
U niversity of A lberta

A FULLY LAG RANG IAN ADVECTIO N SCHEM E

by

Mohammad Ali Yassaei

A thesis subm itted to the Faculty of G raduate Studies and Research

in partia l fulfillment of the requirements for the degree of

Master- of Science

in

Applied M athematics

Departm ent of M athematical and Statistical Sciences

Edmonton, A lberta

Spring, 2006

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1 * 1 Library and
Archives Canada

Published Heritage
Branch

395 W ellington S treet
Ottawa ON K1A 0N4
Canada

Bibliotheque et
Archives Canada

Direction du
Patrimoine de I'edition

395, rue W ellington
O ttawa ON K1A 0N4
C anada

Your file Votre reference
ISBN: 0-494-13914-5
Our file Notre reference
ISBN: 0-494-13914-5

NOTICE:
The author has granted a non
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non
commercial purposes, in microform,
paper, electronic and/or any other
formats.

AVIS:
L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par I'lnternet, preter,
distribuer et vendre des theses partout dans
le monde, a des fins commerciales ou autres,
sur support microforme, papier, electronique
et/ou autres formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these.
Ni la these ni des extraits substantiels de
celle-ci ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

Conformement a la loi canadienne
sur la protection de la vie privee,
quelques formulaires secondaires
ont ete enleves de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

i * i

Canada
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Abstract

A num erical method for passive scalar and self-advection dynam ics, La-

grangian rearrangement, is proposed. This fully Lagrangian advection scheme

introduces no artificial numerical dissipation or interpolation of parcel values.

In the inviscid limit, it preserves the infinity of Casimir invariants associ

ated w ith parcel rearrangement. In the two-dimensional case presented here,

these invariants are arbitrary C 1 functions of the vorticity and concentration

fields. The initial parcel centroids are evolved in a Lagrangian fram e, using

the m ethod of characteristics. A t any time this Lagrangian solution may be

viewed by projecting it onto an Eulerian grid using a rearrangement m ap. The

resulting rearrangem ent of initial parcel values is accomplished w ith a weighted

Bresenham algorithm, which identifies quasi-optimal, distributed p a th s along

which chains of parcels are pushed to fill in nearby empty cells. T he error

introduced by this rearrangement does not propagate to future tim e steps.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Acknowledgements

I wish to thank my supervisor, Dr. John Bowman, sincerely for his guid

ance, constructive instruction, and comments. I would like to express my

gratitude for his assistance and commitment. I am also extremely grateful to

Dr. Anup Basu for his support and very helpful discussions, particularly for

his contributions to the complexity analysis of the Lagrangian rearrangem ent

algorithm. Special thanks are due to my colleagues, particularly, Malcolm

Roberts, for helpful discussions and ideas. Above all, I am forever grateful to

all my family, especially my wife, Maryam, and my parents for their unlim ited

support and encouragement. I deeply appreciate their help, inspiration, and

dedication.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table o f Contents

1 Introduction 1

l.A Eulerian s c h e m e s ... 4

l .A .l Forward-time centered-space scheme 4

l.A .2 Lax s c h e m e .. 5

l .A .3 Other Eulerian m e th o d s ... 6

1.B Lagrangian schem es.. 6

l .B .l Fully Lagrangian s c h e m e s ... 7

l .B .2 Semi-Lagrangian schemes ... 8

l .B .3 Particle-in-cell m e th o d .. 9

1.B.4 Godunov schem es.. 10

2 Lagrangian Rearrangem ent 11

2.A The pushing a lg o r ith m .. 15

2.A.1 The Bresenham line-drawing a lg o r ith m 19

2.B Problems and m o d if ic a tio n s .. 20

2.B.1 A weighted Bresenham a lg o r i th m 22

3 The General A dvection-Diffusion Problem 29

3.A Area-weighted in te rp o la t io n .. 30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.B D iffu s io n .. 32

3.C S e lf-ad v ec tio n .. 34

3.D S u m m a r y .. 35

3.E A p p lic a tio n s ... 36

4 A n a ly s is 39

4.A C o m p le x i ty ... 39

4.B S tab ility a n a ly s is ... 44

4.C Comparisons and p erfo rm ance .. 45

5 C on clu sio n 71

5.A D isc u ss io n ... 71

5.B F u tu re w o r k ... 72

A The V orticity Equation and the Stream Function 74

B O ptim ized Bresenham A lgorithm 77

C W eighted Bresenham Algorithm 79

D M ultigrid M ethod 83

E M ultip le-H ole Expected Value 86

Bibliography 88

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List o f Figures

2.1 T he trajectory for parcel from cell (i , j) to cell (£, m). . . . 13

2.2 C om petition between the parcels pij and prs for the cell [1. m) . 15

2.3 In itial position and the advection step ... 17

2.4 Rearrangement step and final position... 19

2.5 T he Bresenham algorithm.. 21

2.6 Two or three choices in th e weighted algorithm 22

2.7 A weighted Bresenham p a th ... 24

2.8 Case(i): m = 0.. 25

2.9 Case(ii): m = 1... 26

2.10 Case(iii): 0 < m < 1.. 27

3.1 Translation from Lagrangian grid to Eulerian grid............... 31

3.2 Translation from Eulerian grid to Lagrangian grid............... 32

3.3 Semi-Lagrangian and Lagrangian rearrangem ent schemes. . . . 38

4.1 Search order... 41

4.2 Search level.. 42

4.3 Black and white initial condition... 47

4.4 Semi-Lagrangian interpolation vs. LR solution after 75 tim e steps. 48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.5 Sem i-Lagrangian interpolation vs. LR solution after 125 tim e

s te p s ... 49

4.6 Sem i-Lagrangian interpolation vs. LR solution after 250 tim e

s te p s ... 50

4.7 Sem i-Lagrangian interpolation vs. LR solution after 400 tim e

s te p s .. 51

4.8 Semi-Lagrangian interpolation vs. LR solution after 750 tim e

s te p s .. 52

4.9 In itia l condition... 54

4.10 Semi-Lagrangian vs. LR after 10 tim e steps, with diffusion. . . 55

4.11 Semi-Lagrangian vs. LR after 20 tim e steps, with diffusion. . . 56

4.12 Semi-Lagrangian vs. LR after 40 tim e steps, with diffusion. . . 57

4.13 Semi-Lagrangian vs. LR after 75 tim e steps, with diffusion. . . 58

4.14 Semi-Lagrangian vs. LR after 100 tim e steps, with diffusion. . 59

4.15 Semi-Lagrangian vs. LR after 150 tim e steps, with diffusion. . 60

4.16 Semi-Lagrangian vs. LR after 250 tim e steps, with diffusion. . 61

4.17 Semi-Lagrangian vs. LR after 500 tim e steps, with diffusion. . 62

4.18 Semi-Lagrangian vs. LR after 750 tim e steps, with diffusion. . 63

4.19 Semi-Lagrangian vs. LR after 1000 tim e steps, with diffusion. . 64

4.20 Evolution of the concentration field energy predicted by th e

semi-Lagrangian (I) and rearrangement (R) m ethods........ 67

4.21 Evolution of the enstrophy predicted by the semi-Lagrangian (/)

and rearrangement (R) m ethods.. 6 8

4.22 Energy decay rates for th e concentration field predicted by th e

semi-Lagrangian (I) and rearrangement (R) m ethods........ 69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.23 E nstrophy decay rates predicted by the Lagrangian semi-Lagrangian

(/) and rearrangement (R) methods... 70

B .l Sam ple lines for each octant drawn by the Bresenham algorithm . 78

C .l W eighted Bresenham algorithm .. 82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C hapter 1

Introduction

Numerical m ethods are useful for solving nonlinear partial differential equa

tions, such as the advection-diffusion equation

8TJ
— + v 'V U = D V 2U , (1.1)
at

where the advecting velocity field v = v (x , t) is either a specified field (passive

advection) or a functional of U (self-advection), and ID is a constant diagonal

diffusion m atrix . In this case, we are prim arily interested in the tran sp o rt of

a self-advected quantity U = (to, C) by a two-dimensional fluid th a t flows in a

domain w ith velocity v, where the quantities C = C (x , t) and ujz = a>(x,t) =

V X v represent the concentration and vorticity fields, respectively, and z is

a unit vector normal to the plane of flow. For example, the tem peratu re

in a room is convected by the flow inside the room. In the case w here the

velocity v is incompressible (V*v = 0), the advection equation is an example

of a flux-conservative system:

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

f = - V - F , (1 -2)

where F = v U — D 'V U .

In self-consistent advection, th e velocity is typically determ ined by the

incompressible Navier-Stokes equation:

r \ -j

^ + « .V t) = - V P + i/V 2 i;) (1.3)
at p

where v = v (x . t) is the velocity, P is the pressure, p is the density, and u is

the viscosity. It is convenient to take the curl of (1.3) to eliminate the pressure

field P, which leads to an equation for the vorticity (1.4) (see A ppendix A):

^ + » .V u = v V 2u. (1.4)
C/ b

Moreover, th e equation for the concentration field is:

FtP
— + v .V C = D V 2C. (1.5)

Thus, the m atrix D in (1.1) can be written

0 D

where D is the diffusion of the concentration field.

The general solution of the passive advection equation w ith no diffusion,

^ + » - V C = 0 , (1 .6)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

is a wave m oving in x at speed v. This solution C (x , t) = C (£o(x i t), 0)

can be w ritten in terms of the initial parcel positions £o = £o(x , t) defined

by the Lagrangian position variable £(t) = £ 0 + Jq V(£,(r)- r) dr su ch tha t

£(t) = x . In the special case where the velocity field v = v(r) is uniform,

then £0 (2 ^ 1) = x — Jq v (t) dr and C(x, t) = C (x — J0* v(r) dr, 0^. In order

to obtain a numerical solution for a nonuniform velocity field, one needs to

represent th e equation in a discrete form.

There are problems with the existing m ethods for discretizing (1.6): certain

methods produce an unstable, unphysical, or inaccurate solution, w hile others

involve costly and complex computations. Moreover, some of these schem es do

not respect fundam ental properties of the flow. For instance, the conservation

of mass and other exact invariants is not obeyed by many of these schem es. In

this work, a new m ethod tha t avoids these problems is proposed. In pa rticu la r,

we construct a numerical algorithm that conserves the global (in tegrated) value

of an a rb itrary sm ooth function of C in the lim it of zero dissipation. For such

systems, fu ture values of the flow quantities are simply rearrangem ents of

the current values. We constrain the numerical discretization to enforce this

property by tracking the centroids of discrete parcels from their initial positions

forward in tim e. At any time, the solution m ay be viewed by pro jecting it onto

a rearrangement manifold, the set consisting of all rearrangements of t h e initial

conditions.

Before describing our proposed scheme, we begin by reviewing so m e of the

traditional approaches to the discretization of (1 .6).

3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

l .A E ulerian schem es

In order to solve partial differential equations numerically, we can use th e finite

difference m ethod to represent them in a discrete form. In this m ethod only

the quantities at finite number of points are considered: a numerical grid is

superim posed on the domain. For example, in centered finite differencing, a

partial derivative of a function at a grid point is calculated using the difference

between th e computed function values at its immediate neighbours.

l .A . l Forward-time centered-space scheme

In this sim plest version of the Eulerian scheme, the spatial (x) axis is parti

tioned into N uniform subintervals of w idth h and the time (t) axis is par

titioned in to T uniform subintervals of w idth r . For j = 0 , 1 , . . ., N and

n = 0 , l , . . . , T ,

x j = x 0 + jh ,

tn ^0 " F 7

Letting C f = C (tn,Xj) (= denotes a definition), the one-dimensional ad

vection equation can then be discretized as

/on+1 /'~m /On /~Yn
h . ^ = - v (l z L ± U , (1 .7)

r 2 h y J

This forward-time centered-space scheme (FTCS) is an example of a n explicit

time-advance method. The advantage of the explicit Euler m ethod used here

for the time advance is th a t we can express C f +l (the quantity a t the jfth

grid position at a time represented by the index n + 1) explicitly in term s of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

quantities evaluated at time n. O nly the values at time step n must be known

and stored to calculate the information at time step n + 1 ; this makes th e com

putations easy and minimizes the storage requirements. The disadvantage of

this m ethod is the instability of th e solution, even when the Courant condition

described next is satisfied (e.g., see the Von Neumann stability analysis of the

FTCS m ethod by Press et al. [1992]).

l .A .2 Lax scheme

Due to the instability problems of the forward-time centered-space E uler dif

ferencing algorithm, a better solution has been developed, namely, th e Lax

method. In this scheme, the discrete form of the differential equation is altered

by replacing the quantity C(n on the left-hand side of (1.7) by ^(C j+1 +).

This replacement solves the issue of instability but adds a diffusion term , or

numerical dissipation, to the p artia l differential equation. This m ethod is sta

ble and satisfies the Courant condition (cf. [Courant et al. 1967]), which states

th a t the numerical time step r m ust be shorter than the time required for a

wave moving at speed |u| to travel across a cell of w idth h:

However the Lax scheme is not very accurate. To partially alleviate th is prob

lem, which results from unwanted numerical diffusion, we can try to use a

smaller grid; however, this will increase the com putation time. A nother way

to get around the problem of unwanted numerical dissipation is to a d d an anti

diffusion term in order to decrease the numerical dissipation of th e scheme.

The la tter solution is known as flux-corrected transport (FCT). For example,

5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

see the discussion by Wang & H utter [2001].

l .A .3 O ther Eulerian m ethods

O ther sim ilar methods have been developed over the years to avoid th e weak

nesses of th e previously described schemes. For example, upwind differencing

takes into account the fact tha t the rate of change of the flow is directionally

dependent. The time-advance formula is then modified: if v1- > 0 we use (in

one dimension)
/~<n+l _ s i n s~tn n n

i i = _ vn 1

and if v f < 0 we use

t 3 h

s-in + 1 /~in / m n s~tn
L'J L'J = _ v n f j + 1

h

This m ethod is stable, but it is only first-order accurate in the tim e step t .

The staggered leapfrog method, defined for the flux-conservative form (1.2),

is a centered-time centered-space discretization achieved by using tw o stag

gered tem poral partitions. It is second-order accurate in time, as is th e two-step

Lax- Wendroff scheme, in which the flux is calculated and used to determ ine

the concentration field at time step n + 1 [Lax & Wendroff I960].

l .B Lagrangian schem es

Instead of using a stationary grid, as in the Eulerian methods discussed pre

viously, Lagrangian schemes use a grid th a t moves w ith the flow. T h a t is,

the derivatives are now calculated in the Lagrangian, as opposed to Eulerian,

frame of reference since the advection equation is most naturally described in

6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

a Lagrangian frame. In this frame the variable x is also a function of t. and

the chain ru le tells us tha t the total derivative of C in this frame is zero:

d C (x (t), t)
dt

where v = d x /d t . This conservation equation expresses the fact th a t th e scalar

field C is neither created nor destroyed, only rearranged, by the advecting

field v.

The tw o key components of any Lagrangian scheme are: (i) a m ethod for

Eulerian grid.

l .B . l Fully Lagrangian schemes

In fully Lagrangian schemes, the grid is attached to and moves w ith th e flow.

In conventional implementations of Lagrangian schemes, one typically needs

to re-mesh after a finite number of time steps. In this work we propose a fully

Lagrangian scheme th a t does not require re-meshing. The characteristics of

the flow are followed using the classical fourth-order R unge-K utta algorithm .

The centroids of a finite number of discrete parcels characterized b y distinct

values of £o are evolved on a spatial grid. At each tim e step, the new position

of each particular parcel is com puted using its previous position and the local

flow velocity.

To view a fully Lagrangian solution to an advection problem on an Eulerian

grid, one also needs a projection scheme. Normally, area-weighted in terpola

tion is used. However, in this work we construct a scheme for p ro jecting onto

the rearrangement manifold th a t respects an infinite hierarchy of conservation

following th e characteristics and (ii) a m ethod for viewing the solution on an

7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

laws essential to a proper m athem atical model of advection. Even w hen dif

fusion is added to this fully Lagrangian algorithm (using a semi-Lagrangian

area-weighted interpolation scheme like the one described next), our proposed

algorithm (illustrated in Fig. 3.3) exhibits much better energy decay charac

teristics (cf. Fig. 4.22).

l .B .2 Semi-Lagrangian schemes

In semi-Lagrangian schemes, the grid is fixed in time: although the advective

derivatives are calculated in a Lagrangian frame, the other spatial derivatives

are calculated on an Eulerian grid. The idea is to discretize the Lagrangian

term s of th e advection equation, w ithout having to deal with the instability of

the FTCS scheme or the inherent complications of fully Lagrangian re-meshing.

For example, Behrens [1995] discusses an advection scheme for shallow water

waves:
d C (x (t) , t) dC
 - ------= a (x , t) - V C + - ^ = 0,

where the w ind dx /d t = a { x , t) is given. The new value of the scalar C at a

grid point is calculated according to the discretization

C (Xm, tn T 7") C (Xm OLrm ^n)
2 r

where
(rvW r '(k+1) = [_ t , I

m 1 u I 2 ’ n 2

is the displacement relative to the grid point x m. However, backtracked tra

jectories seldom land on a grid point. Therefore, interpolation, the m ost im

portan t part of a semi-Lagrangian scheme, is used in order to find th e values

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

of C betw een grid points, effectively transferring information from th e Eule

rian to th e Lagrangian grid. This interpolation can produce large numerical

dissipation. Moreover, it does not respect the invariance of certain analytical

invariants (specifically, the Casimir invariants discussed in the next Chap

ter). In problem s involving a mass flow, it is sometimes possible to modify

a sem i-Lagrangian scheme so th a t it at least conserves mass (for example see

Behrens & M entrup [2005] and Leslie & Purser [1995]).

l .B .3 Particle-in-cell m ethod

The particle-in-cell m ethod represents a piecewise constant approxim ation of

the solution as a mesh of moving nodes (“particles”) advected by th e flow.

First, the positions of the particles are advected in the Lagrangian frame. Their

associated physical attributes (in our case vorticity and concentration values)

are then projected using area-weighted interpolation (described in Sect. 3.A)

onto a finite Eulerian grid. One can then solve for the contributions to the

evolution from diffusion and any other nonadvective terms on the Eulerian

grid and project the result back onto the (continuum) Lagrangian grid, again

using area-weighted interpolation. The procedure is then repeated for the next

time step (for example see Leboeuf et al. [1979] and Grigoryev et al. [2002]).

Particle-in-cell methods tend to be noisy unless a very large number of particles

are used. W hile they guarantee mass conservation, other conservation laws,

such as energy conservation, are not necessarily guaranteed.

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

l .B .4 G odunov schemes

Godunov [1959] developed a discretization for fluid dynamics problem s with

shocks by m odelling the fluid as a large number of uniform cells joined by the

Riemann solution for the dynamics of an interface between two uniform fluid

regions. T h is is a discontinuous Galerkin method. Fraccarollo et al. [2003] use

the G odunov m ethod to estimate the flux from the solution to the Riemann

problem a n d obtain a finite-difference scheme. A higher-order extension of the

Godunov m e th o d called the Piecewise Parabolic Method (PPM) is presented by

Woodward & Colella [1984a]; it uses high-order spatial interpolation to repre

sent steep discontinuities. In their work, the addition of diffusion is essential;

however, th e y claim that this does not have a significant impact on th e results.

A com parison between numerical methods for simulating hydrodynam ic flow

in two dimensions, concentrating on fluid flow with strong shocks, is discussed

by W oodward & Colella [1984b].

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C hapter 2

Lagrangian Rearrangem ent

In this chapter, we introduce a new method, which we call Lagrangian re

arrangement (LR), for projecting a fully Lagrangian solution of th e passive

advection equation, (1.6), onto an Eulerian grid, in the absence of diffusion.

We constrain the numerical discretization to mimic an im portant analytic

property of advection, namely, th e conservation of the global integral of any

smooth C 1 function of the scalar concentration field:

tion also holds in the self-advected case when C is replaced by u, which depends

on the advecting velocity v, so th a t

j t J f (C) i x = J } ' (C) ^ d x = - J f ' (C) v V C i x

= - J v - V f (C) d x = J f { C) V - v i x = 0, (2 .1)

due to the incompressibility of th e velocity field v. Note tha t the above equa-

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

This uncountable infinity of invariants are known as Casimir invariants (e.g.,

see M orrison [1998]).

The above argument also holds when / is piecewise constant, w here we

in terpret f as a distribution. If we take / to be unity for a narrow ran g e of C

values and zero elsewhere, we see th a t the area of the flow associated w ith tha t

range of C values must be invariant. Since connectedness is preserved by the

continuous (and area-preserving) advection map, we deduce tha t a connected

parcel having a particular C range gets m apped to a connected parcel of the

same area. Moreover, if the C values are partitioned into n uniform ranges,

th e evolved sta te will consist of n distinct nonoverlapping patches associated

w ith these ranges, possibly highly distorted. Therefore, assuming th a t C is

initially bounded, as n goes to infinity, we see th a t the resulting infinitesimal

patches are rearranged into a highly complicated but nonoverlapping union of

d istorted parcels. Values of C th a t were not present in the initial configuration

cannot be created, nor can existing C values be destroyed.

M otivated by this exact property of infinitesimal parcel rearrangem ent,

in the discrete case, we represent the solution as a finite union of piecewise-

constant functions. Under this assumption, the continuum property 2.1 re

duces to 2.2. The discretized version of the above analytic p roperty th a t we

thus propose in this work should be enforced is

| £ f (C i j) = 0. (2.2)

O n taking f { C) to be 1 if C = Co for some fixed value Co, and zero otherwise,

we see th a t the number of cells w ith value Co would then be invariant, just as

in the infinitesimal case. That is, the new values of C a t the current tim e step

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

are prescribed to be simply rearrangements of the old values (and hence of the

initial conditions) at the previous time step. This rearrangement property is

known in th e literature as a relabelling symmetry.

If C is assumed to be piecewise continuous, then, }(C) is certainly inte-

grable and so the Darboux integrability theorem guarantees th a t 'Yhij f(Ci,j)

on a sequence of uniform grids converges to J / (C) dx. Hence the value of the

latter integral, like the sum, must be constant. We thus see th a t (2.2), if it

holds for all discrete grids, is a sufficient condition for the exact property 2 . 1

to hold.

, m

Figure 2.1: The trajectory for parcel piy from cell (i , j) to cell (£ ,m).

We adopt a two-dimensional N x by Ny grid, w ith N = Nx x N y grid points

or cells. Each cell has an initial value, which is assigned to a parcel of fluid tha t

will be advected in the Lagrangian frame. The displacement £ = £o + f j v dt of

each parcel is calculated at time r , where v = v(£, t) is the local velocity of the

flow and £o is the initial displacement. In this fully Lagrangian formulation,

the displacement is effectively calculated directly from the initial position, so

th a t errors occurring in a time step do not propagate to future tim e steps: the

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Lagrangian to Eulerian projection onto the rearrangement manifold is used

only for viewing the current state of the fluid, not for actually evolving the

fluid. To evaluate the integral, it is natural to express the evolution of £ as

the initial value problem

for a specified function v(£, t). The classical fourth-order Runge-Kutta scheme ,

(e.g., Press et al. [1992]) can be used to calculate the current Lagrangian dis

placement £ of each parcel, denoting the time step by r:

This process is called the advection step. For example, in Fig. 2.1, the parcel pij

is initially in the cell (i , j) . After the advection step a t time t, the parcel pl3

now lies in the cell (£,m). Note th a t no projection to the Eulerian frame

is done here; the continuum Lagrangian position of the parcel is retained to

initialize future advection steps.

In classical Lagrangian codes for advection by incompressible flow, the

where

£i = TV (£0 , 0),

£ 4 = TV (£ 0 + £3 , r) .

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

vertices of th e initially square parcels are advected by an area-preserving map

to form an irregular Lagrangian mesh consisting of quadrilateral cells. To

view the Lagrangian solution, one normally uses area-weighted interpolation to

project the contributions from th e quadrilaterals onto Eulerian cells. However,

in this work, we propose th a t the centroids of these quadrilateral parcels should

be m apped onto the rearrangement manifold. Given a fixed velocity field, the

above in tegration at each stage amounts to a linear transform ation of the

quadrilateral region. Under this transformation, the centroid of a p a rce l thus

maps to th e centroid of the new quadrilateral formed by the evolved vertices.

For the case of passive advection without diffusion, we do not need to know

the actual quadrilateral vertices and instead only advect their centroids.

(r. s)

\
CM)
//

\
/////(

Prs (£■. m)

Figure 2.2: Competition between the parcels pij and prs for the cell (£, m).

2 .A T h e pushing a lgorithm

Whenever we wish to view the current Lagrangian solution, we p ro jec t a copy

of it to the rearrangem ent manifold (i.e. the Eulerian grid). We first determ ine

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

for each parcel the cell containing its Lagrangian position. The problem th a t

immediately arises is tha t a given cell may contain more than one parcel.

In general, there may be a competition between two or more parcels to be

projected to the same cell. Such a case is shown in Fig. 2.2. The parcels prs

and Pij respectively from cells (r, s) and (i, j) are both competing for th e cell

(e , m) .
To respect the discrete rearrangement condition underlying (2.2), each par

cel must be mapped to a unique cell. If the grid has n cells, we will have

exactly n parcels. If each parcel lies within a distinct cell, there will be ex

actly one parcel per cell and we are done. The cells would then ad o p t those

parcels as the ir projected values. However, in general, there may be som e cells,

denoted by “holes” th a t do not have any associated parcels, and som e cells

denoted by “p ile s” th a t contain more than one parcel. In Fig. 2.3, th e cell

th a t initially contained the parcel A will be a hole after the advection step , and

the cell th a t now contains a and e is a pile. To enforce the preservation of the

previously discussed Casimir invariants, resulting from parcel rearrangem ent,

only one of parcels a and e can be transferred to cell F; the o ther m ust be

transferred elsewhere. This step is denoted as a rearrangement step. B y simply

taking the extra parcels in a pile and transferring them to the nearest holes,

we would cause a “jum p” or discontinuity in the flow, which would constitu te

an enormous numerical defect.

To resolve this issue, we propose the following pushing algorithm. This

algorithm must not be confused w ith the so-called “particle-pushing” schemes

used to follow the characteristics of the advecting flow. At th is p o in t, the

advection step has been completed and we are now dealing with the problem of

rearranging the n parcels into n cells for viewing the internal fully Lagrangian

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

•

A
•

B * C

•

D
•

F

• • •

G H I

Figure 2.3: Initial position and the advection step.

solution.

First we must deal with the issue of treating all of the cells on an equal

footing, w ithout giving some the advantage of being processed first. A t each

stage of the R unge-K utta advection step, we advect all parcels sim ultane

ously, using the current local velocity, w ithout reference to the locations of

any other parcel. However, in the rearrangem ent step we cannot deal w ith all

piles simultaneously—we must s ta rt from one particular cell. In the algorithm

below, we s ta rt from the piles containing the greatest number of parcels since

these are the most difficult cases to resolve. While building the list of such

cells, we alternate between putting cells in the front or the back of the list.

Refinements th a t effectively introduce further randomization, to avoid undue

bias in our processing decisions, will be discussed in Sect. 2.B.I. Here now is

our rearrangement algorithm:

1. Sort the piles by the number of parcels they contain.

2. S tart with the piles containing the greatest number n of parcels. Process

these cells first.

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. For e a c h such pile (the starting cell), search outward in rectangular

“sh e lls ” for a hole. If m ore than one hole is found on a shell, choose

the o n e closest to the s tarting cell in the sense of having m inim al path

w eigh t , as described in Sect. 2.B.1).

4. Form th e discretized path from the s tarting cell toward the selected hole.

(We w il l discuss the algorithms for discretization of the path la te r) .

5. A ttach , the extra parcel in the starting cell to the first cell a long this

path , push ing parcels successively along this path until the selected hole

is f il led w ith a parcel belonging to the last cell along the p a th . The

second, cell in the path will thus take th e extra parcel in the s ta r tin g cell,

and t h e next cell will take the parcel previously located in th e second

cell, a n d so on. Continue th is pushing until the selected hole has been

assigned a parcel, or in o ther words, an initial value. Now th e starting

cell h a s n — 1 parcels in it.

6 . P ro ceed w ith the next pile containing n parcels, and repeat s tep s 3 5

until n o more cells containing n parcels remain.

7. R ep ea t steps 2-6 until all cells contain exactly one parcel; th a t is, until

n — 1 .

Notice t h a t after step 5, all cells along th e path will have a new parcel in

them rela tive to their status at th e end of the advection step. The correspond

ing hole is filled w ith one parcel, and the s tartin g cell will have one le s s parcel

in it than i t had before. At th e end of step 7, all cells will co n ta in exactly

one parcel, a s desired. The rearrangement step is then complete, and each cell

can have a u n iq u e C value assigned to it. For example, in Fig. 2.4, since the

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

i

$ 1 1 <1-
1

1
1

f *

b* \/Z-' a *

9* d* h *

*c

*
f

b*

i*
/
a

* 9 * d
h
*

mc •
I

•
F

•
B

•
A

• • 9

G D H

Figure 2.4: Rearrangement step and final position.

parcels e and a were in a pile, the nearest hole, and a discretized p a t h to it,

are found for parcel e. Now parcel e is pushed to the first cell in t h e path,

pushing the next parcel, i, to the next cell in the path, and ultim ately, putting

parcel, c into the hole.

2.A.1 T he Bresenham line-drawing algorithm

To find a discretized path from the extra parcel in the pile to the h o le , we con

sidered the Bresenham algorithm for drawing digitized lines [B resenham 1965]

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

on an in teger lattice. One would like to discretize a line from p o in t A to

point B. F o r simplicity, suppose the point B lies within the first oc tan t of a

two-dim ensional Cartesian coordinate system, with A at the origin, so th a t B

lies above th e a:-axis and below the line y = x. The slope m of the line from A

to B then satisfies 0 < m < 1. As illustrated in Fig. 2.5, point B has greater x

and y coordinates than A. After including the discrete point (x, y) in th e path,

one increm ents the x coordinate. To find the next point to include, one decides

whether or no t the y coordinate should be changed as well. This decision is

made by com paring the vertical distance of th e line to the grid points (x + 1 , y)

and (x + 1 , y + 1). Let e be the vertical distance from the current discrete (x, y)

coordinate to the line, which will be the difference of the vertical coord inate

on the line and y, always satisfying the inequality —0.5 < e < 0.5 . In the

next step th is distance will be incremented by m. One includes (r -t- l ,t/) if

e + m < 0.5 and (x + 1, y + 1) otherwise.

Now add m to e and continue on toward B in the same m anner, until B

is reached. A discretized line from A to B , indicated by the b lue dots in

Fig. 2.5, is thus obtained. A few simply modifications of this algorithm allow

it to be applied to the general case where th e final point B lies in a n y octant

(Appendix B).

2.B P rob lem s and m od ification s

The discretization of lines between holes and piles using Bresenham’s approach

increases the possibility of a parcel being pushed more than once since we are

always pushing parcels in a straight line. Suppose th a t in one time s te p , there

are clusters of piles concentrated in one area and a group of holes i n another

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

+ 1

m

e + m

y
X + 1X

Figure 2.5: The Bresenham algorithm.

nearby area. In pushing a parcel from a pile to hole, each parcel in betw een is

pushed once. If we process another parcel from the same crowded pile area and

push tow ard the same hole area, the parcels in between may be pushed a second

tim e. Processing all the parcels in this area can cause multiple p u sh es for

parcels in between the pile-rich and hole-rich areas th a t can result in spurious

streaks in th e flow. We can avoid multiple pushes by choosing a ran d o m path

from a pile to a hole, introducing stochasticity into the algorithm. M oreover, a

parcel m ay be pushed far away from its original Lagrangian position, resulting

in large errors. In order to choose the best pa th , we introduce a p a th weight

for discretizing the line. Let the parcel weight d represent the distance between

the Lagrangian position of a parcel (denoted by the real coordinate p a i r (x, y))

and the cen ter of the cell in which it currently lies. For example, w hen the

parcel is pushed to cell then d2 = (x — £)2 + (y — m)2. E a c h time

the parcel is pushed, the cell containing it will change, resulting in a change

in d (w ith no change to the Lagrangian position of the parcel). To alter the

Bresenham algorithm to a weighted algorithm, we take d into accoun t when

calculating th e path between th e holes and piles. Initially, the parcel w ith the

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

largest d in the starting cell (pile) is chosen to be pushed since it is furthest

from the center of tha t cell. However, in the path between the pile and the

hole, the parcels are inserted in such a way th a t the one with m inim um d will

be first in the list, so th a t it will be processed or pushed first. This ensures

th a t parcels are not pushed too far from their Lagrangian positions.

2.B.1 A weighted Bresenham algorithm

NE

B l b 2
/

NW rnT
/

NE
/

/ T7
A £j

H.3

SE

(a) (b)

Figure 2.6: Two or three choices in the weighted algorithm.

In the weighted version of the code (Appendix C), the next cell to be

included in the pa th will be the cell containing the parcel with the minimum

parcel weight of all parcels in certain eligible neighbouring cells. For simplicity,

we consider the case where the destination cell, B, lies in the first quadrant

with respect to the source cell, A. In each step, if the line connecting A to B

passes through the center of a neighbouring cell, we have three choices for the

next cell. In Fig. 2.6(a), for Bi we will choose one of the cells N W (north

west), N (north), or NE (north-east), for B 2 we can choose one of th e cells N,

NE, or E (east), and for B 3 we have the choice of one of the cells N E , E, or

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

SE (sou th -east). Otherwise we have a selection of two cells to choose from. In

Fig. 2 .6(b), for B 1 we can choose one of the cells N or NE, and for B 2 we will

choose one of the cells NE or E. In each case, to minimize excursions from the

Lagrangian (advected) positions, we choose the cell th a t contains the parcel

with m inim al distance d from its Lagrangian position. In the rare case tha t

parcels in th e selected cells share the same minimal value of d, we will pick

the cell t h a t the original Bresenham algorithm would have picked. Depending

on the choice of the next cell, we increment the x and/or y coordinate by one,

and include the new cell in the path. The problem is thus reduced to a new

problem, using the cell just selected as the new starting point. On reaching

the hole, th e algorithm term inates (see Theorem 2.1). Other quadran ts are

dealt w ith in the same manner, bu t the signs of some of the param eters are

changed to decrement (rather th a n increment) the x and/or y coordinates by

one, accordingly.

One question arises in the case where more than one hole is found in the

same rectangular shell around th e pile. We resolve such cases by perform ing

the Bresenham algorithm on all possible choices of holes within the shell, with

out actually pushing any parcels. We define the path weight of a particu lar

path to be the sum of all d values of the parcels to be pushed along th a t par

ticular pa th . The Bresenham p a th that returns the minimum p a th weight and

its corresponding hole will be chosen as the desired path and final destination,

respectively. In Fig. 2.7, the num ber in each cell represent the m inim um d for

parcels in th a t cell, and the pa th , shown by the red connected lines, is the

selected final path from pile to hole.

The following theorem establishes that at most [l .82^47?] steps will be re

quired by our weighted Bresenham algorithm to draw a line from A to B . This

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

is not excessively more than the |"\/2 A.B] steps required to draw a diagonal

Bresenham line on a unit lattice.

7 5

1 0
/

3
/

7 9

4 7
/

0

2 2 1—A — 3 ^ 2

6— / 1 6 5

Figure 2.7: A weighted Bresenham path.

T h e o re m 2 .1 (Termination of weighted Bresenham): The weighted Bresen

ham algorithm produces a fin ite path between any two points on a regular

lattice. For a unit square lattice, at most

needed to connect two points a distance x apart.

steps are

Proof. Let A and B be given on the grid. We want to find the desired path

between them . For simplicity, we assume th a t B is inside or on the boundary

of the first oc tan t with respect to A. W ithout loss of generality, consider a unit

square lattice. As described before, depending on the position of B , we have

either two or three points to choose the next cell for inclusion in th e path . If

one of these choices is the grid po in t B, we are done; the algorithm te rm in a tes

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

after choosing B.

O therw ise, in choosing one of the immediate neighbours of the current cell,

we will ta k e a step of size 1 or y/2. We must show that there exists a fixed

number 5 > 0 such th a t the distance to the point B in each step is always

reduced by a t least 8. The algorithm will then term inate in a finite num ber of

steps.

Figure 2.8: Case(i): m = 0.

Case (i): Assume B lies on the same horizontal line as A, so th a t the slope

of the line from A to B is zero, (m = 0). In this case (Fig. 2.8), the next

point in the p a th is one of the points C, D, or F. If we choose D , th en since

D B = A B — 1, a step of 1 is taken toward B.

Suppose instead th a t we choose C. On letting x = A B > 2 and 8 =

x — C B = 1 + D B — C B < 1 (since D B < C B), and noting th a t 8 =

A D + D B — C B = C D + D B — C B > 0, we find

(x - 8 f = C B 2 = ~DB2 + 1 = (AB - l) 2 + 1 = A B 2 - 2 A B + 2 = x 2 - 2 x + 2,

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

so that

—2x8 + S2 — —2x + 2.

We then deduce from x > 2 that 2 — 52 = 2 x (l — 5) > 4(1 — (5). Thus

82 - 45 + 2 < 0 => 5 e - V 2 , l) .

The same argum ent of course also holds for the choice F. The distance reduc

tion in th is case is thus at least 2 — y/2.

Figure 2.9: Case(ii): m = 1.

Case (ii): Assume th a t the slope of the line from A to B is 1. In this case

(Fig. 2.9), the next point in the p a th will be one of the points C, D, or F.

Here A B = D B — y/2. If we choose D, we take a step of size y/2 tow ard B.

Suppose instead th a t we choose C. We see th a t C H = A H = 1 / V2. On

letting x = AB , we find

(x - S)2 = C B 2 = H B 2 + CH 2 = ^ - + i = x2 - y/2x + 1.

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Thus

—2x6 + S2 = —\p ix + 1.

We know th a t x > 2y/2 since B is not one of the choices, so

S2 - 1 = x(26 - -s/2) > 2 v /2(2<5 - -s/2) = 4^26 - 4.

Now S2 — 4 \ / 2 6 + 3 < 0 =>• 5 > 2^/2 — \/5. The same argument of course also

holds for th e choice F. The distance reduction in this case is thus a t least

2 ^ 2 - 7 5 .

/

V2

C2 Z -

A ^ 1 Cx

Figure 2.10: Case(iii): 0 < m < 1.

Case (iii): Assume B lies inside the first octant (0 < m < 1). In th is case,

Fig. 2.10, th e next point in the p a th is one of the two points C\ or C 2 -

Let x = A B . Notice th a t x > V § since B is not one of the po in ts C\ or C2 .

Let C be the point {C\ or C2) th a t is selected, Drop the perpendicular C H to

A B . Let y = C B and 2 = A C and note th a t z = 1 if C = C\ and z = \[2 if

C = C2.

Since 0 < Z.CAH < i t / 4, we know th a t A H / z > \jy /2 . O n le ttin g 8 =

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

x — C B , we find

(x - 5)2 = C B = H B + C H

Thus

so th a t

= (A B - A H Y + A C - A H

= x 2 — 2 x A H + z 2 < x 2 — 2 £ - 7= + z 2.
V2

-2x8 + S2 < —\[2xz + z 2,

z 2 - 8 2 > x (V 2 z - 25) > V h (V 2 z - 25).

Thus 52 — 2y/55 + y/lOz — z 2 < 0. For z = 1, this implies th a t 5 > y/5

V o — \ / l0 and for z = \[2, this implies th a t 5 > V 5 - V 7 - 2^5.

So, in any case, the distance between the point B and the new included

point is always less than A B by an amount

5 = min ^1 , V2, 2 — V2, 2V2 — V5, y/h — \ / g - V 1 0 , VE - \ J l - 2 > /5 |

= V5 - \ J 6 - V l 0 > 0.551.

T hat is, at most [1.82AB] steps will be required to reach the po in t B .

□

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3

The General

Advection-Diffusion Problem

To solve th e general advection-diffusion equation,

r)TT
+ v . V U = D V 2U, (3.1)

ot

we need to add the diffusion term , as well as a method for handling self-

advection, to our algorithm. A significant source of error in the rearrangem ent

algorithm used to project the solution to the Eulerian grid for viewing comes

from the somewhat arbitrary algorithm used to pushing parcels from piles

to holes. If the rearrangement algorithm were used to solve the diffusion or

self-advection terms, errors would accumulate since the pushed values would

be reused in calculating diffusion and self-advection. Consider th e equation

d u /d t + v - 'V u = v V 2u). The advection term , v-'Vu, would use th e pushed

values of uj to calculate v, so th a t errors associated with pushing parcels would

propagate to future time steps. More importantly, the use of the rearranged

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

vorticity field in calculating the diffusion term, i 'V 2u>, would introduce large

gradients in the flow, resulting in excessive diffusion. To prevent th is prop

agation of error, we calculate the diffusion term as DX72w i , where u j is the

vorticity field on an Eulerian grid obtained by an area-weighted interpolation of

the Lagrangian vorticity field ui (it is difficult to calculate a Laplacian directly

on a nonuniform Lagrangian grid). This decision does not degrade the desired

conservation properties (Casimir invariants) of the advective term . Likewise,

we calculate the advecting velocity v j from uj by inverting a Laplacian. The

advecting velocity itself does not need to be a rearrangement of the in itia l con

ditions in order to conserve the Casimir invariants. The concentration field C

is treated in the same manner.

3 .A A rea-w eigh ted in terpolation

We now discuss the scheme for transferring information (interpolating) be

tween the Lagrangian and Eulerian grids. The transfer is done via an area-

weighted bilinear interpolation. Ideally, one should account for parcel distor

tion by the flow and project the area bounded by the evolved vertices of the

parcel (which form a quadrilateral) to the Eulerian grid. However, as the

evolved parcel shape is not essential to the dem onstration of how Lagrangian

rearrangem ent can be integrated w ith diffusion and self-advection, for simplic

ity we tre a t each parcel as a square centered on its current Lagrangian position

(the parcel centroid), as is often done in particle-in-cell methods.

To project information from a Lagrangian frame to an E ulerian lattice,

consider the (10, C) values p t of the ith parcel centered about the parcel (see

Fig. 3.1). This square will overlap some cells in the grid. For cell j , one calcu-

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

lates th e a re a Aij contributed by the square around parcel i. On accounting for

the con tribu tions from all parcels whose bounding squares overlap th e cell j ,

the in te rp o la ted value Uj is calculated as

T T _ XX A j j P j

If no parcels contribute to a cell, we search outward in successive rectangular

shells a ro u n d the empty cell, for cells th a t have a contribution from some

parcel. T h e first shell th a t is found to contain such cells is used to assign

a value, nam ely the average interpolated value for these active cells, to the

em pty cell.

•P3

Figure 3.1: Translation from Lagrangian grid to Eulerian grid.

To transform information from the Eulerian to the Lagrangian fram e, again

consider a parcel and its bounding square (see Fig. 3.2). This square will

overlap at most four cells in the grid. For each of the overlapping cells, compute

the Lagrangian value for the parcel as A jU j, where Uj is the E ulerian value

for the jfth cell and Aj is the overlapping area w ith the parcel’s bounding

square.

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

These above two procedures are typically used in tandem. For exam ple, to

calculate V 2c<; we need to interpolate the Lagrangian values onto the Eulerian

grid, where it is convenient to calculate the Laplacian, and then transfer this

contribution to the evolution back to the Lagrangian frame.

Figure 3.2: Translation from Eulerian grid to Lagrangian grid .

3.B D iffusion

In this section we consider the numerical treatm ent of the diffusion term

in (3.1). The advective term is handled using the Lagrangian algorithm dis

cussed in C hapter 2, and the diffusion term is treated with a Crank-Nicholson

scheme (e.g., see Ames [1977]) in the Eulerian frame. In general, to use a

Crank-Nicholson scheme to solve the equation

f - ,m .
32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

where 5? is an operator, we integrate both side with respect to t and use the

trapezoidal rule:
rt+T du rt+TI - a r dt = l y<-u)

u{ t +T) . u(t) = ^ E M i i ± ^ m T
u(t + t) - u(t) yu(t + r) + yu(t)

T 2

To incorporate diffusion into our algorithm, it is helpful to split (3.1) into

two pieces, one due to advection and one due to diffusion, using a procedure

known as operator splitting. One then regards the solution as function of two

different tim es ti and t 2, tha t is, U (t) = U (t i , t 2), where

9 U T-TTT
s i r = ~ v ' v u ’

^ = D V * U .
Ot2

The chain rule tells us over a tim e interval Afi = A t2 = A t th a t th e total

change in U is given by

Arr (9C7Aj d U
— v — A ti + w—A t 2

o ti ut2
d U d U \ .
d t ^ d t j f

= { - v - V U + D V 2U)A t .

This suggests th a t one could deal w ith each term separately and combine the

result. However, the above formulation does not use the most up -to -date value

for U in the finite differencing of the diffusion equation.

Motivated by the above considerations, let U be the Eulerian projection

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

of the Lagrangian solution to the advection equation d U /d t = — u*V C / using

area-weighted interpolation. Then, to solve for U, including the effects of

diffusion, we use the temporal finite-difference formula

In this form ulation, one is now using the most up-to-date (i.e. a lready ad-

vected) value, U , as the starting value to calculate the diffused value U . This

implicit equation can be rewritten

where £ = 1 + ^ D r V 2. In order to calculate U numerically, one needs to

invert the Helmholtz operator C. We accomplish this inversion w ith a n efficient

multigrid solver (see Appendix D), using a single U-cycle iteration a n d [7/ as

the initial guess.

To project the contribution of diffusion on the Lagrangian solution, we

compute the difference U — U, project it back onto the Lagrangian frame

using area-weighted bilinear interpolation, and add it onto the parcel values.

Note th a t we do not simply project the diffused solution U itself on to the La

grangian frame, as this would contam inate the Lagrangian solution, violating

the preservation of the Casimir invariants in the limit of zero diffusion.

3.C Self-advection

Until now, we have considered only the case of passive advection, w here the

velocity of the advecting flow is prescribed. In this section, we discuss self-

£ (—r) U = £ { t)U ,

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

consistent advection (self-advection), where the velocity of the underlying flow

is a functional of U itself. To calculate the velocity v, it is convenient to adopt

the vorticity formulation (cf. Appendix A): using the Euler-projected value of

the vorticity ujj = (E/j)UJ on the Eulerian grid determined by area-weighted

interpolation, one can compute th e stream function ip from

u>i = V 2ip.

The inversion of the Laplacian here is done with 5 iterations (except for the

very first step, when we used 40 iterations, due to the lack of a good initial

guess) of a 1/-cycle multigrid solver (see Appendix D), using the value of the

stream function from the previous time step as the initial guess. Once a

good approxim ation to ip is determined, it is straightforward to calculate the

advecting velocity:

v = BxVip.

This velocity is used to evolve b o th the vorticity and the concentration fields,

self-consistently, in the Lagrangian frame.

3.D Sum m ary

The entire self-consistent Eulerian- Lagrangian advection-diffusion algorithm

is displayed in Fig. 3.3, in comparison with a conventional semi-Lagrangian

scheme. In the red loop, we calculate the new Lagrangian position £(f) =

, t) dr, increment th e time step, and then repeat the procedure.

In the blue boxes, to account for the effects of the diffusion term , we inter

polate U from the Lagrangian to the Eulerian frame, using the area-weighted

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

in terpolation discussed in Sect. 3.A, and then use operator splitting a n d the

Crank- N icholson method in the Eulerian frame to solve for U from

where U is the advected solution interpolated onto the Eulerian g rid . The

cell back on to the Lagrangian frame, using area-weighted in terpolation to ac

crue the contributions from diffusion onto the parcels overlapping each cell.

Finally, th e tim e step is incremented and the procedure repeats. In th e green

boxes, we use the area-weighted interpolated value 17 to calculate th e stream

function 'ip = V ~ 2u and thereby the self-advected velocity v = z x V b - Our

Lagrangian rearrangem ent algorithm is only used to project the v a lues onto

an Eulerian frame when we want to view the solution (yellow branch). Notice

th a t the error in rearrangement does not propagate to future time s te p s since

we do not feed it back to the solution in the advection loop.

Lagrangian rearrangem ent could be applied to many scientific problem s where

advection arises, such as electro-osmotic flow, geophysical fluid dynam ics (in

cluding meteorology, climate change, and hurricanes), therm onuclear fusion

in plasmas, m athem atical biology, and other fields where advection-diffusion

equations play an im portant role. For example, a theoretical model o f electro-

osmotic advection characterized by extremely small diffusion ra te s , which

diffused so lu tion U = C 1(—t)C(t)U is the conventional sem i-Lagrangian so

lution (orange output). We then project the difference U — U in each Eulerian

3.E A p p lications

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

provided t h e initial motivation for this numerical project, is discussed by

Alam & B o w m an [2002]. This flow is based on the distribution o f charged

substances i n a fluid that is affected both by an applied electrical potential

and e lec trica l forces within the ionized advecting fluid. In this case, th e charged

fluid has a la y e r with a high concentration of counter-ions. This layer will be

attracted to w a rd the electrode w ith the opposite sign, when an electric field is

applied to t h e fluid.

The incom pressible Navier-Stokes equation (and its inviscid version, the

Euler eq u a tio n ; e.g. see LeVeque [1990]) is also used in aerodynam ics, to

model the a i r flow around a moving object. For an example of nonlinear

scalar hyperbo lic conservation laws and the calculation of the a ir flow see

Yee & H a r te n [1985] and Yoko Takakura [1989]). The advection-diffusion equa

tion also h a s a significant role in biomedical applications, say in m odels of blood

solutes in vascu la r lumen, which use the advection-diffusion equation w ith the

blood flow a s the advected field. In this model, the assumption is th a t blood is

an incom pressible fluid, so the flow is modelled by the Navier-Stokes equation

(see Q u arte ro n i et al. [2002]).

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

R
eproduced

with
perm

ission
of

the
copyright

ow
ner.

F
urther

reproduction
prohibited

w
ithout

p
e

rm
issio

n
.

woo

cm
pI-S
ft)

w
CO

CO
CD

t"1

ppiom
i—i »
pts
pts
CP
f
cmi-j
ppcm.
p 'p
Hi
CD
PHiHj
P
Pcm
CD
3a>
a
COotra>
Ba>
CO

Lagrangian state U(t)
initialize

advcct:
Runge-Kutta self-advection

Lagrangian prediction U(t + r)
Lagrange —> Euler

diffuse: multigrid
Crank Nicholson Lagrange —> Euler

diffuse: multigrid
Crank Nicholson

multigrid

subtract

output output
Euler —> Lagrange

rearranged U

initial condition f/r

semi-Lagrangian
solution U[

Lagrangian rearranged
solution U r

C hapter 4

A nalysis

4. A C om p lex ity

A com puter code in the C++ programing language was used to im plem ent

our Lagrangian rearrangement algorithm. We consider a two-dimensional

square grid w ith n = 22m grid points and doubly periodic boundary condi

tions, where m is a positive integer. The cost of running the code w ith respect

to time, th e complexity, will be calculated as a function of n. For the m o s t part

of our algorithm , we are performing jobs th a t run for all parcels, from th e first

parcel to th e last, and then move on to another job (e.g. allocating memory

for each cell or initializing the cell to a certain value). In th is C hapter, we es

tablish th a t the computation time for our program scales linearly w ith respect

to n. T hat is, the complexity of our algorithm is 0 (n) . T he only p la c e s tha t

must be focused on is the search for the nearest hole, and the pushing of the

parcels, procedures th a t must be repeated for many of the n cells. A s a result,

the complexity of the algorithm potentially could be more th an of o rd e r (D(n).

In computing the complexity of these parts of the algorithm we concentrate on

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the average complexity, which computes the cost of an event while tak in g into

account th e probability of that event occurring (see Basse & Gelder [2000]).

First, assum e th a t the area of the entire grid is of unit size. Then, the area of

each cell is 1 jn . If a parcel is randomly assigned to a cell, the p robability p of

a cell containing th a t parcel is 1 /n , and the probability q tha t it does not is

1 — 1 jn . A s discussed before, there are exactly n parcels. Using the binomial

d istribution, the probability of a cell containing k parcels is

Therefore, th e probability of having a hole is P (0) = (1 — 1 / n) n . N otice that,

Thus, for n sufficiently large, the probability of having a hole is approxi

mately 1 /e , and the probability of not having a hole is 1 — 1/e. For most

numerical simulations the domain chosen is very large (in our sim ulations it is

typically 218); thus, the assumption of having very large n is a safe claim.

For com puting the cost of the search, one must calculate the probability

of not finding a hole. In general, the goal is to start with a pile, an d search

outward for the nearest hole in a shell-like domain. In Fig. 4.1, cell A is th e pile,

which is the center of the search. F irst, the green ring is searched for a hole, and

if the hole is not found, then the search domain extends to the orange region,

and so on. Let the level of the search k denote the shell number being searched,

starting with 1, as shown in Fig. 4.2. Then the number of cells searched so

far, up to bu t not including shell k, will be (2(k — 1) + l) 2 — 1 = 4 k (k — 1),

n —k

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 4.1: Search order.

and the num ber of cells in the fcth shell is (2k + l) 2 — (2k — l) 2 = 8k.

The algorithm is going to reach level k if it did not find any holes up to

level k — 1. The probability of no t having a hole was calculated to be 1 — 1/e.

Therefore, the probability of not having a hole in the first k — 1 shells is

which is equivalent to the probability of searching k — 1 shells. Here, it is

assumed th a t 4k(k — 1) is much smaller than n, so that, the probability of not

having a hole is independent of the number of parcels. Hence, the obtained

result will be an approximation. Also, we assume th a t the probabilities of

cells being or not being holes are independent of one another. As mentioned

before, a t shell k, where the algorithm has found a hole, there are 8 k cells, so

the final approxim ated average searching cost, A s(n), will be the sum , over the

entire domain, of the above probability multiplied by the number of cells in

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 4.2: Search level.

shell k. N otice th a t each side of the grid has y/n = 2m cells, so the searching

cost A s(n) is given by

v V 2 / -j
A s{n)=

k= 1 ' e

As n becomes large, the above cost tends to a small constant, m ean ing that

the average cost of a single search grows insignificantly, as the d o m ain size

gets bigger:
0 0 / 1 \

lim A s(n) = 8 k (1) « 8.4,
n^°° ' e '

where the sum was evaluated numerically using the symbolic algebra program

Maple (available from h ttp ://w w w .m ap leso ft.com).

To calculate the cost of our weighted Bresenham algorithm, we w ill make

use of Theorem 2.1. Moreover, if more th a t one hole is detected in a shell, the

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.maplesoft.com

Bresenham a lg o rith m is carried out for all such holes in th a t shell. Therefore,

we must a lso consider the probability of finding more than one hole in th e kth

shell. We d e term in ed in Theorem 2.1 th a t a t most [T.82T| steps a re needed

to find a p a t h between a pile and a hole separated by a distance x. A s in the

above ca lcu la tio n of the searching cost, the probability of having t o perform

the B resenham algorithm to find a path from a parcel to a cell in the fcth shell

is the same as the probability of not having a hole in the first k — 1 shells,

which is (1 — 1 / e)4k<'k~1>. Moreover, the diagonal distance from the center of

a search to a cell in the kth. shell is k V 2. Then, the approximate probable

distance f ro m a pile to a hole is

In appendix E we show, as one would anticipate, th a t the expected, number

of holes in t h e first shell k th a t contains a hole is given by the cond itional

probability

Thus the average weighted Bresenham cost A},{n) is

i - (i - i f

i

Therefore,

\ Ak{k—1)

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Using M aple, we found Ab(n) tends to a small constant as the dom ain gets

larger:

lim Ab(n) ~ 8.6.
n—► oo

A path is now identified, and we m ust push the parcels in this p a th . The

actual pushing cost Ap{n) is

v ^ / 2 / _. v 4k(k—1)

Ap(n) = 1.82 ^ k^ 2 (1 - -)
k = i ' e '

Again, using Maple we found Ab{n) converges to a small constant a s domain

gets larger:

lim Ap(n) « 2.7.
n—>00

In conclusion, the final cost to search for a hole, identify the weighted Bresen

ham path, and push parcels along the selected path is 8.4 + 8.6 + 2 .7 = 19.7

iterations. T h a t is, the combined cost of searching and pushing (th e yellow

branch in Fig. 3.3) is of the order 20n (assuming each of the three lo o p s has

roughly the same number of machine instructions in it) and will not co n trib u te

prohibitively to the overall com putation time: the to tal complexity o f the en

tire Lagrangian algorithm remains 0(n) (tha t is, it is bounded by a constant

times n).

4 .B S tab ility analysis

As mentioned above, Lagrangian rearrangem ent uses the fact that t h e Casimir

invariants are conserved and the solution at all times will be a rearrangem ent

of the original initial condition. A t each tim e step, the parcels are advected

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

by the local interpolated velocity, using R unge-K utta integration. If diffusion

is added to the equation, the solution will in general no longer be a rearrange

ment of th e initial state since diffusion tends to smooth out gradients in the

solution. In this case we use the Crank-Nicholson method, which is uncondi

tionally stab le . In the case of self-advection we evolve the vorticity equation,

in addition to C. in order to update the advecting velocity field.

Since Lagrangian rearrangement is nothing more than a filter applied to

view the semi-Lagrangian solution by projecting it onto the rearrangem ent

manifold, i t inherits all of the stability properties of the semi-Lagrangian

method.

4.C C om parisons and perform ance

An im portan t feature of our algorithm is the conservation of Casimirs. In the

absence of diffusion, any C 2 function of vorticity is conserved. For example,

the concentration field must a tta in the same set of values at all tim es steps.

To test th is a ttribu te thoroughly we have initially set the concentration at

the n grid points to n distinct values. At each time step the code verifies, in

the absence of diffusion, th a t exactly one cell contains each assigned value at

all times; th a t is, the predicted configuration is simply a rearrangem ent of the

initial condition.

To examine this visually, consider the concentration field w ith a n initial

condition th a t consists only of the values zero and one, which w e display

as black and white pixels, respectively. We s ta rt evolving this fram e self-

consistent ly, (Fig. 4.3), in two different ways, using the same initial conditions

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

and zero diffusion. The vorticity field initially is prescribed to be

ui = —47T sin(27nr) cos(27ry),

which corresponds to the initial velocity field

{ vx = sin(27nr) cos(27n/),

vy = — cos(27rrr) sin(27n/).

We used a 512 x 512 grid, so th a t the grid scale is h = 1.95 x ICC3. The

tim e-step r was chosen to be 10 times the Courant condition, or 1.95 x 10-2

units (we checked th a t the Lagrangian displacements computed by o u r fourth-

order R unge K u tta integration were still sufficiently accurate at th is large

tim e step). The fact tha t we can run the algorithm at 10 times th e Courant

condition is an im portant feature of Lagrangian schemes.

Figures 4.4-4.8 depict snapshots of the same advected stage, where, in

each figure, the top frame shows the advected stage for the sem i-Lagrangian

method, and the bottom frame illustrates the result for the LR method.

W ith our selected palette, it is observed th a t the interpolation in th e semi-

Lagrangian m ethod leads to coloured pixels, despite the absence o f physical

diffusion. This indicates th a t the m ethod introduces spurious num erical diffu

sion, whereas the LR method produces only black and white pixels, because

there is no numerical diffusion.

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

0.5 C

Figure 4.3: Black and white initial condition.

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1

0.9

0.8

0.7

0.6

0.5 C

0.4

0.3

0.2

0.1

0

Figure 4.4: Sem i-Lagrangian interpolation vs. LR solution after 75 t im e steps.

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 4.5: Semi-Lagrangian interpolation vs. LR solution after 125 tim e steps.

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

saam

Figure 4.6: Semi-Lagrangian in terpolation vs. LR solution after 250 tim e steps.

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1

0.9

0.8

0.7

0.6

0.5 C

0.4

0.3

0.2

0.1

0

Figure 4.7: Semi-Lagrangian interpolation vs. LR solution after 400 t im e steps.

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 4.8: Semi-Lagrangian interpolation vs. LR solution after 750 tim e steps.

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Our algorithm can also solve the general advection-diffusion equation. Us

ing the sam e initial vorticity field as in the previous example, we consider

a self-advected flow with diffusion constant D = 2 x 10-6 . We com pare the

pushing m ethod of viewing the Lagrangian d a ta against area-weighted interpo

lated (semi-Lagrangian) projection. Both methods start from the sam e initial

condition. Fig. 4.9 shows the concentration field th a t will be advected and

diffused by the two methods. Figs. 4.10-4.19 demonstrate the advection of

this field, where the result of using semi-Lagrangian method is illustrated on

the top fram e of each figure, and the prediction of the LR m ethod is shown

on the bo tto m frame. Observe th a t the two methods output nearly identical

results. The observed smoothness in the top frame is the result of interpola

tion by the semi-Lagrangian method, whereas the slight roughness a t th e pixel

level exhibited in the bottom frame is both a consequence of the inherent arbi

trariness of our parcel-pushing algorithm and the lack of anomalous numerical

diffusion.

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1

0.9

0.8

0.7

0.6

0.5 C

0.4

0.3

0.2

0.1

0

Figure 4.9: Initial condition.

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

0 .5 C

Figure 4.10: Semi-Lagrangian vs. LR after 10 time steps, w ith diffusion.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

0.9

0.8

0.7

0.6

0.5 C

0.4

0.3

0.2

0.1

Figure 4.11: Semi-Lagrangian vs. LR after 20 time steps, with diffusion.

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 4.12: Semi-Lagrangian vs. LR after 40 tim e steps, with diffusion.

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 4.13: Semi-Lagrangian vs. LR after 75 time steps, w ith diffusion.

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

■mpu.r

Figure 4.14: Semi-Lagrangian vs. LR after 100 time steps, w ith diffusion.

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

0.9

0.8

0.7

0.6

0.5 C

0.4

0.3

0.2

0.1

Figure 4.15: Semi-Lagrangian vs. LR after 150 time steps, with diffusion.

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 4.16: Semi-Lagrangian vs. LR after 250 time steps, w ith diffusion.

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 4.17: Semi-Lagrangian vs. LR after 500 time steps, with diffusion.

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

0.9

0.8

0.7

0.6

0.5 C

0.4

0.3

0.2

0.1

Figure 4.18: Semi-Lagrangian vs. LR after 750 time steps, with diffusion.

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 4.19: Semi-Lagrangian vs. LR after 1000 time steps, with diffusion.

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In com paring the LR and semi-Lagrangian methods, we now emphasize

the conservation of Casimir invariants. In the absence of diffusion, our numer

ical approxim ation to the concentration energy C 2 dx and the enstrophy

Z = to2 d x should be conserved, just as for an inviscid fluid. In Figs. 4.20

and 4.21 it is observed tha t the LR method indeed respects the invariance of

these two im portan t quantities. On the other hand, in the semi-Lagrangian

m ethod b o th of these quantities decay due to unwanted numerical diffusion.

Moreover, in the case of a viscous fluid consider the energy equation obtained

by m ultiplying bo th sides of 3.1 by U and integrating over the domain:

l d _
2 dt

J C ^ - d x + J C v V C d x = J C D V 2C d x

J c 2d x + ^ J v - V C 2 d x = D J C V 2C d x .

On integrating by parts, we find th a t

The first integral on the right-hand side is zero due to integration over the

doubly periodic boundary conditions, and the second one is zero because of

the incompressibility condition. Therefore we have:

J C V 2C d x .

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Furtherm ore, V-(C'VC') = C V 2C + V C -V C , so

J C V 2C dx = J V - (C V C) d x - J V C - V C d x

= 0 (periodic boundary conditions) — J v c-v c d x

= - J \ V C \ 2 dx.

Finally,

We obtain an analogous equation for the evolution of the enstrophy. Thus,

- J C 2 dx = —D J |V C |2 dx, (4.1)

- J u j 2dx = —D J |V u;|2 da:. (4.2)

ld_
2 dt .

ld_
2 dt

We now introduce the normalized energy decay rates

wJc*dx -2B/ |VC|2d x
and

C 2 dxS&dx I
Similarly we define

[u>2 d x —2u f \ 'V u j \2dx
m J and J

uj dxJ u)2 dx J i

According to (4.1) and (4.2), the energy decay rates for each field, as calculated

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

by the tw o corresponding expressions, should agree.

These values for both the semi-Lagrangian and LR methods are p lotted

in Figs. 4.22 and 4.23, respectively. As seen in the graphs, the decay rates

predicted by the semi-Lagrangian method (denoted by the subscript I) do not

agree, w here the rates for the rearranged Lagrangian solution (denoted by the

subscript R) agree much better, to within the expected spatial discretization

error. T he anomalous and erratic numerical diffusion exhibited by th e semi-

Lagrangian solution is evident bo th in the departure of the blue an d green

curves and in the suppression of the energy content of V C / (green curve)

relative to the other predictions. This shows th a t the term tn V E / is not

modelled by the semi-Lagrangian method to respect the correct energy decay

rate for a real fluid.

0.26

^ 0.25
bO

1 0.24
cs

i °-23j—i
s3
8 0.22
S3o

0.20
0 10 20

t

Figure 4.20: Evolution of the concentration field energy predicted by th e semi-
Lagrangian (I) and rearrangement (R) methods.

C j dx

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

20.0

19.9

19.8

19.7

i f 19.6f t
2 19.5
CO

& !9-4
19.3
19.2

19.1

19.0
0 10 20

t

Figure 4.21: Evolution of the enstrophy predicted by the sem i-Lagrangian (/)
and rearrangem ent (R) methods.

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

0.010

0.005

0.000

J-H

g
-0.005o

O

- 0.010
0 2010

t

C j d x

Figure 4.22: Energy decay rates for the concentration field p red ic ted by the
semi-Lagrangian (I) and rearrangement (R) methods.

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

0.001

0.000

- 0.001

- 0.002

- 0 . 0 0 3

a - 0 . 0 0 4

- 0 . 0 0 5

0 .0 0 6

- 0 . 0 0 7

- 0 . 0 0 8

- 0 . 0 0 9

- 0.010

- 0.011

- 0.012
200 10

t

<Jj dx

ujj dx

LOj dx

Figure 4.23: Enstrophy decay ra tes predicted by the Lagrangian semi-
Lagrangian (I) and rearrangement (R) methods.

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C hapter 5

Conclusion

5 .A D iscu ssion

We have proposed a numerical m ethod for solving the advection equation,

using Lagrangian advection. This method preserves Casimir invariants such as

energy and momentum, just as inviscid fluids do. In this work we argue that in

the inviscid case, the discretized values of the concentration field, w hen viewed

on an Eulerian grid, should only be rearranged rather than changed, thereby

enforcing a discretized version of Casimir invariance by the nonlinear advection

term, treating pixels like infinitesimal parcels. At all times, the o u tpu tted

concentration field is thus just a rearrangem ent of its initial state. T h e velocity

field is used to advect the values of the concentration and vorticity field in the

Lagrangian frame. In projecting our Lagrangian solution to an E ulerian frame,

some of the cells (holes) will have no corresponding Lagrangian value, an d some

of the cells (piles) will have more than one value. In order to find the best

projection from Lagrangian to Eulerian coordinates, we must find a p a th from

a pile to the nearest hole and push the chain of parcels (values) tow ard the hole.

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

This p a th is calculated using a weighted version of the Bresenham algorithm

for draw ing digitized lines. This modified version reduces the error in pushing

parcels a w ay from their calculated Lagrangian position: the weight used is

the d is tan ce between the parcel and its position determined by Lagrangian

advection. T h e weighted version attem pts to choose a path containing parcels

with m in im al weight. To prevent the error in parcel pushing from propagating

to the n ex t time step, we do not reuse this information in future tim e steps.

Lagrangian rearrangement thus merely provides a energy-respecting filter for

viewing th e current Lagrangian solution in an Eulerian frame. To deal with

self-advection, we interpolate the advected Lagrangian vorticity field on the

Eulerian g rid , avoiding any pushing error being transm itted to th e velocity

field. We th en calculate the new velocity from the projected vorticity by

inverting a Laplacian with a multigrid solver.

This m eth o d is used to view the conserved concentration field a fte r it is

advected b y the velocity field. In the inviscid case there will be no artificial

numerical diffusion. In the case of a viscous fluid we use operator sp litting to

account for the effects of diffusion.

5.B F utu re work

The algorithm can be generalized further to handle flow in a three-dimensional

space in addition to the two-dimensional domain discussed here. The m ost sig

nificant changes (for example, the vortex stretching term) will arise from relax

ing the assum ption of two dimensionality in the calculation and simplification

of the vorticity equation (see Appendix A). The doubly periodic boundary

conditions adopted throughout th is work also need to be generalized.

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The a lg o rith m might also be sped up by using data structures o th e r than

th e list a n d vector structures used in our program. For example, th e use of

search tre e s might reduce the complexity of searching for holes a n d /o r mem

ory usage. Moreover, in the pushing algorithm, the simultaneous trea tm en t of

piles th a t a r e competing for a single hole m ay lead to further improvements.

I t would b e preferable, and more consistent, to choose the parcel w ith the

minimal, r a th e r than maximal, weight as the initial parcel in a chain. The

feasibility o f using an adaptive grid could also be explored. Improvements

should be m ad e in dealing w ith diffusion and self-advected flow, by consider

ing the advection of parcel vertices rather th an the parcel centroid, using a

modified area-w eighted interpolation based on polygonal clipping algorithm s,

to account fo r an arbitrary advected quadrilateral parcel.

The q u estion also arises w hether one can prove th a t our rearrangem ent

scheme ac tu a lly converges to th e exact solution as the grid is refined. One

would need to show th a t the rearranged parcel weights all converge to zero in

t his limit. Finally, the upper bound in Theorem 2.1 is optimal only for short

distances a n d could be tightened for large distances.

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A ppendix A

The V orticity Equation and th e

Stream Function

Here we take the curl of the Navier-Stokes equation to find an equation for the

vorticity u) = V x t) . The advantage of the vorticity formulation is th a t the

pressure term will vanish since V x V P = 0 for any scalar P. On using the

Einstein notation of implied sum m ation of repeated indices, the cross product

of A = (Ai, A2, A3) and JB = (B]_, B2, B3) can be w ritten A x B = 6ijkAiBjXk,

where x k is the fcth unit vector, where, for i , j , k G {1, 2, 3}

1 if i j k is an even perm utation of 123,

— 1 if i j k is an odd perm utation of 123,

0 otherwise.

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

We w ill need the identity

V X (V X t l) X t £ijk'Vi(,€lTnjdlVm)j'X'k

j ^ k '^idiiy}~Xk') T VidkViXk

= —(v-'V)v + ^ V w 2.
Z

Therefore, (v-'V)v = ^ V n 2 — v x ’V x v , so th a t

V X (v*V)v = V x ^ V r 2 - t) X (V x «)
At

= —V x (« x w)

^■ijk^ iiy im j'^l^rri) j & k ^ikjdi(^€im jViLOm)jX }~

& yiLO kX k d jVkLO iXk VidiLOfcX k LUidiVfcXk

= — w -V d .

since d{Vi = 0 and <9^ = 0. The curl of the Navier-Stokes equation becomes

V x ^ + V x (u - V u) = - - V x V P + V X i/V 2«
a t p
du>
dt + v -V w = cluV u + z/V a;.

For two-dimensional flow, u; = V x u — wz, where z is the norm al to the

plane of motion, since v has no z component or z dependence. Thus, the

vortex stretching term u>*Vu is zero and the vorticity equation becomes

dco
dt

+ u-V w = v \ / 2u).

Moreover, for a C 1 vector field v in a simply connected domain we know that

V*u = 0 v = V xA', where A 1 is a vector potential. We can always

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

introduce A = A ' + V</>, where <p satisfies V 2^ = —V*A/. Then

V -d = 0 < ^ d = V x i w ith V*A = 0

so th a t a? = V x t) = V x (V x i) = V (V - A) - V 2A = V2A . Thus V 2A, =

V 2A y = 0 (where A x means the x component of A) . Given zero boundary

conditions a t infinity or periodic boundary conditions, we can assume, w ithout

loss of generality, th a t A x = A y = 0. T hat is, A = A zz. It is conventional to

define the stream function ip = —A z, in terms of which u> = V 2t/> and

W ithout loss of generality we can thus assume th a t ip has no z dependence.

For further details, see for example Bowman [2004],

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A ppendix B

O ptim ized Bresenham

A lgorithm

As described in Sect. (2.A.1), the Bresenham algorithm is designed to discretize

a line betw een two points. There are eight cases to consider, depending on the

location o f th e destination point. The first case, where the final p o in t lies in

the first o c ta n t relative to the initial point, is discussed in Sect. 2 .A. I . The

following is Asymptote code (a vector graphics language for technical drawing

[Hammerlindl et al. 2004]) for efficiently handling all eight cases, b y mapping

them to th e first case. The use of integer arithm etic avoids floating point

roundoff error. Test cases for all eight octants are shown in Fig. B . l , where

the green d o t indicates the starting point and the red dot is the end point.

p a ir [] Bresenham (int x , in t y , in t x2, i n t y2)

p a ir [] l i n e ;
i n t s ign x= x2 >= x ? 1 : -1 ;
i n t s ign y=y2 >= y ? 1 : -1 ;
in t d x = s ig n x * (x 2 -x) , d y = s ig n y * (y 2 -y) , eps=0;
i f (d x >= dy) {

dy *= 2;

77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

in t deps=2*dx;
f o r (; x != x2; x += s ign x) {

l i n e . p u s h ((x , y)) ;
eps += dy;
i f (dx <= eps) {

y += s igny;
e p s -= deps;

>

>
} e l s e {

dx *= 2;
in t deps=2*dy;
fo r (; y != y2; y += s ign y) {

l i n e . p u s h ((x , y)) ;
eps += dx;
i f (d y <= eps) {

x += s ignx;
ep s -= deps;

>

>
>
I i n e . p u s h ((x 2 , y 2)) ;
return l i n e ;

Figure B .l: Sample lines for each octant drawn by the Bresenham algorithm .

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A ppendix C

W eighted Bresenham A lgorithm

In our weighted version of the Bresenham algorithm, the choice of th e next

point in th e pa th depends on the weight of the eligible neighbouring cells.

Fig. C .l shows the same test cases as in Fig. B .l. All cases have been m apped

to the first quadrant. One seeks a neighbouring cell in the general direction of

the path w ith the lowest weight. If the slope is zero, the cells to the north-east,

east, and south-east of the current cell are searched. The north-east and east

cells are searched if the slope is between zero and one, the north, north-east,

and east cells are searched if the slope is one, and the north and north -east cells

are searched if the slope is greater than one. If the slope is infinity, th e cells to

the north-west, north, and north-east of the current cell are searched. Should

the weight of two or more cells be the same, the original B resenham algo

rithm will be the tie-breaker (see Fig. 2.6 in 2.B.1). The following A sym ptote

code for the weighted Bresenham algorithm has been optimized in th e manner

described for the Bresenham algorithm in Appendix B.

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

p a ir [] d i s c r e t e l i n e (i n t x, i n t y , in t x2 , i n t y2,

pa ir [] 1 i n e ;
while (t r u e) {

in t s i g n x , s i g n y ;
in t d x = x 2 - x , dy=y2-y;
i f (d x < 0) {

s i g n x = - l ; dx=-dx;
> e l s e s ig n x = l;
i f (d y < 0) {

s i g n y = - l ; dy=-dy;
} e l s e s ig n y = l ;
l i n e . p u s h ((x , y));
i f (d x >= dy) {

i f (d x <= 1) {
i f (dx > 0) l in e .p u s h ((x 2 ,y 2));
r e t u r n l in e ;

>
i n t N=count [x] [y + s ig n y] ;
i n t NE=count[x+signx] [y + s ig n y] ;
i n t E=count [x + s ig n x] [y] ;
i f (d x == dy) {

i f (E >= NE && E >= N) {
y += signy;
i f (N E <= N) x += s ig n x ;

> e l s e i f (N >= NE && N >= E) {
x += signx;
i f (N E <= E) y += s ig n y ;

> e l s e {
i f (E <= N) x += s ig n x ;
e l s e y += signy;

>
} e l s e {

i n t SE=count[x+signx] [y - s i g n y] ;
x += s ign x;
i f (dy == 0) {

i f (S E >= E && SE >= NE) {
i f(N E < E) y += s ign y ;

> e l s e i f (NE >= E && NE >= SE) ■[
i f (S E < E) y -= s ign y ;

} e l s e {
if(N E <= SE) y += signy;
e l s e y -= s igny;

>
> e l s e if(NE < E I I (NE == E && dx <= 0))

80

in t [] [] c o u n t)

/ / NE or N

/ / favour ME
/ / NE or E

/ / favour ME
/ / E or N
/ / favour E

/ / E or NE
/ / favour E
/ / E or SE
/ / favour E
/ / NE or SE
/ / favour NE

/ / E or NE

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

+ = s ig n y ; / / favour Bresenham

>
} e l s e -C

i f (d y == 1) {
l i n e .p u sh ((x 2 ,y 2)) ;
r e t u r n l in e ;

>
i n t N=count [x] [y+signy] ;
i n t NE=count [x+signx] [y+signy] ;
i n t NW=count [x-s ignx] [y+signy] ;
y += s ig n y ;
i f (d x == 0) {

i f (NW >= N && MW >= NE) -[
i f (N E < N) x += s ign x;

> e l s e i f (NE >= N && NE >= NW) {
if(NW < N) x -= signx;

> e l s e {
if (N E <= NW) x += s ig n x ;
e l s e x -= signx;

>
> e l s e i f (NE < N I I (NE == N && dy <= 0))

x += s ignx;
>

/ / N or NE
/ / favour N
/ / N or NW
/ / favour N
/ / NE or NW
/ / favour NE

/ / N or NE
/ / favour Bresenham

return l i n e ;

81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure C .l: W eighted Bresenham algorithm.

82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A ppendix D

M ultigrid M ethod

One can discretize a differential equation as a system of linear equations

A u = / on a grid, where u denotes the exact solution. Using ite ra tive meth

ods, one can find the zth iterative approximation to u, represented b y v z. For

instance, on a one-dimensional grid in [0,1], the differential equation —u" = f

can be w ritten as

- u j - 1 + 2uj - uj+1 = f i h2, 1 < j < N - 1,

where h = 1 / N , is the grid size. For example, one could use the Jacobi iteration

The relaxation scheme or iteration can be represented in m atrix fo rm as well.

For example, the m atrix A can b e written as A = D — L — U , w here £), —L ,

and —U represent the diagonal, th e strictly lower, and strictly upper tr ia n g u la r

83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

parts of A respectively. Then we have:

(D - L - U) u = f =*► u = D~1{L + U)u + D~1f.

Let Pj = D ~ X{L + U). Then v = PjV + D _1f . Also, the new Jacobi iterate,

which is only an intermediate value, is computed as Vj = | (^ _ i + vj + 1 + hfi)-

Alternatively, we can make the iteration a weighted or damped Jacobi m ethod

by introducing a weight factor w: Vj = (1 — w)vj + wv*. The ite ra tion then

becomes

v i+1 = [(1 - w)I + P M +

The algebraic error is e = u — v \ The residual, the measure of how m uch the

approxim ated solution is unable to fulfill the system, is determined by r =

/ — A v l. The equation Ae = f is called the residual equation, which is useful

to compute the new approximation to an already calculated approxim ation v l.

Using the residual r = f — A v \ we can solve the residual equation and the

improved new approximation is th en u = v l + e. An improvement th a t can

be done is to use a good initial guess. This can be achieved by m aking use

of only p art of a grid. T hat is, only some of the grid points are considered,

which is referred to as a coarse grid. One idea is to do some iteration on the

coarse grid and use the approximation as an initial guess to iterate on the fine

(original) grid. The transfer from the coarse grid to the fine grid is called an

extension (or prolongation) and the reverse process is called a restriction (or

projection). Another idea is to make use of the residual equation. D enote the

values on the coarse grid and fine grid by the subscripts c and / , respectively.

For example we can do a few iterations for A u f = 0 on the fine grid, and

84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

then com pute the residual and transfer to the coarse grid. One perform s an

iteration of A e c = r c on the coarse grid to compute the error there. N ext, one

extends th e error to the fine grid, uses it to calculate the new approxim ation

v = v + e f , and repeats the procedure. (For more details see Briggs [1987],

Bramble [1993], and Hackbusch [1985]).

85

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A p p en d ix E

M ult iple-H ole E xpected V alue

The expec ted number of holes in a shell k (with 8k cells) containing a hole is

fcCM-rtsy fro
O ') = J

g (T) (- r e) ' g(?:
where r = l / (e — 1). Now since the probability of not having a hole in 8k cells

is (1 — l / e) 8k, we know th a t

g (?) H r w - H h
which on m ultiplying both sides by (r + l) 8k = (1 — l / e) -8fc, can be w ritten as

tQy = (r + i r - l .
3 = 1

86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

On differentiating both sides with respect to r and then multiplying by r, one

then deduces

^ ^ jV = 8kr(r + l) 8fc_1,

so tha t th e expected number of holes evaluates simply to

U) =
07 / \ 8k—i 8 k (1 -----------) 8 k (-8kr(r + l) \ r + 1 / \ e
(r + l) 8k~ l l - (r + l) ~8k / i> 8fc'

This of course is ju s t the probability 1/e of finding a hole times the n u m b er of

holes, conditioned on the probability th a t the shell contains at least one hole.

87

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Bibliography

[Alam & Bowman 2002]

[Ames 1977]

[Basse & Gelder 2000]

[Behrens & M entrup 2005]

[Behrens 1995]

[Bowman 2004]

[Bramble 1993]

[Bresenham 1965]

[Briggs 1987]

J. Alam & J. Bowman, Theoretical an d Com
putational Fluid Dynamics, 16:1, 2002.

W. Ames, Numerical Methods fo r P artia l Dif
ferential Equations, Academic Press, San Diego,
CA, 1977.

S. Basse & A. V. Gelder, Computer Algorithms,
Introduction to Design and Analysis, Addison-
Wesley, Ontario, 2000.

Behrens & M entrup, “A conservative scheme
for 2d and 3d adaptive semi-Lagrangian advec
tion,” in Recent Advances in Adaptive Compu
tation , edited by Z.-C. Shi, Z. Chen, T . Tang,
& D. Yu, volume 383, 2005.

J. Behrens, Modeling and Com putation in En
vironmental Sciences, Proceedings of th e First
GAMM-Seminar at ICA S tu ttgart, p. 49, 1995.

J. C. Bowman, Math 655: Statistical theo
ries o f turbulence, online lecture notes available
at h t t p : / /www. m ath . u a lb e r t a . ca/^bowm an,
2004.

J. H. Bramble, Multigrid Methods, Longman
Scientific and Technical, London, 1993.

J. E. Bresenham, IBM Systems Journal, 4:25,
1965.

W. L. Briggs, A Multigrid Tutorial, SIAM,
Philadelphia, 1987.

88

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[Courant e t a l 1967]

[Evans 1998]

[Fraccarollo et al. 2003]

[Frisch 2001]

[Godunov &; Ryabenkii 1964]

[Godunov 1959]

[Grigoryev e t al. 2002]

[Hackbusch 1985]

[Hammerlindl et al. 2004]

[Lax & W endroff 1960]

[Leboeuf et al. 1979]

[Leslie &; P urser 1995]

[LeVeque 1990]

R. Courant, K. Friedrichs, & H. Lewy, IBM
Journal of Research and Development, 11:215,
1967.

L. C. Evans, Partial differential equations,
American M athematical Society, Providence,
Rhode Island, 1998.

L. Fraccarollo, H. Capart, & Y. Zech3, In terna
tional Journal For Numerical M ethods In Flu
ids, 41:951, 2003.

U. Frisch, Turbulence: The Legacy o f A.N.
Kolmogorov, Cambridge University P re s s , New
York, 2001.

S. Godunov & V. Ryabenkii, Theory o f Differ
ence schemes, John Wiley and Sons, N e w York,
1964.

S. Godunov, Sbornik. M athem atics, 47:271,
1959.

Y. Grigoryev, V. Vshivkov, & M. Fedoruk, Nu
merical “Particle-in-Cell” Methods—th e o ry and
applications, Brill Academic Publishers, 2002.

W. Hackbusch, Multi-Grid Methods a n d Appli
cations, Series in Com putational M athem atics,
Springer, New York, 1985.

A. Hammerlindl, J. C. Bowman, & R. T.
Prince, ASYMPTOTE: A descriptive vec
tor graphics language, available o n lin e at
h t tp : //asym p tote. sourceforge .n e t , 2004.

P. Lax & B. Wendroff, Com m unications on Pure
and Applied M athematics, 13:217, I9 6 0 .

J. Leboeuf, T. Tajima, & J. Dawson, Journal
of Com putational Physics, 31 :379 ,1979 .

L. M. Leslie & R. J. Purser, M onthly W eather
Review, 123:25, 1995.

R. J . LeVeque, Numerical Methods f o r Conser
vation Laws, Birkhauser Verlag, B oston , 1990.

89

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[Morrison 1998] P. J. Morrison, Rev. Mod. Phys., 70:467, 1998.

[Popinet & Zaleski 1999]

[Press et al. 1992]

[Q uarteroni et al. 2002]

[Simmons 1991]

[Wang & H utter 2001]

[W oodward & Colella 1984a]

[Woodward & Colella 1984b]

[Yee & H arten 1985]

[Yoko Takakura 1989]

S. Popinet &; S. Zaleski, International Journal
for Numerical M ethods in Fluids, p. 775, 1999.

W. H. Press, S. A. Teukolsky, W. T . Vetter-
ling, & B. P. Flannery, Numerical Recipes, The
A rt o f Scientific Computing, Cam bridge Univ.
Press, Cambridge, 2nd edition, 1992.

A. Quarteroni, A. Veneziani, & P. Zunino,
SIAM Journal on Scientific Computing, p. 1959,
2002 .

G. Simmons, Differential equations w ith appli
cations and historical notes, McGraw-Hill, New
York, 1991.

Y. W ang & K. H utter, International Journal for
Numerical Methods in Fluids, 37:721, 2001.

P. W oodward & P. Colella, Journal of Compu
ta tional Physics, 54:174, 1984.

P. W oodward & P. Colella, Journal of Compu
tational Physics, 54:115, 1984.

H. C. Yee & A. Harten, 7th Com putational
Fluid Dynamics Conference, p. 228, 1985.

S. O. Yoko Takakura, Tomiko Ishiguro, Interna
tional Journal for Numerical M ethods in Fluids,
9:1011, 1989.

90

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Index

Asymptote, 77

advection step , 14
algebraic error, 84
anti-diffusion, 5
area-weighted bilinear interpolation, 30
average complexity, 40
average searching cost, 41
average weighted Bresenham cost, 43

Bresenham, 19

Casimir invariants, 12
cells, 13
centered finite differencing, 4
complexity, 39
concentration, 1
concentration energy, 65
Courant condition, 5
Crank-Nicholson, 32

discontinuous Galerkin, 10
displacement, 13

enstrophy, 65
Euler, 4
Eulerian, 4
explicit, 4
extension, 84

finite difference, 4
first octant, 20
flux-corrected transport, 5
forward-time centered-space, 4
fourth-order R unge-K utta scheme, 14
fully Lagrangian schemes, 7

holes, 16

incompressible, 1

initial parcel positions, 3

Jacobi iteration, 83

Lagrangian, 6
Lagrangian rearrangement, 11
Lax method, 5
level of the search, 40

multigrid, 34, 35

Navier-Stokes, 2
numerical dissipation, 5

operator splitting, 33

parcel weight, 21
particle-in-cell, 9
path weight, 18, 23
Piecewise Parabolic M ethod, 10
piles, 16
projection, 84
prolongation, 84

rearrangement manifold, 3
rearrangement step, 16
relabelling symmetry, 13
residual, 84
residual equation, 84
restriction, 84
Riemann solution, 10

semi-Lagrangian schemes, 8
staggered leapfrog, 6
stream function, 76

to tal derivative, 7
two-step Lax-Wendroff, 6

upwind differencing, 6

vortex stretching, 75
vorticity, 1

91

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

