and 3.3 hours, respectively. Through above discussions, we can summary that the 

four-stage ILP-based heuristic approach can provide very high-quality solutions in less 

time than benchmark solutions and the heuristic approach is very effective to solve the 

MPSNA problems. 
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Table 6: % improvement of ILP-based heuristic solutions. 

Network 
Benchmark ILP-based heuristic 

Cost Runtime Cost Runtime Improvement
(%) 

8n16s1 1,936,223 0.62hrs 2,064,919 0.07min -6.65 
12n24s1 1,069,105 24hrs 1,151,002 0.12min -7.66 
15n30s1 3,452,152 36hrs 3,051,168 3.4min 11.62 
20n40s1 3,479,002 48hrs 3,073,526 46min 11.65 
25n50s1 N/A 3weeks 3,826,661 51min --- 
30n60s1 N/A >3weeks 5,070,193 196min --- 

To have a better understanding about the four-stage ILP-based heuristic solutions, we take 

12-node experimental network as an example to show its network topology in each step. 

The evolution of the 12-node network through the four steps of the heuristic are 

illustrated in Figure 12 through Figure 15 shows the resultant topologies arising in each 

step. As we can see, the network topology of step 1 is a tree consisting of 11 spans, as we 

expected since we only consider the working routing here. In step 2, four new spans 

(shown in blue) are added to create a bi-connected topology and permit backup routing. 

As we expected these new spans play a role in either bearing the spare capacity or closing 

a graph (i.e., creating a bi-connected graph), or both two aspects. In step 3, two of the 

spans from the previous step (shown in red) are eliminated, since the purpose of this step 

is to create a much more high-merit network topology when compared to the topology 

inherited from step 2. As described above, the topology from step 3 remains unchanged 

after solution of step 4. 
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Chapter 7: Dantzig-Wolfe Decomposition 
Algorithm 

7.1 Motivation of the Implementation of the 

Dantzig-Wolfe Decomposition 

Let’s recall step 4 of the four-stage ILP-based heuristic approach. In step 4, we solve a 

restricted version of the MPSNA problem using only a subset of the eligible spans 

(high-merit spans generated from the previous steps) rather than full spans. The ILP 

model in step 4 is totally the same as the MPSNA model formulated in Chapter 5. The 

only difference is that we use a smaller topology space in step 4 as a candidate topology 

rather than the original network topology. As we expected, due to its reduction in the 

number of candidate spans, the restricted version of the MPSNA problem can be solved 

very quickly. For example, in test cases of networks 8n16s1 through 20n40s1, the 

restricted version of the MPSNA problems can all be solved in 6 seconds within 1% 

optimality gap. However, solution runtimes of the restricted version of the MPSNA 

problems are increased as networks become larger. For instance, in test case of 25n50s1 

network, the solution runtime in step 4 goes up to 420.78 seconds. Even though 420.78 

seconds is not long when compared to solution runtimes in previous steps (e.g., the 

solution runtime of the FCR problem in step 1 is 590 seconds and the optimality gap is 

20%), it is still better to find a method to decrease the solution runtime of the restricted 

version of the MPSNA problem. 



91 
 

In this chapter, we will investigate the effectiveness of the implementation of the 

Dantzig-Wolfe decomposition for solving the restricted version of the MPSNA problem 

since we suspect the MPSNA problem has a block angular structure. We also want to 

remind the readers that the purpose of Chapter 7 is to decrease the solution runtime of 

step 4; so we will implement the Dantzig-Wolfe decomposition algorithm to solve the 

MPSNA problem using only subset of eligible spans (spans inherited from step 3) rather 

than full spans. But if we want to use Dantzig-Wolfe decomposition to solve the full 

MPSNA problem, we just need to change the data file (that is, use full candidate spans 

instead of subset of eligible spans). 

7.2 Implement the Dantzig-Wolfe Decomposition to 

Solve ILP Problems 

If a liner programming (LP) problem has a block angular structure, this problem can be 

solved easily by Dantzig-Wolfe decomposition. Likewise, the Dantzig-Wolfe 

decomposition algorithm can also be used to solve the ILP problems with a block angular 

structure.  

Because we have detailed the Dantzig-Wolfe decomposition algorithm in Chapter 2, here 

we briefly summarize how to implement the Dantzig-Wolfe decomposition algorithm to 

solve LP and ILP problems. To solve LP problems: 
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 First, we need to reformulate the original LP problem based on the convex 

combinations theorem [27]. 

 Second, we need to obtain an LP master problem totally equivalent to the original 

LP problem. 

 Then, we can use a column generation algorithm to solve the LP master problem 

since it may contain a large number of columns. Finally, an optimal solution can 

be obtained when the master problem cannot be further improved by any new 

columns from the sub-problems. 

For LP problems, we can get the same solutions as the original LP problems after the 

implementation of the Dantzig-Wolfe decomposition algorithm. However, for ILP 

problems, the algorithm can only get us a tight lower bound for a minimum problem or a 

tight upper bound for a maximum problem. 

The procedure of implementing the Dantzig-Wolfe decomposition for solving ILP 

problems is similar to LP problems’. However, there still are some differences. The 

procedure and differences are described as follows: 

 First, reformulate the original ILP problem. Since variables in the original ILP 

problem are restricted to integer, the new variables in the master problem are 

restricted to binary (either 0 or 1). 
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 Second, obtain an ILP master problem which is totally equivalent to the original 

ILP problem after the reformulation. 

 Then, relax the integrality of the ILP master problem and solve the LP relaxation 

of the ILP master problem (LP master problem) using column generation 

algorithm. 

 In addition, we can get a tight lower bound for a minimum ILP problem or a tight 

upper bound for a maximum ILP problem after solving the LP master problem 

since it is well known that the LP master is the dual formulation of the Lagrangian 

dual [30][31]. 

 Finally, add this tight bound to the original ILP problem and resolve it. 

Since the MPSNA problem is a minimum problem, a tight lower bound can be obtained 

after solving the LP master of the MPSNA problem. We expect that the solution runtime 

of the MPSNA problem is decreased after adding this lower bound back to it. Figure 16 

illustrates the detailed procedure of how to apply the Dantzig-Wolfe decomposition to 

solve the MPSNA problem. 
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Figure 16: The flow chart of applying the Dantzig-Wolfe decomposition algorithm to 

solve the ILP MPSNA problem. 
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7.2 Block Angular Structure of the MPSNA Model 

Through merging similar items and simplifying constraints of the MPSNA model 

formulated in Chapter 5, we find that the MPSNA model has a block angular structure. 

The simplified MPSNA model is expressed as follows. 

Simplified ILP model of the MPSNA problem:  

Minimize , , , ,
1 1 1(( ) ( ) ( ))s s s m s m s m s m s

t t t t t t t
s S t T m M m M

f c n c n    
   

                (7.1) 

Subject to 

1 0s s
t ta M         s S   t T             (7.2) 

,( ) 0s m s m
t t

m M

a n z


       s S   t T             (7.3) 

,
, ,( ) 0s r s s sf

t t r t r t
r D

a d w x


       s S   sf S   s sf    t T        (7.4) 

,
, , , 1sf s s sf

r t r t r tw p x      r D   s S   sf S   s sf    t T        (7.5) 

1 0s s
t t           s S   t T             (7.6) 

, ,
1 0m s m s

t tn n         s S   t T             (7.7) 

1 0s s
t ta a          s S   t T             (7.8) 
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, 1
n

j
r t

j S

w


        r D   rn O   t T          (7.9) 

, 1
n

j
r t

j S

w


        r D   rn D   t T         (7.10) 

, 1
n

j
r t

j S

p


        r D   rn O   t T         (7.11) 

, 1
n

j
r t

j S

p


        r D   rn D   t T         (7.12) 

, , 1s s
r t r tw p        r D   s S   t T          (7.13) 

, , 2
n n

j j
r t r t

j S j S

w p
 

        r D   { }r rn N | n O ,D    t T       (7.14) 

The detailed information about how to simplify the MPSNA model and how to organize 

the constraints to present a block angular structure is below.  

Recall the following constraints formulated in Chapter 5. 

( )s s
t t

s S t T

F C
 

                    (5.1) 

1( )s s s s
t t t tF f          s S   t T            (5.7) 

1 1( ) ( )s m,s m,s m,s m,s
t t t t t

m M m M

C c n c n 
 

      s S   t T            (5.8) 

If we insert constraints (5.7) and (5.8) to constraint (5.1), the objective function (7.1) can 

be obtained. Likewise, inserting constraints (5.10) and (5.11) to constraint (5.9) can 

produce constraint (7.4).  
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In addition, through reorganizing the constraints (5.15), (5.18), and constraint (5.20), the 

constraint (7.14) can be produced. The detailed procedure is described as follows. 

The constraint (5.15) ( 2
n

j n
r ,t r ,t

j S

w w


  r D  { }r rn N | n O ,D   t T  ) can be 

expressed in another form ( , ,
1
2

n

n j
r t r t

j S

w w


  r D  { }r rn N | n O ,D   t T  ). 

Likewise, the constraint (5.18) can be expressed as , ,
1
2

n

j j
r t r t

j S

p p


   r D   

{ }r rn N | n O ,D    t T  . If we insert these two new constraints to constraint (4.20) 

( 1n n
r ,t r ,tw p   r D  { }r rn N | n O ,D   t T  ), then the constraint (7.14) is 

produced. 

To make the MPSNA formulation clear, we put all variables in the left side of the 

constraints and put all constant numbers on the right side of the constraints. These 

reorganizations generate the simplified MPSNA model expressed in constraints (7.1) 

through (7.14). 

If we take a closer look at the structure of the simplified MPSNA model, we find that the 

simplified MPSNA model has a block angular structure. In this model, constraints (7.2) 

through (7.5) can be considered as coupling constraints or hard constraints because they 

contain most of variables of the model and these variables have non-zero coefficients. 

The remaining constraints (constraints (7.6) through (7.14)) are considered as easy 

constraints and can be grouped into four independent blocks (sub-problems) since these 
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constraints satisfy the following property: if a variable has non-zero coefficient in one 

block, it won’t have non-zero coefficient in other blocks. For example, variable s
t  has 

non-zero coefficient in constraint (7.6), but it doesn’t have non-zero coefficient in 

constraints (7.7) through (7.14). In addition, variables ,
s
r tw  and ,

s
r tp  have non-zero 

coefficients in constraints (7.9) through (7.14), but they don’t have non-zero coefficients 

in constraints (7.6) through (7.8). The block angular structure of the MPSNA problem is 

visualized in Figure 17. 

 

Figure 17: The block angular structure of the MPSNA problem. 

Since the MPSNA model has the block angular structure, the LP relaxation of the ILP 

MPSNA master problem should be solved quickly by Dantzig-Wolfe decomposition and 
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a tight lower bound can be obtained. In the next section, we will describe how to 

reformulate the MPSNA model by implementing Dantzig-Wolfe decomposition. 

7.3 Reformulation of the MPSNA Model Based on the 

Dantzig-Wolfe Decomposition Algorithm 

Through observing the constraints and bounds of variables in these four blocks, we find 

that the four convex polyhedrons are all bounded. Based on the ILP version of the convex 

combination theorem [83], the variables ( s
t , ,m s

tn , s
ta , ,

s
r tw  and ,

s
r tp ) in the MPSNA 

model can be represented by the combination of extreme points of finite integer sets, as 

follows: 

,
s s
t k t k

k K

  


  , 1k
k K




  and {0,1}k               (7.15) 

, ,
,

m s m s
t e t e

e E

n n


 , 1e
e E




  and {0,1}e              (7.16) 

,
s s
t g t g

g G

a a


  , 1g
g G




  and {0,1}g               (7.17) 

,
, ,

s r s
r t h t h

h

w w , ,
, ,

s r s
r t h t h

h

p p , 1h
h

   and {0,1}h          (7.18) 

If we replace s
t , ,m s

tn , s
ta , ,

s
r tw  and ,

s
r tp  with these new expressions, the ILP master 

model will be produced. Here, we need to mention that ,
s

t k , ,
,

m s
t en , ,

s
t ga , ,

,
r s
t hw  and ,

,
r s
t hp  

are extreme points of finite integer sets and become parameters in the ILP master 

problem, and k , e , g  and h  become new variables in the ILP master model. The 
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new notations and formulation of the ILP master problem are described in Section 7.3.1 

and 7.3.2, respectively.  

7.3.1 Notations 

New Sets: 

 K  is the set of numbers. These numbers represent orders of extreme points of a finite 

integer set bounded by constraint (7.6) and its variable bound, the number interval is 

1 and the biggest number in this set represents the total number of extreme points. 

 E  is the set of numbers. These numbers represent orders of extreme points of a finite 

integer set bounded by constraint (7.7) and its variable bound, the number interval is 

1 and the biggest number in this set represents the total number of extreme points. 

 G  is the set of numbers. These numbers represent orders of extreme points of a finite 

integer set bounded by constraint (7.8) and its variable bound, the number interval is 

1 and the biggest number in this set represents the total number of extreme points. 

 H  is the set of numbers. These numbers represent orders of extreme points of a 

finite integer set bounded by constraints (7.9) through (7.14) and bounds of their 

variables, the number interval is 1 and the biggest number in this set represents the 

total number of extreme points. 
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 1K  is a subset of set K (i.e., 1K K ). 

 1E  is a subset of set E (i.e., 1E E ). 

 1G  is a subset of set G (i.e., 1G G ). 

 1H  is a subset of set H (i.e., 1H H ). 

New Input Parameters: 

 s
t  is the shadow price of constraint (7.20). 

 s
t  is the shadow price of constraint (7.21). 

 ,s sf
t  is the shadow price of constraint (7.22). 

 ,
,

s sf
r t  is the shadow price of constraint (7.23). 

   is the shadow price of constraint (7.24). 

   is the shadow price of the constraint (7.25). 

   is the shadow price of constraint (7.26). 

   is the shadow price of constraint (7.27). 
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 ,
s
t k  is the extreme point of a finite integer set bounded by constraint (7.6) and its 

variable bound. 

 ,
,
m s
t en  is the extreme point of a finite integer set bounded by constraint (7.7) and its 

variable bound. 

 ,
s
t ga  is the extreme point of a finite integer set bounded by constraint (7.8) and its 

variable bound. 

 ,
,
r s
t hw  and ,

,
r s
t hp  are extreme points of a finite integer set bounded by constraints (7.9) 

through (7.14) and their variables’ bounds. 

New Decision Variables: 

 {0,1}k   is the weight of the parameter ,
s
t k . 

 {0,1}e   is the weight of the parameter ,
,
m s
t en . 

 {0,1}g   is the weight of the parameter ,
s
t ga . 

 {0,1}h   is the weight of parameters ,
,
r s
t hw  and ,

,
r s
t hp . 

7.3.2 ILP Master Problem 

The ILP master problem is totally equivalent to the ILP original problem. The 

formulation of the ILP master problem is expressed as follows:   
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Minimize 

, , , ,
, 1, , 1 1,[ ( ) ] [ ( ) ( )]s s s m s m s m s m s

t k t k t k t t e t t e e
k K s S e E s S s S

t T t T t T
m M m M

f c n c n     
    

  
 

                   (7.19) 

Subject to:                  

, , 1( ) ( ) 0s s
t g g t k k

g G k K

a M  
 

            s S   t T        (7.20) 

,
, ,( ) ( ) 0s m s m

t g g t e e
g G e E m M

a n z 
  

            s S   t T        (7.21) 

, , ,
, ,( ) ( ) 0s r r s r r s sf

t g g t t h h t t
g G h H r D r D

a d w d x 
   

                   

        s S   sf S   s sf    t T        (7.22) 

, , , ,
, ,( ) 1r s r s r s sf

t h t h h t
h H

w p x


      r D   s S   sf S   s sf    t T      (7.23) 

1k
k K




                     (7.24) 

1e
e E




                     (7.25) 

1g
g G




                     (7.26) 

1h
h H




                     (7.27) 

So far, we have obtained the ILP master problem. The next step is to use column 

generation to solve this ILP master problem. First, we need to relax the integrality of the 
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ILP master problem. Second, we start to solve the LP master problem with some small 

set of variables (the restricted LP master problem). Then, we solve the sub-problems to 

decide which other variables to access to master problem as needed. Finally, we repeat 

this process until we obtain the optimal solution (the lower bound for the MPSNA 

problem). 

7.3.3 Restricted LP Master Problem and Sub-problems 

7.3.3.1 Restricted LP Master Problem 

The formulation of the restricted LP master problem is expressed as follows: 

Minimize 

1 1

, , , ,
, 1, , 1 1,[ ( ) ] [ ( ) ( )]s s s m s m s m s m s

t k t k t k t t e t t e e
k K s S e E s S s S

t T t T t T
m M m M

f c n c n     
    

  
 

                   (7.28) 

Subject to: 

1 1

, , 1( ) ( ) 0s s
t g g t k k

g G k K

a M  
 

          s S   t T         (7.29) 

1 1

,
, ,( ) ( ) 0s m s m

t g g t e e
g G e E m M

a n z 
  

           s S   t T         (7.30) 

1 1

, , ,
, ,( ) ( ) 0s r r s r r s sf

t g g t t h h t t
g G h H r D r D

a d w d x 
   

                   

       s S   sf S   s sf    t T         (7.31) 
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1

, , , ,
, ,( ) 1r s r s r s sf

t h t h h t
h H

w p x


      r D   s S   sf S   s sf    t T     (7.32) 

1

1k
k K




                     (7.33) 

1

1e
e E




                     (7.34) 

1

1g
g G




                     (7.35) 

1

1h
h H




                     (7.36) 

, , , 0k e g h                        (7.37) 

7.3.3.2 ILP Sub-Problems: 

Because the MPSNA problem has four blocks, four sub-problems can be formulated. In 

addition, the variables in these sub-problems all retain integrality. We expected the 

sub-problems can be solved quickly since these constraints only contain one or two types 

of variables and look very simple. The objective functions of sub-problems are obtained 

through pricing out [31] and the constraints are copied from the simplified MPSNA 

model. The formulations are expressed as follows: 

Sub-problem 1: 

Minimize 1 1( )s s s s s
t t t t t

s S s S
t T t T

f M    
 
 

                  (7.38) 
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Subject to:  1 0s s
t t            s S   t T        (7.39) 

   0 1s
t   and integer     s S   t T        (7.40) 

Sub-problem 2: 

Minimize , , , , ,
1 1(c n ) (c n )m s m s m s m s m s m s

t t t t t t
s S s S s S
t T t T t T
m M m M m M

n z   
  
  
  

                 (7.41) 

Subject to: , ,
1 0m s m s

t tn n          s S   t T        (7.42) 

   ,
10 m s

tn M   and integer     s S   t T        (7.43) 

Sub-problem 3: 

Minimize ,s s s s s s sf
t t t t t t

s S s S s S
t T t T sf S

s sf
t T

a a a   
  
  




                   (7.44) 

Subject to: 1 0s s
t ta a           s S   t T        (7.45) 

   10 s
ta M   and integer     s S   t T        (7.46) 

Sub-problem 4: 

Minimize , , , , , ,(w p )r r s s sf r s r s r s sf
t t t t t t

r D r D
s S s S
sf S sf S
s sf s sf
t T t T

d w   
 
 
 
 
 

                 (7.47) 
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Subject to:  

, 1
n

j
r t

j S

w


          r D   rn O   t T       (7.48) 

, 1
n

j
r t

j S

w


          r D   rn D   t T       (7.49) 

, 1
n

j
r t

j S

p


          r D   rn O   t T       (7.50) 

, 1
n

j
r t

j S

p


          r D   rn D   t T       (7.51) 

, , 1s s
r t r tw p          r D   s S   t T        (7.52) 

, , 2
n n

j j
r t r t

j S j S

w p
 

       r D   | { , }r rn N n O D    t T        (7.53) 

, ,0 , 1s s
r t r tw p   and integer     r D   s S   t T        (7.54) 

7.4 Experimental Study Method 

To verify the efficiency of the Dantzig-Wolfe decomposition, we validate this approach 

through simulations conducted on six restricted networks. In other words, we use a subset 

of the eligible spans inherited from step 3 rather than full spans from original 

experimental networks. The formulations of restricted LP master MPSNA problem, 

sub-problems and the Dantzig-Wolfe decomposition, were implemented in AMPL and 

solved with Gurobi Optimizer 6.0.3 on a Mac Pro server with a 3.5 GHZ processor and a 

32 GB RAM. After obtaining the tight lower bound, we added this bound back to the ILP 
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MPSNA problem and resolved it to see whether the solution runtime of the restricted 

version of the ILP MPSNA problem is decreased or not; and this new ILP problem was 

also solved with 1% optimality gap. 

7.5 Results and Discussion 

The Dantzig-Wolfe decomposition solutions of all six restricted networks appear in Table 

7. More specifically, this table describes experimental networks, the solutions of step 4 of 

ILP-based heuristic which are considered as benchmarks in this step, and solutions of 

Dantzig-Wolfe decomposition. Here the Dantzig-Wofle decomposition solutions include 

two parts. One part is the solutions of getting lower bounds. The other is the solutions of 

resolving the ILP MPSNA problems with lower bounds. Each includes the information of 

values of objective functions, solution runtimes and optimality gaps. Because we solve a 

LP relaxation of ILP master problem for getting a lower bound, the solution optimality 

gap is optimal. However, for solving the ILP MPSNA problem with a lower bound, the 

optimality gap is set to 1% since the problem is an integer problem. 

As shown in Table 7, the total solution runtimes of Dantzig-Wolfe decomposition is 

longer than solution runtimes of step 4 of the ILP-based heuristic. However, this result is 

not what we expected. If we look at Dantzig-Wolfe decomposition solutions, we find that 

it usually takes several seconds to get lower bounds, as we expected since the problem 

with block angular structure should be quickly solved by Dantzig-Wolfe decomposition. 
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In test cases of networks 8n9s through 20n22s, the solution runtimes of resolving ILP 

problem with lower bound are slightly shorter than the solution runtimes of step 4 of 

ILP-based heuristic (they are 0.1 seconds vs 0.15 seconds, 0.37 seconds vs 0.46 seconds, 

1.53 seconds vs 1.95 seconds and 5.65 seconds vs 5.77 seconds, respectively). The 

comparison demonstrates that the lower bound play an effective role in reducing the 

search space of feasible solutions as we expected. However, in test cases of 25n28s and 

30n36s networks, the solution runtimes of resolving the ILP problem with lower bound 

are increased by hundreds of seconds rather than decreased. In addition, in most test cases, 

the objective function values (total cost) of ILP problems with lower bounds are also 

worse than benchmarks. Overall, the Dantzig-Wolfe decomposition solutions do not meet 

our expectations and they prompt us to examine the quality of the lower bound (is it tight 

or loose?). 

Table 7: The comparison of step 4 solutions of ILP-based heuristic and Dantzig-Wolfe 

decomposition solutions of all six restricted version of networks. 

Network 

Step 4 of ILP-based heuristic Dantzig-Wolfe decomposition 

Cost 
Runtime 

(sec) 

Optimality 

gap 

Lower bound 
Add lower bound back to ILP 

problem and resolve it 

Cost 
Runtime 

(sec) 
Cost 

Runtime 

(sec) 

Optimality 

gap 

8n9s 2,064,919 0.15 1% 246,269 0.06 2,064,919 0.10 1% 

12n13s 1,151,002 0.46 1% 104,389 0.55 1,151,924 0.37 1% 

15n17s 3,051,168 1.95 1% 247,848 1.36 3,050,337 1.53 1% 

20n22s 3,073,526 5.77 1% 256,804 3.43 3,076,116 5.65 1% 

25n28s 3,826,661 421 1% 300,046 10.76 3,831,890 576 1% 

30n36s 5,070,193 1266 1% 406,557 17.58 5,073,403 1464 1% 
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Through examining the formulation of the MPSNA model, we suspect that the ILP 

models of sub-problems are unimodular since the variable coefficients in sub-problems 

are all 1, -1 or 0. As we have discussed in Chapter 2, the basic idea of the unimodularity 

is that if one ILP problem’s coefficients have unimodular matrix, this ILP problem can be 

solved as a LP problem (relaxing the integrality of all variables) and all variables will still 

take integer values. In this case, if the MPSNA sub-problems have this property, the 

MPSNA problem will include the following relationship: V(LP) = V(DW) < V(ILP) (setting the 

objective function value of the LP MPSNA problem equal to the objective function value 

of the LP relaxation of the ILP master problem since we can get the same solutions even 

though we relax the integrality of all sub-problems’ variables) rather than V(LP) < V(DW) < 

V(ILP) as we expected at the beginning. 

Table 8: The solutions of the LP relaxation of ILP master problems and the LP relaxation 

of ILP original problems. 

Network 

LP relaxation of the ILP 
master problem solved by 

Column Generation 

LP relaxation of the ILP 
original problem 

Cost Optimality 
gap Cost Optimality 

gap 
8n9s 246,269.4422 Optimal 246,269.4422 Optimal 

12n13s 104,388.6313 Optimal 104,388.6313 Optimal 
15n17s 247,847.6279 Optimal 247,847.6279 Optimal 
20n22s 256,804.2963 Optimal 256,804.2963 Optimal 
25n28s 300,046.3288 Optimal 300,046.3288 Optimal 
30n36s 406,557.1989 Optimal 406,557.1989 Optimal 
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The solutions of the LP relaxation of ILP master problems and the LP relaxation of ILP 

original problems are summarized in Table 8. After solving the LP relaxation of MPSNA 

problems, we found that the solutions of the LP relaxation of the MPSNA problems were 

totally equal to the solutions of LP relaxation of the ILP master MPSNA problems, which 

verified our suspicions. Now, we can explain why the solution runtimes of the MPSNA 

problems with lower bounds didn’t decrease greatly; and in some test cases, it even 

increased. The reason for that is the ILP sub-problems are unimodular and the tight lower 

bounds we expected are actually equal to the solutions of the liner relaxation of the 

MPSNA problem. In other words, the lower bounds are loose lower bounds rather than 

tight lower bounds. 

In summary, if the sub-problems of an ILP problem which has a block angular structure 

can be confirmed to be unimodular, we can reach the following conclusion: the bound of 

the ILP problem obtained by Dantzig-Wolfe decomposition is not a tight bound. 
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Chapter 8: Conclusion and Discussion 

8.1 Summary of Thesis 

The main objective of this thesis is to provide a method to effectively solve a 

multi-period survivable augmentation (MPSNA) problem. In this problem, the shared 

backup path protection (SBPP) mechanism is considered. To achieve the objective, we 

develop the ILP model for the MPSNA problem. However, we found that this problem is 

very time-consuming to solve even for an 8-node small network. To overcome this 

difficulty, we applied the four-stage ILP based-heuristic approach to solve the MPSNA 

problem and we also investigated the effectiveness of implementing Dantzig-Wolfe 

decomposition to solve this problem. 

A brief background of backbone network and thesis outline is described in Chapter 1. 

Chapter 2 discusses integer linear programming optimization techniques and relevant 

literature reviews. Chapter 3 describes introduction of network survivability, network 

design paradigms and literatures of SBPP problem, topological network design problem 

and multi-period network design problem. In addition, Chapter 4 presents research goals 

and adopted methodologies. 

In Chapter 5, we developed an ILP model for MPSNA problem. The MPSNA problem 

took the long-term incremental demands, network survivability and economies of scale 

into account, and focuses on network topology design, working demand routing, and 
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spare capacity allocation. In addition, the SBPP mechanism was considered in this 

problem. The ILP model of MPSNA problem was implemented in AMPL and solved by 

Gurobi optimizer 6.0.3 with various optimality gaps. The experimental results showed 

that the MPSNA problem is very difficult to solve even for a small network test case. 

In Chapter 6, we focused on decreasing the solution runtime of the MPSNA problem. A 

four-stage ILP-based heuristic approach was applied to this problem. We also 

implemented the ILP model of each step in AMPL and solved it with Gurobi Optimizer 

6.0.3. Our experimental results showed that the ILP-based heuristic approach could 

provide better solutions in shorter runtimes in most test cases when compared to 

benchmark solutions. For example, in test case of a 15-node network, the solution 

runtime decreased by 99.8% and the total cost by 11.62%. In summary, the four-stage 

ILP-based heuristic approach was very effective to solve the MPSNA problem and could 

provide high-quality solutions in fast runtimes. 

In Chapter 7, to reduce the solution runtimes further, we applied the Dantzig-Wolfe 

decomposition algorithm to solve the restricted version of the MPSNA problem. However, 

the experimental results showed no significant reduction in solution runtime. On the 

contrary, the implementation of Dantzig-Wolfe decomposition increased the solution 

runtime slightly. After the investigation, we found that Dantzig-Wolfe decomposition 

algorithm is not efficient to solve the ILP problems whose coefficient matrices are 
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unimodular since this kind of problem has the following property: the LP relaxation of 

the ILP original problems is totally equal to the LP relaxation of the ILP master problem. 

As a result, we could not get a tight bound for the ILP problems. 

8.2 Main contributions 

There are three main contributions of this thesis. These contributions are summarized as 

follows: 

1. Chapter 5: Develop an ILP model for the multi-period network augmentation 

(MPSNA) problem with the consideration of the SBPP mechanism. 

2. Chapter 6: Develop a four-stage ILP-based heuristic approach based on the 

three-stage heuristic method proposed in [3] and [13] for effectively solving the 

MPSNA problem. 

3. Chapter 7: Simplify the ILP model of the MPSNA problem, find the model’s 

block angular structure, apply the Dantzig-Wolfe decomposition to solve the 

MPSNA problem and investigate the effectiveness of implementation of 

Dantzig-Wolfe decomposition. 
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8.3 Other contributions 

Besides the contributions listed in Section 8.2, one conference paper has been accepted 

and one manuscript has been finished ready to submit. 

1. Y. Wang, J. Doucette, “ILP-based Heuristic Method for the Multi-period 

Survivable Network Augmentation Problem,” Reliable Network Design and 

Modeling (RNDM 2016), accepted: 17-June, 2016. 

2. Y. Wang, J. Doucette, “Dantzig-Wolfe Decomposition Algorithm for the 

Multi-period Survivable Network Augmentation Problem,” ready to submit. 

8.4 Future Work 

Several research topics are recommended for future study. They are listed as follows: 

First, the demand uncertainty can be taken into account when the traffic demand is 

forecasted. As we all know the accuracy of the demand forecasting affects the network 

design directly; however, the traditional demand forecasting methods (e.g. according to 

past demand history or using some econometric forecasting models to forecast future 

demand) sometimes cannot satisfy present telecommunication environment which is 

dynamic and uncertain . As a result, it is necessary to design the multi-period network 

with the consideration of the demand uncertainty; however, the complexity of the 

problem will be definitely increased. 
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Second, with the rapid technology innovation, when to introduce new technologies to 

network is also a problem which network designers care about during the multi-period 

network design. Like other economic factors (e.g., modularity and economies of scale), 

the factor of technology innovation can also be formulated into the ILP model. 

Third, the MPSNA model can be formulated with other popular network survivability 

mechanisms such as span restoration and p-cycle. In addition, the four-stage ILP-based 

heuristic approach developed in this thesis can also be applied to solve MPSNA problems 

with other survivability mechanisms because of its wide suitability and ease of use. 
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