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ABSTRACT 

Despite previous research advocating the inclusion of spatially correlated random effects in order 

to significantly improve the estimation of the expected collision frequency, limited research 

efforts have been devoted to incorporating spatial correlation in both multivariate and random 

parameters collision modelling. Therefore, this thesis attempts to investigate the effects of 

including spatial correlation in three different collision modelling formulations: i) multivariate 

models, ii) univariate random parameters models, and iii) multivariate random parameters 

models. The models were developed using three years of collision data from the city of 

Richmond and the city of Vancouver. The proposed models were estimated in a Full Bayesian 

(FB) context via Markov Chain Monte Carlo (MCMC) simulation. The Deviance Information 

Criteria (DIC) and chi-square statistics were used to compare models and assess their goodness-

of-fit, respectively. Models with spatial correlation yielded the best inference in terms of 

unbiased parameter estimates, precision, and capturing the multivariate nature of the collision 

data. Results showed significant and positive correlation between various road attributes and 

collision occurrence. A high percentage of the total variability was explained by the spatial 

correlation in most cases. This finding indicates that ignoring spatial correlation in collision 

modelling may lead to biased parameter estimation. The results also exhibit high and significant 

posterior correlation between severe and non-injury collisions for the total random effects 

(heterogeneous and spatial), indicating that a higher number of non-injury collisions is associated 

with a higher number of severe collisions. Furthermore, both multivariate spatial models and 

multivariate random parameters spatial models were compared against their univariate 

counterpart with respect to model inference and goodness-of-fit. Multivariate spatial models 

provide a superior fit over the two univariate spatial models, as demonstrated by a very 

significant drop in the DIC value. Similarly, multivariate random parameters spatial models 

outperformed the univariate random parameters spatial models.  

  



 

iii 
 

PREFACE 

Articles submitted to refereed journals 

1. Barua, S., El-Basyouny, K., Islam, T., 2014. A Full Bayesian Multivariate Count-Data 

Model of Collision Severity with Spatial Correlation. Analytic Methods in Accident 

Research (in press). 

2. Barua, S., El-Basyouny, K., Islam, T., 2014. Effects of Spatial Correlation in Random 

Parameters Collision Count-Data Models. Under Review. 

3. Barua, S., El-Basyouny, K., Islam, T., 2014. Multivariate Random Parameters Collision 

Count-Data Models with Spatial Correlation. Under Review.   



 

iv 
 

 

Dedicated to my parents and sister 

  



 

v 
 

ACKNOWLEDGEMENTS 

First of all, I wish to convey my profound gratitude to Buddha for enabling me to complete this 

research work successfully.  

I would like to express my sincere appreciation, deepest gratitude and indebtedness to my 

supervisor, Dr. Karim El-Basyouny, Department of Civil and Environmental Engineering, 

University of Alberta, for his constant guidance, valuable suggestions, constructive criticism, 

meticulous help and financial support throughout the progress of the thesis work. 

My sincere thanks are due to my MSc thesis defense committee members, Dr. Amy Kim (Chair), 

Dr. Zhi-Jun (Tony) Qiu and Dr. Ahmed Bouferguene, for their time and very helpful comments. 

I would like to pay tribute and appreciation to Md. Tazul Islam for his continuous guidance, 

advice and support. 

I would also like to acknowledge the help of my professors, Dr. Zhi-Jun (Tony) Qiu and Dr. 

Amy Kim, at the University of Alberta, who impacted my graduate study through their 

coursework. I am also grateful to and would like to thank Rochelle Borchman and Aalyssa Atley 

for all their technical writing support, aspiring guidance and time.    

Further, I also owe thanks to Dr. Md. Mazharul Hoque, Dr. Hasib Mohammed Ahsan and Dr. 

Md. Hadiuzzaman, Department of Civil Engineering, Bangladesh University of Engineering and 

Technology (BUET), for fostering my transportation engineering background and providing 

essential support before and during my graduate study.        

I express my warm thanks to all my colleagues and friends, especially, Rajib Sikder, Rokib SA 

and Ran Li, for their valuable suggestions, constructive criticism and support. 

Last, but by no means least, I am grateful to my parents and sister for their continuous 

encouragement and support during my study. 

 

 

 



 

vi 
 

TABLE OF CONTENTS  

 

Abstract ........................................................................................................................................... ii 

Preface............................................................................................................................................ iii 

Acknowledgements ......................................................................................................................... v 

Table of Contents ........................................................................................................................... vi 

List of Tables ................................................................................................................................. ix 

List of Figures ................................................................................................................................. x 

1. Introduction ................................................................................................................................. 1 

1.1 Background ........................................................................................................................... 1 

1.2 Research Motivation ............................................................................................................. 5 

1.3 Research Objectives and Scope............................................................................................. 5 

1.4 Structure of the Thesis........................................................................................................... 6 

2. Literature Review........................................................................................................................ 8 

2.1 Previous Research ................................................................................................................. 8 

2.1.1 Multivariate Collision Models ........................................................................................ 8 

2.1.2 Random Parameters Collision Models ......................................................................... 10 

2.1.3 Spatial Collision Models .............................................................................................. 13 

2.1.4 Issues Related to Previous Research ............................................................................ 16 

2.2 Collision Modelling............................................................................................................. 16 

2.2.1 Poisson Model .............................................................................................................. 16 

2.2.2 Negative Binomial Model ............................................................................................ 17 

2.2.3 Poisson Lognormal Model............................................................................................ 18 

2.2.4 Multivariate Model ....................................................................................................... 19 

2.2.5 Univariate Spatial Model .............................................................................................. 21 



 

vii 
 

2.2.6 Multivariate Spatial Model ........................................................................................... 21 

2.2.7 Univariate Random Parameters Model ......................................................................... 22 

2.2.8 Multivariate Random Parameters Model ...................................................................... 23 

3. Data Description ....................................................................................................................... 25 

4. Multivariate Spatial Models ...................................................................................................... 29 

4.1 Background ......................................................................................................................... 29 

4.2 Methodology ....................................................................................................................... 31 

4.2.1 Model Specification ...................................................................................................... 31 

4.2.2 The Models ................................................................................................................... 33 

4.2.3 Prior and Posterior Distributions .................................................................................. 33 

4.2.4 Full Bayesian Estimation .............................................................................................. 34 

4.2.5 Comparison of Models and Goodness-of-Fit ............................................................... 34 

4.3 Results and Discussion ........................................................................................................ 36 

4.3.1 Model Selection ............................................................................................................ 36 

4.3.2 Parameter Estimates ..................................................................................................... 38 

4.3.3 Variance and Correlation .............................................................................................. 43 

4.3.4 Comparison of Multivariate Models with Univariate Models...................................... 44 

4.4 Summary ............................................................................................................................. 47 

5. Univariate Random Parameters Spatial Models ....................................................................... 49 

5.1 Background ......................................................................................................................... 49 

5.2 Methodology ....................................................................................................................... 51 

5.3 Results and Discussion ........................................................................................................ 52 

5.3.1 Model Selection ............................................................................................................ 52 

5.3.2 Parameter Estimates ..................................................................................................... 54 

5.4 Summary ............................................................................................................................. 59 



 

viii 
 

6. Multivariate Random Parameters Spatial Models .................................................................... 61 

6.1 Background ......................................................................................................................... 61 

6.2 Methodology ....................................................................................................................... 62 

6.3 Results and Discussion ........................................................................................................ 64 

6.3.1 Model Comparison and Parameter Estimates ............................................................... 64 

6.3.2 Comparison of Multivariate Models with Univariate Models...................................... 71 

6.4 Summary ............................................................................................................................. 72 

7. Conclusions And Future research ............................................................................................. 75 

7.1 Concluding Remarks ........................................................................................................... 75 

7.2 Research Contributions ....................................................................................................... 77 

7.3 Limitations .......................................................................................................................... 78 

7.4 Future Research ................................................................................................................... 78 

References ..................................................................................................................................... 79 

 

  



 

ix 
 

LIST OF TABLES 

Table 1: Statistical summary of Richmond dataset (n =72 road segments) .................................. 27 

Table 2: Statistical summary of Vancouver dataset (n =281 road segments) ............................... 28 

Table 3: Description of model covariates ..................................................................................... 28 

Table 4: The DIC statistics by model ........................................................................................... 37 

Table 5: Parameter estimates and 95% credible intervals for multivariate models (Models 1A-

1C) (Richmond dataset) ................................................................................................................ 39 

Table 6: Parameter estimates and 95% credible intervals for multivariate models (Models 1A-

1C) (Vancouver dataset) ............................................................................................................... 42 

Table 7: Parameter estimates and 95% credible intervals for univariate PLN models (Richmond 

dataset) .......................................................................................................................................... 45 

Table 8: Parameter estimates and 95% credible intervals for univariate PLN spatial models 

(Vancouver dataset) ...................................................................................................................... 46 

Table 9: The DIC statistics by model ........................................................................................... 53 

Table 10: Parameter estimates and 95% credible intervals for Models 2A-2C (Richmond dataset)

....................................................................................................................................................... 55 

Table 11: Parameter estimates and 95% credible intervals for Models 2A-2C (Vancouver dataset)

....................................................................................................................................................... 58 

Table 12: The DIC statistics by model ......................................................................................... 64 

Table 13: Parameter estimates and 95% credible intervals for Model 3A ................................... 66 

Table 14: Parameter estimates and 95% credible intervals for Model 3B .................................... 68 

Table 15: Parameter estimates and 95% credible intervals for Model 3C .................................... 69 

Table 16: Parameter estimates and 95% credible intervals for univariate random parameters 

model with both heterogeneous effects and spatial correlation .................................................... 72 

 

  



 

x 
 

LIST OF FIGURES 

Figure 1: Illustration of the study area in the city of Richmond ................................................... 25 

Figure 2: Illustration of the study area in the city of Vancouver .................................................. 26 

Figure 3: Neighbouring structure definition ................................................................................. 27 



 

1 
 

1. INTRODUCTION 

1.1 Background 

Collision modelling is widely considered a key tool for estimating the safety levels of different 

road entities (i.e., intersections and road segments). Collision models are mathematical models 

statistically developed to link collision occurrence to a roadway’s traffic and geometric 

characteristics. There are several key reasons that collision modelling is widely used in safety 

studies: collision models i) can be used under a Bayesian framework to address the regression-to-

the-mean bias; ii) can address over-dispersion due to unobserved or unmeasured heterogeneity in 

collision data; iii) can account for the fundamental nonlinear relationship between collision 

frequency and traffic volume (AASHTO, 2010); iv) help analysts to understand the relationships 

between collisions and particular attributes (Greibe, 2003; Sawalha and Sayed, 2006; Hadayeghi 

et al., 2003; Manuel et al., 2014); v) help analysts to predict site-specific collisions and, hence, 

identify and rank road segments that are hazardous (Hauer, 1992; 1996; Hauer et al., 2002); and 

vi) can be used to evaluate the effectiveness of various safety countermeasures by facilitating the 

Empirical Bayesian (EB) and Full Bayesian (FB) approach (Yanmaz-Tuzel and Ozbay, 2010; El-

Basyouny and Sayed, 2010; 2012a). Since collision modelling has been widely used in safety 

analysis, it is of paramount importance to continue improving the methodologies for developing 

these models, in an attempt to reduce the bias and inconsistent estimation, improve the precision 

of the estimates, thereby increasing the model’s predictability.  

Over the last two decades, considerable research efforts have been devoted in order to develop 

and apply sophisticated methodological approaches to account for several collision data-related 

issues (e.g., over-dispersion, under-dispersion, omitted-variables bias, fixed parameters, 

functional form). Regardless of these methodological innovations and developments, there are 

still several complex issues (e.g., unobserved heterogeneity, endogeneity, spatial and temporal 

correlation, correlated collision types—for more information, readers can refer to Lord and 

Mannering (2010) and Mannering and Bhat (2014)) that can substantially influence the 

inference, precision and findings from the collision data analysis. Fortunately, over the past few 

years, there have been substantial methodological developments to address these potential issues 

that include the following:  
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 Use of random parameters in collision models to capture unobserved heterogeneity 

across observations (Gkritza and Mannering, 2008; Milton et al., 2008; 

Anastasopoulos and Mannering, 2009; 2011; El-Basyouny and Sayed, 2009a; Dinu 

and Veeraragavan, 2011; Garnowski and Manner, 2011; Ukkusuri et al., 2011; 

Venkataraman et al., 2011; 2013; Wu et al., 2013; Xiong and Mannering, 2013; Chen 

and Tarko, 2014; Anastasopoulos et al., 2012a; Russo et al., 2014);  

 Application of the multivariate modelling approach in collision analysis at different 

levels of classification (Maher, 1990; Bijleveld, 2005; Ma and Kockelman, 2006; 

Park and Lord, 2007; Ma et al., 2008; Aguero-Valverde and Jovanis, 2009; El-

Basyouny and Sayed, 2009b);  

 Use of two-state Markov Switching and finite-mixture or latent class models to 

analyze collision frequencies (Malyshkina et al., 2009; Park and Lord, 2009; 

Malyshkina and Mannering, 2010; Park et al., 2010; Zou et al., 2013; Shaheed and 

Gkritza, 2014; Zou et al., 2014);  

 Inclusion of spatial correlation in collision models to capture unobserved effects, as 

neighbouring sites typically have similar environmental and geographical 

characteristics (Amoros et al., 2003; Noland and Quddus, 2004; Abdel-Aty and 

Wang, 2006; Aguero-Valverde and Jovanis, 2006; 2008; 2010; Quddus, 2008; El-

Basyouny and Sayed, 2009c; Mitra, 2009; Flask and Schneider IV, 2013; Aguero-

Valverde, 2013);  

 Inclusion of temporal correlation in collision models to capture effects due to the 

collection of collision data over successive time periods (Lord and Persaud, 2000; 

Wang and Abdel-Aty, 2006; Wang et al., 2006); and  

 Application of the zero-inflated modelling technique to overcome the excessive 

zeroes observed in collision data (Shankar et al., 1997; Lord et al., 2005; Lord et al., 

2007).  

Spatial correlation is one of the key issues that has been gaining attention in the development of 

collision models (Amoros et al., 2003; Noland and Quddus, 2004; Abdel-Aty and Wang, 2006; 

Aguero-Valverde and Jovanis, 2006; 2008; 2010; Quddus, 2008; Mitra, 2009; El-Basyouny and 

Sayed, 2009c; Aguero-Valverde, 2013; Flask and Schneider IV, 2013). As collision data is 
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collected with reference to location, which is measured as points in space (Quddus, 2008), a 

spatial correlation exists between observations (LeSage, 1998). Further, as some of the 

unobserved factors related to collisions are likely to be correlated over space, there might be 

some possible correlation among neighbouring sites. According to Aguero-Valverde and Jovanis 

(2010), the inclusion of spatially correlated random effects significantly improves the precision 

of the estimates of the expected collision frequency for road segments. The inclusion of spatial 

effects has two main advantages: i) spatial correlation sites estimate the “pool strength” from 

neighbouring sites, thereby improving model parameter estimation (Aguero-Valverde and 

Jovanis, 2008); and ii) spatial dependence can be a surrogate for unknown and relevant 

covariates, thereby reflecting unmeasured confounding factors (Dubin, 1988; Cressie, 1993). 

Ignoring spatial correlation may lead to a biased, inconsistent and erroneous estimation of the 

model parameters. To this end, this thesis investigates the effects of including spatial correlation 

in different collision modelling approaches.  

Generally, collision-related outcomes (e.g., fatal, injury, no injury) are considered as independent 

of each other and are often analyzed individually. However, the literature shows that collision 

types or severities have exhibited interdependencies (Maher, 1990; Bijleveld, 2005; Ma and 

Kockelman, 2006; Park and Lord, 2007; Ma et al., 2008; Aguero-Valverde and Jovanis, 2009; 

El-Basyouny and Sayed, 2009b). For instance, locations where fatal collisions occur are more 

likely to have a high number of less-fatal (i.e., severe or property damage) collisions due to the 

same deficiencies in roadway design, similar weather conditions and other unobserved factors. 

These correlations may be caused by omitted variables, which can influence collision occurrence 

at different severity levels, or they may be due to ignoring shared information in unobserved 

random effects. Typically, collision models are analyzed and estimated at different severity 

levels or types separately by using a single equation (univariate modelling) or a series of 

independently specified equations. Most of the literature is limited to investigating the effects of 

including spatial correlation in univariate collision models. While a number of studies explored 

the multivariate crash modelling to capture the heterogeneous correlations among different 

collision types or severities (Maher, 1990; Bijleveld, 2005; Ma and Kockelman, 2006; Park and 

Lord, 2007; Ma et al., 2008; Aguero-Valverde and Jovanis, 2009; El-Basyouny and Sayed, 

2009b), multivariate spatial correlations were rarely investigated. Furthermore, univariate spatial 
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modelling of different types of collision counts may lead to biased results because collision types 

or severities are not spatially independent of one another. 

The parameters of these traditional univariate and multivariate collision models were assumed to 

be fixed when they actually vary across observations (road segments or intersections). Further, 

due to unobserved heterogeneity, the effects of explanatory variables on collisions may vary for 

different observations. For instance, a two-lane road segment with high traffic volume may have 

a high collision frequency compared to a similar road segment with less traffic volume. 

Therefore, constraining the parameters may not incorporate site specific effects, leading to an 

underestimation of standard errors leading to an inconsistent, biased and erroneous inference 

(Washington et al., 2003). Milton et al. (2008), Gkritza and Mannering (2008), Anastasopoulos 

and Mannering (2009; 2011), El-Basyouny and Sayed (2009a), Anastasopoulos et al. (2012a), 

and Russo et al. (2014) all demonstrated that the random parameters model can provide better 

inference compared to the traditional fixed parameters model and can explicitly account for 

heterogeneity across observations due to unobserved road geometrics, traffic characteristics, 

environmental factors, driver behaviour and other confounding factors. Most of the literature 

focused on developing random parameters models by taking unobserved heterogeneity into 

account and often ignored the likely random effects of spatial correlation. Ignoring this spatial 

correlation in random parameters collision models may reduce the predictive capability of the 

models, as some of the unobserved contributing and confounding factors are likely to be 

correlated over space. 

Further, most of the literature employed random parameters within a univariate modelling 

framework. Multivariate random parameters were rarely explored in the literature. However, 

recently, El-Basyouny and Sayed (2013a), El-Basyouny et al. (2014a) and Dong et al. (2014) 

applied random parameters in multivariate collision modelling. Almost all of the very few 

multivariate random parameters collision models used heterogeneous effects in addition to 

random parameters to account for unobserved or unmeasured heterogeneity. However, as in 

univariate random parameters collision modelling, most of the studies ignored the effects of 

spatial correlation in multivariate random parameters collision models, which may lead to an 

incorrect parameters estimation of the model as there might be some possible correlation among 

neighbouring sites. 
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1.2 Research Motivation 

A comprehensive review of literature on collision modelling revealed several methodological 

limitations and research gaps: 

I. Most of the literature is limited to investigating the effects of including spatial correlation 

in univariate collision models. Only two studies (Song et al., 2006; Aguero-Valverde, 

2013) focused on area-wide multivariate spatial modelling for collision severity and type. 

Multivariate spatial modelling for intersections or road segments was rarely explored in 

the literature.  

II. Most of the literature is limited to investigating the application of a random parameters 

modelling approach in collision analysis. Though the literature has suggested that spatial 

correlation could reduce bias (produced by the omission of spatial variables) when 

estimating the regression coefficients, the inclusion of spatial correlation in both 

univariate and multivariate random parameters collision models has rarely been explored 

in the literature. 

Therefore, this thesis attempts to investigate the effects of including spatial correlation in three 

different collision modelling formulations: i) multivariate models, ii) univariate random 

parameters models, and iii) multivariate random parameters models. 

1.3 Research Objectives and Scope 

Considering the methodological limitations of previous studies and given the magnitude of the 

potential issue regarding spatial correlation, three objectives have been set in this thesis. 

Objective 1: Use the multivariate spatial modelling approach to develop spatial models for road 

segments in order to assess spatial correlation at different collision severity levels and its 

influence on the collision analysis of urban arterials. Further, compare multivariate spatial 

models with independent (separate) univariate spatial models for each collision severity in terms 

of model inference and goodness-of-fit. 

Objective 2: Investigate the effects of spatial correlation in univariate random parameters 

collision count-data models.  

Objective 3: Include spatial correlation in multivariate random parameters collision severity 

models and assess the effects in terms of model inference, precision and goodness-of-fit. In 
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addition, compare multivariate random parameters spatial models with their univariate 

counterpart. 

From a model application perspective, the methodological approach proposed herein can be used 

to estimate the associated safety risks and the expected collision frequency more precisely by 

considering spatial correlations in the data. Nevertheless, multivariate models and random 

parameters models are complex to estimate, and the inclusion of spatial correlation makes the 

estimation technique even more complex, the ultimate objective of this thesis is to explore novel 

methodological approaches that have the potential to provide new insight in collision data 

analysis. 

1.4 Structure of the Thesis 

The remainder of this thesis is organized into the following chapters:  

Chapter 2 discusses previous research efforts devoted to developing multivariate models, 

random parameters models and spatial models. This chapter also points out the limitations and 

gaps in the literature regarding incorporation of spatial correlation in different methodological 

approaches. In addition, an overview of different collision modelling approaches is also 

provided.   

Chapter 3 describes the datasets used in this thesis. Three years (1994–1996) of collision data 

and other geometric and non-geometric road data from two cities in British Columbia, Canada: i) 

Richmond, and ii) Vancouver, along with the preparation of a neighbour matrix to incorporate 

spatial correlation, are described.  

Chapter 4 investigates the inclusion of spatial correlation at different collision severity levels, 

using the multivariate modelling approach, and its influence on the collision analysis of urban 

arterials. 

Chapter 5 illustrates the effects of including spatial correlation in univariate random parameters 

collision count-data models. 

Chapter 6 describes the effects of including spatial correlation in multivariate random parameters 

collision models at different collision severity levels. In addition, this chapter compares 

multivariate random parameters spatial models with their univariate counterpart. 
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Finally, Chapter 7 discusses research conclusions, research contributions, limitations and 

suggestions for future research. 
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2. LITERATURE REVIEW 

This chapter discusses the previous research efforts devoted to developing multivariate models, 

spatial models and random parameters models. In addition, an overview of different collision 

modelling approaches is also provided.   

2.1 Previous Research 

As the focus of this thesis is to investigate the effects of including spatial correlation in 

multivariate collision models and random parameters collision models, a comprehensive review 

of three modelling approaches (multivariate models, random parameters models, spatial models) 

is given in this section. After providing a brief summary of previous studies, this section 

concludes with the issues and gaps in research on the inclusion of spatial correlation in collision 

modelling.  

2.1.1 Multivariate Collision Models 

Multivariate collision modelling has been gaining attention in safety analysis over the past few 

years. Maher (1990) was the first to apply the multivariate modelling approach in collision 

analysis. However, the author focused on explaining traffic collision migration, rather than 

explaining the correlations that exist among different collision severities/types. After the study of 

Maher (1990), no studies used the multivariate modelling approach in collision analysis until the 

study of Ladron de Guevara et al. (2004). The study of Ladron de Guevara et al. (2004) used the 

simultaneous negative binomial model to forecast collisions for traffic analysis zones at the 

planning level. The authors found a significant high correlation between fatal and injury 

collisions. Bijleveld (2005) was the first to propose the structure of variance and covariance of 

the outcomes. However, the method proposed by Bujleveld (2005) estimates covariance only 

within observations and ignores covariance between observations. Song et al. (2006) had also 

used multivariate spatial models to explore correlated collision types at county level. Although 

summary statistics of the correlation coefficient between the responses were not provided, the 

plots of the posterior distribution of the coefficient indicated possible significant correlation.  

Ma and Kockelman (2006) introduced multivariate Poisson specification to simultaneously 

model injuries by severity. However, the model specification proposed in that study relied on a 

one-way covariance structure and assumed the presence of an added constant across all count 
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types, which implies that the covariances are non-negative and identical within the segment and 

that within segment covariances are the same across segments. Further, the model specification 

does not allow for over-dispersion. Consequently, Park and Lord (2007) extended the 

specification proposed by Ma and Kockelman (2006). The authors took overdispersion into 

account and included extra-Poisson variation and relaxed the covariance structure with a 

different covariance among severity levels by including a lognormal distribution for extra 

Poisson variations. Similarly, Ma et al. (2008) used multivariate Poisson lognormal specification 

to model collision severities. The study of Aguero-Valverde and Jovanis (2009) and El-

Basyouny and Sayed (2009b) used Bayesian multivariate Poisson lognormal models for collision 

severity modelling and site ranking. Aguero-Valverde and Jovanis (2009) quantified the effects 

of using multivariate structures on the precision of the estimates of collision frequency, while El-

Basyouny and Sayed (2009b) demonstrated that if the analysis was restricted to univariate 

models, some of the hazardous locations could be overlooked while identifying hazardous 

locations. Another study of El-Basyouny and Sayed (2013a) also proposed an alternative 

method, a depth-based multivariate method for the identification and ranking of hotspots under a 

full Bayesian framework.    

Unlike the traditional multivariate model specification, the study of Wang et al. (2011) proposed 

an alternative method to estimate collision frequency at different severity levels, namely the two-

stage mixed multivariate model, which combines both collision frequency and severity models. 

The two-stage mixed multivariate model was comprised of a Bayesian spatial model and a mixed 

logit model for collision frequency and severity analysis respectively. The authors advocated that 

the two-stage mixed multivariate model is a promising tool in predicting collision frequency 

according to their severity levels and site ranking. The multivariate modelling approach was also 

used in modelling animal-vehicle collisions (Lao et al., 2011). The authors use diagonal inflated 

bivariate Poisson regression to perform the analysis. To assess the collision rates at different 

severity levels, Anastasopoulos et al. (2012b) proposed a multivariate Tobit model that can 

address the possibility of differential censoring across injury-severity levels, while also 

accounting for the potential contemporaneous error correlation resulting from commonly shared 

unobserved characteristics across roadway segments. The authors found that the multivariate 

Tobit model outperformed its univariate counterpart and is practically equivalent to the 

multivariate negative binomial model. Narayanamoorthy et al. (2013) applied the multivariate 
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modelling approach to assess bicycle and pedestrian injury severity. The authors proposed a new 

spatial multivariate count model to jointly analyze traffic collision-related counts of pedestrians 

and bicyclists by injury severity at the census tract level. A recent study by El-Basyouny et al. 

(2014a; b) used multivariate Poisson lognormal models to assess the effects of weather elements 

and states on collision severity levels and collision types. Several studies (Park et al., 2010; El-

Basyouny and Sayed, 2011; El-Basyouny et al., 2012b; El-Basyouny and Sayed, 2013b) also 

applied a multivariate modelling approach in before-after safety evaluation. 

2.1.2 Random Parameters Collision Models 

Despite the fact that the random parameters model outperformed traditional fixed parameter 

models, limited research used this approach in safety research as random parameters estimation 

techniques i) are very complex, ii) are less convenient for engineering purposes, iii) lack an 

estimation tool for large samples (Chen and Tarko, 2014), and iv) lack transferability to other 

datasets (Shugan, 2006; Lord and Mannering, 2010; Washington et al., 2010). However, over the 

past few years, random parameters modelling has been gaining attention in safety analysis. 

Milton et al. (2008) and Gkritza and Mannering (2008) were the first to apply the random 

parameters modelling approach to traffic safety. Milton et al. (2008) used a mixed logit (random 

parameters) model to assess the highway collision severities (i.e., property damage only, possible 

injury and injury collisions). The authors found that the volume-related variables (e.g., average 

daily traffic per lane, average daily truck traffic, truck percentage, interchanges per mile) and 

weather effects (e.g., snowfall) are best modelled as random parameters, while roadway 

characteristics (e.g., the number of horizontal curves, number of grade breaks per mile and 

pavement friction) are best modelled as fixed parameters. Further, the author suggested that the 

mixed logit model holds considerable promise as a methodological tool in highway collision 

modelling. Unlike the study of Milton et al. (2008), Gkritza and Mannering (2008) employed a 

mixed logit approach for the safety analysis of seat belt use in single and multi-occupant 

vehicles. The study also suggested that the mixed logit (random parameters) modelling approach 

could provide a much fuller understanding of the interactions of the numerous variables that 

correlate with safety belt usage compared to traditional discrete-outcome modelling approaches. 

Furthermore, this modelling approach offers methodological flexibility to capture individual-

specific heterogeneity that can arise from a number of factors relating to roadway characteristics, 

driver behaviour and vehicle types.   
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Several studies contributed to the methodology by employing random parameters in different 

collision modelling approaches. For instance, Anastasopoulos and Mannering (2009) first 

proposed the random parameters count-data model as an alternative methodological approach to 

analyze collision frequencies. The authors compared random parameters models with the fixed 

parameter negative binomial model. The findings indicated that ignoring the possibility of 

random parameters can result in substantially different marginal effects and subsequent 

inferences related to the magnitude of the effect of factors, affecting the precision of the 

calculated collision frequencies. The authors also found that random parameters count-data 

models have the potential to provide a fuller understanding of the factors determining collision 

frequencies. Unlike the previous study of Anastasopoulos and Mannering (2009), El-Basyouny 

and Sayed (2009a) focused on a collision count-data model incorporating random corridor 

parameters, clustering 392 road segments into 58 corridors under a FB framework. Three 

modelling approaches (i.e., fixed parameters PLN models, random effects model and random 

parameters PLN model) were compared in terms of inference and goodness-of-fit. The authors 

found some strong evidence for the benefit of clustering road segments into homogeneous 

groups (e.g., corridors) and incorporating random corridor parameters in collision modelling. 

The authors concluded that this modelling approach can be used to gain new insights into how 

the covariates affect collision frequencies and to account for unobserved heterogeneity. 

Another study by Anastasopoulos and Mannering (2011) assessed fixed and random parameters 

logit models using five years of collision and non-collision specific injury data. Three severity 

outcomes were considered (i.e., no injury, injury and fatality) in that study. The analysis 

demonstrated that random parameters models using less detailed data can provide a reasonable 

level of accuracy, thus providing support for the statistical superiority of the random parameters 

logit model over the fixed parameter logit model. The findings also showed that individual 

collision data provided a better overall fit, relative to the models based on the proportion of 

collision by severity types. The study of Anastasopoulos et al. (2012a) used random parameters 

Tobit models to investigate the factors affecting highway collision rates in urban interstate roads 

in Indiana. The empirical results showed that the random parameters Tobit model outperformed 

the fixed parameter Tobit model. According to parameter estimation, the random parameters 

Tobit models provided a superior fit with 11 variables producing statistically significant 

parameters, compared to only six in the case of traditional fixed parameter Tobit models. 
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Recently, Xiong and Mannering (2013) proposed a finite mixture random parameters model to 

investigate the heterogeneous effects of guardian supervision on adolescent driver injury 

severities. The methodological approach in that study can be used to examine heterogeneous 

populations and has the potential to provide new insights in collision analysis. Russo et al. 

(2014) used random parameters in a bivariate ordered probit model to compare the factors 

affecting injury severity in angle collisions by fault status. The proposed methodological 

approach allows for consideration of within-collision correlation, as well as unobserved 

heterogeneity, and results in a significantly better fit than a series of independent fixed parameter 

models. 

Several studies applied the random parameters modelling approach to perform safety analyses. 

For instance, Dinu and Veeraragavan (2011) employed the random parameters modelling 

approach to develop a count-data model for daytime and night time collisions on two-lane 

undivided rural highways in India that operate under mixed traffic conditions. Similarly, 

Ukkusuri et al. (2011) applied this approach to explain the effects of built environmental 

characteristics on pedestrian collision frequencies at the census tract level. Several parameters in 

the model were found to be random, which indicated their heterogeneous influence on the 

numbers of pedestrian collisions. Thus, the authors concluded that the random parameters 

modelling approach allows the incorporation of unobserved heterogeneity across the spatial 

zones. The study of Venkataraman et al. (2011) employed a random parameters negative 

binomial modelling approach to analyze nine years of collision count data on interstate highways 

in Washington State. The models were designed to account for parameter correlations, panel 

effects that contributed to intra-segment temporal variations, and effects between sites. Similarly, 

Garnowski and Manner (2011) used a negative binomial random parameters model to determine 

the factors related to collision frequencies on a set of 197 ramps. The authors found that a 

negative binomial model with random parameters proved to be an appropriate model in the 

cross-sectional setting for detecting factors related to collisions. Another study of Venkataraman 

et al. (2013) employed a negative binomial random parameters model to assess interstate 

collision frequencies. A total of 21 models were evaluated in four ways, by i) severity, ii) 

number of vehicles involved, iii) collision types and iv) location characteristics. Parameter 

estimation indicated some improvements in likelihood in 19 of the 21 models due to some 

parameters being random. Further, random parameters results contributed to a better likelihood 
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compared to the baseline fixed-effect negative binomial models. Wu et al. (2013) also used the 

same methodological approach with the addition of a nested logit model for collision injury 

severity to assess the safety impacts of signal warning flashers and speed control at high-speed 

signalized intersections. The recent study of Chen and Tarko (2014) used random parameters and 

random effects models (only the intercept is randomly distributed; the other parameters are 

fixed) to analyze work zone safety. The results indicated that the marginal effects on collision 

frequency computed from the random effects model were quite similar to those of the random 

parameters model. The authors also suggested that the random effects model could be used as a 

convenient and practical alternative to the random parameters model. 

2.1.3 Spatial Collision Models 

Conventional collision models with Poisson-gamma or Poisson lognormal (PLN) distribution 

assume that sites are independent of one another and, hence, can be regarded as non-spatial 

models. However, as collision data is collected with reference to location, which is measured as 

points in space (Quddus, 2008), a spatial correlation exists between observations (LeSage, 1998). 

Ignoring spatial correlations may lead to a biased estimation of the model parameters. Therefore, 

a number of road element-specific (i.e., intersection or road segment) and area-wide collision 

studies have incorporated spatial correlation in modelling collision data (Aguero-Valverde and 

Jovanis, 2006; 2008; 2010; Aguero-Valverde, 2013).   

In the context of intersection-based spatial models, Abdel-Aty and Wang (2006) used 

Generalized Estimating Equations (GEE) to address the spatial correlation between signalized 

intersections. The authors determined that signalized intersections, especially ones close together 

along a certain corridor, are spatially correlated and influence one another. Similarly, Guo et al. 

(2010) applied Poisson and negative binomial Bayesian models with spatial correlation to 

signalized intersections and found that Poisson spatial models are the best fit. Mitra (2009) 

proposed a Geographic Information System (GIS)-based method to detect collision hotspots and 

a spatial regression method with heterogeneous and spatial random effects in continuous space to 

investigate the intersection-level factors that influence fatal and injury collisions. The author 

concluded that models that include spatial correlation may potentially reduce the bias associated 

with model misspecification by changing the estimate of the annual average daily traffic 

(AADT) parameter. The results also indicated that spatial correlation is quite significant in cases 
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of collisions involving minor injury or non-injury collisions. Recently, Castro et al. (2012) 

proposed a latent variable-based generalized ordered response framework for count-data models, 

which can efficiently introduce temporal and spatial dependencies through the latent continuous 

variables. 

Aguero-Valverde and Jovanis (2008) explored the effects of spatial correlation in collision count 

models for rural road segments. The FB hierarchical approach with CAR effects for spatial 

correlation was used in that study. The results indicated that the model with spatial correlation 

was a significantly better fit to the data than the PLN model with only heterogeneity. Another 

study by Aguero-Valverde and Jovanis (2010) investigated spatial correlation in multi-level 

collision frequency models for different types of urban and rural road segments. The study 

employed the FB hierarchical approach with CAR distribution for the spatial correlation terms. 

The authors concluded that spatial correlation substantially increased the random effects. Results 

indicated that 70% to 90% of the variation explained by random effects resulted from spatial 

correlation. This suggests that spatial models offer a significant advantage because poor 

estimates resulting from small sample sizes and low sample means are frequent issues in 

highway collision analysis. Ahmed et al. (2011) explored a Bayesian hierarchical approach with 

spatial (CAR) and heterogeneous effects to develop collision models for 20 miles of 

mountainous freeway in order to rank the hazardous roadway segments. El-Basyouny and Sayed 

(2009c) compared CAR, multiple membership (MM) and extended multiple membership (EMM) 

models with traditional PLN models to investigate the inclusion of spatial correlation in collision 

prediction models. The authors found that the fitted CAR and MM models had significant 

estimates for both heterogeneity and spatial parameters. Furthermore, in terms of goodness-of-fit, 

the EMM model fit best with the data, followed by the CAR model. Castro et al. (2013) used a 

spatial generalized ordered response model to examine highway collision injury severity. The 

authors proposed a flexible econometric structure for injury severity analysis at the level of 

individual collisions that recognizes the ordinal nature of injury severity categories. The authors 

accommodated spatial dependencies in the injury severity levels experienced in collisions that 

occur close to one another in space.  The recent study of Chiou et al. (2014) used spatial 

multinomial generalized Poisson models to investigate spatial dependency. The authors found 

that spatial dependencies sharply decreased at distances exceeding seven kilometres and that 

shorter segments with high collision frequency tended to have high spatial dependence. 
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A number of studies have developed area-wide spatial models to demonstrate the relationship 

between collision occurrence and numerous socio-demographic, road network, transportation 

demand, and exposure variables. The unit of analysis varied from one study to another. For 

instance, Aguero-Valverde (2013) used canton as the unit to develop a multivariate CAR model. 

Aguero-Valverde and Jovanis (2006); Amoros et al. (2003); Flask and Schneider IV (2013); 

Huang et al. (2010); Song et al. (2006); and Van Schalkwyk (2008) used county as the specific 

unit of analysis. Noland and Quddus (2004) and Quddus (2008) used census wards to conduct a 

spatially disaggregated accident analysis of road casualties in England. Hadayeghi et al. (2003; 

2007; 2010); Karim et al., (2013); Siddiqui et al., (2012); Wang et al., (2012); and Wei and 

Lovegrove (2013) applied spatial models to traffic analysis zones (TAZs), the unit often used by 

transportation planners. The study of Miaou and Song (2005) focused both on intersections and 

road segments as well as the county level for analysis. The authors demonstrated that the 

inclusion of a spatial component in the crash prediction model significantly improved the overall 

goodness-of-fit performance of the model and affected the ranking results. 

Very few studies have focused on the multivariate spatial modelling approach in collision 

analysis. Song et al., (2006) used multivariate spatial models for collision mapping. Bayesian 

multivariate CAR models were used for four types of collisions (intersection collisions, 

intersection-related collisions, driveway-related collisions, and non-intersection-related 

collisions) using collision data from Texas. The authors proposed spatial priors for the Bayesian 

multivariate hierarchical models and sufficient conditions to ensure posterior propriety under a 

non-informative prior. Recently, Aguero-Valverde (2013) used the multivariate spatial modelling 

approach for excess collision frequency and severity in cantons (counties) for Costa Rica. The 

author advocated that the multivariate spatial model performed better than the univariate spatial 

models. The author also emphasized that the effects of spatial smoothing due to multivariate 

spatial random effects were evident in the estimation of excess equivalent non-injury collisions. 

Similarly, Wang and Kockelman (2013) assessed multivariate spatial effects, focusing on 

pedestrian collisions. The authors used Poisson-based multivariate CAR models for pedestrian 

collisions across census tracts in Austin, Texas, and found positive spatial autocorrelations across 

different neighbourhoods for pedestrian collisions. The study of Narayanamoorthy et al. (2013) 

also proposed a spatial multivariate count model to jointly analyze the traffic collision-related 

counts of pedestrians and bicyclists by injury severity. The modelling framework was applied to 
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predict injury counts at a census tract level. The results demonstrated the need to use a 

multivariate modelling system for the analysis of injury counts by road-user type and injury 

severity level, while also accounting for spatial dependence effects in injury counts. 

2.1.4 Issues Related to Previous Research 

Most of the literature is limited to investigating the effects of including spatial correlation in 

univariate collision models. Only two studies (Aguero-Valverde, 2013; Song et al., 2006) 

focused on area-wide multivariate spatial modelling for collision severity and type. Further, 

Wang and Kockelman (2013) and Narayanamoorthy et al. (2013) used the multivariate spatial 

modelling approach for pedestrian and bicyclist collision analysis at the census tract level. 

Multivariate spatial modelling for intersections or road segments was rarely explored in the 

literature. In terms of random parameters modelling approach, most of the literature is limited to 

investigating the application of the random parameters modelling in collision analysis 

incorporating site specific unobserved heterogeneity. Though the literature has suggested that 

spatial correlation could reduce bias (produced by the omission of spatial variables) when 

estimating the regression coefficients, the inclusion of spatial correlation in both univariate and 

multivariate random parameters collision models has rarely been explored in the literature. 

2.2 Collision Modelling 

This section presents an overview of different modelling specifications that are used in collision 

analysis. However, due to the diversity of models being handled in this thesis, each individual 

chapter has a more detailed model specifications.    

2.2.1 Poisson Model 

As collisions are discrete, nonnegative and random events, the Poisson distribution is commonly 

used to develop the collision model. Let 
iY  denote the number of collisions at road segment 

),...,3,2,1( nii  . Assume that the number of collisions at n road segments is independent and 

that 

)(~| iii PoissonY            (1) 

Where, 
i is the Poisson parameter. The probability of road segment i  having 

iy collisions is 

given by 
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The Poisson parameter 
i  is commonly specified as an exponential function of road segment-

specific attributes, such as exposure, traffic and geometric characteristics (Miaou and Lord, 

2003), and is usually expressed as  

)(exp ' ii X           (3) 

Where, 
'

iX  is a row vector of covariates representing segment-specific attributes and   is a 

vector of regression parameters to be estimated from the data. In the Poisson regression model, it 

is assumed that the mean and variance of the count variables are constrained to be equal, such 

that 

iii YVarYE  )()(           (4) 

However, when modelling collision count datasets, this assumption is often violated, as most 

collision data is likely to be over-dispersed (the variance is greater than the mean) (Kulmala, 

1995; Cameron and Trivedi, 1998; Winkelmann, 2003). A Poisson distribution for over-

dispersed data can underestimate the standard errors of the regression coefficients, which can 

lead to inflated values of the t-test, thereby affecting the significance level of the model 

regression coefficients. This leads to an incorrect selection of covariates, resulting in poor model 

fit. 

2.2.2 Negative Binomial Model 

To overcome the problems associated with the Poisson regression models, several researchers 

proposed the use of the Poisson-Gamma (PG) hierarchy, leading to the Negative Binomial (NB) 

regression model (Cameron and Trivedi, 1998). The main reason for the extensive use of this 

model is that it is simple to compute, since the Gamma distribution is a conjugate prior to 

Poisson, leading to a Gamma posterior distribution, which considerably simplifies the posterior 

analysis. To address over-dispersion for unobserved or unmeasured heterogeneity, it is assumed 

that 

)(exp iii             (5) 
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iii   )(ln)(ln           (6) 

Where, 
i  is an exponential function of segment-specific attributes, such as exposure, traffic and 

geometric characteristics: 

mi

M

m

mi X



1

0)(ln            (7) 

Where, miX  denotes the matrixes of covariates (relevant geometric and non-geometric road 

attributes), m ),...,3,2,1( Mm   is the number of variables; )ln(1 ii LX   and )ln(2 ii VX  ; 
iL  and 

iV  represent the length and traffic volume (AADT), respectively. 
0 is the intercept and 

m

denotes the vector of regression coefficients. The term )(exp i  represents a multiplicative 

random effect due to unobserved heterogeneity (also known as unstructured errors), which 

follows a Gamma distribution with an inverse dispersion parameter k  (also known as the shape 

parameter):  

),(~|)(exp kkGammaki          (8) 

The dispersion (or over-dispersion) parameter is usually referred to as  

k

1
             (9) 

The probability density function of the PG or NB model is given by 

iy

i

i

ii

i
iii

y

y
kyY 






































)(!

)(
},|{Pr      (10) 

Under the PG or NB model, the mean and variance are given by 

iiYE )(            (11) 






2

)( i
iiYVar            (12) 

2.2.3 Poisson Lognormal Model 

Several distributions (e.g., Gamma, Lognormal) can be used for unstructured errors, )(exp i . 

However, as the univariate PLN model is more flexible than the univariate Poisson-Gamma or 

negative binomial model to handle over-dispersion, researchers have recently proposed using the 

PLN model as an alternative to the negative binomial and Poisson-Gamma model for modelling 

collision data (Miaou et al., 2003; Aguero-Valverde and Jovanis, 2008; Lord and Miranda-
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Moreno, 2008; Lord and Mannering, 2010). The univariate PLN regression model is obtained by 

the assumption, 

),0(~|)(exp 22

uui Lognormal          (13) 

Or, 

),0(~| 22

uui Normal           (14) 

Where, 
2

u  denotes the extra Poisson variance or variance for heterogeneous effects (also known 

as within-site (extra) variation). Under the PLN model, the mean and variance are given by 

)5.0exp()( 2

uiiYE 
         (15) 

]1)[exp()]([)()( 22  uiii YEYEYVar 
       (16) 

2.2.4 Multivariate Model 

Generally, collision-related outcomes (e.g., fatal, injury, PDO) are considered as independent of 

each other and have often been analyzed independently. However, the collision types/severities 

are multivariate in nature and correlations exist among different severity levels/ types (Maher, 

1990; Bijleveld, 2005; Ma and Kockelman, 2006; Park and Lord, 2007; Ma et al., 2008; Aguero-

Valverde and Jovanis, 2009; El-Basyouny and Sayed, 2009b). Neglecting these correlations may 

lead to biased, incorrect parameter estimates and inferences. Therefore, a set of data on road 

collisions at n locations, where the collisions at each location are classified into K categories, can 

be defined as the vector 
/21 )...,( K

iii

k

i yyyY  . 
k

iY denotes the number of collisions at road segment 

i (i= 1, 2, ..., n) that belong to collision severity k (k= 1, 2, ..., K). It is assumed that 

)(~| k

i

k

i

k

i PoissonY           (17) 

Where, 
k

i  is the Poisson parameter. For the probability of 
k

iy , k  represents the types of 

collisions that occur on road segment i, given by 
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i   )ln()ln(           (20) 

Where, 
k

i  is an exponential function of road segment-specific attributes, such as traffic volume, 

geometric and non-geometric road characteristics, etc. for  k  types of collisions: 
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0)ln(           (21)  

k

0  is the intercept; 
k

m  denotes the vector of regression parameters; 
k

i denotes multivariate 

normal unstructured errors distributed as ),0(~ Ki MN , which is equivalent to writing that  

    ),0(~ Lognormal ; and   is the variance-covariance matrix for unstructured errors or 

heterogeneous effects. MN denotes n-dimensional multivariate normal distribution. 
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The diagonal element 
2

kk  of the variance-covariance matrix represents the heterogeneous 

variance of 
k

i , where, the off-diagonal element 
2

hk  represents the heterogeneous covariance of 

h

i  and 
k

i .  

Under the multivariate PLN model, the mean and variance are given by 
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2.2.5 Univariate Spatial Model 

The spatial PLN can be defined by incorporating spatial correlation (also known as structured 

errors, structured variations, or spatial effects) in Eqs. (5–6) as follows: 

)(exp)(exp iiii S           (24) 

iiii S  )(ln)(ln          (25) 

The spatial component iS  suggests that road segments that are closer to one another are likely to 

have common features affecting their collision frequency. As noted by Miaou and Lord (2003), 

random variations across sites may be structured spatially due to the complexity of traffic 

interaction around locations. For the univariate Gaussian Conditional Auto-regressive (CAR) 

spatial correlation ( iS ), the joint conditional distribution can be expressed as follows (Johnson 

and Kotz, 1972; Besag and Kooperberg, 1995; Thomas et al., 2004): 

)/,(~| 2

isiii nSNormalSS           (26) 

Where, 



)(iCj i

j

i
n

S
S  and )(iC  denotes the set of neighbours for road segments i. 

2

s  denotes the 

variance for spatial correlation (also known as spatial variation). 

2.2.6 Multivariate Spatial Model 

The multivariate spatial PLN can be defined by incorporating spatial correlation in Eqs. (19–20) 

as follows: 
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For the multivariate k-dimensional CAR model, the vector of spatially correlated i road segments 

is 
/

21 ),...,,( kiiiki SSSS  .  The conditional distribution can be expressed as the following (Thomas 

et al., 2004): 
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Here, ),...,( )()(1 iki SS  denotes the road segments of the nk   matrix kiS excluding the i-th road 

segment.   is the variance-covariance matrix for spatial correlation and can be expressed as 
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The diagonal elements of the covariance matrix ( ) represent spatial variance. The off-diagonal 

elements represent the spatial covariance of different severity levels.  

2.2.7 Univariate Random Parameters Model 

The use of random parameters in collision modelling has recently been gaining attention. A 

recent approach for modelling the mean function advocates the use of random parameters 

(Anastasopoulos and Mannering, 2009). In all traditional models, only one regression equation 

was fit to the dataset. Using a random parameters model develops different regression equations 

for individual sites. This type of modelling technique has been considered by several researchers 

for its added flexibility and intuitive appeal (Li et al., 2008; Milton et al., 2008; Anastasopoulos 

and Mannering, 2009). The model can be viewed as an extension of the random effects model, 

since instead of varying only the intercept of the model, the random parameters model allows 

each estimated parameter in the model to vary across each individual observation in the dataset. 

This model focuses on explaining part of the extra-variation through improvements in the mean 

function by accounting for the unobserved heterogeneity from one site to another. 

For the random parameters model, the road segment variations can be represented by allowing 

all regression coefficients to vary randomly from one segment to another, and Eq. (7) can be 

written as follows: 
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Where,  

 ),(~ 2

000  Normali  and )01.0,01.0(~2

0 Gamma      (31) 

),(~ 2

mmmi Normal   and )01.0,01.0(~2 Gammam

      (32) 

Several distributions (e.g., normal, lognormal, uniform, triangular, Gamma) were considered in 

Eq. (8), but the normal distribution was found to provide the best statistical fit (Li et al., 2008; 
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Milton et al., 2008; Anastasopoulos and Mannering, 2009). Under the random parameter PLN 

model, the mean and variance are given by 

)5.0exp()( 2*

iiiYE           (33) 

]1)[exp()]([)()( 22  iiii YEYEYVar         (34) 
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2.2.8 Multivariate Random Parameters Model 

For the multivariate random parameters model, the road segment variations can be represented 

by allowing all regression coefficients to vary randomly from one segment to another, and Eq. 

(21) can be written as 
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0  and 
m  are the variance-covariance matrixes for random parameters 

k

i0  and 
k

mi  

respectively. For severity level, K=2, the variance-covariance matrixes for random parameters 

are given by 
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Under the multivariate random parameters PLN model, the mean and variance are given by 
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3. DATA DESCRIPTION 

Two datasets from the cities of Richmond and Vancouver in British Columbia, Canada, were 

investigated to develop the spatial models. A total of 72n  urban road segments in the city of 

Richmond and 281n  urban road segments in the city of Vancouver were used to perform the 

analysis. The study area is shown in Figure 1 (Richmond) and Figure 2 (Vancouver). The data 

was obtained from the City of Richmond and the City of Vancouver and covered the period 1994 

to 1996. The road network maps of both the cities were obtained and used to determine a matrix 

for neighbouring segments. Various neighbouring structures were considered by Aguero-

Valverde and Jovanis (2008; 2010). The road network in Figure 3 illustrates the definition of 

different neighbouring structures (e.g., first-order neighbours, second-order neighbours, third-

order neighbours). On the basis of their results, as well as others reported in the literature 

(Nicholson, 1999), only first-order neighbours were considered to define the neighbouring 

structure in this thesis. First-order neighbours included all of the segments that had a direct 

connection with the segments under consideration. A statistical summary of the dataset is shown 

in Table 1 and Table 2. Table 3 shows the explanatory variables that were significant and used in 

the final models with their corresponding abbreviations and units. To develop the multivariate 

models, two collision severities were considered: i) severe collisions, consisting of injury and 

fatal collisions; and ii) non-injury collisions.  

 

 

 

Figure 1: Illustration of the study area in the city of Richmond  
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Figure 2: Illustration of the study area in the city of Vancouver  

The dataset contains the road segment lengths (in km), traffic volume (AADT), number of 

crosswalks, unsignalized intersection densities (UNID), undivided cross sections (IUND), 

business land use, residential land use, number of lanes, number of two-lane and four-lane road 

segments, number of bus stops, and percentage of peak hour and non-peak hour parking. A 

statistical summary of the dataset is shown in Table 1. Table 2 shows the explanatory variables 

that were significant and used in the final models with their corresponding abbreviations and 

units. Average values for the traffic volumes (over the three year period) were used to build 

models for the total (aggregated) number of collisions, as well as for the multivariate models. 

The aggregation is justified on several grounds. For instance, an aggregated collision model was 

found to perform well when compared with collision models developed to handle temporal 

correlation (Lord and Persaud, 2000; Anastasopoulos and Mannering, 2009). Moreover, the 

aggregation of collisions over a period of reasonable length helps to avoid confounding effects 

and phenomena such  as regression-to-the-mean (Cheng and Washington, 2005). 
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Figure 3: Neighbouring structure definition 

 

 

Table 1: Statistical summary of Richmond dataset (n =72 road segments) 

Attributes Mean Standard 

Deviation 

Max Min 

Length (km) 0.882 0.299 2.510 0.743 

Average annual daily traffic (AADT) 17193.931 7374.078 32792 4232 

Number of crosswalks 1.306 1.339 7 0 

Unsignalized intersection densities (UNID) 3.296 1.717 8.889 0 

Undivided cross section (IUND) 0.736 0.444 1 0 

Residential land use 0.889 0.316 1 0 

Business land use 0.042 0.201 1 0 

Number of two-lane road segments 0.236 0.428 1 0 

Number of four-lane road segments 0.764 0.428 1 0 

Number of bus stops 4.222 3.154 11 0 

Percentage of peak hour parking 6.389 20.662 90 0 

Percentage of non-peak hour parking 35.833 37.152 90 0 

Collision Data 

Fatalities (F) 0.097 0.298 1 0 

Injuries (I) 10.014 10.288 65 0 

Severe (I + F) 10.111 10.386 66 0 

Non-injury 15.139 15.887 108 1 

Total Collisions 25.250 25.682 174 3 
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Table 2: Statistical summary of Vancouver dataset (n =281 road segments) 

 Attributes 
Mean 

Standard 

Deviation 
Max Min 

Length (km) 0.793 0.430 3.608 0.113 

Average annual daily traffic (AADT) 26762.790 13794.387 62931 4236 

Number of crosswalks 2.146 2.200 10 0 

Unsignalized intersection densities (UNID) 6.942 3.287 21.164 0 

Undivided cross section  (IUND) 0.779 0.415 1 0 

Residential land use 0.676 0.469 1 0 

Business land use 0.313 0.465 1 0 

Number of lanes 4.000 1.509 7 2 

Number of bus stops 4.651 3.827 17 0 

Percentage of peak hour parking 41.665 37.089 100 0 

Percentage of non-peak hour parking 71.264 21.248 100 0 

Collision data 

Fatalities (F) 0.082 0.287 2 0 

Injuries (I) 15.342 13.895 88 0 

Severe (I+F) 15.423 13.966 88 0 

Non-injury 43.740 36.832 223 1 

Total Collisions 59.164 49.965 311 2 

 

Table 3: Description of model covariates 

Covariate Symbol Description 

ln (Length) 
1X  Logarithm of road segment length 

ln (AADT) 
2X  

Logarithm of Average annual daily traffic  

(vehicles per day) 

Crosswalks 
3X  Number of crosswalks in each road segments 

UNID 
4X  Unsignalized intersection densities 

IUND 
5X  Undivided Cross Sections 

IBUS 
6X  Business land use  

NL 
7X  Number of lanes 

Total collisions  
iY  Consisting of injury, fatal and non-injury collisions 

Severe collisions 1

iY  Consisting of injury and fatal collisions 

Non-injury collisions 2

iY  Consisting of property damage only collisions 
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4. MULTIVARIATE SPATIAL MODELS 

This chapter investigated the inclusion of spatial correlation in different collision severity levels, 

using the multivariate modelling approach, and its influence on the collision analysis of urban 

arterials. 

4.1 Background 

Most of the literature related to the development of collision models accounts only for Poisson 

variation and heterogeneity. Despite the evident spatial nature of collisions, little road safety 

research has been conducted to account for spatial correlation. Recently, however, the need to 

include spatial correlation in the development of collision models for both intersections and road 

segments (Abdel-Aty and Wang, 2006; Aguero-Valverde and Jovanis, 2008; 2010; El-Basyouny 

and Sayed, 2009c; Mitra, 2009) and at the area-wide level (e.g., wards, neighbourhoods, county) 

(Aguero-Valverde and Jovanis, 2006; Aguero-Valverde, 2013; Amoros et al., 2003; Flask and 

Schneider IV, 2013; Noland and Quddus, 2004; Quddus, 2008) has been gaining attention in the 

literature. Congdon (2006) suggested that ignoring spatial dependence leads to an 

underestimation of variability. Furthermore, according to Aguero-Valverde and Jovanis (2010), 

the inclusion of spatially correlated random effects significantly improves the precision of the 

estimates of the expected collision frequency for road segments. The inclusion of spatial 

correlation has two main advantages: i) spatial correlation sites estimate the “pool strength” from 

neighbouring sites, thereby improving model parameter estimation (Aguero-Valverde and 

Jovanis, 2008); and ii) spatial dependence can be a surrogate for unknown and relevant 

covariates, thereby reflecting unmeasured confounding factors (Cressie, 1993; Dubin, 1988).  

Most studies used spatial models for collision frequency or type independently. However, 

collision data is multivariate in nature, and it is necessary to account for the likely correlation 

between collision counts at different levels of classification. While a number of studies explored 

the use of multivariate collision modelling to capture heterogeneous correlations among different 

collision types or severities (Bijleveld, 2005; Ma and Kockelman, 2006; Ma et al., 2008; Park 

and Lord, 2007; El-Basyouny and Sayed, 2009b), multivariate spatial correlations were rarely 

investigated. Furthermore, univariate spatial modelling of different types of collision counts may 

lead to biased results, as collision types or severities are not spatially independent of one another. 
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With the inclusion of multivariate spatial correlation, collision models can estimate the 

associated safety risk and spatial correlation of different collision severities and types in the same 

spatial unit. However, only two studies (Aguero-Valverde, 2013; Song et al., 2006) focused on 

area-wide multivariate spatial models for different collision severities and types. Further, Wang 

and Kockelman (2013) and Narayanamoorthy et al. (2013) used a multivariate spatial modelling 

approach for pedestrian and bicyclist collision analysis at the census tract level. Multivariate 

spatial modelling for road segments or intersections is rarely explored in the literature. To this 

end, this chapter focuses on the first objective of this thesis and performs two tasks: i) use the 

multivariate spatial modelling approach to develop spatial models for road segments in order to 

assess spatial correlation at different collision severity levels and its influence on collision 

analysis of urban arterials; and ii) compare multivariate spatial models with independent 

(separate) univariate spatial models for each collision severity in terms of model inference and 

goodness-of-fit. To accomplish the objective, three years (1994 to 1996) of collision data and 

other geometric and non-geometric road data were used for the city of Richmond and city of 

Vancouver, British Columbia, Canada. 

From a methodological perspective, various approaches, such as Moving Average (Congdon, 

2006), Simultaneous Auto-regressive (SAR) (Quddus, 2008), Spatial Error Model (SEM) 

(Anselin, 1988; Quddus, 2008), Multiple Membership (MM) (Goldstein, 1995; Langford et al., 

1999; El-Basyouny and Sayed, 2009c), Extended Multiple Membership (EMM) (El-Basyouny 

and Sayed, 2009c), Geographic Weighted Regression (GWR) (Hadayeghi et al., 2003), 

Geographic Weighted Poisson Regression (GWPR) (Hadayeghi et al., 2010), and Generalized 

Estimating Equations (GEE) (Abdel-Aty and Wang, 2006), have been advocated by other 

researchers to assess spatial effects or spatial correlation. Each approach has its own pros and 

cons. However, almost all of the earlier studies used Gaussian Conditional Auto-regressive 

(CAR) (Besag et al., 1991) distribution for modelling spatial correlation (Aguero-Valverde & 

Jovanis, 2006; 2008; 2010; Mitra, 2009; Guo et al., 2010; Ahmed et al., 2011; Siddiqui et al., 

2012). In addition, Quddus (2008) advocated that CAR distribution under a Bayesian framework 

can provide more appropriate and better inference over classical spatial models, because the 

Bayesian CAR models with heterogeneous effects are able to accurately take into account both 

the spatial correlation and unobserved heterogeneity of the collision data. Therefore, in this 

thesis, univariate and multivariate spatial models were applied using CAR distribution. The 
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models were estimated in a Full Bayesian (FB) context via Markov Chain Monte Carlo (MCMC) 

simulation (Gilks et al., 1996). As WinBUGS (Lunn et al., 2000) is a flexible platform for the 

Bayesian analysis of complex statistical models using MCMC methods, this open source 

statistical software was used for the development of the proposed spatial models.   

4.2 Methodology 

4.2.1 Model Specification 

The multivariate PLN models for correlated data were originally developed by Chib and 

Winkelmann (2001) for modelling health-related and airline incidents data. Later, several studies 

used them for modelling collision counts at different levels of classification (Bijleveld, 2005; Ma 

and Kockelman, 2006; Ma et al., 2008; Park and Lord, 2007; El-Basyouny and Sayed, 2009b). 

Let 
k

iY denote the collision count for road segments i (i= 1, 2, ..., n) that belong to collision 

severity k (k= 1, 2, ..., K). For the present dataset, n=72 (for Richmond dataset), n= 281 (for 

Vancouver dataset) and K=2 (severe and non-injury collisions). While the multivariate PLN 

model can handle K severity levels, the current application involves only two severity levels 

leading a bivariate PLN. The multivariate model specifications are given by Eqs. (17–23). Recall 

Eq. (21), which can be written as 
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Where, )ln(L  is the logarithm of road segment length, which is taken as an offset because the 

posterior mean of the parameter is either one or close to one.  

Multivariate spatial models are given by Eqs. (27–28). The spatial component kiS  suggests that 

road segments that are closer to one another are likely to have common features affecting their 

collision severity. For the spatial correlation, kiS , the joint distribution can be expressed as 

follows (Thomas et al., 2004): 

),(~ VMNSki             (45) 
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Where, kiS = ),...,( 1 knk SS , MN denotes n-dimensional multivariate normal distribution;   is the 

n1  mean vector; and 0V  controls the overall variability of the kiS .   is an nn  positive 

definite symmetric spatial covariance matrix and can be written in the following form: 

DCSIVV d

1)(            (46) 

Where,  

nnI   identity matrix; 

nnD   diagonal matrix with elements iiD  proportional to the conditional spatial variance 

between road segment i and j, kjki SS | . 

nnC   weight matrix, with element ijC reflecting the spatial association between road 

segments i and j. 

dS controls the overall strength of spatial dependence ( 0dS  implies no spatial dependence). 

For the univariate CAR spatial correlation ( iS ), the joint conditional distribution can be 

expressed as follows (Johnson and Kotz, 1972; Besag and Kooperberg, 1995; Thomas et al., 

2004): 
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Where, iS denotes all of the elements except iS , and   is the correlation parameter. iii nD /1 , 

where, in  is the number of road segments that are adjacent to road segments i. (max)dd SS  , 

which equals 1 with the particular choice of ijC and iiD . ijC is the element of the weight matrix 

and can be expressed as 
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Where, 


 
n

j

iji WW
1

, 1ijW  if road segment i and j are adjacent and 0ijW otherwise. The 

specification of C, D and dS  leads the conditional distribution as in Eq. (26). For the 

multivariate k-dimensional (here, k=2) CAR model, the vector of spatially correlated i road 

segments is
/

21 ),...,,( kiiiki SSSS  .  The distribution of Eq. (47) can be expressed as Eq. (29).  

The impact of spatial correlation is assessed by computing the proportion of total variation that is 

due to spatial variation (El-Basyouny and Sayed, 2009c): 
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Where, var(S) represents the marginal variance of S. For spatial models, var(S) can be estimated 

directly from the posterior distribution of S. 

4.2.2 The Models  

To assess multivariate spatial correlation for different severity levels, three models were used 

based on random effects: 

Model 1A: Multivariate model with only heterogeneous effects 
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Model 1B: Multivariate model with only spatial correlation   
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Model 1C: Multivariate model with both heterogeneous effects and spatial correlation 
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In addition, two univariate PLN spatial models for different severity levels were also developed 

and compared with the best fitted multivariate spatial models (Model 1A, 1B and1C).  

4.2.3 Prior and Posterior Distributions 

Obtaining the FB estimates requires a specification of prior distributions for the regression 

coefficients
k

0 , 
k

m , the heterogeneous covariance matrix  and the spatial covariance matrix 
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 . Prior distributions are meant to reflect prior knowledge about the parameters of interest. If 

such prior information is available, then it should be used to formulate the so-called informative 

priors (Bedrick et al., 1996; Schluter et al., 1997) (for more detailed information about 

informative priors, refer to Yu and Abdel-Aty (2013)). In the absence of sufficient prior 

knowledge of the distributions for individual parameters, un-informative (vague) prior 

distributions are usually specified. The most commonly used priors are diffused normal 

distributions (with zero mean and large variance) for the regression parameters and a 

),( rPWishart  prior for 
1  and 

1 , where, P and Kr  represent the prior guess at the order 

of magnitude of the precision matrix 
1  and 

1 and the degrees of freedom, respectively. 

Choosing r=K as the degrees of freedom corresponds to vague prior knowledge (Spiegelhalter et 

al., 1996; Tunaru, 2002). In the current research, several priors were used: 
k

m )100,0(~ 2N , 

),(~1 KIWishart  and ),(~1 KIWishart , where I is the KK   identity matrix (Chib & 

Winkelmann, 2001; Congdon, 2006).  

4.2.4 Full Bayesian Estimation 

The posterior distributions required in the FB approach can be obtained using MCMC sampling 

techniques available in WinBUGS (Lunn et al., 2000). The Wishart distribution can be sampled 

using a Gibbs sampler. Monitoring convergence is critical, because it ensures that the posterior 

distribution is found, thereby indicating when parameter sampling should begin. To check 

convergence, two or more parallel chains with diverse starting values are tracked to ensure full 

coverage of the sample space. Convergence of multiple chains is assessed using the Brooks-

Gelman-Rubin (BGR) statistic (Brooks and Gelman, 1998). A value of less than 1.2 of the BGR 

statistic indicates convergence. Convergence is also assessed by visual inspection of the MCMC 

trace plots for the model parameters, as well as by monitoring the ratios of the Monte Carlo 

errors relative to the respective standard deviations of the estimates; as a rule, these ratios should 

be less than 0.05. 

4.2.5 Comparison of Models and Goodness-of-Fit 

The Deviance Information Criteria (DIC) was used for model comparisons (Spiegelhalter et al., 

2002). DIC is a Bayesian generalization of Akaike’s Information Criteria (AIC) that penalizes 

larger parameter models. According to Spiegelhalter (2005), it is difficult to determine what 
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constitutes a critical difference in DIC. Very roughly, differences of greater than 10 may rule out 

the model with the higher DIC. Differences between 5 and 10 are considered substantial. If the 

difference in DIC is less than 5, and the models make significantly different inferences, then it 

could be misleading to only report the model with the lowest DIC.  

An earlier study by El-Basyouny and Sayed (2009b) illustrated that DIC is additive under 

independent models and priors. Let )|( yf  and )(yf  denote the conditional and marginal 

distributions of y, where,   denotes the vector of parameters associated with y. Then, 

pDDIC  , where, ),(DDp   ]|[ yE    and ]|)([ yDED   are the posterior means 

of   and the Bayesian deviance, 

)}.(ln{2)}|(ln{2)( yfyfD           (53) 

For K collision categories, let y and   be partitioned as ),...,( 1 kyy and ),...,( 1 k . Define, 

kkk pDDIC            (54) 

)( kkkk DDp            (55) 

]|)([ kkkk yDED            (56) 
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multiplicative conditional and marginal distributions of y translate additively in the Bayesian 

deviance Eq. (19) leading to 
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To assess the models’ goodness-of-fit (adequacy), a posterior predictive approach (Gelman et al., 

1996; Stern and Cressie, 2000; Li et al., 2008) was used. The procedure involves generating 

replicates under the postulated models and comparing the distribution of a certain discrepancy 
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measure, such as chi-square statistics, to the value of the chi-square obtained using observed 

data. A model does not fit the data if the observed value of the chi-square is far from the 

predictive distribution; the discrepancy cannot be reasonably explained by chance if the p-value 

is close to zero or one (Gelman et al., 1996). The replicates are best obtained simultaneously 

with model estimation in WinBUGS to account for all of the uncertainties in the model 

parameters as reflected by the estimated distributions. 

The chi-square statistics are computed from 
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Where, 
k

iy denotes either the observed or replicated collision frequencies by collision severity. 

For ni ,...,2,1  and Kk ,...,2,1 , the expected mean and variance of 
k

iY are given by 
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4.3 Results and Discussion 

4.3.1 Model Selection 

For each model, the posterior estimates were obtained via two chains with 20,000 iterations, 

5,000 of which were excluded as a burn-in sample using WinBUGS. The BGR statistics were 

less than 1.2; the ratios of the Monte Carlo errors relative to the standard deviations of the 

estimates were less than 0.05; and trace plots for all of the model parameters indicated 

convergence. The model selection criterion is presented in Table 4.  

As observed in Table 4, for the Richmond dataset, the multivariate model with both 

heterogeneous effects and spatial correlation (Model 1C) has a slightly lower DIC value than the 

other two models. However, as the difference in DIC is less than five, it could be misleading to 
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only report the model with the lowest DIC. Therefore, a predictive posterior approach was used 

to assess the model’s goodness-of-fit.  

Table 4: The DIC statistics by model 

Model Description DIC 

 Richmond Vancouver 

Model 1A: Multivariate model with only heterogeneous effects   786.3 3575 

Model 1B: Multivariate model with only spatial correlation 788.7 3560 

Model 1C: Multivariate model with both heterogeneous effects and spatial 

correlation 
785.2 3548 

 

To assess the model’s goodness-of-fit, the Pearson’s residuals in Eq. (59) were examined and no 

anomalies were detected. The posterior estimates of the observed chi-square statistics were 69.83 

and 89.59 for severe and non-injury collisions, respectively (Table 5). The associated p-values 

estimated from the distributions of the chi-square discrepancy measured in the replicated datasets 

were 0.59 and 0.316 for severe and non-injury collisions, respectively. The p-values of 0.59 and 

0.316 represented the areas under the predictive distribution to the right of the observed chi-

square statistics. As mentioned earlier, a model does not fit the data if the observed value of the 

chi-square is far from the predictive distribution; the discrepancy cannot be reasonably explained 

by chance if the p-values are close to zero or one. Since the associated p-values were 0.59 and 

0.316, well distanced from zero as well as one, the multivariate model with both heterogeneous 

effects and spatial correlation (Model 1C) performed well in terms of accommodating the 

variation in collision frequency by severity across different road characteristics. 

For the Vancouver dataset, the DIC statistics were 3575, 3560 and 3548 under Model 1A, Model 

1B and Model 1C, respectively. The multivariate model with both heterogeneous effects and 

spatial correlation (Model 1C) was the best fit according to DIC. It should be noted that, for 

Model 1C, the inclusion of heterogeneous effects and spatial correlation shows a very significant 

drop-off of DIC by 27 and 12 compared to Model 1A and Model 1B, respectively. 

Under Model 1C, the observed value of the chi-squares were 172.9 and 140.4 for severe and 

non-injury collisions, respectively (Table 6). The observed values of the chi-squares were located 

near the centre of the replicated distribution, with associated p-values of 0.38 and 0.465 for 

severe and non-injury collisions, respectively. As a result, Model 1C seems to perform well in 
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terms of accommodating the variation in collision frequency by different severity levels across 

segments. 

4.3.2 Parameter Estimates 

4.3.2.1 Richmond Dataset 

Table 5 summarizes the parameter estimates and their associated statistics for multivariate 

models. As the focus of this chapter is to investigate the inclusion of spatial correlation in 

multivariate collision models, only the results of Model 1C are explained in this section. The 

table shows that the parameter estimates were significant; the 95% credible intervals were 

bounded away from zero (except UNID for severe collisions). The regression coefficients were 

all positive, indicating a positive correlation with both severe and non-injury collisions.  

The modelling results revealed that AADT was statistically significant at a 95% confidence level 

and positively correlated with both severe and non-injury collisions, which indicates that higher 

traffic volumes (i.e., increased exposure) results in more severe and non-injury collisions. 

According to the parameter estimates, there was a 8.83% increase in predicted severe collisions 

per 10% increase in traffic volume. Similarly, there was a 9.43% increase in predicted non-injury 

collisions per 10% increase in traffic volume. This finding is intuitive and in line with previous 

research findings (Greibe, 2003; Ma et al., 2010). 

The number of crosswalks was also significant and positively correlated with both severe and 

non-injury collisions, indicating that an increase in the number of crosswalks increases the 

associated safety risk. This is expected, as the presence of crosswalks increases pedestrian 

activity, hence increasing collision probability and risk. According to parameter estimates, there 

was a 30.87% and 28.66% increase in severe and non-injury collisions for a 1% increase in the 

number of crosswalks, respectively. The parameter of severe collisions was higher than non-

injury collisions, which is also expected, as crosswalks are generally situated in the middle of 

road segments where vehicular speed is quite high, and there is abundant evidence showing that 

higher speeds are associated with an increase in collision risk and the degree of collision severity 

(Elvik et al., 2004; Nilsson, 2004; Peden et al., 2004). At 50 km/h, which is the speed limit of 

most residential areas in most cities, the probability of pedestrian fatality from vehicular 

collisions with pedestrians is 90%, indicating death is almost inevitable (OECD, 2006). Another 
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study suggests that the average risk of pedestrian fatality reaches 10% at an impact speed of 38 

km/h, 50% at 65 km/h and 90% at 88 km/h (Tefft, 2013). 

Table 5: Parameter estimates and 95% credible intervals for multivariate models (Models 

1A–1C) (Richmond dataset) 

Variable  Severe: Injury + Fatal Non-Injury 

(Parameter)   95% Credible Intervals   95% Credible Intervals 

  Est. Lower  

Limit 

Upper  

Limit 

Est. Lower  

Limit 

Upper  

Limit 

Model 1A: Multivariate model with only heterogeneous effects 

Intercept )( 0  -4.681 -7.935 -1.623 -4.548 -7.989 -1.321 

ln(AADT) )( 2  0.645 0.330 0.977 0.663 0.337 1.010 

Crosswalks )( 3  
0.268 0.158 0.376 0.254 0.129 0.374 

UNID )( 4  0.078 -0.009 0.167 0.105 0.009 0.202 

2

kk  0.254 0.149 0.405 0.323 0.203 0.493 

Model 1B: Multivariate model with only spatial correlation 

Intercept )( 0  -3.758 -6.849 -0.501 -3.501 -6.755 -0.074 

ln(AADT) )( 2  0.559 0.225 0.871 0.562 0.209 0.893 

Crosswalks )( 3  
0.193 0.093 0.300 0.169 0.050 0.284 

UNID )( 4  0.084 0.002 0.157 0.118 0.038 0.207 

2

skk  0.872 0.502 1.385 1.200 0.749 1.863 

Model 1C: Multivariate model with both heterogeneous effects and spatial correlation 

Intercept )( 0  -4.577 -8.003 -1.032 -4.567 -8.107 -0.871 

ln(AADT) )( 2  0.633 0.275 0.976 0.664 0.280 1.024 

Crosswalks )( 3  
0.269 0.167 0.377 0.252 0.140 0.373 

UNID )( 4  0.082 -0.008 0.172 0.109 0.012 0.196 

2

kk  0.246 0.138 0.392 0.297 0.156 0.472 

2

skk  0.027 0.002 0.133 0.061 0.002 0.379 

Chi Observed 69.830 39.840 105.800 89.590 37.810 151.100 

Chi Replicated 75.030 40.610 125.400 80.860 33.790 146.100 

p 0.590 0 1 0.316 0 1 

* Parameter estimates not significant under the stated level of significance are shown in italic font. 

 

UNID were also significant and positively associated with non-injury collisions. According to 

the parameter estimates, a 1% increase in UNID increased non-injury collisions by 11.52%. The 

literature also suggests that road segments with a large number of access points or unsignalized 
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intersections have a significant impact on, and are positively correlated with, collision frequency 

(Xuesong and Ming, 2012). UNID were insignificant for severe collisions in Model 1C. 

Interestingly, UNID were significant for both severe and non-injury collisions when considering 

only spatial correlation (Model 1B). According to parameter estimates, a 1% increase in UNID 

increased severe collisions by 8.76%. However, UNID became insignificant for both severe and 

non-injury collisions when considering only heterogeneous effects (Model 1A). 

4.3.2.2 Vancouver Dataset 

Table 6 summarizes the parameter estimates and their 95% credible intervals for Model 1A, 

Model 1B and Model 1C. As Model 1C provided the lowest DIC of the three models, only the 

results of Model C are explained in this section. The table shows that the parameter estimates are 

significant, as the 95% credible intervals were bounded away from zero.  

The regression coefficients were all positive, indicating that factors such as AADT, UNID, IBUS 

and NL were positively associated with both severe and non-injury collisions. IUND was 

significant and positively related with only non-injury collisions. The modelling results revealed 

that there was a 5.19% increase in predicted severe collisions per 10% increase in traffic volume. 

Similarly, there was a 6.08% increase in predicted non-injury collisions per 10% increase in 

traffic volume. Similar to the Richmond dataset, UNID were also significant and positively 

associated with both severe and non-injury collisions. According to the parameter estimates, a 

1% increase in UNID increased non-injury collisions by 6.92%. Similarly, non-injury collisions 

showed an increase of 7.47% due to 1% increase in UNID. 

Another indicator variable, IUND, was also significant and positively correlated with non-injury 

collisions. It is worth mentioning that IUND was significant for severe collisions in Model 1A. 

However, it showed as insignificant in Model 1B and Model 1C while spatial correlation was 

included. The spatial correlation associated with the CAR models appears to be related to the 

presence of undivided cross sections. Such spatial multicollinearity appears to negate the need to 

include IUND in the multivariate models. The business land use indicator variable, IBUS, was 

significant and positively correlated with both severe and non-injury collisions as expected. 

Business land use introduces lots of commercial activities that attract vulnerable road users (e.g., 

pedestrians, bicyclists); therefore, collisions are more likely to occur in a vicinity where business 

land use occurs. NL also provided similar positive correlation with both severe and non-injury 
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collisions. A possible rationale for this finding is that more lanes increase traffic flow and traffic 

conflict areas, therefore increasing the probability of collision occurrence. According to the 

parameter estimates, a 1% increase in UNID increased non-injury collisions by 12.9%. Similarly, 

no injury-collisions demonstrated an increase of 11.4% due to a 1% increase in UNID. 
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Table 6: Parameter estimates and 95% credible intervals for multivariate models (Models 

1A–1C) (Vancouver dataset) 

Variable  Severe: Injury + Fatal Non-Injury 

(Parameter)   95% Credible Intervals   95% Credible Intervals 

  Est. Lower  

Limit 

Upper  

Limit 

Est. Lower  

Limit 

Upper  

Limit 

Model 1A: Multivariate model with only heterogeneous effects 

Intercept ( 0 ) -4.148 -6.209 -2.225 -3.100 -4.935 -1.454 

ln(AADT) ( 2 ) 0.547 0.343 0.765 0.541 0.373 0.742 

UNID ( 4 ) 0.079 0.055 0.101 0.077 0.055 0.096 

IUND ( 5 ) 0.230 0.051 0.424 0.274 0.112 0.443 

IBUS ( 6 ) 0.254 0.063 0.433 0.333 0.170 0.488 

NL ( 7 ) 0.144 0.067 0.228 0.150 0.081 0.217 

2

kk  0.335 0.265 0.419 0.286 0.234 0.348 

Model 1B: Multivariate model with only spatial correlation 

Intercept ( 0 ) -2.140 -3.877 0.039 -1.890 -3.468 0.163 

ln(AADT) ( 2 ) 0.371 0.126 0.550 0.447 0.216 0.610 

UNID ( 4 ) 0.067 0.047 0.089 0.074 0.056 0.093 

IUND ( 5 ) 0.135 -0.036 0.310 0.158 1.41E-04 0.318 

IBUS ( 6 ) 0.244 0.039 0.426 0.292 0.104 0.452 

NL ( 7 ) 0.127 0.057 0.226 0.115 0.056 0.205 

2

skk  1.011 0.792 1.275 0.903 0.734 1.107 

Model 1C: Multivariate model with both heterogeneous effects and spatial correlation 

Intercept ( 0 ) -2.607 -4.372 -0.837 -2.142 -3.624 -0.781 

ln(AADT) ( 2 ) 0.418 0.234 0.601 0.475 0.334 0.627 

UNID ( 4 ) 0.067 0.043 0.089 0.072 0.052 0.091 

IUND ( 5 ) 0.149 -0.020 0.334 0.169 0.026 0.330 

IBUS ( 6 ) 0.249 0.080 0.412 0.299 0.162 0.441 

NL ( 7 ) 0.121 0.053 0.191 0.108 0.050 0.173 

2

kk  0.180 0.071 0.266 0.113 0.025 0.188 

2

skk  0.298 0.108 0.735 0.364 0.150 0.765 

Chi Observed 172.900 71.460 272.100 140.400 58.600 239.300 

Chi Replicated 168.100 68.960 267.200 139.400 59.570 235.300 

p 0.380 0 1 0.465 0 1 

* Parameter estimates not significant under the stated level of significance are shown in italic font. 
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4.3.3 Variance and Correlation 

For the Richmond dataset, the heterogeneous variance )( 2

kk  and spatial variance )( 2

skk

estimates of severe and non-injury collisions for both heterogeneous effects and spatial 

correlation, respectively, were statistically significant at the 95% credible interval. According to 

parameter estimates, the heterogeneous variance for severe collisions was 0.246 (standard 

deviation (sd): 0.065), while it was 0.297 (sd: 0.079) for non-injury collisions. The spatial 

variance was smaller (0.027 (sd: 0.038) for severe and 0.061(sd: 0.1) for non-injury collisions) 

than the heterogeneous variance, as most of the variations were most likely captured by 

heterogeneous effects. These results demonstrate the presence of over-dispersion in both severe 

and non-injury collisions. The covariance )( 2

hk for heterogeneous effects was significant (0.262; 

95% credible intervals (CI): 0.155, 0.402; sd: 0.063), while the spatial covariance for spatial 

correlation (0.0181; 95% CI: -0.027, 0.001; sd: 0.048) was insignificant. A possible rationale for 

this finding is that the number of spatial units was small and most of the variations (90.2% for 

severe and 83.1% for no injury) were most likely captured by heterogeneous effects. 

The posterior correlation between severe and non-injury collisions for heterogeneous effects was 

quite high (0.976; 95% CI: 0.909, 0.996), although the correlation for spatial correlation was low 

(0.138; 95% CI: -0.882, 0.979). Since the heterogeneous effects for unobserved heterogeneity 

dominated, the correlation between severe and non-injury collisions for the total random effects 

(heterogeneous effects and spatial correlation) was also quite high and obviously significant 

(0.905; 95% CI: 0.686, 0.983). In conclusion, a higher number of non-injury collisions is 

associated with higher severe collisions, as the collision likelihood for both levels is likely to rise 

due to the same deficiencies in roadway design, similar weather conditions and other unobserved 

factors. These results are in line with the literature findings. For instance, in an area-wide 

multivariate spatial analysis, Aguero-Valverde (2013) estimated significant and very high 

correlations, 0.688 for spatial errors and 0.962 for heterogeneity, between injury and non-injury 

collisions. 

The effects of spatial correlation associated with multivariate models becomes much clearer in 

the Vancouver dataset. For the dataset, both the heterogeneous variance )( 2

kk  and spatial 

variance )( 2

skk estimates of severe and non-injury collisions were statistically significant at the 
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95% credible interval. These demonstrate the presence of over-dispersion and spatial variation in 

both severe and non-injury collisions. According to parameter estimates, the heterogeneous 

variance for severe collisions was 0.18 (95% CI: 0.071, 0.18; sd: 0.047), while it was 0.113 (95% 

CI: 0.025, 0.117; sd: 0.04) for non-injury collisions. The spatial variance was 0.298 (95% CI: 

0.108, 0.259; sd:0.156) for severe collisions, while it was 0.364 (95% CI: 0.15, 0.337; sd:0.157) 

for non-injury collisions, which was quite high compared to heterogeneous variance. For severe 

collisions, about 62.3% of the total variation was captured by spatial correlation, and it was even 

higher for non-injury collisions at about 76.2%. Previously, the spatial variation was small for 

the Richmond dataset, which indicates that the spatial variation might increase with an increase 

in the number of road segments or samples. Similarly, the covariance )( 2

hk for heterogeneous 

effects (0.138; 95% CI: 0.039, 0.141; sd: 0.042) was quite small compared to the spatial 

covariance for spatial correlation (0.314; 95% CI: 0.117, 0.282; sd: 0.154).  

The posterior correlation between severe and non-injury collisions for heterogeneous effects was 

quite high (0.967; 95% CI: 0.898, 0.975). Along the same lines, the correlation for spatial effects 

was also high (0.949; 95% CI: 0.846, 0.961). As both the correlations were quite high, the 

correlation for the total random effects (heterogeneous effects and spatial correlation) was also 

quite high and clearly significant (0.945; 95% CI: 0.894, 0.948), indicating that a higher number 

of non-injury collisions is associated with a higher number of severe collisions. 

4.3.4 Comparison of Multivariate Models with Univariate Models  

For the Richmond dataset, Table 7 summarizes the parameter estimates and their associated 

statistics for univariate PLN spatial models. All of the parameters were significant and positively 

correlated with both severe and non-injury collisions, except UNID. The estimated parameters 

were quite similar to the multivariate models. According to the parameter estimates, there was a 

8.2% increase in predicted severe collisions per 10% increase in traffic volume. Similarly, there 

was a 9.02% increase in predicted non-injury collisions per 10% increase in traffic volume. The 

number of crosswalks was also significant and positively correlated with both severe and injury 

collisions. Interestingly, UNID became insignificant for both severe and non-injury collisions in 

univariate models; UNID were previously significant for non-injury collisions in multivariate 

models. 
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Table 7: Parameter estimates and 95% credible intervals for univariate PLN models 

(Richmond dataset) 

Variable  Severe: Injury + Fatal Non-Injury 

(Parameter)   95% Credible Intervals   95% Credible Intervals 

  Est. Lower 

Limit 

Upper 

Limit 

Est. Lower 

Limit 

Upper 

Limit 

Intercept )( 0  -4.227 -7.717 -0.611 -4.238 -8.047 -0.492 

ln(AADT) )( 2  0.599 0.231 0.950 0.643 0.260 1.034 

Crosswalks )( 3  
0.257 0.134 0.373 0.219 0.100 0.337 

UNID )( 4  0.081 -0.009 0.170 0.090 -8.36E-04 0.183 

2

u  0.208 6.31E-04 0.399 0.193 4.05E-04 0.442 

2

s  0.122 2.96E-04 0.944 0.381 3.49E-04 1.443 

Proportion of Spatial 

Variation )( s  

0.196 0.019 0.950 0.378 0.019 0.966 

DIC 393.800   426.700   

Total DIC  

(Severe+ No Injury) 

820.500      

* Parameter estimates not significant under the stated level of significance are shown in italic font. 

 

The heterogeneous variance )( 2

u  and spatial variance )( 2

s estimates of severe and non-injury 

collisions for both heterogeneous effects and spatial correlation, respectively, were statistically 

significant at the 95% credible interval. These demonstrate the presence of overdispersion and 

spatial correlation in both severe and non-injury collisions. The spatial variance was quite high 

for non-injury collisions, compared to severe collisions. Approximately 19.6% (for severe 

collisions) and 37.8% (for non-injury collisions) of the variation for random effects is explained 

by the spatial correlation, which was higher than in multivariate models for both the collisions.   

Similarly, for the Vancouver dataset, Table 8 summarizes the parameter estimates and their 

associated statistics for univariate PLN spatial models. All of the parameters (i.e., AADT, UNID, 

IBUS and NL) were significant and positively correlated with both severe and non-injury 

collisions, except IUND for severe collisions.  

As with the previous models, the estimated parameters are quite similar to the multivariate 

models and obviously intuitive and in line with previous research. The heterogeneous variance 

)( 2

u  and spatial variance )( 2

s estimates of severe and non-injury collisions for both 
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heterogeneous effects and spatial correlation, respectively, were statistically significant at the 

95% credible interval. These demonstrate the presence of over-dispersion and spatial correlation 

in both severe and non-injury collisions. The spatial variance was quite high for non-injury 

collisions compared to severe collisions. Approximately 42.3% (for severe collisions) and 66% 

(for non-injury collisions) of the variation of the random effects is explained by the spatial 

correlation, which was smaller than in multivariate models for both the collisions. 

Table 8: Parameter estimates and 95% credible intervals for univariate PLN spatial 

models (Vancouver dataset) 

Variable  Severe: Injury + Fatal Non-Injury 

(Parameter)   95% Credible Intervals   95% Credible Intervals 

  Est. Lower 

Limit 

Upper 

Limit 

Est. Lower 

Limit 

Upper 

Limit 

Intercept ( 0 ) -2.566 -4.560 -0.629 -1.992 -3.760 -0.142 

ln(AADT) ( 2 ) 0.397 0.190 0.607 0.460 0.269 0.654 

UNID ( 4 ) 0.068 0.044 0.091 0.072 0.053 0.090 

IUND ( 5 ) 0.153 -0.035 0.340 0.170 0.016 0.326 

IBUS ( 6 ) 0.271 0.094 0.452 0.300 0.133 0.456 

NL ( 7 ) 0.155 0.073 0.231 0.110 0.037 0.180 

2

u  0.213 0.134 0.296 0.077 7.39E-04 0.170 

2

s  0.173 0.052 0.395 0.498 0.173 0.929 

Proportion of Spatial 

Variation )( s  

0.423 0.299 0.543 0.660 0.461 0.954 

DIC 1659   2005   

Total DIC  

(Severe+ No Injury) 

3664      

* Parameter estimates not significant under the stated level of significance are shown in italic font. 

 

For the Richmond dataset, the DIC statistics were 393.8 for severe and 426.7 for non-injury 

collisions. Thus, the multivariate spatial models provided a superior fit over the two univariate 

spatial models, as the DIC of the multivariate spatial model (Model 1C) (785.2) was much 

smaller than the sum of the univariate DICs (820.5); this shows a very significant drop-off of 

35.3. Similarly, for the Vancouver dataset, the multivariate spatial models (Model 1C) provided 

a superior fit over the two univariate spatial models, as the DIC of the multivariate spatial model 

(Model 1C) (3548) was much smaller than the sum of the univariate DICs (3664); this shows a 

very significant drop-off of 116. These results are in line with previous research findings (El-
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Basyouny and Sayed, 2009b; Park and Lord, 2007). The literature established that multivariate 

PLN models are more precise than univariate PLN models. The improvement in precision is due 

mainly to the correlation between the latent variables (severe and no injury). 

4.4 Summary 

This chapter investigated the inclusion of spatial correlation at different collision severity levels, 

using multivariate modelling approach. Three different modelling formulations (multivariate 

model with only heterogeneous effects, multivariate model with only spatial correlation and 

multivariate model with both heterogeneous effects and spatial correlation) were applied to take 

into account spatial correlation in a multivariate framework. The multivariate model with both 

heterogeneous effects and spatial correlation (Model 1C) was found to yield the best results in 

terms of the DIC values. 

For the Richmond dataset, three variables were used in the models (AADT, number of 

crosswalks and UNID). The covariates were significant at a 95% confidence level (except UNID 

for severe collisions) and positively correlated with both severe and non-injury collisions. 

Similarly, for the Vancouver dataset, the regression coefficients were all positive, indicating that 

factors such as AADT, UNID, IBUS and NL were positively associated with both the severe and 

non-injury collisions. Another indicator variable, IUND, was significant and positively related 

with only non-injury collisions. Both the results were quite intuitive and in line with previous 

research findings.  

The estimates of the heterogeneous variance and spatial variance were significant and indicate 

the presence of over-dispersion and spatial correlation in both datasets. For the Richmond 

dataset, the spatial variance was smaller than the heterogeneous variance, as most of the 

variations (90.2% for severe and 83.1% for no injury) were captured by the heterogeneous 

effects or unobserved heterogeneity. Unlike the results from the Richmond dataset, the 

Vancouver dataset exhibits better inference in terms of capturing spatial variation, as about 

62.3% and 76.2% of the total variation for severe and non-injury collisions were captured by  

spatial correlation. These indicate that spatial variation or spatial correlation might increase with 

an increase in the number of road segments or samples, as the Vancouver dataset consists of 281 

road segments, while there were only 72 road segments in the Richmond dataset.  
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For the Richmond dataset, the posterior correlation between severe and non-injury collisions for 

heterogeneous effects was quite high, while the correlation for spatial effects was low. However, 

the correlation between severe and non-injury collisions for the total random effects (i.e., 

heterogeneous effects and spatial correlation) was significant and quite high (0.905). Similarly, 

for the Vancouver dataset, the posterior correlation between severe and non-injury collisions for 

the total random effects was also quite high (0.945) and obviously significant, indicating that a 

greater number of non-injury collisions is associated with a greater number of severe collisions, 

as the collision likelihood for both types is likely to rise due to similar deficiencies in roadway 

design or other unobserved confounding factors. 

This chapter also demonstrates the importance of multivariate spatial modelling techniques by 

comparing the multivariate spatial models with independent univariate PLN spatial models, with 

respect to model inference and goodness-of-fit for both the datasets. All of the estimated 

parameters for univariate models were quite similar to multivariate models, except UNID for the 

Richmond dataset. Interestingly, UNID became insignificant for both severe and non-injury 

collisions in univariate models; UNID was previously significant for only non-injury collisions 

in multivariate models. Multivariate spatial models provide a superior fit over the two univariate 

PLN spatial models, with a very significant drop-off in DIC (35.3 for Richmond dataset and 116 

for Vancouver dataset). These results advocate the use of multivariate PLN spatial models with 

both heterogeneous effects and spatial correlation over univariate PLN spatial models for 

collision severity analysis. 

From a model application point of view, the methodology proposed herein has the potential to 

provide new insight into collision severity analysis and can be used to estimate the associated 

safety risks in terms of severity, with consideration for the spatial correlations in the data.  

The results presented in this chapter are based on datasets covering a period of 1994 to 1996. 

Even though these results conform to those in the literature, further research with recent and 

different datasets is required to confirm the research findings. Further, the effects of sample size 

in the analysis of spatial correlation are yet to be investigated, as the effects were not similar for 

both the datasets.  
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5. UNIVARIATE RANDOM PARAMETERS SPATIAL MODELS 

This chapter illustrates the effects of including spatial correlation in univariate random 

parameters collision count-data models. 

5.1 Background 

Most of the previous research related to the development of collision models focuses on 

accounting for Poisson variation (Jovanis and Chang, 1986; Joshua and Garber, 1990; Miaou and 

Lum, 1993; Miaou, 1994) and heterogeneity (Maycock and Hall, 1984; Hauer et al., 1988; 

Persaud, 1994; Maher and Summersgill, 1996; Milton and Mannering, 1998; Miaou and Lord, 

2003; El-Basyouny and Sayed, 2006) in collision data. The parameters of these traditional 

collision models were assumed to be fixed when they can actually vary across observations (road 

segments or intersections). Further, due to unobserved heterogeneity, the effect of explanatory 

variables on collision may vary for different observations. For instance, a two-lane road segment 

with high traffic volume may have a high collision frequency compared to a similar road 

configuration with lower traffic volume. Therefore, constraining the parameters may not 

incorporate site-specific effects, leading to an underestimation of standard errors and 

inconsistent, biased and erroneous inference (Washington et al., 2003). Given the magnitude of 

this potential issue, several researchers have successfully applied random parameters to collision 

modelling. For instance, Milton et al. (2008), Gkritza and Mannering (2008), Anastasopoulos 

and Mannering (2009; 2011), El-Basyouny and Sayed (2009a), Anastasopoulos et al. (2012a), 

and Russo et al. (2014) all demonstrated that the random parameters model can provide more 

accurate inference than traditional fixed parameter models, as well as account for heterogeneity 

across sites due to unobserved road geometrics, traffic characteristics, environmental factors, 

driver behaviour and other confounding factors.  

Spatial correlation is another key issue that has been gaining attention in the development of 

collision models (Amoros et al., 2003; Noland and Quddus, 2004; Abdel-Aty and Wang, 2006; 

Aguero-Valverde and Jovanis, 2006; 2008; 2010; Quddus, 2008; El-Basyouny & Sayed, 2009c; 

Mitra, 2009; Aguero-Valverde, 2013; Flask and Schneider, 2013). Despite the fact that collision 

data are collected with respect to location—which is measured as points in space (Quddus, 

2008), illustrating that a spatial correlation exists between observation sites (LeSage, 1998)—no 
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studies have taken these correlations into account using random parameters models. Moreover, 

previous studies have used random parameters and spatial correlation separately; rarely in the 

literature have these two factors been incorporated together in collision models. Nevertheless, it 

is necessary to investigate whether the inclusion of spatial correlation in a random parameters 

model can improve the model’s goodness-of-fit and precision of parameter estimation. This 

approach may help gain new insight in collision analysis and allow for a more precise 

assessment of the safety risks of collision sites. Thus, this chapter discusses the research efforts 

to investigate the effects of spatial correlation in random parameters collision count-data models. 

To perform the investigation, three years (1994–1996) of collision data and other geometric and 

non-geometric road data were used for two cities in British Columbia, Canada: i) Richmond, and 

ii) Vancouver. 

In determining the model formulation for this research, several different approaches in the 

literature were reviewed for suitability with respect to random parameters and spatial correlation. 

From a methodological perspective, a wide variety of modelling approaches, such as the negative 

binomial model (Anastasopoulos and Mannering, 2009; Chen and Tarko, 2014; Garnowski and 

Manner, 2011; Ukkusuri et al., 2011; Venkataraman et al., 2011; 2013; Wu et al., 2013;), logit 

model (Anastasopoulos and Mannering, 2011), mixed logit model (Gkritza and Mannering, 

2008; Milton et al., 2008), Tobit model (Anastasopoulos et al., 2012a), Poisson-lognormal (PLN) 

model (El-Basyouny and Sayed, 2009a), bivariate ordered probit model (Russo et al., 2014) and 

finite mixture model (Xiong and Mannering, 2013) were used to employ random parameters in 

collision analysis. To account for spatial correlation, almost all earlier studies (Aguero-Valverde 

and Jovanis, 2006; 2008; 2010; Ahmed et al., 2011; Guo et al., 2010; Mitra, 2009; Siddiqui et al., 

2010) used Gaussian Conditional Auto-regressive (CAR) (Besag et al., 1991) distribution.  

Given the support in the literature, random parameters spatial models were developed using CAR 

distribution. As the PLN modelling approach is more flexible than the traditional Poisson-

Gamma or negative binomial model to handle over-dispersion, the lognormal distribution was 

used for heterogeneous effects, leading to PLN posterior distribution. The models were estimated 

in a FB context via MCMC simulation (Gilks et al., 1996). As WinBUGS (Lunn et al., 2000) is a 

flexible platform for the Bayesian analysis of complex statistical models using MCMC methods, 
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this open source statistical software was used for the development of the proposed random 

parameters spatial models. 

5.2 Methodology 

The specifications of the univariate random parameters models are given by Eqs. (30–36). The 

specifications for spatial component iS are given by Eqs. (24–26). A detailed specification of 

CAR distribution was described in section 4.2.1 of the previous chapter. To assess the effects of 

including spatial correlation in a univariate random parameters model, three different modelling 

formulations were used and compared in terms of their inferences and goodness-of-fit.   

Model 2A: Random parameters model with only heterogeneous effects   

imi

M

m

miii X   
1

0)(ln           (62) 

Model 2B: Random parameters model with only spatial correlation 

imi

M

m

miii SX  
1

0)(ln           (63) 

Model 2C: Random parameters model with both heterogeneous effects and spatial 

correlation 

iimi

M

m

miii SX  



1

0)(ln         (64) 

To obtain FB estimates, it is required to specify prior distribution for the parameters. The most 

commonly used priors are diffused normal distributions (with zero mean and large variance) for 

the regression parameters, ),( Gamma  or ),1( Gamma  for 
2

u and 
2

m , where   is a small 

number, e.g., 0.01 or 0.001. Different priors for the univariate CAR model were specified in the 

literature. For instance, Quddus (2008) used a gamma prior with )0005.0,5.0(Gamma ; Aguero-

Valverde and Jovanis (2008; 2010) used a fair prior to specify the relationship between 

uncorrelated random effects and spatial effects; El-Basyouny and Sayed (2009c) used a proper 

prior gamma )2/1,2/1( nli   where )( iiiii SSSnl  . In the current research, 

)001.0,1(Gamma was used for 
2

s . It should be noted that introducing vague priors for all 

unknown parameters can be risky under certain conditions, such as the combination of low mean 
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and small sample size (Miranda-Moreno and Lord, 2007). In such cases, better results can be 

obtained by using semi-informative priors with a small mean and variance for the dispersion 

parameter. The posterior distributions needed in the FB approach are obtained using Markov 

Chain Monte Carlo (MCMC) sampling, which is available in statistical software called 

WinBUGS (Lunn et al., 2000). MCMC methods are used to repeatedly sample from the joint 

posterior distribution. 

The DIC and chi-square statistics were used to assess the models’ goodness-of-fit. The chi-

square statistics are computed from the following equation: 
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The specifications of mean ( )( iYE ) and variance ( )( iYVar ) were given by Eqs. (33–36), where 
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5.3 Results and Discussion 

5.3.1 Model Selection 

For each model, the posterior estimates were obtained via two chains with 20,000 iterations, 

5,000 of which were excluded as a burn-in sample using WinBUGS. The BGR statistics were 

less than 1.2; the ratios of the Monte Carlo errors relative to the standard deviations of the 

estimates were less than 0.05; and trace plots for all of the model parameters indicated 

convergence. The model selection criterion is presented in Table 9. As observed in Table 9, all 

three random parameters models (2A, 2B and 2C) for both datasets (i.e., Richmond and 

Vancouver) were quite similar to one another. Furthermore, as the difference in DIC is less than 

five, it could be misleading to report only the model with the lowest DIC. Therefore, a predictive 

posterior approach was used to assess the models’ goodness-of-fit.  
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Table 9: The DIC statistics by model 

Model Description DIC 

 Richmond Vancouver 

Model 2A: Random parameters model with only heterogeneous effects  470.9 2104 

Model 2B: Random parameters model with only spatial correlation 470.9 2101 

Model 2C: Random parameters model with both heterogeneous effects 

and spatial correlation 

470.6 2102 

 

To assess the models’ goodness-of-fit, Pearson’s residuals in Eq. (65) were examined, and no 

anomalies were detected. The distribution of the chi-square discrepancy measure in replicated 

datasets was generated. From the posterior estimates, the observed values of the chi-square for 

all three models were located near the centre of the replicated distribution.  

For the Richmond dataset, the observed chi-square statistics (Table 10) were 82.34 (Model 2A), 

78.6 (Model 2B) and 78.83 (Model 2C), with a replicated chi-square of 77.57, 74.56 and 74.98, 

respectively. The associated p-values estimated from the distributions of the chi-square 

discrepancy that was measured in the replicated datasets were 0.366, 0.382 and 0.383 for Model 

2A, 2B and 2C, respectively. As mentioned in section four, a model does not fit the data if the 

observed value of the chi-square differs greatly from the predicted distribution; the discrepancy 

cannot be reasonably explained by chance if the p-values are close to zero or one. Since the 

associated p-values in this research were well distanced from zero and one, all the models 

performed well, accommodating the variation in collision frequency across different road 

characteristics. Therefore, all the models for the Richmond dataset were comparable to one 

another. However, as the p-values of Model 2B and Model 2C were a little high compared to 

Model 2A and were close to 0.5, random parameters models with spatial correlation and 

heterogeneous effects may provide better inferences and predict collisions more precisely. These 

will be discussed later in this section.  

For the Vancouver dataset, the observed and replicated values of the chi-square statistics with 

associated p-values of Models 2A, 2B and 2C are shown in Table 11. According to the posterior 

estimates, the observed chi-square values were located near the centre of the replicated 

distribution, with associated p-values of 0.523 (Model 2A), 0.524 (Model 2B) and 0.519 (Model 

2C). As the p-values were quite similar and close to neither zero nor one, all the models seem to 
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fit well with the dataset. Therefore, all the models for the Vancouver dataset were comparable to 

one other.    

5.3.2 Parameter Estimates 

5.3.2.1 Richmond Dataset 

Table 10 summarizes the parameter estimates and their 95% credible intervals for Model 2A, 2B 

and 2C. The table shows that the parameter estimates are significant, as the 95% credible 

intervals were bounded away from zero, except for UNID under Model 2A and Model 2B. Apart 

from the intercepts, the regression coefficients were all positive, indicating that factors such as 

segment length, AADT, number of crosswalks, and UNID were positively associated with the 

number of collisions. 

The modelling results revealed that road segment length and AADT were statistically significant 

at a 95% confidence level and positively correlated with the number of collisions, which 

indicates that longer segments with higher traffic volumes (i.e., increased exposure) have more 

collisions. The segment length resulted in a random parameters that is normally distributed with 

a mean ranging from 0.89 to 1.11 and standard deviation (s1) ranging from 0.334 to 0.394. Thus, 

for almost all the sites, collision frequency was expected to increase with segment length, by 

varying magnitudes. For Model 2A the mean was 0.89 (s1: 0.334); whereas, for Model 2C it was 

1.11 (s1: 0.334), which indicates that the inclusion of spatial correlation in a random parameters 

model with heterogeneous effects has substantial effects on estimated parameters. Similarly, the 

AADT resulted in a random parameters that is normally distributed with a mean of 0.662 (Model 

2A), 0.697 (Model 2B), and 0.704 (Model 2C). Further, there was a small reduction (3.15%) in 

standard deviation from Model 2A to Model 2C, which may increase the predictability of Model 

2C. For all the sites, the collision counts are expected to increase with AADT. These findings are 

intuitive and in line with previous research findings (El-Basyouny and Sayed, 2009a). As noted 

by Anastasopoulos and Mannering (2009), this AADT finding is likely indicating a complex 

interaction among traffic volume, driver behaviour and collision frequency. It may be capturing, 

among other factors, the response and adaption of drivers to various levels of traffic volumes. 
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Table 10: Parameter estimates and 95% credible intervals for Models 2A-2C (Richmond dataset) 

 Model 2A Model 2B Model 2C 

 

Est. 

95% Credible 

Intervals 

Est. 

95% Credible 

Intervals 

Est. 

95% Credible 

Intervals 

Variable  

(Parameter) 

Lower 

Limit 

Upper  

Limit 

Lower 

Limit 

Upper 

Limit 

Lower 

Limit 

Upper 

Limit 

Intercept ( 0 ) -4.025 -7.300 -1.105 -4.354 -7.619 -1.122 -4.399 -7.223 -1.484 

ln(Length) ( 1 ) 0.890 0.129 1.764 0.927 0.234 1.713 1.112 0.376 1.901 

ln(AADT) ( 2 ) 0.662 0.359 1.004 0.697 0.359 1.036 0.704 0.401 0.995 

Crosswalks ( 3 ) 0.265 0.123 0.410 0.258 0.087 0.404 0.248 0.108 0.383 

UNID ( 4 ) 0.106 -0.013 0.231 0.108 -0.005 0.220 0.1133 0.008 0.233 

Standard deviation, s0 0.449 0.174 0.618 0.457 0.275 0.620 0.446 0.151 0.625 

Standard deviation, s1 0.334 0.080 1.084 0.394 0.091 1.161 0.334 0.073 1.014 

Standard deviation, s2 0.254 0.066 0.628 0.253 0.074 0.608 0.246 0.067 0.598 

Standard deviation, s3 0.156 0.060 0.330 0.173 0.068 0.346 0.163 0.065 0.335 

Standard deviation, s4 0.166 0.065 0.337 0.160 0.064 0.325 0.149 0.059 0.296 

 
2

u  0.015 0.0003 0.187    0.014 0.0003 0.185 

2

s     0.018 0.0003 0.197 0.020 0.0003 0.254 

Proportion of spatial variance       0.383 0.062 0.899 

Chi observed 82.34 42.280 138.200 78.600 32.070 133.500 78.830 39.710 131.200 

Chi replicated 77.57 39.070 137 74.560 30.630 132.500 74.980 37.360 131.300 

p 0.366 0 1 0.382 0 1 0.383 0 1 

* Parameter estimates not significant under the stated level of significance are shown in italics. 
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The number of crosswalks was also significant and positively correlated with collision 

frequency, indicating that an increase in the number of crosswalks raises the associated safety 

risk. This is expected, as the presence of crosswalks allows for more pedestrian activity, resulting 

in higher collision probability and risk. For all three models, the mean of the parameters and the 

associated standard deviations were quite similar. The parameter also resulted in a random 

parameters that is normally distributed, with a mean ranging from 0.248 to 0.265 and standard 

deviation (s3) ranging from 0.156 to 0.173. For almost all sites, collision frequency was expected 

to increase with the number of crosswalks. 

UNID were insignificant for Model 2A and Model 2B. Interestingly, UNID became significant 

for Model 2C when considering both spatial correlation and heterogeneous effects. The positive 

correlation associated with collision frequency indicated that an increase of UNID results in 

more collisions. The literature also suggests that road segments with a large number of access 

points or unsignalized intersections have a significant impact on, and are positively correlated 

with, collision frequency (Xuesong and Ming, 2012). For Model 2C, the parameter was normally 

distributed with a mean of 0.113 and standard deviation (s4) of 0.149. Collision frequency was 

expected to increase with UNID for a vast majority (99%) of the sites and was expected to 

decrease for only a small proportion (1%) of the sites, reflecting heterogeneity across sites. 

The estimates of variance (
2

u ) for heterogeneous effects were significant at a 95% confidence 

level under Model A and Model C, demonstrating the presence of overdispersion in the data. The 

variances were reasonably small, as accounting for site variation reduces the estimates of extra-

Poisson variation. The estimates of spatial variance (
2

s ) were significant at a 95% confidence 

level under Model 2B and Model 2C, and about 38.3% of the total variability was explained by 

spatial correlation under Model 2C. A possible rationale for this finding is that the number of 

spatial units was small and most of the variations (61.7%) were most likely captured by 

heterogeneous effects and site variation. 

 

 

 



 

57 
 

5.3.2.2 Vancouver Dataset 

Table 11 summarizes the parameter estimates and their 95% credible intervals for Model 2A, 2B 

and 2C. The table shows that the parameter estimates are significant, as the 95% credible 

intervals were bounded away from zero. The Vancouver dataset had more significant variables 

than the Richmond dataset. Apart from the intercepts, the regression coefficients were all 

positive, indicating that factors such as segment length, AADT, UNID, IUND, IBUS and NL 

were positively associated with the number of collisions. It is worth mentioning that the means of 

the parameters for Model 2A were slightly high when compared to Model 2B and Model 2C, 

except for segment length and IBUS. Furthermore, the parameters of Model 2B and Model 2C 

were quite similar to each other, which indicates that accounting for spatial variation may 

explain some variability in collision frequency and improve model fit.    

The modelling results revealed that road segment length resulted in a random parameters that is 

normally distributed with similar means ranging from 0.904 to 0.948 and standard deviation (s1) 

ranging from 0.172 to 0.239. Thus, for almost all the sites, collision frequency was expected to 

increase with segment length, although by varying magnitudes. Similarly, the AADT resulted in 

a random parameters that is normally distributed with means of 0.578 (Model 2A), 0.462 (Model 

2B) and 0.444 (Model 2C). Further, a small reduction (2.38%) in standard deviation from Model 

2A to Model 2C may increase the predictability of Model 2C. For all the sites, the collisions 

counts are expected to be increased with AADT.  

UNID were also significant and positively correlated with collision frequency, indicating that an 

increase in UNID leads to a higher collision frequency. Similarly, the indicator variable, IUND, 

was significant and positively correlated with collision occurrence. This result is expected 

because undivided cross sections may increase conflict with the traffic of opposite lanes, 

potentially leading to head-on collisions. The estimates resulted in a random parameters that is 

normally distributed with means of 0.314 (Model 2A), 0.216 (Model 2B) and 0.229 (Model 2C). 

Further, a substantial reduction (30.5% for Model 2B and 26.9% for Model 2C) in standard 

deviation from Model 2A to Model 2B and Model 2C may increase the model’s predictability.  
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Table 11: Parameter estimates and 95% credible intervals for Models 2A-2C (Vancouver dataset) 

 Model 2A Model 2B Model 2C 

 

Est. 

95% Credible 

Intervals 

Est. 

95% Credible 

Intervals 

Est. 

95% Credible 

Intervals 

Variable  

(Parameter) 

Lower 

Limit 

Upper  

Limit 

Lower 

Limit 

Upper 

Limit 

Lower 

Limit 

Upper 

Limit 

Intercept ( 0 ) -3.190 -4.928 -1.729 -1.801 -3.589 -0.087 -1.639 -3.134 -0.111 

ln(Length) ( 1 ) 0.904 0.771 1.052 0.948 0.810 1.075 0.945 0.810 1.080 

ln(AADT) ( 2 ) 0.578 0.430 0.767 0.462 0.276 0.651 0.444 0.286 0.596 

UNID ( 4 ) 0.082 0.057 0.107 0.071 0.048 0.096 0.070 0.047 0.093 

IUND ( 5 ) 0.314 0.133 0.492 0.216 0.036 0.379 0.229 0.041 0.389 

IBUS ( 6 ) 0.288 0.110 0.471 0.273 0.130 0.427 0.310 0.140 0.453 

NL ( 7 ) 0.137 0.075 0.207 0.123 0.049 0.190 0.126 0.057 0.185 

Standard deviation, s0 0.420 0.331 0.497 0.267 0.119 0.385 0.234 0.083 0.365 

Standard deviation, s1 0.172 0.069 0.344 0.206 0.051 0.448 0.239 0.088 0.468 

Standard deviation, s2 0.168 0.067 0.336 0.167 0.064 0.314 0.164 0.072 0.321 

Standard deviation, s3 0.078 0.049 0.110 0.062 0.043 0.087 0.063 0.043 0.089 

Standard deviation, s4 0.350 0.103 0.681 0.243 0.065 0.509 0.256 0.086 0.509 

Standard deviation, s5 0.209 0.076 0.501 0.234 0.091 0.468 0.227 0.066 0.471 

Standard deviation, s6 0.094 0.054 0.150 0.086 0.050 0.140 0.088 0.052 0.144 
2

u  0.004 0.0003 0.027 
   

0.011 0.0003 0.079 

2

s  
   

0.234 0.091 0.463 0.234 0.092 0.457 

Proportion of spatial variance 
      

0.838 0.541 0.955 

Chi observed 225.100 167.900 292.900 156.900 84.070 241.300 156.200 83.690 243.100 

Chi replicated 226 168.600 295.100 157.300 84.870 242.500 156.500 85.010 244.400 

p 
0.523 0 1 0.524 0 1 0.519 0 1 
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Another indicator variable, IBUS, also displayed significance and positive correlation with 

collision occurrence. Business land use introduces commercial activities that attract vulnerable 

road users (e.g., pedestrians, cyclists), creating greater collision risk with these additional users 

on the road. The estimates resulted in a random parameters that is normally distributed with a 

similar mean ranging from 0.273 to 0.31 and standard deviation (s5) ranging from 0.209 to 

0.234. For almost all the sites, collision frequency was expected to increase with the presence of 

business land use. NL also yielded a similar positive correlation with collision occurrence; a 

possible rationale for this finding is that more lanes increase traffic flow and conflict areas, 

thereby increasing the probability of collision occurrence. NL also yielded a random parameters 

that is normally distributed with a similar mean range (0.123 to 0.137) for Model 2A, 2B and 2C. 

Furthermore, there was a small reduction (8.5% for Model 2B and 6.38% for Model 2C) in 

standard deviation from Model 2A to Model 2B and Model 2C.  

The estimates of variance (
2

u ) for heterogeneous effects were significant at a 95% confidence 

level under Model 2A and Model 2C, demonstrating the presence of overdispersion in the 

Vancouver data. However, the variances (
2

u ) for heterogeneous effects were reasonably small 

(0.004 for Model 2A and 0.011 for Model 2C), as accounting for site variation due to random 

parameters reduces the estimates of extra-Poisson variation. The estimates of spatial variance (

2

s ) were significant at a 95% confidence level under Model 2B and Model 2C. Unlike the 

Richmond dataset, a high proportion of the total variability (83.8%) was explained by spatial 

correlation under Model 2C. Ignoring this large proportion of spatial correlation may lead to a 

biased and erroneous estimation of the model parameters. Therefore, the inclusion of spatial 

correlation in a random parameters model may significantly improve the precision of the 

estimates of the expected collision frequency. 

5.4 Summary 

This chapter describes the investigation of including spatial correlation in univariate random 

parameters collision count-data models. Three different modelling formulations (random 

parameters with only heterogeneous effects, random parameters with only spatial correlation, 

and random parameters with both heterogeneous effects and spatial correlation) were developed 

account for spatial correlation in a random parameters framework. The DIC values and chi-
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square statistics indicated that all the models were comparable with one another. However, the 

random parameters model with both heterogeneous effects and spatial correlation was found to 

yield the best inference in terms of parameter estimates and precision of the estimates for both 

the datasets.   

For the Richmond dataset, four variables were used in the models (segment length, AADT, 

number of crosswalks and UNID). The covariates were significant at a 95% confidence level 

(except UNID in Model 2A and Model 2B) and positively correlated with collision occurrence. 

The results were intuitive and in line with previous research findings. In most cases, the 

inclusion of spatial correlation reduces the standard deviation of the random parameters. The 

estimates of heterogeneous variance and spatial variance were significant and indicated the 

presence of over-dispersion and spatial correlation in the data. About 38.3% of the total 

variability was explained by spatial correlation under Model C, as most of the variations (61.7%) 

were most likely captured by heterogeneous effects and site variation. 

Six variables (segment length, AADT, UNID, IUND, IBUS and NL) were significant at a 95% 

confidence level and positively correlated with collision occurrence for the Vancouver dataset. 

The effects of spatial correlation were much clearer in this dataset, as a high proportion of the 

total variability (83.8%) was explained by spatial correlation under Model 2C, which indicates 

that overlooking this large proportion of spatial correlation may lead to a biased parameter 

estimation. In addition, the current results reinforce the findings of other studies in the literature, 

suggesting that spatial correlation when estimating regression coefficients could reduce bias 

resulting from the omission of spatial variables.    

From a model application point of view, the methodological approach proposed herein has the 

potential to provide new insight into collision analysis and can be used to estimate the associated 

safety risks more precisely. Nevertheless, random parameters models are complex to estimate, 

and the inclusion of spatial correlation makes the estimation technique even more complex. This 

methodological approach will also help improve the precision of the estimates of expected 

collision frequency.   
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6. MULTIVARIATE RANDOM PARAMETERS SPATIAL MODELS 

This chapter illustrates the research efforts devoted to investigating the effects of including 

spatial correlation in multivariate random parameters collision models at different collision 

severity levels. In addition, this chapter demonstrates the comparison between multivariate 

random parameters spatial models and their univariate counterpart. 

6.1 Background 

Due to the fact that random parameters models provide better parameter estimates and inferences 

compared to traditional fixed parameters models, the use of random parameters in collision 

modelling has been gaining attention over the past few years. For instance, Milton et al. (2008), 

Gkritza and Mannering (2008), Anastasopoulos and Mannering (2009; 2011), El-Basyouny and 

Sayed (2009a), Anastasopoulos et al. (2012a), and Russo et al. (2014) all demonstrated that the 

random parameters model can provide better inference than the traditional fixed parameters 

model and can explicitly account for heterogeneity across observations that is due to unobserved 

road geometrics, traffic characteristics, environmental factors, driver behaviour and other 

confounding factors.  

Most of the literature used random parameters in a univariate modelling framework. Regardless 

of the fact that collision data is multivariate in nature and it is necessary to account for the likely 

correlation between collision counts at different levels of classification (Bijleveld, 2005; Ma and 

Kockelman, 2006; Ma et al., 2008; Park and Lord, 2007; El-Basyouny and Sayed, 2009b; El-

Basyouny et al., 2014b), multivariate random parameters have rarely been explored in the 

literature. An earlier study of El-Basyouny and Sayed (2013a) used time-varying coefficients 

(random parameters) in multivariate collision models to identify and prioritize hotspots. 

Similarly, another study of El-Basyouny et al. (2014a) employed time-varying coefficients in 

multivariate collision type models to assess the effects of weather elements on seven crash types. 

A recent study of Dong et al. (2014) demonstrated the use of a multivariate random parameters 

zero-inflated negative binomial regression (MRZINB) model for jointly modelling crash counts. 

The authors found that the MRZINB model outperformed the fixed parameters zero-inflated 

negative binomial regression model and possesses most desirable statistical properties in terms of 

its ability to accommodate unobserved heterogeneity and excess zero counts in correlated data.    
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Almost all of the few multivariate random parameters safety models mentioned in the literature 

used heterogeneous effects in addition to random parameters to account for unobserved or 

unmeasured heterogeneity. The foremost motivations of those studies are to reduce the bias and 

inconsistent estimation, improve the precision of the estimates, and thereby increase the model’s 

predictability. However, most of the studies ignored the effects of spatial correlation (one of the 

most potential issues) in collision models, which may lead to a biased parameters estimation of 

the model, as some of the unobserved factors are likely to be correlated over space and there 

might be some possible correlation among neighbouring sites.  

To this end, there are two main tasks of this chapter: i) investigate the effects of including spatial 

correlation in multivariate random parameters models and their influence on the different 

collision severity levels; and ii) compare multivariate random parameters spatial models with 

independent (separate) univariate random parameters spatial models for each collision severity in 

terms of model inference and goodness-of-fit. To accomplish these tasks, three years (1994 to 

1996) of collision data and other geometric and non-geometric road data were used for the city of 

Vancouver, British Columbia, Canada. CAR (Besag et al., 1991) distribution was used to 

account for spatial correlation, while lognormal distribution was used for the heterogeneous 

effects, leading to PLN posterior distribution. The models were estimated under a FB framework 

via MCMC simulation (Gilks et al., 1996). Statistical software, WinBUGS (Lunn et al., 2000), 

was used for the development of the proposed multivariate random parameters spatial models. 

6.2 Methodology 

Several studies proposed multivariate models for collision counts at different levels of 

classification (Bijleveld, 2005; Ma and Kockelman, 2006; Ma et al., 2008; Park and Lord, 2007; 

Aguero-Valverde & Jovanis, 2009; El-Basyouny and Sayed, 2009b; El-Basyouny et al., 2014a; 

2014b). This chapter used similar multivariate methodology in a random parameters framework. 

The specifications for the multivariate models are given by Eqs. (17–23), and those for the 

multivariate random parameters models are given by Eqs. (37–43). A detailed specification for 

the multivariate spatial model with CAR distribution was provided in section 4.2.1 in chapter 

four. The multivariate random parameters spatial PLN model can be written as follows:  
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Under the multivariate random parameters PLN spatial model, the mean and variance are given 

by 
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Several functional forms are available in the literature (Miaou & Lord, 2003). However, since 

the focus of this chapter is on demonstrating the consequences of including spatial correlation in 

a multivariate random parameters model, these three model forms were used: 

Model 3A: Multivariate random parameters with only heterogeneous effects 
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Model 3B: Multivariate random parameters with only spatial correlation   
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Model 3C: Multivariate random parameters with both heterogeneous effects and spatial 

correlation 
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In addition, two univariate random parameters spatial models for different severity levels were 

also developed and compared with the multivariate random parameters spatial models (Models 

3A–3C). 

Obtaining the FB estimates requires a specification of prior distributions for the regression 

coefficients (
k

0 , 
k

m ), random parameters (
k

i0 , 
k

mi ), the covariance matrix (  ) for 

heterogeneous effects, the covariance matrix (  ) for spatial correlation and the covariance 

matrixes for random parameters (
0  and 

m ). The most commonly used priors are diffused 

normal distributions (with zero mean and large variance) for the regression parameters and a 

),( rPWishart  prior for 
1 , 

1 , 
1

0

  and 
1m  where, P and Kr  represent the prior guess at 

the order of magnitude of the precision matrixes 
1 , 

1 , 
1

0

 , 
1m  and the degrees of 
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freedom, respectively. Choosing r=K as the degrees of freedom corresponds to vague prior 

knowledge (Spiegelhalter et al., 1996; Tunaru, 2002). In the current research, several priors were 

used:  

),(~ 000 kk

i MN  , ),(~ m

k

m

k

mi MN  , 
k

0 )100,0(~ 2N , 
k

m )100,0(~ 2N , 

),(~1 KIWishart , ),(~1 KIWishart , ),(~1

0 KIWishart  and ),(~1 KIWishartm



Where, I is the KK   identity matrix (Congdon, 2006; Chib and Winkelmann, 2001).  

The posterior distributions required in the FB approach can be obtained using MCMC sampling 

techniques available in WinBUGS (Lunn et al., 2000). The DIC was used for the model 

comparisons and fit (Spiegelhalter et al., 2002).  

6.3 Results and Discussion 

6.3.1 Model Comparison and Parameter Estimates 

For each model, the posterior estimates were obtained via two chains with 20,000 iterations, 

5,000 of which were excluded as a burn-in sample using WinBUGS. The BGR statistics were 

less than 1.2; the ratios of the Monte Carlo errors relative to the standard deviations of the 

estimates were less than 0.05; and trace plots for all of the model parameters indicated 

convergence. The model selection criterion is presented in Table 12. As observed in Table 12, all 

the multivariate random parameters models (Models 3A–3C) were quite similar to one another, 

which indicates that all the models are comparable. Further, as the difference in DIC is less than 

five, it could be misleading to report only the model with the lowest DIC. Therefore, parameter 

estimates of all the models were discussed in this section.  

 

Table 12: The DIC statistics by model 

Model Description DIC 

Model 3A: Multivariate random parameters model with only heterogeneous effects   3647 

Model 3B: Multivariate random parameters model with only spatial correlation 3649 

Model 3C: Multivariate random parameters model with both heterogeneous effects and 

spatial correlation 

3650 

 

Table 13 summarizes the parameter estimates and their 95% credible intervals for Model 3A. 

The model was developed by including heterogeneous effects in a multivariate random 

parameters model. The table shows that the parameter estimates are significant (except NL, 
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IUND and IBUS for severe collisions), as the 95% credible intervals were bounded away from 

zero. Apart from the intercepts, the regression coefficients were all positive, indicating that 

factors such as segment length, AADT, UNID, IUND, IBUS and NL were positively associated 

with both severe and non-injury collisions. NL and two other indicator variables (i.e., IUND and 

IBUS) were insignificant for severe collisions, while they were significant for non-injury 

collisions. Further, the mean of the parameter estimates were reasonably high for severe 

collisions compared to non-injury collisions. The modelling results revealed that road segment 

length resulted in a random parameter that is normally distributed, with a mean 1.012 and 0.919, 

and a variance (
2

mR ) of 0.171 and 0.136 for severe and non-injury collisions, respectively. Thus, 

for almost all the sites, both collision types were expected to increase with segment length, 

although by varying magnitudes.  

A similar result was obtained for AADT, where both the collision types are expected to increase 

with AADT, for the majority of the sites. As noted by Anastasopoulos and Mannering (2009), 

this AADT finding is likely indication of a complex interaction among traffic volume, driver 

behaviour and the number of collisions. It may be capturing, among other factors, the response 

and adaption of drivers to various levels of traffic volume. Further, the findings of road segment 

length and AADT revealed that longer segments with higher traffic volumes (i.e., increased 

exposure) result in more severe and non-injury collisions. 

UNID were insignificant for both severe and non-injury collisions. The positive correlation 

associated with severe and non-injury collisions indicated that an increase of UNID results in 

more collisions. The literature also suggests that road segments with a large number of access 

points or unsignalized intersections have a significant impact on, and are positively correlated 

with, the number of collisions (Xuesong & Ming, 2012). Similarly, the indicator variable, IUND, 

was significant and positively correlated with non-injury collisions. This result is expected and 

intuitive because undivided cross sections may increase conflicts with the traffic of opposite 

lanes, hence leading to probable head-on collisions. However, IUND was not statistically 

significant for severe collisions. The estimates resulted in a random parameter that is normally 

distributed with a mean 0.331 and a variance of 0.198. Another indicator variable, IBUS, was 

also significant and positively correlated with non-injury collisions. As business land use 

introduces lots of commercial activities that attract vulnerable road users (e.g., pedestrians, 
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bicyclists), collisions are more likely to occur in a vicinity with business land use. NL also 

provided similar positive correlation with collision occurrence. A possible rationale for this 

finding is that more lanes increase traffic flow and traffic conflict areas, thereby increasing the 

probability of collision occurrence. Both the parameters of IBUS and NL also resulted in a 

random parameter that is normal distributed with a mean of 0.324 (
2

mR : 0.184) and 0.142 (
2

mR : 

0.044), respectively. 

 

Table 13: Parameter estimates and 95% credible intervals for Model 3A 

Model 3A: Multivariate random parameters model with only heterogeneous effects   

Variable  

(Parameter) 

  

Severe: Injury + Fatal Non-Injury 

95% Credible Intervals 95% Credible Intervals 

Est. Lower  

Limit 

Upper  

Limit 

Est. Lower  

Limit 

Upper  

Limit 

Intercept (
0 ) -4.733 -10.380 -2.164 -3.230 -5.660 -0.977 

Variance (
2

0R ) of 
0  0.165 0.097 0.263 0.125 0.075 0.183 

ln(Length) ( 1 ) 1.012 0.821 1.217 0.919 0.717 1.075 

Variance (
2

mR ) of 1  0.171 0.074 0.410 0.136 0.060 0.311 

ln(AADT) ( 2 ) 0.586 0.305 1.200 0.544 0.310 0.789 

Variance (
2

mR ) of 2  0.175 0.074 0.562 0.115 0.055 0.247 

UNID ( 4 ) 0.091 0.045 0.140 0.086 0.048 0.124 

Variance (
2

mR ) of 4  0.034 0.023 0.052 0.028 0.019 0.041 

IUND (
5 ) 0.268 -0.045 0.527 0.331 0.113 0.525 

Variance (
2

mR ) of 
5  0.225 0.092 0.474 0.198 0.078 0.436 

IBUS (
6 ) 0.228 -0.019 0.518 0.324 0.082 0.564 

Variance (
2

mR ) of 
6  0.248 0.083 0.649 0.184 0.074 0.439 

NL  (
7 ) 0.153 -0.018 0.267 0.142 0.043 0.234 

Variance (
2

mR ) of 
7  0.054 0.033 0.083 0.044 0.028 0.065 

2

kk  0.026 0.001 0.115 0.011 0.001 0.053 

Note: Parameter estimates not significant under the stated level of significance are shown in italic font. 

 

The estimates of variance (
2

kk ) for heterogeneous effects were significant at a 95% confidence 

level, demonstrating the presence of over dispersion in the data. However, the variance (
2

kk ) 
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was reasonably small for both severe (0.026; 95% credible intervals (CI): 0.001, 0.115) and non-

injury (0.011; 95% CI: 0.001, 0.053) collisions, as accounting for site variation due to random 

parameters reduces the estimates of extra Poisson variation. The covariance (
2

hk ) for 

heterogeneous effects was small (0.012; CI: -0.002, 0.075) and insignificant at the 95% 

confidence level, which leads to an insignificant posterior correlation (0.341; 95% CI: -0.522, 

0.974) between severe and non-injury collisions for heterogeneous effects. As most of the site-

specific variation was captured by random parameters, the covariance became small and 

insignificant, and consequently, posterior correlation also become insignificant. Despite the fact 

that parameter estimates were significant, intuitive and in line with the previous research, 

multivariate random parameters with heterogeneous effects may not be suitable for the present 

dataset, as this model could not capture the correlation between collision types, which may lead 

to biased and incorrect parameter estimates.     

The other two models (Model 3B and Model 3C) were developed incorporating spatial 

correlation among the neighbouring sites. Both heterogeneous effects and spatial correlation 

were considered in Model 3C to investigate the total random effects. Table 14 and Table 15 

summarize the parameter estimates and their 95% credible intervals for Model 3B and Model 

3C, respectively. Model 3B has more significant variables than Model 3A and Model 3C. 

However, Model 3B and Model 3C provide quite similar inference in terms of parameter 

estimates and precision. For Model 3B, apart from the intercepts, the regression coefficients are 

all positive, indicating that factors such as segment length, AADT, UNID, IBUS and NL are 

positively associated with both severe and non-injury collisions. IUND was insignificant for both 

severe and non-injury collisions in Model 3B but became significant for non-injury collisions in 

Model 3C. Another indicator variable, IBUS, was insignificant for both severe and non-injury 

collisions in Model 3C, while it was significant in Model 3B for both.     
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Table 14: Parameter estimates and 95% credible intervals for Model 3B 

Model 3B: Multivariate random parameters model with only spatial correlation 

Variable  

(Parameter) 

  

Severe: Injury + Fatal Non-Injury 

95% Credible Intervals 95% Credible Intervals 

Est. Lower  

Limit 

Upper  

Limit 

Est. Lower  

Limit 

Upper  

Limit 

Intercept (
0 ) -3.211 -5.994 -1.035 -2.380 -4.312 -0.508 

Variance (
2

0R ) of 
0  0.140 0.058 0.611 0.094 0.049 0.226 

ln(Length) ( 1 ) 1.009 0.561 1.248 0.918 0.613 1.119 

Variance (
2

mR ) of 1  0.162 0.063 0.352 0.138 0.068 0.252 

ln(AADT) ( 2 ) 0.443 0.160 0.738 0.469 0.280 0.640 

Variance (
2

mR ) of 2  0.244 0.058 1.799 0.130 0.052 0.425 

UNID ( 4 ) 0.075 0.024 0.122 0.077 0.038 0.115 

Variance (
2

mR ) of 4  0.042 0.020 0.217 0.028 0.017 0.069 

IUND (
5 ) 0.152 -0.328 0.445 0.261 -0.082 0.485 

Variance (
2

mR ) of 
5  0.216 0.075 0.547 0.164 0.072 0.332 

IBUS (
6 ) 0.317 0.079 0.685 0.391 0.219 0.662 

Variance (
2

mR ) of 
6  0.268 0.072 1.228 0.173 0.063 0.435 

NL  (
7 ) 0.168 0.043 0.563 0.140 0.052 0.317 

Variance (
2

mR ) of 
7  0.087 0.030 0.611 0.052 0.027 0.213 

2

skk  0.728 0.054 9.325 0.254 0.030 2.351 

Note: Parameter estimates not significant under the stated level of significance are shown in italic font. 

 

For Model 3B, according to the parameter estimates, road segment length resulted in a random 

parameter that is normally distributed, with a mean 1.009 (
2

mR : 0.162) and 0.918 (
2

mR : 0.138) 

for severe and non-injury collisions, respectively. Similarly, in terms of AADT, the mean of 

random parameters was normally distributed with a value of 0.443 (
2

mR : 0.244) and 0.469 (
2

mR : 

0.130) for severe and non-injury collisions, respectively. In comparison to Model 3B, the 

variances of AADT parameters reduce quite little with an increase of the mean 0.551 (
2

mR : 

0.170) for severe and 0.514 (
2

mR : 0.111) for non-injury collisions of Model 3C. Other variables, 

such as UNID, IBUS and NL, have quite similar parameter estimates with very small differences 
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in variance for random parameters. These indicate that Model 3B and Model 3C are very much 

comparable to each other. 

Table 15: Parameter estimates and 95% credible intervals for Model 3C 

Model 3C: Multivariate random parameters model with both heterogeneous effects and spatial 

correlation 

Variable  

(Parameter) 

  

Severe: Injury + Fatal Non-Injury 

95% Credible Intervals 95% Credible Intervals 

Est. Lower  

Limit 

Upper  

Limit 

Est. Lower  

Limit 

Upper  

Limit 

Intercept (
0 ) -4.367 -19.580 -0.727 -2.879 -8.769 -0.218 

Variance (
2

0R ) of 
0  0.119 0.057 0.396 0.090 0.050 0.157 

ln(Length) ( 1 ) 0.994 0.470 1.212 0.918 0.664 1.109 

Variance (
2

mR ) of 1  0.183 0.073 0.404 0.147 0.063 0.290 

ln(AADT) ( 2 ) 0.551 0.185 1.872 0.514 0.246 0.992 

Variance (
2

mR ) of 2  0.170 0.066 0.556 0.111 0.056 0.200 

UNID ( 4 ) 0.083 0.022 0.232 0.079 0.034 0.142 

Variance (
2

mR ) of 4  0.045 0.021 0.292 0.027 0.017 0.065 

IUND (
5 ) 0.239 -0.067 0.672 0.327 0.136 0.546 

Variance (
2

mR ) of 
5  0.242 0.079 0.618 0.179 0.070 0.411 

IBUS (
6 ) 0.163 -0.991 0.499 0.313 -0.203 0.594 

Variance (
2

mR ) of 
6  0.367 0.081 2.731 0.187 0.067 0.619 

NL  (
7 ) 0.159 0.042 0.303 0.141 0.035 0.236 

Variance (
2

mR ) of 
7  0.065 0.031 0.339 0.044 0.026 0.100 

2

kk  0.261 0.001 4.688 0.051 0.001 0.785 

2

skk  0.278 0.049 1.678 0.122 0.025 0.267 

Note: Parameter estimates not significant under the stated level of significance are shown in italic font. 

 

For Model 3B, the spatial variance )( 2

skk  estimates of severe and non-injury collisions were 

statistically significant at the 95% credible interval. According to the parameter estimates, the 

spatial variance was quite high, 0.728 (95% CI: 0.054, 9.325) for severe collisions and 0.254 

(95% CI: 0.030, 2.351) for non-injury collisions. These demonstrate the presence of spatial 

variation in both severe and non-injury collisions. The spatial covariance )( 2

shk was also 

significant and reasonably high, 0.411(95% CI: 0.039, 4.697), which leads to a high posterior 
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correlation of 0.959 (95% CI: 0.832, 0.999) between severe and non-injury collisions for the 

effects of spatial correlation.  

For Model 3C, both the heterogeneous variance )( 2

kk  and spatial variance )( 2

skk estimates of 

severe and non-injury collisions were statistically significant at the 95% credible interval. These 

demonstrate the presence of over-dispersion and spatial variation in both severe and non-injury 

collisions. According to parameter estimates, the heterogeneous variance for severe collisions 

was 0.261 (95% CI: 0.001, 4.688), while it was 0.051 (95% CI: 0.001, 0.785) for non-injury 

collisions. The spatial variance was 0.278 (95% CI: 0.049, 1.678) for severe collisions and 0.122 

(95% CI: 0.025, 0.267) for non-injury collisions, which was quite high compared to the 

heterogeneous variance. For severe collisions, about 51.6% of the total variation was captured by 

spatial correlation, and it was even higher for non-injury collisions, accounting for about 70.5% 

of the total variation.  

The covariance )( 2

hk for heterogeneous effects was insignificant (0.110; 95% CI: -0.003, 1.886) 

as most site-specific variation might be captured by random parameters. Consequently, the 

posterior correlation between severe and non-injury collisions for heterogeneous effects was 

small and insignificant (0.355; 95% CI: -0.602, 0.998). Conversely, spatial covariance for spatial 

correlation was significant (0.168, 95% CI: 0.034, 0.575), which leads to a high significant 

posterior correlation (0.958; 95% CI: 0.833, 0.993). Since spatial correlation dominated, the 

correlation between severe and non-injury collisions for the total random effects (heterogeneous 

effects and spatial correlation) was also quite high and obviously significant (0.933; 95% CI: 

0.780, 0.992). This indicates that a higher number of  non-injury collisions is associated with a 

higher number of severe collisions, as the collision likelihood for both levels is likely to rise due 

to the same deficiencies in roadway design, similar weather conditions and other unobserved 

factors. 

In summary, the inclusion of spatial correlation in a multivariate random parameters model can 

simultaneously capture the spatial correlation among neighbouring sites and the multivariate 

nature of the collision data. Further, there was a considerable proportion of spatial variations in 

the data, which should not be ignored. Ignoring this large proportion of spatial correlation may 

lead to a biased and erroneous estimation of the parameters. Therefore, the inclusion of spatial 
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correlation in a multivariate random parameters model may help explain some variability in the 

collision data and significantly improve the precision of the estimates of the expected collision 

frequency.  

6.3.2 Comparison of Multivariate Models with Univariate Models 

Table 16 summarizes the parameter estimates and their associated statistics for the univariate 

random parameters spatial model with heterogeneous effects. All of the parameters (i.e., segment 

length, AADT, UNID, IBUS and NL) were significant and positively correlated with both severe 

and non-injury collisions, except IUND for severe collisions. The estimated parameters were 

quite similar to the multivariate random parameters models with some exceptions and were 

intuitive and in line with previous research. The parameters resulted in a random parameter that 

was normally distributed with a mean and standard deviation for each of the parameters. The 

heterogeneous variance )( 2

u  and spatial variance )( 2

s estimates of severe and non-injury 

collisions were statistically significant at the 95% credible interval. These demonstrate the 

presence of over-dispersion and spatial correlation in both severe and non-injury collisions. 

However, the heterogeneous variances )( 2

u  were very small, 0.004 (95% CI: 0.0003, 0.024) for 

severe collisions and 0.004 (95% CI: 0.0003, 0.027) for non-injury collisions. As mentioned 

earlier, random parameters may capture unmeasured site-specific variation, which may reduce 

the variance of the heterogeneous effects. Conversely, the spatial variance was quite high, 0.160 

(95% CI: 0.057, 0.327) for severe collisions and 0.269 (95% CI: 0.101, 0.493) for non-injury 

collisions.  Approximately 87.8% of the variation of the random effects is explained by spatial 

correlation for both collision types, which was higher than in the multivariate random parameters 

models.  

In terms of model comparison, the multivariate random parameters spatial models provided a 

superior fit over the two univariate random parameters spatial models, as the DIC of the 

multivariate models (Model B: 3649; Model C: 3650) was smaller than the sum of the univariate 

DICs (3672); this shows a very significant drop-off of 22. These results are in line with previous 

research findings (Park and Lord, 2007; El-Basyouny and Sayed, 2009b). The literature 

established that multivariate PLN models are more precise than univariate PLN models. The 

improvement in precision is due mainly to the correlation between the latent variables (severe 

and no injury). 
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Table 16: Parameter estimates and 95% credible intervals for univariate random 

parameters model with both heterogeneous effects and spatial correlation 

Variable  

(Parameter) 

  

Severe: Injury + Fatal Non-Injury 

95% Credible Intervals 95% Credible Intervals 

Est. Lower  

Limit 

Upper  

Limit 

Est. Lower  

Limit 

Upper  

Limit 

Intercept (
0 ) -2.905 -4.880 -0.643 -2.447 -3.952 -0.597 

Standard Deviation of 
0  0.313 0.176 0.435 0.223 0.098 0.347 

ln(Length) ( 1 ) 0.969 0.813 1.117 0.925 0.790 1.062 

Standard Deviation of 1  0.243 0.063 0.573 0.211 0.070 0.428 

ln(AADT) ( 2 ) 0.429 0.184 0.635 0.499 0.298 0.649 

Standard Deviation of 2  0.223 0.067 0.459 0.156 0.065 0.311 

UNID ( 4 ) 0.070 0.042 0.100 0.073 0.050 0.097 

Standard Deviation of 4  0.072 0.048 0.106 0.062 0.042 0.086 

IUND ( 5 ) 0.208 -0.016 0.423 0.229 0.061 0.408 

Standard Deviation of 5  0.248 0.087 0.593 0.283 0.097 0.534 

IBUS (
6 ) 0.288 0.110 0.461 0.297 0.136 0.471 

Standard Deviation of 
6  0.241 0.067 0.635 0.206 0.071 0.438 

NL  (
7 ) 0.143 0.068 0.229 0.109 0.046 0.178 

Standard Deviation of 
7  0.107 0.058 0.169 0.086 0.050 0.138 

Proportion of Spatial 

Variation 

0.878 0.654 0.956 0.878 0.684 0.958 

2

kk  0.004 0.0003 0.024 0.004 0.0003 0.027 

2

skk  0.160 0.057 0.327 0.269 0.101 0.493 

DIC 1662   2010   

Total DIC 3672      

Note: Parameter estimates not significant under the stated level of significance are shown in italic font. 

 

6.4 Summary 

The inclusion of spatial correlation in different collision severity levels using the multivariate 

random parameters modelling approach is investigated in this chapter. Multivariate random 

parameters spatial models were used under a FB context for two severity levels (severe and no 

injury) for 281 urban road segments in the city of Vancouver, British Columbia, Canada. Three 

different modelling formulations (multivariate random parameters model with only 

heterogeneous effects, multivariate random parameters model with only spatial correlation, and 
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multivariate random parameters model with both heterogeneous effects and spatial correlation) 

were applied to take into account spatial correlation in a multivariate random parameters 

framework. According to DIC, all the models were comparable to one another. However, the 

multivariate random parameters model with heterogeneous effects may not be suitable for the 

present dataset, as this model could not capture the correlation between collision types, which 

may lead to bias and incorrect parameter estimates.     

The results of the other two models reveal that the regression coefficients were all positive, 

indicating that geometric and non-geometric road factors (i.e., road segment length, AADT, 

UNID, IBUS, NL) were positively associated with both severe and non-injury collisions. All the 

parameters resulted in random parameters that were normally distributed with a mean and a 

variance. The results were quite intuitive and in line with previous research findings. The means 

of the estimated parameters were reasonably similar and the differences in variance of the 

parameters were quite small, which indicates similar predictability of Model 3B and Model 3C. 

The estimates of heterogeneous variance and spatial variance were significant and indicate the 

presence of over-dispersion and spatial correlation in the data. The heterogeneous variance for 

heterogeneous effects was smaller than the spatial variance, as most of the heterogeneity or site-

specific variations were captured by the random parameters. Similarly, the heterogeneous 

covariance was insignificant, which leads to an insignificant posterior heterogeneous correlation.  

On the contrary, the data exhibits better inference in terms of capturing spatial variation, as about 

51.6% of the total variation was captured by spatial correlation for severe collisions, and it is 

even higher for non-injury collisions, about 70.5% of the total variation. Similarly, the spatial 

covariance was also high and significant, leading to a high significant posterior correlation 

(0.958) for spatial effects. Since spatial correlation dominated, the correlation between severe 

and non-injury collisions for the total random effects (heterogeneous effects and spatial 

correlation) was also quite high and obviously significant (0.933; 95% CI: 0.780, 0.992). This 

result indicates that a higher number of non-injury collisions is associated with a higher number 

of severe collisions, as the collision likelihood for both levels is likely to rise due to the same 

deficiencies in roadway design, similar weather conditions and other unobserved factors. 

Therefore, ignoring this large proportion of spatial correlation may lead to biased and erroneous 

estimation of the parameters. These results advocate that the inclusion of spatial correlation in a 
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multivariate random parameters model can simultaneously capture the spatial correlation among 

neighbouring sites and the multivariate nature of the collision data.  

This chapter also demonstrated the importance of multivariate random parameters spatial 

modelling techniques by comparing multivariate spatial models with independent univariate 

spatial models, with respect to model inference and goodness-of-fit. All of the estimated 

parameters for the univariate models were quite similar to those of the multivariate models with 

some exceptions. Multivariate random parameters spatial models provide a superior fit over the 

two univariate random parameters spatial models, as shown by a very significant drop-off in 

DIC. These results advocate the use of multivariate random parameters spatial models over 

univariate random parameters spatial models for collision severity analysis. 
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7. CONCLUSIONS AND FUTURE RESEARCH 

This chapter summarizes the main conclusions, research contributions and limitations of the 

thesis, and concludes by highlighting areas for future research. 

7.1 Concluding Remarks 

The research in this thesis investigated the effects of spatial correlation in different collision 

modelling approaches: i) multivariate models, ii) univariate random parameters models, and iii) 

multivariate random parameters models. Therefore, there were three objectives in this thesis.  

The first objective was to investigate the inclusion of spatial correlation in multivariate count-

data models of collision severity. To accomplish the objective, the models were developed for 

severe (injury and fatal) and non-injury collisions using three years of collision data from the city 

of Richmond and the city of Vancouver. The proposed models were estimated in a FB context 

via MCMC simulation. The multivariate model with both heterogeneous effects and spatial 

correlation provided the best fit according to the DIC and chi-statistics. Results showed 

significant and positive correlation between various road attributes and collision severities. For 

the Richmond dataset, the spatial variance was smaller than the heterogeneous variance. 

Conversely, the spatial variance was higher than the heterogeneous variance for the Vancouver 

dataset indicating high proportion of the total variability was explained by spatial correlation. 

The correlation between severe and non-injury collisions for the total random effects 

(heterogeneous and spatial) was significant and quite high (0.905 for Richmond and 0.945 for 

Vancouver), indicating that a higher number of non-injury collisions is associated with a higher 

number of severe collisions. Furthermore, the multivariate spatial models were compared with 

two independent univariate Poisson lognormal (PLN) spatial models, with respect to model 

inference and goodness-of-fit. Multivariate spatial models provided a superior fit over the two 

univariate PLN spatial models, with a very significant drop in the DIC value (35.3 for Richmond 

and 116 for Vancouver). These results advocate the use of multivariate models with both 

heterogeneous effects and spatial correlation over univariate PLN spatial models. 

The second objective of this thesis was to investigate the effects of including spatial correlation 

in random parameters collision count-data models. Three different modelling formulations were 

applied to measure the effects of spatial correlation in random parameters models using the same 
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dataset as the first objective. The DIC values and chi-square statistics indicated that all the 

models were comparable to one another. However, the random parameters model with both 

heterogeneous effects and spatial correlation (Model 2C) yielded the best inference in terms of 

parameter estimates and the precision of the estimates for both datasets. According to parameter 

estimates, a variety of traffic and road geometric covariates were found to significantly influence 

collision frequencies. For the Richmond dataset, only 38.3% of the total variability was 

explained by spatial correlation under Model 2C, as most of the variations were most likely 

captured by heterogeneous effects and site variation. For the Vancouver dataset, the effects of 

spatial correlation were much clearer, with a high percentage of the total variability (83.8%) 

explained by spatial correlation under Model 2C. This finding indicates that ignoring this large 

proportion of spatial correlation may lead to biased parameter estimation. In conclusion, the 

results of the research advocated the inclusion of spatial correlation in the random parameters 

model to improve the precision of the estimates of the expected collision frequency. 

The third objective was to investigate the effects of including spatial correlation in multivariate 

random parameters models and their influence on the different collision severity levels. The 

models were developed for severe (injury and fatal) and non-injury collisions using three years 

of collision data from the city of Vancouver. Three different modelling formulations were 

applied to measure the effects of spatial correlation in multivariate random parameters models. 

The DIC values indicated that all the models were comparable to one another. However, models 

with spatial correlation yielded the best inference in terms of unbiased parameter estimates and 

capturing the multivariate nature of the collision data. According to parameter estimates, a 

variety of traffic and road geometric covariates were found to significantly influence collision 

severities. The spatial variance was higher than the heterogeneous variance, indicating high 

spatial variation in the data. The correlation between severe and non-injury collisions for the 

total random effects (heterogeneous and spatial) was significant and quite high, indicating that a 

higher number of non-injury collisions are associated with a higher number of severe collisions. 

These results support the incorporation of spatial correlation in multivariate random parameters 

models. Furthermore, the multivariate random parameters spatial models were compared with 

two independent univariate random parameters spatial models, with respect to model inference 

and goodness-of-fit. Multivariate random parameters spatial models outperformed the two 

univariate random parameters spatial models, with a very significant drop in the DIC value. 
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Overall, the research in this thesis advocated the inclusion of spatial correlation in several 

collision modelling approaches. Apart from the improvement in goodness-of-fit, the inclusion of 

spatial correlation may reduce biased, inconsistent and erroneous inference, hence increasing the 

precision of the parameter estimates of different modelling approaches.  

It has been argued in the literature that the inclusion of spatial effects could explain enough 

variation that might reduce the omitted variables bias. Opponents of this concept simply argue 

that the significance of spatial correlation can be considered an artifact of omitting important 

variables or inefficient determination of homogeneous road segments. Thus, with appropriate 

definition and selection of road segments along with proper selection of pertinent covariates, the 

spatial correlation would be reduced. It could be also argued that random parameters and 

heterogeneous effects can most likely capture enough of the site variation and unobserved or 

unmeasured heterogeneity, thereby reducing the effects of spatial correlation. While this may be 

partially valid, it will be difficult to find an exhaustive list of explanatory variables to adequately 

describe the variability in collision occurrence. Thus, proponents of spatial continue to argue that 

accounting for spatial variation or correlation in the development of collision models will always 

help in explaining some of the variability in collision occurrence or in capturing some of the 

unobserved factors that are likely to be correlated over space, thereby, improving both the model 

fit and their predictive capability. This thesis has shown that including spatial effects can lead to 

improvements in inference and goodness-of-fit. 

7.2 Research Contributions  

This thesis proposed several novel methodological approaches that have the potential to provide 

new insight in collision data analysis. The following are the main contributions of this research:  

i) Development of multivariate collision models incorporating spatial correlation that commonly 

exists in collision data;  

ii) Development of univariate random parameters spatial collision models that can capture site-

specific unobserved heterogeneity as well as spatial correlation simultaneously; and  

iii) Development of multivariate random parameters spatial collision models that can capture 

site-specific unmeasured/unobserved heterogeneity and can account for spatially correlated 

collision types/severities.  
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7.3 Limitations 

There were several limitations in this thesis. The spatial variation was small for the Richmond 

dataset, which indicates that spatial variation or spatial correlation might increase with a greater  

number of road segments or samples, as the Vancouver dataset consists of 281 road segments 

while there are only 72 for the Richmond dataset. In addition, multivariate random parameter 

spatial modelling approaches drew inconsistent and insignificant inferences for the Richmond 

dataset. That might have occurred due to low sample size of the Richmond dataset. Therefore, 

sample size might be an important factor when incorporating spatial correlation. However, the 

effects of sample size in the analysis of spatial correlation are yet to be investigated. Further, 

random parameters models are complex to estimate, and the inclusion of spatial correlation 

makes the estimation technique even more complex, which will be less convenient for practical 

application or engineering purposes.  

7.4 Future Research 

The results presented in this thesis support the incorporation of spatial correlation in three 

different collision modelling formulations. While the CAR distribution is most commonly used 

in disease mapping and collision analysis, other techniques are available that warrant attention. 

Therefore, the work in this thesis could be extended by investigating other techniques (e.g., 

Moving Average, Simultaneous Auto-regressive (SAR), Spatial Error Model (SEM), Multiple 

Membership (MM), Extended Multiple Membership (EMM)) to account for spatial correlation in 

both the multivariate and multivariate random parameters framework. Further research can also 

be conducted by incorporating spatial correlation into other methodological approaches (e.g., 

multi-level modelling approach) where the effects of including spatial correlation on that 

methodological approach have yet to be investigated.    
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