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Abstract

Mathematical theories and entities may be praised for many reasons: for

their truth, certainty, depth, applicability, fruitfulness, and beauty. Of these

virtues, some (truth, certainty, and to a lesser degree applicability) have re-

ceived a great deal of philosophical scrutiny and analysis while the others have

remained vague and mysterious. This thesis attempts to dispel some of the fog

around one member of the latter category, namely beauty. While many objects

of mathematics are of aesthetic interest, this thesis focuses specifically on the

aesthetics of proofs because of their central position in mathematical practice.

It is argued that proofs are conceptual artefacts, and that our perception of

them is framed by how we use them. Contemporary theories of functional

beauty are then adapted in order to understand and analyse aesthetic claims

made about proofs.
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Chapter 1

Aesthetic Talk in Mathematics

1.1 Introduction

References to aesthetic factors are a recurring theme in discussions by mathe-

maticians of mathematics, however they have very rarely been taken up with

any philosophical seriousness. My aim in this chapter is to tease out some

common threads in these discussions which illuminate the phenomenon of aes-

thetics within mathematics as well as help isolate why it is a recurring topic,

and therefore why its study is important for philosophy of mathematics. In

doing this, I hope to also shed light on the reasons philosophers have until

quite recently remained relatively mum on the topic.

In many respects, it is self evident that the aesthetic (or at least, the ap-

pearance of the aesthetic) plays some role in mathematics. Sinclair (2004)

identifies three distinctive ways in which the aesthetics is relevant to mathe-

matical practice: it may be evaluative, leading to the aesthetic judgements of

various mathematical objects, generative insofar as it aids inquiry and discov-

ery, and motivational in that leads mathematicians to study particular subjects
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and problems (264). This breakdown is insightful, although we must still ask

the degree to which such factors impact the field, especially in comparison to

others. The evaluative role also remains mysterious as it is unclear why such

judgements should be possible to make in the first place, and what precisely

they entail.

To motivate and clarify these problems, I will focus on three notable and

influential attempts by 20th century mathematicians to describe, explain, and

sometimes define the mathematical aesthetic. The work under consideration

is by mathematicians themselves who are, in many cases, writing so as to give

the layman a better sense of what they as mathematicians do, and to explain

the value and importance of mathematics as they see it. As a result, these

accounts are in places semi-autobiographical and largely focused on conveying

personal experience and insight rather than providing a proper philosophical

analysis. Nonetheless, these texts have helped set the stage for the ongoing

discussion of these issues.

The first work I consider is that of Poincaré (1910), which addresses the

psychology underlying mathematical creativity. Poincaré provides an extended

description and analysis of his personal experiences while working on proofs.

Poincare views aesthetics as playing an important although subconscious role

in the process of discovery. The second text is G.H. Hardy’s 1940 semi-

autobiographical text A Mathematician’s Apology. The aim of this short book

is not to give a rigorous account of aesthetics in mathematics (in fact Hardy

acknowledges that he has “no qualifications for any serious discussion in aes-

thetics”(90)) but rather to justify the practice of mathematics, and discuss in

what ways it is valuable.

Finally, I consider Jerry King who follows in Hardy’s footsteps with his
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1992 book The Art of Mathematics. Here King aims to explain what it is that

mathematicians do, and how it is that the aesthetic is part of mathematical ex-

perience. Through this project, he hopes both to help the non-mathematician

appreciate the appeal of mathematics, and show what kinds of cultural and

institutional changes might be needed in the academic world to enhance teach-

ing such that non-mathematicians are more aware of and receptive to genuine

mathematics. Notably, King’s book contains perhaps the most sustained at-

tempt at a detailed aesthetic theory for mathematics.

I focus primarily on the reasons these authors have for taking up the topic

in a semi-theoretical capacity: why they have come to believe and examine

the fact that the aesthetic dimension is valuable to their work and experiences

as mathematicians. Thus, to facilitate the discussion, I identify two major

recurring themes which drive the authors in question to raise aesthetic issues

with regard to mathematics. The first theme, of particular interest to Hardy

and King, is a concern with why mathematics (especially pure mathematics)

is practised at all, and why it should be considered a worthwhile human en-

deavour in spite of its highly theoretical nature. There is a normative shade

to this theme; these mathematicians wish to defend their work and demon-

strate not just that it is done, but that it should be done. Practical and moral

justifications being hard to establish, the hope on the part of these authors is

that mathematics can be shown to have independent aesthetic value, perhaps

putting it on a par with art. The aesthetic becomes an important source of

value for mathematics as a discipline.

The second theme is a concern with how mathematics is practiced by (hu-

man) mathematicians, in particular how problems are posed and solved. A

focus on these elements is exemplified by Poincaré and those who pursue a
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more distinctively cognitive approach to the question of aesthetic appreciation

in mathematics. Here, Sinclair’s generative and motivational roles come into

the spotlight, with the aesthetic seeming to occupy important, and perhaps es-

sential, places in mathematical reasoning processes. Where the former theme

was normative, the theme here is more descriptive in nature with the question

of what is necessary to have mathematics at all being at issue.

1.2 Arguing from Value

A recurring motivation for identifying aesthetic features of mathematical ob-

jects involves the need to make value judgements. The claim is that mathe-

maticians must make such distinctions in order to direct themselves toward

new research projects, or improve upon old ones, and so the question becomes

what makes mathematics valuable? There are three obvious potential answers:

1. Mathematics is valuable because it provides us with a body of a-priori,

necessary truths.

2. Mathematics is valuable because it is useful. In particular, it is of enor-

mous importance to the natural sciences.

3. Mathematics is valuable because it is beautiful..

Although most would agree that all three of these elements contribute to

the overall value of mathematics (with the third being the most controver-

sial), the relative importance mathematicians place on each can dramatically

alter their view of the subject. This harkens back to Sinclair’s motivational

role, and indeed it has been argued that “the basic viewpoint people adopt

toward mathematics can influence the direction of research”(Krull, 1987, 50) .
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Those interested primarily in the first element gravitate toward foundationalist

projects such as axiomatizing known theories, those interested in the second

choose projects in applied areas at the cross section of mathematics and the

sciences, and those motivated primarily by the aesthetic will work on theo-

retical projects with special concern for finding and presenting aesthetically

satisfying results.

In the cases where (3) is treated as a value of primary importance to math-

ematical work, it is generally argued that (1) and (2) are each, in some sense,

lacking. In any endeavour, it is necessary to make assessments of recently com-

pleted, newly adopted, and potential future work, as well as long standing re-

sults and products. These judgements are clearly made by the mathematician

choosing where to direct their energies, but might also be made by outsiders

to the field (who might be in politically or financially relevant positions). Part

of the aim of some authors, such as Hardy, is to reveal to outsiders some of

the value judgements that they as mathematicians make.

Judging the quality of a proof or theorem based on validity alone might be

considered inadequate for these purposes because such a measure is binary and

as such does not provide any way to assess relative quality: we cannot make

assessments about one proof of a given theorem being better or worse than

another proof of the same theorem if this is all we look to in our evaluations.

It fails to distinguish run of the mill results from those that are innovative,

and it does not seem to provide value assessments that could be considered

goal directing for mathematicians themselves.

Utility seems like a reasonable value to assert for mathematics, especially

if you are concerned with making a large scale judgement of the discipline as a

whole. There can be no denying the prevalence of applications of mathematical
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concepts to domains from the scientific, to the technological. Moreover, such

considerations certainly have played a role in some of the development of the

field, especially when considering decisions about what theories to pursue.

Consider, for instance, the history of the quaternions which, after an initial

burst of activity was briefly abandoned when it appeared matrices could do

the same sort of applied work, and has come back into popularity with the

discovery of new uses.

Yet despite its promising nature, this sort of criterion still fails to account

for all aspects of mathematical development. It does not allow us to ade-

quately assess mathematical works, because in many cases we require decades

or even centuries to make the transition from theory to application (and even

the case of the quaternions illustrates how unpredictable the process can be,

with promising ideas being dropped and readopted). This fact has recently

been pointed out by Rowlett (2011) who challenges political and institutional

pressure “for researchers to predict the impact of their work before it is under-

taken”(166) by cautioning that “there is no way to guarantee in advance what

pure mathematics will later find application”(167) and cataloguing examples

of applications with gestation periods so long that they could not reasonably

have been anticipated when the work was initially carried out.

We are left to look for features (such as a streamlined presentation, and

intra–mathematical utility) of the result or proof which allow us to judge its

relative value without depending entirely on either the fact of its validity, or

on non-mathematical applications. This leads naturally into consideration of

the aesthetic as potentially filling that hole. For instance, King holds that

aesthetic valuations are used to distinguish correct and ‘good’ mathematics

from correct but nonetheless ‘bad’ mathematics. That is, he considers a good
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piece of mathematics to be a “beautiful mathematical artifact”(King, 1992,

179). Moreover, King feels that “it is hard to overestimate the degree of

unanimity which exists among mathematicians regarding the beauty of certain

mathematical results”(174). In his view, there is general agreement among

mathematicians about what is and is not beautiful and this strongly suggests

“some set of commonly accepted aesthetic principles.”(179) 1

Hardy strongly and quite self-consciously separates the aesthetic dimen-

sion from that of utility. In fact, he is somewhat unusual insofar as he views

non-mathematical applicability as being not merely aesthetically neutral but

almost incompatible with beauty. This is most apparent in the distinction he

makes between “real mathematics” and “trivial mathematics”(Hardy, 1992,

139). Trivial mathematics, he claims, is largely elementary and makes up

the bulk of what the lay person believes to be mathematics. It can be (and

usually is) justified on the basis of its abundant applications to industry and

the sciences. Real mathematics, by contrast, is the cutting edge practised

by professional mathematicians themselves and of which non-mathematicians,

1King is not unusual in this regard. Many others, have stated similar views about
aesthetic universalism in mathematics. For instance, Rota (1997) claims that “mathematical
beauty and mathematical truth, like other objective characteristics of mathematics, are
subject to the eidetic laws of the real world, on a par with the laws of physics” (176) while
at the same time noting that beauty (like truth, for him) is non-arbitrary but still context-
dependant. Thus, conclusions about what is and is not beautiful may change over time,
but will still be agreed upon within a particular mathematical community. Assumptions
that there is an objective and universally recognizable fact of the matter are also implicit
in attempts (e.g. Aigner and Ziegler (2009)) to identify ‘the best’ proofs.

This assumption has been challenged to varying degrees by others such as Krull (1987),
Le Lionnais (1971), and Wells (1990). Wells performed an informal survey of mathemati-
cians, asking them to rank various theorems for their beauty and give explanations for their
responses, from which he concluded that “the idea that mathematicians largely agree in
their aesthetic judgements is at best grossly oversimplified.”(40). Krull and Le Lionnais
expressed doubts about the claim by arguing that there can be, and in fact have been,
significant differences in taste and style among mathematicians (Le Lionnais in particular
distinguishes the classical from the romantic). I will take up the problem of aesthetic taste
in the last chapter.
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even those who use the tools emerging from trivial mathematics, tend to be

quite ignorant. At the same time, Hardy considers many theoretical physicists

(namely Maxwell, Einstein, Eddington and Dirac whose work on quantum

mechanics and relativity theory he considers “almost as ‘useless’ as the the-

ory of numbers”(Hardy, 1992, 131-132)) to be real mathematicians. “Real

mathematics” is thus the term Hardy uses to isolate and refer to the body

of mathematical work which lacks practical applicability or which only pro-

duces practical results after it has been around for long periods of time, in the

manner discussed above.

In large part because of the wedge he has drawn between usefulness and

aesthetic merit, the aesthetic is a core element of Hardy’s apology. He argues

that “such mathematics is useful as is wanted by a superior engineer or a mod-

erate physicist; and that is roughly the same thing as to say, such mathematics

has no particular aesthetic merit”(Hardy, 1992, 134), and therefore finds that

real mathematics “must be justified as an art if it can be justified at all”(139).

Hardy is, through this distinction, able to divorce real mathematics from ethi-

cal concerns which arise in applications of trivial mathematics (in particularly

to warfare), finding it to be “harmless”. Pure mathematics, on this view, is

the domain of aesthetics, while applied mathematics is the domain of ethics.

While King does not separate usefulness from beauty in the way Hardy

does, he finds the fact that there are applications for mathematics which was

originally explored (he claims) for aesthetic motives to be a “miracle of sec-

ond order of magnitude”(King, 1992, 121). King recalls the famous problem

raised by Wigner (1960) of the “unreasonable effectiveness” of mathematics in

applied domains. This phenomenon has an uncanny and “miraculous” quality

largely because while “the concepts of elementary mathematics and partic-
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ularly elementary geometry were formulated to describe entities which are

directly suggested by the actual world, the same does not seem to be true of

the more advanced concepts, in particular the concepts which play such an

important role in physics.”(Wigner, 1960, 2) Instead, these concepts “were so

devised that they are apt subjects on which the mathematician can demon-

strate his ingenuity and sense of formal beauty.”(3) It is precisely because

the applications come later, and frequently not by initial design, that their

pervasiveness is so striking. For King, Wigner’s observation combined with a

presumed dominantly aesthetic motivation behind mathematical work create

“the paradox of the utility of beauty”(King, 1992, 121). There is no reason to

suppose that beautiful mathematics should ever produce useful results, and so

the fact that utility emerges from the process appears all the more mysterious.

Like Hardy, and in a manner that naturally grows from the value theoretic

approach discussed here, King holds that mathematics has much in common

with the fine arts. He motivates this view by describing an analogy between

Dickie’s “artworld” and the cultural institution around mathematics, which

he refers to as the “mathworld”. For Dickie

1. An artist is a person who participates with understanding in

the making of a work of art.

2. A work of art is an artifact of a kind created to be presented

to an artworld public.

3. A public is a set of person the members of which are prepared

in some degree to understand an object which is presented to

them.

4. The artworld is the totality of all artworld systems.
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5. An artworld system is a framework for the presentation of a

work of art by an artist to the artworld public. (Dickie, 1984,

80-82)

King uses the mathematical metaphor of an isomorphism (that is “a one-to-

one correspondence between two sets which preserves particular operations on

these sets.” (King, 1992, 166)) to describe the relation between Dickie’s theory

of an artworld and his own suggested theory of a mathworld. In particular, he

adapts Dickie’s definitions by replacing the words “artist” with “mathemati-

cian”, “art” with “mathematics”, and “artworld” with “mathworld”. This

transformation yields the mathworld. King then claims that the various prac-

tices described by words such as “participates”, “making work”, “presented”,

“created”, and “presentation” are the operations preserved under such a trans-

formation, being common to both the mathworld and the artworld. Thus,

according to King, the artworld and the mathworld are structurally similar.

The only significant differences between the mathworld and the artworld

are in how they actually manifest in our culture. In particular, while the

artworld contains art critics, the math world does not, according to King,

contain critics of the same sort. This could reasonably be taken as evidence

against mathematics being considered an art, being an importantly different

feature between the two fields; however King suggests that this lack is instead

a problem that should be addressed. He argues that “the mathworld allows for

the possibility of mathematical critics of all types” but nonetheless “no critics

live in the math world system”(King, 1992, 172) other than mathematicians

themselves.2 As a result, mathematicians are not held accountable to the

2The extent to which mathematical criticism is really absent can be disputed. There are
sometimes discussions embedded in journal articles which might be considered criticisms,
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public, and most nonmathematicians are denied the preparation necessary

to allow them to understand and appreciate works of mathematics, thereby

entering into the mathworld public. Without the critics to act as a guide,

the mathematical community remains highly isolated. To change this fact,

King suggests that numerous alterations must be made within mathematical

culture and education systems. He would like to “embed” the mathworld in

the artworld, making it a “subset” thereof (173).

King is not alone in viewing a strong kinship between mathematics and

art. Hardy, John Sullivan3, and others have voiced similar claims. Views

of this form are derived through a combination of focusing on the aesthetic

value of mathematics and consciously separating mathematics from other “real

world” concerns, as is exemplified by Hardy’s real/trivial distinction. The

trend reflects a general desire to justify mathematics on its own terms. This

may be in part related to historical and political trends, especially in the

20th century, being a time when “the field of mathematics made its final

separation from the sciences”(Sinclair and Pimm, 2007, 16) to which it had

been tightly bound in the past. Because of this sort of change, questions of

how to categorize math (should we think of it as an art, a science, both, or

although these do not play the same role as art criticism in communicating with the public.
There are also numerous sources of “recreational” mathematics, as well as collections of
proofs and results aimed at varying levels of mathematical skill. These sometimes contain
brief discussions and analyses of the various merits of a particular mathematical artefact
which could be considered elementary criticism. Nonetheless there are not very many sus-
tained commentaries on the aesthetic values of particular theorems, proofs, or texts, al-
though the analyses of ancient mathematical texts in Netz (2005, 2009) could certainly be
considered examples of such projects undertaken recently.

3 “...it is certain that the real function of art is to increase our self-consciousness; to
make us more aware of what we are, and therefore of what the universe in which we live
really is. And since mathematics, in its own way, also performs this function, it is not only
aesthetically charming but profoundly significant. It is an art, and a great art. It is on this,
besides its usefulness in practical life, that its claim to esteem must be based.”(Sullivan,
1956, 2021)
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something entirely different?) arose. Exploration of aesthetic themes, and the

justification of mathematical work on grounds unrelated to its scientific uses

thus represents, alongside foundational projects, a part of the introspection

that the discipline continues to undergo. Authors such as Hardy and King are

particularly concerned with how mathematics can be defended as an essentially

autonomous and intrinsically valuable field of study, and the aesthetic domain

plays an important role in this project. The resulting rather romantic idea

that mathematics may be pursued on aesthetic grounds “for the greatest good

of all and for the greatest glory of the human adventure, by men who expect

no material profit for themselves”(Le Lionnais, 1971, 147) makes it tempting

for many to place mathematics with the fine arts rather than with the natural

sciences.

1.3 Arguing from Practice

Those interested in the topic of aesthetics with respect to mathematical prac-

tice consider the manner in which it may come to bear on the actual de-

velopment of mathematics as a field, and seek concrete examples that can

help shed light on how and why this occurs. The suggestion is that aesthetic

considerations can be seen in many places, ranging from the projects math-

ematicians choose, to the methods they employ. Aesthetic evaluations both

of a mathematician’s personal work and that of their peers may also impact

the dissemination of information. An example of this is given by Krull (1987)

who points out how Dedekind withheld a proof for years because “it did not

satisfy his aesthetic demands”(57).

In their most basic form, projects investigating practice lack the norma-
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tive undertones of their value based brethren (although, the two themes are

often mixed). The claim is that, whether or not it is beneficial or harm-

ful, the aesthetic does play a role in mathematics. As a result “beauty in

mathematics must be incorporated into any adequate epistemology of math-

ematics. Philosophies of mathematics that ignore beauty will be inherently

defective and incapable of effectively interpreting the activities of mathemati-

cians”(Wells, 1990, 41). Since it appears that there is some sort of aesthetic

presence in mathematical practice, it is incumbent upon philosophers to take

the topic seriously if they are to develop a rich and adequate understanding

of mathematics as a whole.

While Hardy obviously treats the aesthetic as being an important feature

in mathematical practice, he largely uses this in support of his value theoretic

theme. By suggesting that this is the value that mathematicians themselves

appeal to in their work, he is able to both provide an explanation for why

the subject is studied and give support to the idea that such a valuation is

plausible. Issues of mathematical practice are of more central importance to

Poincaré (1910) who is an early example of a mathematician discussing the

aesthetic in order to explain aspects of reasoning and thought.

Poincaré places the primary place of aesthetics at the beginning of the cre-

ative process. A mathematician, on his view, must have an intuitive faculty

attuned to aesthetic features such as “order” and “harmony” in order to make

the judgements necessary in research. This “delicate feeling”(Poincaré, 1910,

324) is rare, but nonetheless known to “all real mathematicians” (331) (here

Poincaré seems to make a similar distinction as Hardy between “real” serious

mathematicians and those doing more trivial work). Mathematical creation,

he claims, consists in combining already known entities in new ways. This
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cannot be done haphazardly because there are infinitely many potential com-

binations, most of which are trivial or uninteresting. The role of Poincaré’s

aesthetic intuition is thus to help filter potential research directions towards

those which are worthwhile. That is, the mathematician must direct his at-

tention toward only those projects which may be “useful” insofar as they

help us better understand “mathematical law” (325), and reveal connections

between what appear to be disparate areas of mathematics (like Hardy and

King, Poincaré is here concerned with internal uses of mathematics only, a

feature with will be discussed below). The manner in which a mathematician

identifies these projects is subconscious, difficult (or impossible) to define, and

emotional rather than mechanical.

Poincaré’s theory of mathematical intuition and creativity was taken up

more extensively in Hadamard (1996) with the help of an informal survey

of professional mathematicians asking them to describe their creative expe-

riences. Hadamard agrees with Poincaré that an aesthetic sensibility is the

main driving force behind mathematical discovery. He also views the sense

of beauty as fulfilling an indispensable role, allowing mathematicians to make

decisions about their research direction for which they are otherwise in the

dark. The mathematician needs his aesthetic sensibility because “concerning

the fruitfulness of the future result, about which, strictly speaking, we most

often do not know anything in advance, that sense of beauty can inform us

and I cannot see anything else allowing us to foresee”(Hadamard, 1996, 127).

Significantly, the direction taken is very often a good one; the mathematician

is moved to pursue problems of genuine interest and such problems are likely

to be fruitful insofar as they result in solutions “of some value for science,

whether it permits further applications or not” (Hadamard, 1996, 127). Using
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beauty as a guide is not an unfortunate necessity with which we are saddled,

but actually a reasonably reliable method.

For Hardy the role of the aesthetic is largely motivational with the math-

ematician aiming to produce beautiful works. The aesthetic separates good

mathematics from bad, although it is not what part it plays in the actual

process of mathematical reasoning. Poincaré, by contrast, highlights the role

of the aesthetic in creation, treating the achievement of aesthetic harmony as

being both of aesthetic and epistemic merit. In addition to giving pleasure to

the mathematician, it has heuristic value as a fallible but nonetheless indis-

pensable “aid to the mind”(Poincaré, 1910, 331), leading the mathematician

down fruitful paths of inquiry and creation by guiding his choices. Indeed, this

heuristic is of such importance that to Poincaré an individual who entirely lacks

aesthetic intuition cannot understand (let alone contribute to) higher mathe-

matics. Success as a mathematician is correlated not only with the presence

of the intuitive faculty (by no means a universal human attribute) but also

with how well developed this faculty is: those who have heightened sensitiv-

ity can both understand and create mathematics, while those who have only

minimal sensitivity might be able to understand and even apply mathematical

concepts, but can never be “real” (i.e. creative) mathematicians. The research

mathematician is by necessity an aesthete.

1.4 The Shades of Theories

Poincaré attempts not merely to assert the existence of an aesthetic sense,

but also to provide a sketch of what features that sense may be picking up,

and why. He subscribes to the view that beautiful mathematical entities are
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“those whose elements are harmoniously disposed so that the mind without

effort can embrace their totality while realizing the details”(Poincaré, 1910,

331). A feeling of mathematical beauty arises when we as human beings are

able to clearly grasp a concept or chain of reasoning.

Despite the fact that over a century has passed since Poincaré’s writing,

his cognitive approach to describing mathematical beauty retains some appeal.

One recent proposal suggests that mathematical beauty should be defined as

“cognisability” such that “A beautiful proof is one which the mind can play its

way through with a natural grace”(Bl̊asjö, 2012). Echoing Poincaré further,

the author suggests that “We grasp a beautiful proof as a whole, yet see the

role of every detail; it is vivid and transparent...”(1) According to this kind of

theory, the aesthetic develops out of a sense of pleasure we experience when

a piece of abstract reasoning is conveyed with particular clarity such that we

may think through it without encountering mental snares.4

In developing his own rudimentary theory regarding the mathematical aes-

thetic, Hardy attempts to align mathematicians with artists. He draws a con-

4The thought that a feeling of beauty should arise when we somehow perceive complexity
and detail as brought together harmoniously echoes the slogan “unity in variety”, and gives
the theories of Poincaré’s kind a noticeably 18th century character. It may be that such
definitions of beauty remain appealing to some mathematicians because the core idea can,
to a certain extent, be interpreted in mathematical terms or using mathematical metaphors.
As an example, George Birkhoff builds a formal theory of aesthetics around the idea that
“aesthetic feelings arise primarily because of an unusual degree of harmonious interrelation-
ship within the object”. He suggests that the feeling of value we get from an object can
be captured by a mathematical formula for aesthetic measure: M = O

C With O being a
measure of the objects order, and C its complexity. Birkhoff explicitly acknowledging the
theory’s lineage:

The well known aesthetic demand for “unity in variety” is evidently closely
connected with this formula. The definition of the beautiful as that which ex-
hibits the greatest number of ideas in the shortest time, given by the Dutchman
Hemsterhuis in the eighteenth century, is also of an analogous nature.(Birkhoff,
1931, 134)
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nection between math and art not only in terms of aesthetic value of the objects

created but also in terms of the methods employed by their creators. To this

end, he directly compares mathematics to poetry and painting. For Hardy,

the three disciplines have in common a concern with constructing patterns.

They can be distinguished largely in terms of what materials their patterns

are built from. The poet’s distinctive medium in this enterprise is words, the

painter’s is colour, and the mathematician’s is ideas (what he means by idea

is not precisely defined, but presumably Hardy wants them to be abstractions

of some sort). Having described mathematics in these terms, he goes on to

make his famous claim that:

The mathematician’s patterns, like the painter’s or poet’s, must be

beautiful ; the ideas like the colours or the words, must fit together

in a harmonious way. Beauty is the first test: there is no permanent

place in the world for ugly mathematics. (Hardy, 1992, 85)

Thus Hardy too seems to view the aesthetic as being a guide. Implicit in his

claim, however, is that while “beautiful” mathematics is the actual aim, and

what is ultimately immortalized, “ugly” mathematics may still be useful as a

tool, or stepping stone toward other results. Further, it is pattern that is the

source of the aesthetic element in mathematics. It is unsurprising, then, that

Hardy places a significant emphasis on the structural features of mathematical

objects in his analysis of what is of aesthetic import, considerations which

accord in many respects with those Poincaré also singles out.

Yet Hardy also admits factors that are more readily viewed as contextual.

He suggests, for instance, that real mathematics (having no practical appli-

cations) derives its worth not just from being beautiful but also from being
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“serious”. While superficially plausible, the relation between the concept of

beauty and the concept of seriousness is somewhat foggy (not in the least be-

cause of the difficulty in defining each of these concepts independently). We

are told that “the best mathematics is serious as well as beautiful”(Hardy,

1992, 89), suggesting that the two concepts are distinct, and that each is to be

considered a virtue separate from the other. On the other hand, Hardy also

tells us that “the beauty of a mathematical theorem depends a great deal on its

seriousness”(Hardy, 1992, 90), which suggests, in seeming contradiction, that

seriousness is actually a prerequisite for beauty, or an element thereof. I will

assume that this ambiguity arises because Hardy, speaking loosely, is using

the term beauty in two different respects: in the first place to identify what

may be more or less considered formal or structural aesthetic features (the

“purely aesthetic” in his words (Hardy, 1992, 113)), and in the second place

to talk about overall aesthetic merit in which both factors such as seriousness

and structural beauty may both be relevant–the greater aesthetic effect being

mixed.

Hardy considers not just seriousness, but numerous other qualities as be-

ing of aesthetic relevance to mathematics. It is worth briefly examining the

features he identifies in order to get a richer sense of what makes up the full

aesthetic package on his view.

Seriousness is meant to allow us to distinguish between the important

mathematics and essentially recreational mathematics. A lack of seriousness

is what keeps problems in the theory of chess, for instance, from being on an

aesthetic par with the theorems more central to higher mathematics. In an

attempt to add some precision to the notion, Hardy suggests that seriousness

is itself a matter of generality and depth, both of which have to do with the
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relation of mathematical concepts to one another.

To be general means to be “a constituent in many mathematical constructs,

which is used in the proof of theorems of many kinds” where “the relations

revealed by the proof should be such as connect many different mathematical

ideas” (Hardy, 1992, 104). Generality is thus a matter of striking a balance:

a theorem should not be so specific that it admits of no generalizations, but

not so general that it is overly obvious and uninteresting.

Depth can be thought of as the inverse of generality. It too is concerned

with the relation of mathematical ideas to one another, but instead of describ-

ing how a given theorem is applied to other mathematical constructions, it

describes how other mathematical constructions are applied to it. That is, the

depth of a theorem depends on how many other fundamental concepts and

results must be appealed to in its proof.

What this seems to reveal is that for Hardy, generality and depth are

features that can only be identified within the context of a larger mathematical

body of knowledge. Seriousness is thus a relational property between a given

mathematical object (theorem, proof, etc), and mathematics as a whole. The

aesthetic is in this way dependent not only on the aesthetic object, but also

on its intellectual context.

Hardy’s “purely aesthetic” qualities recall in many respects Poincaré’s view

of beauty, although Hardy takes a more externalist approach than Poincaré by

focusing on the object itself rather than the psychological effect it has on the

mathematician. Hardy doesn’t give a precise description of what constitutes

a (structurally) beautiful mathematical pattern, but he does outline a number

of qualities which he considers to be of “purely aesthetic” significance: unex-

pectedness, inevitability and economy (Hardy, 1992, 113). His explanation of

19



these features is minimal, but the suggestion is that he has a preference for

streamlined proofs which produce surprising results by simple means (relative

to their effect). He also suggests that they should avoid too many “variations”

as occurs when you have a proof containing many cases. While generality and

depth describe the relation between a construct and mathematics as a whole,

inevitability and economy are features of the construct in isolation.

King echoes Hardy on many notes, but streamlines his account further

by arguing that there are only two aesthetic principles active with respect to

mathematics: the principle of minimum completeness, and the principle of

maximum applicability.

The principle of minimum completeness states that:

A mathematical notion N satisfies the principle of minimal com-

pleteness provided that N contains within itself all properties nec-

essary to fulfill its mathematical mission, but N contains no extra-

neous properties. (King, 1992, 181)

King wishes this principle to be a somewhat more general version of Oc-

cam’s Razor. He stipulates that a proof (or other artefact) should appeal to

all and only the “properties” necessary for success, that it should be “in some

sense, complete or self-contained yet contains nothing extraneous”(King, 1992,

182). There are obvious difficulties with this principle, in large part because

of the imprecision of terms involved. King wishes his concept of notion to be

as general as possible, embracing any sort of mathematical object, but this

results in an overly general statement which one suspects may even be im-

possible to actually satisfy in the case of many mathematical objects. It is

particularly difficult to assess this criterion because what constitutes a mathe-
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matical property, what it means for N to contain such a property (as opposed

to N having the property), and in what a “mathematical mission” consists are

all left vague. Nonetheless, we can imagine that a proof satisfying this princi-

ple should not take any logical detours, and make minimal appeal to outside

theorems or axioms. This principle represents a simplicity desideratum.

King’s second principle, the principle of maximum applicability states:

A mathematical notion N satisfies the principle of maximum ap-

plicability provided that N contains properties which are widely

applicable to mathematical notions other than N. (King, 1992, 181)

While this suffers from the same defects as the minimality principle, it is

certainly more clear. King wishes for the target mathematical object to have

applications to other problems in mathematics. It is easy to see the parallels

between King’s two principles and Hardy’s criteria which inspired them. The

principle of minimum completeness translates most plausibly into ideals of

simplicity and economy, while that of maximum applicability is very similar

to generalizability. The mapping is not perfect, however; Hardy’s depth (the

property of appealing to, and so bringing together, many other aspects of

mathematics) is captured by neither of these principles, nor do they seem

to allow for “surprise”. Through his two principles, King attempts greater

precision and posits fewer sources for the aesthetic than did Hardy.

It worth is commenting upon the way in which utility, earlier identified as

a feature many authors wished to distance themselves from, actually occupies

a central place in the aesthetic theories presented. Hardy’s seriousness and

King’s principle of mathematical applicability both treat utility as being of

aesthetic importance while Poincaré even more strongly aligns the two, telling
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us that “the useful combinations are precisely the most beautiful”(Poincaré,

1910, 332). These elements seem to be at odds with the attempts to iso-

late the value of mathematics from practical applications – to drive a wedge

between beauty and utility. Yet King clarifies this issue somewhat, noting

that “the word ‘applicability’ does not refer to the notion’s utility in explain-

ing or describing real world phenomena, but rather to the relevance of N to

mathematics itself”(King, 1992, 182). Similarly, Poincaré takes usefulness to

mean “capable of leading us to the knowledge of a mathematical law” or the

capacity to “reveal to us unsuspected kinship between other facts”(Poincaré,

1910, 325). The apparent tension may in this way be resolved through a

consideration of the various forms of application that exist in mathematics,

as in (Hacking, 2011). As Hacking suggests, the interest, from the aesthetic

perspective, is not in problems from ordinary life, nor physics, nor industry,

but only in “maths applied to maths”(Hacking, 2011, 11). Nonetheless, while

the attempt at detachment from external applications motivates the view that

mathematics might be considered a kind of art, the preoccupation with this

kind of internal mathematical utility suggests that there may still be an im-

portant difference between mathematics and the fine arts.

1.5 Concluding Remarks

The topic of aesthetics arises both when mathematicians attempt to describe

their experiences, and when they try to explain why what they do is of any

value. In both cases, the concern is largely with internal aspects of mathe-

matics – mathematics for the sake of mathematics. In addition to this, there

appear to be two very different places in which the authors locate the aesthetic

22



element. The first is in the mathematical construction itself and its own inter-

nal features. That is, the aesthetic may be identified within particular objects

by identifying it with certain formal and structural elements such as symmetry

and simplicity. In a similar vein, features may be considered aesthetic because

of the manner in which they impact mathematicians psychologically. The

second major source of the aesthetic is, roughly speaking, the construction’s

place, especially its usefulness, within the larger context of mathematics. It is

here that mathematical usefulness emerges as an important aesthetic virtue.

The recurring interest in the internal elements of mathematics as a dis-

cipline, as well as its value as an autonomous field sheds some light on why

the topic of the aesthetic has not been extensively discussed by philosophers.

Many of the features considered of aesthetic importance may be missed when

mathematics is viewed from the outside (as by philosophy). We may, for in-

stance, overlook the aesthetic if we adopt an overly instrumentalist stance.

Many disciplines have a vested interest in mathematics because they make ex-

tensive use of its products, and so the questions that naturally arise from the

uncontested importance of mathematics to other areas enquiry have come to

dominate much of the discussion regarding its purpose and role. For philoso-

phers, the interest in mathematics has historically centred on the conundrums

abstract mathematical entities pose for metaphysics, the remarkable reliability

of the mathematical method, and the resulting special epistemic status of its

products. These projects foreground foundational questions, and treat truth

as the distinctive feature giving mathematics its value.

That mathematics can be considered from an aesthetic perspective at all is

not immediately obvious to those lacking personal hands-on experience with

the subject matter. While certain objects we encounter (art objects, for in-
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stance) are clearly aesthetic, recognition of aesthetic experiences with respect

to objects of mathematics seems, on the whole, limited to practitioners. This

fact has not gone unnoticed by those interested in the phenomenon: Poincaré

builds such a specialized aesthetic sensitivity into the very nature of a mathe-

matician and King goes further, offering a fairly complex explanation for why

mathematicians seem privy to the aesthetic features of mathematical arte-

facts, but non-mathematicians (even those who use mathematics on a daily

basis, such as scientists or engineers) generally are not. To do this, he bor-

rows Bullough’s notion of aesthetic distance, suggesting that scientists are “too

close” to mathematics making them view it on purely practical terms, while

those in the humanities are “too far” resulting in their having no emotional

response to the material. Mathematicians alone lie on the boundary (King,

1992, 207–208).

It seems more likely, however, that the paucity of discussion of mathemat-

ical aesthetics outside mathematical circles is due not to an inherent inability

by non-mathematicians to appreciate mathematical artefacts on an aesthetic

level, or recognize the possibility of such appreciation in principle, but rather

with a lack of opportunity to see the phenomenon at work, or to experience

it themselves. Despite this, it is not hard to see that questions about the role

and nature of the aesthetic are of importance to any situation where we are

interested in the relationship between people and the world. Since mathemat-

ics is a way to study the world (both the physical world, and the mathematical

world, whatever that may be), it is unsurprising that aesthetics has emerged

as a topic of interest among mathematicians themselves.

24



Chapter 2

Functional Beauty and the

Aesthetic Induction

2.1 Introduction

Although there have been few extended attempts at aesthetic theories tar-

geting the topic of mathematical proofs, some theories have been advanced

which may be adapted in a manner suitable to such a purpose. This chapter

examines and criticises two aesthetic theories which are plausible candidates

for shedding light on the mathematical case. The first of these theories is

the aesthetic induction of James McAllister, and the second is Parsons and

Carlson’s theory of functional beauty.

The basic idea behind the aesthetic induction is that a community devel-

ops preferences for aesthetic properties which have been associated in the past

with empirical success. McAllister first uses this theory to describe the role of

the aesthetic in scientific theory choice, but speculates that the aesthetic phe-

nomenon in mathematics, in particular regarding proofs, might be explained
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by appeal to the same principles. Parsons and Carlson’s theory takes a dif-

ferent approach by focusing on the way in which our awareness of an object’s

function can affect our aesthetic perception of it. This theory is not directly

aimed at intellectual domains, although it attempts to be as general as possi-

ble across domains in which functionality is important. As such, if it can be

shown that proofs are in some way functional artefacts, then we can reasonably

expect them to be subject to similar aesthetic responses, and so explicable by

appeal to similar principles.

Both aesthetic theories presented here focus primarily on non-art objects

which receive aesthetic attention, and both fit within the broad category of

functionalist theories insofar as they suggest that there is a connection between

an object’s apparent ability to perform its function and our attribution of

aesthetic terms such as “beauty” to it. Neither of these theories is a perfect

fit with the task at hand; however each offers valuable insight which can be

applied to create a more robust theory suitable for explaining the case of

mathematical proofs. The last part of the chapter will be devoted to this task.

2.2 What do we need in an aesthetic theory?

The first chapter described the manner in which aesthetics has been a re-

curring theme in mathematics. In particular, it has arisen in discussions of

the value and justification of mathematics, especially pure mathematics, and

in discussions of the way in which mathematicians as human beings practice

mathematics. An aesthetic theory should present us with the tools with which

we can properly evaluate the claims made with respect to these issues. For

that reason, the theory should have three major explanatory goals:
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Accurately depict the phenomenon An aesthetic theory for mathematics

should be able to accurately describe and generate predictions about

aesthetic evaluations in mathematics. In particular, we would like to be

able to explain and critically evaluate aesthetic claims about particular

proofs, as well as the recurring appeal to specific properties as being

either aesthetically appealing or unappealing. The theory should thus

provide a framework in which we are able to describe what aesthetic

effects are possible within the domain, how various properties of proofs

can create these aesthetic effects, and to what extent these evaluations

can change over time or differ depending on context.

Answer questions of practice The theory should allow us to explore the

role of aesthetic criteria in mathematical reasoning, and to critically eval-

uate intuitions to the effect that a proof which is aesthetically pleasing

is more likely to be successful or true than one which is displeasing.

Importantly, the theory need not justify or excuse the use of aesthetic

guides as heuristic, but it should be able to explain why some might be

inclined in such a direction. In order to provide such an explanation,

there must be a proper examination of what we mean by success in the

mathematical context, as well as what we mean by beauty. This should

elucidate any relation that there may be between the two concepts.

Answer questions of value Since the aesthetic is sometimes treated as a

source of value for mathematics, it should be possible to explain in what

way judgements of aesthetic value differ from other sorts of judgements of

value (such as judgements of epistemic value). To this end, it is desirable

to explain how the aesthetic in the mathematical context relates to the
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aesthetic in other contexts, and how it is that aesthetic predicates come

to be applied to such different sorts of objects.

2.3 The Aesthetic Induction

The theory of aesthetic induction, given detailed presentation in McAllister

(1999), remains dominant when discussing the case of aesthetics in the sci-

ences. Although aesthetic induction was developed specifically to explain the-

ory choice in the natural sciences, McAllister (2005) suggests that aspects of

mathematics, in particular the development and evolution of mathematical

proofs, may be modelled using the same theory. In this section I will explain

McAllister’s theory as it applies to proofs. I argue that the aesthetic induc-

tion does have a large degree of explanatory power, but suffers from significant

deficiencies especially when imported into the mathematical case. The theory

I will later defend attempts to retain the successful aspects of McAllister’s

theory, while not falling prey to the same criticisms.

McAllister’s theory deals specifically with attributions of beauty made by

observers of certain mathematical entities. Thus “a mathematical entity has

certain aesthetic properties, such as simplicity and symmetry. On the strength

of perceiving1 these properties in a mathematical entity, and by virtue of

holding to aesthetic criteria that attach value to these properties, an observer

is moved to project beauty into the entity”(McAllister, 2005, 16). Beauty, on

this account, is not itself a property of an object. Rather it is an aesthetic

1Since the entities in question are conceptual or abstract in nature, “perception” in this
instance cannot be thought of straightforwardly as sense perception. Instead it must consist
in a kind of recognition or understanding that the entity has a particular aesthetic property.
This assumption is not unproblematic and points to a manner in which the mathematical
case may be importantly different from more standard cases in aesthetics.
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value which we project onto objects when they satisfy certain aesthetic criteria.

The aesthetic induction is meant to be the process by which such criteria

develop and change. The evolutionary aspect of the induction is important

to McAllister because he applies his theory in part to explain the history of

science, and Kuhn style paradigm shifts.

The major aspects of McAllister’s theory can be summarized as follows:2

1. Aesthetic properties are those intrinsic properties of object O that evoke

an aesthetic response.

2. An aesthetic response is a projection of value (in particular beauty) into

O in accordance with aesthetic criteria.

3. Aesthetic criteria take the following form: if O has property p then

“attach more aesthetic value to it than if, other circumstances being

equal, it did not” (McAllister, 1999, 34). Various properties will have

different weightings which will determine just how much aesthetic value

they contribute to the overall assessment of O.

4. The set of all aesthetic criteria held either by a community or an in-

dividual is referred to as the aesthetic canon. The canon can thus be

thought of as a set of ordered pairs (p1,Wp1), (p2,Wp2), . . . where the pi

are all the (potentially) aesthetic properties, and Wpi is the weighting

of pi. McAllister emphasizes the fact that many of these properties will

have a weighting of zero, rendering them aesthetically indifferent.

5. The overall aesthetic value of O, V(O) can be thought as the weighted

sum of the values of all O’s aesthetic properties: V (O) = Wp1 +Wp2 + . . .

2I have added some formalism to render aspects of McAllister’s theory more explicit.

29



6. At any given time, the weight of a property p is determined by the

degree of success objects with that property have enjoyed in the past.

That is, in the scientific case,“scientists at a given time attach value

to an aesthetic property roughly in proportion to the degree of empir-

ical success scored up to that time by the set of all past theories that

exhibit that property”(McAllister, 2005, 28) while in the mathematical

case, McAllister suggests that these valuations “evolve in response to the

perceived practical utility of mathematical constructs”(29), although he

does little to explain what“practical utility” might be for mathematics.

The process by which weightings are adjusted over time in response to

empirical/practical success is referred to as the aesthetic induction.

2.3.1 Strengths and Weaknesses

The aesthetic induction is meant to explain both how aesthetic preferences can

change over time, and also how such preferences can be considered in some way

rational. That is, the aesthetic evaluation, according to this theory, can act

as a (highly fallible) indicator of potential success. Scientists are vindicated

to some degree in applying aesthetic criteria to theory choice because the

criteria are themselves grounded in an inductive process which will over time

be expected to assign greater value to genuinely useful properties, and lower

value to those properties which are associated with failure.

The aesthetic induction is thus well suited to satisfying the second desider-

atum since it can explain why the aesthetic has sometimes been viewed as

having heuristic value, as Poincaré suggested. In particular, a mathematician

might, when seeking a proof, be thought of as doing so under the guiding pre-
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scription to maximize V(O). This would lead them to favour properties and

styles that had been successful in the past, and therefore had acquired a high

aesthetic value.

Nonetheless, McAllister’s theory suffers from some weaknesses when it

comes to satisfying the other two desiderata described above. With respect to

the third desideratum, McAllister’s theory treats beauty as a direct reflection

of aesthetic value itself, rather than an aesthetic property. For this reason, it

is not clear how to interpret other sorts of aesthetic predicates. With respect

to the first desideratum, it is not clear that McAllister’s theory accurately de-

scribes the case of mathematical proofs, since it has been developed in order to

explain the pattern of evolution of aesthetic preferences in scientific theories.

McAllister argues that proofs obey similar trends, however we must be careful

not to generalize too swiftly from one case to the other.

It is also not clear that McAllister’s model accurately captures the manner

in which properties generate aesthetic effects. In part, this is because certain

aspects of the theory need to be fleshed out such as the question of how

new properties fare within the aesthetic canon. Other issues arise because

the aesthetic induction assumes that preferences for each property develop

independently from one another, and that the overall aesthetic merit of an

object is found by simply adding the preferences for all its properties together.

This simple calculation ignores contextual elements as well as the fact that

properties may be related to one another. These could easily be confounding

factors in the aesthetic evaluation.
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The Focus on Beauty

McAllister’s program, in particular the form of projectivism which he adopts,

is focused on assigning aesthetic value to various objects. Specifically, he is

interested in how some factors privilege one object over another aesthetically.

This provides a means of measuring and comparing rival scientific theories on

aesthetic grounds. The aspect of aesthetic experience that is explored is thus

preference, and the induction is meant to explain preference formation and

change.

Because of this, the theory is limited in that it only addresses one aesthetic

“value” (namely beauty), a fact which McAllister acknowledges. He suggests

that there may be other sorts of aesthetic values to consider, though does

not devote much time to them. In particular, he suggests that there may

be an analogue to “artistic merit” having to do not only with perceptible

properties internal to the object, but also to“relational properties that may

not be manifest in it, such as the property of having had a particular influence

on the development of science”(McAllister, 1999, 31). Thus, to McAllister,

beauty is to be understood as the value of the internal properties of the object,

while other values may exist having to do with specifically relational properties

between the object and other elements in the context such as the history of

the field.

This raises questions about whether the division between internal and re-

lational measures can be made quite so cleanly, whether other aesthetic values

(especially pertaining to internal properties) are possible with respect to math-

ematics (or scientific theories), and how such values, should they exist, relate

to one another. Because McAllister views beauty as a value projected into
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an object, and not as an aesthetic property of that object, it is also unclear

how to interpret other aesthetic terms such as “pretty”, “ugly”, “elegant”,

“cute”, and “graceful”. It seems unlikely that these are all separate values,

but suggesting that they are all different ways of expressing degrees of one

value (beauty) oversimplifies a great deal of aesthetic talk. The most natural

way in which to extend the theory would be to allow for many distinct aes-

thetic values, and to have an inductive process for each such value, but this

severs them from one another in a manner which makes it unclear where the

values are coming from in the first place.

Responding to Novelty

It is not clear, under the aesthetic induction, how to handle novel developments

in the field. McAllister suggests at times that new properties will be met with

aesthetic indifference, and at other times that we should expect them to be

welcomed with displeasure. This is not a problem of the theory being unable

to provide an explanation, since it might be adapted to be consistent with

either of these possibilities, but rather with it being under-developed. More

importantly, however, I believe there is good reason to suppose that novel

properties can have an active aesthetic effect, and that this effect is neither

necessarily one of displeasure nor necessarily one of pleasure.

The problem of novelty involves the mechanism by which new properties

get added to a canon. Clearly, there are three basic ways in which McAllister

could do this:

1. the new property p enters the canon with weighting Wp = 0

2. the new property p enters the canon with weighting Wp < 0
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3. the new property p enters the canon with weighting Wp > 0

McAllister claims that“if a property has no association with empirical suc-

cess(...) scientists attach no aesthetic value to it and thus feel no aesthetic

attraction for theories that exhibit it”(McAllister, 2005) and “in the canon of

any actual scientist or community, the weightings of most of the properties

will be zero, indicating that no aesthetic value is attached”(McAllister, 1999,

78). Based on this, McAllister seems to be saying that we add new properties

to the canon in the first way, with a weighting of zero. If, as this suggests,

mathematicians attach no aesthetic value to a property, then they should be

neither attracted nor repelled by such theories, hence the attitude of mathe-

maticians to new features should be one of neutrality, and any explanation of

aesthetic displeasure must be made using the inductive process itself. That is,

we arrive at a negative assessment of a property only after it has accumulated

a track record of failures.

Yet McAllister also suggests that novelty is often met initially with active

displeasure. This tendency is described in his discussion of the response of the

mathematical community to the introduction of new classes of numbers:

Each of these classes of numbers had to undergo a gradual process

of acceptance: whereas initially each new class of numbers was

regarded with aesthetic revulsion, in due course–as it demonstrated

its empirical applicability in mathematical theorizing–it came to be

attributed growing aesthetic merit. (McAllister, 2005, 29)

So McAllister seems to say here that novelty is met, in general, with aesthetic

displeasure (sometimes even with “revulsion”), and, moreover that this ten-

dency is evidence in favour of his theory. The aesthetic induction is required
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not simply so that a property can be viewed as beautiful, but so that it can

cease to be viewed as ugly. This suggests that the default position toward a

property is actually a negative weighting, case 2.

While McAllister’s theory can easily accommodate this solution, any in-

stance in which an object presenting novel features is met with a largely posi-

tive initial response presents some difficulty. Indeed, if it is ever the case that

novel features themselves are identified as meritorious then this directly con-

tradicts McAllister’s predictions since the response cannot be attributed to the

compensating effects of other features. Cases such as that of Cantor’s highly

original work on set theory and transfinite arithmetic suggest that the intro-

duction of new concepts and methods may receive a mixed reaction within the

community, rather than a uniformly positive or negative one.3 The idea that

novelty might in fact increase aesthetic admiration in some cases lies at the

heart of what Le Lionnais considers “romantic beauty”. Far from mathemati-

cians always greeting new methods with revulsion, he suggests that “seeing

a certain method succeed regularly every time it is employed makes it more

disconcerting to discover its inefficacy in a new instance, and increases all the

more the enthusiasm with which we greet an entirely original and successful

procedure”(Le Lionnais, 1971, 143). When tried and true methods have failed

at a particular problem, new methods which do succeed at this task can be

especially impressive and pleasing.

A way to look at novelty that accounts for this is to take new properties as

3In his discussion of this period of mathematical history, Kline (1972) points out that
some prominent figures, such as Kronecker, Klein, and Poincaré, responded to the new
material with open hostility and suspicion, while others, such as Hilbert and Russell, admired
and praised it. He notes that Hilbert was particularly effusive, famously referring to Cantor’s
work as “one of the most beautiful realizations of human activity in the domain of the purely
intelligible”(Hilbert, 1926, 167).
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aesthetically neutral, as McAllister initially suggests, but also to treat the sec-

ond order property of being novel or perhaps (similarly) being rare or unusual

as itself having an aesthetic impact. In particular, if the object as a whole

would get a negative assessment, then the novel and rare make it worse. The

ugly becomes repulsive, or even monstrous. In a parallel manner, however, if

the proof would get a positive assessment, then the presence of novel features

will increase its merit. It may be praised as “clever,” “ingenious,” or “daring”.

This points again to the need for a more textured account of the mathematical

aesthetic than McAllister, by focusing almost entirely on beauty, provides.

Acceptance and Preference

The problems with novelty signal broader issues with whether McAllister’s

theory is able to accurately describe the mathematical case. The aesthetic

induction is designed to explain how preferences of both communities and

individuals can evolve over time in response to the success of past theories

or proofs. As a result, it generates predictions about how, historically, the

aesthetic canon should have developed and how the community will respond in

terms of their aesthetic preferences to other new developments. As an example,

McAllister cites attitudes toward computer assisted proofs as following the

template predicted by the aesthetic induction. Early examples of such proofs

(the proof of the 4-colour theorem being the most famous) were met, at first,

with a degree of suspicion as to their definitiveness4. Despite this, they have

4A detailed exposition of the development of and reaction to the proof of the 4-colour
theorem can be found in Mackenzie (1999). The major complaint levied against the proof
was that the extensive use of computer, and overall structure of the proof inhibit our capacity
to understand the proof. Stewart (1981, 34) is cited as an example of a mathematician who
found the proof valid but unsatisfying for these reasons, while Bonsall (1982, 13–14) “went as
far as to deny that the Appel-Haken solution should be considered a proof at all” (Mackenzie,
1999, 41).
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come to be accepted by the community as valid methods. Thus, according to

McAllister, “we can forecast that the computer-assisted proof will remold the

concept of understanding and aesthetic criteria in mathematics and will gain

an acceptance similar to that of quantum theories in physics”(McAllister, 2005,

28). As these forms of proof continue to be successful, the aesthetic criteria

will adjust so that mathematicians find them more pleasing.

The history of the development of proof styles and strategies, and of sci-

entific theory choice do not seem entirely parallel, however. In particular, the

scientific case involves periods of upheaval and dramatic change (Kuhn’s rev-

olutions) which are not so clearly seen in the mathematical case. McAllister

allows for this by holding that the aesthetic canon tends to lead to a prefer-

ence for theories illustrating familiar and already successful properties. The

empirical success of new but aesthetically displeasing theories leads to a sci-

entific revolution in which aesthetic and empirical commitments clash. This

eventually results in the community abandoning its old aesthetic canon, after

which, he claims, the canon is gradually rebuilt centred on aesthetic criteria

emerging from the new paradigm. The shifts and transitions in the case of

mathematical proofs have been, arguably, substantially more modest. As a

result, it is worth inquiring whether the predictions made by the theory of

aesthetic induction truly manifest in the mathematical case.

One of the significant differences between modelling theory choice and mod-

elling the evolution of mathematical proofs is that the question underlying the

former is, at its core, one of what we should accept when presented with mutu-

ally incompatible options, whereas this is not what is at stake with the latter.

Rival theories are incompatible in that at most one may be correct, while when

presented with two ‘rival’ proofs, we may view one as being superior to the
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other, and yet still accept both as valid. Except perhaps when we use aes-

thetic elements as a heuristic guide in the process of proof discovery, we do not

choose one proof at the expense another (nor one proof kind over another).

We may prove the same theorem in many ways, and doing so can actually

increase our understanding of the result. Hence, different proofs (even of the

same result) simply are not rivals in the same way that different theories of

the same phenomenon are rivals. As a result, while acceptance of a scientific

theory will require us to prefer it over others, this may not be the case for

mathematical proofs. We may accept a proof without preferring it; we may

even accept a proof which we think is inferior to another of the same result.

There are several ways in which developments in mathematics can con-

tradict McAllister’s theory: a property might be associated more often with

unsuccessful proofs than successful ones, and yet retain a high degree of pref-

erence. In this case, the aesthetic canon has failed to adjust preferences neg-

atively. Similarly, a property might be associated with success more often

than failure and retain a low degree of preference. Montano (2013) refers to

these sorts of anomalies as positive and negative “historical constants” (6) and

argues convincingly that the property of complexity in mathematical proofs

is an example of a negative historical constant. Complexity can mean any

number of things, so Montano focuses specifically on proofs by cases, claiming

that these “have a very long history of success but mathematicians’ preference

for them has not increased”(Montano, 2013, 7). Heavy appeal to varied cases

remains on the whole a property that is considered aesthetically undesirable,

a position that has not much changed over time despite the increased preva-

lence and general respectability of proofs with this feature. The acceptance of

the community, and the repeated exposure to the proof style does not seem
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to have translated into the aesthetic preference for such proofs that induction

would predict, making them an important counter-example.5

These problems arise in part because McAllister often treats aesthetic pref-

erence as merely tracking acceptance of a property. That said, since he also

claims that “aesthetic preferences evolve in response to the perceived practical

utility of mathematical constructs”(McAllister, 2005, 29), there is room in his

theory to explain the apparent resilience of certain preferences by better defin-

ing what it means for a proof to be of “practical utility”, and thereby giving

more nuanced criteria for success in the mathematical case. Should proofs

by cases be found to have less “practical utility”, in spite of being correct,

then the failure of aesthetic induction to increase our preference with regard

to this property would be explained. A precisification of “practical utility”

could allow for the required separation between the notions of acceptance and

preference: the community might accept proofs which are largely impractical,

but not prefer them.

An issue that lends force to Montano’s objection stems from the way in

which properties are explicated in McAllister’s theory. McAllister has us use

5Montano’s proposed solution to this and other problems with McAllister’s theory is
to suggest that certain preferences and aversions are biologically determined, or at least
biologically constrained. As a result, the aesthetic induction does not lead to dramatic
changes in preferences toward these “robust” properties. Although Montano’s naturalistic
modification of the aesthetic induction provides a manner of modelling the behaviour of
such properties, I think there are good reasons to seek other explanations. In particular
while Montano motivates his theory by appeal to the fact that “our innate preference for
sweetness and aversion to bitterness show that some preferences are not formed by a history
of experiences with stimuli”(Montano, 2013, 15), it is not clear how or why we would have
evolved analogous constraints with respect to the aesthetic properties of largely abstract
objects, such as proofs. As a result of this lacking in background theory, it is virtually
impossible to predict how robust a given property is prior to actually gathering observa-
tions on its performance. This makes the theory able only to provide an essentially ad-hoc
explanation of empirical findings. Any property which violates the basic model of aesthetic
induction could be postulated as being robust, effectively making the new theory immune
to counter-example.
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terms like “complex” and “simple” as though they refer to distinct properties,

however it is more precise to consider them short-hand for evaluations relative

to a single gradeable property (hence, “complex” should be read as “of high

complexity” and “simple” as “of low complexity”). Such a move complicates

the inductive model because it requires us measure properties on a scale. That

is, it is not merely the presence or absence of a property which we mark, but the

degree to which it has been present in successful or unsuccessful past proofs.

The pay-off is that this approach allows for a way out of Montano’s objection.

Complex proofs may score many successes, but if simple proofs continue to

score substantially more, then we should expect the complex proofs to remain

aesthetically displeasing. This is because, when no longer treated as distinct

properties, the successes of simple proofs count against complex proofs (and

vice versa). Since they are predicates referencing the same property, com-

plexity is incompatible with simplicity: by being complex, a proof is trivially

precluded from also being simple. We must, in this way, take into account

the logical relations between properties and mark when we are dealing with

genuinely distinct properties, or merely names applied to graded properties.

McAllister also might be aided by considering the other (non-logical) ways

in which properties are related to one another. The aesthetic induction treats

the valuation of an object as a simple additive function summing the weights of

its properties. This ignores several possibilities having to do with the manner

in which properties can be combined to create different effects. A property

might be weighted higher in one context than another, or it might get a higher

weighting in virtue of other properties being present in the same object. This

may, in part, be due to the fact that certain properties are complementary or

non-complementary with one another: we can expect to see certain properties
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together while others typically stand apart. In some cases the presence of one

property might even make it easier for another to appear. We can expect,

for instance, that exploiting effects in argumentative symmetry will produce a

more unified proof with fewer cases. We can also expect that proofs in specific

sub-fields will make appeal to particular strategies and techniques – proofs in

many areas of combinatorics and discrete mathematics rely on mathematical

induction, for instance. The use of other argument forms, in these cases, might

strike us as being more pleasing and illuminating, or at least, surprising. In

general, properties might accentuate or draw attention to one another. This

suggests that we should have a theory in which properties are not treated

wholly independently from one another.

2.4 Parsons and Carlson

By connecting the aesthetic to practical success, McAllister presents a kind

of functionalist theory for scientific (and mathematical) beauty.6 Despite its

shortcomings, McAllister’s theory has strong appeal and remains the best

candidate available for explaining the appearance of the aesthetic in scientific

and mathematical domains. Much of the success of McAllister’s theory is

owing to the intuition that the aesthetic objects he considers are the sorts

6McAllister himself holds that his theory is “not quite an expression of aesthetic func-
tionalism” on account of the fact that “I endorse the functionalist conviction that fitness to
a purpose is an important factor determining aesthetic valuations. However, the aesthetic
induction does not consist in attributing beauty to each scientific theory to the degree to
which it shows fitness to its purpose.”(McAllister, 1999, 80–81) That is, the attributions of
beauty are based on the empirical track-record of the properties of a theory, rather than the
empirical track-record of the theory itself.

In fact, not all forms of functionalism require that beauty be identified directly with fitness.
One may deal instead with the more indirect appearance of fitness, just as McAllister does.
At the most basic level, functionalist theories assert that the function of an object has some
sort of bearing on our aesthetic appreciation of it. Precisely what bearing it has can be
fleshed out in many different ways.
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of things for which function really does have aesthetic import, in large part

because most of our interactions with such objects involve us actively using

them. Assuming that this intuition has some substance to it, we should expect

these cases to be similar in some respects to other cases where function plays

an active part. It is therefore worth considering a recent attempt at fleshing

out the functionalist position with respect to other domains if we are to come

to a better understanding of how it works in the mathematical case.

A detailed and general functionalist theory of aesthetics is presented in

Parsons and Carlson (2008). According to Parsons and Carlson, many objects

fall within functional categories and knowledge of these categories structures

and informs our aesthetic perceptions of these objects. As a result, we do

not, in general, view functional objects with aesthetic disinterest. Instead we

use our understanding of an object’s function, as well as any knowledge we

have about how it performs this function, to determine if it looks functional,

dysfunctional, efficient, clumsy and so on. The same features may be viewed

positively with respect to one functional category, and negatively with respect

to another.

This theory has several major elements:

1. Artefacts are attributed proper functions according to selected effects.

That is, proper functions are selected for: performance of such functions

ensures that the artefact continues to be manufactured or maintained.

2. We perceive artefacts as falling into functional categories. Functional

categories are a way by which we understand proper functions.

3. The functional category of an artefact determines whether its properties

appear standard, contra-standard, or variable. Following Walton (1970),
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the standard features are those which are generally considered essential

to category membership, the contra-standard features are those which

are considered essentially absent from category members, and the vari-

able features are those which have no effect on category membership.7

4. The number and type of properties an artefact has determines our aes-

thetic response. Three kinds of functional beauty are then described

based on the number and kind of properties it has.

Parsons and Carlson recognize that providing a complete functionalist aes-

thetic theory requires developing a theory of function. We must have a way

of determining what the function of an object is (referred to by them as the

problem of indeterminacy), as well as a way of accounting for how an observer

can come to know an object’s function and how this knowledge can impact

their aesthetic perception of the object (the problem of translation).

In tackling the problem of how to attribute function, Parsons and Carlson

consider and reject an intentionalist theory for function according to which

the function of an object would be determined by the intentions of an agent

(whether it be a designer, maker, or user). In particular, they criticise inten-

tionalism’s inability to distinguish between proper functions and other sorts

of functions. The proper functions are those that in some way are central to

an object, or which “belong to the object itself”(Parsons and Carlson, 2008,

66), rather than the idiosyncratic functions which may be acquired acciden-

tally. They argue that “the intentions of users of an artefact, for example,

7It is worth observing that, as defined, the members of the set of contra-standard prop-
erties will be the negations of those in the set of standard properties. Thus, Parsons and
Carlson sometimes use phrases such as “lacks standard properties” and “possesses contra-
standard properties” interchangeably. Given that how we perceive absence and presence
of certain types of properties may differ, and also that many of these properties are likely
fuzzy, this is not an entirely insubstantial assumption.
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may bestow a multiplicity of functions on an object (...) but these functions

do not thereby become proper functions of the object.”(Parsons and Carlson,

2008, 66) As an example, they suggest that despite the fact that frying pans

can have numerous functions, such as being used as a weapon should the need

arise, their proper function remains that of being a hot cooking surface. While

an intentionalism that allowed only for designer intent could account for this,

such a view is unable to handle the fact that certain improvised or discovered

functions do, over time, become the proper function of an object. Functions

intended by users sometimes (but not always) seem to override functions in-

tended by designers, and it is unclear why this should only sometimes be the

case. Many agents are involved in the design, production, and use of func-

tional objects, and there is no guarantee that their intentions will agree with

one another, nor is it clear how to break ties. This, according to Parsons and

Carlson, undermines the capacity of such theories to provide a satisfactory

accounts of proper function.

Instead of relying on the intent of some agent in fixing function, Parsons

and Carlson borrow from theories of function put forward in philosophy of

science in which function is tied to evolutionary success8. For Parsons and

Carlson, economic success is treated as analogous to this kind of evolutionary

success. Artefacts which do well in the marketplace are “reproduced” in the

sense that tokens of their type continue to be manufactured, distributed, or (in

the case of one-off artefacts such as individual buildings) preserved for ongoing

8Specifically, they adapt the definition:

Trait X has a proper function F if and only if X currently exists because, in the
recent past, ancestors of X were successful in enhancing fitness because they
performed F, leading to reproduction of the genotype for trait X.(Parsons and
Carlson, 2008, 72)
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use. Based on this, they suggest that a better account of functionality for

artefacts is a selected effects view according to which:

X has a proper function F if and only if Xs currently exist because,

in the recent past, ancestors of X were successful in meeting some

need or want in the marketplace because they performed F, leading

to manufacture and distribution, or preservation, of Xs. (Parsons

and Carlson, 2008, 148)

Here an ancestor of X is an object similar to X “whose success in the

marketplace was a causal factor in the production of X” (Parsons and Carlson,

2008, 76). Thus, rather than having proper function fixed by human intentions,

Parsons and Carlson tie it into the object’s causal history. In the case of the

frying pan, its function as a weapon is not a proper function because the

existence of frying pans is due not to their success as bludgeons, but rather

to their success as cooking devices. If the use of frying pans as weapons were

to come to be sufficiently wide spread that more frying pans were produced in

order to satisfy this need, then weaponry would be a proper function of the

frying pan.

A peculiarity of this theory is that it is unable to attribute proper func-

tions to genuinely novel artefacts. This is a conclusion Parsons and Carlson

accept, arguing that it is rare that an artefact truly is novel. Most artefacts we

encounter have ancestors with which we are familiar. It would, they argue, be

impossible to assign a proper function to a truly novel artefact. They provide a

thought experiment involving new kind of can-opener bearing no resemblance

to those that came before it. They suggest that in these cases, we fall back on

our knowledge of the designer’s intent to determine an object’s function, but
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that this does not yield a proper function.

The second major part of Parsons and Carlson’s theory considers how an

object’s function affects our aesthetic appreciation of it. They argue that we

perceive artefacts as belonging to functional categories determined by their

proper functions. Functional categories are meant to be the analogue of cate-

gories of art proposed by Walton, which include “media, genre, styles, forms

and so forth”(Walton, 1970, 339). According to Walton’s theory, understand-

ing an artwork as belonging to a certain category causes us to perceive its

non-aesthetic properties as being standard, contra-standard, or variable rel-

ative to that category, and this in turn impacts the aesthetic properties we

perceive the object as having. Parsons and Carlson suggest that our func-

tional categories work in a similar manner as these categories of art. These

categories are “forms of understanding of function” (Parsons and Carlson,

2008, 92) meaning not just an understanding of what an object’s function is,

but also of how it performs its function. They suggest that knowledge of how

the function is fulfilled is particularly important for our recognizing properties

as being of a particular type. It is therefore not enough to know what an

object is for; you must, to a certain degree, understand how it works.

In Walton’s original theory, the standard/variable/contra-standard distinc-

tion helps us structure our expectations by laying out what features are al-

most always present in a given category (the standard), rarely present (contra-

standard), and sometimes present (variable). The standard features are per-

ceived as necessary for category membership, while the contra-standard are

perceived as necessarily absent such that an object having many such prop-

erties will no longer strike us as belonging to that particular category at all.

Since the variable properties are neither necessary, nor necessarily absent, they
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are those properties in which most of the artistic play occurs, and by virtue

of which much artistic expression is made possible. In a sense, the appraiser

who is familiar with the category in which a particular work falls will learn to

bracket the standard features, focus on the variable, and might potentially be

shocked by the presence of contra-standard features (so long as they are not so

dominant as to jettison the work completely from the category). Walton points

out that this perceptual framing explains some otherwise perplexing artistic

phenomena. For instance, we are able to perceive strong (even perfect) resem-

blances between a portrait and the subject of the portrait despite the fact that

there are radical and obvious differences between the two, such as one being

three-dimensional, moving, and composed of flesh and blood while the other

is flat, static, and composed of canvas and paint. The appropriate judgement

is possible due to the fact that being on a canvas, rendered using paints, still,

and two-dimensional are all features standard to the category painting and so

do not factor into our perception of a resemblance. Instead, the variable, con-

tingent features of the painting are foregrounded (such as colours and shapes)

and these are precisely the features in which a resemblance to the subject of

the portrait may be made out. Thus, while standard features are not unim-

portant to appreciation of works of art relative to their category, the viewer

of an art-work uses their knowledge of the category in large part to identify

which features ought to be ignored and which should receive their attention.

Walton does not hold that standard features are entirely without aesthetic

effect. In fact, he suggests that they behave a bit like “ ‘rules’ for producing

works in the given category”(Walton, 1970, 351) which when followed produce

a sense of “rightness” or perfection. The aesthetic effect can be particularly

pronounced if such “rules” come into conflict because an adept artist can
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navigate such a situation in a manner that resolves the tension, producing a

sense of relief. Walton even suggests that this phenomenon is at work with

respect to aesthetic experiences in mathematics.9 The sense of rightness evoked

by standard properties is what Parsons and Carlson focus on in adapting

Walton’s approach to functional categories. The presence of standard features

directly contributes to the sense of aptness in the case of functional categories,

just as it suggests rightness with respect to categories of art. Similarly, Parsons

and Carlson suggest that the presence of contra-standard features makes the

object appear less apt, or in some way “discordant”(Parsons and Carlson,

2008, 94).

Embracing Walton’s theory of category-relative features allows Parsons and

Carlson to present an enriched phenomenology with regard to the functional

aesthetic in which there is not one but three distinct forms of beauty:

looks fit: the object has no contra-standard features and many variable fea-

tures which are “indicative of functionality”.

9The passage in full:

Suppose that the first movement of a sonata in G major modulates to C-sharp
major by the end of the development section. A rule of sonata form decrees
that it must return to G for the recapitulation. But the keys of G and C-sharp
are as unrelated as any two keys can be; it is difficult to modulate smoothly
and quickly from one to the other. Suppose also that while the sonata is in
C-sharp there are signs that, given other rules of sonata form, indicate that
the recapitulation is imminent (for example, motivic hints of the return, an
emotional climax, or a cadenza). Listeners who hear it as a work in sonata form
are likely to have a distinct feeling of unease, tension, uncertainty as the time
for the recapitulation approaches. If the composer with a stroke of ingenuity
accomplishes the necessary modulation quickly, efficiently, and naturally, this
will give them a feeling of relief-one might say of deliverance. The movement
to C-sharp (which may have seemed alien and brashly adventurous) will have
proven to be quite appropriate, and the entire sequence will in retrospect have
a sense of correctness and perfection about it. Our impression of it is likely, I
think, to be very much like our impression of a “beautiful” or “elegant” proof
in mathematics. (Indeed the composer’s task in this example is not unlike that
of producing such a proof.)(Walton, 1970, 351, emphasis added)
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looks elegant: the object has no (or few) contra-standard or variable fea-

tures, and thus only (or mostly) standard features. Every feature ap-

pears essential.

displays visual tension: the object has some contra-standard features, but

still appears able to perform its function. (Parsons and Carlson, 2008,

96–97)

In this phenomenology, the most widely recognized form of functional

beauty is looking fit. Looking fit is “an aesthetic quality that things pos-

sess when the functional category employed to perceive them causes us to see

those things as having no contra-standard features at all, and as having, to

a high degree, certain variable features that are indicative of functionality”

(Parsons and Carlson, 2008, 95-96). Elegance, simplicity, and grace10, on the

other hand, is achieved by objects which “have few contra-standard or variable

features, but only standard ones”(97)11; that is, their properties are all (or are

almost all) standard relative to their functional category. This is meant to

10While these are distinct predicates, they are treated as all being the same ‘kind’ of
aesthetic quality, and the terms are used interchangeably by Parsons and Carlson.

11This definition is ambiguous. Parsons and Carlson could mean either have few contra-
standard or variable features, and mainly standard features or have neither variable nor
contra-standard features, but only standard features. The former is the more forgiving defi-
nition and includes objects satisfying the strict interpretation as a limiting case. It is also
consistent with the claim that “appearing economical and efficient is a matter of degree, and
so are the aesthetic qualities produced by this appearance.”(Parsons and Carlson, 2008, 98).
The latter definition, however, is more clear cut and makes for a better theoretical model. I
therefore assume this definition for simplicity, but recognize that it represents a potentially
unattainable ideal.

De Clercq (2013) argues that “type 2 functional beauty is not a genuine possibility. The
functional objects that we are familiar with always seem to have perceptual features that
one could regard as variable for the kind in question.”(39) I share the concern that the
presence of some variable properties is inevitable, and wonder as well if (given this fact)
those objects under the heading of type 1 beauty might actually appear more elegant than
those under the heading of type 2, since their variable features are actively suggestive of
functionality. This worry is an indication that Parsons and Carlson’s treatment of property
types requires some adjustment.
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capture what it means to appear efficient and streamlined, lacking in super-

fluous elements. Finally, an object is perceived as having a sort of “visual

tension” when it has many contra-standard properties for its function, and

yet manages to perform that function nonetheless. It should be noted that

while the tension arises from the object appearing capable of performing in

spite of its contra-standard features, this knowledge is itself dependent on us

somehow being aware that it does work. Although Parsons and Carlson specif-

ically dub this “visual tension” (and give entirely visual examples) the concept

is more generally perceptual, having to do with sensory “dissonance” (which

is perhaps a better name). The artefacts are clearly functional but “possess

perceptual features that are at odds with this manifest functionality”(Parsons

and Carlson, 2008, 99). The pleasure derived when a simple ‘childish’ sound-

ing instrument such as the Ukelele is used to play highly sophisticated music

might be considered an auditory example of this kind of pleasing dissonance.

2.4.1 Strengths and Weaknesses

By considering how our perceptual categories affect our aesthetic experiences,

Parsons and Carlson’s theory introduces much depth into discussions of func-

tionalism. Applying this theory to the case of proofs can potentially yield

explanations for how a wide variety of aesthetic effects can be generated, and

thus offer an overall more accurate and nuanced theory. The fact that Parsons

and Carlson’s theory can be applied to a wide variety of objects is also benefi-

cial. If conceptual artefacts such as proofs can be brought into this fold, then

their aesthetic dimension can be seen as one aspect of a larger phenomenon.

Appeals to value judgements in this area can be compared to those in other
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areas which Parsons and Carlson examine, such as architecture.

Nonetheless, there are certain difficulties involved in adapting a theory of

art to the functional case. One of these issues is that the manner in which

Parsons and Carlson assign proper function leaves open the possibility of more

than one proper function, and hence of an object being in more than one cate-

gory. This is something the authors seem aware of, but do not take up in much

detail. Nonetheless, it requires some attention because it can be expected to

complicate the phenomenology when considering objects such as proofs which

demonstrate precisely this sort of pluralism. Another more substantial set

of issues for Parsons and Carlson arises from the observation that functional

categories may not be entirely analogous to categories of art. This has cer-

tain down-stream effects when evaluating how standard, contra-standard, and

variable properties interact to generate aesthetic qualities. Further detail and

modifications may be necessary to best describe the functional case.

Differences Between Categories of Art and Functional Categories

There are differences between the roles of standard, contra-standard, and vari-

able features as described in Walton’s original theory and as described by

Parsons and Carlson. In particular, variable features no longer behave in the

same manner when generating an aesthetic effect. In both the second and third

forms of functional beauty, it is the presence of standard and contra-standard

features which does the work, with variable features being either absent or

playing a minor role. Only with respect to the first form of functional beauty

do variable features play an active role. In Walton’s theory, by contrast, it is

the variable features which are the more aesthetically salient features for eval-

uating art. This suggests that the analogy between how functional categories
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affect our aesthetic perceptions and how categories of art affect our aesthetic

perceptions may not be as close as it first appears.12 Indeed, I believe that

there are some important points of dissimilarity which necessitate further re-

finements of the theory if it is to be robust enough to handle complex cases,

such as that of proofs.

It is not surprising that differences between our perception of functional

objects and art objects should arise. They stem from the fact that in the case

of aesthetic appreciation of objects which fall within functional categories,

the eye is trained to pick out those features which it perceives as directly

contributing to functional success. How we view features is, by the very nature

of the categories involved, goal directed. Standard features will be perceptually

foregrounded because of their contribution to the appearance of fitness. This

makes how we perceive functional categories fundamentally different (indeed

inverted!) from the case described by Walton where standard features were

often placed in the background.

How we determine what are standard, contra-standard, and variable prop-

erties in the functional case will also differ from how we determine them in the

case of categories of art. In particular, we cannot in the same way conceive

of standard properties as those that seem necessary for category membership,

because there are multiple paths to fulfilling a particular function. That is, we

have cases where we can say that it is necessary to have either feature A, or

feature B in order to perform function F, but the object need not have both

12Parsons and Carlson argue that certain categories of art (such as commemorative art,
or tragedy) ought to be thought of as functional categories (Parsons and Carlson, 2008,
223). This raises interesting questions about whether our aesthetic appreciation of objects
within such a category shifts when we view it as a category of art or a functional category.
Although I don’t take those problems up here, I believe we can expect such considerations
to muddy the situation somewhat and so should keep them in mind as possible confounding
factors.
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since neither A nor B is independently necessary. The functional category of

flight is an example of this: it is essential that flying objects must either flap

wings, be lighter than air, glide, or have some other means of achieving lift-off.

Similarly, a printer must use toner, or ink, or one of many other means of

marking a page. It is not necessary that it use any particular one of these, but

it is necessary that it use at least one. We could assert that it is a standard

property for printers to have a mechanism for marking the page, but that is

most of the way to the trivial statement that it is necessary for a printer to

be able to print. In these cases, we should instead claim that it is the disjunc-

tion of these simple properties which we perceive as necessary for category

membership.

There is, however, a danger in allowing disjunctive properties to be stan-

dard: it is too permissive if left unrestricted. In particular, it is necessary that

an object must either have or lack any given property P, so the disjunctive

property (P or not-P) would be standard, where P is any property whatso-

ever. Should this be allowed, then every object will have an over-abundance

of standard (and contra-standard, for parallel reasons) properties, completely

skewing the expected phenomenology of the object. The easiest way to make

the required restriction is to not allow any disjunctions where one of the dis-

juncts is, on its own, standard. Thus we must classify the individual disjuncts

themselves as variable since they are not (on their own) perceived as neces-

sary to an object’s membership in a particular functional category, although

they are individually considered helpful if present (they might even guarantee

success). Indeed, despite the fact that together they may be considered neces-

sary, certain such features may appear substantially more ‘normal’ relative to

a particular category, and similarly some such features may simply seem better
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suited to the task than others. This suggests that many variable properties

are actually active contributors to the appearance of fitness, playing part of

the aesthetic role previously attributed only to standard features.

Variable properties are therefore relevant when considering all aspects of

functional objects, although not in the same manner as with Walton’s original

discussion of variable properties of art. Some of these variable properties even

directly contribute to an object’s appearing able to perform its function. Close

inspection reveals that variable properties of this sort are central to Parsons

and Carlson’s theory. Consider, for instance the following complaint raised by

Ross (2009):

If the absence of contra-standard properties generates type 2 func-

tional beauty, while the presence of such properties is a hallmark

of type 3 functional beauty, then these two claims together with

the Law of the Excluded Middle threaten to establish that we’re

always in the presence of functional beauty.

Ross’ argument in detail is as follows:

premise 1 Contra-standard properties must be either absent or present

premise 2 If they are absent, then the object looks elegant (type 2 beauty)

premise 3 While if they are present then they display visual tension (type 3

beauty).

conclusion As a result, she claims, all artefacts are perceived to be in some

way beautiful given Parsons and Carlson’s theory.

Parsons and Carlson escape this sort of worry by blocking the third premise

by saying more specifically: if contra-standard properties are present and the
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object appears to be functioning or capable of functioning13, then it displays

visual tension. Should the object have contra-standard properties but not

appear functional, it would be expected to receive a more straightforwardly

negative assessment such as being unfit, dysfunctional, or ugly. That is, the

phenomenon targeted by Parsons and Carlson is not simply when the object

displays contra-standard features, but when the presence of contra-standard

features inexplicably does not seem to hinder the object’s functionality as we

might expect it to. This underscores how important it is to the description of

visual tension that we have some way of perceiving whether the given object

appears actually functional and that this be independent of its standard and

contra-standard features. It may even be important to say that the object

appears able to perform its function well or properly to distinguish the cases

of visual tension from those in which an object appears dysfunctional but still

chugs along (as in the case of a car with flat tires), which we still consider ugly

on account of the object in question being broken or malfunctioning.

We must then pin-point what gives the object the appearance of looking

able to function, or looking functional. In order for it to be useful for Par-

sons and Carlson, this quality must be distinguished from that of looking fit.

More precisely, we perceive an object as looking fit in virtue of it lacking

contra-standard features, and so looking fit is incompatible with the presence

of contra-standard features. At the same time, since visual tension requires

both that object look functional and that it display contra-standard features,

these things must be compatible (or there are no objects with this kind of

13In their words, such objects are manifestly functional : “although they are manifestly
functional, appearing capable of performing their function, such objects also possess per-
ceptual features that are ‘at odds with’ this manifest functionality.”(Parsons and Carlson,
2008, 99)
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beauty). Since the quality of looking functional must be compatible with the

presence of some contra-standard features, and the quality of looking fit is

incompatible with contra-standard features, looking fit and looking functional

cannot be the same.

One way an object may look functional is that it may have other features

that suggest to us that it is able to perform its task. A means of defining

looking functional along these lines is suggested by Parsons and Carlson’s

reference to variable features “indicative of functionality”14. Based on this, we

can say that an object looks functional if it displays variable features that are

indicative of functionality. Such a definition is consistent with the object also

displaying either standard or contra-standard features, but requires further

detail.

A (rather uninteresting) way in which an object can look functional is that

we might catch it in the act. In this case, we are perceiving an empirical,

non-aesthetic property (the property “works!”) of the object. Although it is

perhaps intuitive to consider this a standard property, it is better thought of

as variable since we do not need to perceive an object work, nor not-work,

before placing it in a functional category. In fact, as mentioned above, an

object which doesn’t work appears broken or malfunctioning, a perception

that only makes sense if the object retains its category membership regardless

of whether it works or not. “Works!” may be considered the simplest sort of

variable property which is actively indicative of functionality. For the concept

to be of greater use, we should be able to identify other less trivial variable

properties indicative of functionality. Wear and tear, for instance, suggests

that the object has been used in the recent past and therefore allows us to

14These were originally mentioned in the definition of looking fit.

56



plausibly infer its functionality. An artefact which is well maintained, polished,

oiled, etc. looks ready to use and functional. If it is rusting or gathering dust,

on the other hand, we might reasonably doubt its functionality.

Perceiving that the object looks functional is one way in which variable

properties can contribute to our aesthetic perceptions in a non-neutral manner.

Another, however, might be if we think they increase the object’s probability

of success. This too could be considered an interpretation of the phrase “in-

dicative of functionality” but should be distinguished from the previous case

where the features established that the object functions. Properties which

make an object seem more likely to succeed or to perform particularly well are

perhaps better thought of as indicators of effectiveness. Parsons and Carlson

emphasize that knowledge of how an object performs its function plays an

active role in our aesthetic perceptions. This is perhaps where such knowl-

edge can be effectively applied: with it, we may be able to discern features

that contribute positively to performance (even if they are non-essential). The

shape of most vehicles is certainly a variable property, but we know an aero-

dynamic form makes it move more swiftly and efficiently. Having such a shape

therefore contributes to the object looking fit (though perhaps not its looking

functional) because it is an indicator of effectiveness.

Given these observations, the phenomenology can be clarified as follows.

An object:

looks fit whenever all properties are either standard, indicative of function-

ality, or indicative of effectiveness.

looks elegant whenever all properties are standard.

looks visually tense/dissonant whenever many properties are indicative of
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functionality and some properties are contra-standard.

The fact that Parsons and Carlson must appeal heavily to sub-kinds of vari-

able properties in order to capture the aesthetic effects they are after suggests

that that it may be better to focus on these than to so literally generalize

Walton’s original taxonomy. Among artefacts, the role that standard and

contra-standard properties played for Walton is, in many respects, taken up

by these different varieties of variable properties. Given their central role,

these would be well served by a heavier focus and further elaboration. The

division between properties as laid out by Walton and adapted by Parsons and

Carlson simply fails to distinguish between properties in a manner salient to

many aspects of functionalism.

Multi-Functionality

A final complication worth briefly considering is that Parsons and Carlson’s

definition does not in and of itself exclude the possibility that there might be

multiple proper functions for an artefact and hence that it might fall into more

than one functional category. The potential for multiple proper functions arises

from the potential for multiple marketplace needs. Should there be different

wants and needs satisfied by an object performing different functions, and

should these each lead to the manufacture and distribution of that object, then

they would each qualify as a proper function. We can consider certain kinds

of food as an example of this phenomenon. Junk food has the proper function

of tasting good, with little to no regard for nutrition. It is difficult to assert

that such food has the proper function of nourishing us, since its success (or

lack thereof) at this function has had little bearing on its recent marketplace
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performance. Health foods (or perhaps an IV drip, or soylent green) are the

opposite, selected for their nutritional value regardless of the pleasantness of

their consumption. Yet there also exist foods such as smoothies and energy

bars which have both proper functions: they owe their ongoing manufacture

to satisfying both sets of needs. Marketplaces consist of many individuals with

many wants and needs.

One way in which to handle these situations is perhaps also adaptable

from Walton who suggests that in addition to considering properties as stan-

dard, contra-standard or variable relative to their category, we also consider

properties of an object as being standard (etc.) for a particular individual

at a particular time based on all of the categories in which that individual

perceives a work of art as falling:

A feature of a work is standard for a particular person on a par-

ticular occasion when, and only when, it is standard relative to

some category in which he perceives it, and is not contra-standard

relative to any category in which he perceives it. A feature is vari-

able for a person on an occasion just when it is variable relative

to all of the categories in which he perceives it. And a feature is

contra-standard for a person on an occasion just when it is contra-

standard relative to any of the categories in which he perceives it.

(Walton, 1970, 342)

Effectively, Walton advocates the creation of hybrid categories of art in-

dexed to an individual, an approach which we can also adopt in cases where

more than one functional category is perceived as active. Using Walton’s

definitions of standard/variable/and contra-standard properties for these hy-
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brid categories, we can consider some of the ways the interactions of such

features can affect Parsons and Carlson’s phenomenology when dealing with

multi-functional objects.

We may note, for instance, that according to this way of adapting the

theory, an object looks fit as a hybrid whenever it looks fit relative to all

its functional sub-categories, and has some features which are variable for all

of them. This is because to look fit relative to a category, an object must

lack contra-standard properties, and a property which is contra-standard in

any sub-category (preventing it from being either fit or elegant relative to that

category) will also be contra-standard for the hybrid. Surprisingly, on the other

hand, it is possible for an object to look elegant for a hybrid category while not

looking elegant for any of its sub-categories; it may also look fit for some (but

not all). This is because the appearance of elegance requires not only a lack of

contra-standard features, but also a lack of variable features. A property which

is variable for one functional category may be standard (or contra-standard)

for another, and thus present as standard (or contra-standard) in the hybrid

category. Finally, the appearance of visual tension requires that the object

have contra-standard properties but still appear functional. We may conclude

that an object displays visual tension in a hybrid category whenever it displays

the tension relative to at least one sub-category, and also appears functional

relative to its sub-categories.

A typical example of a multi-functional object is a sofa-bed. Here, looking

fit requires that the sofa-bed look fit as both a bed and a sofa.15 It is elegant if

all of its features are standard relative to one of these categories, even if they

15This is the same as the “absolute aesthetic judgement about a multifunctional object”
found in De Clercq (2013, 46) according to which “a sofa bed is functionally beautiful
[period] if and only if it is beautiful both as a bed and as a sofa”
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are variable relative to the other (so for instance, the sofa-bed having arms

might be considered standard for the sofa category but not the bed category16).

Finally, it displays tension if it displays contra-standard features of either bed

or sofa, but appears able to perform both functions regardless.

One of the assumptions behind functionalism is that the categories in which

we perceive an object as falling are important to our aesthetic perception of

that object. Although Parsons and Carlson largely bracket consideration of

multi-functional objects, it is necessary to bear in mind the manner in which

these interactions occur, since some proofs are examples of multi-functional

objects.

2.5 Functional Beauty Refined

The greatest strength of McAllister’s aesthetic induction is its capacity to

explain how aesthetic preferences can develop and evolve in response to the

performance of an object which has a particular function. This is particularly

well suited to discussing cases involving objects of intellectual discourse such

as theories (and perhaps proofs) because it makes sense of the manner in which

both individual experience with the subject matter and historical evolution of

the field as a whole can impact aesthetic assessments. The interplay pictured

between success and preference can also help explain why aesthetic factors are

sometimes treated as being indicative of correctness, and provides tools with

which to assess the degree to which such evaluations are rational. As such, this

theory provides a strong framework from which to evaluate the role of aesthetic

judgements in mathematical practice. Since references to beauty being a test,

16Again, we might wonder if this is possible since, for instance, having a specific colour is
clearly variable relative to both categories.

61



indicator, or guide are pervasive in informal discussions of the aesthetic in

mathematics, an explanation of this form is highly desirable. The theory

suffers from the fact that the mathematical case may differ somewhat from the

case of scientific theory choice both with respect to historical developments as

well as the notion of functional success. It also generates an overly simplistic

view of the aesthetic in which objects can receive aesthetic evaluation and

comparison based solely on how high they score on a single scale (their beauty

valuation). This makes it harder to explain different kinds of aesthetic effect

which might come up in discussion, and to take on certain questions of value

since the theory makes it somewhat unclear what about the value judgements

are specifically aesthetic, and how the aesthetic in mathematics relates to the

aesthetic as it is encountered in other aspects of human life.

Parsons and Carlson do not provide the same tools as McAllister for eval-

uating claims about the aesthetic in mathematical practice, but their theory,

if adapted for the mathematical case, gives a means to situate it within the

wider context of aesthetic experience. They focus on the manner in which

an understanding of functionality can structure our perceptions of an object,

thereby creating aesthetic effects, and they provide a nuanced treatment of

properties and a sophisticated development of how these properties can in-

teract to generate different sorts of phenomenological effects. Parsons and

Carlson are not restricted to a single form of beauty, as McAllister is, but are

able to describe three different experiences emerging out of an object’s proper-

ties and their perceived relations to functional success. Unfortunately, some of

the ways in which Parsons and Carlson adapt concepts from the theory of art

do not appear to be an ideal fit with the functional case. Moreover, the theory

does not adequately explain how we come to perceive an object as belonging
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to a particular functional category, nor why certain properties are perceived

as standard, contra-standard, or variable relative to their functional category.

Indeed, an aspect of non-aesthetic properties other than whether they are stan-

dard (etc.) takes centre stage: that of whether the property is an indicator of

functionality, and this aspect of the theory remains under-explored.

In light of these observation, I present a theory adapted from those of

McAllister and Parsons and Carlson. By combining elements of both, I aim

to address the issues raised and arrive at a theory better suited to the mathe-

matical case.

2.5.1 Functional Categories

I am sympathetic to the view that how we categorize objects, be they tools or

artworks, impacts our aesthetic perception of them. In many cases, multiple

systems of classification might be available to us. In the case of proofs, I will

focus on the manner in which we perceive the core argument in terms of its

epistemic functions, however I do not deny that issues of genre and style also

play an operative role in aesthetic perceptions of proofs, perhaps in a manner

which quite directly echoes Walton’s theory. Indeed, the question of genre

and style is not, I think, wholly distinct from that of function in mathematics.

Certain styles developed because they are better suited to performing certain

functions, or are imposed by the subject matter of a particular sub-discipline.

As will be explained in more detail in chapter 3, I hold that what makes an

aesthetic consideration stylistic has to do with the sorts of non-aesthetic prop-

erties it is responding to. As such, style may also be subject to functionalist

considerations. Understanding functional categories is therefore an important
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first step toward understanding the other category systems relative to which

perceptions of mathematical proofs may take place.

As discussed above, Parsons and Carlson suggest using a selected effects

theory to determine the proper functions of various objects. It is reason-

able to adopt this strategy for determining proper functions of mathematical

proofs also, thereby allowing proofs to fall under their fairly unified account

of functionality. This strategy divorces function from the intents of individual

mathematicians, making it depend instead on the actual use and success of

proofs in the community.17 As a result, it provides a coherent explanation for

how proofs could change function, and how they might acquire new functions

over time. That said, proofs are not the same sorts of artefacts as physical

artefacts or buildings, and so the selected effects theory may require further

amendment to be suitable.

While Parsons and Carlson use the marketplace to establish functionality

for everyday artefacts, something analogous must be appealed to in order to

establish functionality of conceptual artefacts like proofs. It should be recalled

that the marketplace was itself put forward as an analogy to a genetic theory,

suggesting that the development of technology has an evolutionary quality to

it. Just as genotypes survive and are reproduced because of their ability to

perform certain functions in an organism, artefacts are manufactured, main-

tained, and distributed because of their ability to perform certain functions

for agents. Thus, the existence of a particular artefact token is the result of its

17This is a way of attributing function to proof that focuses not on the proofs ideal logical
structure, but its ongoing development in practice (even when still informal). In this way it
is consistent with the depiction of proof seen in Lakatos (1976) where proofs may be of use
even if they are falsified because, for instance, they may point the way toward more refined
and interesting conjectures. In this sense, Lakatos also does not trust original intentions of
mathematicians to determine a proof’s function, treating the view “that a proof necessarily
proves what it has set out to prove” as a “dogmatist bias” (23).
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ancestors performing well. The marketplace represents the (economic) system

in which all of this occurs. Proofs also survive and reproduce, in the sense that

they get preserved, copied, shared, translated, taught, and referenced in other

works. The “marketplace” for this sort of artefact can therefore be thought

of as the epistemic community in which it is embedded, complete with that

community’s conferences, journals, and classrooms. The proper functions of

these artefacts are, as a result, those tasks at which success has led to ongoing

exposure within the community.

There are some aspects of this analogy which might be problematic and

should be considered briefly. We might worry that success at certain functions

lead to substantially more copies of particular proofs than success at others,

and that this might not always reflect our intuitions about the relative impor-

tance of these proofs. That is, we might arrive at a view of proper function

which leads us to believe that certain functions are more important than others

because they have met with greater success in the intellectual “marketplace”.

For instance, elementary proofs are widely distributed, while longer proofs are

rarely reproduced (and in some case not even read in full by most people), and

many more standard but perhaps unexciting proofs go unmarked. It might

be feared that while the functions of trivial proofs would be well explained,

more sophisticated and mathematically significant proofs might fail to receive

any attribution of function at all because of their lower visibility. To avoid

this, we must accept more than simply copies and restatements of a proof as

analogous to the manufacturing and distribution referenced by Parsons and

Carlson, but also the references to such proofs which are found elsewhere in

the literature. Citation is one of the most potent devices we have for, in some
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sense, “preserving” intellectual artefacts.18

We might also worry about the fact that proofs which are known to be

incorrect are sometimes proliferated anyway. This sort of failed proof is no

longer serving any of the functions that we normally associate with a proof in

good standing, but its reproduction can still be attributed to its performing

some function. For instance, it might be referred to as an example of common

or subtle errors (as when we consider the various mistaken proofs leading up

to the proof of the 4-colour theorem), or it might simply be amusing (as in

the case of fallacious proofs that 1=019). This illustrates the manner in which

proper functions can change, and how they differ from intended function. It

does not mean that proofs can never be considered to have malfunctioned or

failed on account of errors being found in them, only that we must consider the

proof’s history. When an error is first detected in a proof that is circulating,

then that proof ought to be considered either defective because it is unable

to perform its proper function, or even broken if that error was introduced in

a sloppy reproduction (as when a good proof is taught incorrectly, or there

is a typo in its presentation). If instances of a defective proof continue to be

referenced and reproduced because it is is invalid, then that proof’s proper

function has shifted. It no longer has the proper function of establishing a

result, but now functions in another capacity, such as vividly illustrating what

18It is interesting to note that success at performing different functions might be reflected
in different ways. We would expect explanatory success to manifest in the classroom and
textbook, while proofs which connect or tool-build might be more heavily referenced in
the journals and higher-level literature (these functions of proof are discussed in chapter 3).
This suggests that performing more than one function will increase a proof’s overall success,
and points to how simply establishing a result may, in a sense, be insufficient for its overall
success. A proof which falls out of use or memory no longer serves any function within the
community, even if it is correct.

19 See Aberdein (2013) for a discussion of the role humour can play in mathematical
reasoning and practice.
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not to do.

The question of what an object’s function is differs somewhat from the

question of how we perceive its function, or rather what functional category it

forms a part of. Functional categories as treated here are cognitive categories,

rather than metaphysical. They are conceptual groupings of objects with sim-

ilar functionality. They order and structure our perceptions, as well as frame

our expectations, but should be considered distinct from artefact kinds. We

may say that an object belongs to a functional category F, whenever we per-

ceive that it has F as a proper function. We may learn that an object is F

by being told that it is, or by being familiar with others of its kind. We may

surmise that an unfamiliar object is F by seeing it perform F (or attempt to

perform F), or by its bearing a strong resemblance to other F objects (such

as its ancestors). We could, of course, be wrong, since on the one hand we

could witness improvised or accidental functionality, and on the other hand

we may encounter an object designed to mimic an F object without being an

F object itself (for instance we might mistakenly categorize a replica gun as a

weapon rather than a prop). A more reliable source for our categories might

be taken from the selected effects theory itself. Since proper function depends

on the ongoing production of that particular object based on its successfully

performing a particular function, perception of a proper function should de-

pend similarly on familiarity with the particular “marketplace” in which it is

situated, and that marketplace’s demands.
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2.5.2 Non-Aesthetic Properties and Induction

I argued above that an account which better explained the role of standard and

variable properties and their relation to the appearance of fitness was required

than that provided by Parsons and Carlson. To this end, rather than focusing

on the perceived necessary conditions (the perceived essential features) for an

object, I focus on the manner in which particular features are correlated with

the performance of particular functions. Thus, instead of standard, variable,

and contra-standard properties, I suggest that we speak of positive indicators,

non-indicators, and negative indicators of functionality as follows:

1. Property P positively indicates functionality F whenever P-objects tend

to succeed at F (more than objects lacking P).

2. Property P negatively indicates functionality F whenever P-objects tend

to fail at F (more than objects lacking P).

3. Property P is a non-indicator of functionality F whenever it is neither

a positive indicator nor a negative indicator of F. This may be either

due to P-objects both succeeding and failing at F in equal measure, or

perhaps to P being a new property with which we have little experience.

For Walton, standard and contra-standard features were seen as the nega-

tions of one another, allowing us to refer to the presence of contra-standard

features and the absence of standard features synonymously. That is not nec-

essarily the case for positive and negative indicators: having a feature may

positively indicate success and increase the apparent fitness of the object,

while lacking that same feature might not actively decrease the appearance of

fitness. We should also note that the sets of positive and negative indicators
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are internally consistent. That is, the properties P and not-P cannot both

be positive (or negative) indicators because if P is a positive indicator then

the presence of P must indicate a greater chance of success than its absence,

not-P (and similarly with negative indication). The “more than objects lack-

ing P” clause is meant to capture how when a P object and a not-P object

are compared, the viewer is likely to judge the P object more apt relative to

functionality F than the not-P object. The same viewer will not necessarily

find the not-P object actively dysfunctional. For that to be the case, not-P

must itself be a negative indicator, but in fact it could be a non-indicator.

Thus, when discussing mathematics, we can (and often do) have cases such as

the following: brevity is an indicator of success at certain functions (such as

convincing), while prolixity is a negative indicator thereof. A proof cannot be

both brief and prolix–these properties are incompatible. Nonetheless, we may

have a proof which is neither brief nor prolix. We therefore have a property

(the property have being of a middling length) which can be neither a posi-

tive indicator nor a negative indicator of explanatory success; instead, it is a

non-indicator.

This behaviour fits with the observation that many properties should be

considered fuzzy or vague, admitting to degrees. Thus, when discussing indica-

tors, we may occasionally be referring to ranges of values for fuzzy properties,

and cannot assume that an object having a property which falls outside the

positive indicating range also falls within the negative indicating range. For

these reasons it is somewhat deceptive to speak of an object simply having or

lacking non-aesthetic properties. This observation is particularly relevant in

the case of proofs, where such things as complexity and length have aesthetic

bearing. While it is desirable in the long run to provide a model which more
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precisely reflects these kinds of features, we may for now consider the prop-

erties under discussion as being short form for a more complex and precise

description. Thus, in the above example, we mean by “brevity” and “prolix-

ity” a particular ranges of values: a proof may be said to be “long”, “short”

or “average” based on how its length compares to that of proofs in general.

The more below average its length, the shorter it will seem; the more above

average, the longer. This is obviously a simplification, but does reflect the

manner in which we actually speak of these topics.

As we did in the context of Parsons and Carlson’s original theory, we may

note that there is a difference between properties which indicate functionality

in the sense discussed above, and properties which indicate to us that the

object is functioning. The former contribute to the perceived likelihood of

future success, whereas the latter suggest current or past success, and perhaps

provide clues which allow us to perceive it in the correct functional category,

but may not contribute in any way to the perceived likelihood of future success.

We must have a way of determining what properties are positive or negative

indicators, and this is where an inductive mechanism such as that of McAllis-

ter is of importance. A property P gets weighting WP relative to functional

category F, beginning at a neutral zero. This gives us the weighting WF,P

which reflects the degree to which we associate possessing P with succeeding

or failing at F. When an object that possesses P is successful at a particular

function F, that property’s weighting relative to F increases. When it is un-

successful, the weighting decreases. Highly negatively weighted properties are

considered negative indicators of F while positively weighted properties are

considered positive indicators of F, and those with a weighting close to 0 are

perceived by us as non-indicators. Based on this, we may use the weightings
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of properties in category F to determine how F-fit an objects appears.20

Where beauty is identified with this appearance of fitness, this is essen-

tially equivalent to the aesthetic induction but with some useful distinctions

introduced: an explicit relativization of the weightings to functional categories

allows for the potential for the same property to receive different aesthetic as-

sessments in different contexts, and clearly differentiating between positive

and negative indicators opens up the space to bring in the more sophisticated

phenomenological machinery of Parsons and Carlson. There are more complex

aesthetic responses available based upon not simply how fit an object looks for

a function, but also what sorts of properties it has and in what proportions.

While the aesthetic induction focuses largely on the cumulative effect of an

object’s properties together, Parsons and Carlson have given us tools we can

use to consider a more detailed breakdown of the overall effect. For instance,

we can use their approach to distinguish between an object which scores highly

because all of its features are positively indicated, and an object which scores

highly because only a few features are positively indicated but the weightings

of these features dominate in magnitude those of the negative indicators. The

aesthetic induction alone cannot do this.

2.5.3 Aesthetic Effects

I agree with Parsons and Carlson that our perception of aesthetic properties

such as functional beauty depends on the presence of non-aesthetic properties,

and the relations of these properties to the functional categories in which

20This process essentially involves subtracting the probability that we assign to a P object
of failure at F, from the probability that we assign to it of success. One straightforward
way this can be modelled is by calculating observed successes−observed failures

total observed cases . This is obviously
quite simplistic and runs into difficulties, especially with small sample sizes. The theory
could be better fleshed out by making use of heavier (and likely Bayesian) machinery.
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we perceive the aesthetic object. Thus, echoing their approach but with the

required modifications, we may describe the phenomenology as follows:

Appearance of Fitness When an object presents many positive indicators

of functionality F, and few negative indicators, then it may be said to

look fit for F (or F-fit).

Elegance When an object presents only positive indicators of functionality

F, and neither negative indicators nor many non-indicators, then it looks

especially elegant with respect to F. Every feature of the object seems

to contribute to its potential success at F.21

Dissonance When an object presents negative indicators of functionality F,

but still appears to be actively functional, then there may be the same

kind of tension or dissonance that Parsons and Carlson refer to.

It is helpful to remark here that this breakdown of Parsons and Carl-

sons theory has certain things in common with the functionalism proposed by

Sauchelli (2013) according to which our expectations frame our aesthetic expe-

riences. More precisely, for Sauchelli, our past experiences with functional ob-

jects produce expectations (beliefs) about how other objects with similar func-

tions will look, and this in turn alters our perceptual experiences (Sauchelli,

2013, 46). Sauchelli’s version of Parsons and Carlson’s phenomenology states

that looking fit is a result of our expectations being satisfied “possibly in a

clever way”, elegance is a result of such conformity combined with the addi-

tional constraint that it “avoid any unnecessary element in the arrangement

of the parts of the object”, and tension is a matter of the object violating

21Elegance may perhaps be thought of as a kind of super-fitness.
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expectations while still being able to function (Sauchelli, 2013, 49). This is

essentially consistent with my view if we take positive and negative indicators

as a more precise way to describe what our expectations for an object are.

That is, we can say that we expect objects to present many positive indica-

tors of their functionality, and that we expect them to to lack most negative

indicators. The induction borrowed from McAllister is a concrete mechanism

for modelling how such expectations might be formed and altered over time,

and allows us to see clearly the manner in which“these beliefs are the result of

our previous experiences with objects appearing to have the same (or similar)

functions.”(Sauchelli, 2013, 46)

Sauchelli also points out that satisfying expectations is not always sufficient

in itself, but “rather, the composition of its parts should be perceived as clever

and ingenious to stimulate aesthetic interest”(Sauchelli, 2013, 49). In the case

of proofs, as with other more mundane functional objects to which it seems

that we do not always have an aesthetic response, an aesthetic theory should

tell us why we take aesthetic interest in some objects of a particular kind

and do not take interest in others. A plausible explanation for this is that

we require something to grab our attention first. For Sauchelli this is being

“clever or ingenious”, but we might instead speak more simply of novelty.22 In

his discussion of aesthetic themes to which surveyed mathematicians seemed

to respond, Wells describes the effect of novelty in a similar manner:

22I think there is an implicit assumption of novelty built into many references of ingenuity
and cleverness. How clever can something be if it is expected? We might worry that this
could produce some problems for Sauchelli’s theory since it is built upon the concept of
expectation. In this regard, one of the things that an appeal to positive and negative
indicators allows us to do is distinguish between the unexpectedness of an object with new
non-indicators, and the unexpectedness of and object with familiar negative indicators. The
first is arises when the object has features which we have never encountered before, while
the second arises when it has features we have come to think will undermine its success at
a given function.
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Surprise and novelty are expected to provoke emotion, often pleas-

ant, but also often negative. New styles in popular and high cul-

ture have a novelty value, albeit temporary. As usual there is a

psychological connection. Human beings do not respond to just

any stimulus: they do tend to respond to novelty, surprisingness,

incongruity, and complexity. (Wells, 1990, 39)

A proof may look fit or even elegant if we consciously analyse it, but yet

not elicit a spontaneous aesthetic response. Such a response will usually only

be elicited if there is some manner in which the proof is exceptional. The

effect of novelty is to transform the object into the sort of exceptional thing

which provokes such a response where it might not otherwise occur. In this

way, a novel feature draws and directs our attention. This idea may easily be

incorporated into the framework I propose:

Banality An object dominated by familiar non-indicators is banal and un-

likely to elicit a strong response of any sort.

Novelty When an object presents non-indicators which we have not encoun-

tered much in the past, then it appears novel. Despite not yet having an

association with fitness, these properties are attention grabbing, and as

such may have an amplifying effect with respect to our overall perception

of the object. In the case of proofs, the novel features may be regarded

as clever or suspicious depending on their resemblance with other more

familiar positive or negative features.

As a final note, in the case of mathematics, novelty is not the only thing

that may draw our attention and amplify our aesthetic response; historical and
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sociological factors such as the fame of the theorem proven may have similar

effects. Mathematics is littered with holy-grail problems (such as Hilbert’s

problems, the Clay institute problems, Erdős’ puzzles, and so on). When

proofs of such famous conjectures are offered, they are subject to far greater

scrutiny than other proofs of mathematics. The aesthetic reaction is also, in

these cases, amplified beyond what it might otherwise be (some of the intensely

negative aesthetic responses to the 4-colour theorem might in part be a result

of this phenomenon).

2.6 Concluding Remarks

In some respects, the functionalism I’ve proposed is a result of connecting

dots left by other theorists. It retains the spirit and structure of McAllister’s

aesthetic induction, but also approaches more closely the theory of Parsons

and Carlson, which has the advantage of being much more general. The result

is a refined theory which is better able to satisfy the desiderata identified at the

start of this chapter than either of the two major theories on which it is based.

The richness of Parsons and Carlson’s phenomenology can be used to describe

in detail how particular proofs evoke particular responses in us, thus helping

the theory satisfy the first desideratum that it should accurately describe the

phenomenon. The appeal to an inductive mechanism allows us to explain the

manner in which the aesthetic can be in mathematical practice, and allows

us to consider the degree to which this is justified, thus satisfying the second

desideratum. Finally, by relating aesthetic responses to mathematical objects

to those of other objects, the theory may help us understand and interpret

value judgements made about mathematics by appeal to aesthetics. The next
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chapter will be devoted to more of the particulars involved in applying this

theory to proofs.

76



Chapter 3

Functional Beauty and the

Mathematical Proof

3.1 Introduction

This chapter concerns the application of a functionalist aesthetic to the case

of mathematical proofs. Since proofs are not the only objects in mathematics

which may draw our aesthetic eye, however, it is worth first considering why

they are of particular importance to the more general problem of applying

aesthetic theory to mathematics.

There are numerous aspects of mathematics that may be subject to aes-

thetic evaluation, and it is important not to conflate them. Rota, for instance

points out “theorems, proofs, entire mathematical theories, a short step in

the proof of some theorem, and definitions are at various times thought to be

beautiful or ugly by mathematicians.”(Rota, 1997, 171). It is by no means

certain, or even likely, that each of these manifestations of the aesthetic will

bear the same explanation. At the same time, it does seem likely that the
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aesthetic judgements at one level of mathematical discourse may be related

to those at others, such that we cannot have a complete understanding of the

overall aesthetic phenomenon within mathematics without some discussion of

the entire field. Similarly, it is unlikely that the aesthetic in the mathematical

case should remain entirely insulated from other aesthetic trends active within

our culture at large. The problem therefore calls for examination of the vari-

ous individual objects of mathematics, while still bearing in mind their place

within a larger mathematical context.

A twofold distinction is often treated as aesthetically salient when dis-

cussing mathematics. It can be expressed as being between facts and methods

(Le Lionnais, 1971, 122-123), or as products and processes (McAllister, 2005,

17)1. In the first group we have various entities produced by or found within

mathematics such as theorems, equations, formulae, numbers, and particular

geometric constructs. In the second grouping are found the various tools of

the craft such as proofs, algorithms, heuristics, and perhaps even notational

styles (for instance, Leibniz and Newton’s notations for calculus).

The distinction is by no means perfect. It is neither clear that it is exhaus-

tive nor disjoint and as such may not be able to easily accommodate every

relevant category of object. The mathematical theory, for instance, is a prod-

uct of mathematics but also a means of collating results and methods, as well

as structuring a research program. It does not so neatly fit into these group-

ings, yet we still see aesthetic assertions such as that “Some beautiful theories

may never be given a presentation which matches their beauty” and that an

1I favour McAllister’s terminology, not only because it is nicely alliterative but also
because some may be uncomfortable with the implications of the term “facts”. Indeed,
I wish to allow for incorrect products of mathematics to be something the discipline on
occasion outputs (and then, hopefully, corrects).
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“instance of a beautiful theory which has never been matched in beauty of

presentation is Gentzen’s natural deduction”(Rota, 1997, 173-174), or more

simply that (e.g.) group theory is a particularly beautiful branch of mathe-

matics.

We might also wonder where important counter-examples such as the

Weierstrass function2 lie. Here we have an entity that is clearly a product,

yet which also acts as a disproof for the once widely believed conjecture that

a function continuous on an interval should also be differentiable somewhere

on that interval. Counterexamples such as this occupy an important place

in mathematical practice and act as both products and processes. Granting

the assumption that products and processes are ruled by slightly different aes-

thetic principles, we would expect mixed objects such as counter-examples and

theories to be impacted by both, with potentially quite complex results.

Despite its limitations, the intuition that this might represent an impor-

tant difference for aesthetic analysis strikes me as quite plausible. Objects of

the first group are more obviously analogous to works of art than those in the

second group. We frequently produce visualizations and physical representa-

tions of mathematical objects of this sort which can be appreciated aestheti-

cally without necessarily referencing the particularly mathematical features of

the object. Triangles, spirals, fractals such as the Mandelbrot set, and even

graphical representations of functions like Weierstrass’, can all be viewed aes-

thetically without any mathematical aptitude or awareness whatsoever. In

these cases, there does not appear to be a specifically mathematical aesthetic

at work. They can reasonably be subsumed under other aesthetic theories and

2A continuous but nowhere differentiable function found by Weierstrass in the mid 19th
century. This demonstrated that differentiability does not follow from continuity as many
had believed.
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do not particularly strain our existing frameworks.

Theorems (and some theoretical entities such as equations) present more

of a challenge for aesthetics, as they are more conceptually loaded. Similarly,

most objects of the second group (processes) require a reasonable degree of

mathematical training before their aesthetic elements are in any way appre-

ciable. I conjecture that the aesthetic for processes is more tightly integrated

into the mathematical context itself than is the aesthetic for products. It can-

not be properly understood without an analysis that takes into consideration

the mathematical content and purpose. Moreover, the best way to see the kind

of aesthetic interaction we may have with this sort of object is by recognizing

their role as tool.

I have chosen to focus on one specific member of the second group: the

proof. I treat the proof here as a particularly important nexus of aesthetic eval-

uation in part because of its central role in mathematics as a discipline, and

because discussion of the aesthetic properties of proofs are quite prevalent. Of

all the tools available to mathematicians, it represents the most quintessen-

tially mathematical. The proof is intimately bound up with the theorem,

however, so a complete aesthetic theory of proof awaits the study of theorems

as well (and vice versa).

I assume that at the level with which we interact with them, mathematical

proofs are artefacts: humanly created objects with particular functions. More

specifically, I hold that proofs are artefacts with functions which are largely

epistemic in nature. They are peculiar artefacts in certain ways because they

are in large part abstract, but this is not entirely without precedent.3 As

with other sorts of objects discussed by Parsons and Carlson, proofs can be

3See for instance Turner (2012), Knuuttila (2005)
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understood as falling within functional categories. Because of the fact that

it is through their use that we primarily interact with them, our functional

understanding of proofs is key to our aesthetic perception of them. I adopt the

functionalist aesthetic theory outlined in chapter 2 based on the assumption

that, as with other artefacts, our interactions with and perceptions of proofs

are structured in part by our understanding of their functions. The functional

categories inform our aesthetic perceptions. In particular, a proof may have

the aesthetic property of appearing fit or unfit for various functions on the

basis of its non-aesthetic properties.

In order to more precisely explain how some of the aesthetic assessments

which we have seen can be explained using the provided theory, I will identify

in this chapter many of the central functions proofs have, and have previously

had, within mathematics. Based on the functionalism I’ve adopted, an in-

dividual’s views and priorities with respect to the various functions of proof

can be expected to affect their aesthetic sensibilities and taste. Moreover, the

long-standing tendency to reprove known theorems can in part be explained

by a desire to accomplish all the functions of proof, even though these func-

tions may sometimes be in tension with one another. To aid in the analysis, a

number of examples are provided in Appendix A and referred to throughout

this chapter.

3.2 An Aside on Style

In the case of considerations of all the potential aesthetic objects described

above, be they products or processes, proofs or theorems, or indeed any other

sort of abstract or conceptual object, we are faced with some unique prob-
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lems having to do with distinguishing the object of evaluation from its mode

of representation. The presentation of the proof is the means by which we

gain our epistemic access to the proof in the first place, but the same proof

may be rendered in multiple ways. That is, there is a difference between the

proof itself and any given presentation of it. When faced with a proof in some

form (written, spoken, perhaps thought), we make two aesthetic assessments

because we may respond both to the presentation and to the underlying argu-

ment. This kind of dual vision can be considered analogous to that involved

in viewing representational forms of art where we may speak sensibly of, for

instance, a beautiful photograph of an ugly object, or an ugly photograph of

a beautiful object. That there is such a difference is precisely why we are able

to make sense of Rota’s above-mentioned claim that there may be cases where

a proof or theory does not receive a presentation that matches it in beauty.

The distinction I make between the presentation of the proof and the proof

itself also echoes that made by Netz (2005, 254) who claims that beauty ap-

pears in the activity or experience of doing mathematics where it is “a property

of states of mind”, in the products of the pursuit where is “a property of texts”,

and in the various entities of mathematics itself where it is “a property of the

ontological realm of mathematics”. I largely agree with Netz on this division,

but where he focuses his study on the second dimension of the aesthetic, I am

concerned mainly with the third.

I refer to the textual dimension of aesthetic experience as the realm of

mathematical style, whereas when we speak of the proof itself being beautiful, I

say that we are dealing with the aesthetics of the actual mathematical content.

Both of these are valid topics of aesthetic analysis, although our aesthetic

responses to them are not necessarily governed by all the same principles. The
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functionalist theory I outline pertains mainly to assessments of mathematical

content. Certain aspects of mathematical style may also be explained by

appeal to functional beauty, however I believe that style likely has a great deal

in common with various forms of artistic expression as well.

The difference between style and content is well demonstrated by exposi-

tions of the marriage algorithm which are steeped in metaphor and narrative

(see A.3). Embedding such a proof in a fictional scenario such as this can make

for a humorous read, and even highlight potential applications for the result,

but it is an entirely stylistic choice. Other aspects of the proof, such as its

being direct and constructive, are of a different character being integral to the

mathematics itself. In general, I say that we are able to distinguish between

style and content in the same proof because we consider different groups of

properties in each case. Properties related to content are those which pertain

to the logical structure and argument form of the proof. Although it is very

difficult to precisely define what makes one proof identical or different from

another, we may generally consider these properties the sort that when al-

tered result in something we would consider a different proof. In a sense, then,

these are the properties that we perceive as essential to a proof’s identity; the

logically salient features.4 Examples of properties of this sort include:

• Structural properties such as symmetry of cases, number of cases, proof

form used (for instance, inductive).

• Length of proof (when presented as efficiently as possible).

• Overall complexity.

4This bears some resemblance to the distinction between standard and variable by Wal-
ton, although it is not relative to a category at all but simply has to do with a specific
proof’s identity.
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• Appeals to axioms as well as other theorems.

• Appeals to visualizations which are either essential or literal representa-

tions of the subject matter.

Stylistic properties, on the other hand, are those that relate directly to

the presentation, and which may be chosen and varied by the writer. They

are non-essential to a proof’s identity in that we may change them without

affecting the underlying argument. These properties include such things as:

• The language in which the proof is written.

• Notational choices (for instance, Leibniz’s or Newton’s notation for the

calculus, dots or parentheses in formal logic).

• The use of literary devices such as narrative, metaphor, and analogy in

the exposition.

• The use of signposting.

• The order in which lemmas and sub-proofs are presented, whenever this

doesn’t have an effect on the logic of the proof itself.

• The length of the exposition of the proof, when this involves non-essential

text.

• The use of diagrams which are aids (as opposed to those which are inte-

grated into the argument itself).

Style can involve similar features as content, such as the length of the actual

text. This is stylistic when pertaining not to the length of argument in full,

but rather to the granularity and detail provided in a particular explanation,
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as well as to the amount of background and contextual exposition provided.

A mathematician may provide a long exposition for one audience, such as a

popular audience or class, and a shorter one for another, such as fellow experts

in the field. Similarly, visualization can be either integral to the proof or simply

be a means of helping the reader understand the abstract material presented.

Visualizations central to the material are used in many elementary geometry

proofs such as the famous “windmill” proof of the Pythagorean theorem, or

Kelly’s proof of the Sylvester-Gallai theorem (see A.4).5

But visualization may also be used idiosyncratically or as a supplement, as

is illustrated by Hadamard’s mental pictures for Euclid’s proof that there are

infinitely many primes (see A.2). While Hadamard’s imagery may be helpful

to him (and possibly others) it does not play any sort of direct mathematical

role in the proof.

3.3 Properties of Proofs

In addition to separating out specifically stylistic properties, it is useful to

group the mathematical properties as structural, cognitive, or methodological6.

While all of these have parallel groupings in the stylistic domain, the focus here

remains on features of content.

Structural properties are what we would consider the more formal proper-

ties of the proof. Important structural properties include: the length of the

proof, the number of assumptions made (such as axioms or prior results re-

5While diagrammatic proofs have been considered by some to be a-logical, there is on-
going work to present formal diagrammatic logical systems. For instance, Mumma (2010)
presents a formalization of Euclid’s Elements, thereby claiming to provide “a formal model
where Euclid’s diagrams are part of the rigorous proof” (256).

6These groupings are fairly rough around the edges and are presented only as a means
to facilitate discussion.
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quired), the logical form of the proof, whether the proof appeals to different

cases (and how many there are), and whether there is symmetry in arguments

and cases.

Cognitive properties are those which impact how humans read and under-

stand proofs. Clearly, certain cognitive properties are affected by structural

properties, for instance surveyability and complexity are both affected by the

length of the proof in question. As such, it may be possible to entirely re-

duce these properties to combinations of structural properties. In the cases

where this is possible, it is still the presence or absence of such a combina-

tion which acts as a whole to indicate a particular function. These may still

be discussed separately from the individual structural properties, even when

understood as property clusters of this kind. Important cognitive properties

include: surveyability (that is, the capacity for the proof to be read through

and understood by a person), graspability (the capacity for a proof to (in some

sense) be understood all at once, or in a single thought), visualizability (the

capacity for the proof to be depicted visually), complexity (how difficult it is

to understand the proof) and intuitiveness (how well the proof, or theorem

being proven, fits with our expectations).

Methodological properties are those having to do with the standards and

methods of mathematical practice. As with cognitive properties, some of these

will be combinations of structural properties. Important methodological prop-

erties include: the argument type (such as inductive, constructive), what sorts

of external aids are required for the proof (for instance, a straight-edge and

compass, or a computer), how well the proof stands up to current standards

of rigour, and whether or not it illustrates purity of methods (that is, whether

the proof keeps to the same concepts as are appealed to in the theorem itself).
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3.4 Functions of Proofs

I have suggested that there is an interplay between the functionality and aes-

thetics, and in particular that certain properties of proofs may positively or

negatively indicate particular kinds of functionality. We come to perceive these

properties as falling under such headings based on our experiences with proofs

which manifest them. In some (though not all) cases, there may be a causal

connection that we can uncover which explains the correlation which we per-

ceive. Identifying properties which might help or inhibit various functions, as

well as properties to which we have a great deal of exposure, can allow us to

explain or predict aesthetic responses. To that end, this section discusses a

number of important functions of proofs and identifies properties which can

be expected to positively or negatively indicate fitness for that function.

I focus on functions which there is evidence to suggest many proofs perform

or have in the past performed. In some cases, the importance of that function

in their own practice has been highlighted by mathematicians, while in other

cases we can see that functionality at work by examining the history of the field.

It is important to remember that, given the selected effects theory of function,

functions can and often will change over time, so this taxonomy should not

be considered in any way settled, permanent, or normative. Indeed, there

have been a number of other breakdowns of what proofs do or are for7. One

may thus find more fine-grained taxonomy than that provided here, although

I believe that most of the functions listed in these cases fall into the broader

functional categories I outline. Finally, I note that these functions are in

some ways related to one another such that the successful performance of one

7See for instance Dawson (2006) who offers around 30.
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function can sometimes improve a proof’s ability to perform another.

3.4.1 Verify and Certify

As its name indicates, the proof is meant to establish the truth of a given

proposition given certain starting assumptions. It is characterized in the math-

ematical case by a sense of certainty and even inevitability which accompanies

it. Thus, the proof plays a justificatory role: it is conclusive evidence for a

proposition. Once a proof has been provided, no other is required. This is

the manner in which the proof is able to act as a certificate, a kind of rubber

stamp permitting the application of the proven theorem to other problems in

mathematics (and elsewhere).

The emphasis on the proof as justification rightly remains central to most

serious attempts at exploring the topic. It is the most important and com-

monly thought of function of proof. In their certifying role, proofs are being

used in an evidential capacity. Having a proof allows us to trust a theorem and

apply it as we see fit. It is the manner by which new theorems are added to

the existing storehouse. Mathematical proofs so certified are further honoured

with adjectives such as “permanent”, “certain”, and “infallible” (although in

reality, they are not always error free). The proof is thus an unusual form of

evidence because of the high degree of certainty it confers.

This function of proof can only be fulfilled when it has been properly veri-

fied. Positive indicators will therefore play to our presuppositions and expec-

tations. These are the properties which make the proof ‘look right’ even prior

to a thorough verification, while the negative indicators are those that might

make the reader suspicious. Obvious positive indicators include methodologi-
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cal properties such as the use of what we know to be logically valid methods,

as well as (more generally) techniques and argument patterns which are well-

established and uncontroversial in the community. Factors having to do with

the ‘fit’ between theorem and proof might also come into play. To that end,

purity of methods might be seen as a positive indicator, while appeals to theo-

rems in unexpected and seemingly unrelated areas might seem to be negative

indicators. Such things as length and complexity are likely to be negative

indicators since they can easily conceal subtle and hard to find errors, and

indeed often do. Proofs with these features may thus evoke a greater sense of

suspicion when encountered.

3.4.2 Unify and Connect

One of the central uses of proof is not just to show the correctness of a given

theorem, but also to connect various theorems and concepts to one another

in a manner which helps unify or shed light on the field. Proofs can do this

by demonstrating equivalences and dependencies between apparently distinct

structures, appealing to results and methods from other areas than those in

which the theorem originated, revealing what axioms the theorem depends

on, and by just generally exposing the structural underbelly of mathematics

conceived of as a larger system. In this way, proofs may serve to place a

theorem within the larger mathematical context. They can help generate a

picture of the overall mathematical system, and to locate a particular theorem

or entity within it.

Though we may sometimes think of mathematics as being formally uni-

fied in ZFC set theory, it historically has tended to develop around particular
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problems, with any axiomatization coming quite late in a field’s development.

As a result, it is not always obvious in what ways one area relates to another,

and proofs which expose the relations between fields can be highly informa-

tive. The proof of Brouwer’s fixed point theorem by way of Sperner’s lemma

(and vice versa) derives much of its importance from the fact that it connects

topology and combinatorics.

By making these sorts of connections, a proof can also be used as (not

necessarily conclusive) evidence for or against adopting various primitive as-

sumptions, axioms, and conjectures that it makes use of. For instance, when

the foundations of set theory were still under debate, the proof of the Banach-

Tarski theorem, a highly paradoxical result according to which we can decom-

pose a sphere and then reassemble the pieces to create two spheres both as

large as the first, was appealed to as evidence against the Axiom of Choice,

of which it makes vital use8. Here, the argument was not that the Banach-

Tarski theorem should or should not get the rubber-stamp, nor that the proof

was in itself flawed, but rather that one of our basic assumptions should be

abandoned because of its essential role in generating strange results.

A conjecture may also gain plausibility when it is proven to follow from

another unproven conjecture which is considered even more plausible. That

is, proofs of the form “Y follows from X” may be taken as reasonable evidence

8As explained by Suppes:

Banach and Tarski show that by using the axiom of choice a sphere of fixed
radius may be decomposed into a finite number of parts and put together
again in such a way as to form two spheres with the given radius.(...) As
the matter is often put, here is a clear case of mathematics violating physical
reality in the sense that we certainly do not believe that anything like these
decompositions can actually be carried out in real space. The very existence
of these paradoxical results has often been used in the past to argue against
the admissibility of the axiom of choice. (Suppes, 1988, 89)

90



for Y itself if X is generally thought to be correct. There are many proofs

of theorems from outstanding conjectures such as the Riemann Hypothesis,

and similarly many algorithms (in cryptography especially) which depend on

the unproven hypothesis P 6= NP 9. These results await a proof of the active

assumptions in order to be elevated to theorem-hood themselves, but they

still stand above their lesser brethren which have not been tied to such plau-

sible assumptions. In the meanwhile, they increase confidence in their parent

conjectures.

Certain proofs of this sort function largely to simplify other outstanding

problems. This can be done in a number of ways, for instance the proof could

be of a particular case but suggest a generalization which might be of use to

a larger problem. Similarly, the proof may form part of a larger process: if

we can show that one theorem follows from another (or better, that they are

equivalent), and the second seems easier to prove, then we have potentially

made good progress on proving the first. Polya discusses the pervasiveness

and usefulness of the such methods in his heuristic guide How to Solve It :

Chains of equivalent auxiliary problems are frequent in mathemat-

ical reasoning. We are required to solve a problem A; we cannot

see the solution, but we may find that A is equivalent to another

problem B. Considering B we may run into a third problem C

equivalent to B. Proceeding in the same way, we reduce C to D,

and so on, until we come upon a last problem L whose solution is

known or immediate. (Polya, 1988, 54)

9Computer scientist Stephen Cook points out that “one negative consequence of a feasible
proof that P = NP is that complexity based cryptography would become impossible” but
that most complexity theorists (including himself) believe P 6= NP .(Cook, 2003, 28)
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The work leading up to the proof of Fermat’s Last Theorem by way of the

Taniyama-Shimura conjecture is but one example of such an incremental use

of proof.

Positive indicators of proofs with this sort of function include transparency,

explicitness, and attention to detail. All of these properties contribute to a

sense that the proof is revealing its underlying structure and assumptions.

Mixed methods is a positive indicator that the proof is making unexpected

connections, while purity of methods is a negative indicator since it suggests

that we are remaining within the boundaries standard for the sub-field. Finally,

generality is a positive indicator of this sort of proof, for it is suggestive of the

potential to export the result or methods to other contexts.

3.4.3 Explain

Explanation is considered by many one of the most central roles proofs play

and also one of the most complex. It is tied to the informative element of prov-

ing, the manner in which the proof gives more than the theorem alone could.

Consider, for instance, a maximally non-explanatory proof: a black-box proof,

a proof by God. This kind of proof would be acquired by asking an omnipotent

and infallible divine authority whether a conjecture holds. An answer of “yes”

would clearly be able to act in the certifying capacity required of proof, yet

for the most part it would (I think) be of very limited mathematical value.

This role of proof has been explored in great detail, and remains under

active discussion.10 Providing a full account of explanation is well beyond

the scope of this project, however explanation is something for which we use

proofs (even if it is not always effective), and some proofs clearly provide

10For instance in Hafner and Mancosu (2005), Mancosu (2001), Steiner (1978)
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more satisfying explanations than others. Moreover, while providing a posi-

tive account of necessary and sufficient conditions for explanation is extremely

difficult, in part because explanation seems to take many forms in mathemat-

ical discourse, there do seem to be very many properties that we expect to

inhibit explanation, and such properties are likely to be perceived as negative

indicators. This is a manner in which explanation can be a rather peculiar

function: it is much easier to identify examples that fail to be explanatory, and

even give some reason for this failure, than to identify precisely what consti-

tutes a proper mathematical explanation. The divine black-box proof method

described above would lack any explanatory value because of the complete

absence of information. It is too simple. A proof so long, complex, or arcane

that no person in the mathematical community is able to read or understand

it also lacks effective explanatory power, even if it does add information. At

the same time, apparently ad-hoc steps, even when they are short and easily

followed, can inhibit explanation. Such steps may appear both ingenious and

clever, but are also likely to arose curiosity about where they came from.

Certain proof methods, such as reductio ad absurdum and mathematical

induction are sometimes viewed as being less explanatory than others, or in

the least as negative indicators of explanatory power. This may have to do

with methods themselves tending to display certain of the negative indicators

described above. In particular, aspects of these proofs, such as the source of

the formula or assumption itself, may be murky and unclear and for this reason

seem to be ad-hoc. More precisely, one of the elements that can make direct

(so non-reductio) and non-inductive proofs seem more explanatory in many

cases is that they show a strategy for generating the given theorem, rather

than making what may seem to be a “magical” assumption at first and then
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verifying or falsifying its correctness (see A.5 for a popular example of this).11

A proof functions in an explanatory capacity by somehow conveying a sense

of why the given result holds, and perhaps even allowing the audience to re-

trace the process of discovery themselves. As a result, features which positively

indicate explanatory potential tend to be cognitive properties which we con-

sider to be psychological aids, in particular being relatively simple, surveyable,

and visualizable. Hadamard, for instance, suggests that “any mathematical

argument, however complicated, must appear to me as a unique thing. I do

not feel that I have understood it as long as I do not succeed in grasping it

in one global idea...”(Hadamard, 1996, 65). At the same time, explanatory

proofs should be sufficiently detailed as to not make the result seem mysteri-

ous or magical. Symmetry and analogy may help with understanding because

they exploit similarities between cases to reduce the number of individual ar-

guments that must be considered.

3.4.4 Convince

Reuben Hersh suggests that “in mathematical practice, in the real life of

living mathematicians, proof is convincing argument, as judged by qualified

judges.”(Hersh, 1993, 389) Indeed, there is a rhetorical role that proofs must

fulfil; convincing other mathematicians of the correctness of the proof being

provided is a necessary prerequisite for its use in any evidential capacity. It is

the first function temporally, even if the function of certification is considered

11Similarly, Mark Lange has recently argued that there might be a connection between
explanatory proofs and mathematical coincidences in that “we may come to recognize a
given proof as explanatory by first appreciating that it makes some result non-coincidental”
(Lange, 2010, 332), and that proofs by cases suffer because they “cannot show the theorem
to be no coincidence.”(337-338) Lange also argues that inductive proofs are in general non-
explanatory because any explanation they give would be circular in nature (Lange, 2009).
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first in importance.

Conviction can operate on multiple levels: we may convince the reader

that the result being proven is correct, or we may convince them that the

proof itself is correct. These are distinct but related functions of proofs. Ide-

ally a proof should succeed at both, however this is by no means always the

case. Some proofs can convince of the result while still leaving doubts as to

the proof itself. This may be because there is a weakness in the proof that

makes the reader suspicious, but they nonetheless consider any problems aris-

ing from that vulnerability to be repairable. On the other hand, some proofs

can (paradoxically) convince the reader of the correctness of the reasoning it-

self, but not the result. This situation can arise if it is thought that what the

proof proves is not what it was claimed to prove (or in other words, the stated

theorem is incorrect). In such a case the theorem statement itself might be ad-

justed as required in the manner described in Lakatos (1976). Proofs of highly

counter-intuitive theorems might also encounter this difficulty if the convic-

tion generated by the argument does not outweigh the initial doubt about the

theorem. Sometimes such situations may result in a questioning of methods

or of primitives (as discussed above).

There are a number of factors that might indicate a proof’s being convinc-

ing, and unsurprisingly some of these overlap with the indicators for certifi-

cation, and others with explanation. For instance, following familiar logical

structure (using tried and true methods), and its appearing in principle formal-

izable are likely associated with generating conviction because they produce

a sense of trust. The cognitive features such as visualizability and surveyabil-

ity also contribute to generating conviction, since they make it easier for the

reader to follow and understand the proof in full.
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3.4.5 Tool-Build

Finally, we note that proofs may function to introduce new or adapt existing

mathematical theories, methods, and reasoning patterns. In this way, they

are tool-builders. Proofs that perform this function are as important or some-

times even more important for how they prove than they are for what they

prove. Sometimes they explicitly describe algorithms for finding a particular

solution to a general problem (as in A.3), while other times they introduce con-

structions or concepts which may be useful for solving other problems, have

non-mathematical applications, or are a topic of study in and of themselves.

By their very nature, tool-building proofs are usually novel in some way, and

as a result, the aesthetic reaction to such proofs is often quite strong. Positive

and negative indicators for tool-building will be largely methodological: posi-

tive indicators will involve the introduction of new techniques, the extension of

old ones, or the seeming exportability of a result or method to other problems.

Negative indicators will, by contrast, involve familiarity. Tool-building can in

this way come into aesthetic conflict with functions such as convincing.

Cantor’s proof for the uncountability of the real numbers (see A.6) is an

excellent example of a conceptual tool-builder. It introduced the diagonaliza-

tion technique, a proof strategy which was novel at the time but would form

the basic scaffolding and inspiration for many other proofs.

3.5 Mathematical Taste

Having considered some of the functions and properties of proofs, we are in

a better place to re-examine questions having to do with particular aesthetic

evaluations and preferences. The functionalist theory provided does allow
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us to account for the historical constants mentioned in the previous chap-

ter. Preferences which remain on the whole stable may be explained in one

of two ways: either the given property is a positive/negative indicator of a

functionality which has retained its importance to the community over time

(the positive indicators of the verification function are such properties), or it

is a positive/negative indicator of multiple functions, and so is relatively in-

vulnerable to shifts or differences in the view of proof (simplicity may be such

a property, being a positive indicator for almost every major function).

While the stability of certain preferences is explained by the theory, it

nonetheless does not predict any sort of universal aesthetic taste. Differences in

preferences regarding the objects of mathematics may, and likely will, emerge.

This is because the more an individual looks to proofs to fulfil a particular

function, the more their taste will favour proofs which perform that function

well, and the more they will identify as aesthetically pleasing those properties

which are common to their preferred proofs, and thus positive indicators of

that same function. The mathematical aesthetic will, in this way, track certain

philosophical views about proof, as well as standards of practice and rigour

within both the community at large and various sub-disciplines.

Where there are differences in taste among individuals, we should usually

be able to also find differences in their views on proof. For instance, interests

in verifying/certifying and unifying/connecting will generate preferences for

particular bundles of methodological and structural properties, while interests

in convincing and explaining will generate preferences for more of the cognitive

properties. Differences in taste between pure and applied mathematicians may

be explained by the latter putting greater stock in proofs which tool-build by

generating external applications, while the former focus more on functions
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such as unification and explanation.

As an example, recall that Hardy identified economy, inevitability, unex-

pectedness, depth, and seriousness as aesthetically salient properties. Unex-

pectedness, being the effect of novelty, is predicted within the theory to enhance

the pleasure of aesthetically pleasing proofs. The other ideals may be tested

against Hardy’s own views on proof as discussed in Hardy (1929). Here he

argues that, on the one hand, proofs generate conviction (a role he associates

largely with Hilbert’s metamathematical proofs). On the other hand, cer-

tain proofs (in particular properly logical proofs such as those in Principia

Mathematica) do not have this function at all. He argues that the theorems

under consideration in such cases are too obvious for the proof to be needed

in order for us to be convinced of their truth12, so our interest in these proofs

must derive instead from“their formal and aesthetic properties”(Hardy, 1929,

18). Ultimately, says Hardy, “Our object is both to exhibit the pattern and

to obtain assent. We cannot exhibit the pattern completely, since it is far too

elaborate; and we cannot be content with mere assent from a hearer blind to

its beauty”(Hardy, 1929, 18). Hardy thus views convincing and unifying as

the main functions of proof. The former is consistent with his stated ideals

of economy, inevitability, while the latter explains his concern for depth and

seriousness.

Poincaré displays an interest in unifying and connecting, insofar as he con-

siders the most fruitful areas of study “those which reveal to us unsuspected

kinship between other facts, long known, but wrongly believed to be strangers

to one another”(Poincaré, 1910, 325). That said, he is even more deeply con-

12“I believe the Prime Number Theorem because of de la Vallee-Poussin’s proof of it, but
I do not believe that 2 + 2 = 4 because of the proof in Principia Mathematica.”(Hardy,
1929, 17)
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cerned with proof’s explanatory capacity – the manner in which it can allow

him to “perceive at a glance the reasoning as a whole”, and “re-invent it in

so far as I repeat it”(324). An emphasis on the explanatory function is un-

surprising given Poicaré’s general interest in the psychology of mathematical

creativity. This viewpoint leads naturally to preferences for cognitive proper-

ties such as surveyability.

Rota and Krull also have aesthetic views formed by an interest in expla-

nation. Rota goes so far as to suggest that “enlightenment, not truth, is what

the mathematician seeks when he or she asks the question ‘What is this good

for?’ ”(Rota, 1997, 181) and argues that the concept of mathematical beauty

is actually a means of elliptically discussing how some proofs can be “enlight-

ening”. Explanation acts as Rota’s aesthetic filter. Indeed, for him, proofs

cannot be seen as beautiful at all if they are poorly understood or divorced

from their explanatory context:

A great many beautiful arguments require an extensive buildup,

and are long-winded. Familiarity with a huge amount of back-

ground material is the condition for understanding any piece of

mathematics, and beauty can be appreciated only in the light of

previous experiences of other presentations of similar statements

or variants of an argument. Very frequently, a proof is viewed

as beautiful only after one is made aware of previous clumsy and

longer proofs. (Rota, 1997, 179)

Beauty, for Rota, comes rarely with new proofs but generally only at the end

of a long process of developing, understanding, and refining existing proofs.

As a result, a beautiful proof carries with it a sense of completeness and
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“definitiveness”(Rota, 1997, 178).

Krull echoes Rota’s fascination with enlightenment, proclaiming that he

“simply cannot stop playing around with the material, hoping that one day

enlightenment will come”(Krull, 1987, 52). He further acknowledges that his

focus on “simplicity, clarity, and great ‘line’ as characteristics of beauty” is

rooted in his own particularly “abstract” taste whereas, he claims, “if I had

a more ‘concrete’ taste, I would instead have spoken of diversity, variegation,

and the like”(52). Krull’s abstract taste is much like that of Poincaré; it re-

volves around the explanatory and connective functions of mathematical work,

precisely those which make theorems appear “evident and compelling”(Krull,

1987, 49), and which “illustrate the underlying mathematical structure in an

extremely simple and transparent way.”(50)

Krull’s discussion of “concrete” and “abstract” taste recalls somewhat the

“romantic” and “classical” sensibility which Le Lionnais (1971) speaks of. The

romantic viewpoint is supposedly motivated not by anything particularly con-

crete, but rather by a “glorification of violent emotion, non-conformism and

eccentricity”(Le Lionnais, 1971, 130). Proofs of this sort are often indirect

and surprising: they are convincing, but at the same time not necessarily il-

luminating because they appear to use tricks and artifices. Such proofs are,

as a result, ill-suited to explanation, but can still make deep connections and

suggest powerful new methods.

As a final note, although Krull considers the viewpoint of the foundation-

alist in contrast to the aesthetic viewpoint, the theory presented here suggests

that this too can understood as representing a kind of aesthetic taste. Math-

ematicians (mainly logicians) with such taste will favour precisely the sort of

fiddly detail involved in what Krull describes as “painstaking and often nec-

100



essarily complicated and unattractive investigations”(Krull, 1987, 50). They

can be expected to admire formal gap-less proofs where the underlying logical

assumptions are transparent, and to look for simplicity in the system underly-

ing a proof even if this comes at the cost of length and complexity in the proof

itself. All this stems from a view of the proof which emphasises its functions

of verification and unification.

In general, where there is aesthetic agreement, it is likely owing either to

a fundamental accord as to the functional categories in which a proof is per-

ceived, or to the presence of properties which are positive or negative indicator

across multiple different categories. The functionalism I’ve presented thus pre-

dicts a diversity of aesthetic sensibilities stemming from differences of practice,

experience, and even philosophical viewpoints about the subject matter. The

theory thus explicitly denies aesthetic universalism among mathematicians:

there is space for personal disagreements and well as the development of sub-

communities of individuals with similar taste.13

3.6 Concluding Remarks

In the first chapter, I claimed that, by and large, arguments to the effect that

the aesthetic is of importance to mathematics were based either on considera-

tions of practice, and considerations of value. The aesthetic analysis provided

was aimed not just at describing how aesthetic experiences can be had in

mathematics, but also at critically examining the arguments from value and

practice. We are now in a position to do so.

13Of course, some of these communities may be more vocal about their aesthetic viewpoint
than others. Other cultural factors can come into play here, such as whether the sub-
community itself is open to or wary of aesthetic appeals in their work.

101



The Hardy style arguments appealing to the aesthetic value of mathemat-

ics as a justification for the field are only modestly supported by my theory.

The theory connects the aesthetic in mathematics with the aesthetic in other

areas of human life, and as a result it does not allow mathematics to make any

sort of special claim to value on the basis of a unique aesthetic. Mathematics

represents an interesting and somewhat idiosyncratic case for aesthetics, but

under this theory it cannot be seen as aesthetically privileged over other con-

ceptual non-art domains in which function plays a perceptually active role. By

the same lights, if we accept that there is aesthetic value in these other areas,

then we should be willing to allot value to mathematics on similar ground.

A potential limitation of this argument is that such aesthetic value emerges

from our perception of proofs in relation to their functional roles, and so in

some ways may be seen as a derivative value. Perceiving aesthetic value may

depend on our appreciating the functions of mathematical proofs within the

field, and thus on our already understanding their value in this light.

Arguments from practice, on the other hand are largely redeemed (or at

least accounted for) by this theory, since it suggests that the manner in which

we use proofs within mathematical practice is precisely that which leads to our

aesthetic perception of them. The aesthetic simply pops out of mathematical

practice in the same way as it pops out of our interactions with other objects

in our environment. Further, by adopting an inductive mechanism for at least

some of the process, we are able to explain why some mathematicians have put

stock in aesthetic evaluations as heuristic guides in their work. The aesthetic

plays a role in generating intuitive judgements because our aesthetic sensibil-

ities are keyed to look for features which we associate with success. As with

McAllister’s original theory, aesthetic appeals when engaged in mathematical
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reasoning are shown to be not entirely unfounded. Certainly, we can under-

stand why some might view beauty as somehow being tied to truth. That

said, trust in such appeals should be tempered by a recognition that they are

highly fallible.

Finally, it is worth remarking that this theory suggests we cannot have

any aesthetic sense for the objects of mathematics such as proofs until we are

familiar with how those objects are used, and their place within the larger

mathematical context. That is, proper aesthetic appreciation requires more

than understanding of the mathematical content of the proof itself; it requires

that the proof be properly situated. Some familiarity with the history and

standards of the field, with past proofs and proof strategies, as well as active

interaction with the proof as a tool all constitute essential prerequisites for any

aesthetic appreciation. Greater background knowledge should be expected to

dramatically increase the depth of the sophistication with which the object

is perceived and the level of appreciation the observer has for its aesthetic

qualities, since such knowledge actively fuels the inductive mechanisms under-

lying much of the aesthetic perception. This may in part be why aesthetic

talk about mathematics has mainly occurred by and among experts, and why

students and non-mathematicians may have so much difficulty in recognizing

the source of this admiration, let alone sharing in it. There is no substitute

for experience.

103



Bibliography

Aberdein, A. (2013). Mathematical wit and mathematical cognition. Topics
in Cognitive Science, 5(2):231–250.

Aigner, M. and Ziegler, G. (2009). Proofs From The Book. Springer, fourth
edition.

Birkhoff, G. D. (1931). A mathematical approach to aesthetics. Scientia,
50:133–146.
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Appendix A

Examples and Discussion

A.1 Pythagoras on Irrationality

A popular historically important example, and one of those Hardy considered

particularly pleasing, is Pythagoras’ proof for the irrationality of
√

2:

Theorem 1:
√

2 is irrational.

Proof. Suppose
√

2 is rational

Then it can be expressed as a fraction
p

q
which is in its lowest terms (that is,

the greatest common divisor of p and q is 1). Thus:

√
2 =

p

q

2q2 = p2

So p2 is divisible by 2, and hence p is also divisible by 2. (?)

Since p is divisible by 2, there is some integer k such that p = 2k.
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By substitution we get:

2q2 = (2k)2

q2 = 2k2

So q2 is divisible by 2, and hence q is also divisible by 2.

But now we have found that 2 is a common divisor of both p and q, and this

is a contradiction.

The proof is short, simple, and also nicely illustrates symmetry of argument

since the steps establishing that p is divisible by 2 mirrors those establishing

the same of q. Despite its use of a reductio form, the argument overall seems

fairly explanatory, which might be because of the manner in which it straight-

forwardly states and tests the definition of rational number against a particular

case. In fact, Dreyfus and Eisenberg (1986) found that when presented with

five different proofs of this theorem, mathematicians consistently considered

this to be one of the two most elegant and preferable for teaching, because of

“their simplicity and the fact that they can be completely understood with a

minimal amount of mathematical background”(8).

The only wrinkle inhibiting, to a degree, the elegance of the proof is the

apparently arbitrary choice to analyse a specific integer. Attempting to elimi-

nate the arbitrary step immediately reveals that it is 2 being prime that makes

this proof work for 2 (this fact is used on line (?)). This observation gives way

to a more elegant proof and more general theorem:

Theorem 2: For any prime number r,
√
r is irrational.

A proof may be given here which is precisely the same as that for the
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original theorem, but with r substituted for 2 as needed. Our first theorem

is now a special case of a much more general result, and the elimination of

an arbitrary assumption has made the proof all the more pleasing (and ex-

planatory). Further generalizations may be similarly made; as Hardy him-

self points out “Pythagoras’s argument is capable of far-reaching extension,

and can be applied, with little change of principle, to very wide classes of

‘irrationals’ ”(Hardy, 1992, 100). This process illustrates how aesthetic im-

provements can sometimes go hand in hand with non-trivial mathematical

improvements.

A.2 Euclid on Primes

Another historically important and elementary proof, also identified as aes-

thetically pleasing by Hardy, is Euclid’s proof for the infinitude of primes. I

give Euclid’s own presentation followed by a modern presentation. It is worth

remarking that while Euclid relies on a somewhat foreign (to modern sensibil-

ities) geometric approach, the structure of the argument is clearly unchanged.

Theorem 3: Prime numbers are more than any assigned multitude of prime

numbers. (there are infinitely many prime numbers)

Euclid’s proof. Let A,B,C be the assigned prime numbers;

I say that there are more prime numbers than A,B,C.

For let the least number measured by A,B,C be taken,

and let it be DE;

let the unit DF be added to DE.

Then EF is either prime or not.
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A
B
C
E
G

D
F

Figure 1: A visual aid for Euclid’s proof
with A = 2, B = 3, C = 5, ED = 30, DF =
1, G = 7

First, let it be prime;

then the prime numbers A,B,C,EF have been found which are more than

A,B,C.

Next, let EF not be prime;

therefore it is measured by some prime number.

Let it be measured by the prime number G.

I say that G is not the same with any of the numbers A,B,C.

For, if possible, let it be so.

Now A,B,C measure DE;

therefore G also will measure DE.

But it also measures EF .

Therefore G, being a number, will measure the remainder, the unit DF :

which is absurd

Therefore G is not the same with any one of the numbers A,B,C.

And by hypothesis it is prime.

Therefore the prime numbers A,B,C,G have been found which are more

than the assigned multitude of A,B,C.1

Modern rendition. Consider any set of finitely many prime numbers: P =

{p1, p2, . . . , pn}.
1Euclid’s elements Book IX, proposition 20, reprinted in (Hawking, 2007, 101)
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We will show that there is a prime number not in P .

Consider the integer q = p1 · p2 · · · pn + 1.

q must either be prime or composite.

If q is prime, then it is an example of a prime not in P

and so P does not contain all prime numbers.

If q is composite, then it has some prime divisor pi

If pi is in P then it is a divisor of both q and q − 1

and thus pi must divide their difference, 1, which is impossible.

So pi is an example of a prime number not in P .

Thus, there is no finite set containing all prime numbers.

Euclid’s proof opens Aigner and Ziegler (2009), and, along with the above

proof from Pythagoras, received Hardy’s praise. For Hardy, both these proofs

exemplify his ideals in that:

...there is a very high degree of unexpectedness, combined with in-

evitability and economy. The arguments take so odd and surprising

a form; the weapons used seem so childishly simple when compared

with the far reaching results; but there is no escape from the con-

clusions. There are no complications of detail-one line of attack is

enough in each case...(Hardy, 1992, 113)

Hadamard uses this proof (with P containing the first 11 primes) to illus-

trate the manner in which he goes about most mathematical investigations

with a heavy reliance on imagery or “concrete representations” rather than

symbols, even when the material appears quite abstract. Although this bears

a passing resemblance to the visualization in figure 1, it is substantially less

precise.
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Steps in the proof My Mental Pictures

I consider all primes from 2
to 11, say 2,3,5,7,11

I see a confused mass.

I form their product 2× 3×
5× 7× 11 = N

N being a rather large num-
ber, I imagine a point rather
remote from the confused
mass.

I increase that product by 1,
say N plus 1.

I see a second point a little
beyond the first.

That number, if not a
prime, must admit of a
prime divisor, which is the
required number.

I see a place somewhere
between the confused mass
and the first point.

(Hadamard, 1996, 76-77)

A.3 Gale and Shapley on Marriage

A proof which typically receives a highly stylized presentation is the marriage

algorithm provided by Gale and Shapley.

Definition: We consider two finite sets of equal size: one of men and one

of women. Each man lists all the women in order of preference, with the

women he would most like to be married to ranked highest. The women do

the same with the men. A set of marriages is called a stable matching if no

unmatched couple prefer each other over their actual spouses.

Theorem 4: There is always a stable matching.

Proof. We apply the following algorithm to find a matching:

First, each man proposes to his top ranked woman. The women then choose
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their preferred man from those who have proposed to them so far and “keeps

him on a string”.

In the next round, every man who was rejected previously proposes to his

next highest ranked woman. She compares all the new suitors to each other

as well as to whomever she has on a string from the previous round, and again

chooses her favourite.

This process continues until every woman has been proposed to, at which

point they accept their preferred proposal.

A short argument establishes that the matching found is indeed stable:

suppose John and Mary are not married to each other but John

prefers Mary to his own wife. Then John must have proposed to

Mary at some stage and subsequently been rejected in favor of

someone that Mary liked better. It is now clear that Mary must

prefer her husband to John and there is no instability. (Gale and

Shapley, 1962, 13)

A.4 Kelly on Collinear Points

An interesting example from geometry is L.M. Kelly’s proof of the Sylvester-

Gallai theorem:

Theorem 5: For any arrangement of finitely many points, where the points

are not all on a line, there is a line passing through exactly two of these

points.
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Figure 2: The construction used in Kelly’s
proof of the Sylvester-Gallai theorem. Note that
it is possible for p1 = q, and that p3 may be lo-
cated anywhere on the line l0.

Proof. We will find a line satisfying the requirements given.

Let P be the set of points, let L be the set of all lines defined by two points

of P .

Consider all the pairs consisting of a line li from L, and a point pi from P

which is not on li.

Since both P and L are finite, there must be a pair having the smallest

perpendicular distance between the point and the line.

Let (p0, l0) be such a pair.

Let q be the point on l0 closest to p0 (q is not necessarily in P).

Suppose l0 passes through three points of P : p1, p2, p3.

At least two of these points, say p1 and p2, must be on the same side of q

(inclusive of point q itself).

Without loss of generality, let the point p2 be further from q than p1.

Consider the line l1 passing through p2 and p0.

Then the distance between p1 and l1 is shorter than that between p0 and

l0, a contradiction.

115



So l0 is a line passing through only two points of P , as required.

This proof is short and provides a nice construction illustrating why a

particular pattern must be satisfied. It also connects this to another pattern:

we can locate a line going through exactly two points somewhere among those

lines which are closest to other points in the P . For some, the proof has

certain important defects, however. In the paper where he first drew attention

to it, Coxeter (1948) indicates that Kelly’s proof is deficient because it is not

“synthetic”, by which he means something akin to pure of methods:

Synthetic geometry is ultimately based on certain primitive con-

cepts and axioms, appropriate to the particular kind of geometry

under consideration (e.g.,projective or affine, real, complex or fi-

nite). Each problem belongs to one kind (or to a few kinds), and I

would call a solution synthetic if it remains in that kind, analytic

if it goes outside. (Coxeter, 1948, 26)

It seems to me that parallelism and distance are essentially foreign

to this problem, which is concerned only with incidence and order.

Thus I would not regard the proofs by Grünwald and Kelly as

strictly synthetic. (Coxeter, 1948, 27)

Coxeter’s complaint is that Kelly’s proof is Euclidean when the problem itself

is not. More specifically, it is the appeal to the shortest perpendicular distance

which limits Kelly’s proof to the Euclidean case, and violates purity of meth-

ods. Coxeter then suggests that an existing projective proof by Steinberg is

preferable overall, although it is more complex, precisely because it does obey

purity of methods in this way. Pambuccian (2009) sheds light on this debate
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by performing a reverse analysis on Kelly’s proof, Steinberg’s proof, and one

other popular proof of the theorem. He points out how in this case “the two

concerns, for minimal and for pure axiom systems, lead to different, incompat-

ible results”(Pambuccian, 2009, 246). In this way, this example illustrates how

ideals of purity and minimality (a form of simplicity) can come into tension

with one another, and how such considerations can lead to the development

and proliferation of many proofs for the same theorem.

A.5 Gauss on Tedious Sums

Here I present two well known proofs of the same result: an inductive proof,

and a proof from Gauss made by pairing off terms, which may even be rendered

pictorially. According to folklore, Gauss as a child vexed his teacher by coming

up with this short-cut for rapidly summing the digits from 1 to 100 rather than

doing the sum the long way. Gauss’ proof is usually considered aesthetically

superior to the inductive proof, especially by those interested in mathematical

explanation.

Theorem 6: for all natural numbers i,
n∑

i=1

i =
n(n+ 1)

2

Inductive proof. Base case: for n = 1, 1 =
1(1 + 1)

2
is true.

Inductive step: Suppose the formula holds for some n = k
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Then it also holds for n = k + 1, since:

k+1∑
i=1

i = 1 + 2 + · · ·+ k + (k + 1)

=
k∑

i=1

i+ (k + 1)

=
k(k + 1)

2
+ (k + 1)

=
k(k + 1) + 2(k + 1)

2

=
(k + 1)(k + 2)

2

Gauss’ proof.

2
n∑

i=1

i = (1 + 2 + · · ·+ n) + (n+ (n− 1) + · · ·+ 1)

= (1 + n) + (2 + (n− 1)) + · · ·+ (n+ 1)

= n(n+ 1)

This method is amenable to easy and fairly direct visualization, as de-

scribed by Polya:

Take a rectangle with sides n and n+1, and divide it in two halves

by a zigzag line(...) Each of the halves is “staircase-shaped” and

its area has the expression 1 + 2 + · · ·+n(...) Now, the whole area

of the rectangle is n(n + 1) of which the staircase-shaped area is

one half. This proves the formula.(Polya, 1988, 118)
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Figure 3: Polya’s illustration of
Gauss’ proof for n = 4.

A.6 Cantor on Uncountability

Georg Cantor had an uncanny ability to prove uncanny results in slick ways.

One in particular stands out as being of aesthetic interest:

Theorem 7: The set of Real numbers R is uncountable.

Proof. Suppose R is countable, then the unit interval (0, 1] is also countable.

We assume this is the case.

We can assign each number on this interval a unique infinite decimal ex-

pansion. To ensure uniqueness, we only assign expansions without infinitely

many zeroes at the end (so, for instance, we assign 1
2

= 0.499999 . . . rather

than 1
2

= 0.50000 . . . )

In general, for ai ∈ (0, 1], write the expansion as ai = 0.ai,1ai,2ai,3 . . .

If (0, 1] is countable, then there is a bijection between it and the natural num-

bers N.

We can represent this bijection as a list exhausting our interval:
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a1 = a1,1a1,1a1,1 a1,2 a1,3 . . . a1,n . . .

a2 = a2,1 a2,2a2,2a2,2 a2,3 . . . a2,n . . .

a3 = a3,1 a3,2 a3,3a3,3a3,3 . . . a3,n . . .
...

. . .

an = an,1 an,2 an,3 . . . an,nan,nan,n . . .

(1)

Consider the bold diagonal number: α = 0.a1,1a2,2a3,3 . . . an,n . . .

Using α, we now define a new number, β = 0.b1b2 . . . as follows:

for each k, if ak,k = 1 then let bk = 2, else let bk = 1.

By assumption, β must appear on the list (1).

But it cannot, for it it did then it would intersect α at some point m, giving

us bm = am,m, which is impossible.

Cantor’s proof is remarkable for several reasons. First of all, it presents the

method of diagonalization, a technique which enjoys an ongoing and important

place in modern mathematics, logic, and computer science. As such, Cantor’s

proof is a significant tool-builder. Although it has much ancestry in other re-

ductio proofs (such as our first example), the diagonalization Cantor performs

also represents one of the clearest instances of novelty, since this proof is the

first place in which this method is encountered, both for the mathematical

community historically and for most students of mathematics. Novelty accen-

tuates the already striking aspects of the proof, making it appear extremely

clever.

While the method applied is fairly easy to understand, even with little

background, the result being shown is highly counter-intuitive. This loads our

expectations against the proof’s validity in the first place, and results in a kind

of incredulity when it works out. Indeed, many people resist the conclusion

when the proof is first put to them. This tendency is examined in a fair
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amount of detail in Hodges (1998). Hodges analyses various failed attempts

to refute Cantor’s proof which had been submitted to him for peer review.

He speculates that the proof is targeted for refutation by these individuals

because “this argument is often the first mathematical argument that people

meet in which the conclusion bears no relation to anything in their practical

experience or their visual imagination”(Hodges, 1998, 3). This failing applies

to more than just students and amateurs, for he adds on a more historical note

that “until Cantor first proved his theorem ([6], by a much longer argument,

as it happens2), nothing like its conclusion was in anybody’s mind’s eye. And

even now we accept it because it is proved, not for any other reason”(Hodges,

1998, 3).

The proof fails to achieve complete elegance only because we must get

around the possibility of non-unique decimal expansions, and decide on a man-

ner to define β such that it cannot be in our list. Neither task is difficult and

both can be done in any number of ways such that in any given presentation

of this proof, different techniques might be applied (and sometimes are simply

gestured at). These steps are needed to ensure the validity of the proof but

their particulars might seem to be a somewhat ad-hoc measure, or a fairly

uninteresting hoop which we must jump through before the true content of

the proof can be presented.

2Here Hodges references Cantor’s initial 1884 proof. This proof is translated in Stedall
(2008) and given a modern presentation in Franks (2010). It is not that much longer.
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