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ABSTRACT 

The Enchodontoidei is an extinct suborder of a marine teleost order Aulopiformes. Most 

enchodontoids have been reported from deposits of the Late Cretaceous. One of the major groups 

in Enchodontoidei is the family Dercetidae, which is traditionally characterized by an elongate 

body, long snout, triradiate dermal scutes, and reduced neural spines. Despite the long history of 

the taxonomic studies since the early 19th century, the phylogenetic study of enchodontoids 

including dercetids has been performed only relatively recently. The Enchodontoidei was 

recovered as a paraphyletic group in previous studies, and the family Dercetidae was supported 

by a single synapomorphy, neural spines very reduced. The two newly discovered specimens 

from southern Alberta are here assigned to a new species of the genus Dercetis, which were 

mainly reported from Europe and the Middle East in previous studies. The new species is 

recovered as a sister to the other species of Dercetis, but the family Dercetidae is not supported 

as a monophyletic taxon. The preexisting character matrix is modified based on the assessment 

of 87 characters, and the analysis with a modified character matrix recovered a monophyletic 

Enchodontoidei supported by a single unambiguous synapomorphy, maxilla included in gape. 

Overall, the description of the new specimens provides new insights into the genus Dercetis, and 

the assessment of the preexisting characters suggests the urgent need for additional modifications 

of the matrix and revision of the character coding in some taxa. 
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Chapter 1: Introduction 

 

1.1 Taxonomic background 

The Aulopiformes is an order of marine teleost fishes that is currently known from fifteen 

families with 261 species of extant members and many other extinct members mainly reported 

from the Cretaceous period (Nelson et al., 2016). The fifteen extant families are supported as 

monophyletic based on molecular and morphological studies (Baldwin and Johnson, 1996; Sato 

and Nakabo, 2002; Nelson et al., 2016), although the organization above the family level differs 

among the authors (four suborders in Sato and Nakabo (2002), three suborders in Davis (2010)). 

Some families include benthic species, such as the shallow-marine lizardfish (Synodontidae) and 

deep-sea tripodfish (Ipnopidae), whereas many other families contain pelagic to bathypelagic 

species, such as lancetfish (Alepisauridae) and telescopefish (Giganturidae) (Nelson et al., 2016). 

Although these families vary greatly in morphology, they are currently united by several 

unique synapomorphies found in the branchial region (i.e., uncinate process of the second 

epibranchial elongate, absence of the cartilaginous condyle on the third pharyngobranchial for 

the articulation with the second epibranchial, presence of a fifth epibranchial) and also 

characterized by commonly shared features of the the axial skeleton (i.e., the medial processes of 

pelvic girdle joined medially by cartilage, epipleural bone series originating on vertebra two, one 

or more epipleural bones displaced dorsally into horizontal septum, absence of swim-bladder) 

(Rosen, 1973; Johnson, 1992; Patterson and Johnson, 1995; Baldwin and Johnson, 1996; Sato 

and Nakabo, 2002; Davis, 2010). Many families that are specialized in deep-sea habitats also 

show simultaneous hermaphroditism, which is one of the rarest reproductive strategies among 

vertebrate taxa (Davis and Fielitz, 2010). 
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1.2 Enchodontoidei 

In addition to the extant members, Aulopiformes also includes many extinct taxa. The 

vast majority of these were described from Late Cretaceous marine deposits, although some have 

been reported from younger deposits, such as Holosteus from the Eocene and Polymerichthys 

from the Miocene (Uyeno, 1967; Davis and Fielitz, 2010; Marramà and Carnevale, 2017). In this 

thesis, I focus on the Cretaceous fossil taxa that are grouped together in the extinct suborder 

Enchodontoidei, of which the relationships among the groups have been debated for decades 

(Nelson, 1994; Fielitz, 2004; Silva and Gallo, 2011). 

The taxonomy of the Enchodontoidei has been changed over time depending on the taxa 

included by different authors (summarized in Table 1-1). Berg (1940) only included the family 

Enchodontidae erected by Woodward (1901) in the suborder Enchodontoidei, which contained 

the genera Apateodus, Cimolichthys, Enchodus, Eurypholis, Halec, Leptecodon, Pantopholis, 

Palaeolycus, and ‘Prionolepis’ (=Aspidopleurus). Later, Goody (1969) placed the suborder 

Enchodontoidei in the extant order Salmoniformes and included the families Enchodontidae 

(containing Enchodus and Palaeolycus) and Eurypholidae (containing Eurypholis and 

Saurorhamphus); he also included three other suborders, Ichthyotringoidei, Cimolichthoidei, and 

Halecoidei in the Salmoniformes. Nelson (1994) recognized Goody’s (1969) four suborders as 

four superfamilies (Enchodontoidea, Cimolichthyoidea, Ichthyotringoidea, Halecoidea), and 

integrated them into a single suborder Enchodontoidei. The superfamily Enchodontoidea was 

included in the suborder Alepisauroidei by Fielitz (2004), based on morphological phylogenetic 

studies including a number of extant aulopiforms as well as Cimolichthys, Enchodus, Eurypholis, 

Palaeolycus, Parenchodus, Rharbichthys, and Saurorhamphus. Fielitz (2004) did not include 

other members of Nelson’s (1994) Enchodontoidei, so in this study, I use the term 
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Enchodontoidei as a tentative suborder composed of the taxa that were included in 

Enchodontoidea by Fielitz (2004) and additional taxa mainly reported from Cretaceous marine 

deposits following several recent studies (Silva and Gallo, 2011; Díaz-Cruz et al., 2016; 

Vernygora et al., 2017; Alvarado-Ortega and Díaz-Cruz, 2020, Murray et al., 2022). 

 

1.3 Dercetidae 

One of the families traditionally included in Enchodontoidei is Dercetidae. The extinct 

family Dercetidae lived from the Late Cretaceous (Cenomanian) to the Paleocene (Danian). The 

family is generally characterized by an elongate body, long snout, short neural spines, and 

prominent triradiate scutes on the flank (Gallo et al., 2005; Vernygora et al., 2017). Historically, 

many fossil records of dercetids have been reported from the Eastern Tethys including Europe, 

North Africa, and the Middle East, whereas the number of reports from the Western Tethys and 

other western areas have been increasing only recently (Silva and Gallo, 2011, 2016). Currently, 

a few species are reported from North and South America (Blanco and Alvarado-Ortega, 2006; 

Figueiredo and Gallo, 2006; Vernygora et al., 2017; Alvarado-Ortega and Díaz-Cruz, 2020), and 

a few fragmentary specimens are known from the Western Interior Seaway (WIS) of Canada 

(Wilson and Chalifa, 1989; Wilson and Bruner, 2004). In the next chapter (Chapter 2), I describe 

the first well-articulated dercetid from the WIS, from Campanian deposits of southern Alberta, 

Canada. 

The family Dercetidae was erected by Woodward (1901) and also described in his later 

work (Woodward, 1903). Although Pictet (1850) originally grouped together several species of 

dercetids, he used the term ‘Sclerodermis’ as a family name. Woodward (1903) considered 

dercetids to be members of the extant Notacanthiformes (halosaurs and spiny eels), but this idea 
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was based only on superficial similarities in the morphology of the two groups, such as their long 

slender body and head. Goody (1969) placed Dercetidae within Cimolichthyoidei together with 

the family Cimolichthyidae, containing only Cimolichthys, based on several morphological 

characters, such as an elongate body and squamation restricted to prominent scutes on the flank. 

Later, Rosen (1973) erected the order Aulopiformes (including extant taxa) and placed all four of 

Goody’s suborders as the basal members of the new suborder Alepisauroidei, but the 

interrelationships among those extinct members were left unresolved. Fielitz (2004) attempted a 

phylogenetic study of some extinct and extant members of Aulopiformes and concluded that 

some extinct taxa (i.e., Cimolichthys, Enchodus, Eurypholis, Palaeolycus, Parenchodus, 

Rharbichthys, and Saurorhamphus) together formed a monophyletic sister group to the extant 

Alepisauridae. Dercetidae was not included in Fielitz’s (2004) study, but later phylogenetic 

studies (Gallo et al., 2005; Silva and Gallo, 2011) supported Cimolichthys as being more closely 

related to enchodontids (Enchodus, Eurypholis, Palaeolycus, Saurorhamphus) than Dercetidae. 

This scheme of relationships was followed in several later studies (Díaz-Cruz et al., 2016; 

Vernygora et al., 2017; Alvarado-Ortega and Díaz-Cruz, 2020), in which the monophyly of 

Dercetidae was supported by several characters including a shallow head, long snout, convoluted 

suture between hypurals 2+3, and triradiate scutes on the flank, although the first three characters 

can be homoplastic and are seen in non-dercetid members of Aulopiformes, and the morphology 

of the scutes varies within the group. In addition to these homoplastic characters, Vernygora et 

al. (2017) suggested that the single synapomorphy shared by dercetids is reduced neural spines, 

but a recent study by Alvarado-Ortega and Díaz-Cruz (2020) challenged the feature of reduced 

neural spines as a synapomorphy, instead suggesting the possibility of it being a homoplastic 

condition. Therefore, the monophyly of the family Dercetidae is currently weakly supported, and 
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it is necessary to review all the phylogenetic studies of dercetids and their relatives. Here I 

tentatively follow the phylogenetic study of Alvarado-Ortega and Díaz-Cruz (2020), although the 

characters used in this data matrix are reassessed in Chapter 3. Based on the analysis of 

Alvarado-Ortega and Díaz-Cruz (2020), Dercetidae contains at least thirteen nominal genera 

(Apuliadercetis, Benthesikyme, Brazilodercetis, Candelarhynchus, Caudadercetis, Cyranichthys, 

Dercetis, Dercetoides, Hastichthys, Nardodercetis, Ophidercetis, Pelargorhynchus, and 

Rhynchodercetis), and there are five additional genera (Kwangodercetis, Leccedercetis, 

Paradercetis, Scandiadercetis, and Stratodus) that have been included in the family but excluded 

from the previous phylogenetic analyses (Casier, 1965; Taverne, 2005, 2008; Harrell, 2008). 

Robertichthys Blanco-Piñón and Alvarado-Ortega, 2005 is no longer considered a dercetid but 

probably belongs to Aspidorhynchidae, which is not even in Enchodontoidei (Díaz-Cruz et al., 

2016). 

 

1.4 Objectives of the thesis 

The main focus of my thesis is describing new specimens of Dercetidae recovered from 

Upper Cretaceous deposits of southern Alberta. The new specimens are described and classified 

based on morphological characters, and a phylogenetic analysis is conducted using previous data 

matrices (Silva and Gallo, 2011; Díaz-Cruz et al., 2016; Vernygora et al., 2017; Alvarado-Ortega 

and Díaz-Cruz, 2020; Murray et al., 2022). These data matrices need to be revised because 

monophyly of the Enchodontoidei is not supported and monophyly of Dercetidae is only very 

weekly supported, and thus I will assess the characters used in the previous studies to provide an 

up-to-date phylogeny of the Enchodontoidei, including the family Dercetidae.  
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In sum, my objectives in the thesis are 1) to describe the new specimens and test whether 

they are grouped together with the Dercetidae, especially with the genus Dercetis, and 2) to 

assess the previous data matrices and provide a revised phylogeny of the Enchodontoidei. The 

newly described specimens and the revised phylogeny will update our knowledge of the 

Enchodontoidei and will provide the foundation for future studies of the extinct Aulopiformes. 
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Table 1-1. The classification of the suborder Enchodontoidei by different authors. 

Berg (1940) Goody (1969) Nelson (1994) Fielitz (2004) 

Enchodontoidei Enchodontoidei Enchodontoidei Alepisauroidei 

  Enchodontidae   Enchodontidae Enchodontoidea Enchodontoidea 

    Apateodus     Enchodus   Enchodontidae   Enchodontidae 

    Cimolichthys     Palaeolycus     Enchodus   Enchodontinae 

    Enchodus   Eurypholidae     Palaeolycus     Enchodus 

    Eurypholis     Eurypholis     Parenchodus   Eurypholinae 

    Halec     Saurorhamphus   Eurypholidae     Eurypholis 

    Leptecodon      Eurypholis     Saurorhamphus 

    Pantopholis      Saurorhamphus   Palaeolycinae 

    Palaeolycus  Cimolichthyoidea     Paleolycus 

    ‘Prionolepis’      Cimolichthys   Rharbichthinae 

      Benthesikyme     Rharbichthys 

      Cyranichthys  

      Dercetis  

      Dercetoides  

      ‘Prionolepis’  

      Pelargophynchus  

      Rhynchodercetis  

      Stratodus  

  Ichthyotringoidea  

      Ichthyotringa  
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      Apateodus  

  Halecoidea  

      Halec  

      Hemisaurida  

      Phylactocephalus  
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Chapter 2: A large, new species of dercetid (Teleostei: Aulopiformes) from the Campanian 

Bearpaw Formation of Alberta, Canada. 

 

2.1 Introduction 

2.1.1 Background of the genus Dercetis 

The extinct family Dercetidae is a major group placed in the extinct aulopiform suborder 

Enchodontoidei that lived from the Late Cretaceous (Cenomanian) to the Paleocene (Danian). 

The family was erected by Woodward (1901), but the included genera were named before the 

family was created. The genus Dercetis was first erected by Münster and Agassiz (1834). This 

enigmatic genus currently contains species that were previously assigned to several different 

genera (i.e., Dercetis, Leptotrachelus, Benthesikyme) since their first discovery in the early 19th 

century (Agassiz, 1834; Pictet, 1850; von der Marck, 1863; Woodward, 1901; Siegfried, 1966; 

Goody, 1969). In chronological order, Dercetis scutatus Münster and Agassiz, 1834, Dercetis 

elongatus Agassiz, 1835, Dercetis triqueter Pictet, 1850, Dercetis tenuis Pictet, 1850, and 

Dercetis linguifer Pictet, 1850 were named and described since the genus was first named in 

1834 by Agassiz (1833-44). Subsequently, some additional species were assigned to this genus 

by several different authors, including Dercetis reussi Fritsch, 1878, Dercetis latiscutatus 

Woodward, 1903, Dercetis maximus Woodward, 1903, Dercetis limhamnensis Davis, 1890, 

Dercetis rostralis Signeux, 1954, Dercetis ornatissimus Caiser, 1965 and Dercetis congolensis 

1965 (Fritsch, 1878; Woodward, 1903; Davis, 1890; Signeux, 1954; Caiser, 1965).  

The genus Leptotrachelus was erected for the species Leptotrachelus armatus by von der 

Mark (1863) who recognized the difference in the length of the dorsal fin between Dercetis and 

Leptotrachelus (i.e., the dorsal fin is shorter in Leptotrachelus). Following this diagnosis, Pictet 
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and Humbert (1866) reexamined Pictet’s previous descriptions and synonymized D. tenuis with 

D. triqueter and moved it to Leptotrachelus triqueter, but retained D. linguifer as a valid species 

[later synonymized with D. triquter by Goody (1969)]. Dercetis elongatus was also once 

assigned to Leptotrachelus by Woodward (1901). There were several more species of 

Leptotrachelus described by different authors, including L. hakelensis Pictet and Humbert, 1866, 

L. sagittatus von der Mark, 1873, L. longipinnis Cope, 1878, L. virgulatus Cope, 1878, L. 

gracilis Davis, 1887, L. serpentinus Hay, 1903, and L. gortanii d’Erasmo, 1946 (Pictet and 

Humbert, 1866; von der Mark, 1873; Cope, 1878; Davis 1887; Hay, 1903: d’Erasmo, 1946). 

Leptotrachelus hakelensis was later assigned to a new genus Rhynchodercetis by Arambourg 

(1943). The generic name Leptotrachelus was used until White and Moy-Thomas (1940) 

replaced it with the new generic name Benthesikyme because the name Leptotrachelus was 

actually preoccupied by a genus of beetles.  

Siegfried (1966) reexamined von der Marck’s materials (L. armatus and L. sagittatus) 

and concluded that Leptotrachelus was a junior synonym of Dercetis because the shortness of the 

dorsal fin of L. armatus and L. sagittatus are due to their fragmentary condition in the specimens 

but not because of the nature of the fish. He also chose D. elongatus as the type species because 

the original type species, D. scutatus, was either lost or destroyed, and the description is not 

informative enough for comparison with other species today, and thus D. scutatus is considered 

to be a nomen nudum (Siegfried, 1966; Goody, 1969; Taverne, 2005). 

The genus Benthesikyme, the replacement name for Leptotrachelus, was also considered 

a junior synonym of Dercetis until Taverne (2005) restored the name as a valid genus. Taverne 

(2005) conducted comprehensive research on every species ever assigned to this genus, and 

distinguished Benthesikyme from Dercetis by several distinctive characters such as Benthesikyme 
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having an elongate first trunk vertebra which lacks neural and transverse processes, and the 

mesethmoid having pointed ends both anteriorly and posteriorly, whereas Dercetis has a first 

vertebra with neural and transverse processes and an anteriorly bifurcated mesethmoid. 

Following these emended diagnoses, L. armatatus, L. gracilis, and D. rostralis were assigned to 

Benthsikyme armatatus, B. gracilis, and B. rostralis respectively (Taverne, 2005). 

Currently, only two nominal species, D. elongatus Agassiz, 1835 and D. triqueter Pictet, 

1850 are considered valid in the genus Dercetis (summarized in Table 1). Dercetis linguifer is 

considered to be a junior synonym of D. triqueter as confirmed by Goody (1969). Although 

Goody (1969) confused D. tenuis and D. linguifer in his book, the fragmented abdominal region 

of D. linguifer was confirmed as being the same species as D. triquter (Goody, 1969). Dercetis 

ornatissimus and L. gortanii were placed in different genera, Cyranichthys and Rhynchodercetis 

respectively by Taverne (1987). Although Taverne (1987) did not reassess D. congolensis and 

did not reassign it to any other taxon, it differs from D. ornatissimus (= Cyranichthys 

ornatissimus) only by having a slightly stockier posterior region of the pterotic (Casier, 1965), so 

I here assume D. congolensis is closely related to the genus Cyranichthys. According to Taverne 

(2005), L. sagittatus is synonymized with D. elongatus, L. virgulatus is synonymized with D. 

triqueter, and D. limhamnensis is assigned to a new genus Scandiadercetis, while L. serpentinus 

is excluded from the genus Dercetis because of the vertebrae bearing two transverse processes 

diverging from the middle of the centra. Due to their incomplete conditions, D. reussi, D. 

latiscutatus, and D. maximus are left as genus incertae sedis, although D. reussi and D. maximus 

show unique morphology of their scutes or vertebrae (Taverne, 2005). I here follow the 

taxonomy of Taverne (2005).  
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Currently, specimens of Dercetis are known from several countries in Europe (Agassiz, 

1833-1844; von der Marck, 1873; Ekrt et al., 2008; Taverne and Goolaerts, 2015), Lebanon 

(Pictet, 1850; Cope, 1878), Mexico (Alvarado-Ortega et al., 2020), and Canada (Wilson and 

Bruner, 2004), although the Canadian specimen was not fully described. Here, I describe two 

new specimens of a large Dercetis that were recently recovered from the Campanian Bearpaw 

Formation of Alberta. They show several characters that are considered to be diagnostic for this 

genus, such as the medio-parietal skull, anteriorly bifurcated mesethmoid, and single transverse 

processes on the vertebrae. The new specimens possess several unique characters which have not 

been reported previously for the any species of this genus. I therefore assign them to a new 

species.  

 

2.1.2 Geological and faunal context 

The two new specimens were collected from a commercial ammolite mine (Korite Mine). 

The mine samples the lower part of the Bearpaw Formation, and is located in the valley of the St. 

Mary’s River, south of Lethbridge (Fig. 2-1). The Bearpaw Formation represents the last 

widespread marine deposits of the Western Interior Seaway (WIS), formed during the late 

Campanian to early Maastrichtian (Tsujita, 1995: Catuneanu et al., 1997). Because the specimens 

were collected together with commercial ammolite materials, their exact stratigraphic position is 

unknown. The Korite ammolites from the Lethbridge area are commonly explored and mined 

from two horizons within the Bearpaw Formation, Zone 4 and K Zone, where the horizons 

correlate with Muddy Unit 1 (Baculites compressus zone) and Muddy Unit 2 (B. cuneatus zone) 

respectively (Link and Childerhose, 1931; Tsujita, 1995; Mychaluk et al., 2001). Both units are 

dated with 40 Ar/39 Ar analyses as being in the middle of the upper Campanian, and the B. 
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cuneatus zone is estimated to be younger with the approximate age of 72.32–73.35 Ma (Izett et 

al., 1998; Cobban et al., 2006). The contact between the Bearpaw Formation and the underlying 

Dinosaur Park Formation in the Lethbridge area is dated around 74.8 Ma (Eberth, 2005), and 

thus, the specimens are no younger than 72.32 Ma and no older than 74.8 Ma.   

Previously reported Bearpaw vertebrates include several species of marine reptiles (Sato, 

2005; Konishi et al., 2014), marine turtles (Brinkman et al. 2006; Brinkman et al., 2015), various 

Chondrichthyes (Konishi et al., 2014; Cook et al., 2017), and a very few Osteichthyes known 

from gut contents of mosasaurids, such as small centra of an elopid fish cf. Paratarpon and the 

partial remains of an aulopiform fish Ursichthys longiparietalis (Konishi et al., 2011; Newbrey 

and Konishi, 2015). The occurrence of Dercetis was mentioned by Wilson and Bruner (2004), 

although the specimen they based this on was not fully described. There are also several 

undescribed specimens of Enchodus in the collection of the Royal Tyrrell Museum of 

Palaeontology (e.g., TMP 2019.043.0008, TMP 2020.043.0001). 

 

2.2 Materials and Methods 

The specimens were collected by Korite International Ltd. and are permanently housed in 

the collections of the Royal Tyrrell Museum of Palaeontology (TMP), Alberta, Canada. 

Specimen TMP 2001.042.0017 (Figs. 2-2, 2-3, 2-6, 2-7, 2-8) consists of two blocks (a, b) that 

were collected together in the field at the time of discovery of the specimen. The first block 

(TMP 2001.042.0017a) preserves the skull and the first 15 abdominal vertebrae. The second 

block (TMP 2001.042.0017b) contains 35 abdominal vertebrae with impressions of 17 additional 

centra, for a total of 52. 
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Specimen TMP 2017.021.0001 (Figs. 2-4, 2-5, 2-9) consists of four blocks (a-d) with 

some additional isolated fragments of teeth and vertebrae. The anterior block of the specimen 

(TMP2017.021.0001a) preserves the skull roof, occipital region, upper and lower jaws, median 

and pectoral fins, seven and a half centra, and four partial dermal scutes. The second block 

(TMP2017.021.0001b) preserves the axial skeleton with 12 vertebrae, more than 16 fragmented 

dermal scutes, several fin rays and intermuscular bones. TMP2017.021.0001c, the third block, 

includes the middle to posterior portion of the vertebral column with 11 vertebrae, and the 

articulated pelvic girdle and pelvic fin rays. The fourth block (TMP2017.021.0001d) contains 

only three and a half centra, but these preserve a unique expansion of the transverse processes. 

All four blocks were collected together from the same area and possess an identical morphology 

of the centra with relatively consistent size, so here I accept that they represent the same 

individual. 

The preparation was done by Mark Mitchell, a preparator in TMP, using Micro Jack tools 

and pin vises. The specimens were examined using a Nikon SMZ1000 microscope. The holotype 

specimen (TMP 2001.042.0017) was also imaged using a GE HD750 64-slice medical CT 

scanner at Mayfair Diagnostics, Mayfair Place, Calgary, Canada. The specimen was scanned 

with a voltage of 120 kVp, a current of 265–500 modulated mA, and a resolution of 0.611 mm 

(512 matrix). The images were reconstructed and segmented using Dragonfly 2021.3 (software 

provided by Object Research Systems Inc, Canada). Photographs were taken using an Olympus 

E-M10II camera and an Olympus FE-370 8MP digital camera. Drawings were made by hand as 

well as using MediBang Paint Pro software.  

 

2.2.1. Phylogenetic analysis 
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I used the data matrix from the most recent phylogenetic analysis for enchodontoids 

(Alvarado-Ortega and Díaz-Cruz, 2020; Murray et al., 2022). The matrix includes 87 characters 

and 38 ingroup taxa including the new Canadian species described here. Murray et al. (2022) 

used only a single outgroup, the extant aulopiform Trachinocephalus, in their analysis in order to 

recover a monophyletic Enchodontoidei in contrast to other authors (e.g. Alvarado-Ortega and 

Díaz-Cruz, 2020) who included three outgroups (with the addition of the stomiiform 

Protostomias and the probable myctophiform Sardinioides) which resulted in a paraphyletic 

Enchodontoidei in those analyses. Murray et al. (2022:fig. 7) did not recover a monophyletic 

Dercetidae, instead recovering the species normally placed in this family in a huge polytomy 

with other enchodontoids. Therefore, I here ran two analyses, the first (A) with three outgroups 

(Protostomias, Sardinioides and Trachinocephalus) and the second analysis (B) with a single 

outgroup (Trachinocephalus). Following previous studies, other Cretaceous aulopiform fishes 

that are poorly or incompletely preserved including Calypsoichthys, Kwangodercetis, 

Paradercetis, Leccedercetis, Scandiadercetis, Ornatipholis, Ursichthys, and Stratodus were 

excluded from the matrix, although potential dercetids (Kwangodercetis, Paradercetis, 

Leccedercetis, Scandiadercetis and Stratodus) are considered as comparative species in the 

diagnosis of the new taxon. All characters are unordered and of equal weight. I performed a 

maximum parsimony analysis in TNT 1.5 (Goloboff and Catalano, 2016) with the addition of 

data for D. magnificus sp. nov. (Appendix A.1). The most parsimonious trees were recovered 

from an heuristic (traditional) search using the tree bisection and reconnection (TBR) swapping 

algorithm with 1 random seed per 1000 replicates. The strict consensus tree was recovered from 

all of the most parsimonious trees. The consistency (CI) and retention (RI) indices were 
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calculated in Mesquite ver. 3.6 (Maddison and Maddison, 2018). Bootstrap and Bremer support 

values were calculated in TNT 1.5 (Goloboff and Catalano, 2016). 

 

2.2.2 Institutional Abbreviations 

TMP, Royal Tyrrell Museum of Palaeontology, Drumheller, Alberta, Canada; UALVP, 

University of Alberta Laboratory for Vertebrate Palaeontology, Edmonton, Alberta, Canada. 

 

2.2.3 Anatomical Abbreviations 

aa, anguloarticular; brst, branchiostegal rays; c, centrum; den, dentary; ect, 

ectopterygoid; end, endopterygoid; epn, epineural; epo, epioccipital; exo, exoocipital, f, frontal; 

hyo, hyomandibula; in, intercalar; lac, lacrimal; lp, lateral process; mes, mesethmoid; met, 

metapterygoid; mp, median process; mx, maxilla; na, neural arch, ns; neural spine; op, opercle, 

pa, parietal; pal, palatine; pcf, pectoral fin ray; pvf, pelvic fin ray; pop, preopercle; pto, pterotic; 

ptt, posttemporal; q, quadrate; scl, sclerotic ring; sph, sphenotic; soc, supraoccipital; sym, 

symplectic; tps, transverse process 

 

2.3 Systematic Palaeontology 

 

Division TELEOSTEI Müller, 1845 

Subdivision NEOTELEOSTEI Nelson, 1969 

Order AULOPIFORMES Rosen, 1973 

Suborder ENCHODONTOIDEI sensu Nelson, 1994 

Family DERCETIDAE Woodward, 1901 
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Genus DERCETIS Münster and Agassiz, 1834 

Included species (following Taverne, 2005)—The type species Dercetis elongatus 

Agassiz, 1835 from the Turonian of England, and Dercetis triqueter Pictet, 1850 from the Upper 

Senonian of Lebanon. 

‘Dercetis’ reussi, ‘D.’ latiscutatus, and ‘D.’ maximus are excluded from Dercetis due to 

the incompleteness of the available material; they are left as genus incertae sedis. However, these 

taxa are clearly different from the new species described here, in that ‘D.’ maximus possesses 

multiple spiny projections on the neural arches (Woodward, 1903:pl. xv, fig. 2), and ‘D.’ reussi 

has a first abdominal centrum that is not extremely elongated (Fritsch, 1878:pl. ii, fig. 8; 

Taverne, 2005).  ‘Dercetis’ latiscutatus is too fragmentary to compare the osteological details 

with the new taxon, and it was left unassigned by Taverne (2005), therefore, it is also left as 

incertae sedis in this study and not used in the comparisons. As noted in the Introduction, ‘D.’ 

congolensis is probably better placed in Cyranichthys, however it can also be distinguished from 

the new species by the frontal being narrower in front of the sphenotic. (Casier, 1965:fig. 7).  

 

DERCETIS MAGNIFICUS sp. nov. 

(Figs. 2-2 to 2-9) 

 

Type Material—Holotype TMP 2001.042.0017, an incomplete specimen of a large 

individual with a slightly distorted skull and the anterior 15 vertebrae, and the posterior portion 

of the axial skeleton with at least 35 vertebrae preserved (Fig. 2-2). Paratype TMP 

2017.021.0001a, b, c and d, four blocks of an incomplete specimen of a large individual (Figs. 2-
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4, 2-5). The blocks contain a well-preserved skull roof and occipital region, jaws, vertebrae, 

median and paired fins, and dermal scutes. 

Type Locality and Age— Bearpaw Formation in the valley of the St. Mary’s River, 

south of Lethbridge, Canada, upper Campanian (Upper Cretaceous).  

Etymology— From Latin word ‘magnificus’ (splendid, magnificent), in reference to the 

larger body size of the new species and the robust hyomandibula compared to other known 

species.  

Diagnosis—The new species is included in the genus Dercetis based on the moderately 

elongate rostrum having a lower jaw slightly shorter than the upper jaw, mesethmoid anteriorly 

bifurcated and posteriorly acute, parietals not separated by the supraoccipital (medio-parietal 

skull), toothed premaxilla with an ascending process at the anterior end, toothed maxilla bulging 

anteriorly into the articular process for the premaxilla, axial skeleton with triradiate dermal 

scutes and vertebrae having a single pair of transverse processes. The new species is distingished 

from the currently valid species, D. elongatus and D. triqueter, by the parietal having a posterior 

margin extending beyond the supraoccipital, the maxilla tapering towards the posterior end, the 

maxilla bearing multiple tooth rows, the hyomandibula having an elongate anterior limb, and the 

very reduced neural spines with blunt tips. 

Further differs from D. triqueter, but not D. elongates, by the first abdominal centrum 

being three times longer than deep, the lower jaw slightly shorter than the upper, and the dentary 

and scutes ornamented (in D. triqueter the first abdominal centrum is twice as long as deep, the 

lower jaw is equal in length to the upper, and the dentary and scutes without ornamentation; 

Woodward, 1901; Taverne, 2005). Further differs from D. elongatus, but resembles D. triqueter,  

in having a premaxilla that possesses larger teeth in more than one tooth row, whereas D. 
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elongatus has smaller teeth in a single tooth row (Taverne, 2005; Taverne and Goolaerts, 

2015:fig. 3, 5).  

 

2.4 Description 

2.4.1 General remarks 

The new species is much larger than any other species of Dercetis and even larger than 

any previously reported dercetids. The holotype (TMP 2001.042.0017a and b) and paratype 

(TMP 2017.021.0001a-d) are incomplete fish, both missing the caudal region, and therefore, 

standard length and total length cannot be measured directly from the fossils. However, based on 

the preserved portion of the skeleton, it is estimated that the living fish would have been more 

than one meter long. The fish has a shallow, elongate head and body with reduced neural spines 

on the vertebrae, similar to other dercetids.  

The head length (HL) of the holotype (TMP 2001.042.0017) measured from the rostrum 

tip to the posterior margin of the preserved portion of the operculum is 332 mm. The head depth 

is 75.4 mm which is 22.7% of HL. The preorbital length is 160 mm (48.2% HL). In TMP 

2001.042.0017a, the first block of the holotype, the anteriormost abdominal centrum is 31.2 mm 

and is about two times longer than the 15th centum, the posteriormost centrum in this block, 

which is 14.8 mm. The paratype (TMP 2017.021.0001) is slightly smaller than the holotype, with 

the head length being 275 mm. The head depth and preorbital length are difficult to determine 

due to their fragmentary condition of the skull. The average length of the centra is 20 ± 2 mm 

with the largest anterior centrum measuring 25 mm.  

 

2.4.2 Skull roof 
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The skull in both specimens is exposed in dorsal view and preserves most of the elements 

(Figs. 2-3, 2-4). The frontal is elongate and the largest bone of the skull roof. The anterior half is 

triangular and tapered towards the anterior end. The posterior half is almost a trapezoid shape 

that expands laterally above the sphenotic and posteriorly contacts the parietal with a large 

interdigitating suture. The contact between the right and left frontals is a slightly sinuous suture, 

which ends where the posterior end of the mesethmoid inserts between the anterior portions of 

both frontals. The lateral edge of the frontal expands slightly above the orbit and contacts the 

lacrimal anterior to the orbit. The bone surface is highly ornamented, especially in the center of 

ossification, where the multiple striations with tubercles radiate out and extend to each end of the 

bone. 

The parietal (Figs. 2-3, 2-4) is antero-posteriorly short and subtriangular in shape. The 

posterior edge extends beyond the occipital region and contacts the pterotic posterolaterally. The 

suture between the left and right parietals is interdigitating, although the notches are shallower 

than those of the suture between the frontal and parietal. The left and right parietals meet in the 

midline and are not separated by the supraoccipital, forming a medio-parietal skull. Striations 

and tuberculation are also observed on the bone surface, and the posterior edge is extensively 

ornamented with multiple rows of tubercles.  

The pterotic (Figs. 2-3, 2-4) is elongated and extends posteriorly beyond the occiput. The 

posterior end also reaches past the parietal and projects beyond the supraoccipital. 

Dorsolaterally, the pterotic abuts the frontal and parietal, and the anterior end contacts the 

posterior expansion of the frontal. The holotype preserves the anteroventral portion of the 

pterotic that overlaps the partially preserved sphenotic. The posterior half is ornamented with 

more striations than the anterior half.  
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The mesethmoid (Fig. 2-3, 2-4, 2-6) is a single, median, elongate bone inserted between 

the left and right frontals. The anterior end has semicircular lateral projections, forming a 

bifurcated shape (Fig. 2-6). The paratype only preserves the partial anterior end, in which the 

bifurcation is observable by its impression. The posterior end is fragmented in both the holotype 

and the paratype, but the shape can be inferred by its contact with the frontals, which indicates 

that the bone has an acute posterior end. The bone surface is also covered by longitudinal 

striations. 

 

2.4.3 Orbital region 

The orbit is partially preserved in the holotype (Fig. 2-3). Very thin lamellar bones, 

identified as remains of the sclerotic ring, surround the orbit. The right lacrimal is also partially 

preserved and more or less trapezoidal in shape. The external surface of the lacrimal is highly 

ornamented with small ridges that resemble the patterning of the skull roof. The left lacrimal is 

attached to the lateral edge of the left frontal, although most of it is missing. The sphenotic is 

well preserved in TMP2017.021.0001a, and exposed in dorsal view. The sphenotic is smooth and 

projects laterally underneath the frontals. In the holotype, the right sphenotic is partially visible 

below the anterior end of the pterotic. The lacrimal is partially preserved and placed anterior to 

the orbit. The surface is highly ornamented with striations. Other infraorbital series are well 

preserved, with only fragments visible near the sclerotic ring of the holotype.  

 

2.4.4 Upper jaws 

The upper jaw is slightly longer than the lower and consists of a slender maxilla and a 

robust premaxilla. The right maxilla is exposed in lateral view in the holotype (Fig. 2-3) and the 
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left maxilla is preserved in ventral view in the paratype (Fig. 2-4). Overall, the bone is thin and 

elongated, expands anteriorly to form the anterior articulation for the premaxilla, and tapers 

towards the posterior end. The surface of the bone is not ornamented. There are at least three 

tooth rows visible on the left maxilla of TMP2017.021.0001a (paratype). Maxillary teeth are 

slender, slightly curved with acrodin caps on the tip, and smaller than premaxillary teeth. 

The premaxilla (Figs. 2-3, 2-4) is a robust triangular bone that extends for almost half the 

length of the skull. The bone tapers towards the anterior end, which then becomes slightly 

expanded and forms an ascending process that attaches to the mesethmoid medially. The bone 

surface bears multiple striations, especially around the anterior end. There is a long longitudinal 

ridge along the midline of the bone, with a small triangular notch at the termination of the ridge 

located posterior to the anterior expansion of the mesethmoid. The ridge extends posteriorly to 

the point where the anterior process of the maxilla enters the gape and overlaps the premaxilla. 

Premaxillary teeth are conical and slightly curved, with multiple tooth rows confirmed in the CT 

image (Appendix A.3). 

 

2.4.5 Mandible 

The mandible (Figs. 2-3, 2-4) is well-preserved in the holotype and partially preserved in 

the paratype, and consists of a long slender dentary and a large triangular anguloarticular. The 

posterior end of the upper limb of the dentary extends nearly to the posterior end of the 

mandible, whereas the anterior end tapers anteriorly and ends slightly behind the anterior tip of 

the rostrum. There are at least five tooth rows on the dentary with many small teeth; the second 

lateral tooth row bears a smaller number of large teeth. All teeth are slightly curved posteriorly. 

The mandibular sensory canal, visible in the CT image, shows its partially open condition, with 
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the canal enclosed in the dentary but open in the angular. The anterior tip of the dentary bulges 

slightly ventrally, and presumably forms a mandibular symphysis.  

The anguloarticular (Figs. 2-3, 2-4) is long, smooth, and shaped almost like an isosceles 

triangle, tapering towards the articular facet with the dentary. The bone has a shallow articular 

facet for the quadrate. A groove running along the lateral face of the anguloarticular demarcates 

a slender dorsal portion and broad ventral region (visible on TMP2017.0021.0001a). Specimen 

TMP2017.0021.0001a also preserves a small triangular left retroarticular that articulates with the 

posterior end of the anguloarticular. 

 

2.4.6 Hyopalatine bones and branchial arches 

The hyopalatine bones are well preserved in the holotype (Fig. 2-3, 2-7). The 

hyomandibula in lateral view presents a well-developed anterior head with minute striations 

presumably for muscle attachment (Fig. 2-7). The bone bends into a vertical orientation below 

the pterotic. A groove runs along the posterodorsal surface of the hyomandibula, which divides 

the bone into the articular facet for the opercle and the body of the hyomandibula that overlaps a 

small symplectic ventrally. The symplectic is narrow and covered dorsally by the hyomandibula, 

and the ventral end articulates with the quadrate. The quadrate is fan-shaped and contacts the 

anguloarticular anteriorly. 

The palatine (Fig. 2-3) is a broad triangular bone covering almost the entire roof of the 

mouth in the preorbital portion and tapering towards the anterior end. The bone is slightly 

concave with a smooth dorsal surface. The ventral surface bears multiple tooth rows comprising 

teeth of various sizes. The articulation of the posterior end of the palatine with the anterior end of 

the ectopterygoid is posterior to the level of the lacrimal. The ectopterygoid is a narrow, flat bone 
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that is angled and expanded below the orbit. The bone bears minute striations externally and a 

single tooth row internally. The endopterygoid is exposed laterally in the paratype and partially 

visible in the CT image of the holotype (Appendix A.4). It is broader than the ectopterygoid and 

expands posteriorly, almost reaching the quadrate. The posteroventral portion of the 

endopterygoid seems to be thinner and is not visible in the CT image. The presence of teeth also 

cannot not be confirmed because of the resolution of the CT image. The thin, triangular 

metapterygoid is exposed laterally in the holotype, and overlaps the endopterygoid externally. 

Only the dorsal portion is visible in the CT image, due to poor resolution. 

There are five left branchiostegal rays visible in the paratype. The most ventral 

branchiostegal ray appears shorter than the others, but this may be due to preservation. All 

branchiostegal rays are thin and preserved ventral to the preopercle and the pectoral fin. 

 

2.4.7 Occipital region 

The occipital region in the paratype (Fig. 2-4) is better preserved than that of the 

holptype. The supraoccipital is a small bone with a very reduced crest, and it does not separate 

the parietals. The epioccipitals are located posterolateral to the supraoccipital and dorsal to the 

exoccipitals. The intercalars are positioned lateral to the exoccipitals. There are small spaces 

between the epioccipitals and intercalars, probably due to the fragmentary condition of the 

bones. The posttemporal fossa is not visible and so presumably is covered by the pterotic. The 

basioccipital is present, but the details of the morphology could not be examined due to poor 

resolution of the CT images. 

 

2.4.8. Opercular bones 
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The opercular series is composed of a preopercle, opercle, subopercle and interopercle, 

all of which are preserved in the holotype (Fig. 2-3). The preopercle is well preserved in both the 

holotype and paratype (Figs. 2-3, 2-4).  The vertical limb is elongated dorsally and extends along 

the ventral third of the hyomandibula, whereas the ventral limb projects anteriorly, forming a 

right angle with the dorsal limb. The details of a sensory canal on the preopercle are visible on 

the paratype, with many small sensory pores opening along the canal. The opercle is represented 

with only by the remains of the ventral portion of the bone, which contacts the subopercle. The 

interopercle is partially preserved between the preopercle, opercle and subopercle on the 

holotype. All bones of the opercular series are smooth and unornamented. 

 

2.4.9. Vertebral column 

Both the holotype and paratype preserve an incomplete series of vertebrae (Figs. 2-2, 2-5, 

2-8). The first 15 abdominal vertebrae are well preserved in the first block of the holotype (TMP 

2001.042.0017a), which also shows the detailed morphology of the unique neural arches and 

spines (Fig. 2-8). The neural arch extends from the anterior to the posterior ends of the centrum, 

and both the anterior and posterior ends project dorsally. There are minute pits on the lateral 

surface of the neural arches. The neural spine is not well developed and forms a blunt projection 

at the posterior end of the neural arch. The blunt and pitted nature of the neural arches of the 

holotype is confirmed in specimen TMP2017.0021.0001a (anterior part of the paratype), in 

which the area of the partial scutes is preserved. In more posterior vertebrae, the neural arch 

becomes smooth with no pits on the surface. The centrum is longer than high; this is particularly 

the case for the first centrum, which is almost three times as long as it is high. Centra are smooth 
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in texture in the anterior abdominal vertebral column, whereas minute striations can be seen on 

the centra in the posterior part of the vertebral column.  

A single, broad, transverse process projects from each centrum, and there is a small ridge 

in the middle of the process. Ribs are thin and attached to each process, although the rib 

articulation is only preserved in the anterior few vertebrae of the holotype. Several intermuscular 

bones identified as epineurals are well-developed and cover the vertebrae dorsally. Each 

epineural is thin, elongate and rod-like, overlapping the one behind. The epineurals cover almost 

the entire length of the preserved axial skeleton of the holotype and paratype except for some 

fragmentary blocks of isolated posterior vertebrae where they are absent or not preserved.  

 

2.4.10 Fins and girdles 

Fins and girdles are better preserved in the paratype (TMP 2017.021.0001). The pectoral 

girdle is not well preserved except for the left posttemporal, which is triangular and ornamented 

on the external surface. The left pectoral fin (Fig. 2-4) is partially preserved in lateral view in the 

first block of the paratype with the skull elements. A single unbranched fin ray and at least five 

branched rays are visible below the subopercle. The unbranched ray is unsegmented and appears 

smooth on its surface, whereas the branched rays show multiple segmentations, particularly on 

the posterior edge. 

The segmentation is more prominent in the pelvic fin, which is composed of eight rays 

preserved together with the partial right lateral process of the pelvic girdle found in the posterior 

block of the paratype (TMP 2017.021.0001c; Fig. 2-9). The position of the pelvic girdles and 

fins is not clear, except that they are located farther posteriorly than the pectoral fins. The 

preserved portion of the pelvic girdle shows the paired median process (sensu Sato and Nakabo, 
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2002) where the right and left posterior portions meet at the midline. The left lateral process is 

more fragmentary than the right and the fin rays are not fully preserved (Fig. 2-9).  

Dorsal fin rays are not well preserved in either specimens, and are obscured by a covering 

of fragmentary dorsolateral dermal scutes in the paratype (Fig. 2-5). Thin bundles of bones on 

top of the neural arch in TMP2017.021.0001a (anterior  block of paratype) are identified as 

epineurals rather than dorsal fin rays because they are unsegmented and covered by scutes. The 

dorsal pterygiophores cannot be identified due to the fragmentary condition of the specimen. 

Anal fin rays are preserved but scattered on TMP2017.021.0001c (posterior block of paratype). 

Although the total number is difficult to determine, both unbranched and branched fin elements 

are present. 

 

2.4.11 Dermal scutes 

Several triradiate dermal scutes are prominently preserved in the paratype (Fig. 2-5). The 

holotype preserves a tiny fragment of a dorsolateral scute in the anterior block, and the posterior 

block preserves a series of small triradiate scutes along the dorsolateral and ventrolateral 

surfaces. TMP2017.021.0001b (the second block of the paratype) shows large, well-preserved, 

triradiate lateral scutes and a couple of fragmentary dorsolateral scutes; these latter seem to have 

a different shape from those dorsal to the neural arches in the first block of the paratype 

(TMP2017.021.0001a). The triradiate lateral scutes are highly ornamented on the external 

surface with ridges and tubercles. In addition to that ornamentation, there is a prominent median 

ridge running along the midline from the anterior to the posterior end of the scute, making the 

ornamentation dorsoventrally symmetrical. The inner surface of each scute is smooth and 

concave due to the median ridge projecting from the external side. The dorsolateral scutes dorsal 
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to the neural arches also bear minute tubercles, but no ridges. The tubercles are smaller than 

those on the triradiate scutes, and the tubercles cover the surface almost up to the edges, whereas 

the tubercles on the triradiate lateral scutes do not reach the edges of the scutes. The number of 

rows of scutes is not completely clear, but there would have been at least two rows of scutes on 

each flank.  

 

2.5 Results of the phylogenetic analysis 

The heuristic analysis using three outgroups (analysis A: following e.g., Alvarado-Ortega 

and Díaz-Cruz, 2020) recovered 12 most parsimonious trees (MPTs), each with a length of 501 

steps. The strict consensus of these trees was recovered with a consistency index (CI) of 0.1698 

and retention index (RI) of 0.3818 (Fig. 11-1). On the other hand, the heuristic analysis using a 

single outgroup (analysis B: following Murray et al., 2022) recovered two MPTs. The strict 

consensus of the two MPTs of treelength 469 was recovered with CI of 0.2229 and RI of 0.5306. 

In both analyses, Dercetis magnificus sp. nov. was placed within a clade that includes 

(Pelargorhynchus + (D. magnificus sp. nov. + (D. elongatus + D. triqueter))), therefore D. 

magnificus sp. nov. is the sister to the other valid species of Dercetis.  

In analysis A, most of the dercetid taxa are part of a large polytomy and monophyly of 

Dercetidae is not supported (Fig. 2-10). Only a clade of (Hastichthys gracilis + H. totonacus) 

was supported by a bootstrap value >50%, but the placement of the rest of the taxa was not 

strongly supported. Analysis B recovered a clade which is mostly composed of dercetid taxa, but 

it also included Nardorex and Spinasctutichthys, which were not previously placed in the 

Dercetidae (Fig. 2-11). In analysis B, the clade (D. magnificus sp. nov. + (D. elongatus + D. 

triqueter)) was united by three characters [10:1—anterior end of mesethmoid bifid; 37:1—
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ascending process of the premaxilla present; 43:1—mandible teeth only curved]. 

Pelargorhynchus was recovered as sister to the Dercetis clade, and the clade (Pelargorhynchus + 

(D. magnificus sp. nov. + (D. elongatus + D. triquester))) was supported by several characters 

[4:1—skull roof ornamented with tubercles and ridges; 16:1—parietals short, 35:1—premaxilla 

ornamented; 45:1—equal tooth size on mandible; 50:1—mandible ornamented].  

 

2.6 Discussion 

2.6.1 Phylogeny 

The difference in the results of the two analyses A and B is not only the consistency and 

retention indices but also the resolution and number of recovered monophyletic clades. I here 

focus on analysis B, which used the single outgroup Trachinocephalus, because this analysis 

found Dercetis magnificus sp. nov. to be grouped with members of Dercetidae, and that clade 

was recovered as monophyletic as in previous studies (e.g. Silva and Gallo, 2011; Vernygora et 

al., 2017; Alvarado-Ortega and Díaz-Cruz, 2020). Vernygora et al. (2017) suggested that 

Dercetidae is supported by a single synapomorphy, reduced neural spines (character 71), whereas 

the Implied Weighted Maximum Parsimony Analysis by Alvarado-Ortega and Díaz-Cruz (2020) 

found that the reduced neural spines may be a homoplastic condition although the monophyly of 

the family was supported by the Bayesian Inference analysis by the same authors. Unlike 

previous studies, analysis B did not recover a monophyletic family Dercetidae but instead 

recovered a clade with inclusion of Nardorex and Spinascutichthys (Fig. 2-11). Here I tentatively 

retain the family Dercetidae as a paraphyletic group, pending the more comprehensive review of 

current data matrices presented in the next chapter. 
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2.6.2 Temporal and geographic distributions 

Dercetis magnificus sp. nov. is the first well-preserved Dercetis reported from Canada. 

The type species of the genus, D. elongatus, was found in the Turonian of England and the 

Campanian of Germany (Woodward, 1901; von der Marck, 1873), and the other species, D. 

triqueter, was reported from the Senonian of Lebanon and the Maastrichtian of Belgium and the 

Netherlands (Pictet, 1850; Tavern and Goolaerts, 2015).  

Specimens possibly belonging to Dercetis have been reported from the Turonian of 

Czech Republic (Ekrt et al., 2008), the Turonian of Mexico (Alvarado-Ortega et al., 2020), and 

the Campanian of Canada (Wilson and Bruner, 2004). Both the Czech and Mexican specimens 

are quite small, with a head length of 30-50 mm, and the details of the cranial features cannot be 

fully compared to D. magnificus sp. nov. due to the nature of the preservation (Ekrt et al., 2008; 

Alvarado-Ortega et al., 2020). The other Canadian specimen was reported from the Bearpaw 

Formation of Lethbridge, Alberta, with no specimen number given (Wilson and Bruner, 2004), 

but I believe the specimen is UALVP 45921. UALVP 45921 is a three-dimensionally preserved 

partial skull roof and braincase, the length of the preserved portion of the skull being about 137 

mm. The overall morphology of the skull roof and the pattern of the striations and tubercules on 

the bone surface is very similar to D. magnificus sp. nov. I here assign UALVP 45921 to D. 

magnificus sp. nov. not only because the skull is morphologically similar, but also because it was 

collected from the same area and formation. 

In sum, the occurrence of the genus Dercetis is currently limited to the Late Cretaceous, 

and more specimens have been reported from the eastern Tethys (Europe, Lebanon) than the 

west area of the Tethys (Mexico, Canada). From the WIS, D. magnificus is the only reported 
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species of the genus Dercetis, and is represented by both large (TMP2001.042.0017 and 

TMP2017.021.0001) and small (UALVP 45921) individuals. 

 

2.6.3 Body size 

The body size of the previously reported specimens of Dercetis was no larger than 60 cm. 

Dercetis elongatus was estimated by Woodward (1901) to probably attain 60 cm, although the 

specimens were not complete. The complete specimens of D. triqueter were reported to be 20 to 

30 cm in total length (Woodward, 1901; Goody, 1969). Although the total length of D. 

magnificus sp. nov. cannot be measured, the length from the anterior tip of the rostrum to the 

posterior end of the 15th vertebrae of the holotype is about 57 cm, which indicates this fish had a 

much larger body size than any specimens that were previously reported. 

The size of the new species indicates that at least some dercetids had the potential to 

reach a larger body sizes. There are several enchodontoids that can reach about 1-2 meters, such 

as Enchodus, Cimolichthys, and Stratodus (Michaut, 2012; Everhart, 2017). Especially, 

Enchodus shows various body sizes, encompassing both the larger species E. petrosus (estimated 

standard length (SL) > 1 m) and the smaller species E. marchesettii (SL < 18 cm) (Goody, 1969; 

Everhart, 2017). The deposits of the WIS, including the Bearpaw Formation, comprise sediments 

corresponding to an open marine environment where large fishes could survive. Although more 

materials are needed to investigate the growth series of dercetids, the new species expands our 

knowledge of size variation in Dercetis and other dercetid fishes. 

 

2.7 Conclusion 
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The two new specimens (TMP 2001.042.0017 and TMP 2017.021.0001) were assigned 

to the new species of the genus Dercetis based on the observation of morphology and the internal 

anatomy provided by the CT image. The result of morphological phylogenetic analysis also 

supported the placement of the new species as a sister to the two species of Dercetis, D. 

elongatus and D. triqueter, which are currently valid as species of Dercetis defined by Taverne 

(2005). The reports of the genus Dercetis from the western area of the Tethys and the WIS were 

limited to a very small individual from Mexico (Alvarado-Ortega et al., 2020) and an incomplete 

braincase from Alberta, Canada (Wilson and Bruner, 2004), so the two new specimens provided 

the first detailed description of the species of Dercetis found in the western side of the Tethys. 

The incomplete specimen reported by Wilson and Bruner (2004) was also assigned to the same 

species to the newly described specimens based on the morphology of the skull roof. Finally, the 

two new specimens were larger than the any other previously reported Dercetis, which show a 

potential to attain the larger body size in the genus Dercetis and dercetids. 
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Table 2-1. A list of species have been placed in the genera Dercetis, Leptotrachelus, and 

Benthesikyme and the current taxonomy. 
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FIGURE 2-1. Location map of the locality. A, Drawing of the WIS during the late Campanian, 

modified from Scotese (2014). The box indicates the southern area of Alberta. B, Geological 

map of southern Alberta with the locality (Korite Mine) and the Bearpaw Formation, modified 

from Prior et al. (2013). 
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FIGURE 2-2. The two blocks of TMP2001.042.0017. A, TMP2001.042.0017a, anterior block of 

the holotype. B, TMP2001.042.0017b, the posterior block of the holotype. The scale bar = 5 cm. 
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FIGURE 2-3. A, The dorsolateral view of the skull of the holotype (TMP2001.042.0017a). B, 

The interpretation of the skull of the holotype (TMP2001.042.0017a). The scale bar = 5 cm. 
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FIGURE 2-4. The dorsal view of the skull portion on the TMP2017.021.0001a (the first block of 

the paratype). The scale bar = 5 cm.  
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FIGURE 2-5. The four blocks of the TMP2017.021.0001a-d. A, The vertebrae and scutes on the 

first block (TMP2017.021.0001a—the skull on the same block is in figure 2-4). B, The triradiate 

lateral scutes and scattered fin rays on the second block (TMP2017.021.0001b). C, The posterior 

abdominal vertebrae and the pelvic fins on the third block (TMP2017.021.0001c). D, The broad 

expansion of transverse processes on the fourth block (TMP2017.021.0001d). The all scale bars 

= 5 cm. 
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FIGURE 2-6. A, The anterior end of the mesethmoid of the holotype (TMP2001.042.0017) 

showing the bifid extremity. B, The reconstructed skull roof from the CT image with the 

mesethmoid (pink), frontals (blue), and partial parietals (green). Anterior is to the left. The scale 

bar = 1 cm. 
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FIGURE 2-7. A, The left hyomandibula of the holotype (TMP2001.042.0017a) is outlined with 

the white line. B, The same left hyomandibula reconstructed from the CT image. The scale bar = 

2 cm. 
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FIGURE 2-8. The third, fourth, and fifth anterior abdominal vertebrae of the holotype 

(TMP2001.042.0017a). The fourth vertebra is outlined with white line to show the blunt neural 

spine. Anterior is to the right The scale bar = 2 cm. 

  



 56 

 

FIGURE 2-9. The pelvic girdle and fin rays on the TMP2017.021.0001c. Anterior to the right. 

The scale bars = 2 cm. 
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FIGURE 2-10. The results of phylogenetic analysis (A) of the enchodontoids with Dercetis 

magnificus sp. nov. Three outgroups (Protostomias, Sardinioides, and Trachinocephalus) were 

used. The strict consensus of 12 most parsimonious trees (MPTs) of treelength 501 (CI = 0.1698, 

RI = 0.3818). Values at the node indicates Bremer/Bootstrap (>50%) values. Taxa that 

previously have been assigned to Dercetidae are highlighted in color. 
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FIGURE 2-11. The result of phylogenetic analysis (B) of the enchodontoids with Dercetis 

magnificus sp. nov. A single outgroup (Trachinocephalus) was used. The strict consensus of 2 

most parsimonious trees (MPTs) of treelength 469 (CI = 0.2229, RI = 0.5313). Values at the 

node indicates Bremer/Bootstrap (>50%) values. Taxa that previously have been assigned to 

Dercetidae are highlighted in color. 
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Chapter 3: Phylogeny of the Enchodontoidei 

 

3.1 Introduction 

Enchodontoids have been studied by many authors since the early 20th century (e.g. 

Woodward, 1901; Berg, 1940; Arambourg, 1954; Goody, 1969), although most of these studies 

focused on descriptive work with only a few on phylogenetic relationships until recently. The 

placement of the group within the wider diversity of teleosts was often based on the overall 

similarities of the body form and the skull morphology and this resulted in many different 

assignments of the group by different authors. For example, Woodward (1901, 1903) suggested a 

potential relationship between his family Enchodontidae, such as Apateodus and Enchodus, and 

the living alepisaurids, such as lancetfish (Alepisaurus) and sabertooth fish (Evermannella), but 

he considered the family Dercetidae to be related to the living members of Notacanthiformes 

(deep-sea eel-shaped fishes) rather than to alepisaurid fishes. In contrast, Goody (1969) placed 

all the enchodontoid fishes in the order Salmoniformes based on superficial morphological 

features, such as an elongate body and a toothed maxilla. Although both studies included detailed 

descriptive work, the taxonomy was not based on the synapomorphies and was not explicitly 

tested. 

Rosen (1973) first attempted to examine the phylogenetic relationships of enchodontoids 

with extant members of the Aulopiformes, the order he erected in the same work (Rosen, 1973), 

and placed fifteen fossil taxa (Ichthyotringa, Apadeodus, Apateopholis, Cimolichthys, Dercetis, 

Rhynchodercetis, Pelargochynchus, ‘Prionolepis’, Enchodus, Palaeolucus, Eurypholis, 

Saurorhamphus, Halec, Phylactocephalus, Hemisaurida) as basal members of his suborder 

Alepisauroidei, alongside the extant superfamilies Alepisauroidea and Synodontoidea [although 
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the current understanding of the Alepisauroidei does not include Rosen’s (1973) Synodontoidea 

except the family Giganturidae (Davis, 2010; Nelson, 2016)]. Rosen (1973) also proposed that 

two other incertae sedis taxa, Sardinius and Volcichthys, were primitive members of his 

Synodontoidea. The 59 character states Rosen constructed (1973:tables 1-4) were based on 

Goody’s (1969) work and were used to summarize the features of fifteen enchodontoids, but no 

parsimony analysis was performed nor were the relationships tested (Rosen, 1973:tables 1-4). 

Several subsequent phylogenetic studies of Aulopiformes mainly focused on the extant 

taxa. Baldwin and Johnson (1996) conducted a comprehensive parsimony analysis of 43 extant 

aulopiform genera with 118 morphological characters that included the detailed features of the 

branchial arches and supported monophyly of the order. The monophyly of the Aulopiformes 

was also supported by Sato and Nakabo (2002) who integrated the previous studies of extant 

aulopiforms (e.g., Johnson, 1982; Okiyama, 1984, 1988; Baldwin and Johnson, 1996) and tested 

their relationships with a modified dataset containing 101 characters. Finally, Davis (2010) 

performed a molecular and total evidence analysis with 139 morphological characters from the 

previous studies and DNA data, and suggested that monophyly of the Aulopiformes was strongly 

supported. In this thesis, I use the classification of Nelson et al. (2016), which follows the 

analysis of Davis (2010), for the interrelationships among the extant families. 

The systematics of the extinct taxa, on the other hand, were discussed by several authors, 

but many studies focused on limited numbers of species or groups (Chalifa, 1989a, b; Taverne, 

1991; Fielitz, 2004; Gallo et al., 2005). Chalifa (1989a) described two genera, Yabrudichthys and 

Serrilepis, and placed them in the Enchodontoidei based on several synapomorphies, such as a 

long, strut-like maxilla and reduced supramaxilla, although this placement was not tested. 

Chalifa (1989b) also examined the family Dercetidae from the phylogenetic point of view with 
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the proposed interrelationships of four genera (Dercetis, Pelargorhynchus, Dercetoides, 

Rhynchodercetis) based on fifteen characters. Taverne (1991) followed Chalifa‘s (1989) study 

and constructed 33 ‘primitive’ characters and 40 derived character states to determine dercetid 

phylogeny. Neither Chalifa (1989b) nor Taverne (1991) performed a parsimony analysis, but the 

characters they constructed were carried over in later phylogenetic studies. 

Gallo et al. (2005) first attempted a parsimony analysis of the Dercetidae with new and 

modified characters from Chalifa (1989b) and Taverne (1991). A total of 52 characters and 

thirteen genera (six non-dercetids and seven dercetids) were used to test the monophyly of the 

Dercetidae, which was supported by two synapomorphies, absence of the opercular ridge and 

reduced neural spines (Gallo et al., 2005). However, they included a limited number of other 

enchodontoid fishes because the main focus of the study was the phylogenetic position of the 

Dercetidae. 

Fielitz (2004) conducted a parsimony analysis to investigate the phylogenetic position of 

the family Enchodontidae within the extant aulopiform fishes. He used fifteen enchodontoid 

species and eight species of extant aulopiforms with two extant outgroups (Fielitz, 2004). The 87 

morphological characters he used were constructed based either on those of Baldwin and 

Johnson (1996) or Fielitz (1999). The results suggested that the enchodontoids (Cimolichthys + 

Enchodontidae sensu Fielitz (2004)) had a sister relationship with alepisaurid fishes (Alepisaurus 

and Omosudis), supporting the alepisaurid-enchodontoid hypothesis proposed by Woodward 

(1901) and Rosen (1973). However, none of the members of the Dercetidae was included in this 

study, and thus only the families Enchodontidae and Cimolichthys are currently placed in the 

superfamily Alepisauroidea (Nelson et al., 2016). 
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A more inclusive parsimony analysis of enchodontoids was attempted by Silva and Gallo 

(2011). Their study included 33 enchodontoid genera with three outgroups (the possible 

stomiiform Protostomias, the probable myctophiform Sardinioides, and the aulopiform 

Trachinocephalus) and used 87 characters, of which 21 were new and 66 modified from Chalifa 

(1989b), Taverne (1991), Baldwin and Johnson (1996), Fielitz (2004), and Gallo et al. (2005). 

Enchodontoidei was recovered as a paraphyletic group, although the monophyly of the family 

Enchodontidae was supported by a single synapomorphy, the presence of middorsal scutes, and 

the family Dercetidae was also supported by a single synapomorphy, reduced neural spines 

(Silva and Gallo, 2011). 

Beckett et al. (2017) conducted comparative studies based on the gill morphology of 

some enchodontoids and various extant species, and placed some enchodontoids into different 

extant groups, although the number of examined extinct species was limited to six taxa. They 

placed the genera Halec and Apateodus in the suborder Alepisauroidei, with Halec assigned to 

the family Alepisauridae and Apateodus to the family Paralepididae (Beckett et al., 2017). 

However, the gill structure is often not preserved in the fossil record, and they did not include 

major enchodontoid families such as Enchodontidae and Dercetidae. They also did not used the 

matrix from Silva and Gallo (2011) and some later studies, so the monophyly of the 

Enchodontoidei was not tested (Beckett et al., 2017). 

Based on the character matrix constructed by Silva and Gallo (2011), six more taxa were 

added with several new discoveries (Díaz-Cruz et al., 2016; Vernygora et al., 2017; Díaz-Cruz et 

al., 2019a, b, 2020a; Alvarado-Ortega and Díaz-Cruz, 2020; Murray et al., 2022). In the most 

recent study by Murray et al. (2022), the monophyly of the Enchodontoidei was not tested, but 

the interrelationships among the 36 extinct taxa were examined. Their analysis did not even 
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recover a monophyletic Dercetidae, and the family Enchodontidae was only weakly supported, 

without any unambiguous synapomorphies (Murray et al., 2022). In this chapter, I will assess the 

characters of the existing matrix and test the monophyly of the Enchodontoidei and Dercetidae. 

 

3.2 Materials and Methods 

I will perform two analyses to compare the results generated from a single matrix before 

and after modifications have been applied. The first analysis is done by using the matrix without 

any modification of characters and character states. The second analysis is done by using the 

matrix following modification of some characters and character states.  

The characters assessed are those used in the most updated matrix (Murray et al., 2022; 

see Appendix B.1), consisting of 87 morphological characters originally used by Silva and Gallo 

(2011). The modified character matrix was constructed with Mesquite ver. 3.6 (Maddison and 

Maddison, 2018). Characters were coded for each taxon based on descriptions from the literature 

and personal observation. All characters are unordered and of equal weight. 

A total of 39 ingroup taxa are included in the modified matrix. The additional taxa in this 

study are the new species described in Chapter 2 and the genus Stratodus, which was excluded 

from previous studies. The coding of Stratodus is based on SDSM 81334, comprising a partial 

skull and nearly complete postcranial skeleton. Following Chapter 2, the genus Dercetis is coded 

as two separate species, D. elongatus and D. triqueter. 

The extant aulopiform Trachinocephalus (Synodontoidei) is used as an outgroup. 

Moreover, two more extant aulopiforms, Lestidium (Alepisauroidei), and Lestrolepis 

(Alepisauroidei), are added to test the relationships of extinct and extant Aulopiformes. 

Specimens of those two additional taxa were borrowed from the Kanagawa Prefectural Museum 
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of Natural History, Kanagawa, Japan (Lestidium prolixum—KPM-NI 65354/65355, Lestrolepis 

japonica— KPM-NI 65352/65353) and cleared and stained following the protocol of Taylor and 

Van Dyke (1985). 

Both previously included extinct outgroup taxa, Protostomias and Sardinioides, have 

histories controversial taxonomic histories. The genus Protostomias was traditionally classified 

in the Stomiiformes (Arambourg, 1954). Fink (1985) proposed the exclusion of this genus from 

the Stomiiformes and suggested more systematic work was needed, whereas later Taverne 

(1992) revised the description of Protostomias and retained the genus in the Stomiiformes. On 

the other hand, the placement of the genus Sardinioides is a bit more complicated. Sardinioides 

includes several species reported from Germany, UK, and Lebanon, and the species included in 

the previous studies are the Lebanese species, S. minimus, described and placed in 

Myctophiformes by Goody (1969). Other German and British species were also assigned to 

Myctophiformes until Beckett (2017) placed the British species, S. illustrans, in the 

Aulopiformes based on the synapomorphy found on the gill arch. Rosen (1973) did not assign S. 

minimus (Cassandra minimus) in his comparative study, and thus, the placement of S. minimus is 

not fully understood. Therefore, here I only use probable stomiiform Protostomias for the extinct 

outgroup taxon. 

A maximum parsimony analysis was performed in TNT 1.5 (Goloboff and Catalano, 

2016). The most parsimonious trees were recovered from an heuristic (traditional) search using 

the tree bisection and reconnection (TBR) swapping algorithm with 1 random seed per 1000 

replicates. All of the most parsimonious trees were used to form the strict consensus tree. The 

consistency index (CI) and retention index (RI) were calculated in Mesquite ver. 3.6 (Maddison 
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and Maddison, 2018). Bootstrap and Bremer support values were calculated in TNT 1.5 

(Goloboff and Catalano, 2016). 

 

3.3 Character assessment 

The existing character matrix (Appendix B.1) comprises 87 characters from seven 

different studies (Chalifa, 1989b; Taverne, 1991; Baldwin and Johnson, 1996; Fielitz, 2004; 

Gallo et al., 2005; Silva and Gallo, 2011). The original source of each character is indicated for 

reference. The 87 characters were modified and integrated by Silva and Gallo (2011), and the 

character coding of most of taxa were also done by Silva and Gallo (2011) except the taxa added 

later (Díaz-Cruz et al., 2016; Vernygora et al., 2017; Díaz-Cruz et al., 2019a, b, 2020a; 

Alvarado-Ortega and Díaz-Cruz, 2020; Murray et al., 2022).  

  

3.3.1 Review and comments on each character 

Character 1: Body length: (Chalifa, 1989b; modified by Gallo et al., 2005) 

Body length was used as a classic diagnosis for the Dercetidae that typically have a very 

elongate body (Woodward, 1901). Chalifa (1989b) divided the body length into two conditions, 

very elongate and slightly elongate, to distinguish Dercetidae from Cimolichthys and 

‘Prionolepis,’ and Gallo et al. (2005) later proposed three conditions based on the ratio between 

the depth and the length of the body [0: slightly elongate— body depth to length ratio less than 

or equal to 1:10; 1: elongate—from 1:11 to 1:15; 2: very elongate—higher than 1:15]. However, 

the proportion of the head to standard length is not considered here, although it varies among 

taxa that share the same body length states. For example, both Ichthyotringa and Palaeolycus are 

coded as having an elongate body [1: ratio 1.11 to 1.15], but the head length of Ichthyotringa is 
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more than one-third standard length (Taverne, 2006; Fielitz and González-Rodríguez, 2008), 

whereas the head length of Palaeolycus is less than one-third of standard length (von der Marck, 

1863). Therefore, the character of the ratio between the body depth and length may contain taxa 

that possess different head to body proportion. I do not modify this character here because I 

focus on monophyly of Enchodontoidei and Dercetidae in this thesis, and I do not have access 

the measure the body proportion of each taxon. 

 

Character 2: Head height (Chalifa, 1989b; modified by Gallo et al., 2005) 

The head height, in other words, head depth, was often considered together with the head 

length, and the taxa with elongate heads have often been described as having a shallow head 

(e.g., Woodward, 1901; Goody, 1969). Chalifa (1989b) thought the shallow head is seen in 

dercetids, Cimilichthys, and ‘Prionolepis,’ whereas Gallo et al. (2005) defined a low head ([1] 

the head length more than four times of the greatest height of the head) and a deep head ([0] the 

head length four times or less than the greatest height of the head), and both Cimilichthys, and 

‘Prionolepis’(=Aspidopleurus) were coded as having state 0 [deep head]. From this definition by 

Gallo et al. (2005), all dercetids, Ichthyotringa, Saurorhamphus, and Spinascutichthys possess 

state 1 [low head]. Vegrandichthys, a long-snouted enchodontoid, was coded as state 1 [low 

head] in the existing matrix, but the head depth is less than four times head length (Díaz-Cruz et 

al., 2020a), and so this taxon should be coded as state [deep head] according to the definitions of 

Gallo et al. (2005). 

 

Character 3: Snout length (Taverne, 1991; modified in Gallo et al., 2005) 
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A very elongate snout was thought to be the plesiomorphic condition for dercetids by 

Taverne (1991). Gallo et al. (2005) delimited the long snout as being two times or longer than 

the length of the orbit. The long snout is seen in all dercetids, several enchodontoids, and some 

extant members (Lestidium and Lestrolepis) in this study. However, the proportion of the snout 

length (= preorbital length) to the head length was not considered by Gallo et al. (2005). I leave 

this character with current definition by Gallo et al. (2005) until I have access to actual 

specimens of each taxon for measuring the preorbital length. 

 

Character 4: Dermal pattern on skull roof (Gallo et al., 2005) 

The presence of ornamentation on the skull roof was noted by several authors (e.g., 

Goody, 1969; Chalifa, 1989b), but it was not considered from the phylogenetic point of view. 

Taverne (2006) recognized the smooth condition of the dermal bones is the plesiomorphic state 

of enchodontoids. Gallo et al. (2005) divided the character into four states [0: smooth; 1: only 

with tubercles; 2: only with ridges; 3: tubercles + ridges] but found that the ornamentation 

pattern did not define any clade. The pattern can also vary within the same genus, for example, 

Dercetis triqueter has state 1 [only with tubercles], whereas D. elongatus and D. magnificus sp. 

nov. show state 3 [tubercles + ridges]. Gallo et al. (2005) presumably followed Fielitz (2004) for 

constructing multiple states for ornamentation of the dermal bones, but these were later 

simplified to either ‘smooth’ or ‘ornamented’ for other dermal bones by Silva and Gallo (2011). 

Here, I will modify this character state from four states [0: smooth; 1: only with tubercles; 2: 

only with ridges; 3: tubercles + ridges] to two states [0: smooth; 1: ornamented] to make it 

consistent with character states of other dermal bones. 
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Character 5: Vomerine teeth (Fielitz, 2004) 

Fielitz (2004) pointed out that vomerine teeth are found in Cimolichthys and Eurypholis. 

Taverne (2006) found large teeth on the vomer in Ichthyotringa (although this taxon was coded 

as [0: absent] in the preexisting matrix), and several newly discovered genera of enchodontoids, 

such as Apuliadercetis, Aspidopleurus, Nardorex, and Unicachichthys, were also confirmed to 

possess vomerine teeth (Taverne, 2004; Alvarado-Ortega and Porras-Múzquiz, 2012; Díaz-Cruz 

et al., 2016, 2021).  

 

Character 6: Number of teeth on dermopalatine (Fielitz, 2004) 

Having a single dermopalatine tooth [coded as 2: single] was considered a synapomorphy 

of the family Enchodontidae (seusu Fielitz (2004), including Enchodus, Eurypholis, 

Parenchodus, Rharbichthys, Saurorhamphus), but later studies showed this character does not 

support the clade as currently constituted (Silva and Gallo, 2011; Díaz-Cruz et al., 2016). Only 

Spinascutichthys and Yabrudichthys were confirmed to be lacking the palatal teeth [state 1: 

none], whereas most of the other enchodontoids possess multiple teeth on the palatine [state 0: 

two or more].  

 

Character 7: Dermopalatine length (Fielitz, 2004) 

This character was also constructed by Fielitz (2004) to define his Enchodontidae with 

two states [0: at least twice as long relative to the longest dermopalatine tooth; 1: as long as or 

shorter than the longest dermopalatine tooth]. Silva and Gallo (2011) rephrased these states as [0: 

twice or more times longer than its tooth; 1: equal-sized or shorter than its tooth], although the 

meaning of the character is the same. Enchodus, Eurypholis, Rharbichthys, and Saurorhamphus 
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possess state [1], and irregularly, Ophidercetis, a member of Dercetidae, is also coded as state 

[1]. However, the preservation of the palatine in Ophidercetis (depicted in Taverne, 2005a: fig. 

4) is not good compared to other species, such as Enchodus and Eurypholis, and the character 

coding of Ophidercetis by Silva and Gallo (2011) is not based on the actual observation, so more 

specimens of Ophidercetis and will be needed to truly confirm the length of the dermopalatine.  

 

Character 8: Antorbital (Silva and Gallo, 2011) 

The presence of the antorbital was confirmed in Atolvorator, Candelarhynchus, 

Serrilepis, and Phylactocephalus among the ingroup taxa, but most of the other members are 

coded as missing data. This character varies among the extant aulopiforms according to previous 

studies (Rosen, 1973; Johnson et al., 1996; Sato and Nakabo, 2002) and among the outgroup taxa 

in this study (Trachinocephalus [0: present]; Lestidium and Lestrolepis [1: absent]). 

 

Character 9: Nasal (Silva and Gallo, 2011) 

The presence of the nasal [0] is confirmed only in a few ingroup taxa, Brazilodercetis, 

Hastichthys, Ophidercetis,Rharbichthys, Rhynchodercetis, and Veridagon. Other taxa are either 

lacking the nasal [state 1] or missing data. Atolvorator is also coded as missing data, although the 

original description of the holotype noted the presence of the nasal (Gallo and Coelho, 2008). 

 

Character 10: Anterior extremity of mesethmoid (Taverne 1991) 

The morphology of the anterior extremity of the mesethmoid was used to define the 

primitive and derived condition in dercetids by Taverne (1991). He thought the bifurcated 

anterior end, seen in Dercetis, was the primitive state, whereas the other dercetids have an acute 
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anterior end of the mesethmoid (Taverne, 1991). Gallo et al. (2005) pointed out that the 

bifurcated anterior end is an autapomorphy of Dercetis, whereas Silva and Gallo (2011) found 

this state in the probable myctophiform Sardinioides and Nardorex as well as Dercetis and 

suggested that this is the homoplastic condition. Comparing those three taxa, the mesethmoid is a 

rod-like, long bone in Dercetis, whereas Sardinioides and Nardrex have a broad and short bone, 

with the lateral expansion thickened ventrally in Sardinioides (Goody, 1969; Taverne, 2004, 

2005a) although the end is bifurcated in all of these taxa. Thus, the homology of the anterior 

bifurcation of the mesethmoid is questionable and could have evolved separately in each taxon. 

 

Character 11: Posterior extremity of mesethmoid (Taverne, 1991; modified by Silva 

and Gallo, 2011) 

The bifurcation of the posterior end of the mesethmoid was also thought by Taverne 

(1991) to be the derived condition in dercetids. Primitive dercetids and other enchodontoids 

possess a mesethmoid with a simple, acute posterior end, so this character was divided into two 

conditions (states): acute or bifid. Silva and Gallo (2011) modified the character into three states 

[bifid (0); acute (1); straight (2)] without coding the last state [straight (2)] in any taxon. The 

only genus tentatively coded as [straight (2)] is Spinascutichthys, coded by Murray et al. (2022), 

but this was a tentative coding because the posterior end of the mesethmoid of Spinascutichthys 

is neither acute nor bifid. The state [straight (2)] was not fully explained when it was modified by 

Silva and Gallo (2011), and the reason why Taverne (1991) created this character was to 

highlight the bifid condition in derived dercetids. Cimolichthys and Phylactocephalus also 

possess a bifurcated posterior end of the mesethmoid, although they are not considered members 

of Dercetidae (Goody, 1969). 
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Character 12: Autosphenotic spine (Gallo et al., 2005) 

Gallo et al. (2005) created two states [0: straight; 1: posteriorly curved] for the 

morphology of the spine on the autosphenotic, and found the posteriorly curved autosphenotic 

spine to be a synapomorphy uniting two genera, Rhynchodercetis and Hastichthys. Currently, 

this state is also found in Atolvorator and Spinascutichthys (Silva and Gallo, 2011; Murray et al., 

2022). 

 

Character 13: Suture between frontals (Silva and Gallo, 2011) 

The suture between the right and left frontals are markedly sinuous [state 1] in some taxa, 

such as Apateodus and Atolvorator, and slightly sinuous [state 0] in many other taxa (Silva and 

Gallo, 2011). However, this character was not clearly explained by those authors when they 

added it to the matrix, and the delimitation of the states is subjective. 

 

Character 14: Posterior border of frontal (Gallo et al., 2005)  

Gallo et al. (2005) created two states for the level reached by the posterior extent of the 

frontal [0: behind the autosphenotic spine; 1: at the level of the autosphenotic spine] and coded 

Dercetoides and Hastichthys as state [1]. However, they also mentioned Ichthyotringa is 

polymorphic, possessing both states within the genus (Gallo et al., 2005). Also, in later studies 

Hastichthys was re-coded as state [0] (Vernygora et al., 2017; Alvarado-Ortega Díaz-Cruz, 

2020), and this character no longer supports any clade.  

 

Character 15: Shape of the posterior border of the orbit (Gallo et al., 2005) 
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A concave post-orbital border [state 0] is found in most of the taxa, whereas a convex 

post-orbital border [state 1] is found only in a few taxa, Apuliadercetis, Ichthyotringa, Nardorex, 

Rhynchodercetis and Hastichthys. The definition of the states was not fully explained by Gallo et 

al. (2005), but they coded state 1 [convex post-orbital border] in Ichthyotringa and 

Rhynchodercetis, of which their posterior border of the orbit appears to be concave due to the 

anteiorly projected sphenotic (e.g. Ichthyotringa africana in Taverne (2006:fig 3)). 

 

16. Parietal length (Taverne, 1991, modified in Gallo et al., 2005) 

The length of the parietal has been described with two states [0: long (length equal or 

larger than its height); 1: short (length smaller than its height)] proposed by Gallo et al. (2005). 

Originally, Taverne (1991) considered the long parietal to be the primitive state, but Gallo et al. 

(2005) suggested that the long parietal is found in more derived taxa.  

 

17. Supraorbital sensory canal in the skull roof (Fielitz, 2004) 

Silva and Gallo (2011) noted this character was used by Fielitz (2004), but I found it was 

not discussed in Fielitz (2004) but instead was described in some taxa by Goody (1969). Only six 

ingroup taxa (Atolvorator, Aspidopleurus, Eurypholis, Parenchodus, Unicachichthys, and 

Saurorhampus) possess an exposed supraorbital sensory canal [state 1], and other taxa have the 

supraorbital sensory canal enclosed in the frontal bone [state 0]. 

 

18. Extension of the supraoccipital (Gallo et al., 2005) 

The supraoccipital is a single median bone behind the skull roof forming the mid-dorsal 

part of the occiput. A supraoccipital that does not separate the parietals [state 0] is described as 
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the medio-parietal condition, whereas the supraoccipital separating the left and right parietals 

forms a latero-parietal skull (Rosen, 1973; Taverne, 1991). Taverne (1991) suggested that the 

medio-parietal condition might be the primitive state among dercetids, but recent finds show 

variation within the dercetids, such as Scandiadercetis having an intermediate condition of the 

parietals that are separated by the supraoccipital in the posterior half but meet one another in the 

midline in the anterior half (Taverne, 2005a), although Scandiadercetis was not included in this 

study because of the incomplete nature of the specimen. 

 

19. Supraoccipital crest (Taverne, 1991) 

A distinct crest on the supraoccipital is absent [state 1] in a few taxa (Pelargorhynchus, 

Rharbichthys, Unicachichthys, and Spinascutichthys). Benthesykime was also coded as [state 1: 

absent] in the preexisting study, but Taverne (1991) noted this genus is primitive among 

dercetids and shares the plesiomorphic state of the supraoccipital crest, which is present [state 0]. 

I leave Benthesykime as the preexisting state [1] until I have access to the actual specimens. 

 

20. Supraoccipital with two well-delimited regions (Silva and Gallo, 2011) 

The unique morphology of the supraoccipital which is divided into anterior and posterior 

regions forming two clearly delimited regions is only present in Nardorex (Taverne, 2004). 

Currently, the state [1: present] is an autapomorphy of Nardorex and, therefore, is not useful to 

find relationships among the enchodontoids. 

 

21. Extension of pterotic (Chalifa, 1989b) 
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Chalifa (1989b) believed the projection of the pterotic beyond the occiput [state 1] to be a 

synapomorphy of some derived dercetids. However, the extended pterotic is found in many 

ingroup taxa not just dercetids. Most of the dercetid taxa possess state [1], except 

Candelarhynchus and Nardodercetis, in which the pterotic is not projecting beyond the occiput 

[state 0], so the extended pterotic may be a plesiomorphic state for dercetids with some taxa 

having a reversal. 

 

22. Dilatator fossa (Silva and Gallo, 2011) 

The dilatator fossa, a shallow concavity on the skull roof for muscle attachment, is 

formed by the sphenotic, pterotic and frontal bones. Silva and Gallo (2011) created two states [0: 

unroofed; 1: roofed] but without giving a full description. Goody (1969: figs. 21, 32, 34, 37 etc.) 

depicted the dilatator fossa in his figures, but the states also were not fully described. 

Cimolichthys, Candelarhynchus, Phylactocephalus, Vegrandichthys, and Spinascutichthys have 

state [1], although none of them are united by this character. Many ingroup taxa are coded as 

missing data for this character because of the preservation of the fossil material. 

 

23. Exposition of the post-temporal fossa (Chalifa, 1989b; modified in Gallo et al., 

2005; Silva and Gallo, 2011) 

The posttemporal fossa can be covered by the pterotic and epiotic bones [0: roofed] or 

exposed dorsally on the pterotic [1: unroofed]. Gallo et al. (2005) created three states [0: roofed; 

1: partially roofed; 2: unroofed] because Cimolichthys exhibits an intermediate condition [1: 

partially roofed] based on Goody’s (1969) description. Later, Silva and Gallo (2011) excluded 
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the intermediate state from this character and coded Cimolichthys as state 0 [roofed] . Taverne 

(1991) argued that the roofed posttemporal fossa is the primitive condition in dercetids. 

 

24. Orbitosphenoid (Taverne, 1991)  

The orbitoshenoid is a small, median bone that separates the two orbits and was thought 

to be absent in enchodontoids by Rosen (1973). However, currently seven taxa are coded as 

having the orbitosphenoid present [state 1], although many other taxa are coded as missing data 

due to the fragmentary condition of the specimens. Taverne (1991) argued that the absence of the 

orbitosphenoid is primitive in dercetids. 

 

25. Basisphenoid (Taverne, 1991)  

The basisphenoid is a single, median endochondral bone forming a part of the floor of a 

braincase and is present in most teleosts with a few exceptions (Arratia, 1997). The presence of 

the basisphenoid [state 0] is only found in a few dercetids (Apuliadercetis, Candelarhynchus, and 

Hastichthys), as well as Ichthyotringa, and Atolvorator in the ingroup. Many other taxa are 

coded as missing data for this character, which is difficult to determine in fossil material. 

 

26. Supraorbital (Chalifa, 1989b)  

The supraorbital bones are present [state 0] in five of the ingroup taxa (Apateodus, 

Atolvorator, Cimolichthys, Halec, and Serrilepis), whereas most of the other taxa show an 

absence of the supraorbitals [state 1]. Chalifa (1989b) thought the absence [state 1] was the 

plesiomorphic state in dercetids, and the existing phylogeny agrees with this.  
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27. Lachrymal shape (Gallo et al., 2005; modified in Silva and Gallo, 2011) 

The character for the shape of the lacrimal (lachrymal, or first infraorbital) was first 

added to the phylogenetic study by Gallo et al. (2005). They created two states [0: trapezoidal; 1: 

rod-shaped] with only Brazilodercetis coded as [1] and only two taxa, Eurypholis and 

Saurorhamphus, coded as [0]. All other taxa in their study were coded as missing data due to the 

poor preservation of the lacrimal. Later, Silva and Gallo (2011) added two more states and 

analyzed the character with a total of four states [0: subtriangular; 1: suboval; 2: trapezoidal; 3: 

rod-shaped]. In the ingroup taxa, the subtriangular shape [0] is seen in Spinascutichthys and 

Serrilepis, and the suboval shape [1] is only seen in Hastichthys. The rod-shaped lacrimal is 

found in Apuliadercetis, Brazilodercetis, and Nardorex, although they do not form a clade. 

Alvarado-Ortega and Díaz-Cruz (2020) modified state for Candelarhynchus to ‘not applicable’, 

but Candelarhynchus possesses a lacrimal (= infraorbital 1), and I agree with Vernygora et al. 

(2017) that the shape is trapezoidal [state 2]. Arratia (1997) noted that most teleosts have an 

infraorbital 1 that is broader than infraorbital 2, with the exception of Osteoglossomorpha which 

has a tube-like narrow infraorbital 1. Thus, the broader lacrimal (e.g. state 1 [subtriangular]; state 

2 [trapezoidal] could be a plesiomorphic state, although the homology of each shape is 

questionable. I leave this character as preexisting states because many ingroup taxa are coded as 

missing data due to the lack of preservation and wait modifying the states until additional 

specimens with better preserved lacrimal are found. 

 

28. Position of the mandibular suspensorium (Gallo et al., 2005; modified by Silva and 

Gallo, 2011) 
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In most of the ingroup taxa, the mandibular suspensorium is positioned vertically [state 

1]. An anteriorly inclined suspensorium is found in some dercetids and some non-dercetid taxa. 

The inclination of the hyomandibular varies among the extant aulopiforms, with some taxa 

having the hyomandibular rotated and lying almost parallel to the body axis (Baldwin and 

Johnson, 1996). This rotation is accompanying with an elongation of the ectopterygoid and 

reduction of the endopterygoid (Sulak, 1977; Baldwin and Johnson, 1996). Thus, the orientation 

of the suspensorium in the extinct taxa could also be related to the nature of several bones in the 

suspensorium, which I cannot determine here because of the limited access to each taxon. 

  

29. Ectopterygoid (Taverne, 1991)  

The ectopterygoid is toothed [state 1] in almost all ingroup taxa except some dercetids. 

Taverne (2006) noted that the presence of the ectopterygoid teeth to be a plesiomorphic state for 

enchodontoids and extant alepisauroids do no possess the extopterygoid teeth [state 0]. There are 

a few extant aulopiform taxa, such as synodontoids, that possess ectopterygoid teeth, but most of 

other genera have lost the ectopterygoid teeth (Baldwin and Johnson, 1996). Some dercetids 

(Apuliadercetis, Brazilodercetis. Dercetoides, and Nardodercetis) and Yabrudichthys are coded 

as state 0 [ectpterygoid toothless], whereas most of the ingroup taxa are coded as state 1 

[ectopterygoid toothed]. 

 

30. Endopterygoid (Taverne, 1991) 

The endopterygoid (= entopterygoid) is toothed [state 1] in many non-dercetid taxa. 

Among dercetids, Benthesykime, Dercetis, Ophidercetis, and Hastichthys have teeth on the 

endopterygoid. In Cimolichthys and Dercetis, the teeth are tiny and form a large tooth plate 



 78 

(Goody, 1969). Numerous small teeth are also found on the endopterygoid in Enchodus, 

although the bone is narrower than that of Cimolichthys and Dercetis (Fielitz, 2002). In extant 

aulopiforms, the presence of endopterygoid teeth is also limited to a few taxa, and the majority of 

other members lack endopterygoid teeth (Baldwin and Johnson, 1996). 

 

31. Placement of articular facet for the hyomandibula (Fielitz, 2004) 

Fielitz (2004) found that the facet on the skull roof for articulation of the hyomandibular 

is ventral to the dilatator fossa [state 1] in Eurypholis, Saurorhamphus, and one species of 

Enchodus (E. gracilis), whereas the facet is posteroventral to the dilatator fossa in Cimolichthys 

and other species of Enchodus (e.g., E. petrosus and E. gladiolus). There are more taxa that 

possess the ventrally oriented facet in the current matrix, but this character can be polymorphic 

within a genus, as shown by the species of Enchodus (Fielitz, 2004). 

 

32. Number of articular facets for the hyomandibula (Silva and Gallo, 2011) 

Silva and Gallo (2011) divided the number of articular facets into two states [0: a 

continuous facet; 1: two facets]. A continuous facet [state 0] is seen in all dercetids except a few 

taxa which are coded as missing data.  

 

33. Premaxilla (Taverne, 1991)  

The premaxilla is toothed [state 0] in almost all taxa except some dercetids and 

Spinascutichthys. Taverne (1991) considered the presence of teeth [state 0] to be the primitive 

condition in dercetids. In many extant aulopiforms, the premaxilla is the dominant tooth-bearing 

bone of the upper jaw (Baldwin and Johnson, 1996).  
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34. Posterior extension of the premaxilla (Gallo et al., 2005) 

The premaxilla posteriorly reaches the orbit [state 0] in many non-dercetid taxa, whereas 

the premaxilla does not reach the orbit [state1] in most dercetids except Pelargorhynchus. Gallo 

et al. (2005) coded both Dercetis and Pelargorhynchus as having state [0: not reaching the orbit], 

but Silva and Gallo (2011) later re-coded the state in Dercetis to [1: reaching the orbit]. The 

premaxilla-orbit position of Pelargorhynchus was not discussed by Silva and Gallo (2011), so 

this species needs to be revisited to confirm the state because all other dercetid members have the 

opposite state [1]. 

 

35. Dermal pattern on premaxilla (Siva and Gallo, 2011)  

The character of ornamentation of the premaxilla was added by Silva and Gallo (2001) 

with two states [0: smooth, 1: ornamented]. Many dercetids have a smooth [state 0] surface on 

the premaxilla except a few taxa (Candelarhynchus, Hastichthys, and Pelargorhynchus). 

Dercetis shows a polymorphic condition with D. elongatus having an ornamented premaxilla and 

D. triqueter having a smooth premaxilla. Dercetis magnificus sp. nov. also shows the premaxilla 

ornamented with multiple striations (Chapter 2). Thus, the presence or absence of ornamentation 

can show intrageneric variation.  

 

36. Fenestra in the premaxilla (Siva and Gallo, 2011). 

The fenestra in the anterior end of the premaxilla [state 1: present] is found in some 

enchodontids (Enchodus, Eurypholis, Palaeolycus, Veridagon, Vegrandichthys, and 

Saurorhamphus). Atolvorator is coded as missing data, although the original description of the 
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holotype noted the possible fenestra on the premaxilla (Gallo and Coelho, 2008). No dercetids 

possess the premaxillary fenestra. In the extant members, the family Paralepididae 

(Alepisauroidei) shows the premaxilla with a fenestra, as seen in both Lestidium and Lestrolepis 

in this study. 

 

37. Ascending process of the premaxilla (Siva and Gallo, 2011) 

An ascending process on the anterior symphysial part of the premaxilla is present [state 

1] in Dercetis, Ophidercetis, Nardorex, Eurypholis, Parenchodus, Rharbichthys, and 

Unicachichthys. Apuliadercetis was also coded as [1], but the newly discovered species (A. 

gonzalezae) appears to have the state [0: absent] (Díaz-Cruz et al., 2021). Taverne (1991) 

thought that the presence of the small ascending process on the premaxilla was the primitive 

condition in dercetids.  

 

38. Maxillary teeth (Taverne, 1991)  

Teeth present on the maxilla [state 1] is seen in most of the dercetids and many non-

dercetids. The possible family Enchodontidae (Enchodus, Parenchodus, Palaeolycus, Veridagon, 

Vegrandichthys, Unicachichthys, and Saurorhamphus) have a toothless [0] maxilla. Cimolichthys 

was previously thought to have a toothless maxilla, but the recent study of the internal skull 

anatomy by Díaz-Cruz et al. (2020b) confirmed the presence of maxillary teeth in Cimolichthys.   

 

39. Placement of the maxilla (Gallo et al., 2005) 

A unique placement of the maxilla has been considered to be a synapomorphy of 

enchodontoids (Rosen, 1973; Nelson, 1994; Fielitz, 2004). Fieliz (2004) first attempted the 
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phylogenetic study including the character of maxilla with three states [0: excluded from gape of 

jaw; 1: included in gape and is toothed; 2: included in gape, but teeth absent], and his analysis 

resulted in the state 2 [maxilla included in gape but lacking teeth] is a plesiomorphic condition in 

enchodontoids. However, he also found the reversion of the state from 2 [maxilla included in 

gape but lacking teeth] to the state 1 [maxilla included in gape and is toothed] and concluded that 

this character was not recodered as a unique and unreversed synapomorphy. Taverne (1991) also 

suggested that having a toothed maxilla included in the gape is the primitive condition in 

dercetids. Gallo et al. (2005) separated out the states of the maxillar being toothed or not and the 

placement of the maxilla; they created different states [0: position of maxilla over the premaxilla; 

1: behind the premaxilla] without discussing the inclusion or exclusion of the maxilla from gape.   

 

40. Teeth on upper jaw (Gallo et al., 2005; modified by Silva and Gallo, 2011) 

Gallo et al. (2005) created three states for the condition of the upper jaw teeth [0: straight; 

1: curved + straight; 2: curved] to distinguish Brazilodercetis with state [1] from other 

enchodontoids. Silva and Gallo (2011) added one more state and used a total of four states [0: 

only straight; 1: absent; 2: curved + straight; 3: only curved] because one of their outgroups, 

Protostomias, lacks upper jaw teeth. However, the delimitation of the character was not fully 

described by either Gallo et al. (2005) or Silva and Gallo (2011), and absence of the upper jaw 

teeth in Protostomias is redundant with the characters of absence of the premaxillary and 

maxillary teeth, causing triple weight of these characters in that taxon. 

 

41. Supramaxilla (Chalifa, 1989b)  
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Chalifa (1989b) assumed that the absence of the supramaxilla [state 0] was a 

plesiomorphic state in dercetids. As presented by Chalifa (1989b), the supramaxilla is absent in 

all dercetids in the existing matrix. Absence of the supramaxilla was also confirmed in 

Ichthyotringa by Taverne (2006). Many non-dercetid taxa have a supramaxilla present [state 1]. 

Arratia (1997) noted that presence of the supramaxilla is a relatively advanced feature in 

actinopterygians, although it is lost in certain groups of teleosts. In extant aulopiforms, both 

conditions can be found with some having two supramaxillae and some having a reduced 

supramaxilla (Nelson et al., 2016). 

 

42. Mandible length (Taverne, 1991)  

Taverne (1991) argued that the mandible being shorter than the snout length [state 1] is 

the derived state in dercetids. A shorter mandible is seen in Brazilodercetis, Candelarhynchus, 

Nardodercetis, Rhynchodercetis, and Hastichthys, whereas all other taxa are coded as the 

mandible length equal to the snout length [state 0]. However, certain taxa, such as Eurypholis, 

and Spinascutichthys, possess a mandible that is actually longer than the snout (Goody, 1969; 

Murray et al., 2022; personal observation). Saurorhamphus and Vegrandichthys seem to have a 

mandible longer than the snout by the original descritions (Chalifa, 1985; Díaz-Cruz et al., 

2020). 

 

43. Teeth on mandible (Gallo et al., 2005) 

Similar to the upper jaw teeth (character 40), Gallo et al. (2005) created three states for 

the condition of the mandibular teeth [0: only straight; 1: only curved; 2: curved + straight]. 
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These states were also not fully explained by those authors, and this character does not support 

any clade. 

 

44. Teeth size on upper jaw (Gallo et al., 2005; modified in Silva and Gallo, 2011)   

 This character was also created by Gallo et al. (2005) and was coded as state 1 [teeth of 

different height] only in ‘Prionolepis’, Cyranichthys, and Brazilodercetis, with other taxa coded 

as having teeth of the same height [state 0]. Later, Silva and Gallo (2011) added the condition 

‘teeth absent’ to state [0] such that state 0 became ‘absent or with same height’. Again, this state 

is repetitive for Protostomias in which the upper jaw lacks teeth. 

 

45. Teeth size on mandible (Gallo et al., 2005) 

Teeth of varying height [state 0] are found in many non-dercetid taxa whereas many 

dercetids were coded to have teeth of similar height [state 1] in the preexisting matrix. The new 

species of Apuliadercetis shows the mandible with teeth of equal size and height [state 1] in 

contrast to the preexisting coding of this genus of Díaz-Cruz et al. (2021). Cyranichthys was 

coded as having state [0] in the preexisting matrix, but in fact, the mandible of this taxon is 

unknown (Casier, 1965). Enchodus is a typical example for state [1], with the large conical teeth 

placed in the inner row on the dentary and numerous small teeth located on the external margin 

of the dentary (Goody, 1969).  

 

46. Rows of teeth on upper jaw (Gallo et al., 2005) 

Only a few taxa in the ingroup, Dercetis, Stratodus, and Aspidopleurus, show two or 

more tooth rows [state 1] on the upper jaw. All other taxa possess a single row of teeth on the 
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upper jaw [state 0]. Dercetis exhibits a polymorphic state within the genus, with D. elongatus 

having a single row, and D. triqueter and D. magnificus sp. nov. having multiple tooth rows. In 

extant aulopiforms, the synodontoid Trachinocephalus possesses numerous rows of teeth on the 

upper jaw. Protostomias lacks upper jaw teeth, and so cannot be coded for this character. 

 

47. Rows of teeth on mandible (Gallo et al., 2005)   

Unlike the upper jaw, number of tooth rows on the lower jaw show more variation. Many 

non-dercetid taxa have two or more rows of teeth [state 1]. Eurypholis was coded as state [0: 

single row], but E. boisseieri possesses two rows of mandibular teeth (Goody, 1969; personal 

observation). The specimen of Stratodus included in this study (SDSM 81334) does not preserve 

either lower jaw, but the holotype of Stratodus (AMNH 1753) shows multiple rows of teeth on 

the probable dentary so I coded as state 1 [two or more rows]. 

 

48. Anteroventral prongs on dentary (Fielitz, 2004)  

The presence of anteroventral prongs on the dentary [state 1] was proposed by Fielitz 

(2004) to characterize Enchodus, Eurypholis, and Saurorhamphus, although Eurypholis and 

Saurorhamphus were coded as lacking the prongs [state 0] in later studies. Díaz-Cruz et al. 

(2016) suggested the presence of anteroventral prongs was a synapomorphy of the 

Enchodontidae including some additional taxa (Unicachichthys and Parenchodus), whereas the 

newly reported enchodontoid Spinascutichthys also possesses the anteroventral prongs but was 

not recovered as a member of the family Enchodontidae (Murray et al., 2022). 

 

49. Mandibular sensory canal (Fielitz, 2004)  
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Fielitz (2004) divided the character of the mandibular sensory canal into three states [0: 

enclosed by bone; 1: partially open; 2: open] based on the extant synodontoid Synodus having 

state [0], the alepisauroid Alepisaurus with state [1], and Enchodus with state [2]. In the 

preexisting matrix, species of Hastichthys were coded in different ways within the genus, with H. 

gracilis having an open canal and H. totonacus having an enclosed canal. Dercetis magnificus 

sp. nov. shows state 1 [ partially open], whereas other two species of Dercetis are coded as state 

2 [open]. Thus, this character shows intergeneric variations in some genera. Also, Enchodus was 

coded as state [1: partially open] in the preexisting matrix, although the original study by Fielitz 

(2004) coded it as having state [2: open], and I agree with Fielitz (2004) by personal observation.  

 

50. Mandibular dermal pattern (Fielitz, 2004; modified by Silva and Gallo, 2011)   

Fielitz (2004) proposed four states for the mandibular dermal pattern [0: absent; 1: 

present as ridges; 2: present as ridges with tubercles; 3: present as tubercles]. Later, Silva and 

Gallo (2011) simplified the states into two states [0: smooth; 1: ornamented]. Many non-dercetid 

taxa show the presence of ornamentation on the mandible, whereas within Dercetidae, only 

Dercetis, Dercetoides, and Pelargorhynchus have the ornamentation. Moreover, Dercetis shows 

an intrageneric variation with D. elongatus and D. magnificus sp. nov. having ornamentation and 

D. triqueter having a smooth mandible.  

  

51. Flange on anguloarticular (Gallo et al., 2005)  

An anguloarticular flange is present [state 0] in most dercetids except Hastichthys and 

two species of Dercetis. In non-dercetid taxa, both presence [state 0] and absence [state 1] of the 

flange are found and both states are homoplastic.   
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52. Quadrate-mandibular articulation (Fielitz, 2004)  

The character of the quadrate-mandibular articulation in Eurypholis and Saurorhamphus 

was noted by Goody (1969), and Fielitz (2004) incorporated the character in his phylogenetic 

study. Fielitz (2004) created two states [0: the articulation between the quadrate and mandible is 

visible in lateral view; 1: the articulation is hidden] and coded both Eurypholis and 

Saurorhamphus as having state [1]. However, this state is only shared by these two genera, and 

the hidden articulation is a result of the “vertical upgrowth of bone from the lateral face” of the 

anguloarticular (Goody, 1969:109, fig. 45). Arratia (1997) noted that a well-developed 

postarticular process in the lower jaw can be found in some basal teleosts (elopomorphs, 

osteoglossomorphs), so the development of the posterior portion of the anguloarticular in 

Eurypholis and Saurorhamphus noted by Goody (1969) might be a similar structure to Arratia’s 

(1997) the developed postarticular process. If so, then the primitive state of this character might 

be presence of the process, i.e., a hidden quadrate-mandibular articulation.  

 

53. Articular facet for the quadrate (Siva and Gallo, 2011)  

Most dercetids have a shallow articular facet for the quadrate [state 0], whereas many 

non-dercetids possess a deep facet for the articulation [state 1]. This character was not fully 

explained by Silva and Gallo (2011) and the shallow articular facet can be the result of having a 

shallow head, because many shallow-headed taxa were coded as having state [0].  

 

54. Retroarticular process (Goody, 1969) 
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This character was added by Silva and Gallo (2011) mentioning that it was adapted from 

Goody (1969). However, the definition of the retroarticular process was not fully explained by 

Silva and Gallo (2011). Based on the description of a retroarticular process used in Goody 

(1969), I assume this character indicates the process behind the articular condyle for the quadrate 

that curves around the condyle posteriorly. In the preexisting matrix, the retroarticular process is 

present [state 0] in most of the taxa except Apateopholis, Cimolichthys, Candelarhynchus, 

Rhynchodercetis, Saurorhamphus, and Spinascutichthys. In  the previously known species of 

Dercetis, the retroarticular process is coded as 1 [absent] in the preexisting matrix, but the new 

species possesses a retroarticular process that curves behind the articular condyle. The absence of 

the retroarticular process can be an artifact due to the small size of the previously known species 

of Dercetis or intrageneric variation. 

 

55. Ornamentation of the infraorbital bones (Siva and Gallo, 2011)  

The infraorbital bones are not preserved in all taxa, but they are ornamented [state 1] in 

Apuliadercetis, Eurypholis, Parenchodus, Serrilepis and Saurorhamphus. The infraorbitals in 

these fish are usually small, and not well-preserved, except for infraorbital 1 (= lacrimal) and 

may be hard to see in small specimens. Therefore, many taxa are coded as missing data for this 

character in the matrix. 

 

56. Preopercle shape (Gallo et al., 2005; modified by Silva and Gallo, 2011) 

The shape of the preopercle was first included in the phylogenetic analysis by Gallo et al. 

(2005) with four states [1: triangular; 2: crescent-shaped; 3: rod-shaped; 4: pipe-shaped]. Silva 

and Gallo (2011) added a fifth state [0: L-shaped] for coding the condition in Nardorex. 
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However, states [4] and [0] are each only found in a single taxon, therefore interpreted as an 

autapomorphy, and the majority of the taxa are coded as having state [1]. The delimitation of the 

shapes was not clear, and state [0: L-shaped] in Nardorex is the result of the preopercle having a 

well-developed posteroventral spine (Taverne, 2004), which is redundant with character 58 

(below) and also seen in other taxa, such as Eurypholis and Saurorhamphus (Goody, 1969).  

 

57. Preopercular dermal pattern (Fielitz, 2004; Silva and Gallo, 2011)  

Fielitz (2004) created four states for the dermal pattern on the preopercle, and Silva and 

Gallo (2011) simplified the states into two conditions [0: smooth; 1: ornamented]. The 

preopercular is smooth in dercetids and some non-dercetids. The taxa that were previously 

assigned to Enchodontidae all possess an ornamented preopercle [state 1]. 

 

58. Posteroventral spine on the preopercle (Siva and Gallo, 2011) 

A well-developed, posteroventral spine on the preopercle [state 1] is found in 

Apateopholis, Eurypholis, Hemisaurida, Nardorex, Saurorhamphus, Spinascutichthys, 

Unicachichthys, and Yabrudichthys. As mentioned above (character 56), Nardorex has been 

double weighted for this feature by the well-developed spine and posteriorly L-shaped preopercle 

(Taverne, 2004). In all other taxa, the posteroventral spine of the preopercle is either absent or 

reduced [state 0]. 

 

59. Dimensions of the opercle (Gallo et al., 2005) 

Many dercetids show an opercular that is longer than the height [state 1]. Among non-

dercetid taxa, Nardorex, Spinascutichthys, and Yabrudichthys also have state [1].  
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60. Opercular crest (Gallo et al., 2005)  

The crest on the opercle is absent [state 0] in dercetids, and Gallo et al. (2005) suggested 

the absence of the opercular crest is a synapomorphy of the family Dercetidae. However, Silva 

and Gallo (2011) pointed out that the absence of the opercular crest is also found in Atolvorator, 

Hemisaurida, Nardorex, and Rharbichthys. Apateodus was coded as having state [1: crest 

present] in the preexisting matrix, but the external view of the opercle appears to be smooth 

without any crest (Goody 1969; Newbrey and Konishi, 2015), and specimens of that taxon that 

Silva and Gallo (2011:507) cited do not preserve the opercle (confirmed in photographs of the 

specimens in the digital portal of the Natural History Museum, London). Therefore, the character 

coding of Apateodus is questionable.  

 

61. Spine on posterior border of the opercle (Gallo et al., 2005) 

The spine on the posterior border of the opercle is present [state 1] only in a few of the 

ingroup taxa, Eurypholis, Saurorhamphus and Spinascutichthys. The extant aulopiforms 

Lestidium and Lestrolepis also show state [1], but the other extant aulopiform Trachinocephalus 

has state [0: absent], so this character varies among the extant groups. 

 

62. Opercular and subopercular dermal pattern (Fielitz, 2004; modified by Silva and 

Gallo, 2011) 

The states of dermal patterns for the opercle and subopercle created by Fielitz (2004) 

were simplified into two states [0: smooth; 1: ornamented] by Silva and Gallo (2011). Most 

dercetids except Dercetoides have smooth [state 0] opercular and subopercular bones, whereas 
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many enchodontid taxa exhibit a highly ornamented opercle and subopercle (Fielitz, 2004). The 

opercle in Dercetoides has a smooth dorsal portion and ridged ventral portion, and is much less 

ornamented compared to the dermal pattern seen in Enchodus or Eurypholis, which have 

opercles ridged with tubercles (Chalifa, 1989b; Goody, 1969). I leave this character and the state 

of Dercetoides without modification until I can confirm the nature of the specimens. 

 

63. Interopercle (Chalifa, 1989b) 

The interopercle is present [state 0] in most dercetids except Pelargorhynchus. Chalifa 

(1989b) thought the absence of the interopercle [state 1] is more primitive because the 

interopercle is commonly seen in teleosts. Fielitz (2004) also noted the absence of the 

interopercle is shared among taxa in his Enchodontidae, and the preexisting matrix agrees with 

the state [1] found in all enchodontids, such as Enchodus and Eurypholis.  

 

64. Mesocoracoid (Taverne, 1991) 

The mesocoracoid is present [state 1] in Apateodus, Apateopholis, Ichthyotringa, Halec, 

Serrilepis, and Yabrudichthys. Taverne (1991) assumed that the absence of the mesocoracoid 

[state 0] is the plesiomorphic condition for dercetids, and this agrees with the existing matrix.  

 

65. Scapula and coracoid (Taverne, 1991) 

The scapula and coracoid are separate elements [state 0] in most of the taxa. A co-

ossified scapulo-coracoid [state 1] is found in Aspidopleurus, Dercetoides, Parenchodus, and 

Serrilepis. Spinascutichthys was coded as [1: co-ossified] by Murray et al. (2022) but they stated 

that these bones were not preserved, and, therefore, this character should  have been coded as 
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missing data. Taverne (1991) noted that having a separate scapula and coracoid is the primitive 

condition in dercetids. In the extant aulopiforms, the scapula and coracoid are not co-ossified but 

are connected by cartilage (Baldwin and Johnson, 1996; Sato and Nakabo, 2002). Thus, the taxa 

with a co-ossified scapula-coracoid might have independently developed their condition, because 

the taxa with this feature do not form a clade. 

 

66. Supraneurals (Fielitz, 2004) 

The supraneurals are present [state 0] in most of the taxa that can be coded for this 

character. The supraneurals are absent [state 1] in Atolvorator, Ichthyotringa, and Parenchodus, 

but many dercetids are coded as missing data due to the fragmentary preservation of the 

specimens. 

 

67. Total number of vertebrae (Gallo et al., 2005; modified by Silva and Gallo, 2011) 

The total number of vertebrae was first used in a comparative study by Chalifa (1989b). 

The delimitation of the states used by Chalifa (1989b) is 60-80 vertebrae in dercetids, 50-60 in 

Cimolichthys, and 45 in ‘Prionolepis’. Gallo et al. (2005) simply delimited the numbers into two 

states [0: more than 45; 1: equal to or less than 45]. Silva and Gallo (2011) modified the states to 

[0: more than 50; 1: equal to or less than 50]. Currently, among ingroup taxa, all dercetids, 

Cimolichthys and Palaeolycus have more than 50 vertebrae [state 0]. Atolvorator was coded as 

[0: more than 50] in the previous data matrix, but the total number of vertebrae is 47 as 

confirmed in Gallo and Coelho (2008).  

 

68. Number of caudal vertebrae (Silva and Gallo, 2011) 
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The number of caudal vertebrae was added as a character by Silva and Gallo (2011) with 

two states [0: more than 20; 1: equal to or less than 20]. However, the delimitation was not based 

on previous studies, and a traditional diagnostic character of dercetids is that the caudal vertebrae 

number approximately 25-30 (Goody, 1969; Chalifa, 1989b). With the current states, many non-

dercetid ingroup taxa have state [0] in addition to dercetids.  

 

69. Ribs (Silva and Gallo, 2011) 

This character was created by (Silva and Gallo, 2011) and divided into two states [0: ribs 

extending to the pelvic fin origin; 1: ribs surpassing the pelvic fin origin], although the definition 

of the states were not explained. Most of the taxa except Apateopholis, Parenchodus, 

Rharbichthys, and Yabrudichthys are coded as state [1], but there are also some taxa with 

missing data. 

 

70. Transverse processes on the vertebrae (Chalifa, 1989b) 

Chalifa (1989b) noted that two pairs of transverse processes on each vertebra [state 1] are 

found in Rhynchodercetis and Dercetoides. Rosen (1973) pointed out the presence of two pairs 

of transverse processes is similar to the condition in the extant aulopiforms. Chalifa (1989b) also 

assumed the state [1] is the derived condition among dercetids. Currently, additional dercetid 

taxa (Apuliadercetis, Brazilodercetis, Caudadercetis, Nardodercetis, and Hastichthys) and 

Parenchodus are coded as having state [1]. However, the transverse processes in Parenchodus 

were not fully described in the original study (Raab and Chalifa, 1987), and the reconstruction of 

the skeleton does not show the clear bifurcation of the transverse processes.  
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71. Neural spines (Chalifa, 1989b) 

The reduction of the neural spines [state 1] has been proposed as a synapomorphy for 

Dercetidae by many authors (Chalifa, 1989b; Taverne, 1991; Gallo et al., 2005; Vernygora et al., 

2017). Silva and Gallo (2011) qualified the condition of the spines to the two states [0: well-

developed (their length surpassing the length of the vertebral centrum); 1: very reduced (their 

length equal to or less than half of the length of the vertebral centrum)]. All members that were 

previously assigned to dercetids exhibit state [1: very reduced].  

 

72. Neural spines bifid in the abdominal region (Silva and Gallo, 2011) 

Bifid abdominal neural spines [state 0] are found in some taxa, such as Candelarhynchus, 

Nardorex, Rharbichthys, Veridagon, Parenchodus and Unicachichthys. The neural spines in 

Rhynchodercetis appear to be bifid in the abdominal region (Gallo et al., 2005:fig. 12), although 

it is coded as missing data in the preexisting matrix. 

 

73. Distribution of epipleurals (Silva and Gallo, 2011)  

The series of epipleurals were reported by Silva and Gallo (2011) to extend to more than 

a half of the body [state 0] in most of the taxa except Apateopholis, Aspidopleurus, Parenchodus, 

Phylactocephalus, and Veridagon in which the epipleurals extending up to half of the body [state 

1]. The definition of the character and states was not explained by Silva and Gallo (2011), but I 

assume that state 0 [extend to more than a half of the body] indicates the epipleural series is 

present on the vertebrae for almost the whole of the axial skeleton, as such a condition occurs in 

Dercetis. The description of Apateopholis by Goody (1969) mentioned both epipleurals and 

epineurals occur on the first 33 vertebrae of a total of 40 vertebrae, which might also qualify as 
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extending more than a half of the body [0], but I leave the state [1: extending up to half of the 

body] as coded by Silva and Gallo (2011) because I do not have access the actual specimen. 

 

74. Distribution of epineurals (Silva and Gallo, 2011) 

The series of epineural bones also extend to more than a half of the body [state 0] in 

almost all taxa. Only Aspidopleurus and Phylactocephalus are coded as the epineurals extending 

up to half of the body [state 1], because the epineurals do not occur in the posterior half of the 

body.  

 

75. Position of the pectoral fin (Baldwin and Johnson, 1996) 

The pectoral fin is positioned high on the side of the body [state 0: (last fin-ray placed at 

the level of the ventral border of the opercle or a little above)] in many dercetids. Many other 

non-dercetids possess state [1: low (last fin-ray placed below the level of the ventral border of 

the opercle)] except Eurypholis, Saurorhamphus, Spinascutichthys, and Vegrandichthys. In 

extant aulopiforms, many alepisauroids have pectoral fins positioned low on the body, and the 

lower position is thought to be more primitive in teleosts (Baldwin and Johnson, 1996).  

 

76. Orientation of the pectoral fin base (Baldwin and Johnson, 1996; modified in Silva 

and Gallo, 2011) 

The pectoral fins are inserted horizontally [state 1] in the extant alepisauroids, whereas 

many other extant aulopiforms have a vertical orientation of the fins [state 0] (Baldwin and 

Johnson, 1996). In ingroup taxa, many dercetids show state [0], and many non-dercetids show 
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state [1]. There are a few taxa that exhibit state [2: inclined], such as Atolvorator, Apateopholis, 

and Nardodercetis.  

 

77. Origin of the pelvic fin (Taverne, 1991) 

The origin of the pelvic fin is opposite or posterior to the dorsal fin [state 1] in many 

ingroup taxa. Taverne (1991) thought that state [1] is the plesiomorphic condition in dercetids, 

although Nardodercetis and Ophidercetis are coded as state [0: pelvic fin origin anterior to the 

dorsal fin] by Silva and Gallo (2011) mentioning that they based on the description by Taverne 

(2005a, b), although both specimens are incompletely preserved.  

 

78. Dorsal fin length (Gallo et al., 2005; modified by Silva and Gallo, 2011) 

The character for length of the dorsal fin was divided into two states by Gallo et al. 

(2005) [0: short (less than 30 rays); 1: long (more than 30 rays)]. Silva and Gallo (2011) 

modified the delimitation of the states to [0: short (less than 20 rays); 1 long (more than 20 

rays)]. The long dorsal fin [state 1] is found in a relatively limited number of taxa, such as 

Cyranichthys, Dercetis, Ophidercetis, Parenchodus, Rhynchodercetis, Stratodus, and 

Yabrudichthys.  

 

79. Shape of the first proximal pterygiophore of the dorsal fin (Fielitz, 2004) 

The shape of the first pterygiophore is different from the remaining pterygiophores in the 

dorsal fin [state 0] in most of the taxa, except Serrilepis, Spinascutichthys and Yabrudichthys, 

which exhibit state [1: all equal in shape]. In extant aulopiforms, evermanellids have a broad 
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triangular first pterygiophore, whereas the rest of the aulopiforms do not show any specialization 

of the first pterygiophore (Baldwin and Johnson, 1996). 

 

80. Anal fin length (Silva and Gallo, 2011) 

The anal fin is short [state 0: up to 15 rays] in many ingroup taxa, whereas the anal fin is 

long [state 1: more than 15 rays] in Benthesykime, Caudadercetis, Enchodus, Ophidercetis, 

Nardorex, Palaeolycus, Parenchodus, Saurorhamphus, Spinascutichthys, and Veridagon. There 

is intergeneric variation in Hastichthys, with Hastichthys gracilis having a long fin [state 1], and 

H. totonacus with a short [state 0] anal fin. The number of fin rays can vary among the other 

genera, such as Enchodus ranging from 16 to 20 anal fin rays depending on species (Goody, 

1969; Chalifa, 1989a).  

 

81. Anal fin edge (Baldwin and Johnson, 1996; modified by Silva and Gallo, 2011) 

The anal fin has a serrated edge [state 1] only in Caudadercetis and Rharbichthys; the 

rest of the ingroup taxa have state [0: not serrated]. This character was created by Baldwin and 

Johnson (1996) to distinguish alepisauroids with state [1] from other aulopiforms. The original 

character states were [0: external margin of anal fin not indented; 1: indented] (Baldwin and 

Johnson, 1996). The description of the states as modified by Silva and Gallo (2011) [0: not 

serrated; 1: serrated] can be confusing for interpretation of the specimens. 

 

82. Fusion of hypurals (Silva and Gallo, 2011)  

The fusion of hypurals [state 1] is seen in many dercetids, Cimolichthys, Parenchodus, 

Serrilepis, Spinascutichthys, Unicachichthys, Veridagon, and Yabrudichthys. In other taxa, the 
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hypurals are separate and coded as state 0 [free] in the preexisting matrix. Some taxa are coded 

as unknown for this feature. 

 

83. Contact between hypurals 2 and 3 (Chalifa, 1989b) 

Chalifa (1989b) believed that the presence of the convoluted suture between hypurals 2 

and 3 [state 1] was a derived character in some dercetids. Vernygora et al. (2017) also suggested 

that state [1] delimits a major dercetid clade, although it is not found in all dercetid members. 

Other non-dercetid taxa have state [0: separate hypurals 2 and 3]. For the newly added genus 

Stratodus, a convoluted suture was found to be present between hypurals 2 and 3 in specimen 

SDSM 81334.  

 

84. Body scales (Chalifa, 1989b) 

This character is the presence or absence of general fish body scales, not the scutes 

(characters below). The body scales are present [state 0] in several taxa, Aspidopleurus, 

Ichthyotringa, Halec, Pelargorhynchus, Phylactocephalus, Saurorhamphus, and Serrilepis. 

Chalifa (1989b) used the character ‘scales’ in her comparative study, but apparently was 

referring to the dermal scutes found in many taxa. In extant aulopiforms, body scales are absent 

[state 1] in evermanellids, alepisaurids, and paralepidids, whereas synodontoids are covered by 

scales (Baldwin and Johnson, 1996). 

 

85. Flank scutes (Gallo et al., 2005; modified by Silva and Gallo, 2011) 

Traditionally, dercetids were characterized by the presence of dermal scutes on the flank 

which are often triradiate in form (Woodward, 1901; Goody, 1969; Taverne, 1991). Gallo et al. 
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(2005) created four states for the flank scutes [0: absent; 1: triangular; 2: cordiform; 3: tripartite], 

and Silva and Gallo (2011) added a fifth state [4: rectangular]. However, the morphology of the 

scutes is highly variable and difficult to code. For example, Eurypholis, Ophidercetis, 

Vegrandichthys, and Saurorhamphus are all coded as [1: triangular], but the scutes in 

Ophidercetis are very different from those in Saurorhamphus (Chalifa, 1989b:fig. 3; Taverne, 

2005a:fig 8). Similarly, Cimolichthys and Pelargorhynchus are both coded as [2: cordiform], but 

the scutes in Cimolichthys are not cordifom at all but rather hexagonal in shape (Woodward, 

1903:pl. xii) or rhomboid shape (personal observation). Cyranichthys is coded as state 1 

[triangular] in the preexisting matrix, but the scutes described by Taverne and Goolaerts 

(2015:fig. 15) is rather triradiate. The recently added species Spinascutichthys was coded as 

missing data because none of the morphologies listed in the states fit the unique shape of the 

scutes in Spinascutichthys. State [4: rectangular] is an autapomorphy of Rharbichthys, so this 

state is not useful in the parsimony analysis.  

 

86. Number of rows of scutes on flanks (Taverne, 1991) 

Taverne (1991) proposed the presence of two or more rows of scutes on the flanks [state 

2] to be the primitive state for dercetids. State [2] is found in Cimolichthys, Stratodus, and some 

dercetids (Cyranichthys, Brazilodercetis, Dercetis, Ophidercetis, and Pelargorhynchus). A single 

row of flank scutes [state 1] is found in some dercetids (Apuliadercetis, Dercetoides, 

Nardodercetis, Rhynchodercetis, and Hastichthys) and non-dercetids (Eurypholis, Rharbichthys, 

Saurorhamphus, Spinascutichthys, Veridagon, and Vegrandichthys). The state [0: absent] is 

redundant with character 85 state [0], absence of flank scutes. 

 



 99 

87. Middorsal scutes (Gallo et al., 2005) 

The presence of middorsal scutes [state 1] is suggested to be a possible synapomophy of 

Enchodontidae (Díaz-Cruz et al., 2016). Spinascutichthys is the only genus outside of the 

enchodontid clade with state [1], although it shares some other enchodontid features, such as the 

presence of the anteroventral prongs on dentary (Murray et al., 2022). All other taxa are coded as 

[0: absent]. 

 

3.3.2 Summary of the modification of characters/character states 

Modified characters are summarized below with the original character/states and the new 

character/states indicated.  

 

Character 4 

The ornamentation of the other dermal bones was simplified to two states either ‘smooth’ 

or ‘ornamented’ by Silva and Gallo (2011). Thus, this character should be consistent with the 

states of other dermal bones. 

Original—Dermal pattern on skull roof [0] smooth; [1] only with tubercles; [2] only with ridges; 

[3] tubercles + ridges 

Modified—Dermal pattern on skull roof [0] smooth; [1] ornamented 

 

Character 11 

The addition of the state 2 [straight] was not fully explained by Silva and Gallo (2011), 

and only Spinascutichthys is coded as state 2. I integrated the states 1 [acute] and 2 [straight] to 
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accommodate the mesethmoid of Spinascutichthys of which the anterior end is neither bifid nor 

acute. 

Original—Posterior extremity of mesethmoid: [0] bifid; [1] acute; [2] straight 

Modified— Posterior extremity of mesethmoid: [0] bifid; [1] not bifid (acute or straight) 

 

Character 39 

The inclusion of the maxilla in gape has been proposed to be a synapomorphy of 

Enchodontoidei by many authors (Rosen, 1973; Nelson, 1994; Fielitz, 2004). I replace the states 

created by Gallo et al. (2005) which did not take into account the inclusion or exclusion of 

maxilla from gape. 

Original—Placement of the maxilla: [0] over the premaxilla; [1] behind the premaxilla 

Modified— Placement of the maxilla: [0] excluded from gape; [1] included in gape 

 

Character 42 

I add the third state of mandible which is longer than the snout length to accommodate 

the nature of this state in Spinascutichthys and possible other taxa such as Eurypholis. 

Original—Mandible length: [0] equal to snout length; [1] shorter than the snout 

Modified—Mandible length: [0] equal to snout length; [1] shorter than the snout; [2] longer than 

the snout 

 

Character 52  

I rephrase the character to indicate the nature of the character found in anguloarticular, 

which expands posteriorly and overlaps the articular condyle for the quadrate. 
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Original—Quadrate-mandibular articulation: [0] exposed; [1] hidden 

Modified—Extension of the posterior end of anguloarticular: [0] absent; [1] present 

 

Character 85 

I modify the state 2 [triangular] and 4 [rectangular] to [polygonal] because the lateral 

scutes found in Eurypholis, Saurorhamphus, and Vegrandichthys are rather rectangular shape 

although they are coded as state 2 [triangular] in the preexisting matrix. But the rectangular 

shape [4] is coded only in Rharbichthys, which Silva and Gallo (2011) indicated the different 

morphology from those in state [2: triangular]. The new state [polygonal] can accommodate both 

the rectangular lateral scutes of Eurypholis and Rharbichthys as well as rhomboid lateral scutes 

of Cimolichthys and latelal scutes Spinascutichthys which radiates five to six directions).  

Original—Flank scutes: [0] absent; [1] triangular; [2] cordiform; [3] tripartite; [4] rectangular 

Modified— Flank scutes: [0] absent; [1] cordiform; [2] triradiate (radiating to three directions); 

[3] polygonal (radiating more than three directions—rhomboid, rectangular, pentagonal, 

hexagonal) 

 

3.3.3 Exclusion of characters/character states 

 Some characters are excluded from the new analysis based on their lack of usefulness. 

Characters found in only one taxon are autapomorphies, which are not informative in cladistic 

analyses.  

 

Character 20 

Supraoccipital with two well-delimited regions—only found in Nardorex 
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3.3.4 Changes to character coding 

In the analysis with modified characters, some character states have been modified from 

the previously coded states or missing data for some of the taxa. The original data matrix is 

based on Murray et al. (2022). In this thesis, except for the taxa clearly measured or described in 

the literature, I only modify the states of taxa I personally observed, although there are some taxa 

that need to be revisited, such as Apateodus and Ichthyotringa. 

 

 

Candelarhynchus 

Originally, character 27 was coded as 2 [lacrimal shape trapezoidal] by Vernygora et al. 

(2017). Alvarado-Ortega and Díaz-Cruz (2020) re-coded as ‘not applicable’, but 

Candelarhynchus has a lacrimal which I agree with Vernygora et al. (2017) is trapezoidal shape. 

Character 27: Lachrymal shape [n/a to 2] 

 

Cyranichthys 

The mandible of Cyranichthys has not been reported (Casier, 1965; Taverne and 

Goolaerts, 2015). Also, the lateral scutes appears to be triradiate based on the depiction by 

Taverne and Goolaerts, 2015:fig. 15) 

Character 45: Teeth size on mandible [0 to ?] 

Character 85: Flank scutes [1 to 3] 

 

Enchodus 
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Many missing data of Enchodus in the preexisting matrix were filled in based on personal 

observation of specimens AMHN FF 1837, FF 3859, FF 6418, FF 19473; FHSM VP 409, VP 

2939, VP 6611, and confirmation with previous studies (Goody, 1969; Chalifa, 1989c; Fielitz, 

2004; Fielitz and González-Rodríguez, 2016). Character 49 and 68 were modified from the 

preexisting matrix also based on the personal observation and description from previous studies 

above. 

Character 5: Vomerine teeth [? to 0] 

Character 7: Dermopalatine length [? to 1] 

Character 15: Shape of the post-orbital border [? to 0] 

Character 19: Supraoccipital crest [? to 0] 

Character 33: Premaxilla [? to 0] 

Character 34: Posterior extension of premaxilla [? to 0] 

Character 35: Dermal pattern on premaxilla [? to 1] 

Character 36: Fenestra in the premaxilla [? to 1] 

Character 46: Rows of teeth on upper jaw [? to 0] 

Character 49: Mandibular sensory canal [1 to 2] 

Character 68: Number of caudal vertebrae [1 to 0] 

Character 78: Dorsal fin length [? to 0] 

Character 83: Contact between hypurals 2-3 [? to 0] 

 

Eurypholis  

More than two rows of teeth were confirmed by personal observation of the specimens 

AMNH FF 3615, FF 3625, FF 14030, and by Goody (1969). 
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Character 47: Rows of teeth on mandible [0 to 1] 

 

Ophidercetis 

The original description by Taverne (2005a) was used by Silva and Gallo (2011) to code 

character 85: flank scutes. They coded Ophidercetis as having state 1 [triangular] probably based 

on figure 8 in Taverne (2005a). However, later Taverne and Goolaerts (2015:fig. 10) described 

the lateral scutes of a new specimen of Ophidercetis, which appears to be cordiform shape. 

Character 85: Flank scutes [1 to 2] 

 

Vegrandichthys 

I follow the definition by Gallo et al. (2005) for character 2—a low head ([1] the head 

length more than four times of the greatest height of the head) and a deep head ([0] the head 

length four times or less than the greatest height of the head). Based on the description by Díaz-

Cruz et al. (2020a), Vegrandichthys should have been coded as a deep head [0] because the head 

length is less than four times of the height of the head.  

Character 2: Head height [1 to 0] 

 

Spinascutichthys (Murray et al., 2022) 

Murray et al. (2022) did not code character 15 because the states were not clearly defined 

by previous studies. Based on the coding by Gallo et al. (2005), I code 0 [posterior border of the 

orbit concave] in Spinascutichthys because the sphenotic is not projecting anteriorly, which is 

state 1 [ posterior border of the orbit convex] as in Ichthyotringa. Also, the scapula and coracoid 
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were not preserved well enough to determine the state for character 65, so I here re-code the state 

to missing data. 

Character 15: Shape of the posterior border of the orbit [? to 0] 

Character 65: Scapula and coracoid [1 to ?] 

 

3.4 Results 

3.4.1 Analysis without modification of characters/character states 

The 24 most parsimonious trees (MPTs) were recovered from the analysis of 87 

characters without modification of characters or character states (Appendix B.1). The strict 

consensus tree was created from all 24 MPTs of treelength of 506, and has a consistency index 

(CI) of 0.1729 and retention index (RI) of 0.4192 (Fig. 3-1). The extinct Enchodontoidei was not 

recovered as monophyletic because the extant outgroups (Trachinocephalus, Lestidium, and 

Lestrolepis) were placed within a polytomy with the ingroup taxa. Most of the taxa that were 

previously assigned to the family Dercetidae were placed in a clade supported by character 

71:1[ neural spines very reduced], but this character state [71:1] was also found in 

Candelarhynchus, which was excluded from the clade. The presence of triradiate scutes [85:3] 

were also found in the dercetid clade but some members had different morphologies of scutes 

and therefore different states for this character [85:0, absent in Caudadercetis, 85:1, triangular in 

Ophidercetis and Cyranichthys, 85:2, cordiform in Pelargorhynchus]. In fact, Ophidercetis and 

Cyranichthys are confirmed not to have triangular scutes but rather possess cordiform shaped 

scutes in Ophidercetis and triradiate scutes in Cyranichthys (Taverne and Goolaerts, 2015), and 

both states were modified in the next analysis. Although most dercetids were recovered in a 

monophyletic group, there was no unambiguous synapomorphy to support the clade. 
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The family Enchodontidae was proposed by Díaz-Cruz et al. (2016) to have two 

synapomorphies [48-1: anteroventral prongs present on the dentary; 87-1: middorsal scutes 

present], but neither of these two supported the monophyly of this family. The middorsal scutes 

are present in Enchodus, Eurypholis, Palaeolycus, Parenchodus, Veridagon, Vegrandichthys, 

Unicachichthys, Saurorhamphus, and Spinascutichthys. Only Spinascutichthys falls outside of 

the clade formed by the rest of the eight taxa, so having middorsal scutes is homoplastic for 

Enchodontidae and Spinascutichthys in this analysis. 

 

3.4.2 Analysis with modified character matrix 

The 86 characters as modified (Appendix B.2) were run in a new parsimony analysis. 

Three most parsimonious trees were recovered, and all were used to form the strict consensus 

tree with treelength of 490, CI of 0.1653 and RI of 0.3955 (Fig. 3-2). This time, the extant 

designated outgroups were recovered outside of the ingroup, forming a sister clade to a huge 

polytomy of the extinct taxa, which here are considered as Enchodontoidei. All enchodontoids 

except those with missing data share a single character state 38:1 [maxilla included in gape], 

which excludes the extant taxa from the clade of extinct ingroups.  

However, the resolution within the extinct clade turned out to be lower than in the 

previous analysis. Most dercetids did not form a clade as found in the first analysis, except a 

small clade of (Cyranichthys + (Pelargorhynchus + (Dercetis elongatus, D. triqueter, D. 

megnificus sp. nov., Stratodus))) supported by several characters [4:1 skull roof ornamented; 

49:1 mandible ornamented; 69:0 single transverse process; 77:1 long dorsal fin; 85: two or more 

rows of lateral scutes]. The three species of Dercetis and Stratodus form a polytomy, in which 

several characters were shared to support the group of Dercetis and Stratodus, although no 
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unambiguous synapomorphy was found. One of the modified characters, flank scutes with a 

triradiate shape [83:2] did not support a dercetid clade as was found in the first analysis, but 

instead was recovered as a plesiomorphic state of all enchodontoids, although there are many 

reversals of the states. The reduced neural spines [70:1] did not support the familiy Dercetidae, 

instead only supporting a smaller clade of dercetid taxa (Cyranichthys + (Pelargorhynchus + 

(Dercetis elongatus, D. triqueter, D. megnificus sp. nov., Stratodus))). On the other hand, other 

enchodontoids except Apateodus, Atolvorator, Ichthyotringa, and Rharbichthys were recovered 

as a monophyletic clade supported by the opposite state of character 70 [0: neural spines well 

developed]. A monophyletic family Enchodontidae was weakly supported by several characters, 

such as character 86:1 [middorsal scutes present].  

 

3.5 Discussion 

The monophyly of the suborder Enchodontoidei was supported by the analysis with 

modification of characters and character states of some taxa, although the supporting value of 

both CI and RI are still low. The extinct suborder Enchodontoidei was supported by a single 

unambiguous synapomorphy, maxilla included in gape [38:1], and this agrees with several 

authors (Rosen, 1973; Nelson, 1994; Fielitz, 2004), although the interrelationships within 

Enchodontoidei was not recovered well, with many dercetid taxa recovered in a polytomy with 

other enchodontoid menbers. Fielitz (2004) defined the placement of the maxilla with three states 

[0: excluded from gape of jaw; 1: included in gape and is toothed; 2: included in gape, but teeth 

absent]. The state [1: included in gape and is toothed] supported his enchodontoid clade, but 

there were reversals in some taxa [from state 1 to 2] because he constructed the character to 

include maxillary teeth which caused reversals, and thus he did not find this character to be an 
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unambiguous synapomorphy which should be unique and unreversed. In this study, I coded the 

maxillary teeth and the placement of the maxilla separately because the loss of teeth is related to 

the tooth germ layer, and the exclusion of the maxilla is a result of the extension of the 

premaxilla which completely forms the gape. Therefore, the two are not necessarily correlated. 

The family Dercetidae was, however, not recovered as monophyletic in the analysis with 

modified character matrix. Alvarado-Ortega and Díaz-Cruz et al. (2020) challenged the 

monophyly of the family because their parsimony analysis did not result in a clade of the 

traditional taxa included in Dercetidae . Here, the analysis with modified characters showed that 

the family Dercetidae was also not supported and a previous unambiguous synapomorphy, neural 

spines very reduced [71:1 (in the original matrix), 70:1 (in the modified matrix)] was recovered 

as an ancestral condition of all enchodontoids. The ancestral condition of reduced neural arch 

[71:1 (in the original matrix), 70:1 (in the modified matrix)] retained in a small clade of 

(Cyranichthys + (Pelargorhynchus + (Dercetis elongatus, D. triqueter, D. megnificus sp. nov., 

Stratodus))), but it was not recovered as a synapomorphy with other dercetids.  

One of the modified characters, presence of triradiate flank scutes [85:3 (in the original 

matrix), 84: 2(in the modified matrix)], that supported a monophyletic dercetid clade found in the 

first analysis did not recover a monophyly of dercetids but supported a clade of (Cyranichthys + 

(Pelargorhynchus + (Dercetis elongatus, D. triqueter, D. megnificus sp. nov., Stratodus))) with a 

reversion in Pelargorhynchus [2 to 1]. The presence of triradiate scutes has traditionally been 

used as a character of the Dercetidae (Woodward, 1901; Goody, 1996; Taverne, 1991), however, 

flank scutes are also present in other enchodontoids, such as Cimolichthys and Eurypholis, and 

the morphology of scutes varies among those taxa. Gallo et al. (2005) and Silva and Gallo (2011) 

classified the shape of the scutes in several states, but adding various morphologies to a single 
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state made it difficult to code and sometimes caused miscoding. For example, Spinascutichthys 

was coded as n/a in this character because none of the scute shapes was applicable (Murray et al., 

2022). There was a miscoding in the origical matrix for Ophidercetis, in which scutes were 

coded as triangular, but the state “triangular” was originally created for the scutes of Eurypholis 

and Saurorhamphus (Gallo et al., 2005), which do not resemble the scutes of Ophidercetis at all. 

Although they do not form a clade, all of Spinascutichthys, Ophidercetis, Eurypholis and 

Saurorhamphus were coded as [83:3 flank scutes polygonal] in the modified analysis to avoid 

any confusion. Other character modifications or addition of new characters found in dercetids 

taxa will be needed to resolve the monophyletic dercetid clade. 

The family Enchodontidae was not supported by any unambiguous synapomorphies even 

after modifying the matrix. The clade (Enchodus, Palaeolycus + (Unicachichthys + 

(Parenchodus + Veridagon)) + ((Vegrandichthys + (Eurypholis + Saurorhamphus)))) was 

weakly supported by the least homoplastic character [85:1 middorsal scutes present], although 

the state was also found in Spinascutichthys. Testing monophyly of the family Enchodontidae 

was not carried out in this study because the objective of the thesis focused on testing the 

suborder Enchodontoidei and the family Dercetidae. More systematic works will be needed to 

resolve the monophyly of the Enchodontidae. 

 

3.6 Conclusion 

A phylogenetic analysis of the suborder Enchodontoidei was performed in this chapter. A 

total of 86 characters with six modified characters ended up being used in the revised analysis. 

The Enchodontoidei was supported as monophyletic based on a single unambiguous character, 

maxilla included in gape, which follows the previous hypothesis proposed by many authors 
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(Rosen, 1973; Nelson, 1994; Fielitz, 2004). The choice of outgroups and modification of six 

characters helped in recovering a monophyletic group, although a more inclusive study with 

other extant members and reexamination of some taxa, such as Sardinioides spp., Apateodus 

spp., Ichthyotringa spp., and other incomplete specimens of which the character states were not 

modified in this thesis, are needed for better resolution in a future study.  

The family Dercetidae was not recovered in the analysis with the modified matrix. The 

triradiate scutes were recovered as a plesiomorphic state of the family, although some taxa have 

reversed states. The new species, Dercetis magnificus, was recovered in a polytomy with the 

other two species of Dercetis, D. elongatus and D. triqueter, and Stratodus. The family 

Enchodontidae was also not supported by any unambiguous synapomorphy. Further study with 

additional modification of characters and states, addition of new characters, and correction of the 

character coding will be needed to test the monophyly of Dercetidae and Enchodontidae. 
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FIGURE 3-1. The result of the analysis without character modification. The strict consensus tree 

of 24 most parsimonious trees with treelength of 506 obtained from the analysis with 87 

characters without modification (CI = 0.1729; RI = 0.4192). The Bremer/Bootstrap values with 

only 50%> bootstrap values are indicated. Taxa that previously have been assigned to Dercetidae 

are highlighted in color. 
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FIGURE 3-2. The result of the analysis with character modification. The strict consensus tree of 

10 most parsimonious trees with treelength of 490 obtained from the analysis with modified 86 

characters (CI = 0.1653; RI = 0.3955). The Bremer/Bootstrap values with only 50%> bootstrap 

values are indicated. Taxa that previously have been assigned to Dercetidae are highlighted in 

color. 
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Chapter 4: Conclusions and Future research 

 

4.1 General conclusion 

In this thesis, the main objectives were 1) to describe the new specimens of dercetid, and 

2) to test monophyly of the family Dercetidae and the suborder Enchodontoidei by assessing the 

preexisting character matrix. In Chapter 2, I described two newly discovered specimens from the 

Bearpaw Formation of Alberta and assigned them to the new species of the genus Dercetis. The 

new specimens are larger than any other specimens that were previously reported as Dercetis and 

provided anatomical detail particularly on the cranial region. In addition to the large body size, 

the new species is described as the first well-preserved Dercetis from the Western Interior 

Seaway as well as the western area of the Tethys, whereas the reports of the other two species of 

Dercetis are restricted to the eastern Tethys (Woodward, 1901; Taverne, 2005). The result of the 

phylogenetic analysis using a character matrix from previous studies (Alvarado-Ortega and Díaz-

Cruz, 2020; Murray et al., 2022) recovered the new species, D. magnificus sp. nov. as a sister to 

the two previously known species of Dercetis, D. elongatus and D. triqueter. However, they 

were recovered in a polytomy together with Stratodus apicalis in the analysis with a modified 

character matrix performed in Chapter 3, which needs to be reanalyzed in future studies with 

better resolution. 

In Chapter 3, I assessed a total of 87 preexisting characters and ended up modifying six 

characters and character states. In some taxa, such as Apateodus, Atolvorator, and Ichthyotringa, 

there were potential missing data or miscoded data that need to be recoded. The analysis with 

modified characters/states and some changes to coding in several taxa recovered monophyly of 

the suborder Enchodontoidei supported by a single unambiguous synapomorphy—maxilla 
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included in gape. This character was modified from Gallo et al. (2005) character 39 [placement 

of maxilla 0: over the premaxilla; 1: behind the premaxilla] to the new character 38 (in the 

modified matrix) [position of maxilla 0: excluded from gape; 1: included in gape]. The inclusion 

of the maxilla in the gape was suggested as a synapomorphy by multiple authors (Rosen, 1973; 

Nelson, 1994; Fielitz, 2004) and this study supported their hypothesis. The monophyletic family 

Dercetidae, however, was not supported in the modified analysis possibly due to the low 

resolution of the recovered trees. The very reduced neural arches was suggested as a single 

synapomorphy of Dercetidae (Vernygora et al., 2017; Alvarado-Ortega and Díaz-Cruz, 2020); 

however, the result did not even recover the previous monophyletic clade but placed most of the 

dercetids in a polytomy with other enchodontoids. More examination of the specimens that were 

previously assigned to Dercetidae will be needed to construct the characters/states that possibly 

support the clade. Although the modified analysis resulted in a lower supporting value, the 

assessment of each character in the preexisting matrix provided a basis for the additional 

modifications in a future phylogenetic study. 

 

4.2 Limitations and future research 

A limitation in this thesis was mainly the limited access to the specimens. The extant 

aulopiforms are mostly adapted to deep-seas and it is not easy to obtain comparative specimens. 

In this thesis, only three extant members of aulopiform taxa were included in the modified 

matrix, so future studies will require more extant taxa to be included to increase the reliability of 

the relationships between extant and extinct taxa. Also, the study in Chapter 3 did not include 

Sardinioides as an outgroup because of the uncertain placement of the genus (Rosen, 1973; 

Beckett et al., 2017). In fact, Sardinioides illustrans was assigned to the Aulopiformes based on 
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the unique synapomorphy found on the gill arch (Beckett et al., 2017). Sardinioides minimus was 

recovered as part of the ingroup in the previous studies (Silva and Gallo, 2011; Alvarado-Ortega 

and Díaz-Cruz et al., 2020), so a revised systematic work of species of Sardinioides is needed for 

more reliable assignment of this genus. 

In this thesis, I focused only on the Enchodontoidei that mainly lived in the Cretaceous 

and did not consider other extinct aulopiform fossils that were reported from younger deposits in 

the phylogenetic analysis, such as Holosteus from the Eocene and Polymerichthys from the 

Miocene (Uyeno, 1967; Marramà and Carnevale, 2017). The addition of those younger extinct 

taxa would provide more information regarding the relationships between the extinct and extant 

Aulopiformes. 

There were several more characters that could be modified or removed, such as the shape 

of the preopercle that included redundant states (e.g., L-shaped) with the other preopercle 

character (posteroventral spine developed). Several taxa also showed polymorphism or 

intrageneric variation in some characters, such as the dermal ornamentation of the dentary 

present in Dercetis elongatus and D. magnificus sp. nov. but absent in D. triqueter. Those 

characters/states as well as other potential modifications can be performed in future studies, but 

require access to each specimen, and the revision of coding will also be required in some taxa. 

Further, there are other possible characters to be added, such as the detailed morphology of the 

vertebrae among the Enchodontoidei, but the limited access to actual specimens of all taxa in this 

thesis prevented me from adding an extra character. Further character assessment remains until 

the future when I actually observe the specimens and can assess possible additional characters. 
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APPENDIX A: Chapter 2 “A large, new species of dercetid (Teleostei: Aulopiformes) from 

the Campanian Bearpaw Formation of Alberta, Canada.” 

A.1 The data matrix modified from Murray et al. (2022) with addition of the Dercetis magnificus 

sp. nov. 
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A.2 The reconstruction from the CT images of the head of the holotype. A, Right dorsolateral 

view. B, Left ventrolateral view. Blue = frontal, parietal, mesethmoid; Green = palatine, 

ectopterygoid, endopterygoid, metapterygoid, quadrate, symplectic, hyomandibula; Orange = 

premaxilla, maxilla, dentary, anguloarticular; Purple = opercle, subopercle, interopercle; Yellow 

= lacrimal, sphenotic, pterotic, prootic, pterosphenoid, parasphenoid, basioccipital, 

supraoccipital, epioccipital. 
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A.3 The reconstruction from the CT images of the upper and lower jaws. A, Right dorsolateral 

view. B, Left ventrolateral view. Purple = premaxilla; Pink = maxilla; Yellow = dentary; Blue = 

anguloarticular. 
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A.4 The reconstruction from the CT images of the hyopalatine bones. A, Right dorsolateral view. 

B, Left ventrolateral view. Orange = hyomandibula; Blue = palatine; Green = ectopterygoid; 

Yellow = endopterygoid; Pink = metapterygoid; Purple = symplectic. 
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A.5 The reconstruction from the CT images of the neurocraniam. A, Right dorsolateral view. B, 

Ventral view. Orange = pterotic; Yellow = prootic, basioccipital; Blue = epioccipital; Green = 

pterosphenoid; Pink = supraoccipital; Purple = parasphenoid. 
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APPENDIX B: Chapter 3 “Phylogeny of the Enchodontoidei” 

B.1 Characters and states from the previous studies based on the most recent work (Murray et al., 

2022). 

 

1. Body length: [0] slightly elongate (lesser than or equal to 1:10); [1] elongate (from 1:11 to 

1:15); [2] very elongate (higher than 1:15).  

2. Head height: [0] deep; [1] low.  

3. Snout length: [0] short; [1] long.  

4. Dermal pattern on skull roof: [0] smooth; [1] only with tubercles; [2] only with ridges; [3] 

tubercles + ridges.  

5. Vomerine teeth: [0] absent; [1] present.  

6. Number of teeth on dermopalatine: [0] two or more; [1] none; [2] single.  

7. Dermopalatine length: [0] twice or more times longer than its tooth; [1] equal-sized or shorter 

than its tooth.  

8. Antorbital: [0] present; [1] absent.  

9. Nasal: [0] present; [1] absent.  

10. Anterior extremity of mesethmoid: [0] acute; [1] bifid.  

11. Posterior extremity of mesethmoid: [0] bifid; [1] acute; [2] straight.  

12. Autosphenotic spine: [0] straight; [1] posteriorly curved.  

13. Suture between frontals: [0] slightly sinuous; [1] markedly sinuous.  

14. Posterior border of frontal: [0] behind the autosphenotic spine; [1] at the level of the 

autosphenotic spine.  

15. Shape of the posterior border of the orbit: [0] concave; [1] convex.  

16. Parietal length: [0] long (length equal or larger than its height); [1] short (length smaller than 

its height).  

17. Supraorbital sensory canal in the skull roof: [0] covered; [1] exposed.  

18. Extension of the supraoccipital: [0] not separating parietals; [1] separating parietals.  

19. Supraoccipital crest: [0] present; [1] absent.  

20. Supraoccipital with two well-delimited regions: [0] absent; [1] present.  
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21. Extension of pterotic: [0] not projecting backwards beyond the level of occiput; [1] 

projecting beyond the occiput.  

22. Dilatator fossa: [0] unroofed; [1] roofed.  

23. Exposition of the post-temporal fossa: [0] roofed; [1] unroofed.  

24. Orbitosphenoid: [0] present; [1] absent.  

25. Basisphenoid: [0] present; [1] absent.  

26. Supraorbital: [0] present; [1] absent.  

27. Lachrymal shape: [0] subtriangular; [1] suboval; [2] trapezoidal; [3] rod-shaped.  

28. Position of the mandibular suspensorium: [0] inclined; [1] vertical.  

29. Ectopterygoid: [0] toothless; [1] toothed.  

30. Endopterygoid: [0] toothless; [1] toothed. 

31. Placement of articular facet for the hyomandibula: [0] posteroventral; [1] ventral.  

32. Number of articular facets for the hyomandibula: [0] a continuous facet; [1] two facets.  

33. Premaxilla: [0] toothed; [1] toothless.  

34. Posterior extension of the premaxilla: [0] reaching the orbit; [1] not reaching the orbit.  

35. Dermal pattern on premaxilla: [0] smooth, [1] ornamented.  

36. Fenestra in the premaxilla: [0] absent; [1] present.  

37. Ascending process of the premaxilla: [0] absent; [1] present.  

38. Maxilla: [0] toothless; [1] toothed.  

39. Placement of the maxilla: [0] over the premaxilla; [1] behind the premaxilla.  

40. Teeth on upper jaw: [0] only straight; [1] absent; [2] curved + straight; [3] only curved.  

41. Supramaxilla: [0] absent; [1] present.  

42. Mandible length: [0] equal to the snout; [1] shorter than the snout.  

43. Teeth on mandible: [0] only straight; [1] only curved; [2] curved + straight.  

44. Teeth size on upper jaw: [0] absent or with same height; [1] with different height.  

45. Teeth size on mandible: [0] different height; [1] equal height.  

46. Rows of teeth on upper jaw: [0] single; [1] two or more.  

47. Rows of teeth on mandible: [0] single; [1] two or more.  

48. Anteroventral prongs on dentary: [0] absent; [1] present.  

49. Mandibular sensory canal: [0] enclosed by bone; [1] partially open; [2] open.  

50. Mandibular dermal pattern: [0] smooth, [1] ornamented.  
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51. Flange on anguloarticular: [0] present; [1] absent.  

52. Quadrate-mandibular articulation: [0] exposed; [1] hidden.  

53. Articular facet for the quadrate: [0] shallow; [1] deep.  

54. Retroarticular process: [0] present, [1] absent.  

55. Ornamentation in the infraorbital bones: [0] smooth, [1] ornamented.  

56. Preopercle shape: [0] L-shaped; [1] triangular; [2] crescent-shaped; [3] rod-shaped; [4] pipe-

shaped.  

57. Preopercular dermal pattern: [0] smooth; [1] ornamented. 

58. Posteroventral spine in the preopercle: [0] absent or reduced, [1] well-developed.  

59. Dimension of the opercle: [0] deeper than long; [1] longer than deep.  

60. Opercle crest: [0] absent; [1] present.  

61. Spine on posterior border of the opercle: [0] absent; [1] present.  

62. Opercular and subopercular dermal pattern: [0] smooth; [1] ornamented.  

63. Interopercle: [0] present; [1] absent.  

64. Mesocoracoid: [0] absent; [1] present.  

65. Scapula and coracoid: [0] individualized; [1] co-ossified.  

66. Supraneurals: [0] present; [1] absent.  

67. Total number of vertebrae: [0] more than 50; [1] equal or minus than 50.  

68. Number of caudal vertebrae: [0] more than 20; [1] equal or minus than 20.  

69. Ribs: [0] extending to the pelvic fin origin; [1] surpassing the pelvic fin origin.  

70. Transverse processes: [0] one pair; [1] two pairs.  

71. Neural spines: [0] well-developed (their length surpassing the length of the vertebral 

centrum); [1] very reduced (their length equal or minus than half of the length of the 

vertebral centrum).  

72. Neural spines bifid in the abdominal region: [0] present; [1] absent.  

73. Distribution of epipleurals: [0] extending to more than a half of the body; [1] up to half of the 

body.  

74. Distribution of epineurals: [0] extending to more than a half of the body; [1] up to half of the 

body.  
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75. Position of the pectoral fin: [0] high (last fin-ray placed at the level of the ventral border of 

the opercle or a little above); [1] low (last fin-ray placed below the level of the ventral 

border of the opercle).  

76. Orientation of the pectoral fin base: [0] vertical; [1] horizontal; [2] inclined.  

77. Origin of the pelvic fin: [0] anterior to the dorsal fin; [1] opposite or posterior to the dorsal 

fin.  

78. Dorsal fin length: [0] short (lesser than 20 rays); [1] long (more than 20 rays).  

79. Shape of the first proximal pterygiophore of the dorsal fin: [0] different from the remnants; 

[1] all equal in shape.  

80. Anal fin length: [0] short (up to 15 rays); [1] long (more than 15 rays). 

81. Anal fin edge: [0] not serrated; [1] serrated.  

82. Fusion of hypurals: [0] free; [1] fused.  

83. Contact between hypurals 2-3: [0] free; [1] with convoluted suture.  

84. Body scales: [0] present; [1] absent. 

85. Flank scutes: [0] absent; [1] triangular; [2] cordiform; [3] tripartite; [4] rectangular.  

86. Number of rows of scutes on flanks: [0] absent; [1] single; [2] two or more.  

87. Middorsal scutes: [0] absent; [1] present. 
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B.2 Characters and states modified from the previous studies. The modified characters and states 

are bolded. 

 

1. Body length: [0] slightly elongate (lesser than or equal to 1:10); [1] elongate (from 1:11 to 

1:15); [2] very elongate (higher than 1:15).  

2. Head height: [0] deep; [1] low.  

3. Snout length: [0] short; [1] long.  

4. Dermal pattern on skull roof: [0] smooth; [1] ornamented.  

5. Vomerine teeth: [0] absent; [1] present.  

6. Number of teeth on dermopalatine: [0] two or more; [1] none; [2] single.  

7. Dermopalatine length: [0] twice or more times longer than its tooth; [1] equal-sized or shorter 

than its tooth.  

8. Antorbital: [0] present; [1] absent.  

9. Nasal: [0] present; [1] absent.  

10. Anterior extremity of mesethmoid: [0] acute; [1] bifid.  

11. Posterior extremity of mesethmoid: [0] bifid; [1] not-bifid (acute or straight).  

12. Autosphenotic spine: [0] straight; [1] posteriorly curved.  

13. Suture between frontals: [0] slightly sinuous; [1] markedly sinuous.  

14. Posterior border of frontal: [0] behind the autosphenotic spine; [1] at the level of the 

autosphenotic spine.  

15. Shape of the posterior border of the orbit: [0] concave; [1] convex.  

16. Parietal length: [0] long (length equal or larger than its height); [1] short (length smaller than 

its height).  

17. Supraorbital sensory canal in the skull roof: [0] covered; [1] exposed.  

18. Extension of the supraoccipital: [0] not separating parietals; [1] separating parietals.  

19. Supraoccipital crest: [0] present; [1] absent.  

20. Extension of pterotic: [0] not projecting backwards beyond the level of occiput; [1] 

projecting beyond the occiput.  

21. Dilatator fossa: [0] unroofed; [1] roofed.  

22. Exposition of the post-temporal fossa: [0] roofed; [1] unroofed.  
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23. Orbitosphenoid: [0] present; [1] absent.  

24. Basisphenoid: [0] present; [1] absent.  

25. Supraorbital: [0] present; [1] absent.  

26. Lachrymal shape: [0] subtriangular; [1] suboval; [2] trapezoidal; [3] rod-shaped.  

27. Position of the mandibular suspensorium: [0] inclined; [1] vertical.  

28. Ectopterygoid tooth: [0] absent [1] present.  

29. Endopterygoid tooth: [0] absent [1] present. 

30. Placement of articular facet for the hyomandibula: [0] posteroventral; [1] ventral.  

31. Number of articular facets for the hyomandibula: [0] a continuous facet; [1] two facets.  

32. Premaxillary tooth: [0] present; [1] absent.  

33. Posterior extension of the premaxilla: [0] reaching the orbit; [1] not reaching the orbit.  

34. Dermal pattern on premaxilla: [0] smooth, [1] ornamented.  

35. Fenestra on the premaxilla: [0] absent; [1] present.  

36. Ascending process of the premaxilla: [0] absent; [1] present.  

37. Maxillary tooth: [0] absent; [1] present.  

38. Position of the maxilla: [0] excluded from gape; [1] included in gape. 

39. Teeth on upper jaw: [0] only straight; [1] absent; [2] curved + straight; [3] only curved.  

40. Supramaxilla: [0] absent; [1] present.  

41. Mandible length: [0] equal to the snout; [1] shorter than the snout; [2] longer than the 

snout.  

42. Teeth on mandible: [0] only straight; [1] only curved; [2] curved + straight.  

43. Teeth size on upper jaw: [0] absent or with same height; [1] with different height.  

44. Teeth size on mandible: [0] different height; [1] equal height.  

45. Number of rows of teeth on upper jaw: [0] single; [1] two or more.  

46. Number of rows of teeth on mandible: [0] single; [1] two or more.  

47. Anteroventral prongs on dentary: [0] absent; [1] present.  

48. Mandibular sensory canal: [0] enclosed by bone; [1] partially open; [2] open.  

49. Mandibular dermal pattern: [0] smooth, [1] ornamented.  

50. Flange on anguloarticular: [0] present; [1] absent.  

51. Extension of the posterior end of anguloarticular: [0] absent; [1] present. 

52. Articular facet for the quadrate: [0] shallow; [1] deep.  
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53. Retroarticular process: [0] present, [1] absent.  

54. Ornamentation in the infraorbital bones: [0] smooth, [1] ornamented.  

55. Preopercular shape: [0] L-shaped; [1] triangular; [2] crescent-shaped; [3] rod-shaped; [4] 

pipe-shaped.  

56. Preopercular dermal pattern: [0] smooth; [1] ornamented. 

57. Posteroventral spine on the preopercle: [0] absent or reduced, [1] well-developed.  

58. Dimension of the opercle: [0] deeper than long; [1] longer than deep.  

59. Opercular crest: [0] absent; [1] present.  

60. Spine on posterior border of the opercle: [0] absent; [1] present.  

61. Opercular and subopercular dermal pattern: [0] smooth; [1] ornamented.  

62. Interopercle: [0] present; [1] absent.  

63. Mesocoracoid: [0] absent; [1] present.  

64. Scapula and coracoid: [0] individualized; [1] co-ossified.  

65. Supraneurals: [0] present; [1] absent.  

66. Total number of vertebrae: [0] more than 50; [1] equal or minus than 50.  

67. Number of caudal vertebrae: [0] more than 20; [1] equal or minus than 20.  

68. Ribs: [0] extending to the pelvic fin origin; [1] surpassing the pelvic fin origin.  

69. Transverse processes: [0] one pair; [1] two pairs.  

70. Neural spines: [0] well-developed (their length surpassing the length of the vertebral 

centrum); [1] very reduced (their length equal or minus than half of the length of the 

vertebral centrum).  

71. Neural spines bifid in the abdominal region: [0] present; [1] absent.  

72. Distribution of epipleurals: [0] extending to more than a half of the body; [1] up to half of the 

body.  

73. Distribution of epineurals: [0] extending to more than a half of the body; [1] up to half of the 

body.  

74. Position of the pectoral fin: [0] high (last fin-ray placed at the level of the ventral border of 

the opercle or a little above); [1] low (last fin-ray placed below the level of the ventral 

border of the opercle).  

75. Orientation of the pectoral fin base: [0] vertical; [1] horizontal; [2] inclined.  
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76. Origin of the pelvic fin: [0] anterior to the dorsal fin; [1] opposite or posterior to the dorsal 

fin.  

77. Dorsal fin length: [0] short (lesser than 20 rays); [1] long (more than 20 rays).  

78. Shape of the first proximal pterygiophore of the dorsal fin: [0] different from the remnants; 

[1] all equal in shape.  

79. Anal fin length: [0] short (up to 15 rays); [1] long (more than 15 rays). 

80. Anal fin edge: [0] not serrated; [1] serrated.  

81. Fusion of hypurals: [0] free; [1] fused.  

82. Contact between hypurals 2-3: [0] free; [1] with convoluted suture.  

83. Body scales: [0] present; [1] absent. 

84. Flank scutes: [0] absent; [1] cordiform; [2] triradiate (radiating to three direcitons); [3] 

polygonal (radiating to more than three directions, such as rhomboid, rectangular, 

pentagonal, hexagonal).  

85. Number of rows of scutes on flanks: [0] absent; [1] single; [2] two or more.  

86. Middorsal scutes: [0] absent; [1] present. 
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B.3 The preexisting character matrix based on Alvarado-Ortega and Díaz-Cruz (2020) and 

Murray et al. (2022) with addition of Dercetis magnificus sp. nov. and Stratodus apicalis. 
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B.4 The modified character matrix with six modified characters with changes on the character 

states of some taxa (see 3.3.4 Changes to character coding). 
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