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Abstract 

Cognitive load theory posits that due to our limited cognitive resources, gestures can be used as 

external storage to maintain some of the information as the load increases. In this study, we used 

a narrative task to examine the significance of cognitive load and spatial abilities on gesture 

production. We designed three conditions, each with an increasing level of difficulty and 

predicted that the highest level of difficulty would result in the highest rate of gestures. We also 

investigated the role of spatial abilities, specifically spatial visualization and spatial short-term 

memory, measured by the Mental Rotation and Corsi Block tests. Previous studies have found 

that cognitive load affects representational gesture production and we expected to replicate those 

results. Additionally, we coded for non-representational gestures and made no predictions about 

their relationship to cognitive load. The results showed that higher levels of cognitive load were 

associated with increased rates of both representational and nonrepresentational gestures. We 

found no evidence for the effect of spatial abilities on either gesture type. These findings 

demonstrate that increased cognitive demands, such as remembering and recalling complex 

narratives, are associated with higher rates of gestures.  
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Over the past few years, gestures have received increased attention from researchers 

interested in understanding how complex thoughts and language can be manifested in hand 

movements. Co-speech gestures (hereby referred to as gestures) can be defined as hand 

movements that accompany our speech and are critical to expressing our thoughts and attitudes 

as well as a wide range of ideas, be it a simple description of a route or an abstract concept of 

unity by moving our hands or body parts (e.g., head) (Goldin-Meadow, 2005; McNeill, 1992). 

Gesture production is likely influenced by many factors, including semantic and structural 

differences across languages (Colletta et al., 2014; Pika et al., 2006), knowledgeability of an 

audience (Holler & Stevens, 2007; Parrill, 2012), the content of the depicted event (Masson-

Carro et al., 2015, 2017), personality (Hostetter & Potthoff, 2012; O’Carroll et al., 2015) and 

many other variables. The current paper focuses on two possible predictors of gesture 

production: the level of task difficulty and spatial abilities. These predictors might affect 

different types of gestures differently. Therefore, before discussing in more detail how these 

variables might affect gesture production, first, the types of gestures will be discussed. 

Types of Gestures 

Based on the functions of gestures and the contexts they occur, many researchers have 

proposed a classification system for the gestures (Kendon, 2004; McNeill, 1992). One of the 

most notable and utilized classifications was developed by McNeill (1992). He distinguished 

gestures into two main categories: representational and nonrepresentational. Representational 

gestures were defined as gestures that relay the shape or manner (or other semantic properties) of 

objects or actions present in the speech and as gestures that represent abstract concepts 

physically. This category encompasses both iconic and metaphoric gestures and is studied the 

most due to its ability to concretely represent ideas and spatial processing. The second category 

of gestures is known as nonrepresentational gestures, and these gestures serve many diverse 
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functions. Depending on the classification scheme, there may be lots of different kinds of non-

representational gestures. For example, McNeill (1992) placed only the beat gestures, rhythmic 

and rapid hand movements that do not contain any meaning, within the nonrepresentational 

gesture category. On the other hand, Kendon (2004) included both beat and deictic or pointing 

gestures, movements that would point out concrete or abstract entities, ideas, etc. as part of the 

nonrepresentational gestures. He also introduced a new gesture category and presented it as 

pragmatic gestures (Kendon, 2004, 2017). According to Kendon (2004, p. 5), pragmatic gestures 

emphasize the nonrepresentational part of speech and act as “semantic operators or as 

punctuators or parsers of the spoken discourse”. For instance, these gestures can support social 

discourse by providing context cues, highlighting ideas, conveying the speaker’s attitude, 

maintaining the interaction with addressees, etc. Thus, pragmatic gestures are also frequently 

categorized as nonrepresentational gestures by other researchers (Chu et al., 2014; Mol et al., 

2009). 

Cognitive Load Theory 

 One possible function of gestures is to decrease cognitive load (Goldin-Meadow et al., 

2001; Maricchiolo et al., 2014; Mol et al., 2009; Pouw et al., 2014). The basic premise of the 

cognitive load theory is that working memory (WM) has limited capacity, and upon performing 

novel and complex tasks individuals employ some mechanisms to reduce the strain of 

information processing (Paas & van Merriënboer, 2020). Gesturing is one of the mechanisms 

that allows speakers to manage the WM resources via two possible processes. The first 

possibility is that gestures act as external storage by physically maintaining the novel 

information and preventing its loss, while the WM allocates the freed-up resources to other 

processes (Goldin-Meadow et al., 2001; Ping & Goldin-Meadow, 2010; Sepp et al., 2019). The 

cognitive load can be intrinsic (e.g., finding the solution to the problem) or extrinsic (e.g., 



 

3 

 

construction noises), and with the increasing demand of the task, offloading cognition onto the 

physical world (by using gestures more) can improve the cognitive performance despite limited 

resources (Risko & Gilbert, 2016). Alternatively, gestures can serve as an auxiliary modality to 

formulate the current problem from a different perspective, thus allowing the individuals to grasp 

the problem faster (Sepp et al., 2019). For example, Cook et al. (2008) showed that children who 

were taught to use the correct strategy in their gestures while solving a mathematical problem 

were able to use the same strategy a month later. They concluded that the use of correct strategy 

in gestures solidified the knowledge.  

Many previous studies have supported the notion that gesture production is related to 

cognitive load. In a dual-task paradigm, Ping and Goldin-Meadow (2010) demonstrated the 

benefits of gesturing while solving a task. They instructed children to explain the solution to a 

Piagetian conservation task while they were asked to keep two random words in their minds. The 

children’s gesturing was manipulated such that some participants were not allowed to gesture or 

move their hands while others were allowed to gesture freely while explaining the solution to the 

task. The presence of the objects from the conservation task was also manipulated to create two 

conditions with differing levels of difficulty (present - easy vs absent - difficult). The results 

showed that those who gestured and were assigned to the difficult condition showed better recall 

of words than those who were not allowed to do so. They concluded that gesturing reduced 

cognitive load, thus improving performance.  

Results to date suggest that cognitive load might affect representational gestures in 

particular. Hoetjes and Masson Carro (2017) investigated how different types of loads (i.e., 

baseline, verbal and motoric) affected the production of representational and nonrepresentational 

gestures. They used the dual-task situation, and in addition to remembering the main task (verbal 

or motoric load), they concurrently performed a secondary task by describing complex geometric 
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shapes. Compared to the baseline condition in which only one task was completed, both load 

conditions resulted in higher representational gesture rates and yielded a similar increase in 

gestures. However, nonrepresentational gesture rates did not differ across the three conditions. 

They concluded that increasing the cognitive load of either verbal or motoric tasks would result 

in more representational gestures regardless of the task’s nature.  

Although many researchers support the idea that difficult tasks increase gesture rates, 

some contradictory results were also demonstrated. One study found results opposite to those 

predicted by cognitive load. Mol et al. (2009) investigated the offloading properties of gestures 

under different levels of cognitive load. The load was controlled using either one long cartoon 

(high load) or the short version of the same cartoon cut into shorter scenes (low load). Similar to 

previous findings, representational gestures were used for the study; however, one crucial 

difference was the inclusion of nonrepresentational gestures. The results suggested that the 

representational gesture rates were the highest when the task demand was easier while the task 

load did not affect the rate of nonrepresentational gestures.  

In sum, most (but not all) previous studies have shown that representational gesture 

production increases with increasing cognitive load.  

Spatial Abilities  

Do individuals’ spatial abilities play a role in gesture production? McNeill (1992) pointed 

out that gestures contain imagistic elements of ideas, and that mental images or representations 

underlie the emergence of these elements. Several studies have found a link between gestures 

and spatial processing (Hostetter & Alibali, 2007; Kita & Özyürek, 2003) and have shown that 

gestures can facilitate the maintenance of spatial imagery in memory. For example, in a picture 

description task, Wesp et al. (2001) found that participants who described a picture from memory 

produced significantly more gestures than participants who described a picture while looking at 
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it. Morsella and Krauss (2004) also conducted an analogous picture description experiment. 

Similar to previous findings, participants gestured more when images were not present. 

Moreover, the complex images (compared to simple ones) also elicited more gestures indicating 

some association between spatial abilities and gesture production.     

Several studies indicate that variations in individual spatial abilities may influence the 

number of gestures and types of gestures produced. Given that representational gestures allow us 

to map elements from the physical world (e.g., routes, shapes) onto our hands, it made them 

more accessible to study spatial abilities (Alibali et al., 2000; Chu et al., 2014). In a study 

conducted by Hostetter and Alibali (2007), the authors demonstrated that participants with high 

spatial visualization abilities and low verbal skills were more likely to produce representational 

gestures (but not beat) while narrating a cartoon. They suggested that an increase in 

representational gestures could be the result of compensation for poorer verbal abilities. Such 

that, individuals who would struggle with organizing their train of thoughts in a verbal form 

could instead translate their mental representations into representational gestures and support the 

communication via additional mechanisms.  

However, two studies found that poorer spatial abilities were associated with more 

gesture production. Göksun et al. (2013) asked participants to solve a Mental Rotation (MR) task 

and later describe the solution to the experimenter. They showed that individuals with low spatial 

visualization capabilities (as measured by paper-and-pencil MR test) were more likely to gesture 

while describing the solution to the task than those with high capabilities. Similarly, Chu et al. 

(2014) also investigated how individual differences in cognitive abilities affected the rates of 

gestures while describing abstract concepts. Specifically, they measured spatial and visual WM 

and spatial transformation abilities. Their results indicated that spatial WM was negatively 

associated with representational gestures, but it only reached a marginal significance. On the 
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other hand, they found that poorer spatial transformation abilities resulted in significantly more 

representational and nonrepresentational gesture production.  

Still another study found no relationship between individual spatial abilities and gesture 

production. Smithson and Nicoladis (2013) investigated the role of visuospatial and verbal 

abilities in predicting iconic gesture production. Participants were first given a battery of tests 

measuring both verbal and visuospatial abilities (short-term memory and WM). After completing 

the measures, participants then were asked to watch cartoon clips and narrate them. The results 

showed that no measures of visuospatial abilities were associated with representational gesture 

productions. Moreover, only individuals with poorer verbal abilities were more likely to produce 

iconic gestures.  

In sum, studies have shown variable results as to whether individual spatial abilities are 

related to gesture production. One of the possible causes of this variation could be due to the 

difference in measurements used for quantifying spatial abilities. Some studies have focused on 

spatial working memory (i.e., the mental ability to maintain dynamic visual forms in working 

memory) (Chu et al., 2014; Smithson & Nicoladis, 2013), whereas others have focused on spatial 

visualization skills (i.e., the mental ability to generate and manipulate spatial objects) (Carroll, 

1993). In the present study, we utilized two measures of spatial abilities, short-term memory and 

visualization, measured by the Corsi Block test and MR task, respectively, to investigate the role 

of spatial abilities and gesture production. 

This study 

The first objective of this study was to test whether cognitive load affects the rates of 

gesture production. Cognitive load was operationalized as a function of task difficulty. The 

difficulty was manipulated in two ways: by changing the number of videos watched at a time and 

whether participants narrated while simultaneously watching the videos or after finishing. Most 
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previous studies have shown that gesture production increases with increased cognitive load 

(Goldin-Meadow et al., 2001; Hoetjes & Masson Carro, 2017; Ping & Goldin-Meadow, 2010). 

We expected to replicate those results here. We hypothesized that narrating the task as it unfolds 

(i.e., condition A) would put the least strain on participants’ cognition and thus elicit the least 

number of total gestures and representational gestures. We also expected that watching all videos 

and describing them from memory would be highly taxing on cognition and result in the highest 

number of total and representational gestures to compensate for the load. Finally, we included a 

third condition, in which participants narrated each video excerpt right after watching them and 

predicted that its load would be neither too taxing nor too easy and elicit a moderate number of 

total and representational gestures would serve as a baseline. Because of the limited data in 

literature, no predictions were made for the effect of cognitive load on the nonrepresentational 

gestures. Although we did not include any specific measures to assess the cognitive load 

experienced by participants, Zhou et al. (2018) suggested that variables such as word count can 

be used to determine the level of participants’ cognitive load. That is, higher levels of load would 

translate into a lower number of words used by participants. Thus, we used word count as a way 

to measure cognitive load.  

A second objective of this study was to test whether an individual’s spatial abilities 

(spatial visualization and short-term memory) are related to gesture production. Short-term 

memory measures were reported to be more robust predictors for gesture production (Chu et al., 

2014; Pyers et al., 2021; Smithson & Nicoladis, 2013). Therefore, in addition to measuring 

spatial visualization skills, we also assessed participants’ short-term memory. Due to the 

opposing results found in the literature, we made no predictions regarding spatial abilities and 

the rates of gesture production. 
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The data to date suggests that nonrepresentational gestures are not necessarily affected by 

cognitive load (Hoetjes & Masson Carro, 2017). Most previous studies have linked both 

cognitive load and individual spatial abilities specifically with representational gestures. 

However, Chu et al. (2014) argued that nonrepresentational gestures can reduce memory load. 

Our last objective was to include both representational and nonrepresentational gestures (as well 

as total gestures) and explore their association with task difficulty and spatial abilities.  

Method 

Participants 

 Only native English speakers were recruited for this study. In total, data from 104 

participants (72 female, 32 male) were used in all analyses, and the mean age was 21 (SD = 

4.75), ranging from 18 to 46. Participants were randomly assigned to one of three conditions 

varying on the degree of cognitive load.  

The data collection consisted of two phases. In the first phase, 17 university students 

participated in the study in exchange for $10. During the study’s second phase, data included 121 

first-year psychology students who participated in exchange for course credits. Data from four 

non-native speakers and from 30 additional participants who experienced technical problems 

(e.g., weak internet connection, poor audio and video) or whose arm movements and torso were 

not visible were excluded (not included in N). Due to the nature of the conditions and their effect 

on gesture rates both gesturers and non-gestures were included during the analyses.  

Materials and Procedures 

 We used 12 short animations constructed by Kita and his colleagues (2007) to elicit 

gestures. These videos are comprised of two figures (i.e., red circle and green triangle) that 

interact with one another while performing different motions (e.g., jumping, tumbling, pushing, 

etc.). The length of each video ranged from 6 seconds to 14 seconds.  
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Three conditions were designed, each with a different difficulty level (or cognitive load). 

The first condition (i.e., A) was designed to have the least cognitive load. Participants watched 

each video one at a time and were instructed to narrate the videos while watching them. The 

second condition (i.e., B) had moderate levels of load, and participants were instructed to watch 

one video at a time and then narrate from memory by the end of each video. Lastly, the third 

condition (i.e., C) had the highest levels of load, and it was achieved by asking participants to 

watch all 12 videos at once, which was one minute and 55 seconds long, and then narrate 

everything they could remember. The videos in all three conditions had the same order. 

Condition A had 32 participants in total, whereas conditions B and C had 35 and 37 participants, 

respectively.  

Another aim of this study was to examine how spatial abilities affect gesture rates. The 

MR task and the Corsi Block test were used to achieve this. The online versions of these tests 

were obtained from the free-to-use website PsyToolkit, and the links to these tests were provided 

to participants (Stoet, 2010, 2017). The MR task consisted of two sessions. The first session was 

a training session with five trials, whereas the second part was the main session and consisted of 

10 trials. Participants were shown a figure for this task and asked to select the matching figure 

from two options. For the Corsi Block test, the software requires participants to mimic the order 

by which the blocks change colors by tapping the correct order at the end of the demonstration. 

The number of blocks ranged from two (the easiest sequence to follow) to nine blocks, resulting 

in a final score ranging between two and nine.  

Due to the limitations brought by COVID-19, all data were collected online by trained 

research assistants for safety. All participants were sent a Zoom link and were given informed 

consent regarding the nature of the study. They were informed that the study required audio and 

video recordings of their narrations. At the beginning of each session, participants were 
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instructed to position their cameras such that their hands and torso were in the frame at all times. 

After instructions were given, the PowerPoint slide containing the videos was sent to them, and 

the recording was started. We did not put any time restrictions on narrating the videos, thus 

allowing a natural flow of narrations. Once all the videos were finished, the recording was 

stopped, and the participants were sent the link for the Corsi Block test and the MR task. In the 

end, all participants were debriefed and thanked for their participation.  

Coding 

 The speech recorded in the videos was transcribed and gestures were coded using 

EUDICO Linguistic Annotator (ELAN) 6.3 program (ELAN, 2022). According to Kendon 

(2004), gestures are comprised of several phases such as preparation, stroke and retraction, of 

which the strokes are the main part that is analyzed for its content. The strokes were defined as 

the phases of gesture that represented the gist of gestures (e.g., shape, trace, rhythmic movement) 

and required the most effort to carry out the movement (McNeill, 1992). For the current study, 

the total number of gestures, as well as two categories (i.e., representational and 

nonrepresentational), were analyzed. Representational gestures were operationalized according 

to the definitions provided by McNeill (1992) and included only iconic gestures since no 

metaphoric gestures were produced by participants. Nonrepresentational gestures included beat, 

deictic and pragmatic gestures and were originally coded more finely and then included in the 

analysis under the broad category in order to address the research questions. Except for the 

pragmatic gestures, which were coded per Kendon’s (2004, 2017) classification, the other 

categories were coded according to McNeill’s (1992) specifications. The total number of 

gestures was obtained by adding up two categories of gestures. For the analysis, only gesture 

strokes were examined, and each complete gesture stroke was assigned to either of the 

categories.  Only in the instances in which participants produced beat gestures in addition to 
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other categories was the stroke assigned to two categories. For example, if a participant used 

repeating rhythmic movements while pointing in the direction that a figure was moving, it was 

coded as both deictic and beat. Self-adaptors (e.g., head-scratching, playing with items, clothes, 

touching face) were omitted. 

To account for the differences in the length of narrations, gesture rate per 100 words was 

used. That is, the gesture rate was obtained by multiplying the total number of gestures by 100 

and then dividing it by the total number of words used to describe the video tasks. This 

calculation was done for both categories of gestures. For the word count calculations, we added 

the number of all the words used by each participant while describing the content of the videos. 

The fillers such as um, hmm, ehm were not included in the count. For partial correlational 

analyses, word counts, and raw gesture counts were used while controlling for the time that took 

to narrate events. The time was measured in seconds and included only the time participants 

described the video contents.   

For the Corsi Block test, the highest span achieved by participants was used for the 

analyses. The range of the span changes between two and nine, and each number denotes the 

highest sequence remembered by a participant. The MR task yielded two scores: accuracy rate 

and response time for each trial. Our analysis, measured by Kendall rank correlation, indicated 

no trade-off between the accuracy rates and average response times (τ = -.04, p = .61). Moreover, 

Hirschfeld et al. (2013) found that the accuracy did not improve by increasing the response time 

for the task; thus, for this study, we only used the response time as an indicator of spatial 

abilities. Given that each participant had 10 trials, we averaged their response times to obtain one 

score for each. For both tests, outliers were identified, and the results of participants (i.e., four) 

that deviated from the mean within two standard deviations were excluded.  
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Analysis 

          The first part of the analysis explored the correlations between all variables using the 

Pearson correlation method. During the first correlation analysis, we did not separate the 

variables based on conditions. For the subsequent analyses, correlations among variables were 

measured for each condition separately to make sure that the condition effect was not interfering 

with the results (see Appendix A).  

We wanted to understand how spatial short-term memory and WM contribute to the 

frequency of total gestures. Thus, a multiple regression analysis using three variables, load and 

short-term spatial abilities and visualization as predictor variables and total gesture rate as 

outcome variable was conducted. Due to the categorical nature of cognitive load, we were unable 

to obtain standardized coefficients (β) and reported only unstandardized coefficients (B). The 

initial model (i.e., Model 1) excluded 12 observations out of 104, due to the missing values in 

short-term spatial abilities and/or visualization, and explained little variation observed in the 

results (R2
multiple =.20, R2

adjusted =.16). Therefore, an additional analysis looked at only the 

difficulty levels of conditions (cognitive load) and how they affected the total rate of gestures. 

This new model (i.e., Model 2) did not have any missing values (i.e., 104 observations), so it 

produced better adjusted R2 (R2
multiple =.21, R2

adjusted =.20). We also ran another model (i.e., 

Model 3) in which cognitive load was the only predictor, and we also excluded the values that 

were previously missing from Model 1 (i.e., the very same 12 observations). We ran Model 3 to 

make sure that participants with missing values in spatial abilities did not bias the results. The 

results of Model 3 showed that cognitive load as a predictor was still significant, F(2,89) = 

10.62, p < .001, and the adjusted R2 (but not multiple R2) improved (R2
multiple =.19, R2

adjusted 

=.17). The difference between Model 1 and Model 3 was not significant (p = .73), indicating that 
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spatial abilities did not improve model. For the one-way Analysis of Variance (ANOVA) we 

used only cognitive load as the predictor and included the observations of all 104 participants. 

 Looking into only total gesture rates might not allow seeing how other categories of 

gestures are affected by the strain on cognition. Thereby, two types of gestures - representational 

and nonrepresentational - were chosen as dependent variables, while only the cognitive load 

levels were used as independent variables. Multivariate Analysis of Variance (MANOVA) was 

implemented for this purpose. Due to the robust nature of Pillai’s Trace, it was used as the 

method of multivariate statistics. After obtaining a significant effect of cognitive load levels, the 

next step was understanding which of the two categories of gestures differed across conditions. 

Due to the unbalanced design across conditions a robust alternative for the ANOVA, the Kruskal 

– Wallis test, was chosen as the test for the univariate analysis. The multiple pairwise 

comparisons were conducted after identifying the gestures that yielded significant results. Due to 

the violation of homogeneity of variance, the Games – Howell post hoc test was used.  

Finally, we compared the number of words used by participants across the conditions of 

cognitive load. Due to the violations in linearity and homogeneity of variance, Kruskal – Wallis 

rank sum test was used to compare three levels of task difficulty. For the post hoc analyses, we 

administered pairwise t-test comparisons with the Benjamini – Hochberg (BH) adjustment for 

uneven group sizes (Benjamini & Hochberg, 1995). We also measured the partial correlations 

between gesture categories and word count while controlling for the time. 

Results 

Descriptive statistics  

In total, participants produced 3,228 gestures. Upon looking at the production of total 

gesture rates we found that most of the participants produced some gesture at some point (88%). 

When we compared all three cognitive load conditions, noticeable differences emerged in the 
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production of overall gesture rates. Almost 22% of participants in condition A did not produce 

any gestures at all, compared to 14% and 3% non-gestures in conditions B and C, respectively. 

The majority of gestures were representational gestures (56%), followed by nonrepresentational 

gestures (44%). We analyzed the subcategories of representational gestures (i.e., hand-as-hand, 

hand-as-object, trajectory) and found that nearly 63% of all iconic gestures were trajectory 

movements. The mean value for the Corsi Block test span was 5.97 (SD= 1.12) and the results 

ranged from 3 to 8. The average response time for the completion of the MR task was 5,982 

milliseconds (ms) (SD=2,285) ranging from 1,525 ms to 13,400 ms. Table 1 summarizes the 

descriptive statistics for all the variables for each condition separately.  

 

 

Table 1    

Descriptive statistics for the gesture rates and spatial abilities as a function of cognitive load. 

Variable M SD Minimum Maximum N 

Condition A  

Representational  

Nonrepresentational 

Total gestures 

Corsi Block test 

Mental Rotation task (ms) 

Word count                                  

 

 

3.25 

1.72 

4.97 

5.97 

5695.50 

401.94 

 

 

4.15 

2.38 

6.03 

1.03 

2313.15 

133.93 

 

 

0.00 

0.00 

0.00 

4.00 

1633.00 

153 

 

 

13.89 

10.19 

24.07 

8.00 

8357.00 

676 

 

 

32 

32 

32 

30 

30 

32 

Condition B 

Representational  

Nonrepresentational 

Total gestures 

Corsi Block test 

Mental Rotation task (ms) 

Word count 

 

 

4.58 

3.52 

8.10 

6.00 

5953.74 

497.71 

 

3.84 

3.22 

6.57 

1.24 

1776.64 

266.19 

 

0.00 

0.00 

0.00 

4.00 

2794.00 

187 

 

12.78 

10.81 

21.09 

8.00 

9449.00 

1558 

 

35 

35 

35 

32 

34 

35 
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Condition C 

Representational  

Nonrepresentational 

Total gestures 

Corsi Block test 

Mental Rotation task (ms) 

Word count 

 

 

6.44 

6.61 

13.05 

5.94 

6261.82 

192.54 

 

4.46 

4.50 

6.89 

1.10 

2706.55 

105.83 

 

0.00 

0.00 

0.00 

3.00 

1525.00 

46 

 

16.41 

18.80 

25.15 

8.00 

13400.00 

448 

 

37 

37 

37 

34 

34 

37 

 

 

Note. Gesture rates were calculated as the number of gestures per 100 words. Response time for 

the Mental Rotation task is measured in milliseconds (ms). Corsi Block task results were 

represented by the highest span achieved (ranging from 2-9).  

 

Correlation analyses 

 Table 2 shows the correlations between all dependent and predictor variables not 

controlled for the conditions. Only the correlation between representational and 

nonrepresentational gestures was significant. The positive correlation indicated that those who 

used more representational gestures also produced more nonrepresentational gestures. Next, we 

looked at correlations between predictor and dependent variables for each condition separately. 

Similar to the overall results, both types of gestures showed positive significant correlations in 

conditions A and B, r(102) = .68, p < .01, and r(102) = .73, p < .01, respectively. In condition B, 

representational gestures also positively correlated with Corsi block test results indicating that 

those who showed high visuospatial short-term memory skills also tended to produce more 

representational gestures, r(102) = .42, p < .05. Another significant correlation was found 

between the total number of words used during the experiment and nonrepresentational gestures 

in condition B, r(102) = .39, p < .05. No other significant correlations were found across three 

conditions among the variables (for more details please see Appendix A).  

 

 

 

 



 

16 

 

Table 2 

  

Pearson correlation coefficients for Predictor and Dependent variables with confidence intervals 

  

Variable 1 2 3  

     

1. Corsi Block test         

          

2. Mental Rotation task -.11       

  [-.31, .10]       

          

3. Representational .10 .07     

  [-.11, .29] [-.13, .27]     

          

4. Nonrepresentational .02 .08 .51**   

  [-.18, .22] [-.12, .28] [.35, .64]   

          

 

Note. Values in square brackets indicate the 95% confidence interval for each correlation. The 

confidence interval is a plausible range of population correlations that could have caused the 

sample correlation (Cumming, 2014). ** p < .01. 

 

 

Total gestures 

Multiple regression  

 While there was little evidence for correlations between gesture production and spatial 

abilities (see Table 2 and Appendix A), different levels of cognitive load, the Corsi Block test 

results (the highest span) and the MR task results (average response time) were the main 

predictors of the total gesture rate. Due to some missing values, the model with spatial abilities 

and cognitive load included only 92 participants (12 observations were deleted by the model). As 

predicted, the different levels of cognitive load indeed had a significant effect on the total gesture 

rates. Corsi Block test did not significantly predict the gesture rates, B = .42, p = .52. Similarly, 

the average response time required to solve the MR task also had no main effect on the gesture 

rates, B = .00, p =.59. Cognitive load, specifically condition C compared to condition A, 
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significantly predicted the total gesture rates, B = 7.64, p < .001. The results of regression 

showed that the model explained 16% of the variance (R2
multiple =.20, R2

adjusted = .16, F(4, 87) = 

5.39, p < .000) The more detailed results of multiple regression are shown in Table 3.   

 

Table 3  

Multiple regression results using total rate of gestures as the criterion 

  

Predictor          B 

   

        B 

    95% CI 

 

 

 

   SE B t        p  

      LL     UL 

(Intercept) 1.95 -7.19 11.10 4.60 0.42 .67 

Condition B 2.37 -1.11 5.85 1.75 1.35 .18 

Condition C 7.64 4.19 11.10 1.74 4.40 .00 *** 

MR task 0.00 -0.00 0.00 0.00 0.53 .59 

Corsi Block test 0.42 -0.87 1.71 0.65 0.65 .52 

      

 

Note. B represents unstandardized regression weights. SE B represents the standard error of B. LL 

and UL indicate the lower and upper limits of a confidence interval, respectively. Since the 

cognitive load was a categorical variable, the condition A were used as the reference for 

comparison and represented as intercept. *** p < .000. 

 

One-way ANOVA 

To test for possible effects of cognitive load on gesture production, we conducted a one-way 

Analysis of Variance (ANOVA). The results showed a significant main effect of condition, F(2, 

101) = 13.54, p < .000, η2
g = .21 and a higher variation explained by the model (R2

multiple =.21, 

R2
adjusted = .20). Post hoc analyses using the Tukey’s honest significance difference (HSD) 

adjustment for multiple pairwise comparisons indicated that two comparisons yielded 

statistically significant results. No gesture rate difference was found between the medium and 
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low load conditions, p = .127. On average, participants in condition C with the highest cognitive 

load (M = 13.05, SD = 6.89) gestured significantly more than the conditions with medium (M = 

6, SD = 1.24) and low loads (M = 4.97, SD = 6.03), p = .005 and p < .000, respectively (refer to 

Figure 1). 

 

Figure 1  

Mean values for the total gesture rates across three conditions. 

 

 

 

  

 

 

 

 

Note. The error bars represent the standard deviation. The cognitive load of conditions increases 

from A to C alphabetically. That is, condition A represents the least load, whereas condition C 

represents the highest load level. **p < .01, ***p < .001, ****p < .0001 

 

 

Representational and Nonrepresentational gestures 

MANOVA 

 In the second part of the analysis, we wanted to look at whether different categories of 

gestures are affected when the cognitive load of the task is manipulated. Given that both the 

Corsi Block test and the MR task did not yield significant results, we assumed their contribution 

would be minimal for this analysis phase and included only the cognitive load conditions. In the 
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MANOVA, the effect of conditions yielded statistically significant results, F(4, 202) = 7.41, p < 

.001, therefore, we performed a univariate analysis to identify which categories differed across 

the conditions.   

The results of the Kruskal-Wallis test showed that both representational and 

nonrepresentational gestures demonstrated statistically significant differences across conditions 

(refer to Table 4). Since the homogeneity of variance assumption was violated, multiple pairwise 

comparisons were performed by utilizing the Games - Howell test. The results indicated that 

when compared to condition A, representational and nonrepresentational rates were produced 

significantly more during condition C, p = .008, and p < .000, respectively. Nonrepresentational 

gestures were also elicited significantly more during condition C, p = .004, compared to 

condition B. The final significant difference in rates was observed between conditions A and B 

for the nonrepresentational gestures, and more nonrepresentational gestures were produced in the 

latter one, p = .03 (Figure 2). 

 

Table 4  

Kruskal-Wallis test results for gesture categories.  

Categories dfNum n  H    p 

      

Representational      2              104  11.2  .004** 

Nonrepresentational     2 104  26.68  .000***  

      

 

Note.  **p < .01, ***p < .001. dfNum indicates the degrees of freedom numerator.  
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Figure 2 

Boxplots demonstrating significant gesture rate differences. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note. Gesture rates per 100 words for each category across conditions. The lower and upper 

limits of the box represent 25th and 75th percentile of data whereas the midline represents median. 

The whiskers show 1.5 times the interquartile from top or bottom to the furthest data point. The 

cognitive load of conditions increases from A to C alphabetically. That is, condition A represents 

the least load, whereas condition C represents the highest load level.  *p < .05, **p < .01, ****p 

< .0001 

 

Word count analysis 

 Initial results of descriptive analyses showed a distinct difference in the number of words 

that the participants used across conditions. That is, the mean number of words used by 

participants in condition C (M = 192.54, SD = 105.83) was much lower than the participants in 

conditions A (M = 401. 94, SD = 133.93) and B (M =497.71, SD = 266.19). The Kruskal – 

Wallis test result indicated that there was a significant difference in the total number of words 

used by participants as a function of task difficulty levels, H(2) =  46.28, p < .001. Pairwise t-test 

comparisons with the BH adjustment were used to compare all the groups. The difference 
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between conditions A and B reached only a marginal significance, p = .065, however, the other 

two comparisons, B vs C and A vs C yielded statistically significant results, p < .000 for both 

results (Figure 3). Table 5 shows the correlations and partial correlations between gestures and 

the number of words. The correlations between representational and nonrepresentational gestures 

were large and significant regardless of the conditions. The partial correlations among gesture 

categories and word counts were measured by excluding the time (seconds) required to narrate 

the contents of the videos (see Appendix C correlations between time and other variables). 

Representational gestures and word counts reached statistical significance and large correlation 

for condition B, and medium correlations for conditions A and C. Nonrepresentational gestures 

were correlated strongly with word counts in conditions B and C and reached statical 

significance in both. However, the correlation with word counts for condition A was weak.  

 

 

 

Table 5  

 

Partial correlations across conditions 

 

Variable 1 2 

 

Condition A 

  

1. Representational   

2. Nonrepresentational .56** 

 

3. Number of words .33 

 

.06 

 

Condition B  

1. Representational   

2. Nonrepresentational .83** 

 

3. Number of words .58** 

 

.43* 
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Condition C 

 

 

1. Representational   

2. Nonrepresentational .75** 

 

3. Number of words .31 

 

.62** 

 

   

 

Note. Raw gesture numbers (instead of gesture rates) were used for both categories. All 

correlations except between gesture categories are partial correlations in which time was 

partialled out. * p < .05. ** p < .01. 

 

Figure 3 

The bar chart for the mean values of word count across conditions. 

 
Note. The error bars represent the standard deviation. The cognitive load of conditions increases 

from A to C alphabetically. That is, condition A represents the least load, whereas condition C 

represents the highest load level. ****p < .000 

 

Discussion 

Cognitive load theory suggested that upon performing a complex task, limited WM 

resources are depleted, and gesturing can alleviate the strain on cognitive processes by acting 

either as an external source or by providing a different modality for problem-solving (Sepp et al., 

2019). Previous research has demonstrated that the level of cognitive load can affect the rate of 
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gestures produced by individuals (Goldin-Meadow et al., 2001; Hoetjes & Masson Carro, 2017; 

Ping & Goldin-Meadow, 2010).  

Our results were consistent with our hypothesis and previous literature and demonstrated 

that the number of total and representational gestures vary as a function of the load experienced 

by the participants. Specifically, we manipulated the load by increasing the amount of 

information to be remembered and whether participants needed to remember the videos from 

memory or just narrated the video as they saw it. The results indicated that as the difficulty of a 

task increased, overall, individuals would gesture more. Due to the nature of our study, certain 

inferences regarding cognitive load and gesture use are hard to make. Since we did not 

specifically measure the cognitive load experienced by participants, it is hard to conclude 

whether our manipulation truly yielded three separate task difficulty levels. However, one 

possible cognitive load measurement based on speech cues was suggested by several researchers 

(Berthold & Jameson, 1998; Zhou et al., 2018). They pointed out that under heavy loads, the 

word count would decrease to offset the cognitive demands of planning longer speeches. We 

found that the average number of words used in conditions A and B were significantly more 

compared to condition C, however, this was not true when we compared conditions A and B. 

The lower count of words and the increased gesture use in condition C would be more likely a 

result of heavy cognitive load. However, these results still do not answer the question of whether 

gesturing more, offloads the cognitive load. To test this, we looked at the partial correlations 

between the number of gestures and the words while controlling for the time. The results showed 

that for conditions B and C, increased gesture use positively correlated with word counts. This 

potentially indicates that using gestures indeed frees up the resources allocated to constructing a 

narration indicated by the increasing number of words used for the story. One interesting finding 

was the similar word counts between conditions A and B. If we were to follow the same route of 
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reasoning, it would imply that the task difficulty between conditions A and B was not sensitive 

enough to yield any differences in the word count, however, nonrepresentational gestures were 

elicited more in condition B than in condition A. An alternative explanation for the similarities in 

the word count could be ascribed to the fact that participants in the narrating-while-watching 

condition (i.e., A) did not need to construct a coherent narrative. On the other hand, narrating 

after watching each animation (i.e., B), provided participants with an opportunity to construct a 

narrative, thereby leading to nonrepresentational gesture use.  

Some studies have shown that the variability in spatial abilities across individuals could 

be another potential candidate for explaining the gesture rate differences observed across 

individuals (Chu et al., 2014; Göksun et al., 2013; Hostetter & Alibali, 2007). Our study 

attempted to understand the role of two spatial ability measures in the production of gesture 

rates. Unlike some other studies, we found no evidence that supports the effect of spatial abilities 

(measured by the Corsi Block task and MR task) in gesture production when participants were 

narrating videos. We also found no association (measured by correlational analyses) between 

spatial visualization and spatial short-term memory. Two spatial constructs were negatively (but 

not significantly) related. This could indicate that each task tapped into a fundamentally different 

ability. Alongside mixed results found in literature in relation to spatial abilities and gesture use, 

our results support the idea that spatial abilities are not associated with the number of gestures 

(Pyers et al., 2021; Smithson & Nicoladis, 2013). One explanation for the contradictory results 

could be attributed to the different nature of the MR task used for this study which was two-

dimensional (instead of the three-dimensional that was used in some other studies). Jolicœur et 

al. (1985) looked at the response time differences between 2D and 3D stimuli and found that 

participants were faster in responding to 2D stimuli but only when the angular differences were 

above 60°. Our stimuli were presented in many different angular degrees (including 60° and 
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above), which raises the possibility that our measure was not sensitive enough to capture the 

individual differences. Nevertheless, we also measured spatial short-term memory with a reliable 

task (Corsi Block task) and did not find any connection with gesture production. Pyers et al. 

(2021) proposed that measures targeting short-term memory are more robust measures of spatial 

abilities than those targeting WM only. Moreover, they looked at the resolution of the tip-of-

their-tongue (TOT) phenomenon and demonstrated that spatial short-term memory did not 

predict the use of representational gestures. Similarly, Smithson and Nicoladis (2013) also did 

not observe any significant relationship between spatial abilities (short-term memory and WM) 

and gesture production. Despite finding clear evidence for the effect of cognitive load, the role of 

spatial abilities in gesturing remains somewhat ambiguous. These findings could be attributed to 

the ease of studying and controlling circumstantial events (e.g., task difficulty) compared to 

individual characteristics (e.g., spatial abilities). Nevertheless, our results suggest that the role of 

spatial abilities in gesture production is not as definitive and robust as it is sometimes assumed.  

The current study extended the results of previous studies by including several 

nonrepresentational gesture subcategories in addition to representational gestures. Our results 

found that as the cognitive load of tasks increased, participants used more representational and 

nonrepresentational gestures. Some researchers have proposed that using representational 

gestures will confer more cognitive benefits than other types of gestures (Cook et al., 2012). For 

example, Cook et al. (2012) suggested that while solving a task with a heavy load, individuals 

could use representational gestures to convert verbal propositional information into a 

visuospatial format and organize it spatially. By making use of two different modalities (verbal 

and spatial) representational gestures could lighten the load by allocating sources efficiently. Our 

results did indicate that the representational gestures seem to diminish the burden imposed by the 

task at hand. Based on these suggestions, one could assume that since nonrepresentational 
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gestures do not convey visuospatial information, they would not help offload the cognitive load. 

However, our data showed some support for the offloading properties of nonrepresentational 

gestures since their rates were higher in conditions with the highest cognitive load. While some 

studies have demonstrated that only representational gestures increase when individuals 

experience high levels of cognitive load (Hoetjes & Masson Carro, 2017; Mol et al., 2009), other 

studies have shown that nonrepresentational types of gestures also increase during high-load 

tasks (Chu et al., 2014). Chu et al. (2014) found a positive association between poor visual WM 

and some nonrepresentational gestures and suggested that such gestures can also help focus on 

relevant aspects of tasks while ignoring the irrelevant ones. 

Within the context of this study, the increase in nonrepresentational gesture rates with 

increasing cognitive load could be due to a few possible mechanisms. One mechanism that led to 

the increase in nonrepresentational gestures could be due to the similarity of animations that we 

asked participants to retain and then recall. Most of the animation interactions took place in very 

similar settings and environments (e.g., around a tree, nearby a cliff and a pool) could lead to 

more errors and hesitations on the part of participants, which in turn would lead to instances that 

would require non-semantic functions of gestures (e.g., pragmatic). For example, participants 

could correct themselves (e.g., negating gestures), give an example (e.g., palm up open hand) or 

shrug their shoulders while palms up to indicate that they cannot remember anything else or that 

they are uncertain about the correctness of the recalled information. 

Alternatively, nonrepresentational gestures could be used for the benefit of a listener and 

serve only a communicative function. Participants could produce more nonrepresentational 

gestures to improve the understanding of the listener by highlighting the key events. It was found 

that observing nonrepresentational gestures (i.e., beat) was found to help with the recall of spatial 

information and words, and improved the narrative structure of stories told by children (Austin & 
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Sweller, 2014; So et al., 2012; Vilà-Giménez et al., 2019). Jacobs and Garnham (2007) 

emphasized that narratives are mainly constructed for the listeners. However, attributing the 

increases in nonrepresentational gestures to only communicative functions would not explain 

why as the load of conditions increased (from A to C), so was the rate of nonrepresentational 

gestures. Moreover, correlational analyses further supported the connection between the task 

load and nonrepresentational gestures. The strength of associations between nonrepresentational 

gestures and the number of words, got stronger as the load increased. One might ask how 

nonrepresentational gestures could be involved in improving the performance of the narrators. 

We suggest that nonrepresentational gestures could support the story construction and produce 

better-structured narratives. All three conditions demanded different levels of story construction. 

The first condition did not have the element of recalling events from memory, and the 

descriptions did not need to be constructed or organized in a way a narrative would be. The 

second condition only required the construction of very brief and episodic narratives, and the 

episodes had a beginning and an ending. The last condition was the most challenging in terms of 

connecting the storylines into one coherent narrative. Separately, each video had a simple story. 

Connecting all videos, where geometric figures perform a series of motions and activities with 

no definitive storyline or story structure could be perceived as very challenging. The activities 

did not follow any logical pattern (e.g., tumbling up and down the hill) and the manner of the 

motions was more emphasized throughout the shorts. The differences in the narrative 

construction across three conditions could increase the demands of planning and thereby 

cognitive load. The simple animations used in our study could encourage participants to actively 

explore and construct story structures more, thus leading to increases in nonrepresentational 

gestures. Differing narrative demands of conditions could also explain why some previous 

studies could not find the increases in nonrepresentational gestures as a function of cognitive 
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load (Mol et al., 2009). Most of the cartoon videos (e.g., Sylvester & Tweety) used by previous 

studies had a coherent storyline that did not require participants to construct a logical sequence 

for the narrative as much. However, these speculations cannot be confirmed based on our study 

design.   

The current study had several limitations, one being the process of data collection. Due to 

safety precautions, all of our data was collected via Zoom. During recordings, in order to record 

the movements of participants clearly, we did not ask them to share their screens (which would 

significantly shrink their video screen); hence, the research assistants relied on the participants to 

follow instructions throughout the experiment. Furthermore, some participants joined the Zoom 

meetings from the comfort of their homes, whereas others were in public places. Although we 

removed data that was not recorded in a quiet environment, setting differences could still 

contribute to some variations between participants. One other limitation of our study could be the 

nature of videoconferences and the constraints that come while using them. Specifically, 

Bailenson (2021) argued that problems related to sending and receiving nonverbal cues and 

prolonged exposure to the listener’s gaze could increase cognitive load. The author also 

mentioned how viewing oneself while talking could increase the attention to self and make one 

more self-conscious. In our study, the participants assigned to the first and the second conditions 

had little opportunity to be affected by the abovementioned problems since they needed to keep 

the slides with video tasks open at all times. However, for the last condition, participants could 

open the Zoom meetings (while narrating to the research assistants) on full-screen mode once all 

videos were finished and potentially see themselves. The data collection via Zoom meetings may 

or may not have contributed to the differences observed among the conditions. Thus, these 

results must be interpreted with caution.  
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In sum, we investigated the roles of cognitive load and individual spatial abilities in the 

production of gestures. We found that remembering and narrating a large amount of information 

increased participants’ gesture production consistent with the findings of previous literature. We 

also found some intriguing evidence, similar to representational gestures, nonrepresentational 

gestures can also decrease individuals’ cognitive load. Future studies should investigate how 

cognitive load affects gesture rates and further research the conditions under which this 

relationship is pronounced more.  
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Appendix A 

Correlation matrices divided by condition 

Table A-1 

Correlations with confidence intervals for Condition A 

  

Variable 1 2 3  

     

1. Corsi Block test         

          

2. Mental Rotation task -.25       

  [-.56, .13]       

          

3. Representational .03 .14     

  [-.34, .38] [-.23, .48]     

          

4. Nonrepresentational .07 -.01 .68**   

  [-.30, .42] [-.37, .35] [.44, .83]   

          

 

Note. M and SD are used to represent mean and standard deviation, respectively. Values in 

square brackets indicate the 95% confidence interval for each correlation. The confidence 

interval is a plausible range of population correlations that could have caused the sample 

correlation (Cumming, 2014). * p < .05. ** p < .01. 
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Table A-2 

  

Correlations with confidence intervals for Condition B 

  

Variable 1 2 3  

     

1. Corsi Block test         

          

2. Mental Rotation task .02       

  [-.33, .37]       

          

3. Representational .42* .00     

  [.09, .67] [-.33, .34]     

          

4. Nonrepresentational .21 .05 .73**   

  [-.15, .52] [-.30, .38] [.52, .85]   

          

 

Note. M and SD are used to represent mean and standard deviation, respectively. Values in 

square brackets indicate the 95% confidence interval for each correlation. The confidence 

interval is a plausible range of population correlations that could have caused the sample 

correlation (Cumming, 2014). * p < .05. ** p < .01. 
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Table A-3 

  

Correlations with confidence intervals for Condition C 

  

Variable 1 2 3  

     

1. Corsi Block test         

          

2. Mental Rotation task -.11       

  [-.44, .25]       

          

3. Representational -.13 .00     

  [-.45, .22] [-.34, .34]     

          

4. Nonrepresentational -.12 .06 .18   

  [-.44, .22] [-.29, .39] [-.15, .48]   

          

 

Note. M and SD are used to represent mean and standard deviation, respectively. Values in 

square brackets indicate the 95% confidence interval for each correlation. The confidence 

interval is a plausible range of population correlations that could have caused the sample 

correlation (Cumming, 2014). * p < .05. ** p < .01. 
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Appendix B 

Analysis of nonrepresentational gestures by each category 

 

Table B-1  

Kruskal-Wallis test results for gesture categories.  

Categories dfNum n   H    p 

      

Iconic      2                  104  11.2  .004** 

Pragmatic     2     104  34  .000***  

Deictic 

Beat 

    2 

    2 

    104 

    104 
 

3.70 

14.1 

 .157 

.000*** 

 

Note. *p < .05, **p < .01, ***p < .001. 

 

Table B-2    

Descriptive statistics for the dependent variables 

Variable M SD Minimum Maximum N 

Condition A  

Iconic gestures                              

Pragmatic gestures 

Deictic gestures 

Beat gestures 

Total gestures 

 

 

 

3.25 

0.67 

0.79 

0.26 

4.97 

 

 

6.03 

4.15 

0.89 

1.56 

0.55 

 

 

0.00 

0.00 

0.00 

0.00 

0.00 

 

 

24.07 

13.89 

2.61 

6.68 

2.31 

 

 

32 

32 

32 

32 

32 

Condition B 

Iconic gestures 

Pragmatic gestures 

Deictic gestures 

Beat gestures 

Total gestures 

 

4.58 

1.29 

1.52 

0.71 

8.10 

 

3.84 

1.59 

1.66 

0.91 

6.57 

 

0.00 

0.00 

0.00 

0.00 

0.00 

 

12.78 

5.57 

7.35 

3.98 

21.09 

 

35 

35 

35 

35 

35 



 

40 

 

Condition C 

Iconic gestures 

Pragmatic gestures 

Deictic gestures 

Beat gestures 

Total gestures 

 

 

6.44 

4.16 

1.20 

1.24 

13.05 

 

4.46 

3.67 

1.12 

1.41 

6.89 

 

0.00 

0.00 

0.00 

0.00 

0.00 

 

16.41 

15.04 

4.27 

5.13 

25.15 

 

37 

37 

37 

37 

37 

 

 

Note. All variables were calculated as the number of gestures per 100 words.  
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Appendix C 

Correlational matrices between gesture categories, word counts and time.  

Table C-1 

Means, standard deviations, and correlations with confidence intervals for Condition A 

  

Variable M SD 1 2 3 

      

1. Representational 13.66 18.50       

            

2. Nonrepresentational 6.38 7.43 .56**     

      [.26, .76]     

            

3. Word count 401.94 133.93 .30 .04   

      [-.06, .58] [-.31, .38]   

            

4. Time (in seconds) 188.38 47.25 -.02 -.06 .37* 

      [-.37, .33] [-.40, .30] [.02, .63] 

            

 

Note. M and SD are used to represent mean and standard deviation, respectively. Raw gesture 

numbers were used. Values in square brackets indicate the 95% confidence interval for each 

correlation. The confidence interval is a plausible range of population correlations that could 

have caused the sample correlation (Cumming, 2014). * p < .05. ** p < .01. 
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Table C-2  

  

Means, standard deviations, and correlations with confidence intervals for Condition B 

  

Variable M SD 1 2 3 

      

1. Representational 25.23 24.73       

            

2. Nonrepresentational 20.80 24.31 .83**     

      [.69, .91]     

            

3. Word count 497.71 266.19 .73** .80**   

      [.52, .85] [.63, .89]   

            

4. Time (in seconds) 210.06 140.76 .61** .75** .95** 

      [.35, .79] [.55, .86] [.90, .97] 

            

 

Note. M and SD are used to represent mean and standard deviation, respectively. Raw gesture 

numbers were used. Values in square brackets indicate the 95% confidence interval for each 

correlation. The confidence interval is a plausible range of population correlations that could 

have caused the sample correlation (Cumming, 2014). * p < .05. ** p < .01. 
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Table C-3  

  

Means, standard deviations, and correlations with confidence intervals for Condition C 

  

Variable M SD 1 2 3 

      

1. Representational 13.59 12.74       

            

2. Nonrepresentational 12.78 11.92 .75**     

      [.56, .86]     

            

3. Word count 192.54 105.83 .76** .74**   

      [.58, .87] [.54, .86]   

            

4. Time (in seconds) 85.38 40.40 .75** .58** .91** 

      [.56, .86] [.31, .76] [.83, .95] 

            

 

Note. M and SD are used to represent mean and standard deviation, respectively. Raw gesture 

numbers were used. Values in square brackets indicate the 95% confidence interval for each 

correlation. The confidence interval is a plausible range of population correlations that could 

have caused the sample correlation (Cumming, 2014). * p < .05. ** p < .01. 


