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An overview of soil heterogeneity: quantification 
and implications on geotechnical field problems 

Tamer Elkateb, Rick Chalaturnyk, and Peter Robertson 

A~stract: Engineering judgment and reliance on factors of safety have been the conventional tools for dealing with 
sot! heterogeneity in geotechnical practice. This paper presents a review of recent advances in treating soil variability. 
It presents the implications of geostatistical techniques and up-scaling methods used for quantifying the heterogeneous 
permeability of soil as addressed in the petroleum industry. Moreover, the interest of geotechnical practice to incorpo­
rate the statistical properties of soil in a probabilistic design framework is also discussed. This ranges from conven­
tional Monte Carlo simulation based design and stochastic finite element analysis to the recent techniques that take into 
account the effect of spatial correlation of soil properties. Example applications of these techniques to different types 
o.f field pro~l~ms: such as foundation settlement, seepage flow, and liquefaction assessment, are discussed with empha­
s~s on the IlIrutatlOns of the current practice and trends for future research. In addition, different decision making algo­
nthms are addressed with examples of their applications to geotechnical field problems. 
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Introduction 

Almost all natural soils are highly variable in their proper­
ties and rarely homogeneous. Soil heterogeneity can be clas­
sified into two main categories. The first is lithological 
heterogeneity, which can be manifested in the form of thin 
soft/stiff layers embedded in a stiffer/softer media or by the 
inclusion of pockets of different lithology within a more uni­
form soil mass. The second source of heterogeneity can be 
attributed to inherent spatial soil variability, which is the 
variation of soil properties from one point to another in 
space due to different deposition conditions and different 
loading histories. 

Early attention to the problem of soil nonhomogeneity 
emerged from the field of petroleum engineering where ef­
forts were devoted towards assessing the effect of heteroge-
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neity on the production of oil fields. Geostatistical theories 
and up-scaling techniques were implemented to estimate 
equivalent permeabilities for the fields of interest that hon­
ored detailed reservoir heterogeneity. 

The conventional tools for dealing with ground heteroge­
neity in the field of geotechnical engineering have been the 
reliance upon high safety factors and local experience. 
Morgenstern (2000) introduced case histories for different 
geotechnical applications where relying solely on engineer­
ing judgment resulted in poor to bad predictions in up to 
70% of the cases considered. As a result, it has been readily 
accepted that there is a need to develop more reliable tools 
to incorporate ground heterogeneity in a rather quantitative 
scheme amenable to engineering design. Early attempts to 
rationally deal with the variability of soil properties in 
geotechnical engineering involved the introduction of reli­
ability-based design methods that combined limit equilib­
rium analysis with Monte Carlo simulation techniques. In 
addition, the stochastic finite element method was intro­
duced as an effective way to incorporate soil variability into 
a numerical analysis framework. Recently, attempts have 
been made to incorporate spatial correlation between soil 
properties into a statistical design scheme using either of the 
above approaches or by implementing the outcome of a 

Can. Geotech. J. 40: I-IS (2003) doi: IO.I139rr02-090 e 2002 NRC Canada 

GALLEY PROOFSJEPREUVES EN PLACARD 



Pagination not finaVPagination non finale 

2 

Monte Carlo simulation into detenninistic numerical analy­
sis schemes. It is worth noting that almost no attention has 
been given to assess the effect of lithological heterogeneity 
on the macro (overall) behavior of heterogeneous soil media. 
The treatment of such heterogeneity has been exclusively 
left to local experience and engineering judgment. 

The main objective of this paper is to discuss the different 
techniques developed to deal with soil heterogeneity in both 
petroleum and geotechnical engineering and their applicabil­
ity to geotechnical field problems. In addition. attempts will 
be made to identify the difficulties associated with obtaining 
representative parameters that honor detailed ground hetero­
geneity. In the following sections. techniques developed in 
the petroleum literature to deal with lithological heterogene­
ity are discussed. Then. different elements of inherent soil 
variability will be presented along with their implications on 
geotechnical field problems. such as settlement of shallow 
foundation. liquefaction susceptibility. and seepage flow. 
Limitations of the current practice will be addressed. and po­
tential trends for future studies will be suggested. Finally. 
different decision algorithms will be discussed together with 
examples of their applications in geotechnical analyses. 

Lithological heterogeneity 

The impact of lithological heterogeneity of the ground on 
the production of oil and gas reservoirs has been a major 
area of study in petroleum engineering practice. Several up­
scaling techniques were developed to deal with complex 
ground profiles. such as the sand shale sequence shown in 
Fig. 1. The main aim of these techniques was to scale-up 
fine scale penneability to coarser scales amenable to flow 
simulation and engineering calculations. These averaging 
techniques can be classified into the following methods: 

(1) Empirical techniques. such as the power averaging 
technique (Deutsch 1989). These are the simplest fonns of 
up-scaling laws. 

(2) Semi-empirical methods. such as the renonnalization 
(King 1989) and the representative elementary volume 
(REV) - renonnalization (Norris et al. 1991). They are more 
sophisticated than the previous type but have limited theoret­
ical basis. 

(3) Analytical techniques. such as that proposed by War­
ren and Price (1961). These methods are rather cumbersome 
to implement in practice. 

The power averaging method was obtained through non­
linear regression of the results obtained from a three­
dimensional numerical simulation of flow through sand­
stone-shale fonnations. The analysis was carried out under 
different target shale volumes. and the equivalent penneabil­
ity was regarded as that of a homogeneous soil mass produc­
ing similar flow under the same head difference and 
boundary conditions. This equivalent penneability. kef was 
found to satisfy the relation 

[1] ke = [Vsbk~ +(1- Vsb)~fCO 

where ksh and kss are the penneabilities of the shale and 
sandstone. respectively; Vsh is the volume fraction of shale; 
and co is an averaging power. 

The value of co was suggested to range from -1 to 1 de­
pending on the direction of flow and the geometrical aniso-
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Fig. 1. Sand-shale sequence in a petroleum field, WY. U.S.A. 
(modified from Norris et aI. 1991). 

tropy of the shale. i.e.. the ratio between the vertical to the 
lateral extent of shale. The major advantage of this method 
is its simplicity. while the main drawback is that the shale 
blocks were assumed to be uncorrelated to each other. 

In the renonnalization technique (King 1989). a simula­
tion grid is generated across the analysis domain and a con­
stant value of soil penneability is assigned to each element 
of the simulation grid. Then. these elements are grouped into 
blocks of four and assigned an effective (equivalent) penne­
ability value. kef as illustrated in Fig. 2. This effective per­
meability was obtained based on the analogy between water 
flow through soils of different penneabilities and electric 
current flow through a network of resistors. The above pro­
cedure can be applied to the new grid and repeated several 
times depending on the scale of interest. This method was 
originally developed for uncorrelated penneability fields. but 
it is also valid for correlated fields. It is worth noting that 
only isotropic media of equal penneabilities in vertical and 
horizontal directions were considered during the develop­
ment of this technique. However. the method can be ex­
tended to anisotropic media by applying the up-scaling 
procedure to both the vertical and horizontal directions. In 
spite of the theoretical basis implemented in this technique. 
it can be regarded as a relatively complicated method com­
pared with the empirical fonnula presented in eq. [1]. 

The REV-renonnalization approach (Norris et al. 1991) to 
up-scale sand-shale fonnations for flow simulation com­
bined the representative elementary volume (REV) theory 
with the renonnalization technique. The REV theory defines 
a specific averaging volume at ~hich all microsc~pic ~aria­
tions are averaged out producmg a representatlve smgle 
macroscopic value. which is usually referred to as the repre­
sentative elementary property (REP) (Norris et al. 1991). 
The REV technique was originally developed to assess the 
representative property of porous materials. where the repre­
sentative property at the smallest scale repres~nts th~ prop­
erty of either a void or a solid. By gradually mcreas~g the 
averaging volume. more voids and solids are included m the 
averaging volume. resulting in fluctuation in the representa­
tive property. as shown in Fig. 3. The REV can be defined as 
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Fig. 2. Schematic diagram of up-scaling using the renormalization technique (modified from King 1989). 

ke = 4(kl + k3)(k2 + k4)[k2 k4 (kl + k3) + kl k3 (k2 + k4)] 

[k2 k4 (kl + k3) + kl k3 (k2 + k4)][kl + k2 + k3 + k4] + 3(kl + k~(k3 + ~)(kl + k3)(k2 + k4) 

a critical averaging volume beyond which there is no signifi­
cant fluctuation in the representative property as the addition 
of extra voids or solids has a minor effect on the averaged 
property. In the REV -renormalization technique, subsurface 
soil is discretized into exclusive geological units character­
ized by a specific type of sedimentary structure. Within each 
unit, the spatial distribution of sand and shale is translated 
into binary maps. The renormalization technique is then em­
ployed to determine soil permeabilities at different averag­
ing volume scales to determine the REV and the associated 
equivalent permeability, which is regarded in this case as the 
REP. It was concluded from the results obtained using this 
approach that effective permeability was mainly dependant 
on the relative volume and connectivity of different 
lithologies rather than their inherent spatial variability. 

The first rational attempt to provide an analytical solution 
to the problem of soil lithological heterogeneity and its ef­
fect o~ flow was proposed by Warren and Price (1961). They 
combmed the results of physical modeling with that of nu­
merical simulation and suggested the geometric mean 
(Deutsch 2(02) as an estimate of the effective permeability 
of heterogeneous media. Afterwards, several studies were 
carried out to develop enhanced measures of effective per­
meability. Two main approaches were adopted in these stud­
ies; the effective medium theory and the perturbation 
expansion (King 1989). In either case, the effective perme­
ability estimates were considered accurate only for small 
ranges of permeability fluctuations. 

In the field of geotechnical engineering, almost no attempt 
has been made to assess the effect of lithological heteroge­
neity on the macro (overall) behavior of soil mass in spite of 
the need to develop such algorithms for certain geotechnical 
applications. An example of these applications is co­
depositional mixed fine tailings embankments, as shown in 
Fig. 4. The basic idea of this tailings disposal system is to 
mix fine tailings, which behave as very soft clay, with sand 
to obtain relatively steeper embankments, compared with 
conventional thickened tailings embankments (Robinsky 

1999). The heterogeneous nature of these embankments re­
quires an estimation of equivalent engineering parameters 
that take into consideration the effect of the spatial distribu­
tion of fine tailings pockets on the overall behavior of these 
embankments. 

Inherent spatial variability of soil properties 

Most geotechnical analyses are deterministic in the sense 
that average soil parameters are given to each distinct layer. 
The uncertainties in these properties and their variation from 
one point to another in space have been accounted for, quali­
tatively, by the use of safety factors and by implementing lo­
cal experience and engineering judgment. The selection of 
these design parameters, however, has contained some de­
gree of uncertainty and consequently a degree of unavoid­
able risk. These uncertainties can be attributed to the 
following factors (phoon and Kulhawy 1999): 
(1) soil inherent spatial variability due to variation in deposi­
tion conditions and stress history from one point to another 
in space; 
(2) measurement errors due to insufficient control of testing 
procedure and equipment; 
(3) deterministic trends in soil properties, such as the in­
crease in soil strength with depth due to the increase in con­
fining pressure; and 
(4) the collection of field data over long time periods. 

This paper will focus primarily on inherent soil variabil­
ity, where stochastic analyses can be employed to assess the 
effect of this type of variability on engineering design. To 
proceed with a stochastic analysis, the main elements of soil 
spatial variability have to be identified, such as 
(1) classical statistical characteristics, such as the mean, co­
efficient of variation (COV), and probability distribution of 
the soil data; 
(2) the spatial correlation structure that describes the varia­
tion of soil properties from one point to another in space; 
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Fig. 3. Representative elementary volume concept (modified 
from Norris et al. 1991). 
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(3) the limit of spatial continuity, beyond which no or small 
correlation between soil data exists; and 
(4) the volume-variance relationships, which help assess the 
reduction in the variance of field data upon averaging over a 
certain volume of interest. 

Details of the above elements are discussed in the follow­
ing sections. 

Classical statistical characteristics of soil properties 
Several attempts have been made to obtain the classical 

statistical properties of soil, such as the mean value, COY, 
and probability distribution, throughout geotechnical engi­
neering practice. These statistical characteristics have been 
discussed by several authors, such as Lumb (1970), Schultz 
(1975), and Griffiths and Fenton (1993). Phoon and 
Kulhawy (1999) provided an excellent summary of different 
statistical characteristics for different soil types and field 
tests. Generally, it was found that high variability, expressed 
in tenns of a high COY, was usually associated with strength 
parameters, and that undrained shear strength was usually 
highly variable compared to the drained friction angle. It is 
worth noting that different probability distribution models 
such as nonnal, lognonnal, and beta distributions have been 
implemented by different authors to curve fit the results of 
field data. This implies that these distributions are probably 
site and parameter specific and that there is no generic distri­
bution pattern for soil properties. 

Spatial correlation between soil properties 
Soil properties do not vary randomly in space; rather such 

variation is gradual and follows a pattern that can be quanti­
fied using spatial correlation structures, where soil properties 
are treated as random variables. The spatial correlation struc­
ture is often expressed in terms of the variogram (Deutsch 
2002) or the covariance function (Vanmarcke 1977). 

The variogram is a measure of dis-similarity between two 
points in space separated by a distance h, according to the 
relation 

[2] 2y(h) = Var[Z(u + h) - Z(u)] 

where 2y(h) is the variogram value at a separation distance 
h; Z(u) is the value of the random variable at location u; 
Z(u + h) is the value of the random variable at distance h 
from Z(u); and Var[] is the variance operator. 

On the other hand, the covariance is a measure of similarity 
between the above two points and can be obtained through 

[3] C(h) = E[Z(u) Z(u + h)] - m2 

Can. Geotech. J. Vol. 40, 2003 

Fig. 4. Fine tailings - sand mixture in a laboratory model of co­
depositional mixed fine tailings embankment (modified from 
Hutcheson 2000). 

where C(h) is the value of the covariance function at a sepa­
ration distance h; m is the mean value of Z; and E[ ] is the 
mean operator. 

Variogram and covariance functions are correlated 
through the variance of field data, (12, in the fonn 

[4] y(h) = (12 - C(h) 

It should be emphasized that the above variogram and 
covariance relations are only valid for stationary random 
fields where both the mean and standard deviation are con­
stants across the domain of interest. Most soil mechanical 
properties, however, are expected to exhibit spatial trends es­
pecially in the vertical direction due to their sensitivity to 
change in confining pressure. An example of these vertical 
trends is shown in Fig. Sa where the tip resistance, qc' of 
cone penetration tests tends to increase with depth. To sat­
isfy the stationarity condition, these trends must be removed 
(detrended) in a process often referred to as detrending of 
field data. The detrending process is usually carried out by 
identifying detenninistic trends in field data implementing 
regression analysis (Deutsch 2002), as shown in Fig. Sa. It 
should be realized that the linear variation of cone tip resis­
tance with depth, shown in Fig. 5, is a simplifying assump­
tion for practical application; as such variation can take 
other fonns especially for sandy soils. Spatial trends in field 
data, however, should be kept as simple as possible to mini­
mize the uncertainty associated with the assessment of these 
trends (Baecher 1987). This uncertainty in spatial trends 
may have a significant influence on the outcomes of stochas­
tic geotechnical analyses especially in the presence of lim­
ited field data. Neter et al. (1996) and EI-Ramly (2001) 
provided an excellent discussion on the assessment of this 
uncertainty and its implications on statistical analyses. The 
detrending process results in generating detrended field data, 
as shown in Fig. 5b that can be considered as stationary ran­
dom variables using the relation 

[5] q = qc - qO<z) 

where q is the detrended cone tip resistance and qo(z) is the 
detenninistic vertical trend. 
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Fig. S. Detrending of CPT tip resistance data (a) identifying linear vertical trend, and (b) detrended data. 
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Spatial correlation structures are usually characterized by 
their model types and the limit of spatial correlation between 
field data. Spatial correlation models are parametric relation­
ships used to curve fit the experimental variograms, or 
covariance functions, obtained from analysis of the field 
data. Deutsch (2002) has provided an excellent summary of 
common variogram models used in practice. Examples of 
these models (i.e., spherical, exponential, and Gaussian) are 
shown in Fig. 6. These models help to determine the spatial 
correlation between field data at any separation distance and 
in different directions. In addition, they can incorporate 
other geological information such as the direction of maxi­
mum continuity and maintain numerical stability of stochas­
tic simulation (Deutsch 2002). The limit of spatial continuity 
is discussed in more detail in the following section. 
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Limit of spatial continuity between field data 
The limit of spatial continuity is defined as the separation 

distance between field data at which there is no, or insignifi­
cant, spatial correlation. This limit can be expressed in terms 
of the spatial range (Deutsch 2002), the scale of fluctuation 
(Vanmarcke 1977), or the autocorrelation distance (DeGroot 
and Baecher 1993). The spatial range, a, can be defined as 
the separation distance at which the semivariogram reaches 
the sill (variance) and correlation between data no longer ex­
ists, as shown in Fig. 6. For vario8!'am models where the 
variogram is asymptotic to the sill «J2), as in the case of ex­
ponential and Gaussian models, an effective range can be 
considered as the separation distance at which the variogram 
reaches a value equal to 0.95 times that of the sill. The scale 
of fluctuation, a, estimates the distance within which soil 
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properties show relatively strong correlation and data be­
come either above or below the mean value. Vanmarcke 
(1977) developed a Simplified procedure to estimate the 
scale of fluctuation for different spatial correlation structure 
models. The autocorrelation distance. R. is the separation 
distance at which the covariance function decays to a value 
of (J/e. where e is the base of the natural logarithm. and cor­
relation between data can be considered relatively weak. A 
relationship between these different measures was developed 
by Elkateb (2002). as shown in Table 1. 

Volume-variance relationships 
The volume-variance relationships are analytical expres­

sions used to obtain the variance of spatial averages of field 
data over certain volumes of interest. These spatial averages 
usually have a narrower probability distribution function 
than those associated with field data (Vanrnarcke 1977) and 
consequently a smaller variance. The variance of these spa­
tial averages can be correlated to the point variance using 
the variance reduction factor. r; . as discussed by Vanmarcke 
(1984) through 

[6] (Jr = r,p 

where (J is the standard deviation of field data (point statis­
tics); (Jr is the standard deviation of the spatial average of 
the data over volume v; and r; is the variance reduction fac­
tor. 

The variance reduction factor depends on the averaging 
volume. type of correlation structure. and the limit of spatial 
correlation between field data. Several analytical expressions 
for the variance reduction factor were introduced by 
Vanmarcke (1984). in the form 

[7a] rf = 2(;r(~ -1 +e-T/R
) for exponential 

correlation structures 

and 

[7b] rJ = 2(; r[ /1t ~ ;(~)-1 + e-T/R
] for 

Gaussian correlation structures 

where rf is the one-dimensional variance reduction factor; R 
is the autocorrelation distance; T represents the size of the 
average volume; and ;(TIR) is the error function. which var­
ies from 0 to 1 as T increases from 0 to 00. 

Can. Geotech. J. Vol. 40, 2003 

Table 1. Comparison between different measures of the limit of 
spatial continuity between field data. 

Type of correlation Spatial Scale of Autocorrelation 
structure model range fluctuation distance 

Exponential a 2aJ3 a/3 
Gaussian a a O.58a 
Spherical a O.55a a 

The above expressions are based on the assumption that 
the averaging process occurs in one direction only. These ex­
pressions can be easily extended to the three-dimensional 
case by assuming separable correlation structures 
(Vanmarcke 1984). Such an assumption implies that the 
three-dimensional variance reduction factor could be ex­
pressed as the product of its one-dimensional components in 
the form 

[8] ry = rTJ'T,rTt 
where rTx' rTy• and rTz are the one-dimensional variance re­
duction factors in the x. y. and z directions. respectively. 

The variance reduction factor approaches 1 when the pa­
rameter T is small compared to the limit of spatial continu­
ity. For many geotechnical applications. the size of the 
averaging volume in the horizontal direction is usually small 
compared to the spatial range of the horizontal correlation 
structure. As a result. it has been a common practice in 
many geotechnical implementations of the variance reduc­
tion factor to assume that its value will be affected only by 
the size of the averaging volume in the vertical direction. 
i.e.. layer thickness. This is because the variance reduction 
factor in the horizontal direction can be reasonably assumed 
to be equal to one. 

In- a similar fashion. the variance reduction factor for 
spherical correlation structures was developed in this study. 
as explained in Appendix A, and can be expressed in the 
form 

[9] 
T T3 

rJ =1- 2a + 20a 3 

Spatial averages of random variables are spatially corre­
lated in a way similar to point (field data) statistics. This 
correlation can be quantified in a pair-wise manner by as­
sessing the coefficient of correlation between any couple of 
one-dimensional spatial averages. as shown in Fig. 7. 
through the relationship (Vanrnarcke 1977) 

[10] _ D6r2(Do) - D6Ir2(DOl) - D&r2(Dm) + D612r2(DoI2) 

Pt2 - 2~n~)~n~) 

where Pl2 is the correlation coefficient between the spatial 
averages over the depths DI and D2; r 2(Do). r 2(Dol). 
r2(Do~. and r2(Dol~ are the variance reduction factors over 
averaging thickness equal to Do. DOl' DOl' and DOI2' respec­
tively; and r(D l ) and nD~. are the square roots of the vari­
ance reduction factors over averaging thickness equal to Dl 
and D2• respectively. 

Stochastic analysis techniques in 
geotechnical engineering 

Stochastic analysis provides an excellent tool to account 
for the variability of soil properties and to develop rational 
algorithms to estimate soil.desi~ parameters on a pro~abil­
istic basis where the asSOCIated nsk level can be quantified. 
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Several approaches have been adopted by geotechnical prac­
titioners to implement stochastic analyses in geotechnical 
field problems, such as liquefaction assessment, slope stabil­
ity analysis, and foundation settlement. Examples of these 
approaches are (i) application of reliability principles to 
limit equilibrium analyses; (ii) stochastic finite element anal­
ysis; and (iii) application of stochastic input soil parameters 
into deterministic numerical analysis. 

A detailed discussion of the above approaches is provided 
in the following sections together with examples of their ap­
plications to geotechnical field problems. 

Application of reliability principles to limit equilibrium 
analysis 

Statistical analysis of limit equilibrium problems was pri­
marily developed to perform probabilistic slope stability 
analysis using different techniques, such as analytical ap­
proaches, approximate solutions, and Monte Carlo simula­
tion. Analytical approaches, such as those proposed by 
Tobutt and Richards (1979), were primarily concerned with 
obtaining closed form solutions for the statistical properties 
of earth slopes factors of safety. These solutions do not pro­
vide information about the output probability distribution 
and become cumbersome when considering different sources 
of uncertainty. 

Approximate solutions of probabilistic slope stability 
analysis, such as the first order second moment (FOSM) and 
the point estimate method (PEM), have been advocated by 
several authors, such as Christian et al. (1994). The basic 
idea of the FOSM method (Harr 1987) is to express the fac­
tor of safety as a function of different random variables con­
sidered in the statistical analysis. This function is then 
expanded about the mean values of these random variables 
using the Taylor expansion, retaining only linear (first order) 
terms, where the mean and variance of the safety factor can 
be assessed through 

[lla] E[F.S] = F(E[xtl, E[X2], ........ . E[xn)) 

[llb] Var[F.S] = L ...!.CJlC/ 
i-n(d )2 
i=l dXj 

where E[F.S] and Var[F.S] are the mean and variance of the 
factor of safety, respectively; C[Xi' x) is the covariance be­
tween the random variables Xi and Xj; and n is the number of 
random variables. 

The major advantage of this technique is its simplicity, es­
pecially when considering different sources of uncertainty, 
as it provides a direct estimation of the mean and variance 
for the factors of safety. However, the accuracy of this tech­
nique is questionable, especially when dealing with highly 
nonlinear relations and large soil variability, due to the trun­
cation of high order terms in the Taylor expansion. 

In the PEM (Rosenblueth 1975 and 1981), the probability 
distribution of each of the random variables is represented 
by two points estimates X+ and X_ with probability densities 
of p+ and p_, respectively. This is based on the analogy be-

7 

Fig. 7. Schematic diagram illustrating different terms used to ob­
tain correlation between spatial averages of random variables 
(modified from Vanmarcke 1977). 
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tween probability distributions and distributed vertical loads 
on a horizontal rigid beam resting on two pin supports (Harr 
(1987). For symmetrical probability distributions, p+ and p_ 
are taken as equal to 0.5; while X+ and x_ are taken as one 
standard deviation above and below the mean value of the 
random variable, respectively. The mathematical details of 
this method are complicated enough to be beyond the scope 
of this paper and readers interested in these details can refer 
to Harr (1987). This technique is quite useful when it is dif­
ficult or even impossible to apply the FOSM method as a re­
sult of difficulties in obtaining derivatives of the factor of 
safety with respect to different random variables. The main 
limitation of this technique is the complexity in calculations 
when considering multiple random variables in the assess­
ment of safety factors. An excellent summary of the accu­
racy and limitations of this method has been provided by 
Christian and Baecher (1999). 

The early implementation of Monte Carlo simulation to 
limit equilibrium analyses considered soil or rock properties 
as uncorrelated random variables (Kim and Major 1978). 
Several realizations of soil design parameters were obtained 
and used to develop a histogram for the factor of safety of 
earth slopes. Recently, the effect of spatial correlation be­
tween soil properties has been accounted for through the ap­
plication of geostatistics principles and volume-variance 
relationships (El-Ramly 2001). A complete probability dis­
tribution of output variables, such as the factor of safety, can 
be obtained and the failure probability can be reasonably as­
sessed. This is a major advantage over other analysis tech­
niques where some assumptions have to be made about the 
probability distribution of output variables. It should be 
noted, however, that Monte Carlo simulation has its own 
limitations, which can be summarized as follows: 
(1) The need to define a reliable input reference distribution, 
which requires a considerable number of field data. In addi­
tion, older versions of Monte Carlo simulation algorithms 
used to deal only with parametric probability distribution 
functions, i.e., probability distributions that can be defined 
through mathematical relationships such as normal and log­
normal distribution. Field data, however, do not necessarily 
fit into any of these parametric distributions. This problem 
has been overcome by recent versions of Monte Carlo simu­
lations, such as that of Deutsch and Journel (1998) that are 
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capable of dealing with nonparametric distribution functions 
directly inferred from field data; 
(2) Clustering of the simulation outcome into a limited zone 
of the input probability distribution, as the drawn samples 
are more likely to be in areas of higher probability, as shown 
in Fig. 8. This problem mainly arises in cases where an in­
sufficient number of realizations (number of iterations in 
Monte Carlo algorithm) are used in the simulation process 
(Palisade Corporation 1996). This may result in sampling 
values of the random variable away from the tails of the in­
put probability distribution, which can be on the unsafe 
(nonconservative) side. This problem, however. can be over­
come by using a number of realizations large enough to re­
produce the input distribution; and 
(3) Depending on the number of variables involved in the 
simulation process, Monte Carlo simulation may require a 
significantly large number of iterations and consequently a 
considerable computational effort. However, the authors be­
lieve that this problem has been overcome by the new gener­
ation of fast computers. 

Stochastic finite element method 
The stochastic finite element method (SFEM) is a modifi­

cation of the traditional fmite element method to capture the 
effect of soil spatial variability on numerical analysis. This 
is carried out by using finite element discretization to obtain 
a direct assessment of the mean and variance of nodal dis­
placements together with the covariance between displace­
ments at different nodes of the numerical analysis mesh 
(Baecher and Ingra 1981). This assessment is usually ac­
complished by calculating a covariance matrix whose value 
depends on the characteristics of spatial correlation between 
soil properties, such as variogram model and spatial range. 
These characteristics are captured into the finite element 
scheme by introducing the matrix of differentials thereby as­
sessing the effect of the variation of mechanical soil proper­
ties from one element to another on the global stiffness 
matrix. For more details about SFEM, the reader can refer to 
Baecher and Ingra (1981) and Auvinet et al. (1996). Differ­
ent modifications of SFEM have been developed by intro­
ducing different numerical techniques to capture soil spatial 
variability. Examples of these modifications are the probabil­
istic finite element method (Righetti and Harrop-Williams 
1988) and stochastic integral formulations (Zeitoun and 
Baker 1992). 

The major advantage of the SFEM is the direct assessment 
of statistical characteristics of output variables, such as the 
mean and variance. This helps avoid long computational time 
associated with incorporating several realizations of spatially 
variable soil parameters into deterministic analysis scheme, as 
discussed in the following section. On the other hand, differ­
ent limitations of the SFEM have been discussed by several 
authors, such as Baecher and Ingra (1981) and Auvinet et al. 
(1996), and they can be summarized as follows: 
(1) The analysis results are not affected by the probability 
distribution of the input random variables. Furthermore, a 
distribution has to be assumed for output variables as SFEM 
provides only an assessment of the mean and standard devia­
tion; 
(2) Element variance and covariance matrices are functions 
of element shape and geometry and their determination be-
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Fig. 8. Clustering of the outcome of Monte Carlo simulations re­
sulting from an insufficient number of realizations (modified 
from Palisade Corporation 1996). 
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comes quite tedious for irregular element shape and 
complicated boundary conditions; 
(3) It is limited to small variability due to the error associ­
ated with the truncation of higher order terms in the Taylor 
expansion (which is used for the determination of mean val­
ues of the response (output) variables, such as nodal settle­
ments); 
(4) Integration of the random variable field over each ele­
ment may result in a change in the anisotropy ratio of the 
spatial correlation structure of soil properties; and 
(5) It is usually limited to the linear elastic behavior of soil 
to avoid extreme complexity in the computation process and 
does not adequately capture the behavior of soil properties 
with skewed probability distributions. 

Due to the above limitations, the use of stochastic finite 
element analysis has received limited attention from 
geotechnical practitioners and researchers. 

Application of stochastic input parameters into 
deterministic numerical analysis 

Deterministic numerical analysis with stochastic input soil 
parameters has been recently adopted by many researchers, 
such as Paice et al. (1994) and Popescu et aI. (1998), as a 
technique to incorporate soil spatial variability in 
geotechnical design. Monte Carlo based simulation tech­
niques have been used to generate several realizations of soil 
properties that vary from one point to another across the do­
main of interest, as shown in Fig. 9. This spatial variation is 
usually employed into the numerical analysis scheme by as­
sessing soil properties at the center of each element of the nu­
merical simulation grid and assuming them to be constant 
within that element By analyzing several realizations of the 
spatially variable soil medium, histograms of response (out­
put) variables can be obtained. Examples of the simulation al­
gorithms used in practice are the sequential Gaussian, the 
sequential indicator simulations (Deutsch 2002), and the local 
average subdivision teclmique (Fenton and Vanmarcke 1990). 

The sequential Gaussian simulation (SGS) is the most 
commonly used technique, especially in the field of petro-
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Fig. 9. Defonned mesh with spatially variable elastic modulus below flexible strip footing (modified from Paice et aI. 1994). 

Darker gray areas signifies 
y (m) zones of lower elastic modulus , 

15.00 

12.00 

9.00 

6 . 00 

3.00 

0.00 
0.00 12.00 24.00 

leum engineering. The basic idea of this technique is illus­
trated in Fig. 10. Input random variables are transformed 
into standardized normally distributed random variables with 
zero means and unit variances for which different variogram 
characteristics are assessed. Simulated values of a standard­
ized variable, Z, can be determined at any node of the simu­
lation grid according to the relationship 

[12] Zs(u) = Z*(u) + R(u) 

where Zs(u) is the simulated value of the variable Z at loca­
tion u; Z*(u) is the krigged estimate of the variable Z at lo­
cation u; and R(u) is a random residual. 

The krigged estimate is a linear estimator of the variable Z 
at location u in space, where the value of Z is unknown, us­
ing the krigging interpolation techniques (Journel and 
Huijbregts 1978). This estimate depends on different charac­
teristics of spatial correlation structure (variogram), does not 
vary from one realization to another, and can be assessed 
through 

n 

[13] Z * (u) = L A.jZ(Uj) 
j=1 

where Z(Uj) is a known value of Z at location Uj in space, ei­
ther from field data at that location or previously simulated 
nodes; and A. j is a weight given to field data at location Uj 

that depends on the characteristics of the spatial correlation 
structure. 

The random residual R(u) follows a normal distribution 
with zero mean and a variance equal to the krigging variance 
(Deutsch 2(02). A different value of R(u) is obtained in each 
realization using Monte Carlo simulation resulting in a vari­
ation of the simulated value of the random variable, Z(u), 
from one realization to another. A random path is followed 
to assess the value of the standardized random variable at 
each node of the numerical simulation grid. The simulated 
values across the analysis domain are then back-transformed 
to their original probability distribution. By repeating the 
above procedure, several realizations of soil spatial variation 
across the analysis domain can be obtained. 

Application of stochastic analysis to 
geotechnical field problems 

The stochastic analysis techniques discussed in the previ­
ous sections have been implemented in several applications 

36.00 48.00 

x(m) 

60.00 

Fig. 10. The basic idea of the sequential Gaussian simulation. 

Transform input random variable into a standardized 
normally distributed (Gaussian) random variable 

of zero mean and unit variance. 

Assess variogram characterisitics 
for the standardized variable. 

Implement Monte Carlo simulation to estimate a 
simulated value of the standardized variable at 

a certain node in the simulation grid. 

Choose a random path through all 
nodes of the simulation grid. 

For each node, search for nearby simulated 
nodes and use them to estimate a new 
simulated value of the random variable. 

Check that new simulated values of the 
random variable satisfy 

variogram characteristics. 

Back-transform all simulated values 
from its standardized form to its 
original probability distribution. 

9 

C 2002 NRC Canada 

GALLEY PROOFS/EPREUVES EN PLACARD 



Pagination not finallPagination non finale 

10 

throughout the history of geotechnical engineering practice 
to assess the impact of ground variability on geotechnical 
field problems. In the following sections, an attempt is made 
to address the current state of practice in some of these ap­
plications and its limitations together with potential trends 
for future research. 

Stochastic analysis of shallow foundation settlement 
Early attempts to perform probabilistic analysis of foun­

dation settlement started in the late 1960s. Wu and Kraft 
(1967) estimated the uncertainty in soil bearing capacity and 
foundation settlement through assessing the uncertainty in 
applied load, soil strength, and deformation parameters. The 
uncertainty in soil strength was estimated by assessing the 
variability of laboratory undrained shear strength for clayey 
soils and that of SPT data for sandy soils. Resendiz and 
Herrera (1969) carried out a probabilistic analysis of settle­
ment and rotation of flexible and rigid footings over ran­
domly variable compressible soils. A one-dimensional 
settlement model was adopted in which the coefficient of 
volume change was characterized as a normally distributed 
random variable. The analysis results were used to obtain 
design parameters that satisfied tolerable settlements and r0-

tations criteria together with the minimum expected mone­
tary loss. These studies can be considered as a good start 
towards addressing such a complex problem. However, they 
were fairly primitive as some elements of soil inherent vari­
ability, such as spatial correlation between soil properties, 
were not adequately considered. 

The modem approach to deal with ground variability and 
its implications on foundation settlement started in the early 
1980s with the pioneer work of Baecher and Ingra (1981). In 
their study, two-dimensional stochastic finite element analy­
ses were carried out to assess the uncertainty in total and dif­
ferential settlement. Soil elastic modulus was treated as a 
random variable, whereas Poisson's ratio was assumed to be 
constant across the soil mass. 1\vo spatial correlation mod­
els, the exponential and the squared exponential (Gaussian), 
were considered and the response variables (total and differ­
ential settlement) were assumed to be normally distributed. 
A limiting assumption of the study was the linear elastic soil 
behavior, which implies, together with the use of SFEM, a 
small variation in soil properties to avoid the development of 
plastic zones and the onset of nonlinear constitutive behav­
ior. In addition, the effect of different probability distribu­
tions of soil properties on the expected uncertainty was not 
assessed. 

In a similar fashion, Zeitoun and Baker (1992) proposed a 
stochastic approach for settlement prediction of shallow 
foundations using the stochastic integral formulation (SIF) 
technique, which is a modification of the SFEM. It was as­
sumed that soil would exhibit linear elastic behavior under 
both axisymmetrical and plane strain conditions. Soil shear 
modulus was treated as a random variable and the Gaussian 
model was chosen to represent the spatial variation of shear 
modulus across the problem domain. The technique used in 
the study had serious limitations as unrealistic spatial corre­
lations were assumed either through the use of a very high 
horizontal autocorrelation distance or by considering the soil 
medium to be in the form of concentric rings of constant 
elastic modulus. Furthermore, no information was provided 
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about the probability distribution of output variables, and the 
effect of different spatial correlation structures was not ac­
counted for. Finally, the use of SFEM implied some restric­
tions on the range of soil variability used in the analysis to 
prevent development of plastic zones as discussed in the 
previous paragraph. 

The effect of random soil stiffness on foundation settle­
ment was reinvestigated by Paice et al. (1994) through the 
use of deterministic finite element analysis with stochastic 
input soil parameters. Soil elastic modulus was regarded as a 
spatially random variable resulting in a ground profile as 
previously shown in Fig. 9. The elastic modulus was as­
sumed to follow a lognormal probability distribution and ex­
ponential correlation structure. This study has some limiting 
assumptions such as the linear elastic soil behavior, the iso­
tropic correlation structure, and the symmetry of spatial dis­
tribution of elastic modulus around the footing centerline. In 
addition, the effect of different types of correlation struc­
tures and the sensitivity of the results to the number of real­
izations were not considered. 

The effect of random fluctuations of the interface between 
soil layers on the uncertainty in foundation settlements has 
been accounted for by Brzakala and Pula (1996). This uncer­
tainty in soil geometry was converted into a new random 
field expressed in terms of the interface fluctuation and was 
incorporated into the stochastic finite element analysis. The 
main limitations of the study lie in the linear elastic soil be­
havior and the neglecting of the inherent soil variability 
within layers. In addition, the effect of different types of 
probability distributions and correlation structures on the 
stochastic analyses outcomes was not accounted for. 

It is worth noting that the above studies have not consid­
ered the effect of changing the state of stresses in soil mass 
on the outcome of statistical analyses. In other words, the 
sensitivity of the statistical characteristics of output variables 
to wide ranges of applied vertical and horizontal stresses 
was not adequately addressed. In addition, no attempt has 
been made to provide risk-based representative soil parame­
ters that can be implemented in deterministic analyses while 
continuing to honor detailed ground heterogeneity. 

Stochastic analysis of liquefaction problems 
The early attempts to quantify the stochastic nature of liq­

uefaction problems were focused on developing analytical 
expressions to estimate the uncertainty in liquefaction poten­
tial assessment. Yegian and Whitman (1978) conducted a pi­
oneer study to provide a statistical evaluation of the annual 
probability of failure for potentially liquefiable sites. This 
was ciuried out by combining the annual probability of 
given earthquakes with the probability of ground failure un­
der these earthquakes. In addition, an analytical expression 
was developed to assess the uncertainty in a limit state pa­
rameter, proposed to estimate the maximum shear resistance 
of the ground. A major limitation of that study was that the 
effect of spatial correlation between soil properties was not 
accounted for and that the uncertainty in the results were as­
sumed to be insensitive to the probability distribution of the 
input random variables. Furthermore, the derivation of the 
expression for the limit state parameter was based on the as­
sumption that the soil shear resistance and vertical effective 
stress were two independent random variables. 
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Recently. the use of deterministic finite element analysis 
with stochastic input soil parameters has gained much 
popularity in the field of probabilistic liquefaction analysis. 
Several attempts have been made to apply this technique to 
study case histories that involved potentially liquefiable 
ground conditions. 

Fenton and Vanmarcke (1991) performed one-dimensional 
finite element analyses to assess the effect of inherent vari­
ability of soil properties on liquefaction potential at the 
Wildlife site. California. Soil properties. such as porosity. 
Poisson's ratio. elastic modulus. permeability. and the dila­
tion angle. were considered as random variables. The first 
two properties were considered to be normally distributed. 
whereas the rest were assumed to follow a lognormal distri­
bution. The effect of correlation structure was taken into 
consideration through the application of the variance reduc­
tion factor proposed by Vanmarcke (1977). Several realiza­
tions of soil properties were generated using the local 
average subdivision technique. and were excited by various 
earthquake motions applied at the base of the soil columns 
using DYNAID software. A main limitation of the study is 
that the results sensitivity to the number of realizations was 
not taken into consideration. Moreover. the effect of differ­
ent probability distributions of soil properties was not ac­
counted for together with the use of one-dimensional 
analysis. in which the analysis domain was divided into soil 
columns neglecting the coupling between soil elements. 

Popescu et al. (1996) carried out one of the pioneer inves­
tigations on the effect of soil spatial variability on liquefac­
tion assessment using the results of cone penetration tests. 
where the cone tip resistance. qe' and the cone index. Ie. 
were treated as random variables. A simulation algorithm 
was developed in the study for the simulation of non­
Gaussian multivariate random fields. A nonlinear regression 
algorithm was adopted to determine the probability distribu­
tion and the correlation structure of the random variables. 
The problem was analysed using the DYNAFLOW software 
implementing stochastic input soil parameters obtained us­
ing the correlations between soil properties and CPT data. 
For comparison. a deterministic numerical analysis was car­
ried out using the mean values of soil parameters. A charac­
teristic percentile of cone tip resistance was proposed for use 
in deterministic analyses to predict the same maximum pore 
pressure obtained from stochastic analysis. The major limita­
tion of the study lies in the use of only four realizations to 
quantify the effect of soil variability. which may not be suffi­
cient to sample the expected range of response. as discussed 
earlier. In addition. the effect of spatial correlation range on 
the study outcomes was not accounted for. The authors be­
lieve. however. that this spatial range may have a profound 
effect on liquefaction susceptibility and needs to be consid­
ered in future stochastic liquefaction studies. In addition. the 
strength percentile proposed for use in deterministic analysis 
to capture the effect of soil spatial variability was subjec­
tively assessed. 

Popescu et al. (1998) extended the previous study to pro­
vide risk-based liquefaction potential measures through two­
dimensional stochastic analysis where cone tip resistance 
was treated as a spatially random variable. The effect of in­
herent variability was assessed through 25 realizations of the 
spatial distribution of CPT data across the site. A series of 
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deterministic finite element analysis was carried out. using 
different percentiles of the recorded CPT data. to estimate 
equivalent (representative) soil parameters that can capture 
the implications of soil spatial variability. These parameters 
were considered to be associated with th~ upper limit of the 
Monte Carlo simulation response range. It was concluded 
that the initiation of soil liquefaction could not be accurately 
predicted by deterministic models. which could not account 
for the presence of loose pockets within soil masses. This 
study. as in the case of the previous one. did not take into 
consideration the sensitivity of the analysis to the number of 
realizations of soil properties. In addition. the proposed 
equivalent parameters could be considered overconservative. 
as they were associated with the most critical response of 
the stochastic analysis. Moreover. the effect of the type of 
correlation structure and its spatial limit was not accounted 
for. 

Once again. the effect of changing the state of stresses in 
soil mass on the outcome of stochastic analyses has not been 
adequately considered in any of the above studies. For exam­
ple. more investigation is needed to ascertain whether or not 
the same values of the representative cone tip resistance per­
centiles of Popescu et al. (1998) would be obtained if poten­
tially liquefiable layers were at different depths below 
ground surface. 

Stochastic analyses of seepage flow 
The problem of water flow through heterogeneous porous 

media has been studied thoroughly along the history of pe­
troleum engineering and water resources research. One of 
the pioneer attempts to apply the principles of geostatistics 
into the geotechnical engineering practice to study the effect 
of soil spatial variability on seepage flow was made by 
Griffiths and Fenton (1993). In their study. the local average 
subdivision simulation technique was used to generate lOOO 
realizations of spatially variable hydraulic conductivity be­
Iowa water retaining structure. The resulting field was then 
mapped onto a finite element mesh to perform numerical 
analysis of the problem under deterministic boundary condi­
tions. The hydraulic conductivity. k. was assumed to follow 
lognormal probability distribution. and the effect of spatial 
correlation structure was accounted for through quantifying 
the influence of the scale of fluctuation on different response 
(output) variables. The limitations of the study lie in the use 
of an isotropic correlation structure where vertical and hori­
zontal ranges were assumed equal. and the effect of different 
probability distributions and correlation structure models 
were not accounted for. Furthermore. the sensitivity of the 
analysis to the number of realizations of the random vari­
able. hydraulic conductivity. was not considered. 

Decision making in geotechnical 
engineering 

One of the major challenges that faces geotechnical engi­
neers is the need to make decisions regarding the soil param­
eter to be used in engineering analysis. These decisions have 
to be based on information that invariably has a certain de­
gree of uncertainty. Consequently. the decision making pro­
cess is considered to be governed by two factors. the 
uncertainty in the decision variables and the risk level of the 
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project. Several decision making algorithms have been used 
throughout the history of geotechnical engineering practice, 
such as the worst case and quasi worst case approaches, reli­
ability-based techniques, confidence interval approach, and 
Bayesian decision analyses. Details of these algorithms will 
be discussed in the following paragraphs. 

The worst case approach aims at achieving the absolute 
safety of the project and relies on the notion of maximum 
loss and maximum expected hazards, often referred to as the 
maxi-max criterion (Ang and Tang 1984). For example, if 
the range of the measured friction angle of a sandy deposit 
at a certain site ranges from 30-40°, the design value will be 
assessed as 30°. This approach is overly conservative and 
rarely used in practice. On the other hand, the quasi worst 
case approach (Pate-Cornell 1987) tries to apply some kind 
of engineering judgment into the above approach to provide 
an upper bound for the risk level. Revisiting the above ex­
ample, the sandy soil at the site is classified (say medium 
dense sand) and the minimum value associated with such 
classification (say 33°) will be used as the design value. A 
common problem of the two approaches is that no informa­
tion can be obtained about the risk level associated with the 
design value. 

The reliability-based approach relies on selecting design 
parameters that satisfy a desired degree of reliability or a 
certain probability of failure. This approach has been com­
monly used in slope stability analysis. Wolff (1996) pro­
posed soil design parameters to be associated with a 
reliability index, ~, of 3 for routine slopes and 4 for critical 
slopes such as dams. The reliability index can be obtained 
through 

[14] ~ = mFS - L 
(JFS 

where mFS is the mean factor of safety; L is a limit state 
value usually equal to 1; and (JFS is the standard deviation of 
the factor of safety. 

In a similar fashion, the US Army Corps of Engineers 
(1995) proposed an assessment of the performance level of 
embankments depending on the target reliability index and 
the corresponding failure probability, as shown in Table 2. 
Comparing the recommendation presented in Table 2 with 
the suggested values of reliability index of Wolff (1999) im­
plies that the selection of design parameters for earth slopes 
should be associated with critical failure probabilities no 
more than 0.1 %. British Columbia (BC) Hydro developed a 
similar approach for dam design based on a thorough review 
of different potential hazards (Whitman 2(00). In their crite­
rion, critical failure probabilities were assessed as a function 
of potential number of fatalities, as shown in Fig. 11. On the 
other hand, EI-Ramly (2001) concluded that critical failure 
probabilities developed in geotechnical literature were 
overly conservative and that a critical failure probability of 
2% could be regarded as an upper bound for the satisfactory 
performance of earth slopes. This critical value was assessed 
based on extensive probabilistic slope stability analyses of 
several case histories in North America and Hong Kong. 

In the confidence interval approach (Harr 1987), soil pa­
rameters associated with the upper and lower limits of a cer­
tain degree of confidence are proposed as design parameters. 
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Table 2. Assessment of performance of earth slopes and the as­
sociated failure probability as proposed by the US Army Corps 
of Engineers (1995). 

Expected level of Probability of 
performance ~ failure (%) 

High 5 3xlO-s 

Good 4 0.003 
Above average 3 0.1 
Below average 2.5 0.6 
Poor 2 2.3 
Unsatisfactory 1.5 7 
Hazardous 1 16 

Fig. 11. Critical probabilities of failure for dam design in terms 
of expected number of fatalities (modified from Whitman 2000). 
ANCOLD, Australian National Committee on Large Dams; 
PMFJMDE, XXXXXXXXXXXX. 
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The selection of design parameters associated with a 90% 
level of confidence, commonly used in practice, is illustrated 
in Fig. 12. Using these design parameters provides a range 
for output (response) variables, such as factor of safety, with 
only a 5% chance that the actual value of these variables 
will be either larger than the upper limit or smaller than the 
lower limit of this range. 

The most robust decision making algorithm is the 
Bayesian decision analysis (Benjamin and Cornell 1970; 
Deutsch 2002), where the impact of making mistakes in esti­
mating design parameters can be expressed in terms of mon­
etary values. This approach utilizes loss functions and 
histograms of soil design parameters to obtain optimal esti­
mates of these parameters associated with minimum ex­
pected monetary loss. The loss functions are mathematical 
relations used to quantify the effect of making mistakes in 
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Fig. 12. Selection of design parameters associated with a 90% 
confidence level. 

-4 

Lower limit of the 
90% confidence 
level 

0.1 

-2 o 
Parameter value 

2 4 

selecting design parameters. These functions can take differ­
ent fonns, such as linear, quadratic, and exponential, as 
shown in Fig. 13 for linear loss functions. For more details 
of the application of this approach, the reader can refer to 
Deutsch (2002). The main limitation of this approach is the 
difficulty associated with its application in cases where loss 
of human lives may be expected. 

Throughout the history of geotechnical engineering few 
attempts have been made to implement the above approaches 
into field problems. One of the pioneer works in this area 
was that by Folayan et a1. (1970), where the Bayesian deci­
sion analysis was applied to settlement prediction analysis. 
In their study, the compression index, Ce, was treated as a 
random variable and the results of 27 one-dimensional con­
solidation tests were used to obtain a histogram for Ce. In 
addition, an exponential loss function was adopted to assess 
a value of Ce that produced the minimum expected loss. A 
main limitation of the study was that it ignored the effect of 
the spatial correlation characteristics of Ce on the analysis 
results. 

Conclusions 

A thorough review of the different techniques developed 
to deal with soil heterogeneity has been presented in this 
study. Different approaches developed to handle the 
lithological heterogeneity of the ground in the petroleum en­
gineering field were briefly addressed. Different elements of 
soil inherent spatial variability, such as mean, variance, spa­
tial correlation characteristics, and volume-variance relation­
ships were thoroughly discussed together with their 
implications in geotechnical design. Different approaches 
adopted throughout the history of geotechnical engineering 
to perfonn stochastic analyses of different geotechnical ap­
plications were thoroughly reviewed and criticized. In addi­
tion, an expression for the variance reduction factor of 
spherical spatial correlation structures (variograms) was de­
veloped in this study. Examples of the applications of sto­
chastic analysis to field problems such as shallow foundation 
settlement, liquefaction assessment, and seepage flow were 
presented with emphasis on the limitations of the current 
practice. Finally, different decision making algorithms were 

Fig. 13. Linear loss functions to quantify the effect of making 
mistakes in estimating soil design parameters. 
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discussed together with comments regarding their applicabil­
ity in geotechnical engineering. 

From this study it can be concluded that there is a need 
for a comprehensive study of soil heterogeneity that takes 
into consideration different sources of nonhomogeneity and 
their implications on different geotechnical applications. 
Furthennore, there is a need to ascertain whether or not the 
outcomes of stochastic geotechnical analyses are sensitive to 
changes in the state of stresses in subsurface layers. Finally, 
the risk level of geotechnical projects should be incorporated 
in a decision-making framework to provide estimates of rep­
resentative soil parameters that honor the detailed ground 
heterogeneity. 
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Appendix A 

Derivation of variance reduction factor for spherical 
correlation structure 

The variance reduction factor, r2, can be detennined ac­
cording to the following relation proposed by Vanmarcke 
(1984): 

[AI] 2T( h)c rf =-J 1-- (h)dh 
To T 

where h is the separation distance and C(h) is the standard 
covariance, i.e., covariance with a unit variance. 

The standard covariance of spherical correlation structure 
can be expressed in the fonn 
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[A2] C(h)=1+0.S(;r -1.5(;) 
Substituting in eq. [AI] provides 

[A3) ri = : 1(1- ~ll+O.s(;)' -1.5(;)]dh 
Integrating and rearranging results provides the following 

expression for the variance reduction factor for spherical 
correlation structures: 

T T3 
[A4] rf =1--+--

2a 20a 3 
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