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Abstract

A num erical method for passive scalar and self-advection dynam ics, La- 

grangian rearrangement, is proposed. This fully Lagrangian advection scheme 

introduces no  artificial numerical dissipation or interpolation of parcel values. 

In the inviscid limit, it preserves the infinity of Casimir invariants associ

ated w ith parcel rearrangement. In the two-dimensional case presented here, 

these invariants are arbitrary C 1 functions of the vorticity and concentration 

fields. The initial parcel centroids are evolved in a Lagrangian fram e, using 

the m ethod of characteristics. A t any time this Lagrangian solution may be 

viewed by projecting it onto an Eulerian grid using a rearrangement m ap. The 

resulting rearrangem ent of initial parcel values is accomplished w ith a  weighted 

Bresenham algorithm, which identifies quasi-optimal, distributed p a th s  along 

which chains of parcels are pushed to fill in nearby empty cells. T he  error 

introduced by this rearrangement does not propagate to future tim e steps.
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C hapter 1

Introduction

Numerical m ethods are useful for solving nonlinear partial differential equa

tions, such as the advection-diffusion equation

8TJ
—  + v 'V U  = D V 2U ,  (1.1)
at

where the advecting velocity field v  = v ( x , t )  is either a specified field (passive 

advection) or a functional of U  (self-advection), and ID is a constant diagonal 

diffusion m atrix . In this case, we are prim arily interested in the tran sp o rt of 

a self-advected quantity U  = (to, C)  by a two-dimensional fluid th a t flows in a 

domain w ith velocity v,  where the quantities C  = C (x ,  t ) and ujz = a>(x,t) =  

V  X v  represent the concentration and vorticity fields, respectively, and  z  is 

a unit vector normal to the plane of flow. For example, the tem peratu re  

in a room is convected by the flow inside the  room. In the case w here the 

velocity v  is incompressible (V*v =  0), the advection equation is an  example 

of a flux-conservative system:

1
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f  =  - V - F ,  (1 -2 )

where F  = v U  — D 'V U .

In self-consistent advection, th e  velocity is typically determ ined by the 

incompressible Navier-Stokes equation:

r \  -j

^  +  « .V t)  =  - V P  +  i/V 2 i;) (1.3)
at p

where v  = v (x .  t ) is the velocity, P  is the pressure, p is the density, and  u is 

the viscosity. It is convenient to take the curl of (1.3) to  eliminate the pressure 

field P, which leads to an equation for the vorticity (1.4) (see A ppendix A):

^  +  » .V u  =  v V 2u. (1.4)
C/ b

Moreover, th e  equation for the concentration field is:

FtP
—  + v .V C  = D V 2C. (1.5)

Thus, the m atrix  D  in (1.1) can be written

0 D

where D  is the  diffusion of the concentration field.

The general solution of the passive advection equation w ith no diffusion,

^ + » - V C  =  0 , (1 .6 )
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is a wave m oving in x  at speed v. This solution C ( x , t ) =  C (£o(x i t), 0) 

can be w ritten  in terms of the initial parcel positions £o =  £o( x , t )  defined 

by the Lagrangian position variable £(t) =  £ 0  +  Jq V(£,(r )- r ) dr su ch  tha t 

£(t) = x .  In  the  special case where the velocity field v  =  v(r)  is uniform, 

then £0 (2 ^ 1) = x  — Jq v (t ) dr and C(x, t) =  C  ( x  — J0* v(r )  dr, 0^. In  order 

to  obtain a numerical solution for a nonuniform velocity field, one needs to 

represent th e  equation in a discrete form.

There are problems with the existing m ethods for discretizing (1.6): certain 

methods produce an unstable, unphysical, or inaccurate solution, w hile others 

involve costly and complex computations. Moreover, some of these schem es do 

not respect fundam ental properties of the flow. For instance, the conservation 

of mass and  other exact invariants is not obeyed by many of these schem es. In 

this work, a new m ethod tha t avoids these problems is proposed. In pa rticu la r, 

we construct a numerical algorithm that conserves the global (in tegrated) value 

of an a rb itrary  sm ooth function of C  in the lim it of zero dissipation. For such 

systems, fu ture values of the flow quantities are simply rearrangem ents of 

the current values. We constrain the numerical discretization to enforce this 

property by tracking the centroids of discrete parcels from their initial positions 

forward in tim e. At any time, the solution m ay be viewed by pro jecting  it onto 

a rearrangement manifold, the set consisting of all rearrangements of t h e  initial 

conditions.

Before describing our proposed scheme, we begin by reviewing so m e  of the 

traditional approaches to the discretization of (1 .6 ).

3
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l .A  E ulerian  schem es

In order to  solve partial differential equations numerically, we can use th e  finite 

difference m ethod to  represent them  in a discrete form. In this m ethod  only 

the quantities at finite number of points are considered: a numerical grid is 

superim posed on the domain. For example, in centered finite differencing, a 

partial derivative of a function at a  grid point is calculated using the difference 

between th e  computed function values at its immediate neighbours.

l .A . l  Forward-time centered-space scheme

In this sim plest version of the Eulerian scheme, the spatial (x) axis is parti

tioned into N  uniform subintervals of w idth h and the time (t) axis is par

titioned in to  T  uniform subintervals of w idth r .  For j  = 0 , 1 , . .  .,  N  and 

n  =  0 , l ,  . . . , T ,

x j  = x 0 + jh ,  

tn  ^0 " F  7

Letting C f  = C (tn,Xj) (=  denotes a definition), the one-dimensional ad

vection equation can then be discretized as

/on+1 /'~m /On /~Yn
h .  ^  =  - v ( l z L ± U ,  (1 .7 )

r  2 h y J

This forward-time centered-space scheme (FTCS) is an example of a n  explicit 

time-advance method. The advantage of the explicit Euler m ethod used here 

for the time advance is th a t we can express C f +l (the quantity a t  the  jfth 

grid position at a time represented by the index n  + 1 ) explicitly in  term s of
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quantities evaluated at time n. O nly the values at time step n  must be known 

and stored to  calculate the information at time step n + 1 ; this makes th e  com

putations easy and minimizes the  storage requirements. The disadvantage of 

this m ethod  is the instability of th e  solution, even when the Courant condition 

described next is satisfied (e.g., see the Von Neumann stability analysis of the 

FTCS m ethod  by Press et al. [1992]).

l .A .2 Lax scheme

Due to  the  instability problems of the forward-time centered-space E uler dif

ferencing algorithm, a better solution has been developed, namely, th e  Lax 

method. In this scheme, the discrete form of the differential equation is altered 

by replacing the quantity C(n on the  left-hand side of (1.7) by ^(C j+1 +  ).

This replacement solves the issue of instability but adds a diffusion term , or 

numerical dissipation, to the p artia l differential equation. This m ethod  is sta

ble and satisfies the Courant condition (cf. [Courant et al. 1967]), which states 

th a t the numerical time step r  m ust be shorter than  the time required  for a 

wave moving at speed |u| to travel across a cell of w idth h:

However the Lax scheme is not very accurate. To partially alleviate th is  prob

lem, which results from unwanted numerical diffusion, we can try  to  use a 

smaller grid; however, this will increase the com putation time. A nother way 

to get around the problem of unwanted numerical dissipation is to  a d d  an anti

diffusion term  in order to decrease the numerical dissipation of th e  scheme. 

The la tter solution is known as flux-corrected transport (FCT). For example,

5
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see the discussion by Wang & H utter [2001].

l .A .3 O ther Eulerian m ethods

O ther sim ilar methods have been developed over the years to avoid th e  weak

nesses of th e  previously described schemes. For example, upwind differencing 

takes into account the fact tha t the  rate of change of the flow is directionally 

dependent. The time-advance formula is then modified: if v1- > 0 we use (in 

one dimension)
/~<n+l _  s i n  s~tn n n

i i  =  _ vn 1

and if v f  <  0  we use

t  3 h

s-in + 1 /~in  / m n  s~tn
L'J L'J =  _ v n f j + 1

h

This m ethod is stable, but it is only first-order accurate in the tim e step  t .

The staggered leapfrog method, defined for the flux-conservative form  (1.2), 

is a centered-time centered-space discretization achieved by using tw o stag

gered tem poral partitions. It is second-order accurate in time, as is th e  two-step 

Lax- Wendroff scheme, in which the flux is calculated and used to determ ine 

the concentration field at time step  n + 1 [Lax & Wendroff I960].

l .B  Lagrangian schem es

Instead of using a stationary grid, as in the Eulerian methods discussed pre

viously, Lagrangian schemes use a grid th a t moves w ith the flow. T h a t is, 

the derivatives are now calculated in the Lagrangian, as opposed to  Eulerian, 

frame of reference since the advection equation is most naturally described in

6
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a Lagrangian frame. In this frame the variable x  is also a function of t. and 

the chain ru le  tells us tha t the total derivative of C  in this frame is zero:

d C (x ( t ), t) 
dt

where v  =  d x /d t .  This conservation equation expresses the fact th a t th e  scalar 

field C  is neither created nor destroyed, only rearranged, by the advecting 

field v.

The tw o key components of any Lagrangian scheme are: (i) a m ethod  for

Eulerian grid.

l .B . l  Fully Lagrangian schemes

In fully Lagrangian schemes, the grid is attached to  and moves w ith th e  flow. 

In conventional implementations of Lagrangian schemes, one typically needs 

to re-mesh after a finite number of time steps. In this work we propose a fully 

Lagrangian scheme th a t does not require re-meshing. The characteristics of 

the flow are followed using the classical fourth-order R unge-K utta algorithm . 

The centroids of a finite number of discrete parcels characterized b y  distinct 

values of £o are evolved on a spatial grid. At each tim e step, the new position 

of each particular parcel is com puted using its previous position and the  local 

flow velocity.

To view a fully Lagrangian solution to an advection problem on an  Eulerian 

grid, one also needs a projection scheme. Normally, area-weighted in terpola

tion is used. However, in this work we construct a scheme for p ro jecting  onto 

the rearrangement manifold th a t respects an infinite hierarchy of conservation

following th e  characteristics and (ii) a m ethod for viewing the solution on an

7
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laws essential to  a proper m athem atical model of advection. Even w hen dif

fusion is added  to this fully Lagrangian algorithm (using a semi-Lagrangian 

area-weighted interpolation scheme like the one described next), our proposed 

algorithm (illustrated in Fig. 3.3) exhibits much better energy decay charac

teristics (cf. Fig. 4.22).

l .B .2 Semi-Lagrangian schemes

In semi-Lagrangian schemes, the grid is fixed in time: although the advective 

derivatives are calculated in a Lagrangian frame, the other spatial derivatives 

are calculated on an Eulerian grid. The idea is to discretize the Lagrangian 

term s of th e  advection equation, w ithout having to deal with the instability of 

the FTCS scheme or the inherent complications of fully Lagrangian re-meshing. 

For example, Behrens [1995] discusses an advection scheme for shallow water 

waves:
d C (x ( t) , t )  dC
 - ------= a ( x , t ) - V C  + - ^  =  0,

where the w ind dx /d t  =  a { x , t) is given. The new value of the scalar C  at a 

grid point is calculated according to  the discretization

C (Xm, tn T  7") C (Xm OLrm ^n)  
2 r

where
(  rvW r '(k+1 ) =  [ _  t , I

m 1 u  I 2  ’ n 2

is the displacement relative to  the grid point x m. However, backtracked tra

jectories seldom land on a grid point. Therefore, interpolation, the m ost im

portan t part of a semi-Lagrangian scheme, is used in order to find th e  values
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of C  betw een  grid points, effectively transferring information from th e  Eule

rian to th e  Lagrangian grid. This interpolation can produce large numerical 

dissipation. Moreover, it does not respect the invariance of certain analytical 

invariants (specifically, the Casimir invariants discussed in the  next Chap

ter). In problem s involving a mass flow, it is sometimes possible to  modify 

a sem i-Lagrangian scheme so th a t it at least conserves mass (for example see 

Behrens & M entrup [2005] and Leslie & Purser [1995]).

l .B .3 Particle-in-cell m ethod

The particle-in-cell m ethod represents a piecewise constant approxim ation of 

the solution as a mesh of moving nodes ( “particles” ) advected by th e  flow. 

First, the positions of the particles are advected in the Lagrangian frame. Their 

associated physical attributes (in our case vorticity and concentration values) 

are then projected using area-weighted interpolation (described in Sect. 3.A) 

onto a finite Eulerian grid. One can then solve for the contributions to  the 

evolution from diffusion and any other nonadvective terms on the  Eulerian 

grid and project the result back onto the (continuum) Lagrangian grid, again 

using area-weighted interpolation. The procedure is then repeated for the  next 

time step (for example see Leboeuf et al. [1979] and Grigoryev et al. [2002]). 

Particle-in-cell methods tend to be noisy unless a very large number of particles 

are used. W hile they guarantee mass conservation, other conservation laws, 

such as energy conservation, are not necessarily guaranteed.

9
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l .B .4 G odunov schemes

Godunov [1959] developed a discretization for fluid dynamics problem s with 

shocks by m odelling the fluid as a  large number of uniform cells joined by the 

Riemann solution  for the dynamics of an interface between two uniform  fluid 

regions. T h is  is a discontinuous Galerkin method. Fraccarollo et al. [2003] use 

the G odunov m ethod to estimate the flux from the solution to  the Riemann 

problem a n d  obtain a finite-difference scheme. A higher-order extension of the 

Godunov m e th o d  called the Piecewise Parabolic Method (PPM) is presented by 

Woodward & Colella [1984a]; it uses high-order spatial interpolation to  repre

sent steep discontinuities. In their work, the addition of diffusion is essential; 

however, th e y  claim that this does not have a  significant impact on th e  results. 

A com parison between numerical methods for simulating hydrodynam ic flow 

in two dimensions, concentrating on fluid flow with strong shocks, is discussed 

by W oodward & Colella [1984b].

10
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C hapter 2

Lagrangian Rearrangem ent

In this chapter, we introduce a new method, which we call Lagrangian re

arrangement (LR), for projecting a fully Lagrangian solution of th e  passive 

advection equation, (1.6), onto an  Eulerian grid, in the absence of diffusion. 

We constrain the numerical discretization to  mimic an im portant analytic 

property of advection, namely, th e  conservation of the global integral of any 

smooth C 1 function of the scalar concentration field:

tion also holds in the self-advected case when C  is replaced by u, which depends 

on the advecting velocity v, so th a t

j t  J  f ( C ) i x  = J  } ' ( C ) ^ d x  = -  J  f ' ( C ) v V C i x

= - J v - V f ( C ) d x  = J  f { C ) V - v i x  = 0, (2 .1 )

due to the incompressibility of th e  velocity field v. Note tha t the above equa-

11
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This uncountable infinity of invariants are known as Casimir invariants  (e.g., 

see M orrison [1998]).

The above argument also holds when /  is piecewise constant, w here we 

in terpret f  as a distribution. If we take /  to  be unity for a narrow ran g e  of C  

values and zero elsewhere, we see th a t the area of the flow associated w ith  tha t 

range of C  values must be invariant. Since connectedness is preserved by the 

continuous (and area-preserving) advection map, we deduce tha t a connected 

parcel having a particular C  range gets m apped to a connected parcel of the 

same area. Moreover, if the C  values are partitioned into n  uniform  ranges, 

th e  evolved sta te  will consist of n  distinct nonoverlapping patches associated 

w ith these ranges, possibly highly distorted. Therefore, assuming th a t  C  is 

initially bounded, as n  goes to infinity, we see th a t the resulting infinitesimal 

patches are rearranged into a highly complicated but nonoverlapping union of 

d istorted parcels. Values of C th a t  were not present in the initial configuration 

cannot be created, nor can existing C  values be destroyed.

M otivated by this exact property  of infinitesimal parcel rearrangem ent, 

in the discrete case, we represent the solution as a finite union of piecewise- 

constant functions. Under this assumption, the continuum property  2.1 re

duces to 2.2. The discretized version of the above analytic p roperty  th a t we 

thus propose in this work should be enforced is

|  £  f (C i j )  =  0. (2.2)

O n taking f { C ) to be 1  if C  =  Co for some fixed value Co, and zero otherwise, 

we see th a t the number of cells w ith value Co would then be invariant, just as 

in the infinitesimal case. That is, the new values of C  a t the current tim e step

12
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are prescribed to be simply rearrangements of the old values (and hence of the 

initial conditions) at the previous time step. This rearrangement property  is 

known in th e  literature as a relabelling symmetry.

If C  is assumed to be piecewise continuous, then, }(C)  is certainly inte- 

grable and  so the Darboux integrability theorem guarantees th a t 'Yhij f(Ci,j)  

on a sequence of uniform grids converges to J  / (C )  dx. Hence the value of the 

latter integral, like the sum, must be constant. We thus see th a t (2.2), if it 

holds for all discrete grids, is a sufficient condition for the exact property  2 . 1  

to  hold.

, m

Figure 2.1: The trajectory for parcel piy from cell ( i , j )  to cell (£ ,m ).

We adopt a two-dimensional N x by Ny grid, w ith N  =  Nx x N y grid points 

or cells. Each cell has an initial value, which is assigned to a parcel of fluid tha t 

will be advected in the Lagrangian frame. The displacement £ =  £o +  f j  v  dt of 

each parcel is calculated at time r , where v  = v(£, t) is the local velocity of the 

flow and £o is the initial displacement. In this fully Lagrangian formulation, 

the displacement is effectively calculated directly from the initial position, so 

th a t errors occurring in a time step do not propagate to future tim e steps: the

13
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Lagrangian to  Eulerian projection onto the rearrangement manifold is used 

only for viewing the current state of the fluid, not for actually evolving the 

fluid. To evaluate the integral, it is natural to express the evolution of £ as 

the initial value problem

for a specified function v(£, t). The classical fourth-order Runge-Kutta scheme , 

(e.g., Press et al. [1992]) can be used to calculate the current Lagrangian dis

placement £ of each parcel, denoting the time step by r:

This process is called the advection step. For example, in Fig. 2.1, the parcel pij 

is initially in the cell ( i , j ) .  After the  advection step a t time t, the parcel pl3 

now lies in the cell (£,m). Note th a t no projection to the Eulerian frame 

is done here; the continuum Lagrangian position of the parcel is retained to  

initialize future advection steps.

In classical Lagrangian codes for advection by incompressible flow, the

where

£i =  TV (£0 , 0),

£ 4  =  TV ( £ 0  +  £3 , r ) .

14
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vertices of th e  initially square parcels are advected by an area-preserving map 

to  form an  irregular Lagrangian mesh consisting of quadrilateral cells. To 

view the Lagrangian solution, one normally uses area-weighted interpolation to 

project the  contributions from th e  quadrilaterals onto Eulerian cells. However, 

in this work, we propose th a t the centroids of these quadrilateral parcels should 

be m apped onto the rearrangement manifold. Given a fixed velocity field, the 

above in tegration  at each stage amounts to  a linear transform ation of the 

quadrilateral region. Under this transformation, the centroid of a p a rce l thus 

maps to th e  centroid of the new quadrilateral formed by the evolved vertices. 

For the case of passive advection without diffusion, we do not need to  know 

the actual quadrilateral vertices and instead only advect their centroids.

(r. s) 

\
CM)
//

\
/////(

Prs (£■. m)

Figure 2.2: Competition between the parcels pij and prs for the cell (£, m).

2 .A T h e  pushing a lgorithm

Whenever we wish to view the current Lagrangian solution, we p ro jec t a copy 

of it to the rearrangem ent manifold (i.e. the Eulerian grid). We first determ ine

15
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for each parcel the cell containing its Lagrangian position. The problem  th a t 

immediately arises is tha t a given cell may contain more than  one parcel. 

In general, there may be a competition between two or more parcels to be 

projected to  the same cell. Such a  case is shown in Fig. 2.2. The parcels prs 

and Pij respectively from cells (r, s) and (i, j )  are both  competing for th e  cell

( e , m ) .
To respect the discrete rearrangement condition underlying (2.2), each par

cel must be mapped to a unique cell. If the grid has n  cells, we will have 

exactly n  parcels. If each parcel lies within a distinct cell, there will be ex

actly one parcel per cell and we are done. The cells would then ad o p t those 

parcels as the ir projected values. However, in general, there may be som e cells, 

denoted by “holes” th a t do not have any associated parcels, and som e cells 

denoted by “p ile s” th a t contain more than  one parcel. In Fig. 2.3, th e  cell 

th a t initially contained the parcel A  will be a hole after the advection step , and 

the cell th a t now contains a and e is a pile. To enforce the preservation of the 

previously discussed Casimir invariants, resulting from parcel rearrangem ent, 

only one of parcels a and e can be transferred to  cell F; the o ther m ust be 

transferred elsewhere. This step is denoted as a rearrangement step. B y simply 

taking the extra  parcels in a pile and transferring them  to the nearest holes, 

we would cause a “jum p” or discontinuity in the flow, which would constitu te  

an enormous numerical defect.

To resolve this issue, we propose the following pushing algorithm. This 

algorithm must not be confused w ith  the so-called “particle-pushing” schemes 

used to follow the characteristics of the advecting flow. At th is p o in t, the 

advection step has been completed and we are now dealing with the  problem  of 

rearranging the n  parcels into n  cells for viewing the internal fully Lagrangian

16
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Figure 2.3: Initial position and the advection step.

solution.

First we must deal with the issue of treating all of the cells on an  equal 

footing, w ithout giving some the advantage of being processed first. A t each 

stage of the  R unge-K utta advection step, we advect all parcels sim ultane

ously, using the current local velocity, w ithout reference to the locations of 

any other parcel. However, in the rearrangem ent step we cannot deal w ith all 

piles simultaneously—we must s ta rt from one particular cell. In the algorithm  

below, we s ta rt from the piles containing the greatest number of parcels since 

these are the most difficult cases to  resolve. While building the list of such 

cells, we alternate between putting  cells in the front or the back of the  list. 

Refinements th a t effectively introduce further randomization, to  avoid undue 

bias in our processing decisions, will be discussed in Sect. 2.B.I. Here now is 

our rearrangement algorithm:

1. Sort the piles by the number of parcels they contain.

2. S tart with the piles containing the greatest number n  of parcels. Process 

these cells first.

17
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3. For e a c h  such pile (the starting cell), search outward in rectangular 

“sh e lls ” for a hole. If m ore than one hole is found on a shell, choose 

the o n e  closest to the s tarting  cell in the  sense of having m inim al path 

w eigh t , as described in Sect. 2.B.1).

4. Form  th e  discretized path from the s tarting  cell toward the selected hole. 

(We w il l  discuss the algorithms for discretization of the path la te r) .

5. A ttach , the  extra parcel in  the starting cell to the first cell a long  this 

path , push ing  parcels successively along this path  until the selected hole 

is f il led  w ith a parcel belonging to the  last cell along the p a th .  The 

second, cell in the path will thus take th e  extra parcel in the s ta r tin g  cell, 

and t h e  next cell will take the parcel previously located in th e  second 

cell, a n d  so on. Continue th is pushing until the selected hole has been 

assigned  a parcel, or in o ther words, an  initial value. Now th e  starting 

cell h a s  n — 1  parcels in it.

6 . P ro ceed  w ith the next pile containing n  parcels, and repeat s tep s  3 5 

until n o  more cells containing n parcels remain.

7. R ep ea t steps 2-6 until all cells contain exactly one parcel; th a t  is, until 

n — 1 .

Notice t h a t  after step 5, all cells along th e  path  will have a new parcel in 

them rela tive  to  their status at th e  end of the  advection step. The correspond

ing hole is filled  w ith one parcel, and the s tartin g  cell will have one le s s  parcel 

in it than i t  had before. At th e  end of step  7, all cells will co n ta in  exactly 

one parcel, a s  desired. The rearrangement step  is then complete, and  each cell 

can have a u n iq u e  C  value assigned to it. For example, in Fig. 2.4, since the

18
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Figure 2.4: Rearrangement step and final position.

parcels e and  a were in a pile, the nearest hole, and a discretized p a t h  to it, 

are found for parcel e. Now parcel e is pushed to the first cell in t h e  path, 

pushing the next parcel, i, to the next cell in the path, and ultim ately, putting 

parcel, c into the hole.

2.A.1 T he Bresenham line-drawing algorithm

To find a discretized path from the extra parcel in the pile to the h o le , we con

sidered the Bresenham  algorithm for drawing digitized lines [B resenham  1965]

19
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on an in teger lattice. One would like to  discretize a line from p o in t A  to 

point B. F o r simplicity, suppose the  point B  lies within the first oc tan t  of a 

two-dim ensional Cartesian coordinate system, with A  at the origin, so th a t B  

lies above th e  a:-axis and below the line y =  x. The slope m  of the line from A  

to  B  then satisfies 0 <  m  < 1. As illustrated in Fig. 2.5, point B  has greater x 

and y coordinates than A. After including the  discrete point (x, y) in th e  path, 

one increm ents the x  coordinate. To find the  next point to include, one decides 

whether or no t the y  coordinate should be changed as well. This decision is 

made by com paring the vertical distance of th e  line to the grid points (x + 1 , y) 

and (x + 1 , y  + 1 ). Let e be the vertical distance from the current discrete (x, y) 

coordinate to  the line, which will be the difference of the vertical coord inate  

on the line and y, always satisfying the inequality —0.5 <  e < 0.5 . In the 

next step th is  distance will be incremented by m. One includes ( r  -t- l ,t/)  if 

e + m  < 0.5 and (x +  1, y +  1) otherwise.

Now add  m  to  e and continue on toward B  in the same m anner, until B  

is reached. A discretized line from A to B ,  indicated by the b lue dots in 

Fig. 2.5, is thus obtained. A few simply modifications of this algorithm  allow 

it to be applied to the general case where th e  final point B  lies in a n y  octant 

(Appendix B).

2.B  P rob lem s and m od ification s

The discretization of lines between holes and piles using Bresenham’s approach 

increases the  possibility of a parcel being pushed more than  once since we are 

always pushing parcels in a straight line. Suppose th a t in one time s te p , there 

are clusters of piles concentrated in one area and a group of holes i n  another

20
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Figure 2.5: The Bresenham algorithm.

nearby area. In pushing a parcel from a pile to  hole, each parcel in betw een is 

pushed once. If we process another parcel from the same crowded pile area and 

push tow ard the same hole area, the  parcels in between may be pushed a  second 

tim e. Processing all the parcels in this area can cause multiple p u sh es  for 

parcels in between the pile-rich and hole-rich areas th a t can result in  spurious 

streaks in th e  flow. We can avoid multiple pushes by choosing a ran d o m  path 

from a pile to  a hole, introducing stochasticity into the algorithm. M oreover, a 

parcel m ay be pushed far away from its original Lagrangian position, resulting 

in large errors. In order to choose the best pa th , we introduce a p a th  weight 

for discretizing the line. Let the parcel weight d represent the distance between 

the  Lagrangian position of a parcel (denoted by the real coordinate p a i r  (x, y)) 

and the cen ter of the cell in which it currently lies. For example, w hen the 

parcel is pushed to cell then d2 = (x — £)2 +  (y — m )2. E a c h  time

the  parcel is pushed, the cell containing it will change, resulting in  a change 

in d (w ith no  change to the Lagrangian position of the parcel). To alter the 

Bresenham  algorithm to a weighted algorithm, we take d into accoun t when 

calculating th e  path  between th e  holes and piles. Initially, the parcel w ith the
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largest d  in  the starting cell (pile) is chosen to  be pushed since it is furthest 

from the center of tha t cell. However, in the path  between the pile and  the 

hole, the parcels are inserted in such a way th a t the one with m inim um  d will 

be first in  the  list, so th a t it will be processed or pushed first. This ensures 

th a t parcels are not pushed too far from their Lagrangian positions.

2.B.1 A  weighted Bresenham algorithm

NE

B l b 2
/

NW rnT
/

NE
/

/ T7
A £j

H.3

SE

(a) (b)

Figure 2.6: Two or three choices in the  weighted algorithm.

In the weighted version of the  code (Appendix C), the next cell to  be 

included in the pa th  will be the cell containing the parcel with the minimum 

parcel weight of all parcels in certain eligible neighbouring cells. For simplicity, 

we consider the case where the destination cell, B,  lies in the first quadrant 

with respect to  the source cell, A. In each step, if the line connecting A  to B  

passes through the center of a neighbouring cell, we have three choices for the 

next cell. In Fig. 2.6(a), for Bi we will choose one of the cells N W  (north

west), N (north), or NE (north-east), for B 2 we can choose one of th e  cells N, 

NE, or E (east), and for B 3 we have the choice of one of the cells N E , E, or
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SE (sou th -east). Otherwise we have a selection of two cells to choose from. In 

Fig. 2 .6(b), for B 1 we can choose one of the cells N or NE, and for B 2 we will 

choose one of the cells NE or E. In each case, to  minimize excursions from  the 

Lagrangian (advected) positions, we choose the cell th a t contains the  parcel 

with m inim al distance d from its  Lagrangian position. In the rare case tha t 

parcels in  th e  selected cells share the same minimal value of d, we will pick 

the cell t h a t  the original Bresenham algorithm would have picked. Depending 

on the choice of the next cell, we increment the  x  and/or y coordinate by  one, 

and include the new cell in the path. The problem is thus reduced to  a new 

problem, using the cell just selected as the new starting point. On reaching 

the hole, th e  algorithm term inates (see Theorem 2.1). Other quadran ts are 

dealt w ith in  the same manner, bu t the signs of some of the param eters are 

changed to  decrement (rather th a n  increment) the x  and/or y coordinates by 

one, accordingly.

One question arises in the case where more than  one hole is found in the 

same rectangular shell around th e  pile. We resolve such cases by perform ing 

the Bresenham  algorithm on all possible choices of holes within the shell, with

out actually pushing any parcels. We define the path weight of a particu lar 

path  to be the  sum of all d values of the parcels to be pushed along th a t  par

ticular pa th . The Bresenham p a th  that returns the minimum p a th  weight and 

its corresponding hole will be chosen as the desired path  and final destination, 

respectively. In Fig. 2.7, the num ber in each cell represent the m inim um  d for 

parcels in th a t cell, and the pa th , shown by the red connected lines, is the 

selected final path  from pile to hole.

The following theorem establishes that at most [ l .82^47?] steps will be re

quired by our weighted Bresenham algorithm to  draw a line from A  to  B .  This
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is not excessively more than the  |"\/2 A.B] steps required to draw a  diagonal 

Bresenham line on a unit lattice.

7 5

1 0
/

3
/

7 9

4 7
/

0

2 2 1—A —  3 ^ 2

6— / 1 6 5

Figure 2.7: A weighted Bresenham path.

T h e o re m  2 .1  (Termination of weighted Bresenham): The weighted Bresen

ham algorithm produces a fin ite  path between any two points on a regular

lattice. For a unit square lattice, at most 

needed to connect two points a distance x  apart.

steps are

Proof. Let A  and B  be given on the grid. We want to  find the desired  path 

between them . For simplicity, we assume th a t B  is inside or on the boundary  

of the first oc tan t with respect to  A. W ithout loss of generality, consider a unit 

square lattice. As described before, depending on the position of B ,  we have 

either two or three points to  choose the next cell for inclusion in th e  path . If 

one of these choices is the grid po in t B, we are done; the algorithm te rm in a tes
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after choosing B.

O therw ise, in choosing one of the  immediate neighbours of the current cell, 

we will ta k e  a step of size 1 or y/2. We must show that there exists a  fixed 

number 5 >  0 such th a t the distance to  the point B  in each step is always 

reduced by a t least 8. The algorithm will then term inate in a finite num ber of 

steps.

Figure 2.8: Case(i): m  = 0.

Case (i): Assume B  lies on the same horizontal line as A, so th a t  the  slope 

of the line from A  to B  is zero, (m  =  0). In this case (Fig. 2.8), the  next 

point in the p a th  is one of the points C, D, or F. If we choose D , th en  since 

D B  = A B  — 1, a step of 1 is taken toward B.

Suppose instead th a t we choose C. On letting x  =  A B  >  2 and 8 =  

x  — C B  =  1 +  D B  — C B  < 1 (since D B  < C B ), and noting th a t  8 = 

A D  +  D B  — C B  = C D  + D B  — C B  > 0, we find

(x -  8 f  =  C B 2 =  ~DB2 + 1 =  (AB -  l ) 2 +  1 =  A B 2 -  2 A B  + 2 = x 2 - 2 x  + 2,
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so that

—2x8 +  S2 — —2x +  2.

We then deduce from x  >  2 that 2 — 52 = 2 x ( l  — 5) > 4(1 — (5). Thus

82 -  45 + 2 < 0 => 5 e - V 2 , l ) .

The same argum ent of course also holds for the  choice F. The distance reduc

tion in th is  case is thus at least 2  — y/2.

Figure 2.9: Case(ii): m  = 1.

Case (ii): Assume th a t the slope of the line from A  to B  is 1. In  this case 

(Fig. 2.9), the  next point in the p a th  will be one of the points C, D, or F.  

Here A B  =  D B  — y/2. If we choose D, we take a step of size y/2 tow ard B. 

Suppose instead th a t we choose C. We see th a t C H  = A H  = 1 / V2. On

letting x = AB ,  we find

(x -  S)2 = C B 2 = H B 2 +  CH 2 =  ^  -  + i = x2 -  y/2x + 1.
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Thus

—2x6 +  S2 =  —\p ix  +  1.

We know th a t  x > 2y/2 since B  is not one of the choices, so

S2 - 1  = x(26 -  -s/2) >  2 v /2(2<5 -  -s/2) =  4^26 -  4.

Now S2 — 4 \ / 2 6 +  3 <  0 =>• 5 > 2^/2 — \/5. The same argument of course also 

holds for th e  choice F. The distance reduction in this case is thus a t  least 

2 ^ 2 - 7 5 .

/

V2

C2 Z -

A ^ 1 Cx

Figure 2.10: Case(iii): 0 <  m  < 1.

Case (iii): Assume B  lies inside the first octant (0 <  m  < 1). In  th is  case, 

Fig. 2.10, th e  next point in the p a th  is one of the two points C\ or C 2 -

Let x  =  A B .  Notice th a t x > V §  since B  is not one of the po in ts C\ or C2 . 

Let C  be the  point {C\ or C2) th a t  is selected, Drop the perpendicular C H  to 

A B .  Let y  =  C B  and 2  =  A C  and  note th a t z  = 1 if C  =  C\ and  z  =  \[2 if

C  = C2.

Since 0 <  Z.CAH  < i t / 4, we know th a t A H / z > \jy /2 .  O n le ttin g  8 =
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x  — C B ,  we find

(x -  5)2 = C B  = H B  +  C H

Thus

so th a t

=  (A B  -  A H Y  + A C  -  A H  

= x 2 — 2 x A H  + z 2 < x 2 — 2 £ - 7= +  z 2.
V2

-2x8 + S2 < —\[2xz  +  z 2,

z 2 - 8 2 > x (V 2 z  -  25) > V h (V 2 z  -  25).

Thus 52 — 2y/55 +  y/lOz — z 2 < 0. For z = 1, this implies th a t 5 > y/5

V o  — \ / l0  and for z  =  \[2, this implies th a t 5 > V 5 -  V  7 -  2^5.

So, in any case, the distance between the point B  and the new included

point is always less than  A B  by an amount

5 = min ^1 , V2, 2 — V2, 2V2 — V5, y/h — \ / g - V 1 0 , VE -  \ J l -  2 > /5 |

=  V5 -  \ J 6 - V l 0 >  0.551.

T hat is, at most [1.82AB] steps will be required to reach the po in t B .

□
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Chapter 3 

The General 

Advection-Diffusion Problem

To solve th e  general advection-diffusion equation,

r)TT
+  v . V U  =  D V 2U,  (3.1)

ot

we need to  add the diffusion term , as well as a method for handling self- 

advection, to  our algorithm. A significant source of error in the rearrangem ent 

algorithm used to project the solution to the Eulerian grid for viewing comes 

from the somewhat arbitrary algorithm used to pushing parcels from  piles 

to holes. If the rearrangement algorithm were used to solve the  diffusion or 

self-advection terms, errors would accumulate since the pushed values would 

be reused in calculating diffusion and self-advection. Consider th e  equation 

d u /d t  + v - 'V u  =  v V 2u). The advection term , v-'Vu,  would use th e  pushed 

values of uj to  calculate v, so th a t errors associated with pushing parcels would 

propagate to future time steps. More importantly, the use of the  rearranged
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vorticity field in calculating the diffusion term, i 'V 2u>, would introduce large 

gradients in  the  flow, resulting in excessive diffusion. To prevent th is  prop

agation of error, we calculate the diffusion term  as DX72w i , where u j  is the 

vorticity field on an Eulerian grid obtained by an area-weighted interpolation of 

the Lagrangian vorticity field ui (it is difficult to  calculate a Laplacian directly 

on a nonuniform  Lagrangian grid). This decision does not degrade the  desired 

conservation properties (Casimir invariants) of the advective term . Likewise, 

we calculate the  advecting velocity v j  from uj by inverting a Laplacian. The 

advecting velocity itself does not need to  be a rearrangement of the in itia l con

ditions in order to  conserve the Casimir invariants. The concentration field C  

is treated in the  same manner.

3 .A A rea-w eigh ted  in terpolation

We now discuss the scheme for transferring information (interpolating) be

tween the  Lagrangian and Eulerian grids. The transfer is done via an area- 

weighted bilinear interpolation. Ideally, one should account for parcel distor

tion by the  flow and project the area bounded by the evolved vertices of the 

parcel (which form a quadrilateral) to the Eulerian grid. However, as the 

evolved parcel shape is not essential to the dem onstration of how Lagrangian 

rearrangem ent can be integrated w ith  diffusion and self-advection, for simplic

ity we tre a t each parcel as a square centered on its current Lagrangian position 

(the parcel centroid), as is often done in particle-in-cell methods.

To project information from a Lagrangian frame to  an E ulerian  lattice, 

consider the  (10, C) values p t of the  ith  parcel centered about the  parcel (see 

Fig. 3.1). This square will overlap some cells in the grid. For cell j ,  one calcu-
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lates th e  a re a  Aij contributed by the  square around parcel i. On accounting for 

the con tribu tions from all parcels whose bounding squares overlap th e  cell j ,  

the in te rp o la ted  value Uj is calculated as

T T  _  XX A j j P j

If no parcels contribute to a cell, we search outward in successive rectangular 

shells a ro u n d  the empty cell, for cells th a t have a contribution from  some 

parcel. T h e  first shell th a t is found to contain such cells is used to  assign 

a value, nam ely the average interpolated value for these active cells, to the 

em pty cell.

•P3

Figure 3.1: Translation from Lagrangian grid to  Eulerian grid.

To transform  information from the  Eulerian to the Lagrangian fram e, again 

consider a  parcel and its bounding square (see Fig. 3.2). This square will 

overlap at most four cells in the grid. For each of the overlapping cells, compute 

the  Lagrangian value for the parcel as A jU j,  where Uj is the E ulerian  value 

for the jfth cell and Aj  is the overlapping area w ith the parcel’s bounding 

square.
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These above two procedures are typically used in tandem. For exam ple, to 

calculate V 2c<; we need to interpolate the Lagrangian values onto the Eulerian 

grid, where it  is convenient to  calculate the Laplacian, and then transfer this 

contribution to  the evolution back to  the Lagrangian frame.

Figure 3.2: Translation from Eulerian grid to Lagrangian grid .

3.B  D iffusion

In this section we consider the numerical treatm ent of the diffusion term 

in (3.1). The advective term  is handled using the Lagrangian algorithm  dis

cussed in C hapter 2, and the diffusion term  is treated  with a Crank-Nicholson  

scheme (e.g., see Ames [1977]) in the Eulerian frame. In general, to  use a 

Crank-Nicholson scheme to solve the  equation

f - ,m .
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where 5? is an operator, we integrate both side with respect to  t and use the 

trapezoidal rule:
rt+T du rt+TI - a r dt = l y<-u )

u{ t +T) . u(t) = ^ E M i i ± ^ m T
u(t + t) -  u(t) yu(t +  r)  +  yu(t)

T 2

To incorporate diffusion into our algorithm, it is helpful to split (3.1) into 

two pieces, one due to advection and one due to diffusion, using a procedure 

known as operator splitting. One then  regards the solution as function of two 

different tim es ti  and t 2, tha t is, U (t)  = U ( t i , t 2), where

9 U  T-TTT
s i r =  ~ v ' v u ’

^  =  D V * U .
Ot2

The chain rule tells us over a tim e interval Afi =  A t2 = A t  th a t  th e  total 

change in U  is given by

Arr (9C7Aj d U  
— v — A ti +  w—A t 2 

o ti  ut2
d U  d U \  . 
d t ^ d t j  f 

= { - v - V U  + D V 2U )A t .

This suggests th a t one could deal w ith each term  separately and combine the 

result. However, the above formulation does not use the most up -to -date  value 

for U  in the finite differencing of the  diffusion equation.

Motivated by the above considerations, let U  be the Eulerian projection
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of the Lagrangian solution to the advection equation d U /d t  = — u*V C / using 

area-weighted interpolation. Then, to solve for U, including the effects of 

diffusion, we use the temporal finite-difference formula

In this form ulation, one is now using the most up-to-date (i.e. a lready  ad- 

vected) value, U ,  as the starting value to calculate the diffused value U .  This 

implicit equation can be rewritten

where £  =  1 +  ^ D r V 2. In order to calculate U  numerically, one needs to 

invert the  Helmholtz operator C. We accomplish this inversion w ith a n  efficient 

multigrid solver (see Appendix D), using a single U-cycle iteration a n d  [7/ as 

the initial guess.

To project the contribution of diffusion on the Lagrangian solution, we 

compute the  difference U  — U, project it back onto the Lagrangian frame 

using area-weighted bilinear interpolation, and add it onto the parcel values. 

Note th a t we do not simply project the diffused solution U  itself on to  the  La

grangian frame, as this would contam inate the  Lagrangian solution, violating 

the preservation of the Casimir invariants in the limit of zero diffusion.

3.C  Self-advection

Until now, we have considered only the case of passive advection, w here the 

velocity of the advecting flow is prescribed. In this section, we discuss self-

£ ( —r ) U  = £ { t )U ,
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consistent advection (self-advection), where the velocity of the underlying flow 

is a functional of U  itself. To calculate the velocity v, it is convenient to  adopt 

the vorticity formulation (cf. Appendix A): using the Euler-projected value of 

the vorticity  ujj =  (E/j)UJ on the Eulerian grid determined by area-weighted 

interpolation, one can compute th e  stream function ip from

u>i = V 2ip.

The inversion of the Laplacian here is done with 5 iterations (except for the 

very first step, when we used 40 iterations, due to the lack of a good initial 

guess) of a 1/-cycle multigrid solver (see Appendix D), using the value of the 

stream function from the previous time step as the initial guess. Once a 

good approxim ation to ip is determined, it is straightforward to  calculate the 

advecting velocity:

v  =  BxVip.

This velocity is used to evolve b o th  the vorticity and the concentration fields, 

self-consistently, in the Lagrangian frame.

3.D  Sum m ary

The entire self-consistent Eulerian- Lagrangian advection-diffusion algorithm  

is displayed in Fig. 3.3, in comparison with a conventional semi-Lagrangian 

scheme. In the red loop, we calculate the new Lagrangian position  £(f) =

, t )  dr, increment th e  time step, and then repeat the  procedure. 

In the blue boxes, to account for the effects of the diffusion term , we inter

polate U  from the Lagrangian to  the Eulerian frame, using the area-weighted
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in terpolation  discussed in Sect. 3.A, and then use operator splitting a n d  the 

Crank- N icholson method in the Eulerian frame to  solve for U  from

where U  is the  advected solution interpolated onto the Eulerian g rid . The

cell back on to  the Lagrangian frame, using area-weighted in terpolation to  ac

crue the contributions from diffusion onto the  parcels overlapping each  cell. 

Finally, th e  tim e step is incremented and the procedure repeats. In th e  green 

boxes, we use the area-weighted interpolated value 17 to calculate th e  stream  

function 'ip =  V ~ 2u  and thereby the self-advected velocity v  = z x  V b -  Our 

Lagrangian rearrangem ent algorithm is only used to project the v a lues onto 

an Eulerian frame when we want to  view the solution (yellow branch). Notice 

th a t the error in rearrangement does not propagate to future time s te p s  since 

we do not feed it back to the solution in the advection loop.

Lagrangian rearrangem ent could be applied to  many scientific problem s where 

advection arises, such as electro-osmotic flow, geophysical fluid dynam ics (in

cluding meteorology, climate change, and hurricanes), therm onuclear fusion 

in plasmas, m athem atical biology, and other fields where advection-diffusion 

equations play an im portant role. For example, a theoretical model o f  electro- 

osmotic advection characterized by extremely small diffusion ra te s , which

diffused so lu tion  U  = C 1(—t )C(t )U  is the conventional sem i-Lagrangian so

lution (orange output). We then project the difference U  — U  in each Eulerian

3.E  A p p lications
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provided t h e  initial motivation for this numerical project, is discussed by 

Alam & B o w m an  [2002]. This flow is based on the distribution o f  charged 

substances i n  a fluid that is affected both by an applied electrical potential 

and e lec trica l forces within the ionized advecting fluid. In this case, th e  charged 

fluid has a  la y e r  with a high concentration of counter-ions. This layer will be 

attracted  to w a rd  the electrode w ith the opposite sign, when an electric field is 

applied to  t h e  fluid.

The incom pressible Navier-Stokes equation (and its inviscid version, the 

Euler eq u a tio n ; e.g. see LeVeque [1990]) is also used in aerodynam ics, to 

model the  a i r  flow around a moving object. For an example of nonlinear 

scalar hyperbo lic  conservation laws and the  calculation of the a ir flow see 

Yee & H a r te n  [1985] and Yoko Takakura [1989]). The advection-diffusion equa

tion also h a s  a  significant role in biomedical applications, say in m odels of blood 

solutes in vascu la r lumen, which use the advection-diffusion equation w ith  the 

blood flow a s  the  advected field. In  this model, the assumption is th a t  blood is 

an incom pressible fluid, so the flow is modelled by the Navier-Stokes equation 

(see Q u arte ro n i et al. [2002]).
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C hapter 4

A nalysis

4. A C om p lex ity

A com puter code in the C++ programing language was used to im plem ent 

our Lagrangian rearrangement algorithm. We consider a two-dimensional 

square grid  w ith n  =  22m grid points and doubly periodic boundary  condi

tions, where m  is a positive integer. The cost of running the  code w ith  respect 

to  time, th e  complexity, will be calculated as a  function of n. For the m o s t part 

of our algorithm , we are performing jobs th a t run for all parcels, from  th e  first 

parcel to th e  last, and then move on to another job (e.g. allocating memory 

for each cell or initializing the cell to  a certain value). In th is C hapter, we es

tablish th a t the computation time for our program  scales linearly w ith  respect 

to n. T hat is, the complexity of our algorithm is 0 (n ) .  T he only p la c e s  tha t 

must be focused on is the search for the nearest hole, and the  pushing of the 

parcels, procedures th a t must be repeated for many of the n  cells. A s  a  result, 

the complexity of the algorithm potentially could be more th an  of o rd e r  (D(n). 

In computing the complexity of these parts of the algorithm we concentrate on
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the average complexity, which computes the cost of an event while tak in g  into 

account th e  probability of that event occurring (see Basse & Gelder [2000]). 

First, assum e th a t the area of the entire grid is of unit size. Then, the  area of 

each cell is 1 jn .  If a parcel is randomly assigned to  a cell, the p robability  p of 

a cell containing th a t parcel is 1 /n , and the probability q tha t it does not is 

1 — 1 jn .  A s discussed before, there are exactly n  parcels. Using the binomial 

d istribution, the probability of a cell containing k parcels is

Therefore, th e  probability of having a hole is P ( 0) =  (1 — 1 / n ) n . N otice that,

Thus, for n  sufficiently large, the  probability of having a hole is approxi

mately 1 /e , and the probability of not having a hole is 1 — 1/e. For most 

numerical simulations the domain chosen is very large (in our sim ulations it is 

typically 218); thus, the assumption of having very large n  is a safe claim.

For com puting the cost of the search, one must calculate the probability 

of not finding a hole. In general, the  goal is to  start with a pile, an d  search 

outward for the nearest hole in a shell-like domain. In Fig. 4.1, cell A  is th e  pile, 

which is the center of the search. F irst, the green ring is searched for a  hole, and 

if the hole is not found, then the search domain extends to the orange region, 

and so on. Let the level of the search k  denote the shell number being searched, 

starting with 1, as shown in Fig. 4.2. Then the number of cells searched so 

far, up to bu t not including shell k, will be (2(k  — 1) +  l ) 2 — 1 =  4 k (k  — 1),

n —k
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Figure 4.1: Search order.

and the num ber of cells in the fcth shell is (2k +  l ) 2 — (2k — l ) 2 =  8k.

The algorithm  is going to reach level k if it did not find any holes up to 

level k  — 1. The probability of no t having a hole was calculated to be  1 — 1/e. 

Therefore, the  probability of not having a hole in the first k — 1 shells is

which is equivalent to the probability of searching k — 1 shells. Here, it is 

assumed th a t 4k(k  — 1) is much smaller than  n, so that, the probability  of not 

having a hole is independent of the  number of parcels. Hence, the  obtained 

result will be an approximation. Also, we assume th a t the probabilities of 

cells being or not being holes are independent of one another. As mentioned 

before, a t shell k, where the algorithm  has found a hole, there are 8 k  cells, so 

the final approxim ated average searching cost, A s(n), will be the  sum , over the 

entire domain, of the above probability multiplied by the number of cells in
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Figure 4.2: Search level.

shell k. N otice th a t each side of the  grid has y/n = 2m cells, so the searching 

cost A s(n) is given by

v V 2 /  -j
A s{n)=

k= 1 '  e

As n becomes large, the above cost tends to  a  small constant, m ean ing  that 

the average cost of a single search grows insignificantly, as the d o m ain  size 

gets bigger:
0 0  /  1  \

lim A s(n) = 8 k ( 1  ) «  8.4,
n^°° '  e '

where the sum  was evaluated numerically using the symbolic algebra program

Maple (available from h ttp ://w w w .m ap leso ft.com ).

To calculate the cost of our weighted Bresenham algorithm, we w ill make 

use of Theorem  2.1. Moreover, if more th a t one hole is detected in a  shell, the
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Bresenham a lg o rith m  is carried out for all such holes in th a t shell. Therefore, 

we must a lso  consider the probability of finding more than  one hole in  th e  kth  

shell. We d e term in ed  in Theorem 2.1 th a t a t most [T.82T| steps a re  needed 

to  find a p a t h  between a pile and a hole separated by a distance x. A s  in the 

above ca lcu la tio n  of the searching cost, the probability of having t o  perform 

the B resenham  algorithm to find a path  from a parcel to  a cell in the fcth shell 

is the same as  the probability of not having a hole in the first k — 1 shells, 

which is (1 — 1 / e)4k<'k~1>. Moreover, the diagonal distance from the center of 

a search to  a  cell in the kth. shell is k V 2. Then, the approximate probable 

distance f ro m  a pile to a hole is

In appendix E  we show, as one would anticipate, th a t the expected, number

of holes in t h e  first shell k th a t contains a hole is given by the cond itional 

probability

Thus the average weighted Bresenham cost A},{n) is

i -  (i -  i f

i

Therefore,

\  Ak{k—1 )
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Using M aple, we found Ab(n) tends to  a small constant as the dom ain  gets 

larger:

lim Ab(n) ~  8.6.
n—► oo

A path  is now identified, and we m ust push the parcels in this p a th .  The 

actual pushing cost Ap{n) is

v ^ / 2  /  _. v 4k( k—1 )

Ap(n) =  1.82 ^  k^ 2  ( 1 -  -  )
k = i  '  e '

Again, using Maple we found Ab{n) converges to a small constant a s  domain 

gets larger:

lim Ap(n) «  2.7.
n—>00

In conclusion, the final cost to search for a hole, identify the weighted Bresen

ham  path, and  push parcels along the  selected path  is 8.4 +  8.6 + 2 .7  =  19.7 

iterations. T h a t is, the combined cost of searching and pushing ( th e  yellow 

branch in Fig. 3.3) is of the order 20n (assuming each of the three lo o p s has 

roughly the same number of machine instructions in it) and will not co n trib u te  

prohibitively to  the overall com putation time: the to tal complexity o f  the  en

tire Lagrangian algorithm remains 0(n)  (tha t is, it is bounded by a  constant 

times n).

4 .B  S tab ility  analysis

As mentioned above, Lagrangian rearrangem ent uses the fact that t h e  Casimir 

invariants are conserved and the solution at all times will be a rearrangem ent 

of the original initial condition. A t each tim e step, the parcels are advected
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by the local interpolated velocity, using R unge-K utta  integration. If diffusion 

is added to  the equation, the solution will in general no longer be a rearrange

ment of th e  initial state since diffusion tends to  smooth out gradients in the 

solution. In  this case we use the Crank-Nicholson method, which is uncondi

tionally stab le . In the case of self-advection we evolve the vorticity equation, 

in addition to  C. in order to update the advecting velocity field.

Since Lagrangian rearrangement is nothing more than a filter applied to  

view the semi-Lagrangian solution by projecting it onto the rearrangem ent 

manifold, i t  inherits all of the stability properties of the semi-Lagrangian 

method.

4.C  C om parisons and perform ance

An im portan t feature of our algorithm is the conservation of Casimirs. In the 

absence of diffusion, any C 2 function of vorticity is conserved. For example, 

the concentration field must a tta in  the same set of values at all tim es steps. 

To test th is  a ttribu te  thoroughly we have initially set the concentration at 

the n grid points to n  distinct values. At each time step the code verifies, in 

the absence of diffusion, th a t exactly one cell contains each assigned value at 

all times; th a t  is, the predicted configuration is simply a rearrangem ent of the 

initial condition.

To examine this visually, consider the concentration field w ith a n  initial 

condition th a t  consists only of the  values zero and one, which w e  display 

as black and  white pixels, respectively. We s ta rt evolving this fram e  self- 

consistent ly, (Fig. 4.3), in two different ways, using the same initial conditions
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and zero diffusion. The vorticity field initially is prescribed to be

ui =  —47T sin(27nr) cos(27ry),

which corresponds to the initial velocity field

{ vx = sin(27nr) cos(27n/), 

vy = — cos(27rrr) sin(27n/).

We used a  512 x 512 grid, so th a t the grid scale is h = 1.95 x ICC3. The 

tim e-step r  was chosen to be 10 times the Courant condition, or 1.95 x  10-2 

units (we checked th a t the Lagrangian displacements computed by o u r fourth- 

order R unge K u tta  integration were still sufficiently accurate at th is  large 

tim e step). The fact tha t we can run the algorithm at 10 times th e  Courant 

condition is an im portant feature of Lagrangian schemes.

Figures 4.4-4.8 depict snapshots of the same advected stage, where, in 

each figure, the top frame shows the advected stage for the sem i-Lagrangian 

method, and  the bottom  frame illustrates the result for the LR  method. 

W ith  our selected palette, it is observed th a t the interpolation in th e  semi- 

Lagrangian m ethod leads to coloured pixels, despite the absence o f  physical 

diffusion. This indicates th a t the m ethod introduces spurious num erical diffu

sion, whereas the LR method produces only black and white pixels, because 

there is no numerical diffusion.
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Figure 4.3: Black and white initial condition.
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Figure 4.4: Sem i-Lagrangian interpolation vs. LR solution after 75 t im e  steps.
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Figure 4.5: Semi-Lagrangian interpolation vs. LR solution after 125 tim e steps.
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Figure 4.6: Semi-Lagrangian in terpolation vs. LR solution after 250 tim e  steps.
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Figure 4.7: Semi-Lagrangian interpolation vs. LR solution after 400 t im e  steps.
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Figure 4.8: Semi-Lagrangian interpolation vs. LR solution after 750 tim e  steps.
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Our algorithm  can also solve the  general advection-diffusion equation. Us

ing the sam e initial vorticity field as in the previous example, we consider 

a self-advected flow with diffusion constant D  =  2 x 10-6 . We com pare the 

pushing m ethod  of viewing the Lagrangian d a ta  against area-weighted interpo

lated (semi-Lagrangian) projection. Both methods start from the sam e initial 

condition. Fig. 4.9 shows the concentration field th a t will be advected and 

diffused by the  two methods. Figs. 4.10-4.19 demonstrate the advection of 

this field, where the result of using semi-Lagrangian method is illustrated on 

the top fram e of each figure, and the prediction of the LR m ethod is shown 

on the bo tto m  frame. Observe th a t  the two methods output nearly identical 

results. The observed smoothness in the top frame is the result of interpola

tion by the  semi-Lagrangian method, whereas the slight roughness a t th e  pixel 

level exhibited in the bottom  frame is both a consequence of the inherent arbi

trariness of our parcel-pushing algorithm and the lack of anomalous numerical 

diffusion.
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Figure 4.9: Initial condition.
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Figure 4.10: Semi-Lagrangian vs. LR after 10 time steps, w ith diffusion.
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Figure 4.11: Semi-Lagrangian vs. LR after 20 time steps, with diffusion.
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Figure 4.12: Semi-Lagrangian vs. LR after 40 tim e steps, with diffusion.
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Figure 4.13: Semi-Lagrangian vs. LR after 75 time steps, w ith diffusion.
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Figure 4.14: Semi-Lagrangian vs. LR after 100 time steps, w ith diffusion.
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Figure 4.15: Semi-Lagrangian vs. LR after 150 time steps, with diffusion.
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Figure 4.16: Semi-Lagrangian vs. LR after 250 time steps, w ith  diffusion.
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Figure 4.17: Semi-Lagrangian vs. LR after 500 time steps, with diffusion.
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Figure 4.18: Semi-Lagrangian vs. LR after 750 time steps, with diffusion.
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Figure 4.19: Semi-Lagrangian vs. LR after 1000 time steps, with diffusion.
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In com paring the LR and semi-Lagrangian methods, we now emphasize 

the  conservation of Casimir invariants. In the absence of diffusion, our numer

ical approxim ation to  the concentration energy C 2 dx  and the enstrophy 

Z  = to2 d x  should be conserved, just as for an inviscid fluid. In Figs. 4.20 

and 4.21 it is observed tha t the LR method indeed respects the invariance of 

these two im portan t quantities. On the other hand, in the semi-Lagrangian 

m ethod b o th  of these quantities decay due to  unwanted numerical diffusion. 

Moreover, in  the case of a viscous fluid consider the energy equation obtained 

by m ultiplying bo th  sides of 3.1 by U  and integrating over the domain:

l d _  
2 dt

J  C ^ - d x  + J  C v V C d x  = J  C D V 2C d x  

J c 2d x + ^ J  v - V C 2 d x  = D J  C V 2C d x .

On integrating by parts, we find th a t

The first integral on the right-hand side is zero due to integration over the 

doubly periodic boundary conditions, and the  second one is zero because of 

the incompressibility condition. Therefore we have:

J  C V 2C d x .
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Furtherm ore, V-(C'VC') =  C V 2C  +  V C -V C , so

J  C V 2C dx  = J  V - ( C V C )  d x -  J  V C - V C d x

=  0 (periodic boundary conditions) — J  v c-v c  d x  

= - J \ V C \ 2 dx.

Finally,

We obtain an  analogous equation for the evolution of the enstrophy. Thus,

- J  C 2 dx = —D J  |V C |2 dx,  (4.1)

- J u j 2dx = —D J  |V u;|2 da:. (4.2)

ld_ 
2 dt .

ld_ 
2 dt

We now introduce the normalized energy decay rates

wJc*dx -2B/ |VC|2d x
and

C 2 dxS&dx I
Similarly we define

[  u>2 d x  —2u f \ 'V u j \2dx
m J  and J

uj dxJ  u)2 dx  J  i

According to  (4.1) and (4.2), the energy decay rates for each field, as calculated
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by the tw o corresponding expressions, should agree.

These values for both the semi-Lagrangian and LR methods are p lotted  

in Figs. 4.22 and 4.23, respectively. As seen in the graphs, the decay rates 

predicted by  the semi-Lagrangian method (denoted by the subscript I )  do not 

agree, w here the rates for the rearranged Lagrangian solution (denoted by the 

subscript R )  agree much better, to  within the expected spatial discretization 

error. T he anomalous and erratic numerical diffusion exhibited by th e  semi- 

Lagrangian solution is evident bo th  in the departure of the blue an d  green 

curves and  in the suppression of the energy content of V C / (green curve) 

relative to  the  other predictions. This shows th a t the term tn V E / is not 

modelled by  the semi-Lagrangian method to  respect the correct energy decay 

rate for a  real fluid.
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Figure 4.20: Evolution of the concentration field energy predicted by  th e  semi- 
Lagrangian (I)  and rearrangement (R) methods.

C j  dx

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



20.0

19.9

19.8

19.7

i f  19.6f t
2 19.5
CO

& !9-4 
19.3 
19.2 

19.1 

19.0
0 10 20

t

Figure 4.21: Evolution of the enstrophy predicted by the sem i-Lagrangian (/) 
and rearrangem ent (R)  methods.
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Figure 4.22: Energy decay rates for the concentration field p red ic ted  by the 
semi-Lagrangian (I) and rearrangement (R)  methods.

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



0.001

0.000

- 0.001

- 0.002

- 0 . 0 0 3

a  - 0 . 0 0 4

- 0 . 0 0 5

0 .0 0 6

- 0 . 0 0 7

- 0 . 0 0 8

- 0 . 0 0 9

- 0.010

- 0.011

- 0.012
200 10

t

<Jj dx

ujj dx

LOj dx

Figure 4.23: Enstrophy decay ra tes predicted by the Lagrangian semi-
Lagrangian (I) and rearrangement (R)  methods.
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C hapter 5

Conclusion

5 .A D iscu ssion

We have proposed a numerical m ethod for solving the advection equation, 

using Lagrangian advection. This method preserves Casimir invariants such as 

energy and momentum, just as inviscid fluids do. In this work we argue that in 

the inviscid case, the discretized values of the concentration field, w hen viewed 

on an Eulerian grid, should only be rearranged rather than  changed, thereby 

enforcing a discretized version of Casimir invariance by the nonlinear advection 

term, treating  pixels like infinitesimal parcels. At all times, the o u tpu tted  

concentration field is thus just a rearrangem ent of its initial state. T h e  velocity 

field is used to  advect the values of the concentration and vorticity field  in the 

Lagrangian frame. In projecting our Lagrangian solution to an E ulerian  frame, 

some of the cells (holes) will have no corresponding Lagrangian value, an d  some 

of the cells (piles) will have more than one value. In order to  find the  best 

projection from Lagrangian to Eulerian coordinates, we must find a p a th  from 

a pile to the nearest hole and push the chain of parcels (values) tow ard  the  hole.
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This p a th  is  calculated using a weighted version of the Bresenham algorithm  

for draw ing digitized lines. This modified version reduces the error in  pushing 

parcels a w ay  from their calculated Lagrangian position: the weight used is 

the d is tan ce  between the parcel and its position determined by Lagrangian 

advection. T h e  weighted version attem pts to choose a path containing parcels 

with m in im al weight. To prevent the error in parcel pushing from propagating 

to the n ex t time step, we do not reuse this information in future tim e  steps. 

Lagrangian rearrangement thus merely provides a energy-respecting filter for 

viewing th e  current Lagrangian solution in an Eulerian frame. To deal with 

self-advection, we interpolate the advected Lagrangian vorticity field on the 

Eulerian g rid , avoiding any pushing error being transm itted to  th e  velocity 

field. We th en  calculate the new velocity from the projected vorticity  by 

inverting a  Laplacian with a multigrid solver.

This m eth o d  is used to view the conserved concentration field a fte r it is 

advected b y  the velocity field. In  the inviscid case there will be no  artificial 

numerical diffusion. In the case of a viscous fluid we use operator sp litting  to 

account for the  effects of diffusion.

5.B  F utu re work

The algorithm  can be generalized further to handle flow in a three-dimensional 

space in addition to  the two-dimensional domain discussed here. The m ost sig

nificant changes (for example, the vortex stretching term) will arise from  relax

ing the assum ption of two dimensionality in the  calculation and simplification 

of the vorticity equation (see Appendix A). The doubly periodic boundary 

conditions adopted throughout th is work also need to  be generalized.
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The a lg o rith m  might also be sped up by using data  structures o th e r than 

th e  list a n d  vector structures used in our program. For example, th e  use of 

search tre e s  might reduce the complexity of searching for holes a n d /o r mem

ory usage. Moreover, in the pushing algorithm, the simultaneous trea tm en t of 

piles th a t a r e  competing for a single hole m ay lead to  further improvements. 

I t would b e  preferable, and more consistent, to choose the parcel w ith  the 

minimal, r a th e r  than  maximal, weight as the  initial parcel in a chain. The 

feasibility o f  using an adaptive grid could also be explored. Improvements 

should be m ad e  in dealing w ith diffusion and self-advected flow, by consider

ing the advection  of parcel vertices rather th an  the parcel centroid, using a 

modified area-w eighted interpolation based on polygonal clipping algorithm s, 

to  account fo r an arbitrary advected quadrilateral parcel.

The q u estion  also arises w hether one can prove th a t our rearrangem ent 

scheme ac tu a lly  converges to th e  exact solution as the grid is refined. One 

would need to  show th a t the rearranged parcel weights all converge to  zero in 

t his limit. Finally, the upper bound in Theorem  2.1 is optimal only for short 

distances a n d  could be tightened for large distances.
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A ppendix A

The V orticity Equation and th e  

Stream  Function

Here we take the curl of the Navier-Stokes equation to find an equation  for the 

vorticity u) =  V x t) .  The advantage of the vorticity formulation is th a t  the 

pressure term  will vanish since V x V P  =  0 for any scalar P.  On using the 

Einstein notation of implied sum m ation of repeated indices, the cross product 

of A  = (Ai, A2, A3) and JB = (B]_, B2, B3) can be w ritten A x B  =  6ijkAiBjXk, 

where x k is the fcth unit vector, where, for i , j ,  k  G {1, 2, 3}

1 if i j k  is an even perm utation of 123,

— 1 if i j k  is an odd perm utation of 123, 

0 otherwise.
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We w ill need the identity

V  X  (V  X t l )  X t £ijk'Vi(,€lTnjdlVm)j'X'k

j ^ k  '^idiiy}~Xk') T VidkViXk

= —(v-'V)v +  ^ V w 2.
Z

Therefore, (v-'V)v =  ^ V n 2 — v x ’V x v ,  so th a t

V  X  (v*V )v =  V x ^ V r 2 - t ) X ( V x « )
At

=  —V  x  ( « x w )

^■ijk^ iiy im j'^l^rri)  j & k  ^ikjdi(^€im jViLOm )jX }~

& yiLO kX k d jVkLO iXk VidiLOfcX k LUidiVfcXk

=  — w -V d .

since d{Vi =  0 and <9^ =  0. The curl of the Navier-Stokes equation becomes

V x ^  +  V x ( u - V u )  =  - - V x  V P  +  V X i/V 2« 
a t  p
du>
dt +  v -V w  =  cluV u +  z/V a;.

For two-dimensional flow, u; =  V x u  — wz, where z  is the norm al to the 

plane of motion, since v  has no z  component or z  dependence. Thus, the 

vortex stretching term  u>*Vu is zero and the vorticity equation becomes

dco
dt

+  u-V w  =  v \ / 2u).

Moreover, for a C 1 vector field v in a simply connected domain we know  that 

V*u =  0 v = V  xA',  where A 1 is a vector potential. We can  always
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introduce A  =  A '  +  V</>, where <p satisfies V 2^  =  —V*A/. Then

V -d =  0 < ^ d =  V x i  w ith V*A =  0

so th a t a? =  V x t )  =  V x ( V x i )  =  V ( V - A ) -  V 2A  =  V2A . Thus V 2A, =  

V 2A y = 0 (where A x means the x  component of A) .  Given zero boundary 

conditions a t  infinity or periodic boundary conditions, we can assume, w ithout 

loss of generality, th a t A x = A y =  0. T hat is, A  = A zz.  It is conventional to 

define the  stream function ip = —A z, in terms of which u> = V 2t/> and

W ithout loss of generality we can thus assume th a t ip has no z  dependence. 

For further details, see for example Bowman [2004],
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A ppendix  B

O ptim ized Bresenham  

A lgorithm

As described in Sect. (2.A.1), the Bresenham algorithm is designed to  discretize 

a line betw een two points. There are eight cases to  consider, depending on the 

location o f th e  destination point. The first case, where the final p o in t lies in 

the first o c ta n t relative to the initial point, is discussed in Sect. 2 .A. I .  The 

following is Asymptote code (a vector graphics language for technical drawing 

[Hammerlindl et al. 2004]) for efficiently handling all eight cases, b y  mapping 

them  to th e  first case. The use of integer arithm etic avoids floating  point 

roundoff error. Test cases for all eight octants are shown in Fig. B . l ,  where 

the green d o t indicates the starting  point and the red dot is the end  point.

p a ir [ ]  Bresenham (int x , in t  y ,  in t  x2, i n t  y2)

p a ir [ ]  l i n e ;
i n t  s ign x= x2  >= x ? 1 : -1 ;  
i n t  s ign y=y2  >= y ? 1 : -1 ;  
in t  d x = s ig n x * (x 2 -x ) , d y = s ig n y * (y 2 -y ) , eps=0;  
i f ( d x  >= dy) { 

dy *= 2;
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in t  deps=2*dx;
f o r ( ;  x  != x2; x += s ign x)  {  

l i n e  . p u s h ( ( x , y ) ) ; 
eps  += dy; 
i f  (dx  <= eps) { 

y += s igny;  
e p s  -= deps;

>

>
} e l s e  {  

dx *= 2;  
in t  deps=2*dy;
fo r  (; y  != y2; y += s ign y)  { 

l i n e . p u s h ( ( x , y ) ) ; 
eps += dx; 
i f ( d y  <= eps) {  

x += s ignx;  
ep s  -= deps;

>

>
>
I i n e . p u s h ( ( x 2 , y 2 ) ) ; 
return  l i n e ;

Figure B .l: Sample lines for each octant drawn by the Bresenham algorithm .
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A ppendix  C

W eighted Bresenham  A lgorithm

In our weighted version of the Bresenham algorithm, the choice of th e  next 

point in th e  pa th  depends on the  weight of the eligible neighbouring cells. 

Fig. C .l shows the same test cases as in Fig. B .l. All cases have been m apped 

to  the first quadrant. One seeks a neighbouring cell in the general direction of 

the  path  w ith  the lowest weight. If the slope is zero, the cells to the north-east, 

east, and south-east of the current cell are searched. The north-east and  east 

cells are searched if the slope is between zero and one, the north, north-east, 

and east cells are searched if the slope is one, and the north and north -east cells 

are searched if the slope is greater than  one. If the slope is infinity, th e  cells to  

the north-west, north, and north-east of the current cell are searched. Should 

the weight of two or more cells be the same, the original B resenham  algo

rithm  will be the tie-breaker (see Fig. 2.6 in 2.B.1). The following A sym ptote 

code for the weighted Bresenham algorithm has been optimized in th e  manner 

described for the Bresenham algorithm  in Appendix B.
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p a ir [ ]  d i s c r e t e l i n e ( i n t  x, i n t  y ,  in t  x2 , i n t  y2,

pa ir  [] 1  i n e  ; 
while ( t r u e )  {

in t  s i g n x , s i g n y ;  
in t  d x = x 2 - x ,  dy=y2-y; 
i f ( d x  < 0) {

s i g n x = - l ;  dx=-dx;
> e l s e  s ig n x = l;  
i f ( d y  < 0) {

s i g n y = - l ; dy=-dy;
} e l s e  s ig n y = l ; 
l i n e . p u s h ( ( x , y ) ); 
i f ( d x  >= dy) { 

i f  ( d x  <= 1) {
i f  (dx  > 0) l in e .p u s h ( (x 2 ,y 2 ) );  
r e t u r n  l in e ;

>
i n t  N=count [x ] [ y + s ig n y ] ; 
i n t  NE=count[x+signx] [y + s ig n y ] ; 
i n t  E=count [ x + s ig n x ] [y ] ; 
i f  ( d x  == dy) {

i f  (E >= NE && E >= N) { 
y  += signy;
i f (N E  <= N) x += s ig n x ;

> e l s e  i f (N >= NE && N >= E) { 
x  += signx;
i f (N E  <= E) y += s ig n y ;

> e l s e  {
i f ( E  <= N) x += s ig n x ;  
e l s e  y += signy;

>
} e l s e  {

i n t  SE=count[x+signx] [ y - s i g n y ] ; 
x += s ign x;  
i f  (dy == 0) {

i f ( S E  >= E && SE >= NE) { 
i f(N E < E) y += s ign y ;

> e l s e  i f  (NE >= E && NE >= SE) ■[
i f (S E  < E) y -= s ign y ;

}  e l s e  {
if(N E <= SE) y += signy;  
e l s e  y -= s igny;

>
> e l s e  if(NE < E I I (NE == E && dx <= 0))
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+ = s ig n y ; / /  favour Bresenham

>
} e l s e  -C

i f ( d y  == 1) {
l i n e  .p u sh ((x 2 ,y 2 ))  ; 
r e t u r n  l in e ;

>
i n t  N=count [x] [y+signy] ; 
i n t  NE=count [x+signx] [y+signy] ; 
i n t  NW=count [x-s ignx] [y+signy] ; 
y += s ig n y ;  
i f ( d x  == 0 ) {

i f  (NW >= N && MW >= NE) -[ 
i f (N E  < N) x += s ign x;

> e l s e  i f  (NE >= N && NE >= NW) {  
if(NW < N) x -= signx;

> e l s e  {
if (N E  <= NW) x += s ig n x ;  
e l s e  x -= signx;

>
> e l s e  i f  (NE < N I I (NE == N && dy <= 0 ) ) 

x += s ignx;
>

/ /  N or NE 
/ /  favour N 
/ /  N or NW 
/ /  favour N 
/ /  NE or NW 
/ /  favour NE

/ /  N or NE 
/ /  favour Bresenham

return  l i n e ;
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Figure C .l: W eighted Bresenham algorithm.
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A ppendix  D

M ultigrid M ethod

One can discretize a differential equation as a system of linear equations 

A u  =  /  on a grid, where u  denotes the exact solution. Using ite ra tive  meth

ods, one can find the zth iterative approximation to u,  represented b y  v z. For 

instance, on a one-dimensional grid  in [0,1], the differential equation —u" = f  

can be w ritten  as

- u j - 1 +  2uj  -  uj+1 =  f i h2, 1 <  j  < N  -  1,

where h =  1 / N , is the grid size. For example, one could use the  Jacobi iteration

The relaxation scheme or iteration  can be represented in m atrix  fo rm  as well. 

For example, the m atrix A  can b e  written as A  = D  — L  — U , w here  £), —L ,  

and —U  represent the diagonal, th e  strictly lower, and strictly upper tr ia n g u la r
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parts of A  respectively. Then we have:

( D  -  L - U ) u  = f  =*► u = D~1{L + U)u + D~1f.

Let Pj  =  D ~ X{L +  U).  Then v =  PjV + D _1f .  Also, the new Jacobi iterate, 

which is only  an intermediate value, is computed as Vj =  | ( ^ _ i  +  vj + 1 +  hfi)- 

Alternatively, we can make the iteration a weighted or damped Jacobi m ethod 

by introducing a weight factor w: Vj =  (1 — w)vj  + wv*. The ite ra tion  then 

becomes

v i+1 = [(1 -  w )I  +  P M  +

The algebraic error is e =  u  — v \  The residual, the measure of how m uch the 

approxim ated solution is unable to  fulfill the system, is determined by  r =  

/  — A v l. The equation Ae = f  is called the residual equation, which is useful 

to compute the new approximation to  an already calculated approxim ation v l. 

Using the residual r  = f  — A v \  we can solve the residual equation and  the 

improved new approximation is th en  u  =  v l +  e. An improvement th a t  can 

be done is to  use a good initial guess. This can be achieved by m aking use 

of only p art of a grid. T hat is, only some of the grid points are considered, 

which is referred to  as a coarse grid. One idea is to do some iteration on the 

coarse grid and use the approximation as an initial guess to iterate on the  fine 

(original) grid. The transfer from the coarse grid to the fine grid is called an 

extension (or prolongation) and the  reverse process is called a restriction  (or 

projection). Another idea is to  make use of the residual equation. D enote the 

values on the coarse grid and fine grid by the subscripts c and / ,  respectively. 

For example we can do a few iterations for A u f  =  0 on the fine grid, and
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then com pute the residual and transfer to the coarse grid. One perform s an 

iteration of A e c = r c on the coarse grid to  compute the error there. N ext, one 

extends th e  error to  the fine grid, uses it to calculate the new approxim ation 

v  =  v  + e f ,  and repeats the procedure. (For more details see Briggs [1987], 

Bramble [1993], and Hackbusch [1985]).
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A p p en d ix  E

M ult iple-H ole E xpected V alue

The expec ted  number of holes in a shell k  (with 8k cells) containing a hole is

fcCM-rtsy fro
O ')  =  J

g ( T ) ( - r e ) '  g(?:
where r  =  l / ( e  — 1). Now since the probability of not having a hole in  8k  cells 

is (1 — l / e ) 8k, we know th a t

g ( ? ) H r w - H h
which on m ultiplying both  sides by (r  +  l ) 8k =  (1 — l / e ) -8fc, can be w ritten  as

tQy =  (r + i r - l .
3 = 1
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On differentiating both sides with respect to  r  and then multiplying by  r, one 

then deduces

^  ^  jV  =  8kr(r  +  l ) 8fc_1,

so tha t th e  expected number of holes evaluates simply to

U)  =
07 / \ 8k—i 8 k ( 1 ----------- )  8 k ( -8kr(r  + l ) \  r +  1 /  \ e
(r + l ) 8k~ l  l - ( r  + l ) ~8k /  i> 8fc'

This of course is ju s t the probability 1/e of finding a hole times the n u m b er of 

holes, conditioned on the probability th a t the shell contains at least one hole.
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