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ABSTRACT 

The coupled three-dimensional hydrodynamic and water quality ELCOM-CAEDYM model 

was used to investigate the factors impacting the abundance of algae as a key indicator of water 

quality in a stormwater pond in the city of Edmonton, Canada. Field measurements collected 

from May to October of 2014 and 2015 were used to set up the model and to calibrate the model. 

The inflow time series, as an important boundary condition, was estimated using the reverse 

level pool routing method with low-pass filtering of the observed water level time series. Both 

analytical and Monte Carlo simulations showed that errors in the estimated inflows are directly 

related to the area of the pond and inversely related to the numerical time step.  

ELCOM was calibrated and validated for water temperature. The model accurately simulated 

the thermal structure of the pond including mixing and stratification. Sensitivity analysis of 

ELCOM showed that the model is most sensitive to albedo. Sensitivity analysis showed that the 

most influential CAEDYM model parameters were, the maximum potential growth rate, algal 

respiration, mortality and excretion rate, minimal internal phosphorous concentration, and light 

half saturation constant for algae limitation. Total chlorophyll-a (TCHLA) was found to be the 

most sensitive model variable and as a result CAEDYM was calibrated and validated, primarily 

focusing on TCHLA, while also considering other state variables such as dissolved oxygen, total 

phosphorous, and total nitrogen.  

Furthermore, the sensitivity of ELCOM-CAEDYM to the boundary conditions and depth 

was comprehensively assessed. For this, different scenarios were defined by altering flow rates, 

nutrient loads, air temperature, wind speed, and depth, and their corresponding impacts on 

different biogeochemical and hydrodynamic processes were evaluated. The trophic state of the 

pond under these scenarios was also assessed. Given that ELCOM-CAEDYM effectively 

simulated algae dynamics, as demonstrated through calibration and validation, and considering 
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its responsiveness to changes in boundary conditions, it can be used as a tool to predict water 

quality under future climate and management plans. 

 

KEYWORDS: ELCOM-CAEDYM, sensitivity, reverse level pool routing, water quality, 

stormwater pond. 
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Chapter 1. INTRODUCTION 

Stormwater ponds are considered one of the most effective management practices for 

mitigating the adverse effects of excessive runoff on surrounding ecosystems (Siegel et al. 2011). 

They have been integrated into Canadian urban drainage systems since the 1960s. Originally, 

stormwater ponds were constructed to reduce drainage costs and mitigate flooding by storing 

storm runoff and releasing it gradually to a receiving water body (Watt et al. 2004). However, 

their functionality has expanded over time to protect receiving water bodies by improving the 

quality of released water through different physical, chemical, and biological processes (AEP 

1999; Marsalek et al. 1992, 2002). Currently, many stormwater ponds are designed to include 

additional purposes such as irrigation, recreational, and aesthetics (He et al. 2015). 

However, stormwater pond functionality can be compromised by factors such as 

stratification, increased nutrient and metal loading, eutrophication, and oxygen depletion (Oberts 

2003; Song et al. 2015). Additionally, the excessive growth of undesirable aquatic plants can not 

only diminish pond aesthetics but also lead to the emission of unpleasant odors (e.g., Sallenave 

2011). Nutrient loading can originate from both external and internal sources. Common sources 

of external loading include runoff and wastewater entering the pond (Thomann and Mueller 

1987). Internal loading, however, refers to the release of nutrients from the sediment through 

diffusive fluxes or sediment resuspension (Søndergaard et al. 2001; Fisher et al. 2005; Kristensen 

et al. 1992). Increased nutrient loading can cause eutrophication, which is the excessive growth 

of autotrophs, including algae. Eutrophication adversely affects the functionality of stormwater 

ponds by accelerating the degradation of aquatic plants, depleting of dissolved oxygen (DO), and 

releasing minerals, thereby increasing internal loading (Mortimer 1941; Orihel et al. 2017). 

Wakelin et al. (2003) investigated the water quality of 58 stormwater ponds in Winnipeg, 

Manitoba. Water samples collected during the growing season (May to September) showed an 

increase in chlorophyll concentrations and a decrease in DO near the bed in the second half of 
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the season. These changes were attributed to algal growth and degradation of biomass in the 

study ponds. Olding (2000) analyzed the composition of algal communities in two stormwater 

ponds in Richmond Hill, Ontario, with different geometries and catchment land-use. The study 

found that the catchment land-use, determining the chemical composition of inflow, affected the 

biological communities within the ponds. Furthermore, Olding et al. (2000) studied 27 water 

bodies in the urbanized area of the Greater Toronto, Ontario, and found that the algal 

communities were affected by the hydrodynamics and residence time of the body of water. For 

instance, the dominance of cyanobacteria communities was attributed to longer residence times.  

Analysis of water samples collected from nine urban stormwater ponds in southern Ontario 

revealed elevated levels of dissolved phosphorus in the outflows compared to the inflows (Song 

et al. 2015). The role of stormwater ponds in transforming phosphorus into its dissolved forms, 

thereby increasing the risk of eutrophication in the receiving water bodies downstream, was 

highlighted as a potential negative impact of stormwater ponds in urbanized areas. Field 

monitoring of four stormwater ponds in Calgary, Alberta, revealed prolonged and frequent 

stratification during the open-water season (Ahmed et al. 2022, 2023). Vertical thermal and 

chemical gradients were identified as the primary drivers of the observed stratification. The 

morphology and configurations of inlet and outlet structures were also found to impact the 

thermal structure of the ponds, influencing stratification. Furthermore, the presence of dense 

aquatic plants and local landscape features were identified as factors inhibiting wind-induced 

mixing. 

Stormwater ponds in cold climates have their own challenges, as stratification and the 

physical and chemical processes are temperature-dependent. Road salt and de-icing solutions, 

commonly used in cold regions, can enter the ponds and enhance their chemical stratification. 

The stronger stratification, whether thermal or chemical, leads to reduced mixing, increased 

hypoxia and anoxia, particularly near the bed, and decreased residence time (Ahmed et al. 2022; 

Marsalek 2003). A shorter residence time, along with lower oxygen levels, can decrease the 
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removal efficiency of ponds, posing a risk to the quality and biodiversity of downstream bodies 

of water (Ahmed et al. 2022; Ji and Jin 2016; Torres et al. 1997). Low oxygen levels can also 

trigger the release of metals previously deposited in the sediment (Oberts 2003). Additionally, 

the sediment removal efficiency of the ponds is reduced during snowmelt events, particularly 

when the pond is still ice-covered (Marsalek et al. 2000; Roseen et al. 2006; Semadeni-Davies 

2006). 

Algae biomass is commonly used as a key indicator of water quality in bodies of water. 

Algae dynamics are influenced by both biogeochemical and hydrodynamic processes (Qin and 

Shen 2017). These two processes interact with each other, making it challenging to isolate their 

individual effects. Biogeochemical processes, like light, temperature, nutrients, and settling, 

affect algae's net growth rate. Hydrodynamic processes, such as advective and diffusive 

transport, redistribute not only algae biomass but also other factors such as nutrients. Qin (2017) 

introduced the transport rate method to estimate each process's contribution separately. Their 

study in the Upper James River, the USA, showed that both local (e.g., photosynthesis, 

respiration and settling) and transport processes significantly influenced the local variability of 

phytoplankton biomass. However, the importance of each process varied across different 

timescales. 

In order to improve the functionality of stormwater ponds to meet the current and future 

environmental concerns, several studies investigated different management strategies including 

modifying the depth, volume, residence time, configuration of inlets and outlets, and managing 

the nutrient and mineral loads (e.g., Marsalek et al. 1992; Nakhaei et al. 2021; Olding et al. 2000; 

Sutherland et al. 2014; Walker 1998). For example, (Nakhaei et al. 2021) concluded that a 50% 

reduction in nutrient load is needed to control algae blooms in two stormwater ponds.  
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 MOTIVATION 1.1

This study is part of a comprehensive research initiative driven by complaints from residents 

of certain residential areas in Edmonton, Alberta, regarding the abundance of algae, unpleasant 

odors, and concerns about ice safety in nearby stormwater ponds. Out of more than 100 

stormwater ponds, four were selected for this comprehensive research. Other studies were 

conducted to examine ice cover variability (She et al. 2016), hydrodynamic (Nakhaei et al. 2018) 

and water quality (Nakhaei et al. 2021) in subsets of the selected ponds. Furthermore, the 

potential need for modifying existing ponds and evaluating hydrological, climatological, and 

biogeochemical factors for future designs became the motivation of current study. 

Numerical modeling has become a valuable tool for simulating the complex interactions of 

physical, chemical, and biological processes in stormwater ponds, and evaluating the potential 

impacts of climate and management scenarios. (Jin et al. 2007, Oberts et al. 2000). While 1D and 

2D models can simulate some fundamental hydrodynamic and biogeochemical processes (e.g., 

Boegman et al. 2008; Hamilton and Schladow 1997), they may not adequately capture more 

complex processes such as mixing, circulation patterns, and localized algal blooms (Lee et al. 

2013; Leon et al. 2011). Therefore, because of the presence of water quality heterogeneity or 

complex morphology, and due to available computational power, the application of 3D models 

has been growing (e.g., German et al. 2003; Hodges et al. 2000; Lee et al. 2013; Nakhaei et al. 

2021).  

Shaw et al. (1997) used the 3D hydrodynamic software package PHOENICS (Rosten and 

Spalding 1987) to study the flow patterns in a stormwater pond in Kingston, Ontario. They found 

that flow patterns are influenced by wind stress, inflow momentum, and geometry. Bentzen et al. 

(2008) applied the 3D computational fluid dynamic (CFD) software MIKE3 to model the 

hydrodynamics of a stormwater pond in Denmark. They concluded that wind was the primary 

factor influencing the retention time and flow patterns within the pond. The Environmental Fluid 
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Dynamic Code, EFDC (Hamrick 1992), is another 3D model for simulation of flow, transport, 

and biogeochemical processes in surface water systems. This model has also been applied to a 

variety of aquatic systems, including rivers, lakes, estuaries, reservoirs, wetlands, and coastal 

regions (Ji et al. 2007). Based on the EFCD code, the Lake Okeechobee Environment Model 

(LEOM) was developed to simulate water quality processes in constructed wetlands (Ji 2017). 

In this study, the coupled 3D ELCOM-CAEDYM model was employed. This model consists 

of the Estuary and Lake COmputer Model (ELCOM) (Hodges and Dallimore 2013a) and the 

Computational Aquatic Ecosystem Dynamic Model (CAEDYM) (Hipsey et al. 2013), both 

developed at the University of Western Australia. Detailed descriptions of the model can be 

found in Hodges et al. (2000), Romero et al. (2004), and Bruce and Imberger (2009).  

Mooij et al. (2010) and Trolle et al. (2012) highlighted ELCOM-CAEDYM as one of the 

most frequently cited models, widely applied in various hydrodynamics and water quality 

studies. For instance, it has been used to investigate modeling challenges, such as mixing and 

energy transport, in a stratified lake in Israel (Hodges et al. 2000), as well as to identify the 

processes controlling nutrient fate in two reservoirs in Australia. The model has also been 

applied to simulate hydrodynamic and geochemical processes in morphologically complex lakes 

in the USA (Missaghi and Hondzo 2010., Missaghi et al. 2013., Missaghi and Hondzo 2011), to 

assess the water quality of a shallow coastal lagoon in Western Australia receiving wastewater 

effluent (Machado and Imberger 2012), and to identify the conditions that lead to the dominance 

of specific algae groups in a shallow estuary in Argentina (Silva et al. 2014). Additionally, 

Carraro et al. (2012) applied ELCOM-CAEDYM to a medium-sized lake in Italy to investigate 

the influence of nutrients and hydrodynamics on the temporal and spatial distribution of 

cyanobacteria. 

Yajima and Choi (2013) used the ELCOM-CAEDYM model to evaluate the impact of an 

inflow bypass on water temperature, DO, nutrient load, and algae concentration in a reservoir in 
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Japan. The study concluded that the proper operation of the bypass could decrease nutrient and 

algae concentrations within the reservoir, as well as reduce transportation of biomass 

downstream. Furthermore, Chan et al. (2002) utilized ELCOM-CAEDYM to investigate the 

impacts of land use alterations and tributary regulation on algae dynamics in the Swan River, 

Western Australia. While these hydrological changes were associated with increased flushing 

and reduced residence times, increased nutrient loading was determined to be the primary cause 

of more frequent and larger algae blooms. Additionally, Linden et al. (2015) simulated the water 

quality of a reservoir in Australia to examine the ELCOM-CADEYM model’s sensitivity to 

altered wind, air temperature, and inflow boundary conditions. Since the model was responsive 

to climatic drivers, it was concluded that it could be used for investigating the impact of climate 

change on water quality of bodies of water. 

DYRESM-CAEDYM, which couples the 1D DYRESM hydrodynamic model (DYnamic 

REservoir Simulation Model) with CAEDYM, has also been used in water quality studies. For 

example, Cui et al. (2016) employed this model to evaluate the effect of reducing external 

nutrient loads on algae biomass in the Shahe Reservoir, China. Multiple scenarios with varying 

reductions in nitrogen (N) and phosphorus (P) in inflow boundary conditions were examined. It 

was found that simultaneous reductions in both N and P were more effective in controlling algae 

growth compared to reducing only one nutrient. Trolle (2011) also used DYRESM-CAEDYM to 

investigate the potential impacts of climate change on the trophic status of lakes. Three lakes in 

New Zealand with varying tropic status were selected. Future scenarios were defined by a 

temperature increase of approximately 2.6°C and changing nutrient loadings up to ±50% from 

the base scenario. The results indicated that the trophic levels of the three lakes would deteriorate 

under the projected temperatures, which was equivalent to the impact of a 25-50% increase in 

external nutrient loading. 

The calibration and sensitivity analysis of ELCOM-CAEDYM have received relatively less 

attention in research compared to its application, likely due to the large number of model 
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parameters in CAEDYM. While ELCOM has a limited number of model parameters, calibration 

of CAEDYM requires adjusting a large number of model parameters (Hipsey 2013; Missaghi 

and Hondzo 2010). Hence, in most studies, only a subset of model parameters has been 

considered important for calibration. For example, in a water quality study of Lake Minnetonka, 

the USA, Missaghi et al. (2014) identified 29 important CAEDYM parameters. Further, their 

sensitivity analysis indicated that the following model parameters had the most influence on the 

model outputs, including the mineralization of dissolved organic carbon, sediment phosphorus 

release rate, algal metabolic loss rate, internal phosphorus concentration, and phosphorus uptake 

rate. However, it should be noted that their finding for a relatively larger body of water, such as 

Lake Minnetonka, may not directly apply to smaller water bodies like the stormwater ponds. 

In addition to model parameters, sensitivity analysis can be conducted based on boundary 

conditions. Since boundary conditions are often defined based on measurements, there is 

generally more confidence in their accuracy compared to the model parameters. However, 

boundary conditions such as inflows may not always be measured accurately or frequently 

enough (Linden et al. 2015; Missaghi et al. 2014). Additionally, understanding model sensitivity 

to the boundary conditions is crucial for future climate and management studies (e.g., Elliott et 

al. 2006; Linden et al. 2015; Mooij et al. 2007b; Nakhaei et al. 2021; Trolle et al. 2008a, 2011). 

Mooij et al. (2007a) used the lake ecosystem model PCLake to examine the effects of 

changes in nutrient loadings and water temperature on the quality of a hypothetical shallow lake. 

Linden et al. (2015) explored the sensitivity of the ELCOM-CAEYDOM developed for the 

Happy Valley Reservoir, Australia, to boundary conditions, including air and inflowing water 

temperature, wind speed, and inflow and outflow. Trolle et al. (2008b) used the DYRESM-

CAEDYM model to investigate the impact of external nutrient loading on Lake Ravn in 

Denmark. Based on the defined nutrient scenarios, it was found that up to 50% phosphorus 

reduction was necessary to meet the European Union Water Framework. 
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The depth and bathymetry of a body of water can also influence its quality. Conn and Fiedler 

(2006) examined the influence of bottom topographic features on residence times in a 

hypothetical wetland using a 2D hydrodynamic model, and Sabouri et al. (2016) used an 

Artificial Neural Network approach to investigate the impact of depth on the outflow 

temperature. Based on field observations, Olding et al. (2000) studied the relationship between 

depth and composition of algal communities while Wen et al. (2023) explored the relationship 

between depth and macrophyte biomass. 

To the best of the authors’ knowledge, the application of ELCOM-CAEDYM for modelling 

urban stormwater ponds’ hydrodynamics and water quality is limited to the study conducted by 

Nakhaei et al. (2018, 2021). Nakhaei et al. (2018) employed ELCOM to simulate the 

hydrodynamics of three stormwater ponds in Edmonton. The study found that ELCOM was 

sensitive to atmospheric stability, albedo, and attenuation coefficient. Additionally, Nakhaei et 

al. (2021) calibrated the CAEDYM model for two stormwater ponds, providing a subset of 

calibrated parameters. They proposed these parameters could be used to model nutrient dynamics 

and trophic states in similar stormwater ponds without further calibration. However, the model’s 

inability to accurately simulate total chlorophyll-a raises concerns about the applicability of the 

suggested parameters in other ponds. 

 OBJECTIVES AND STRUCTURE OF THE THESIS 1.2

The objectives of this study are as follows:  

(i) To evaluate the ability of ELCOM-CAEDYM to model algae biomass in the South 

Terwillegar Towne2 (ST2) stormwater pond, by focusing on total chlorophyll-a (TCHLA). 

However, this evaluation also includes other state variables such as temperature, dissolved 

oxygen, and nutrients, which influence algae growth. 
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(ii) To perform a sensitivity analysis to examine the impact of model parameters on the 

simulated state variables, particularly TCHLA. 

(iii) To analyze the sensitivity of the calibrated model to boundary conditions, including 

flow, nutrient, wind, and temperature, as well as to depth and bathymetry. 

This study distinguishes itself from previous research due to its emphasis on the urban 

stormwater pond scale, rigorous calibration and validation based on extensive field 

measurements, as well as a thorough sensitivity analysis of the model to various parameters and 

input data.  

The thesis is structured into six chapters. Following this introductory chapter, Chapter 2 

provides a description of the South Terwillegar Towne2 (ST2), Terwillegar Towne2 (TT2), and 

Silverberry4 (SB4) stormwater ponds. It also outlines the fieldwork conducted and the data 

collected and processed for various aspects of the study. Chapter 3 focuses on the reverse level-

pool routing method used to estimate inflow, a crucial boundary condition for ELCOM-

CAEDYM modeling. This chapter quantifies the inherent error associated with the reverse level-

pool routing and describes a filtering approach to mitigate its magnitude. The available inflow 

measurements from the SB4 and TT2 ponds are utilized to evaluate the effectiveness of the 

proposed approach for estimating inflow into the ST2 pond.  

In Chapter 4, the ELCOM-CAEDYM is used to simulate the hydrodynamics and water 

quality of the ST2 pond. The chapter details the calibration and validation processes. 

Additionally, a sensitivity analysis of the ELCOM-CAEDYM model is conducted to identify the 

most influential model parameters. Following this, Chapter 5 defines multiple scenarios by 

altering boundary conditions of the ST2 model, including depth, inflow rates, nutrient loading, 

wind speed, and air temperature. The calibrated model is then used to assess the impact of each 

scenario on the state variables that determine the water quality of the pond. Special attention is 
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given to total chlorophyll-a, as a key indicator of algae biomass and overall water quality. 

Finally, Chapter 6 summarizes the results of the study and provides conclusions. 
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Chapter 2. STUDY AREA, FIELD MEASUREMENTS AND DATA 

PROCESSING 

This chapter describes the characteristics of the study stormwater ponds, the field 

measurements conducted to collect the required data, and the processing of collected data. 

 DESCRIPTION OF STUDY STORMWATER PONDS 2.1.

Three stormwater ponds, namely Silverberry4 (SB4), Terwillegar Towne2 (TT2), and South 

Terwillegar2 (ST2), were selected for this study. All three ponds are located in residential areas 

of Edmonton. Figure 2-1 illustrates the schematic views of the ponds, along with the locations of 

their inlets and outlets. Each study pond has only one outlet and two to four inlets with varying 

inflows contributions. Table 2-1 presents the basic properties of the study ponds.

 

Figure 2-1: Schematic view of study stormwater ponds; a) Silverberry4 (SB4), b) Terwillegar 

Towne2 (TT2), and c) South Terwillegar2 (ST2). 
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Table 2-1: Basic properties of study ponds. 

 

 FIELD MEASUREMENTS AND DATA PROCESSING 2.2.

The fieldwork conducted from October 2013 to October 2015 was part of this current 

research project, which was undertaken through collaboration with other students and 

researchers. The fieldwork involved surveying, instrumentation installation, and data monitoring. 

Water quality and precipitation data were measured during the open-water seasons. Additionally, 

direct measurements of inflows and outflows were conducted from January to May 2015 at the 

SB4 and TT2 ponds. Subsets of collected data were used in this study as needed. Data collected 

at SB4 and TT2 were used to validate the reverse level pool method outlined in Chapter 3, while 

data collected at the ST2 pond were utilized for hydrodynamics and water quality modeling, as 

discussed in Chapters 4 and 5, respectively. 

 Bathymetry 2.2.1.

To define the bathymetry of the study ponds, as well as documenting the position of the 

installed instruments, a Real Time Kinematic Global Positioning System (RTK-GPS) survey 

Study 

Pond

Average 

Depth

Surface 

Area

Volume Basin 

Area 

Location of Outlet Location of Inlet Inlet Flow 

Contribution

(m) (ha) (m³) (ha) (%)

South-East (SE) 60.0

North-East (NE) 25.3

East of the pond toward 

the North (ENE)

12.4

North-West (NW) 2.3

North-East (NE) 78.5

South-East (SE) 21.5

North-West (NW) 74.5

South arm  (SARM) 22.4

South-West (SW) 3.1

TT2

ST2

SB4

South-East (SE)

North-West (NW)

1.78 2.18     39,000 91.4 North-West (NW)

0.44 1.82      8,100 92.9

0.85 0.90      7,700 40.8
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system [Trimble, USA] and SONARMITE-BT® depth sensor [Seafloor, CA] were used. First, 

area calibrations were created using five to six Alberta Surveying Control Markers (ASCM) 

located in the vicinity of the study ponds, in the Silverberry and Terwillegar areas. Then, without 

moving the RTK base station, and using the local calibration, at least four fixed accessible local 

benchmarks (e.g., top of manholes) were selected around each pond. Subsequently, the 

elevations and coordinates of all the surveyed points were referred to the ASCMs. Each pond’s 

bathymetry was surveyed nearly up to the high-water level. For surveying the pond, the depth 

sounder was mounted on a boat. However, wading was required both for sounding the areas 

shallower than 0.35 cm, and verifying echo sound readings. Surveyed data was processed using 

ESRI ArcGIS® software [Environmental Systems Research Institute, USA] for model setup, and 

to develop the level-volume and level-area relationship. Figure 2-2 illustrates ST2 hypsometric 

curves (level-volume and level-area relationships). SB4 and TT2 hypsometric curves are 

presented in Appendix A, Figure A-1 and Figure A-2, respectively. 

 

Figure 2-2: Hypsometric curves of ST2: a) Water level versus Volume b) Water level versus area. 

 Meteorological Data 2.2.2.

In order to acquire meteorological data, at each study pond a weather station was installed at 

an elevation of approximately 10 m above the water surface on a hinged flagpole. The weather 

a) b)
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stations were equipped with HOBO U30 weather station data loggers [Model U30-NRC-000-10-

S100-000, ONSET, USA] and the following sensors: 

 Temperature and relative humidity [Model S-THB-M002],  with accuracy of ±0.21°C for 

temperature range between 0° to 50°C, and ±2.5% from 10% to 90% RH typical to a 

maximum of ±3.5% including hysteresis at 25°C. 

 Barometric pressure [Model S-BPB-CM50], ±3.0 mbar over full pressure range (i.e., 660 

to 1070 mbar) at 25°C with maximum error of ±5.0 mbar over -40° to 70°C.  

  Wind speed and wind direction [Model S- WSB-M003],  with accuracy ±1.1m/s or ±4% 

of reading whichever is greater over measurement range of 0 to 76 m/s. 

 Pyranometer [Model S-LIB-M003], with accuracy of ±10 W/m2 or ±5%, whichever is 

greater in sunlight. 

 Rain Gauge Smart sensor [Model S-RGA-M002]. The data logger recorded data every 10 

minutes from each sensor. Measures rainfall with intensity up to five inches per hour with 

a resolution of 0.01 inch, and 1% accuracy for rainfall rates up to 1"/hour.  

The weather stations underwent routine inspections, with data retrieval both at the beginning 

and end of the open-water season, as well as one or two times during the open-water. Rainfall 

was measured only during the open-water seasons. Examples of the meteorological data 

measured at ST2 weather station are presented here: wind speed and direction in Figure 2-3, 

rainfall intensity in Figure 2-4, and air temperature in Figure 2-5. Additional examples are 

provided in Appendix A, Figure A-3 to Figure A-5. 
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Figure 2-3: Wind speed and direction illustrated as a windrose, measured at ST2 from October 

2013 to October 2015. 

 

Figure 2-4: Rainfall intensity at ST2 measured during open-water season: a) 2014 and b) 2015. 

 

Figure 2-5: Air temperature measured at 10-minute intervals from the weather station installed at 

ST2. 

a) b)

a) Air Temperature 

b) Solar Radiation

c) Relative humidity 
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 Biogeochemical Data Collection 2.2.3.

Biogeochemical data were collected from the study ponds to support the water quality 

modelling objectives of this study. Various datasets were collected through in-pond 

instrumentation, outlet structure instrumentation, profiling, and water quality sampling. As 

depicted in Figure 2-1, all the sampling locations are near the inlets and outlets of the study 

ponds. 

2.2.3.1 In-Pond Instrumentation 

From October 2013 to October 2015, in-pond instruments collected data water level (WL), 

water temperature (T), dissolved oxygen (DO), and total chlorophyll-a (TCHLA). Instruments 

were grouped into measurement stations and installed at the sampling locations. Each 

measurement station comprised a steel cable, fixed to a cinderblock anchor and a buoy to hold it 

vertically. Each station was equipped with different numbers and types of sensors as listed 

below: 

 Divers (SWS-TD and SWD-CTD)(©Schlumburger) to measure water pressure with 

accuracy of 0.5 to 1.0 cm H2O and temperature with accuracy of 0.1°C, 

 HOBO-Tidbit (©Onset) to measure temperature with accuracy of 0.2°C, 

 RBR-Duo (©RBR) to measure temperature with accuracy of 0.002°C and dissolved 

oxygen with accuracy of 2% O2 saturation, and 

 EXO2 [YSI Inc., a Xylem brand, U.S.A.] to measure temperature with accuracy of 

0.01°C, dissolved oxygen with accuracy of 1% of reading, and chlorophyll-a with 

accuracy of 0.01 mcg/L. 

The sensors were attached to the cable and suspended at various depths. Figure 2-6 

illustrates three measurement stations before deployment and one after deployment. Figure 2-6a 

depicts a measurement station containing several HOBO-Tidbits at different elevations as well as 
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an EXO2. On the top of the buoy a HOBO-Tidbit was installed to measure the water temperature 

close to the water surface. Figure 2-6b shows another measurement station equipped with two 

RBR-Duo and a diver. After attaching the sensors, the sensors height referenced to the bottom of 

cinder block was measured, as presented in Figure 2-6c. Figure 2-6d shows a measuring station 

after deployment in the pond. Details on installation and retrieval dates, types and elevations of 

all sensors installed at sampling locations in the study ponds are presented in Appendix A, Table 

A-1 to Table A-3. 

 

Figure 2-6: Example of measurement stations, before deployment (panels a, b and c) and 

after deployment (panel d). 

2.2.3.1 Outlet Structure Instrumentation 

Two divers were placed in the outlet structure of each study pond at different depths and 

programmed to measure the water level at intervals of 3 or 6 minutes. These data, along with 

those acquired from all in-pond divers and manual water surface elevation measurements, were 

then used to construct water level time series at each study pond. 

a)

b)

b) c) d)
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2.2.3.1 Profiling 

During the open-water season of 2015, in addition to the point measurements taken by the 

moored sensors, bi-weekly vertical profiles of temperature, dissolved oxygen and total 

chlorophyll-a were measured. During profiling, an EXO2 was slowly lowered from the surface 

to the bed of the ponds and then raised back up. Only the profiling data from ST2 that have been 

used in this study is presented here. In this pond, weekly profiling was conducted at all the 

measuring locations, i.e., NW, SW, SARM and SE. 

2.2.3.1 Water Quality Sampling 

Starting in October 2013, water samples were taken from sampling locations of all the study 

ponds, but only the ST2 data used in this study is presented here. During open-water seasons, 

water samples were collected bi-weekly using a Van Dorn sampler. Samples were typically 

collected near the surface and bed to capture vertical variations. In 2014, surface samples were 

taken at the sampling locations at depths of 0.5-1.0 m, while in 2015 samples were taken from 

both the surface (0.5-1.0 m deep) and the bottom (1.5-2.0 m deep). The water samples were 

stored in 1 L Nalgene© plastic bottles, either packed on ice or refrigerated, and transported to the 

Biogeochemical Analytical Service Laboratory (BASL) at the University of Alberta within 24 

hours. The BASL holds ISO/IEC 17025 accreditation for specific tests from the Canadian 

Association for Laboratory Accreditation (CALA), a recognized accreditation body in Canada 

for ISO/IEC 17025 standards. The complete list of accreditations are presented in the BASL 

website: https://basl.biology.ualberta.ca/. Table A-4 in Appendix A presents some examples of 

confidence intervals for parameters analyzed at BASL. The .water samples were analysed for 

biochemical parameters such as Ammonia (NH3), nitrite+nitrate (NO2+NO3), total nitrogen 

(TN), total dissolved nitrogen (TDN), total kjeldahl nitrogen (TKN), soluble reactive 

phosphorous (SRP), total phosphorous (TP), total dissolved phosphorous (TDP), total particulate 

phosphorous (TPP), dissolved organic carbon (DOC), dissolved inorganic carbon (DIC), total 

https://basl.biology.ualberta.ca/
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chlorophyll-a (TCHLA). Additionally, water transparency was measured at each location using a 

Secchi disk. Information on the date, location, and results of analysed water quality samples for 

ST2 are presented in Appendix A, Table A-5 and Table A-6. 

Figure 2-7 illustrates the measured data collected at the NW sampling location of ST2 during 

the open-water season of 2015. The data were collected using in-pond instruments (depicted as a 

sequence of horizontal dots), profiling (depicted as a sequence of vertical dots), or discrete water 

samples (depicted as single dots). Depths are referenced to the outline of the pond, which is 1.68 

m above the normal water level (NWL). Additional plots of measured T, DO, TCHLA, TP and 

TN are presented in Appendix A, Figure A-13 to Figure A-21. 
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Figure 2-7: Measured water quality variables at the NW sampling location of ST2: a) water 

temperature, b) dissolved oxygen, c) total chlorophyll-a, d) total phosphorus, and e) total nitrogen. 

The dashed lines represent the normal water level at elevation 680.07m. 
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 Algae Sampling and Taxonomic Analysis 2.2.4.

In addition to water sampling, algae samples were collected during the open-water season to 

allow taxonomic analysis of phytoplankton in the study ponds. Depth-integrated water column 

samples were taken using a custom-made algae sampler depicted in Figure 2-8a and b. The 

sampler was a transparent plastic cylinder with a height of 1.8 m and diameter of 10 cm. The 

cylinder was clamped to an L-shaped bracket so that the lower end of the cylinder was kept 20 

cm above the pond bottom. 

At each sampling location, the algae sampler was slowly lowered into the pond to minimize 

mixing of the water column until either the sampler was completely submerged or the bracket 

foot reached the bottom of the pond. A stopper was then inserted into the top of the cylinder. 

Subsequently, the sampler was slowly lifted and a second stopper was inserted into the lower end 

of the cylinder. The depth of water inside the sampler was measured, and the captured water was 

transferred to sample bottles. If floating algae (scum) was present in the pond (e.g., Figure 2-8c), 

scum samples were also taken in a glass sampling jar. The samples were then preserved in the 

laboratory by adding formalin to the jars. Identification of algae species was conducted by Dr. 

Edyta Jasinska, an aquatic ecologist at the University of Alberta. Taxonomic results are 

presented in Appendix A, Table A-7. 



Chapter 2: Study Area, Field Measurements and Data Processing 

22 

 

Figure 2-8: Algae sampling: a) lowering algae sampler into the pond, b) view of floating algae in an 

algae sampler, and c) floating scums on ST2. 

 Outlet Structures and Rating Curves 2.2.5.

Outflows from the study ponds are controlled either by weirs or orifices in the outlet 

structures. The ‘designed’ dimensions of outlet structures, as documented in design reports, were 

supplied by the City of Edmonton. However, visual assessments and field measurements 

indicated some modifications and adjustments over time. Therefore, the ‘as-built’ dimensions of 

outlet structures were measured directly during fieldwork. Due to safety concerns and difficulties 

in accessing the outlet structure of SB4, this structure was surveyed in cooperation with a crew 

from the City of Edmonton. 

Figure 2-9 to Figure 2-11 show the as-built outlet structures of TT2, SB4, and ST2, 

respectively. TT2 outlet is a contracted weir (i.e., the weir crest does not extend to the side walls) 

with a width of 1.041 m, and a circular orifice with a diameter of 0.292 m. The outlet structure at 

SB4 consists of a rectangular orifice with a width of 0.343 m and a height of 0.100 m, as well as 

a) b) c)
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a rectangular weir with a crest at the high water level. The outlet structure at ST2 includes a 

rectangular orifice with a width of 0.305 m and height of 0.145 m, along with a rectangular weir 

with a crest at the high water level. 

 

Figure 2-9: Outlet structure at TT2. Left: Side view, Right Front view 

 

Figure 2-10: Outlet structure at SB4. Left: Side view, Right Front view. 
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Figure 2-11: Outlet structure at ST2. Left: Side view, Right Front view. 

The ‘as-built’ rating curves, presented in Figure 2-12 to Figure 2-14, were derived from the 

as-built dimensions (details in Appendix A). As expected, the as-built rating curves differ from 

those reported by the City of Edmonton. 
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Figure 2-12: Designed and As-Built rating curves for SB4. 

 

Figure 2-13: Designed, and As-Built rating curve for TT2. 
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Figure 2-14: Designed and As-Built rating curve for ST2. 

 Inflow and Outflow Measurements 2.2.6.

In the SB4 and TT2 ponds, between January 2015 and May 2015, inflows and outflows were 

directly measured by the City of Edmonton. The flow rates were measured at five-minute 

intervals using ISCO 2150® area-velocity flowmeters [TELEDYNE ISCO, USA] mounted in 

the inlet and outlet pipes. The flowmeter accuracy is ±0.003 m for water levels of 0.01 m to 3.05 

m and ±0.03 m/s for velocities of -1.5 m/s to +1.5 m/s. Inflows were measured from early 

January to late May 2015, although the flowmeter at the SE inlet of TT2 stopped recording from 

late February to late April 2015. The normal ratio method (Chow et al. 1988) was used to fill this 

gap in the measured inflows data. Examination of measured inflow data showed that the total 

inflow at SE inlet were 45% of the NE inflow. Therefore, the inflow gap at SE inlet was 

estimated by multiplying the the measured inflows at the NE inlet by 0.45. The pond outflows 

were recorded from late March 2015 at SB4 and from late April 2015 at TT2 and continued to 

late May 2015. Figure A-6 to Figure A-9 in Appendix A illustrate the measured inflows and 

outflows at SB4 and TT2. 
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 Water Level Elevations 2.2.7.

The time series of water levels in each pond were determined by averaging the levels 

measured by all divers in that pond. Since the divers recorded the total pressure, barometric 

compensation was required to convert their readings to water levels. Details are outlined in 

Appendix A, Section A.5. Furthermore, during the open-water season, water level elevations 

were measured biweekly at a minimum of three locations in each pond using an AC 2s® 

automatic level [Nikon, Japan]. These measurements served to validate the accuracy of divers’ 

readings. 

 Normal Water Level 2.2.8.

The normal water level (NWL) is defined as the threshold above which outflows occur from 

the pond. This level corresponds to the elevation of the weir crest (e.g., at TT2) or the bottom of 

the rectangular orifice (e.g., at SB4). Therefore, accurate determination of NWL is essential for 

estimation of outflows. Attempts were made to directly measure NWL in the field; however, due 

to challenges in accessing the outlet structures and safety concerns, the measurements were not 

sufficiently accurate. Therefore, NWL was estimated indirectly through trial and error. Based on 

field measurement and observed water levels, a plausible range (conservatively set to be 10 cm) 

for NWL was established for each pond. NWL was then varied within this range in one-mm 

increments, and the corresponding outflows were calculated. 

Due to lack of flow measurements at ST2, its NWL was estimated using hydrodynamic 

modeling, which is discussed in Chapter 4. For the SB4 and TT2 ponds, NWL was estimated by 

minimizing the difference between observed and estimated outflows based on the root mean 

square error (RMSE) defined as: 
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𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝜑𝑖 − 𝜑𝑖

0)
2

𝑛

𝑖=1

 (2-1) 

where 𝑛 is the number of observed data, 𝜑 represents the estimated variable (for example 

outflow), and 𝜑𝑖 and 𝜑𝑖
0 are the 𝑖th observed and estimated variables, respectively. Using this 

approach the RMSE was minimized at SB4 and TT2 at NWL = 706.342 m and NWL = 681.443 

m, respectively. Figure 2-15 and Figure 2-16 indicate that these normal water levels yield 

reasonable agreement between measured and estimated outflows at SB4 and TT2. It should be 

noted that due to the failure of the flowmeter installed at the outlet pipe of TT2, outflow 

measurement was limited to a single storm event in early May 2015. The dotted blue line in 

Figure 2-16 denotes erroneous readings, attributed to the malfunctioning of the flowmeter, which 

were not used in the estimation of NWL. 

 

Figure 2-15: Comparison of measured and estimated outflows at SB4. 
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Figure 2-16: Comparison of measured and estimated outflows at TT2. 
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Chapter 3. EVALUATION OF THE PERFORMANCE OF REVERSE 

LEVEL POOL ROUTING IN ESTIMATION OF INFLOWS 

INTO STORMWATER PONDS IN THE CITY OF EDMONTON 

 INTRODUCTION 3.1.

Knowing the rate and variability of flows entering and exiting stormwater ponds is essential 

for hydrodynamics and water quality modelling. Therefore, either direct measurement or indirect 

estimations of inflows and outflows are required. However, the installation, maintenance, and 

operation of flow measuring devices are costly and time-consuming (Perumal et al. 2010). 

Moreover, flowmeters may not be sufficiently accurate during low and high-flow conditions. 

Additionally, other factors such as sedimentation in the inlet structure impacts the accuracy of 

measured inflows. As a result, continuous flow measurement into and out of stormwater ponds is 

not commonly available. Furthermore, components such as overland runoff, seepage, and 

groundwater that do not pass through the inlet and outlet structures cannot be directly measured. 

Therefore, the net flux of water into the stormwater ponds may not be accurately quantified 

solely by flow measurements (Deng et al. 2015). Alternatively, some studies suggested that 

inflows can be estimated using the principle of mass balance (i.e., the continuity equation) (e.g., 

D’Oria and Tanda 2012; Leonhardt et al. 2014). This approach requires data such as time series 

of water levels and the level-volume relationship. 

In reservoirs, changes in volume (storage) are determined by the difference between rates of 

all the inflows and outflows. Reservoir storage and outflows through the outlets are determined 

by water level, as prescribed by the level-volume relationship and characteristics of the outlet 

structures. Thus, in theory, if either inflows or outflows are measured, the other can be estimated 

using the principle of mass balance. When inflows are known, the outflow hydrograph can be 

predicted using the ‘level pool routing’ method. This ‘hydrologic routing’ is based on the 
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continuity equation and the ‘level pool’ approximation, which assumes the water surface in the 

reservoir is horizontal (Chow 1959; Fenton 1992; Ponce 1989; Yevdjevich 1959). 

Conversely, when water levels (and hence outflows) are known, the inflow hydrograph can 

be calculated using the ‘reverse level pool routing’ method (e.g., Deng et al. 2015; Leonhardt et 

al. 2014; Zoppou 1999). While both direct and reverse routings are developed based on the same 

governing equation and assumptions, the reverse method is an ill-posed problem, meaning it is 

highly sensitive to noise in the input data (Dooge and Bruen 2005; Koussis and Mazi 2015; 

Szymkiewicz 1993; Todaro et al. 2019). Noise in the water level measurements, whether due to 

measurement errors, electronic noise or water level fluctuations induced by environmental 

factors such as wind, lead to significantly larger oscillations in the estimated inflows by reverse 

level pool routing (i.e., back-routed inflows) (e.g., Deng et al. 2015; Koussis and Mazi 2015; 

Leonhardt et al. 2014; Zoppou 1999). Nevertheless, estimating inflows though reverse routing is 

necessary in many practical applications, such as reservoir operations (Bruen and Dooge 2007; 

D’Oria and Tanda 2012; Deng et al. 2015; Dooge and Bruen 2005; Fenton 1992), flood 

management (Badfar et al. 2021; Dooge and Bruen 2005; Tayfur and Moramarco 2022), and 

water quality modeling (Koussis and Mazi 2015; Pagendam and Percival 2015). 

Depending on the magnitudes of the oscillations in the back-routed inflows compared to the 

true inflows, reverse routing may generate non-physical negative inflows. Most studies 

employing reverse routing have dealt with high-flow events or reservoirs with continuous 

inflows (e.g., D’Oria et al. 2012; Todaro et al. 2019; Zoppou 1999), where the relative 

significance of oscillations in the estimated inflows is less important. However, inflows into 

urban stormwater ponds, such as those considered in this study, are frequently zero or near zero. 

Hence, the spurious oscillations can lead to negative inflows more frequently. 

Based on a hypothetical problem, Zoppou (1999) concluded that oscillations in the predicted 

inflows can be removed by employing the centred explicit scheme without filtering water levels. 



Chapter 3: Evaluation of the Performance of Reverse Level Pool Routing in Estimation of Inflows into Stormwater 

Ponds in the City of Edmonton 

32 

However, implementing the same schemes in this study led to oscillatory inflows. Other studies 

have also noted that the centred explicit schemes alone cannot prevent spurious oscillations (e.g., 

Aldama and Aguilar 2007). Applying a filter to the measured water levels before employing the 

reverse level pool method has been suggested as a measure to reduce the magnitude of 

oscillations in the back-routed hydrograph (e.g., Aldama and Aguilar 2007; Deng et al. 2015; 

Koussis and Mazi 2015; Leonhardt et al. 2014; Wang et al. 2014). However, the smoothing 

effect of filtering also attenuates the peaks and distorts the shape of the inflow hydrograph, 

indicating a trade-off between noise reduction and preservation of inflow hydrograph 

characteristics. Since filtering water levels does not completely remove inflow noise and 

negative values, some studies (e.g., Koussis et al. 2012) have further post-processed the 

estimated inflows, either by additional filtering or by removing negative inflows and rescaling 

the positive inflows to maintain the mass balance. 

The objective of this chapter is to evaluate the performance of the reverse level pool routing 

approach to estimate inflows. The chapter first quantifies the errors in the back-routed inflows 

and then explores the impact of filtering water levels on the estimated inflows. Limited inflow 

measurements at the Terwillegar Towne 2 (TT2) and Silverberry 4 (SB4) ponds provided 

confidence in this approach, so it was employed to estimate inflows into South Terwillegar 2 

(ST2). 

 METHODOLOGY 3.2.

 Governing Equations and Numerical Schemes 3.2.1.

The governing equation is the continuity equation, which states the change in volume is 

controlled by the net flux of water into the system: 
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𝑑𝑉

𝑑𝑡
= 𝐼 − 𝑂 (3-1) 

where, 𝑉 (m³) is the volume of water, 𝑡 (s) indicates time, 𝐼 (m³/s) represents flow entering the 

pond, including inflow through the inlets, overland flow, and direct precipitation over the pond, 

and 𝑂 (m³/s) represents flow exiting the pond, including outflows through the outlets and 

evaporation. As discussed in Chapter 2, precipitation was directly measured at the weather 

stations, and depth of evaporation was obtained from published climatological values for shallow 

lakes in Edmonton (Alberta Government 2013). Equation (3-1) can be solved given an inflow 

hydrograph, an initial condition, and the level-volume and level-outflow relationships. This is 

known as (direct) routing which calculates water levels and outflows. A MATLAB® code 

utilizing the 'ode45' solver, a 5th-order accurate numerical scheme for solving initial-value 

differential equations (MathWorks. 2023), was developed for routing of given hydrographs into 

the study ponds. The water level resulting from routing a hydrograph, whether hypothetical or 

measured is considered the "exact" water level here. 

Figure 3-1a illustrates a hypothetical inflow hydrograph with a peak and duration 

comparable with the observed values into the SB4 and TT2 ponds. This hydrograph has no base 

flow and its volume is sufficiently large to cause outflows out of the study ponds with an initial 

level of 5 cm below the normal water level (NWL). The hydrograph was routed through the 

study ponds, and the routed water levels at SB4 are shown in Figure 3-1b.  
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Figure 3-1: a) A realistic hypothetical inflow hydrograph and b) routed water level in the SB4 pond. 

For reverse level pool routing, Equation (3-1) was discretized by the centered, forward, and 

trapezoidal finite difference schemes, as presented in Equations (3-2) to (3-4), respectively: 

𝐼𝑛 = 𝑂𝑛 +
𝑉𝑛+1 − 𝑉𝑛−1

2∆𝑡
 (3-2) 

𝐼𝑛 = 𝑂𝑛 +
𝑉𝑛+1 − 𝑉𝑛

∆𝑡
 (3-3) 

𝐼𝑛 = 𝑂𝑛−1 + 𝑂𝑛 − 𝐼𝑛−1 + 2 (
𝑉𝑛 − 𝑉𝑛−1

∆𝑡
) (3-4) 
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Here the superscript (𝑛) indicates values at time step n (e.g., 𝐼𝑛 = 𝐼(𝑡 = 𝑛∆𝑡)), and ∆𝑡 is the 

numerical time step, set at 10 minutes to match the measurement frequency. In these equations,  

𝐼 encompasses the net influx as result of pipe inflows, evaporation, precipitation, groundwater 

interactions and surface runoff, since their combined influence is already reflected in the change 

of water level over each time step. The discretized equations were also implemented in the 

MATLAB programming environment. 

To illustrate the noise amplification problem of the reverse level routing, the exact routed 

water level time series, displayed in Figure 3-1b, was perturbed by normal random noise (𝜖) with 

a mean of zero (𝜇 = 0) and standard deviation of one (𝜎 = 1mm). Subsequently, the perturbed 

inflow time series was determined using the centred, forward, and trapezoidal schemes 

(Equations (3-2) to (3-4)). Figure 3-2b indicates that the centred scheme is the most accurate of 

the three, consistent with the findings of Zoppou (1999). Nonetheless, even this scheme suffers 

from noise amplification. The forward scheme yields more oscillatory inflows compared to the 

centred scheme, while the oscillations of the trapezoidal scheme are so large that inflows at 

multiple times exceed the limits of the vertical axis. 

The noisy inflows presented in Figure 3-2b were back-routed from a single set of randomly 

perturbed water levels. To analyze the accuracy of each scheme, a Monte Carlo technique was 

employed, involving the generation of 10,000 randomly perturbed water level time series and the 

calculation of their corresponding back-routed inflow time series. Figure 3-3 illustrates the 95% 

confidence intervals of perturbed inflows at SB4, back-routed by the three discretization 

schemes. It is obvious that the centered scheme provides the most accurate results, and hence 

only this scheme was used in this study. 
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Figure 3-2: An example of noise amplification from water levels to inflows at the SB4 Pond. (a) 

Exact (routed) and perturbed water levels with σ=1mm; (b) Exact and back-routed inflows using 

centred, forward and trapezoidal schemes. 𝚫𝒕 = 600 s. 

 
Figure 3-3: Performance of centred, forward, and trapezoidal schemes at SB4 based on 10,000 

simulations. 𝝈 = 𝟏 mm, 𝚫𝒕 = 600 s. 
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 Analyzing the Impact of Water Level Noise on Back-routed Inflows 3.2.2.

In this section, how the properties of noise in the observed water levels were evaluated is 

described. Then, how the impact of noise in the water level time series on the back-routed inflow 

was quantified using three methods is explained. These methods included an analytical method 

based on the properties of random variables, Taylor Series expansion, and order-of-magnitude 

analysis. Subsequently, the procedure for validating this relationship through a Monte Carlo 

simulation is explained. 

 Water Level Noise Magnitude and Distribution 3.2.2.1

In order to predict error in the back-routed inflows, first the magnitude of noise in the 

observed water level time series was estimated. For this, MATLAB was used to apply the 

Butterworth low-pass filter (Butterworth 1930) to the measured water levels to remove high 

frequency noise. The noise at each time step was then calculated as the difference between the 

observed and filtered water levels. For instance, Figure 3-4 illustrates observed and filtered water 

levels at the study ponds during a period of relatively constant water levels. Next, the standard 

deviation of noise (σ) was calculated over a 72-hour time window (i.e., a sample size of 432). 

Figure 3-4 illustrates that over the 72 hours plotted, noise magnitudes at SB4, TT2 and ST2 were 

1.0, 1.1, and 1.3 mm, respectively. Additionally, as shown in Figure 3-5, the distribution of noise 

is approximately normal. It should be noted that time window lengths, ranging from half a day to 

30 days, were also tested, and very similar results were obtained. Figure 3-4 and Figure 3-5 

display a 72-hour window from April 28 to May 01, 2015. This window was moved across the 

entire observation period (November 2013 to October 2015), and the calculated σ values are 

presented in Figure 3-6. The inter-quartile ranges of σ are 1.0-1.3 mm for SB4, 1.1-2.1 mm for 

TT2, and 1.0 to 1.5 mm for ST2. This indicates that noise in the observed water levels is 

generally between 1 and 2 mm, with the noise levels at SB4 and ST2 being slightly smaller than 

at TT2. 
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Figure 3-4: Observed and filtered water levels at the study ponds 

 

Figure 3-5: Histogram of noise (deviation of measured from filtered water levels) overlaid with the 

normal distribution (red line) for the study ponds. 
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Figure 3-6: Boxplots of noise standard deviation (σ) values, computed using a 72-hour sliding 

window across the observation period. 

 Analytical Error Analysis 3.2.2.1

An analytical error analysis was conducted to investigate the amplification of water level 

noise by reverse level pool routing. First, the noise (i.e., random error in the measured water 

level) was modeled by a normal distribution as follows: 

𝜖~𝐍(0, 𝜎) (3-5) 

where 𝜖 is noise, and 𝐍 denotes the normal distribution with a mean (𝜇) of zero and a constant 

standard deviation (𝜎), or: 

𝜇(𝜖) = 0;            𝜎(𝜖) = 𝜎 (3-6) 

Therefore, the noisy water level (denoted as ℎ∗) at time 𝑡, is also a normal random variable, 

different from the true water level (ℎ) and given by: 
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ℎ∗ = ℎ + 𝜖 (3-7) 

Taking the mean and standard deviation of (3-7) gives: 

𝜇(ℎ∗) = ℎ;            𝜎(ℎ∗) = 𝜎 (3-8) 

indicating that the measured water level is a random normal variable with the following 

distribution: 

ℎ∗~𝐍(ℎ, 𝜎) (3-9) 

Since the water level time series is used to calculate the outflow and pond volume a noisy water 

level time series will produce noisy outflow and volume time series defined as O
*
 and V

*
. The 

resulting noisy back-routed inflow time series will then be given from Equation (3-2) as: 

𝐼∗𝑛 = 𝑂∗𝑛 +
𝑉∗𝑛+1 − 𝑉∗𝑛−1

2∆𝑡
 (3-10) 

For small perturbations, i.e., 𝜖 ≪ ℎ, noisy volume (𝑉∗ = 𝑉(ℎ∗)) and outflow (𝑂∗ = 𝑓(ℎ∗)) can 

be linearized based on Taylor’s expansion as follows: 

𝑉∗𝑛 = 𝑉(ℎ𝑛 + 𝜖𝑛) 

= 𝑉𝑛 + 𝜖𝑛
𝜕𝑉𝑛

𝜕ℎ
+

(𝜖𝑛)2

2

𝜕2𝑉𝑛

𝜕ℎ2
+ ⋯ 

(3-11) 
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𝑂∗𝑛 = 𝑂(ℎ𝑛 + 𝜖𝑛) 

= 𝑂𝑛 + 𝜖𝑛
𝜕𝑂𝑛

𝜕ℎ
+

(𝜖𝑛)2

2

𝜕2𝑂𝑛

𝜕ℎ2
+ ⋯ 

(3-12) 

Substituting Equations (3-11) and (3-12) into Equation (3-10) and dropping the higher order 

terms: 

𝐼∗𝑛 = 𝐼𝑛 +
𝜕

𝜕ℎ
(𝜖𝑛𝑂𝑛 +

𝜖𝑛+1𝑉𝑛+1 − 𝜖𝑛−1𝑉𝑛−1

2∆𝑡
) 

+
1

2

𝜕2

𝜕ℎ2
((𝜖𝑛)2𝑂𝑛 +

(𝜖𝑛+1)2𝑉𝑛+1 − (𝜖𝑛−1)2𝑉𝑛−1

2∆𝑡
) 

(3-13) 

Computing the expected value on both sides of Equation (3-13), and considering Equation (3-8), 

the expected value of the noisy inflow times series is: 

𝜇𝐼∗𝑛 = 𝐼𝑛 +
𝜎2

2

𝜕2𝐼𝑛

𝜕ℎ2
 (3-14) 

Given that 𝜎2 ≪  𝐼∗𝑛, it can be concluded that at each time step, the expected value of the noisy 

inflow is the same as the exact inflow, or 

𝜇(𝐼∗𝑛) = 𝐼𝑛 (3-15) 

Further, taking the standard deviation of both sides of Equation (3-13) yields: 

𝜎𝐼∗𝑛 = 𝜎√(
𝜕𝑂𝑛

𝜕ℎ
)

2

+
1

4(∆𝑡)2
[(

𝜕𝑉𝑛+1

𝜕ℎ
)

2

+ (
𝜕𝑉𝑛−1

𝜕ℎ
)

2

]  (3-16) 
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Based on Taylor’s expansion, the volume derivatives under the radical can be expanded about 

time step 𝑛, and given that 𝜕𝑉 𝜕ℎ⁄ = 𝐴, Equation (3-16) reduces to: 

𝜎𝐼∗𝑛 = 𝜎√(
𝜕𝑂𝑛

𝜕ℎ
)

2

+
1

2
(

𝐴𝑛

∆𝑡
)

2

  (3-17) 

Considering the order of magnitudes of the terms in Equation (3-17) (𝑂~10⁻³ m³/s, 𝐴~10⁴ m², 

Δ𝑡~10² s, and ℎ~10⁰ m), the second term under the radical is several orders of magnitudes larger 

than the first term, therefore: 

𝜎𝐼

𝜎
=

𝐴

√2∆𝑡
 (3-18) 

where 𝐴/(√2 ∆𝑡)  is defined as the amplification factor of the reverse level pool routing using 

the centred scheme and 𝜎𝐼 is the standard deviation of the noisy inflow, 𝐼∗. However, in Equation 

(3-18) and throughout the remainder of this chapter, the superscript (*) is omitted for clarity and 

readability. It can be seen in Eq. (3-18) that in reverse level pool routing, by decreasing ∆𝑡 the 

amplification factor increases.  

 Calculation of Amplification Factor using Monte Carlo Simulations 3.2.2.1

In order to verify the validity of Equation (3-18), amplification factors were calculated using 

the same Monte Carlo technique described earlier. The exact water level times series at each 

pond were perturbed with 𝜎 values between 1mm and 100mm, and the corresponding 

amplification factors (𝜎𝐼 𝜎⁄ ) were calculated. 

 Noise Mitigation by Filtering 3.2.3.

The goal of this section is to quantify the impact of low-pass filtering the water level time 

series on the back-routed inflow. The simulation procedure here is similar to that outlined in 
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Section 3.2.2.1, with two key differences. Firstly, instead of a hypothetical hydrograph, observed 

inflows were routed and secondly, low-pass filtering was applied to the observed and perturbed 

water levels. 

The measured inflows between January 7 and May 23 2015, were used for the SB4 and TT2. 

For these two ponds, the “observed” RMSE” was calculated by comparing the observed inflows 

with inflows calculated by back-routing the observed water levels. The observed RMSE could 

not be evaluated for the ST2 pond, since no inflow measurements were available. Additionally, 

the "simulated" RMSE was calculated for all the ponds following the steps listed in Table 2. In 

calculating simulated RMSE, random noise time series with σ = 1, 2, 4, and 6 mm were used. 

The Butterworth low-pass filter (Butterworth 1930) was used here, which has been applied in 

several previous hydrological applications (e.g., Henley et al. 2011; Pagendam and Percival 

2015). Cut-off frequencies (fc) of 1/1.5, 1/2, 1/3, 1/4.5, 1/6, 1/9, 1/12, 1/18, and 1/24 hr⁻¹ were 

applied to the measured water level time series. It should be noted that the sampling frequency 

(fs) was 6 hr⁻¹.  

Table 2: Steps for calculating simulated RMSE 

Step Description 

1 Generate exact water level time series (ℎ) by routing the observed inflow time series into SB4 and TT2. 

For ST2, use the inflow time series observed at TT2. 

2 Generate 10,000 normal random noise time series (𝜖) with a mean of zero and a standard deviation of 𝜎, 

i.e., 𝜖~𝐍(0, 𝜎). 

3 Generate 10,000 "perturbed" water level time series (ℎ∗) by adding the noise time series to the exact 

water level time series, i.e., ℎ∗ = ℎ + 𝜖. 

4 Low-pass filter the 10,000 perturbed water level time series using a cut-off frequency (fc) to create 

10,000 filtered water level time series. 

5 Generate 10,000 simulated inflow time series (𝐼∗) by back-routing the filtered water level time series. 

6 Calculate the RMSE for each of the 10,000 pairs of observed and simulated inflow time series, and 

compute their average as the "simulated" RMSE for the selected 𝜎 and fc. 

7 Repeat Steps 2 to 6 for each pond while varying 𝜎 and fc. 
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 RESULTS AND DISCUSSION 3.3.

 Amplification Factors of the Reverse Level Pool Routing 3.3.1.

Based on Monte Carlo simulations, the simulated amplification factor (𝜎𝐼 𝜎⁄ ) was calculated 

for each pond. This ratio remained nearly constant for each pond for values of 𝜎 between 1mm 

and 100mm. Additionally, analytical amplification factors were calculated using Equation (3-18) 

using ∆𝑡 = 600 s and A equal to the area at the normal water level (NWL). Table 3 shows that 

simulated and analytical amplification factors are nearly identical, confirming the validity of 

Equation (3-18). Furthermore, the lowest and highest 𝜎𝐼 𝜎⁄  ratios were obtained at ST2 and TT2, 

respectively, which is consistent with their respective areas. 

Table 3: Amplification factor derived based on the analytical error analysis and simulation 

Pond SB4 TT2 ST2 

Area (m²) 18,200 21,800 9,000 

𝝈𝑰 𝝈⁄  

Analytical 0.0214 0.0257 0.0106 

(m³/s/mm) 
Simulation 0.0213 0.0256 0.0109 

 

Time series of water levels and inflows are plotted in Figure 3-7 to Figure 3-9 to illustrate 

how water level noise is amplified by the reverse level pool routing. The 95% confidence 

intervals shown in these figures were calculated based on 10,000 simulations. The magnitudes of 

the inflow oscillations (𝜎𝐼) at SB4, TT2, and ST2 are 0.0428, 0.0514, and 0.0220 m³/s, 

respectively, which correspond to the same ratios reported in Table 3. 

In Figure 3-10 plots of the frequency distribution of inflow residuals (i.e., deviation of 

10,000 back-routed inflows from the exact inflow) are presented. These residuals are calculated 

at 𝑡 = 4 hr (Figure 3-7 to Figure 3-9), but the distribution is the same at all time steps and only 
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depends on σ and the pond’s characteristics. The residual distributions closely follow the 

theoretical normal distributions overlaid in the figures. This shows that, perturbing water levels 

with 𝜖~𝐍(0, 𝜎) leads to inflow deviations given by: 

𝐼 − 𝐼∗~𝐍(0, 𝜎𝐼) (3-19) 

where the 𝜎𝐼/𝜎 ratio is given by Equation (3-18). In fact, the mean of 10,000 simulated inflows 

was exactly the same as the exact inflow, and hence not shown in Figure 3-7 to Figure 3-9. 

Additionally, the magnitudes of 𝜎𝐼 are reflected in the width of the confidence intervals in Figure 

3-7 to Figure 3-9. Given the approximately normal distribution of simulated inflows, the width of 

the 95% confidence interval is ~4𝜎𝐼 according to the empirical rule. 

 
Figure 3-7: 95% confidence intervals of (a) water level perturbed by 𝝈=2 mm and (b) inflow 

estimated by reverse routing at SB4 based on 10,000 Simulations. 𝝈𝑰=0.0428 m³/s, 𝚫𝒕=600 s. 
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Figure 3-8: 95% confidence intervals of (a) water level perturbed by 𝝈=2 mm and (b) inflow 

estimated by reverse routing at TT2 based on 10,000 Simulations. 𝝈𝑰=0.0514 m³/s, 𝚫𝒕=600 s. 
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Figure 3-9: 95% confidence intervals of (a) water level perturbed by 𝝈=2 mm and (b) inflow 

estimated by reverse routing at ST2 based on 10,000 Simulations. 𝝈𝑰=0.0220 m³/s, 𝚫𝒕=600 s. 

 

Figure 3-10: Distribution of inflow residuals at the (a) SB4, (b) TT2, and (c) ST2 ponds. 
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According to Equation (3-18) and evident from Figure 3-7 to Figure 3-9, 𝜎𝐼 is independent 

of the magnitude of inflow. Therefore, the impact of noise is more significant when inflows are 

relatively small or zero, a condition very common in urban stormwater ponds. For instance, 

while no inflow enters the ponds after 𝑡 = 6 hr (bottom panels of Figure 3-7 to Figure 3-9), there 

is a 50% probability of negative inflows estimated by the reverse routing approach. Conversely, 

the likelihood of a negative inflow being calculated decreases significantly when inflows are 

sufficiently large, such as for 1 < 𝑡 < 5 hr. Therefore, the propagation of errors from the 

measured water levels to the estimated inflows results in more frequent non-physical negative 

inflows on urban stormwater ponds receiving intermittent inflows, compared to the bodies of 

water receiving continuous base flow. 

 Noise Mitigation by Filtering of the Measured Water Level 3.3.2.

Filtering the observed water level time series was found to significantly reduce the 

magnitude of oscillations in the back-routed inflows. For example, in Figure 3-11 to Figure 3-13 

time series of observed water levels and corresponding back-routed inflows into the study ponds 

in response to the rain event of early May 2015. The inflows are estimated from the unfiltered 

water levels as well as from water levels filtered with fc=1/6 hr⁻¹, which, as will be shown, was 

found to be the optimum cut-off frequency.  

Based on available inflow measurements for SB4 and TT2 (Figure 3-11 and Figure 3-12), 

the inflows back-routed from the filtered water levels effectively replicated the hydrographs 

corresponding to this rain event. Additionally, despite the absence of inflow measurements at 

ST2, Figure 3-13 shows that the reverse level pool routing predicted an inflow hydrograph 

consistent with those observed at SB4 and TT2. In contrast to inflows back-routed from 

unfiltered water levels, filtering led to estimated inflows that are much smoother, with fewer and 

significantly smaller negative values. Notably, without filtering, the noisier water levels observed 
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in TT2 on May 5 (Figure 3-12a) resulted in significantly larger inflow oscillations, which were 

effectively diminished by filtering (Figure 3-12b). 

Comparing the back-routed inflows (fc=1/6 hr⁻¹) with those observed in SB4 and TT2 

(Figure 3-11 and Figure 3-12), the TT2 peak has been more significantly attenuated by filtering. 

The inflow peak on May 6 into TT2 consisted of two pulses of inflow occurring close to each 

other. Water levels corresponding to such peaks contain more high-frequency components (on 

the order of fc), which are smoothed by the low-pass filters, leading to a flatter peak than was 

observed. 

 

Figure 3-11: (a) Observed water level and (b) observed and back-routed inflows for the SB4 pond 

between May 5 and 9, 2015. 
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Figure 3-12: (a) Observed water level and (b) observed and back-routed inflows for the TT2 pond 

between May 5 and 9, 2015. 
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Figure 3-13: (a) Observed water level and (b) back-routed inflows for the ST2 pond between May 5 

and 9, 2015. 

Figure 3-14 to Figure 3-16 illustrate the effect of fc on the back-routed inflows between 

March 24 and 29, 2015, during which warmer weather led to diurnal peaks caused by meltwater 

flowing into the study ponds. Estimating inflows based on a relatively high fc (1/1.5 hr⁻¹) shows 

smaller peak attenuation at SB4 (Figure 3-14) and TT2 (Figure 3-15); however, non-physical 

ripples are evident. Conversely, employing a relatively low fc (1/18 hr⁻¹) significantly distorted 

the shape of hydrographs. While the resulting inflows are smooth, the problem of negative 

inflows was not resolved. 

It can be seen that filtering water levels with fc=1/6 hr⁻¹ has led to smooth results with 

minimal distortion and oscillations. Although no flow observation was available at ST2, Figure 
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3-16 illustrates that fc=1/6 hr⁻¹ provides a hydrograph with peaks very similar to those estimated 

with fc=1/1.5 hr⁻¹ and much less oscillations. 

 

Figure 3-14: Observed and back-routed inflows for the SB4 pond between March 25 and 29, 2015. 

 

Figure 3-15: Observed and back-routed inflows for the TT2 pond between March 25 and 29, 2015. 
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Figure 3-16: Back-routed inflows for the ST2 pond between March 25 and 29, 2015. 

Table 4, Figure 3-17, and Figure 3-18 demonstrate how filtering water levels can improve 

the performance of the reverse level pool routing. While lower fc values (e.g., 1/24 hr⁻¹) more 

aggressively remove noise, they also more severely distort the dataset (Koussis and Mazi 2015; 

Leonhardt et al. 2014). The observed RMSE of inflows was minimized for SB4 by applying the 

Butterworth filter with fc between 1/3 to 1/6 hr⁻¹, and for TT2 with fc between 1/4.5 to 1/9 hr⁻¹. 

RMSE values of inflows based on unfiltered water levels were 0.0218 and 0.0480 m³/s at SB4 

and TT2, respectively. Filtering with fc=1/6 hr⁻¹, however, reduced the RMSE by 75% and 87%, 

respectively. Values of 𝑉𝑁, defined as the percentage of the volume of negative inflows relative 

to the volume of positive inflows over the simulation period are also presented in Table 2. 

Without filtering, the volume of negative inflows was 49% and 73% of the volume of positive 

inflows for SB4 and TT2, respectively. However, filtering with fc=1/6 hr⁻¹ reduces these 

percentages to 6% and 17%, respectively. Employing lower fc values does not significantly 

reduce the volume of negative inflows, except for fc=1/24 hr⁻¹ which significantly distorts the 

dataset. 

The simulated RMSE is presented in Figure 3-17 to Figure 3-19 for all three ponds. While 

the trends of observed and simulated RMSE exhibit similarities, the observed RMSE does not 



Chapter 3: Evaluation of the Performance of Reverse Level Pool Routing in Estimation of Inflows into Stormwater 

Ponds in the City of Edmonton 

54 

exactly align with any of the simulated curves. This was expected because the simulated RMSE 

only reflects water level errors, whereas the observed RMSE includes measurement errors of 

both water levels and inflows. Furthermore, simulated RMSE calculations assume random and 

independent noise with a constant σ, however real-world noise may not always be random, and 

its magnitude can vary throughout the season. Figure 3-17 to Figure 3-19 indicate that as 

expected RMSE depends on the magnitude of water level noise, σ, the cut-off frequency of the 

low-pass filter, fc, and the characteristics of the pond. Both high and low fc can lead to higher 

RMSE. Relatively high values of fc (e.g., 1/1.5 hr⁻¹) may not effectively remove noise, and 

relatively low values of fc (e.g., 1/24 hr⁻¹) significantly distort the real signal. The simulated 

RMSE values were minimized at fc between 1/3 and 1/9 hr⁻¹, depending on the magnitude of σ.  

Moreover, consistent with the results presented in Table 3, simulated RMSE values for SB4 

and TT2 are higher than those for ST2. Due to consistent trends of RMSE across the ponds, an fc 

= 1/6 hr⁻¹ was selected for filtering ST2 water levels. Furthermore, given the smaller area of ST2 

and its relatively low magnitude of observed noise (e.g., Figure 3-5 and Figure 3-6), the overall 

performance of the reverse level pool routing in this pond is expected to be better than in the 

other two ponds. 

Table 4: Impact of filtering on the RMSE and negative inflows for the SB4 and TT2 ponds. 
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Figure 3-17: Observed and simulated RMSE of inflows for the SB4 pond. 

 

Figure 3-18: Observed and simulated RMSE of inflows for the TT2 pond. 
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Figure 3-19: Simulated RMSE of inflows for the ST2 pond. 

 Elimination of Negative Inflows 3.3.3.

During dry periods, when there is zero or near-zero inflow, the reverse routing approach has 

approximately a 50% chance of calculating a negative inflow at each time step. Although 

filtering water levels is expected to decrease the magnitude of negative inflows, it does not 

eliminate them entirely. It seems logical to remove these negative values and scale down the 

positive inflows to ensure the inflow volume is not changed. However, such post-processing may 

fail to preserve the water balance at smaller time scales and, depending on the relative 

magnitudes of the negative inflows, may actually violate conservation of mass. 

 CONCLUSION 3.4.

The reverse level pool routing method inevitably amplifies noise in the measured water 

levels and corrupts the estimated inflows with spurious oscillations. The centred discretization 

scheme used here resulted in the least noise amplification compared to the forward and 

trapezoidal schemes. The noise amplification factor, 𝜎𝐼 𝜎⁄ , was derived analytically and verified 

by the results of simulations. This factor is directly proportional to the surface area of the pond 
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(𝐴), and inversely proportional to the numerical time step (Δ𝑡). While the magnitude of inflow 

oscillations is independent of the magnitude of inflow, oscillations have a more significant 

impact during dry periods, which are typical of urban stormwater ponds. The result is that 

reverse level pool routing predicts non-physical negative inflows when using unfiltered water 

level time series as input. 

It should be noted that in reverse problems, higher-order schemes do not necessarily result in 

more accurate results. For example, it has been shown here that the first-order forward scheme 

was superior to the second-order trapezoidal scheme. Additionally, as presented in Equation 

(3-18) unlike level pool routing, errors in reverse level-pool routing increase as the time step 

decreases. 

The noise amplification problem was mitigated by low-pass filtering of water levels. The 

Butterworth filter with a cut-off frequency (fc) of 1/6 hr⁻¹ for the sampling rate of fs = 6 hr⁻¹ 

provided the optimal results. This fc value was shown to minimize the RMSE of predicted 

inflows at the SB4 and TT2 ponds, while reasonably preserving the physical characteristics of 

the inflow hydrographs. The RMSE of inflows back-routed from water levels observed at the 

SB4 and TT2 ponds were 0.022 and 0.048 m³/s respectively. Filtering reduced these values by 

75% and 87%, respectively. The greater reduction at TT2 is attributed to noisier water levels, 

reflected in the higher RMSE, therefore the filtering had a greater impact. Similarly, filtering 

reduced the volume of negative inflows, as a percentage of the volume positive inflows, from 

49% to 6% at SB4 and from 73% to 17% at TT2. Similar to SB4 and TT2, an fc=1/6 hr⁻¹ was 

used for ST2, as all study ponds are in the same environment and the same instrumentation was 

used for measurements, thus similar noise magnitudes and behavior were expected.  

Further post-processing of inflows to remove negative values was shown to violate the mass 

balance at smaller time scales and was not used here. If the estimated inflows are to be used for 

hydrodynamics and water quality modeling, and negative inflows do not disrupt the models, 
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post-processing is not recommended, especially for the modeling of urban stormwater ponds 

because of the frequent occurrence of dry periods. 

The different impacts of noise during dry and wet periods, as well as the variability of noise 

magnitudes over the simulation period (e.g., due to wind), suggest that in future studies, the 

performance of reverse level pool routing can be further improved by dynamically adjusting fc. 

This “conditional filtering” approach requires an algorithm to determine the optimal fc based on 

prevailing conditions. For example, if the algorithm can distinguish between wet and dry periods, 

it can apply relatively higher and lower fc values accordingly. Preliminary attempts to implement 

conditional filtering in this study resulted in a slightly improved performance of the reverse level 

pool routing (results not presented). However, since employing a single fc provided sufficiently 

accurate results for the purpose of this study, and considering the subjective nature of defining 

the criteria for selecting optimal fc, further exploration of this approach was not pursued here. 
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Chapter 4. ASSESSMENT OF HYDRODYNAMICS AND WATER 

QUALITY MODELLING OF A STORMWATER POND 

The physical, chemical, and biological processes that take place in water bodies are 

extremely dynamic, interconnected, and impacted by a wide range of factors. The coupled three-

dimensional (3D) hydrodynamic and water quality model, ELCOM-CAEDYM, has been 

successfully applied to simulate biogeochemical processes in different aquatic systems, including 

stormwater ponds. However, the model requires extensive calibration of various model 

parameters to appropriately address the state variables and describe the complex ecological 

processes (Hipsey et al. 2013; Hodges and Dallimore 2013a; Missaghi et al. 2014). 

This chapter describes the calibration, validation, and the evaluation of ELCOM-CAEDYM 

for modelling the hydrodynamics and water quality of one stormwater pond —South 

Terwillegar2 (ST2)— in the city of Edmonton. The purposes of this chapter are: (i) to evaluate 

the ability of ELCOM-CAEDYM to model algae biomass by focusing on total chlorophyll-a 

(TCHLA) along with simulating the desired model state variables (i.e., temperature, dissolved 

oxygen, and nutrients) which support the simulation of algae, and (ii) to perform a sensitivity 

analysis to investigate the impact of model parameters on modelled state variables with a focus 

on TCHLA. 

 METHODOLOGY 4.1.

 Model Descriptions 4.1.1.

2.2.3.1 ELCOM 

The Estuary and Lake COmputer Model (ELCOM) was used to predict the temporal and 

spatial variation of physical processes and simulate the advection and diffusion of momentum 

and scalars in the study pond. A comprehensive description of ELCOM as well as governing 
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equations and fundamental models for hydrodynamics and thermodynamics can be found in 

Hodges (2000), Hodges et al, (2000), and Hodges and Dallimore (2013a). ELCOM is based on 

the 3D unsteady Reynolds Averaged Navier-Stokes (RANS) equations for incompressible flow 

along with the scalar transport equation, i.e., temperature and salinity. The RANS equations are 

solved based on a semi-implicit scheme that discretizes momentum advection terms, and then the 

scalars are transported by the ULTIMATE QUICKEST scheme. The computational grid cells 

consist of a uniform rectangular mesh in the horizontal direction, which can accommodate non-

uniform vertical spacing when required. Scalars are defined at cell centres and velocities on cell 

faces. 

ELCOM assumes a hydrostatic pressure distribution and employs the Boussinesq 

approximation for considering density effects. The horizontal Reynolds stress terms are 

approximated by their correlation with eddy viscosity. The vertical Reynolds stress terms and 

upper mixed layer depths are quantified by extending a one-dimensional mixed-layer approach to 

three dimensions. The mixed-layer model is based on the balance between the available potential 

energy in the stratified water column and the kinetic energy. The free-surface elevation is 

determined by vertical integration of the continuity equation for incompressible flow from 

bottom to the top of the water column and employing the Reynolds averaging filter to the 

kinematic boundary condition. 

The heat exchange at the water surface is governed by the standard bulk transfer model 

described, for example, by Hodges (2000). The energy transfer across the free surface is divided 

into non-penetrative and penetrative components. The penetrative component includes only the 

short-wave radiation, which is calculated as: 

𝑄sw = 𝑄𝑠𝑤(𝑡𝑜𝑡𝑎𝑙) (1 − 𝑟𝑎) (4-1) 
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where 𝑄𝑠𝑤(𝑡𝑜𝑡𝑎𝑙) and 𝑄𝑠𝑤 in (W/m
2
) are the incident short-wave and penetrating short-wave at 

water surface, respectively, and 𝑟𝑎 is the albedo coefficient, which theoretically varies between 

zero and one. The decay of 𝑄𝑠𝑤 through the water column is modelled using the Beer-Lambert 

law: 

𝑄z = 𝑄𝑠𝑤 exp(−𝑘𝑒𝑥𝑡𝑑) (4-2) 

where 𝑄𝑧 (W/m
2
) is the short-wave penetration at depth d (m) below the water surface, and 𝑘𝑒𝑥𝑡 

(1/m) is the light extinction coefficient. The non-penetrative component includes long-wave 

radiation, sensible heat transfer, and evaporative heat loss. ELCOM employs a constant value for 

the latent heat and sensible heat transfer coefficients under stable atmospheric conditions. 

The computing stages of ECLOM are summarized here. At the beginning of each time step, 

the heat budget at the uppermost grid cell of each water column is calculated. First, short-wave 

radiation is exponentially absorbed and decayed over the depth of the water column. This heat 

transfer may result in density variations between the mixed layer and the underlying layer. When 

there is an unstable density gradient, the lower layer mixes with the top mixed layer, resulting in 

release of energy. This released energy is added to the available energy in the mixed layer. 

Momentum introduced by wind also contributes to the available energy at the surface layer. 

Additionally, the energy present in the mixed layer can be is increased by the energy arising 

from velocity shear between the mixed layer and the lower layer. Next, using the mixed-layer 

approach on a layer-by-layer basis, the energy required to add a grid cell to the mixed layer 

above it is compared to the available energy. If available energy is sufficient, mixing occurs. 

Finally, the model computes changes in the free-surface, velocity fields, horizontal diffusion of 

momentum, and advection and horizontal diffusion of scalars are computed (Hodges et al. 2000; 

Lee et al. 2013; Paturi et al. 2012). 
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 CAEDYM 3.2.2.1

The Computational Aquatic Ecosystem Dynamics Model (CAEDYM) is a biogeochemical 

model that is coupled with a hydrodynamic model (i.e., ELCOM in this study). CAEDYM 

simulates the dynamics of nutrients, dissolved oxygen (DO), inorganic suspended solids, 

phytoplanktons (algae), and other optional biotic compartments. Depending on the research 

objectives, users can define their ecological configurations; however, the major nutrients and at 

least one group of algae must be defined. Detailed descriptions of the model have been described 

in the literature (e.g., Bruce and Imberger 2009; Gal et al. 2009; Hipsey et al. 2013; Leon et al. 

2011; Romero et al. 2004). The main equations used in CAEDYM are presented in Appendix B, 

Section B.1. 

CAEDYM and ELCOM are dynamically coupled. At each time step, ELCOM provides 

physical variables such as temperature, light, and velocity to CAEDYM to simulate 

biogeochemical variables. Similarly, CAEDYM feeds parameters required for physical processes 

simulated by ELCOM. For example, ELCOM provides CAEDYM with the proportion of short-

wave radiation received at the surface (𝑄𝑠𝑤) that is converted to the photosynthetically active 

component (PAR). Subsequently, CAEDYM calculates and returns the light extinction 

coefficient to ELCOM (𝑘𝑒𝑥𝑡 in Equation (4-2)), taking into account influences from algae, 

inorganic particles, particulate matter, and dissolved organic carbon concentrations. The fate of 

state variables is also influenced by inflows, outflows, advection, and mixing, all of which are 

modelled by ELCOM. 

Dissolved oxygen (DO), dissolved nutrients, and inorganic suspended solids are simulated 

by CAEDYM in both the water column and a single sediment layer. CAEDYM can model 

sediment diagenetic processes and their interaction with the water column using either static or 

dynamic approaches. The static approach, widely used in the literature (Missaghi and Hondzo 

2010; Nakhaei et al. 2021; Özkundakci et al. 2012; e.g., Trolle et al. 2011) and adopted in this 
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study, models the sediment-water interaction through empirical relationships. These relationships 

are defined based on several parameters and variables, including temperature, DO, transfer rate 

of nutrients, and DO half-saturation for nutrient sediment and sediment oxygen demand. Some of 

the major relationships are listed in Appendix B.1 and further description can be found in 

CAEDYM science manual (Hipsey et al. 2013). 

DO dynamics are modelled by considering several processes, including oxygen exchange 

across the water surface, algal production and respiration, sediment oxygen consumption, 

nitrification, and organic matter mineralization. The oxygen flux across the water surface is 

modelled based on model of Wanninkhof (1992) as a function of the oxygen transfer coefficient 

and concentration of DO at the air-water interface. The concentration of DO in the air phase is 

modelled according to Riley and Skirrow (1975) flux equation, taking into account atmospheric 

pressure and temperature. In the static approach employed in this study, sediment oxygen 

consumption is determined by temperature and DO concentration in the layer immediately above 

the sediment (Hipsey et al. 2013). 

CAEDYM tracks the cycle of the inorganic and organic forms of nutrients, including carbon, 

phosphorous and nitrogen (Figure 4-1). The nutrient components include dissolved organic 

nutrient (DOM), particulate organic nutrient (POM), dissolved inorganic nutrient (DIM), 

particulate inorganic nutrient (PIM), and algae internal nutrient for the i-th algae group (AIMi). 

Organic nutrients are modelled in both filterable and particulate forms, and there is also the 

option to model them in labile and refractory forms. Inorganic nutrients are only modelled in the 

filterable from; however, their absorption and desorption onto inorganic suspended solids are 

tracked. It should be mentioned that resuspension was not modelled here. 

https://www.powerthesaurus.org/in_dependence_upon/synonyms
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Figure 4-1: Schematic representation of nutrient dynamics tracked by CAEDYM, adopted from 

(Hipsey et al. 2013). 

CAEDYM requires four mandatory phosphorus state variables: soluble reactive phosphorus 

(SRP or PO4), labile dissolved organic phosphorus (DOPL), labile particulate organic 

phosphorous (POPL), and algal internal phosphorous for each algae group (AIPi). The model 

also requires five mandatory nitrogen state variables: nitrate (NO3), ammonium (NH4), labile 

dissolved organic nitrogen (DONL), labile particulate organic nitrogen (PONL), and algal 

internal nitrogen for each algae group (AINi). This study considered all mandatory phosphorous 

and nitrogen variables, as well as two optional variables: particulate inorganic nitrogen (PIN) and 

particulate inorganic phosphorus (PIP). Algae dynamics are governed by growth and loss 

processes. Algae growth is a function of temperature, light, and nutrients as follows: 

1

max( ) ( ) min[( ( ), ( )]
i i

T

i Af T f I f P f N   (4-3) 

where i is the index of the algae group, 𝐴 is the concentration, 𝜇 and 𝜇max are the potential 

growth and maximum potential growth rates (1/day), respectively, and 1 ( )
i

T

Af T , ( )f I , ( )f P  and 

( )f N  are temperature, light, phosphorous and nitrogen limiting factors, respectively. The 

limiting factors vary between zero and one, where smaller values indicate greater limitations. 
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Detailed equations describing temperature dependencies and light and nutrient limiting factors 

are presented in Appendix B, Section B.1. In particular, the temperature limiting factor is: 

1
( )20( ) j jc T aT T

i i i if T b 
    (4-4) 

where 
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The maximum productivity occurs at the optimum temperature (𝑇𝑜𝑝𝑡), beyond which, 

productivity decreases and reaches zero at the maximum temperature (𝑇max). For temperatures 

below the standard temperature (𝑇𝑠𝑡𝑑=20°C), the temperature limiting factor, 1 ( )
i

T

Af T , closely 

follows 
2 ( )

i

T

Af T  which is defined as: 

2 20( )
T T

i if T    (4-5) 

CAEDYM was configured to model algae internal nutrient concentrations using the dynamic 

nutrient uptake equation, constrained by user-defined minimum and maximum values (Appendix 

B, Section B.4.2). Additionally, it was assumed that the algae groups were not photo-inhibited. 

The model combines the processes contributing to algae loss (respiration, mortality, and 

excretion) as represented by the second term on the right-hand side Equation (4-6). Algae 
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vertical migration and settling were modelled using the constant settling method. It should be 

noted that resuspension was not configured as part of the model settings. Therefore, the 

dynamics of algae groups were calculated as follows: 
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where: 
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CAEDYM was configured to express the concentration of algae in units of chlorophyll-a per unit 

volume (e.g., mg/L). 

 Model Setup, initial data, and boundary conditions 4.1.2.

The computational domain was defined by discretizing the surveyed bathymetry of the ST2 

pond into 4 m by 4 m horizontal grids and vertical grids of 10 cm as presented in Appendix B, 

Figure B-1. Despite testing resolutions from 1 m to 4 m, there was no significant impact on the 

simulation. Therefore, a 4m horizontal grid size was chosen for computational efficiency. All 

depths and vertical locations in this chapter are referenced to the elevation datum of 681.75 m 

above sea level. This datum is aligned with the highest surveyed bathymetric elevation of the 

pond, approximately 1.68 m above the normal water level (NWL) elevation 680.07 m. This 

reference was selected conservatively to account for potential increases in water levels during the 

simulation period. Three inlets (NW, SARM, SW) and one outlet (SE) locations were included in 
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the bathymetry file. The required input data for initialization and boundary forcing were obtained 

from field measurements described in Chapter 2. Mandatory and optional CAEDYM state 

variables were defined based on water quality measurements and the equations presented in 

Table B-1, Appendix B. 

Data from in-pond instruments at the sampling locations were used to define temperature 

and DO initial conditions. Due to safety concerns regarding H2S gas and restricted access, water 

quality sampling within the inlet structures was not feasible. Therefore, water quality and 

temperature boundary conditions were defined based on measurements taken in close proximity 

to each inlet structure. Meteorological data including air temperature, relative humidity, wind 

speed, wind direction, precipitation, air pressure, and solar radiation were collected from the 

weather station installed near the pond. The cloud cover was estimated according to Reed (1977) 

as a function of potential and measured short-wave radiations. Outflows were estimated from the 

rating curve developed for ST2, and consequently, the inflows were estimated using the reverse 

level pool routing method described in Chapter 3. All environmental forcing including flow and 

meteorological data were introduced to the model in time steps of 10 min. 

In this study, CAEDYM was configured to simulate the dynamics of total chlorophyll-a 

(TCHLA), dissolved oxygen (DO), total phosphorus (TP), and total nitrogen (TN). The model 

was set up to calculate the combined concentrations of three major algae groups dominant in the 

water quality samples: chlorophyte (CHLR), cyanobacteria (CYANO), and dinoflagellates 

(DINOF). A simulation time step of 10 seconds was chosen, satisfying the Courant–Friedrichs–

Lewy (CFL) stability condition. Simulated variables were outputted hourly to facilitate further 

analysis. 

 Model Calibration, Validation, and Sensitivity Analysis 4.1.3.

ELCOM-CAEDYM was initially set up with the configuration and parameters identical to 

those used in a prior application to urban stormwater ponds (i.e., Nakhaei et al. 2018, 2021). 
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Based on error statistics and visual assessments, this configuration did not provide satisfactory 

results for the ST2 pond. Consequently, a two-stage calibration approach was adopted. First, 

ELCOM was calibrated through tuning of its parameters and then validated. Next, the coupled 

ELCOM-CAEDYM model was calibrated by tuning the CAEDYM parameters, followed by 

validation of the coupled model. The calibration and validation periods are listed in Table 4-1. 

Table 4-1: Simulation periods for model calibration and validation. 

Model Calibration period Validation period  

ELCOM 2014-05-16 to 2014-10-03 2015-05-01 to 2015-10-14 

CAEDYM 2015-06-10 to 2015-10-13 2014-05-28 to 2014-10-27 

 

Root mean square error (RMSE), normalized root mean square error (RMSEN), and mean 

bias error (MBE) were used to quantify model performance. These statistical measures are 

widely used in the literature to assess the performance of hydrodynamic and water quality 

models (e.g., Carraro et al. 2012; Mcdonald and Muricken 2009; Nakhaei et al. 2021; Trolle et 

al. 2008b). RMSE is calculated as: 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝜑𝑖 − 𝜑𝑖

0)
2𝑛

𝑖=1
 (4-7) 

where n is the number of observations, and 𝜑𝑖 and 𝜑𝑖
0 are the i

th
 observed and simulated 

variables, respectively. Since RMSE has the same units as 𝜑, it can be normalized and 

represented as a relative percentage: 

𝑅𝑀𝑆𝐸𝑁 = 100 × (𝑅𝑀𝑆𝐸)/�̅� (4-8) 

where RMSEN is the normalized root mean square error in (%) and �̅� is the average value of the 

observed variable. Mean bias error (MBE), presented in the same units as 𝜑, is an indicator of the 
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overall tendency of the model to overestimate (MBE>0) or underestimate (MBE<0) the state 

variables: 

0

1

1
( )

n

i i

i

MBE
n

 


   (4-9) 

Furthermore, the model’s performance was also evaluated qualitatively through visual 

comparison of the patterns and dynamics of observed and estimated variables, similar to previous 

studies (Bruce et al. 2006; Gal et al. 2009; Hipsey et al. 2006; Missaghi and Hondzo 2011). 

 Calibration of ELCOM Model Parameters 3.2.2.1

Since ELCOM simulates physical processes based on fundamental equations, it typically 

requires minimal calibration. Several studies have confirmed this by successfully simulating 

temperature in various bodies of water with different levels of calibration efforts, ranging from 

utilizing the uncalibrated model to applying only minimal calibration (Hannoun et al. 2006; León 

et al. 2005; Missaghi and Hondzo 2010; Romero et al. 2004). A previous application of ELCOM 

for simulating water temperature in similar stormwater ponds concluded that optimizing albedo 

and light extinction coefficient, while considering atmospheric stability adjustments, increases 

the accuracy of simulations (Nakhaei et al. 2018). The accuracy of simulation also depends on 

accurately defining boundary conditions and environmental forcing. 

In this study, 72 calibration scenarios were defined considering atmospheric stability 

correction, albedo, NWL, light extinction coefficient, cloudiness, and pond’s horizontal gird 

resolution. ELCOM was more sensitive to NWL, albedo and light extinction coefficient. The 

most important model parameters, albedo and light extinction coefficient, were varied between 

their lowest and highest published values to achieve the best fit between simulated and observed 

temperature. The default albedo in ELCOM is 0.08, a value used in many studies with 

satisfactory results (e.g., Hannoun et al. 2006; Lee et al. 2013; Owens et al. 2014). Nakhaei et al. 
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(2018), however, reported calibrated albedo values for urban stormwater ponds ranging between 

0.30 and 0.35. Therefore, in this study, to determine the calibrated albedo coefficient, the albedo 

was varied between 0.08 and 0.40. The light extinction coefficient was estimated based on an 

empirical relationship with Secchi disk depths (Beeton 1958; Dipper 2022; Zhen-Gang 2017) 

and presented as follows: 

𝑘𝑒𝑥𝑡 = 100
1.45

𝑑𝑆𝐷
 (4-10) 

where 𝑘𝑒𝑥𝑡 is the light extinction coefficient (m⁻¹) and 𝑑𝑆𝐷 is the Secchi disk depth (cm). The 

Secchi disk depths in the pond were between 5 cm and 100 cm, resulting in 𝑘𝑒𝑥𝑡 between 29 m⁻¹ 

and 1.45 m⁻¹, respectively. Notably, the average observed Secchi disk depth was 40 cm, 

corresponding to the 𝑘𝑒𝑥𝑡 value of 3.6 m⁻¹. Furthermore, the inflow and outflow rates were 

adjusted by varying the NWL elevation within 4.0 cm of the average surveyed water levels 

(i.e., 680.08 m). The model was calibrated by selecting the parameters and NWL that resulted in 

the smallest RMSE between observed and simulated water temperature. 

 Calibration of CAEDYM Model Parameters 3.2.2.1

CAEDYM was calibrated by primarily focusing on simulated TCHLA as the key water 

quality variable in this study. Initially, CAEDYM parameters were set to values obtained from a 

previous study (Nakhaei et al. 2021), and the model was configured to simulate five of the seven 

algae groups that it can simulate. These five groups, cyanobacteria (CYANO), chlorophyte 

(CHLR), dinoflagellates (DINOF), cryptophyte (CRYPT), and freshwater diatom (FDIAT), were 

observed during the taxonomic analysis, although with varying concentrations and intermittent 

occurrences. On average across all the samples, CHLR, CYANO and DINOF accounted for 

49%, 23% and 26% of the total algae mass, respectively. Preliminary simulations showed the 

dominance of the CRYPT group over the CHLR group, despite CRYPT being rarely observed in 
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the samples (less than 2% of the total algae mass on average). Consequently, CRYPT was 

eliminated from the model. This adjustment not only improved the temporal variation of TCHLA 

but also established CHLR as the dominant algae group, aligned with field measurements. 

Furthermore, the removal of FDIAT did not affect the model results. Therefore, the calibration 

proceeded focusing on the CHLR, CYANO, and DINOF algae groups. 

CAEDYM has a large number of adjustable parameters; however, water quality studies 

commonly attempt to calibrate the model by tuning a much smaller subset of these parameters 

according to the purpose of their research. By examining parameters considered in the calibration 

process of similar studies, specifically those targeting the simulation of TCHLA biomass (i.e., 

Leon et al. 2011; Missaghi and Hondzo 2011; Nakhaei et al. 2021), initially 46 CAEDYM 

parameters were selected. These parameters, along with their reported minimum and maximum 

values, are presented in Table 4-2. The calibration process started with the tuning of 15 

parameters, marked with an asterisk in Table 4-2. These parameters were chosen because they 

were either identified as highly influential in the sensitivity analysis conducted by Missaghi 

(2014) or had varying assigned values across the similar studies (i.e., Leon et al. 2011; Missaghi 

and Hondzo 2011; Nakhaei et al. 2021). Next, the model was run over the calibration period 

using both the maximum and minimum values of each parameter, while the remaining 

parameters were kept at their initial values suggested by Nakhaei et al. (2021). If the pond-

averaged simulated variables, particularly TCHLA, showed a change below 2%, the parameter 

was retained at its initial value and considered calibrated. Nine out of the 15 parameters, marked 

by the † symbol in Table 4-2, resulted in changes greater than 2%. These parameters were fine-

tuned through the calibration process, in which CAEDYM was run with incremental adjustments 

made to each parameter to determine the values that optimized model performance. The 

performance assessment involved both a visual evaluation of simulated variables, with a focus on 

TCHLA and DO, and an examination of RMSE. Calibrating these nine parameters was sufficient 
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to consider the CAEDYM model calibrated, making the tuning of the remaining parameters 

unnecessary. 

Quantitative statistics, while valuable for summarizing model performance, have their 

limitations. For example, RMSE can be disproportionately large due to outliers or errors in the 

timing and location of simulated values, even when the temporal and special trends of simulated 

variables generally align with the observed trends. Therefore, in addition to quantitative 

statistics, the model's performance was evaluated through visual inspection of time series of 

simulated and measured variables. 
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Table 4-2: CAEDYM parameters identified important for calibration, including their symbols, 

units, maximum and minimum values from literature, and assigned. Biological parameters are 

presented for the CHLR group. 

 

 

Parameters Symbol Unit Min Max Assigned

Average Ratio of C to Chlorophyll-a Ycc *  mg C/mg Chla 0.3 400 40

Algal Constant settling velocity ws  m/s -1.16E-06 1.00E-05 -2.30E-07

Critical shear stress  N/m2 0.001 0.01 0.001

Half saturation constant for nitrogen uptake  mg/L 0 30 0.07

Half saturation constant for phosphorus  mg/L 0.001 6 0.02

Light half saturation constant for algal limitation        *
†

 μE/m
2
s 100 145 130

Light saturation for maximum production        *†  μE/m
2
s 75 710 100

Maximum internal nitrogen concentration              *  mg N/mg Chla 5 14.4 9

Maximum internal P concentration              *
†  mg P/mg Chla 0.08 21 2.4

Maximum potential growth rate of phytoplankton              *
†  1/day 0.7 4.66 0.6

Maximum rate of nitrogen uptake               *  mg N/mg Chla/day 0.12 6.48 3.5

Minimum internal nitrogen concentration   mg N/mg Chla 1 36 3

Minimum internal P concentration             *
†  mg P/mg Chla 0.008 1 0.1

Phytoplankton optimum temperature           *† ℃ 21 34 25

Phytoplankton maximum temperature           *† ℃ 28 39 31

Respiration mortality and excretion       *
† 1/day 0.001 0.28 0.02

Standard growth temperature        * ℃ 14 20.8 20

Temperature multiplier for respiration -- 1.03 1.13 1.06

Temperature multiplier function for phytoplankton growth                *
† -- 1.02 1.14 1.06

Aerobic/anaerobic factor for both sediment and water columnfanB -- 0.3 0.8 0.3

Density of particulate organic matter (POM) particles POMDensity*  kg/m
3 1010 2600 1005

Diameter of POM particles POMDiameter  m 0.00005 0.00005 0.00005

Half saturation constant for nitrification KOn  mg O/L 0.081 4 0.5

Half saturation constant for denitrification dependence on DOKN2  mg/L 0.01 6.5 0.4

Half saturation of POM/DOM decomposition on DO KDOB  mg/L 1.5 1.5 1.5

Maximum mineralization of DONL to NH4 DON1max  1/day 0.002 1 0.003

Maximum mineralization of DOC labile to DIC DOC1max*
†  1/day 0.001 0.15 0.011

Maximum mineralization of DOPL to PO4 DOP1 max  1/day 0.002 1 0.01

Maximum transfer of POCL to DOCL POC1 max  1/day 0.001 0.07 0.07

Maximum transfer of PONL to DONL PON1 max  1/day 0.001 0.05 0.005

Maximum transfer of POPL to DOPL POP1 max  1/day 0.01 0.1 0.03

Maximum denitrification rate under anoxia at 20 koN2  1/day 0.3 0.6 0.15

Nitrification rate coefficient koNH  1/day 0.005 0.6 0.5

Photo-respiration phytoplankton DO loss Specific prc -- 0.02 0.02 0.02

Specific light attenuation due to the action of POC KePOC mg/L/m 0.02 0.02 0.02

Biological parameters

Chemical parameters
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Table 4-2 (Continue…)

 

* Parameters calibrated in this study 

ᶧ † Selected for “Sensitivity Analysis”  

Controls sediment release of PO4 via O KOxS-PO4 mg/L 0.05 3 1

Half saturation for DO sediment flux KSOs mg O/L 0.2 5 0.7

Half saturation for sediment NH4 release dependence on DOKDOS-NH4 mg/L 0.25 0.5 0.5

Half saturation for sediment NO3 release dependence on DOKDOS-NO3 mg/L 0 0.3 0.3

Half saturation for sediment DOC release dependence on DOKDOS-DOC mg/L 0 0.005 0.005

Maximum NH4 sediment flux SmpNH4 g/m2/day 0.002 0.1 0.09

Maximum release rate of DOC from sediment at 20 SmpDOCL g/m2/day 0.005 0.005 0.005

Maximum release rate of NO3 from Sediment at 20 SmpNO3 g/m2/day 0.01 0.1 0.03

Sediment release rate of PO4 SmpPO4* g/m2/day 0.0003 49 0.04

Static sediment exchange rate of O2 rSOs g/m2/day 0.2 3.95 1.3

Temperature multiplier for sediment nutrient fluxes -- 1.04 1.1 1.05

Sediment related parameters
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 Sensitivity Analysis of CAEDYM model parameter 3.2.2.1

The sensitivity analysis quantifies the impact of perturbation of model parameters, denoted 

as 𝜃 (e.g., Pmax and Kr) from their calibrated values, denoted as 𝜃𝑐, on the simulated variables, 

denoted as 𝜑 (e.g., TCHLA and DO). However, in the case of comprehensive models like 

CAEDYM, characterized by an excessive number of parameters, conducting a complete 

sensitivity analysis that includes all model parameters is impractical (Romero et al. 2004). As a 

result, sensitivity analyses for CAEDYM are commonly limited to a smaller subset of 

parameters. For example, Missaghi et al. (2014) performed a sensitivity analysis of Lake 

Minnetonka's model and identified seven CAEDYM parameters as the most influential. 

However, Lake Minnetonka is significantly larger (area of 60 Km² and maximum depth of 34 m) 

than the study pond, and hence, the parameters deemed most influential and their relative 

importance may not be the same for the study pond. Therefore, in this study, a sensitivity 

analysis was carried out for the CAEDYM model developed for the study pond.  

The selected parameters for sensitivity analysis marked by the † symbol in Table 4-2 were 

perturbed by ±Δθ and inputted into CAEDYM to simulate the time series of perturbed variables 

throughout the calibration period. Later in this chapter, the Table 4-7 provides details of selected 

parameters and their perturbations. 𝑇𝑚𝑎𝑥 was perturbed by 1°C, and 𝑇𝑜𝑝𝑡 was perturbed by 1°C 

and 2°C. For the remaining parameters, the perturbation was set as the minimum of  (𝜃𝑚𝑎𝑥 − 𝜃𝑐) 

and (𝜃𝑐 − 𝜃𝑚𝑖𝑛), where 𝜃𝑚𝑎𝑥 and 𝜃𝑚𝑖𝑛 are the maximum and minimum reported values (Table 

4-2). Next, the resulting simulated variables were averaged over the computational cells to 

generate the pond-integrated time series, 𝜑𝜃. These time series were assessed visually, as will be 

discussed later. Next, the pond-integrated time series were averaged over the simulation period 

to give the pond-averaged values, �̅�𝜃. Finally, the sensitivity of variable 𝜑 to the parameter 𝜃 

was quantified by defining a sensitivity index, 𝑆𝐼𝜃
𝜑

, adopted from Abtahi (2023) and Sun et al. 

(2012) as follows: 
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𝑆𝐼𝜃
𝜑

= 100 ×
|�̅�𝜃+Δ𝜃 − �̅�𝜃−Δ𝜃 |

�̅�𝜃
 (4-11) 

For each simulated variable, the most sensitive parameters are those with greater values of 𝑆𝐼𝜃
𝜑

.  

 RESULTS AND DISCUSSION 4.2.

The model output for selected variables was processed and compared with observed data, 

and the results are presented here. It should be noted that all depths presented in the figures are 

referenced to the lake's outline at an elevation of 681.75 meters, which is 1.68 meters above the 

normal water level (NWL) elevation of 680.07 m.  

 ELCOM Calibration 4.2.1.

The representative scenarios and corresponding error statistics are presented in Table 4-3. 

The RMSE, RMSEN, and MBE were calculated based on temperatures measured by the 

deployed instruments. These statistics revealed that temperature was more sensitive to NWL, so 

NWL was calibrated first. By adopting the predefined albedo value of 0.30 and the extinction 

coefficient determined from the average observed Secchi depth (i.e., 40 cm), the best 

performance occurred at NWL of 680.07 m. Next, the model performance was further enhanced 

at albedo of 0.2. Tuning of Secchi disk depth did not improve performance significantly 

(Appendix B, Figure B-2); therefore, the Secchi depth of 40 cm was selected, as it was derived 

from direct measurements. The calibrated parameters used in this study are shown in Table 4-3  

under Scenario 11. 
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Table 4-3: Performance of representative calibration runs of ELCOM in estimation of temperature 

during the calibration period. 

* Accepted scenario as calibrated run. Bold text indicates the values of calibrated parameters and resulting statistics. 

Figure 4-2 displays measured and simulated average temperatures at NW, SW, and SE 

sampling locations. At the SARM inlet, only the simulated temperature is displayed, as 

measurements were not taken during the calibration period. The figure also presents the pond-

integrated temperature (17.2°C), an average across the computational cells and over the 

simulation period. The calibrated model accurately simulated average temperatures at NW, SW, 

and SE, with only slight underestimations. These results are consistent with the error statistics in: 

RMSE of 1.37°C, RMSEN of 8.3%, and MBE of ‑0.17°C. Notably, the SW and SE locations are 

more representative of the pond, while the NW and SARM inlets are 4.2°C and 1.4°C colder, 

ELCOM NWL Albedo Secchi Disk RMSE RMSEN MBE 

Scenario  (m) (cm)  (°C)  (%) (°C)

1 680.04 0.20 40 1.60 9.60 -0.98

2 680.04 0.30 40 1.96 11.63 -1.55

3 680.05 0.20 40 1.45 8.75 -0.73

4 680.05 0.30 40 1.77 10.53 -1.31

5 680.06 0.20 40 1.36 8.24 -0.44

6 680.06 0.30 40 1.60 9.56 -1.05

7 680.07 0.08 40 1.60 9.61 0.54

8 680.07 0.15 40 1.41 8.54 0.13

9 680.07 0.20 10 1.35 8.16 -0.22

10 680.07 0.20 20 1.35 8.18 -0.21

11* 680.07 0.20 40 1.37 8.30 -0.17

12 680.07 0.20 60 1.39 8.42 -0.14

13 680.07 0.20 80 1.42 8.60 -0.11

14 680.07 0.20 100 1.44 8.73 -0.10

15 680.07 0.25 40 1.41 8.49 -0.50

16 680.07 0.30 40 1.53 9.17 -0.81

17 680.07 0.40 40 1.98 11.69 -1.51

18 680.08 0.08 40 2.04 12.82 1.08

19 680.08 0.15 40 1.77 11.24 0.64

20 680.08 0.20 40 1.65 10.48 0.31

21 680.08 0.25 40 1.62 10.25 -0.03

22 680.08 0.30 40 1.68 10.48 -0.38

23 680.08 0.30 40 1.68 10.48 -0.38

24 680.09 0.20 40 2.08 14.01 0.72

25 680.09 0.30 40 2.04 13.48 -0.02
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respectively, than the pond. These colder temperatures are primarily due to the impact of colder 

inflows into the pond. Finally, the model accurately captured the overall temperature rise along 

the pond's main axis. Both measurements and simulation results demonstrated an average 

temperature increase of 0.6°C from SW to SE locations. 

 

Figure 4-2: Measured and simulated average temperatures at sampling locations during the 

calibration. The dashed line shows the pond-integrated temperature. 

More detailed error statistics presented in Table 4-4 were calculated based on point-to-point 

comparisons of measured and simulated temperature time series at different locations (Figure 4-3 

to Figure 4-5). In general, the model performed better and more consistently at SW and SE 

locations, with an RMSE range of 1.2°C to 1.5°C. In contrast, the NW inlet displayed a higher 

average and a broader range of error, with the smallest and largest RMSE values occurring near 

the bed and the surface, measuring 0.4°C and 2.4°C, respectively. The low error at the bottom of 

the NW inlet is a result of boundary condition influence. The relatively higher error near the 

surface can be attributed to the deep, narrow, and isolated bathymetry of the NW inlet, which 

limits ELCOM’s ability to accurately model temperature profile. Another reason for the higher 

RMSE at NW could be the shading at this location, which results in lower surface temperatures 

not accurately captured by ELCOM. 
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Table 4-4: Performance of calibrated ELCOM in estimation of temperature at different depths of 

NW, SW, and SE locations during calibration period. 

 

Time series plots in Figure 4-3 to Figure 4-5 provide visual confirmation of ELCOM’s 

performance, demonstrating the model’s successful simulation of temperatures across various 

time scales, from diurnal variations to the seasonal averages. The model particularly performed 

well at the SW and SE locations, with acceptable performance at NW. Furthermore, the time 

series indicates that water temperature more closely follows the trends in air temperature at 

layers closer to the surface. (Figure 4-6). A notable feature observed in the time series plots is 

that simulated temperature sometimes has larger diurnal amplitudes than the measured values. 

This may be due to inaccuracies in the estimated cloudiness used in the model, as cloudiness 

measurements were unavailable for this study. Consequently, near-surface temperatures were 

sometimes over- or under-estimated when the actual cloudiness ratio deviated from the estimated 

value. Also, while the model did account for atmospheric instability by adjusting the heat 

exchange coefficients there may still be errors associated with this approach. Nonetheless, the 

difference between observed and simulated diurnal amplitudes decreased with increasing depth. 

The model’s capability to represent the thermal characteristics of the pond was further 

assessed through visual examination of color plots in Figure 4-7 to Figure 4-10. Mixed periods, 

Depth below Mean RMSE RMSEN MBE Mean RMSE RMSEN MBE Mean RMSE RMSEN MBE

Outline (m) (
o
C) (

o
C) (%) (

o
C) (

o
C) (

o
C) (%) (

o
C) (

o
C) (

o
C) (%) (

o
C)

-2.1 --- --- --- --- --- --- --- --- 19.3 1.2 6.5 -0.5

-2.2 16.4 2.2 13.5 0.4 18.9 1.2 6.1 -0.4 --- --- --- ---

-2.4 --- --- --- --- --- --- --- --- 18.9 1.2 6.4 -0.3

-2.5 --- --- --- --- 18.5 1.2 6.6 -0.2 --- --- --- ---

-2.6 14.1 2.4 17.2 -0.6 --- --- --- --- --- --- --- ---

-2.7 --- --- --- --- 18.0 1.3 7.1 0.0 18.7 1.2 6.6 -0.2

-2.8 12.7 1.7 13.3 -0.5 --- --- --- --- --- --- ---

-2.9 --- --- --- --- --- --- --- --- 18.4 1.2 6.6 -0.1

-3.0 --- --- --- --- 17.5 1.3 7.5 -0.1 -- --- ---

-3.1 --- --- --- --- --- --- --- 18.2 1.3 7.0 0.0

-3.3 11.5 0.6 5.6 -0.1 16.9 1.4 8.4 0.1 17.8 1.5 8.3 0.3

-3.7 11.3 0.4 3.5 0.0 --- --- --- --- --- --- --- --- 

NW SW SE
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characterized by a uniform temperature spanning from the surface to the bed, and stratified 

periods, during which a temperature difference (here exceeding 1°C) exists between the top and 

bottom layers are both evident in these plots. For example, throughout most of August, 

characterized by dry and warm conditions (Figure 4-6), ELCOM effectively simulated the 

stratification observed at sampling locations. Additionally, the color plots illustrate that in the 

second week of September, when air temperatures dropped below 5°C (Figure 4-6), the vertical 

mixing observed at all the sampling locations was accurately captured by the model (Figure 4-7 

to Figure 4-10). Moreover, these plots allow for the identification of surface mixed layers, 

characterized by relatively uniform temperature, as well as thermocline, characterized by rapid 

temperature gradient. For instance, during the warm and dry period in early August, the depth of 

the mixed layers extends deeper at all locations, reaching the bottom of the pond at some 

locations, inducing mixing around August 10. The model has also effectively predicted the depth 

of thermocline, with shallower depths at NW and deeper depths at the SW and SE locations. 

These plots also effectively display how the thermal structure was influenced by inflows. The 

inflows have a cooling impact near the inlets. With higher inflow rates, this cooling influence 

extends both horizontally along the bottom layers, resulting in lower temperatures towards the 

outlet, and vertically upward, leading to shallower surface mixed layers. This effect was 

particularly evident during the significant inflow in July 25, when a large inflow caused the 

water columns at all the sampling locations became fully mixed. The plots show that ELCOM 

also accurately captured this phenomenon (Figure 4-7 to Figure 4-10). 
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Figure 4-3: Comparison of observed and modelled temperature time series at different depths of 

the NW sampling location over the calibration period. 



Chapter 4: Assessment of Hydrodynamics and Water Quality Modelling of a Stormwater Pond 

82 

 

Figure 4-4: Comparison of observed and modelled temperature time series at different depths of 

the SW sampling location over the calibration period. 
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Figure 4-5: Comparison of observed and modelled temperature time series at different depths of 

the SE sampling location over the calibration period. 
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Figure 4-6: a) Water level and b) air temperature during calibration period (2014). 

a)

b)
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Figure 4-7: Measured and modelled temperatures at NW sampling location during the calibration 

period. The dashed lines represent the normal water level at elevation 680.07m. 



Chapter 4: Assessment of Hydrodynamics and Water Quality Modelling of a Stormwater Pond 

86 

 

Figure 4-8: a) measured and modelled temperatures at SW sampling location during the calibration 

period. The dashed lines represent the normal water level at elevation 680.07m.  

 

Figure 4-9: Simulated temperatures at SARM sampling location during the calibration period. The 

dashed line represents the normal water level at elevation 680.07m.  
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Figure 4-10: measured and modelled temperatures at SE sampling location during the calibration 

period. The dashed lines represent the normal water level at elevation 680.07m.  

Figure 4-11 displays the stratification occurrence, defined as percent of time when the top-

bottom temperature difference at a location exceeded 1°C. The figure indicates that ELCOM 

underestimated stratification at the NW, SW, and SE locations, by 4%, 19%, and 25%, 

respectively. This was expected since the temperature contour plots (Figure 4-7 to Figure 4-10) 

consistently showed the model simulating the thermocline at greater depths. Nonetheless, the 

model’s performance was consistent as underestimation was observed everywhere, and 

additionally, both observed and simulated stratification occurrences decreased from the inlets 

towards the outlet. The increased stratification at the NW inlet is due to the colder near-bed 
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inflows which resulted in higher top-bottom temperature differences compared to the SW and SE 

locations. Moreover, the NW location is deep and isolated enough that a significant top-bottom 

temperature difference often persisted, meaning the pond remained stratified over most of the 

validation period. 

 

Figure 4-11: Observed and simulated stratification occurrence (%) during the calibration period. 

 ELCOM Validation 4.2.2.

Measured and simulated average temperatures at NW, SW, and SARM sampling locations 

during the validation period are presented in Figure 4-12. Only the simulated temperature is 

presented at the SE outlet, as no in-pond instrument was deployed during the validation period. 

The figure also displays the pond-integrated temperature (17.9°C). Similar to the calibration 

period, the model accurately simulated average temperatures at NW, SW, and SARM. The 

average MBE across all locations indicated a minor overestimation of temperature by 0.5°C, 

while the average RMSE and RMSEN were 1.9°C and 12.3%, respectively (Table 4-5). Similar 

to the calibration period, the NW inlet has the lowest temperature, on average 3.9°C colder than 

the pond. However, the SARM inlet’s temperature was within 1°C of SW and SE temperatures, 
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which is mainly attributed to the lower inflows during the validation period. Both measured and 

simulated temperatures generally increase along the pond’s major axis, with exception of at the 

SARM inlet. The model simulated a warm-up of 0.4°C from the SW sampling location to the SE 

outlet.  

 

Figure 4-12: Measured and simulated average temperatures at sampling locations during the 

validation period. The dashed line shows the pond-integrated temperature. 

Table 4-5 presents detailed error statistics for the validation period, derived by comparing 

the simulated temperatures with measurements at deployed depths (Figure 4-13 to Figure 4-15). 

The lowest RMSE of 1.0°C was observed near the bed of the NW inlet, while the highest RMSE 

of 3.1°C was near the bed of the SARM inlet. Similar to the calibration period, model 

performance was consistent at the SW location, with an RMSE range of 1.6°C to 1.9°C. 

Comparison of temperature time series (Figure 4-13 to Figure 4-15) with the time series of 

water level and air temperature (Figure 4-16) reveals that ELCOM tended to overestimate the 

near-bed temperature during dry and warm periods. For example, in early to mid-July 2015, the 

simulated mixed layer extended deeper than the observed one, resulting in a higher error near the 

bed. This is similar to previous studies that found that ELCOM tended to overestimate the 

thermocline depth and the mixed layer thickness (Huang et al. 2010; Nakhaei et al. 2018; Paturi 

et al. 2012). Additionally, as discussed in the calibration section, the simulated diurnal patterns 
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exhibited larger amplitudes than the observed ones, likely due to a constant representation of 

cloudiness. However, this discrepancy decreases near the bed. 

Table 4-5: ELCOM’s error statistics for temperature estimation at different depths and 

locations of ST2 during the validation period. 

 

The temperature color plots presented in Figure 4-17 to Figure 4-20) show that the predicted 

mixed and stratified periods closely match the observed patterns. Moreover, while ELCOM 

overestimated the depth of the mixed surface layer it accurately replicated the timing of he 

observed temporal variations. For example, during extended periods of warm and dry weather, 

such as the last week of June, the first half of July, and the second week of August (Figure 4-16), 

ELCOM replicated the deepening of the surface mixed layer at all sampling locations. 

Additionally, ELCOM simulated the generally thermally mixed conditions at SW and SE, and 

generally stratified conditions at the NW and SARM inlets. Furthermore, the pond mixing driven 

by the significant inflows of mid-July (Figure 4-16) or caused by the colder weather of early 

September have been closely captured by the simulated results. 

Figure 4-21 illustrates that, similar to the calibration period, stratification occurrence 

generally decreased along the pond’s major axis, with an increase at the SARM inlet. Overall, 

ELCOM underestimated the stratification occurrence by approximately 14%. The maximum 

error observed at SARM (28%) is a direct result of the 1.1°C overestimation of near-bed 

Depth below Mean RMSE RMSEN MBE Mean RMSE RMSEN MBE Mean RMSE RMSEN MBE

Outline (m) (
o
C) (

o
C) (%) (

o
C) (

o
C) (

o
C) (%) (

o
C) (

o
C) (

o
C) (%) (

o
C)

-1.7 18.1 1.7 9.6 -0.4 --- --- --- 18.4 1.4 7.6 -0.4

-2.1 16.7 1.8 10.7 0.3 17.9 1.6 9.2 0.5 --- --- ---

-2.2 --- --- --- --- --- --- 17.9 1.8 9.8 0.5

-2.3 --- --- --- 17.5 1.9 10.6 0.8 --- --- ---

-2.5 15.3 2.3 14.9 0.7 --- --- --- 17.3 2.1 12.4 0.8

-2.6 --- --- --- 17.2 1.9 11.1 0.8 --- --- ---

-2.9 12.0 2.5 20.7 0.3 16.7 1.9 11.6 1.0 14.7 3.1 20.3 1.1

-3.2 12.1 2.2 18.1 0.1 --- --- --- --- --- ---

-3.5 11.9 1.6 13.4 0.0 --- --- --- --- --- ---

-3.8 11.5 1.0 8.7 0.0 --- --- --- --- --- ---

NW SW SARM
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temperatures (Table 4-5 and Figure 4-15), leading to less predicted stratification at this location 

(Figure 4-19). The minimum error observed at NW (4%), however, is due to the strong influence 

of boundary conditions on the simulated temperatures near the bed, resulting in an MBE of 

nearly 0°C (Table 4-5 and Figure 4-13). 

In both the calibration and validation periods, ELCOM generally performed satisfactorily in 

estimating the magnitude of water temperature and effectively capturing the temporal and spatial 

variations. The error statistics fall within or are less than the range of values reported in literature 

(e.g., Bolkhari 2014; Carraro et al. 2012; Nakhaei et al. 2018; Paturi et al. 2012). 
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Figure 4-13: Comparison of observed and modelled temperature time series at different depths of 

the NW sampling location over the validation period. 
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Figure 4-14: Comparison of observed and modelled temperature time series at different depths of 

the SW sampling location over the validation period. 
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Figure 4-15: Comparison of observed and modelled temperature time series at different depths of 

the SARM sampling location over the validation period. 
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Figure 4-16: a)Water level and b) air temperature during the validation period (2015). 

a)

b)
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Figure 4-17: a) Observed and b) modelled temperatures (°C) at NW sampling location during the 

validation period. The dashed lines represent the normal water level at elevation 680.07m.  
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Figure 4-18: a) Observed and b) modelled temperatures (°C) at SW sampling location during the 

validation period. The dashed lines represent the normal water level at elevation 680.07m.  
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Figure 4-19: a) Observed and b) modelled temperatures (°C) at SARM sampling location during 

the validation period. The dashed lines represent the normal water level at elevation 680.07m.  
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Figure 4-20: Percentage of occurrence of measured and modelled stratification in sampling 

locations during calibration period. The dashed lines represent the normal water level at elevation 

680.07m.  

 

 

Figure 4-21: Observed and simulated stratification occurrence (%) during the validation period 
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 CAEDYM Calibration and Validation 4.2.3.

Table 4-6 provides quantitative performance details of the CAEDYM model in simulating 

model variables TCHLA, DO, TP, and TN, throughout the calibration and validation periods. 

The statistics presented in this table are based on TN, TP, and TCHLA measurements derived 

from water quality samples, and DO measured by deployed instruments. 

 Total Nitrogen (TN) 3.2.2.1

Figure 4-22 displays color plots of simulated TN at the sampling locations during both the 

calibration and validation periods, overlaid with field measurements. The color plots illustrate 

that CAEDYM overestimated TN especially near the surface. This is reflected in an average 

MBE of 1.20 mg/L and 0.16 mg/L during calibration and validation periods, respectively (Table 

4-6). Also, the average RMSE was 1.42 mg/L during the calibration period and 0.47 mg/L during 

the validation period. Further details can be found in the Appendix B, Section B.4.4. It worth 

noting that, the effects of TN boundary conditions, and consequently simulated TN on TCHLA 

found to be negligible, as will be discussed in Chapter 5. 
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Table 4-6: Performance of CAEDYM in simulation of selected variables at ST2 pond. 

Measured and modeled values are average over their respective simulation period. 

 
       *Units are in mg/L except for TCHLA which is in mcg/L. 

Variable Period Location Measured* Modelled* MBE* RMSE* RMSEN

    (%)

Average 1.41 2.60 1.20 1.42 101

NW 2.05 2.95 0.90 1.22 59

SW 0.97 2.50 1.53 1.64 169

SARM 0.86 2.19 1.33 1.50 174

SE 0.97 2.33 1.36 1.50 154

Average 1.27 1.43 0.16 0.47 37

NW 1.73 1.48 -0.25 0.36 21

SW 0.97 1.52 0.55 0.61 63

SARM 1.18 1.34 0.16 0.31 26

SE 0.75 1.42 0.67 0.72 96

Average 0.16 0.08 -0.08 0.12 78

NW 0.16 0.11 -0.05 0.11 70

SW 0.16 0.07 -0.10 0.13 76

SARM 0.16 0.06 -0.10 0.15 91

SE 0.15 0.06 -0.09 0.13 85

Average 0.12 0.10 -0.02 0.18 146

NW 0.11 0.10 -0.02 0.05 41

SW 0.06 0.11 0.06 0.07 118

SARM 0.10 0.09 -0.01 0.06 61

SE 0.23 0.10 -0.13 0.41 176

Calibration NW 2.03 2.31 0.28 2.23 110

Validation SE 4.80 6.04 1.24 3.25 68

Average 42.8 30.2 -12.63 25.26 59

NW 34.4 19.2 -15.13 32.46 94

SW 53.9 35.3 -18.61 23.45 44

SARM 44.4 36.6 -7.77 12.35 28

SE 46.7 40.0 -6.66 18.85 40

Average 32.2 27.9 -4.35 52.64 163

NW 63.3 30.6 -32.73 83.59 132

SW 5.6 20.9 15.33 19.8 356

SARM 25.3 32.0 6.63 21.05 83

SE 3.9 20.8 16.92 20.85 542

Validation

TCHLA

DO

TN

TP

Calibration

Validation

Validation

Calibration

Calibration
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Figure 4-22: Comparison of measured (circles) and simulated (color plots) TN at four sampling 

locations during calibration and validation periods. The dashed lines represent the NWL at 

elevation 680.07 m.  

 Total Phosphorous (TP) 3.2.2.1

Figure 4-23 presents color plots comparing measured and simulated TP at sampling 

locations during both calibration and validation periods. However, during the calibration period, 

from early August to early September, CAEDYM underestimated near surface TP across all the 

sampling locations. More detailed comparisons are presented in Figure 4-24 for NW sampling 

locations, and in Appendix B, Section B.4.4 for other sampling locations. Efforts to rectify this 

issue by tuning model parameters such as the maximum potential phosphorous release rates did 

not improve the model's performance. The discrepancy in measured and simulated TP 

throughout the water column, as well as model’s inability to capture short-term variations (e.g., 

monthly), has been also observed in other studies (e.g., Nakhaei et al. 2021; Özkundakci et al. 
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2011; Trolle et al. 2008b). Referring to Table 4-6, during the calibration period, RMSE values at 

the sampling locations ranged from 0.11 to 0.15 mg/L, while during the validation period, RMSE 

values ranged from 0.05 to 0.41 mg/L.  

 

Figure 4-23: Comparison of measured and simulated TP at four sampling locations during 

calibration and validation periods. Color plots and circles indicate simulation results and field 

measurements, respectively. The dashed lines represent the NWL at elevation 680.07 m. 
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Figure 4-24: Comparison of observed and simulated TP at NW sampling location during 

calibration period near the surface (a) and near the bed (b). 

 Dissolved Oxygen (DO) 3.2.2.1

Figure 4-25 compares measured and simulated DO time series at the NW inlet, where DO 

measuring instruments were deployed near the surface and bed during the calibration period. The 

measured and simulated DO agree reasonably well, with an average RMSE of 2.23 mg/L (Table 

4-6), although the agreement near the bed is influenced by the boundary conditions. CAEDYM 

tended to overestimate DO at both near bed and near surface towards the end of the season. A 

comparison of simulated and profiled DO at all sampling locations is presented in Appendix B, 

Section B.4.4. 

Simulated DO during validation period was also compared to measurements obtained from 

instruments deployed near the surface and bed at the SE location and presented in Figure 4-26. 
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Similar to the calibration run, CAEDYM overestimated DO near the end of the season. From 

early Jun to late July, while CAEDYM reasonably simulated the average DO, it could not 

reproduce the observed diurnal variations. This is likely due to inability of the model to 

accurately simulate the dynamics of dissolved oxygen through photosynthesis and respiration. 

That is, the model likely underestimated the concentration of DO produced by photosynthesis 

during the day and consumed by respiration during the night. These discrepancies are more 

apparent in the near-surface measurements, where more algae are expected to be present. As 

such, the RMSE of the validation run increased to 3.25 mg/L.  

 

Figure 4-25: Comparison of measured and simulated DO near surface (top) and bed (bottom) at 

NW during calibration period. 
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Figure 4-26: Comparison of measured and simulated DO near surface (top) and bed (bottom) at SE 

during validation period. 

 Total Chlorophyll-a (TCHLA) 3.2.2.1

Table 4-6 shows that RMSE during the calibration period varied from 12.35 mcg/L at 

SARM to 32.46 mcg/L at NW. The average RMSE increased from 25.26 mcg/L in the 

calibration period to 52.64 mcg/L in the validation period. Simulated TCHLA during the 

calibration and validation periods at sampling locations are presented in Figure 4-27, overlaid 

with measured water quality samples (single dots), deployed instruments (sequence of horizontal 

dots), and profiled measurements (sequence of vertical dots). The model was able to capture the 

overall temporal and spatial variability of TCHLA with some discrepancies. For example, during 

the calibration period, the model did not capture the sudden increase in TCHLA measured by 

deployed instruments and profiling in early July at NW (Figure 4-27a). Previous studies have 
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found that phytoplankton patchiness could be the cause of high temporal variability in observed 

data (Bolkhari 2014; Missaghi and Hondzo 2011). 

Figure 4-28 compares simulated TCHLA with measured TCHLA from the deployed 

instruments (EXO2) at the NW location. The EXO2 was initially deployed at a depth of -2.2 m 

(Figure 4-28a); however, it was retrieved and deployed at a depth of -3.0 m around mid-August 

(Figure 4-28b). Since the EXO2 sensors were not calibrated, the TCHLA readings are relative 

and only show temporal trends, which generally align with the simulation trends.  

The average TCHLA, measured via profiling at various sampling locations was also 

compared with the corresponding depth-averaged simulated TCHLA (Figure 4-29). This figure 

indicates that CAEDYM effectively captured the temporal and spatial variations of TCHLA. The 

TCHLA underestimation between mid-August and mid-September can be attributed to the 

underestimation of TP during this period as discussed earlier. 
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Figure 4-27: Comparison of measured and simulated Total Chlorophyll-a (TCHLA) at four 

sampling locations during both calibration and validation periods. The color plots depict simulation 

results, while single circles, vertical and horizontal sequences of circles represent measured 

TCHLA through water quality sampling, profiling, and deployed instruments, respectively. The 

dashed lines are corresponded to the NWL at elevation 680.07 m. 

a)

b)

c)

d)

e)

f)

g)

h)
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Figure 4-28: Simulated and measured TCHLA with the deployed EXO2: a) at depth of -2.2 m, b) 

measured at depth of -3.0 m from outline of pond. 

 

Figure 4-29: Average simulated and profiled TCHLA at sampling dates. 
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 Sensitivity Analysis of CAEDYM model parameter (Results) 4.2.4.

Using the information gained throughout the calibration and validation processes, a number 

of model parameters were selected for the sensitivity analysis, as shown in Table 4-7. The 

sensitivity of TCHLA, DO, TN, and TP to the selected model parameters was calculated based 

on simulations conducted using three values for each model parameter  shown in this table, and 

the computed sensitivity index (SI) values are presented in Figure 4-30. 

Figure 4-30a shows that TCHLA is the most sensitive variable overall, with an average SI of 

93.1%, followed by DO, TN, and TP, with average SI values of 16.3%, 9.7%, and 8.4%, 

respectively. Modelled TCHLA concentrations are most sensitive to 𝜇𝑚𝑎𝑥, 𝐾𝑟, 𝐼𝑃𝑚𝑖𝑛, and 𝐼𝐾. 

Therefore, TP, TN, and DO are also sensitive to these four parameters due to interdependencies 

across simulated variables. 

Table 4-7: Nominated model parameters along with three values selected for sensitivity analysis of 

CAEDYM. 

Parameter   𝜽𝒄 𝛉𝐜 − 𝚫𝛉 𝜽𝒄 + 𝜟𝜽 Average SI (%) Average Rank  

DOC1max 0.011 0.001 0.021 3.3 9 

𝐼𝐾 130 70 200 38.8 4 

𝐼𝑃𝑚𝑖𝑛 0.100 0.008 0.200 47.6 3 

𝐾𝑟 0.020 0.001 0.039 71.2 2 

𝜇𝑚𝑎𝑥 0.60 0.30 0.90 102.9 1 

POMDensity 1005 1000 1010 12.1 7 

𝜗𝑔𝑟𝑜𝑤𝑡ℎ 1.06 1.00001 1.12 6.2 8 

𝑇𝑜𝑝𝑡, 𝛥𝜃 = 1°𝐶 25 24 26 12.7 6 

𝑇𝑜𝑝𝑡, 𝛥𝜃 = 2°𝐶 25 23 27 22.1 5 

𝑇𝑚𝑎𝑥, 𝛥𝜃 = 2°𝐶 33* 31 35 1.9 10 

 *𝜃𝑚 for 𝑇𝑚𝑎𝑥 was adjusted from 31°C to 33°C to satisfy the condition of 𝑇𝑚𝑎𝑥 ≥ 𝑇𝑜𝑝𝑡 + 6 considered in the CAEDYM.  
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Figure 4-30: Sensitivity index (SI %) of model outputs: a) TCHLA, b) DO, c)TN, and D) TP, to 

selected model parameters. 

 CONCLUSION 4.3.

A 3D coupled hydrodynamics and water quality model, ELCOM-CAEDYM, was used in 

this study to simulate the temporal and spatial variations of variables measured at the South 

Terwillegar2 (ST2) stormwater pond in the city of Edmonton. 

ELCOM accurately simulated water temperatures, which was considered the most important 

variable representing pond hydrodynamics. This was accomplished by calibrating the model 

through adjustments of inflows and model parameters such as, albedo and Secchi depth, and 

accounting for atmospheric instability.  The model captured temperature variations across 
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various time scales, from diurnal fluctuations to the seasonal averages. Moreover, the spatial 

variation of temperature was successfully replicated across the pond. ELCOM also captured the 

thermal structure of the pond, including periods of thermally mixed and stratified, along with 

responses to abrupt external changes such as significant changes in inflows and weather 

conditions. The error statistics over the calibration and validation periods consistently remained 

within or below the established range of values reported in similar studies. 

The water quality model, CAEDYM, was able to simulate TCHLA and DO with acceptable 

accuracy. It effectively captured both the temporal and spatial trends of TCHLA. Similarly, it 

effectively represented DO dynamics, although it struggled to resolve the diurnal variations. 

While the model performance in simulating TP was acceptable, it encountered challenges in 

predicting TN. The under-performance of the model in simulating nutrient components was 

partly attributed to the accuracy of boundary conditions. Nevertheless, RMSE values obtained in 

this study were comparable with those reported in similar studies (e.g. Nakhaei 2021).  

The sensitivity analysis of CAEDYM revealed that TCHLA is the most sensitive variable 

overall, followed by DO, TN, and TP. Although TCHLA exhibits sensitivity to a larger number 

of model parameters, 𝜇𝑚𝑎𝑥, 𝐾𝑟, 𝐼𝑃𝑚𝑖𝑛, and 𝐼𝐾 were identified as most influential. Therefore, the 

findings of this study provide valuable guidance for calibration and can reduce the number of 

calibration attempts in similar studies. 
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Chapter 5. INVESTIGATING THE BEHAVIOUR OF THE STUDY 

STORMWATER POND UNDER VARIOUS BOUNDARY 

CONDITIONS AND DEPTH SCENARIOS USING ELCOM-

CAEDYM MODEL 

 INTRODUCTION 5.1.

Water quality models have been widely used as planning, design and decision-making tools 

for evaluating water quality of aquatic systems under various management and climate change 

scenarios (e.g., Conn and Fiedler 2006; Gal et al. 2004, 2009; Gilboa et al. 2022; Jin et al. 2007; 

León et al. 2005; Lewis et al. 2004; Yajima and Choi 2013). However, the accuracy and 

reliability of simulations depend not only on the model structure and parameterization but also 

on reliable input data, particularly boundary conditions. 

Inevitably, uncertainties always exist in input data due to measurement errors and 

assumptions made to establish boundary conditions. It is important to assess the impact of such 

errors and assumptions on the model’s response. Moreover, to assess the response of the aquatic 

systems under proposed management or future climate scenarios, the model is run under altered 

boundary conditions or within a modified physical domain. This "sensitivity approach" (Elliott 

2011) has been employed in previous studies to predict the impact of future scenarios by altering 

variables such as temperature, precipitation, and nutrient loadings beyond the historical levels in 

the aquatic ecosystem (e.g., Cui et al. 2016; Elliott et al. 2006; Gal et al. 2009; Linden et al. 

2015; Trolle et al. 2008b; a). 

The content presented in this chapter distinguishes itself from previous studies due to its 

focus on the urban stormwater pond scale, the utilization of a model calibrated and validated 

through extensive field measurements, and analysis of the model's response to a diverse range of 

input data. In this study, the impacts of nutrient loadings, geometry, hydrological, and climate 

scenarios on the water quality of the selected stormwater pond, South Terwillegar 2 (ST2), will 
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be analyzed. The calibrated ELCOM-CAEDYM model is used to simulate total chlorophyll-a 

(TCHLA) under different scenarios. For each scenario, key factors influencing the algae 

dynamics (e.g., retention time, thermal stratification, as well as nutrients, light, and temperature 

limiting factors) were identified and discussed. This provides insights into the suitability and 

sensitivity of the ELCOM-CAEDYM model for managing urban stormwater ponds. 

 METHODOLOGY 5.2.

 Modelling Scenarios 5.2.1.

The calibrated model run, spanning from June 10th to October 13th, 2015, serves as the 

"base-run", to define the scenarios and compare their impacts. Next, by perturbing the pond 

geometry (depth and bed topography) and boundary conditions (inflows, nutrient load, wind, and 

temperature), 15 scenarios were defined (Figure 5-1). These perturbations were created by 

applying either multipliers or increments to the input data values. Subsequently, all scenarios 

were run over the simulation period, using initial and boundary conditions identical to those of 

the base-run, except for the revised boundary conditions imposed by that specific scenario. In the 

following, further details about each specific scenario are provided. 
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Figure 5-1: Classification of Defined Scenarios based on Perturbation of Geometry and Boundary 

Conditions. 

 Geometry  3.2.2.1

The depth and bed topography of a water body have a significant impact on its 

hydrodynamics and water quality (Conn and Fiedler 2006; Ji 2017). Therefore, to investigate the 

impacts of pond’s depth and its variations, two scenarios were defined: Depth0 and DepthU. 

Here, all the depths are given relative to the outline of the study pond, which, as described in 

Chapter 2, has an elevation of 680.75 m above sea level. Therefore, the normal water level 

(NWL) with elevation of 680.07 m is indicated by a depth of -1.68 m. 

In the Depth0 scenario, the bed elevations of computational cells were uniformly changed by 

the same amount, ranging from -1.0 to 0.8 m, in increments of 0.1 to 0.5 m (Table 5-1). This 

consistent change preserves the relative bed topography. In the DepthU scenario, a constant 

Scenarios 

Geometry Boundary Conditions 

Nutrient Loadings Hydrological Climatic 

Phosphorous 

Components 

Nitrogen 

Components 

TP Scenario (TP) 

PO4 Scenario (PO4) 

DOPL Scenario 

PLP Scenario 

PIP Scenario 

Depth Scenario (Depth0) 

 

Flow Scenario (FLOW) 

 

Wind Scenario (WIND) 

 

  Temperature Scenario (T) 

TN Scenario 

 NH4 Scenario 

Uniform Depth Scenario 
(DepthU) 

NO3 Scenario 

DONL Scenario 

PONL Scenario 
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value was assigned to bed elevations of the computational cells creating a pond with a uniform 

depth. The bed elevations ranged between -3.33 and -2.13 m, relative to the pond's outline, in 

increments of 0.1 to 0.2 m (Table 5-1). It should be noted that the significantly different 

bathymetry of the DepthU scenario is not representative of the study pond, and this scenario 

serves only as a reference to investigate the impacts of bed non-homogeneity. In both scenarios, 

only the computational cells with bed elevations less than ‑2.1 m (i.e., 0.42 m below the NWL) 

were altered. The ‑2.1 m threshold ensures that all the altered cells remain submerged in all the 

runs of both scenarios, ensuring a consistent elevation-surface area relationship. Subsequently, 

the water depth was averaged for each of the runs in the Depth0 and DepthU scenarios over the 

simulation period. Then, the depth multipliers, denoted as λ[Depth0] and λ[DepthU], were 

calculated for each run by dividing the simulated average water depth by that of the base-run. 

For example, by deepening the bed by 0.2 m, the average simulated water level was 1.04 m, 

which is 1.15 times deeper than that of the base-run, which was 0.91 m. These multipliers 

presented in Table 5-1 provide a more consistent basis for comparisons between the two depth 

scenarios. 
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Table 5-1: Depth modifications and average multiplier in Geometry scenarios. 

 

 Hydrological 3.2.2.1

The preparation of input data for the "Flow scenario" required additional steps due to the 

interrelation between inflow, outflow, and water level time series, as described in Appendix C. 

The inflows and, accordingly, outflows were perturbed such that the resulting water levels 

matched those of the base-run. To calculate the perturbed inflow time series, first the elevation of 

the weir crest was varied within a range of ‑5 to +5 cm (Table 5-2). The perturbed outflows were 

then calculated by inputting the base-run water levels into the outlet structure stage-discharge 

relationship. Finally, the perturbed inflows were back-calculated using the reverse level pool 

routing. The average perturbed inflows over the simulation period vary between 7.49×10⁻⁴ and 

1.40×10⁻² m³/s, corresponding to flow multipliers (λ[Flow]) of 0.18 and 3.35, respectively (Table 

5-2). 

Depth 

Increment 

(m)

Pond 

Averaged 

Depth (m)

λ[Depth0] Bed 

Elevation 

(m)
*

Pond 

Averaged 

Depth (m)

λ [DepthU]

-1.0 1.56 1.72 -3.33 1.43 1.58

-0.5 1.23 1.36 -3.13 1.26 1.39

-0.2 1.04 1.15 -2.93 1.09 1.20

-0.1 0.97 1.08 -2.73 0.92 1.01

0.0 0.91 1.00 -2.63 0.83 0.92

0.1 0.85 0.93 -2.53 0.74 0.82

0.2 0.8 0.88 -2.43 0.65 0.72

0.5 0.74 0.82 -2.33 0.57 0.63

0.6 0.7 0.77 -2.23 0.49 0.54

0.7 0.61 0.67 -2.13 0.39 0.44

0.8 0.53 0.59 *Relative to pond’s outline

DepthU ScenarioDepth0 Scenario
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Table 5-2: Flow scenario multipliers and corresponding average inflows and weir height 

modifications. 

  

 Climatic 3.2.2.1

Climatic scenarios (Figure 5-1) were defined by altering the observed wind speeds and air 

temperatures. In the Wind scenario, wind speeds were scaled by wind multipliers (λ[WIND]) 

ranging from 0.25 to 2.00, in increments of 0.25. Additionally, for the Temperature scenario, air 

temperatures were varied by using offsets (λ[T]) ranging from -4 to 4°C, in increments of 0.5 and 

1.0°C (Table 5-4). In addition to analyzing the model’s sensitivity to potential errors in climatic 

boundary conditions, the wide ranges of λ[T] and λ[WIND] can illustrate how state variables 

would respond to significant changes in boundary conditions. 

 Nutrients Loading 3.2.2.1

The nutrient scenarios were defined by varying the phosphorous and nitrogen component 

loadings through inflow boundary conditions. The phosphorous and nitrogen components (PO4, 

PIP, DOPL, POPL, TP, NO3, NH4, DONL and TN) were individually manipulated by the 

nutrient multiplier, λ[Nutrient], with values of 0.5, 0.67, 0.75, 0.9, 1.1, 1.25, 1.5, and 2.0. 
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 Processing of Model Outputs 5.2.2.

ELCOM-CAEDYM simulates and outputs a wide range of state variables (e.g., water 

temperature, dissolved oxygen, and nutrient concentrations), as well as biogeochemical rates 

(e.g., productivity, respiration, and settling). Most simulated variables can be extracted from 

specific cells or the top/middle/bottom water layers, and at specified times, enabling detailed 

spatial and temporal analysis. Additionally, ELCOM-CAEDYM can output the average of 

selected state variables over the computational cells (Hipsey et al. 2013; Hodges and Dallimore 

2013b, 2016). 

For this study, the ELCOM-CAEDYM model was configured to output hourly state 

variables. Profiles of retention time (RT), water temperature (T), total chlorophyll-a (TCHLA), 

dissolved oxygen (DO), total phosphorous (TP) and total nitrogen (TN) were extracted at 

designated sampling locations, namely the NW, SW, SARM inlets and the SE outlet. This 

allowed for the calculation of depth-averaged time series of these variables, as well as their 

temporal average over the simulation period. It should be noted that the model does not provide 

spatial average values for some state variables, in particular RT. Additionally, the variable 

“retention time” outputted by ELCOM-CAEDYM is basically the “water age” which is the 

average age of water in a cell (Hodges and Dallimore 2016). The model outputs RT at the 

surface (top), middle (mid), and near-bed (bed) layers. Therefore, spatial average of RT values 

were calculated by averaging top, mid, and bed RT values. 

 Trophic State of the Pond 3.2.2.1

TCHLA concentrations were used to determine the trophic state of the study pond based on 

the trophic index of Carlson (1977) given in Table 5-3.  
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Table 5-3: Criteria of the tropic state. 

Trophic State Criteria (mcg/L of TCHLA) 

Oligotrophic TCHLA < 2.6 

Mesotrophic 2.6< TCHLA < 20 

Eutrophic 20 < TCHLA < 56 

Hypereutrophic TCHLA > 56 

 Thermal Stratification 3.2.2.1

To assess stratification strength and occurrence, additional calculations were performed on 

the simulated water temperatures. The strength of thermal stratification, ΔT, is defined as the 

temperature difference between the surface and the bed of a water column. The water column 

was considered to be "stratified" when ΔT≥1°C and "strongly stratified" when ΔT≥10°C. These 

thresholds have been used in similar studies (Ahmed et al. 2022). 

The stratification occurrence FΔT, is defined as the percentage of the simulation period 

during which the stratification strength (ΔT) exceeds a predefined threshold. For example, F1 

and F10 represent the percentage of time during which a water column is stratified and strongly 

stratified, respectively. Furthermore, the pond FΔT and ΔT were calculated by averaging over all 

computational cells. Stratification strength and occurrence provide insight into the pond’s 

thermal stability and help identify locations or scenarios where stratification is more persistent. 

 Physical Transport Rate 3.2.2.1

The temporal and spatial variations of total chlorophyll-a (TCHLA) in a body of water are 

influenced by both biogeochemical factors (e.g., temperature, light and nutrient) and physical 

transport factors (e.g., advection and diffusion). Due to the interdependence of these factors, 

isolating their individual effects on TCHLA can be challenging. Following an approach similar 

to Ji (2017) and Qin (2017), the fractional biomass change rate (G) can be considered as the sum 
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of the biogeochemical rate (g) and physical transport rate (hd), and hence, hd can be back-

calculated based on other outputted variables. First, pond-averaged G (1/day) is calculated as: 

1
1

Δ

t t
t

t

A
G

t A


 

  
 

 (5-1) 

where the subscript 𝑡 indicates time, Δt is the time step (1/24 day), and 𝐴𝑡 is the pond-averaged 

TCHLA (mcg/L) at time 𝑡. Following the discussion in the previous chapter, the time series of 

pond-averaged g (1/day) is then calculated: 

t t t tg res set    (5-2) 

where μ, is the potential growth rate (1/day), res represents the respiration, mortality and 

excretion rate (1/day), and set is the settling rate (1/day). The pond-averaged rates on the right-

hand side of Equation (5-1) and Equation (5-2) are outputted by the model. As discussed in the 

previous chapter, μ is a function of light, temperature, and nutrient limiting factors and reaches 

its maximum values when the limiting factors approach one and decreases as the limiting factors 

approach zero. Finally, the pond-averaged hd (1/day) is calculated as: 

t t thd G g   (5-3) 

 RESULTS AND DISCUSSIONS 5.3.

This section presents the results of the different scenarios, focusing on state variables related 

to or potentially influencing total chlorophyll-a concentrations (TCHLA). These variables 

include water temperature (T), stratification strength (ΔT), stratification occurrence (FΔT), 

retention time (RT), limiting factors, physical transport rate (hd), biogeochemical rate (g), as 

well as dissolved oxygen (DO). 
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Values reported for the pond are pond-integrated, meaning they are spatially averaged across 

the entire pond, whereas those reported for the sampling locations are depth-averaged. 

Additionally, these values are averaged over the simulation period. The presented time series of 

averaged of variables are also either spatially averaged across horizontal layers or all cells of the 

pond, or depth-averaged for the sampling locations. For example, "pond RT" refers to the pond-

integrated retention time averaged over the simulation period. Furthermore, alterations in state 

variables within each scenario are reported relative to the base-run values. Moreover, reported 

statistics involving all scenarios (such as averages, maximums, or ranges) exclude the DepthU 

scenario due to its significantly different bathymetry. 

Moreover, R² and p-value statistics were reported only when the assumptions of linear 

regression were met as determined through visual inspection of the corresponding scatter and 

residual plots. When these assumptions were not satisfied (e.g., evident non-linearity, presence 

of outliers, non-randomness of residuals), either the Kendall test (Appendix C) was employed, or 

general trends and average changes were presented. Linear regression and Kendall tests were 

considered statistically significant when p-values were less than 0.01. 

 Nutrient Scenarios 5.3.1.

To assess the impact of nutrient scenarios on water quality, their effects on nutrient limiting 

factors and subsequently on TCHLA were examined. Given that in these scenarios, other 

variables (e.g., T, hd, ΔT, and RT) changed less than 1%, their results are not presented or 

discussed here.  

 Phosphorous Scenarios 3.2.2.1

Figure 5-2 depicts the response of pond-integrated phosphorous limiting factor, f(P), and 

TCHLA to perturbations in individual phosphorous components (POPL, PIP, DOPL and PO4), 

and to perturbations in TP. Notably, f(P) and consequently TCHLA are more sensitive to PO4 
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and DOPL, given their greater availability for uptake by algae (Ji 2017). The response of 

TCHLA to these two components and to TP is linear (R
2
=0.98, p-Value<0.01). However, PIP 

and DOPL components have negligible impact on TCHLA, with variations under 2% over the 

range of λ[Nutrient]. As expected, the influence of TP is more significant than the individual 

influences of each component. For example, Figure 5-2b indicates that a ±50% change in TP 

leads to +25% and ‑36% change in TCHLA, respectively, while a ±50% change in DOPL or PO4 

leads to approximately ±10% TCHLA variations.  

It should be noted that phosphorus load influences the potential growth rate (μ) only during 

the periods when phosphorus is indeed the limiting factor. This is particularly evident in Figure 

5-3a during the period of late July to early September, when f(P) is significantly below 1.0. 

During this time, the effect of changing TP on μ becomes apparent (Figure 5-3b), leading to 

higher concentrations of TCHLA for larger λ[Nutrient], as shown in Figure 5-3c. 

 

Figure 5-2: Response of pond-integrated (a) f(P) and (b) TCHLA to phosphorous scenarios.   
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Figure 5-3: Time series of daily-averaged (a) phosphorous limiting factor, (b) gross growth rate, 

and (c) Total Chlorophyll-a concentration under Total Phosphorous scenario with different λ[TP]. 

 Nitrogen Components 3.2.2.1

Varying the nitrogen components by 0.25<λ[TN]<2.0 changed the pond-integrated f(N) by 

up to 50%, but had minimal impact on TCHLA. This is due to f(P) being the dominant nutrient 

limiting factor over most of the simulation period. Nitrogen only became the nutrient limiting 

factor during the early season when f(P) ≈ 1.0. However, even during this period, f(N) changed 

by less than 2% over the range of λ[TN]. Consequently, across the range of λ[TN], pond TCHLA 

changed less than 4% compared to the base-run values. For brevity, results are not presented 

here. 

a)

b)

c)
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 Impact of Different Scenarios on Water Temperature 5.3.2.

The average of perturbed air temperature and pond-integrated water temperature presented in 

Table 5-4, have a linear relationship (R²=0.99, p-value<0.01). During the simulation period, the 

pond-integrated water temperature for the base-run was 18.5°C and at the NW, SW, SARM, and 

SE sampling locations it was 14.9°C, 17.8°C, 17.0°C, and 18.8°C, respectively. In other words, 

water temperatures are lower at the inlets compared to the outlet and the pond-integrated value. 

A comparison of different runs and scenarios presented in Figure 5-4 also highlights the 

consistent pattern of lower temperatures near the inlets. Figure 5-4 a&b show how the average 

temperatures of the pond and sampling locations respond to changes in depth. In both the Depth0 

and DepthU scenarios, average temperatures do not change significantly (less than 1°C) with 

variations in depth, and the response is not monotonic. In general, shallower ponds tend to have 

larger diurnal temperature fluctuations as well as higher variability at timescales ranging from 

several days to a week (Appendix C, Figure C-1), primarily due to their lower water volume and, 

consequently, reduced heat capacity. As a result, compared to deeper ponds, shallower ponds 

warm up faster during the day and cool down more quickly at night. Shallower ponds also heat 

up more and cool down more in response to longer timescale climatic forcing. For instance, 

Figure C-1 shows that the difference between the maximum and minimum daily pond-averaged 

temperatures during the simulation period was 16.7°C and 22.8°C for λ[Depth0] of 1.72 and 

0.59, respectively. Figure 5-4b shows that the temperatures are more uniformly distributed across 

a pond in the DepthU scenario, indicating that homogeneity of the bathymetry also plays an 

important role in the spatial variations in water temperature. 
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Table 5-4: Temperature scenario perturbations and corresponding averaged air and pond-

integrated temperatures. 

 

The results of the Flow scenario, as depicted in Figure 5-4c, indicate a negative association 

between the pond-averaged temperature and λ[Flow]. This trend is primarily attributed to the 

increased volume of colder inflows. Specifically, pond temperature decreases linearly with a 

slope of -0.45°C/λ[Flow] (R²=0.99, p-value<0.01). Note that the NW inlet experiences a greater 

impact since it receives the majority of inflow. However, the trend is nonlinear at this location: a 

decreases rate of -1.64 and -0.38°C/λ[Flow] for the range of λ[Flow] less than and greater than 

1.5, respectively. 

In Figure 5-4d, a negative association between temperature and wind speed is evident across 

the entire pond. This can be attributed to the enhanced evaporative heat flux as well as enhanced 

mixing due to higher wind speeds. There is a statistically significant logarithmic relationship 

between pond-averaged temperature and wind speed. Furthermore, stronger winds lead to 

smaller temperature differences across the pond. However, the NW location displays a lower 

sensitivity to wind speed perturbations due to its narrow and deep bathymetry, which likely 

inhibits mixing. 

λ [T]

(°C)

Average Air 

Temperature (°C)

Pond-integrated 

Temperature (°C)

-4.0 11.7 15.6

-3.0 12.7 16.3

-2.0 13.7 17.0

-1.0 14.7 17.8

-0.5 15.2 18.1

0.0 15.7 18.5

0.5 16.2 18.8

1.0 16.7 19.2

2.0 17.7 19.9

3.0 18.7 20.6

4.0 19.7 21.3
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Pond-averaged and sampling location temperatures increase linearly with air temperature 

(Figure 5-4e). The linear regression is significant across the pond (R²=0.99). Once again, the NW 

inlet demonstrates a relatively lower sensitivity to air temperature. For example, the pond-

averaged temperature was 2.5 times more sensitive to increasing air temperatures compared to 

the NW. The reduced sensitivity is linked to the locally deep and narrow bathymetry of the NW 

inlet, where its temperature is influenced by the relatively cold inflow that tends to get trapped in 

this low spot. Furthermore, when comparing all scenarios (Figure 5-4), an increase of water 

temperature from the major inlet at the NW towards the SE outlet is evident. Excluding the 

DepthU scenario, the SE-NW temperature differences range from 2.1°C at λ[T]=-4°C to 5.8°C at 

λ[T]=+4°C and λ[Wind]=0.25. The implications of these elevated outflow temperatures on the 

environment can vary depending on the specific characteristics of the downstream receiving 

water and may need to be considered in management plans. 
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Figure 5-4: Response of water temperature, T (°C) to different scenarios: a) Depth, b) Uniform 

Depth, c) Flow, d) Wind, and e) Temperature scenario. 

 Impact of Different Scenarios on Thermal Stratification 5.3.3.

Figure 5-5 illustrates how F1 (i.e., a stratification criteria of ΔT=1) responds in different 

scenarios. Results for other stratification criteria are presented in Appendix C, Figure C-2 to 

Figure C-6. The significant impact of the local bathymetry is evident from the higher F1 values 

in the Depth0 scenario compared to the DepthU scenario. As expected, the deeper sampling 

locations have higher F1 compared to the pond average due to the increased vertical separation 

between the warmer surface and colder bottom layers. However, across the range of λ[Depth0], 

a) b)

d) e)c)



Chapter 5: Investigating the behaviour of The Study Stormwater pond under various boundary conditions and 

Depth Scenarios using ELCOM-CAEDYM Model 

129 

F1 at the NW inlet varied less than 10% (Figure 5-5a) which was the smallest value compared to 

the other locations. This can be attributed to the deep and relatively isolated bathymetry of the 

NW inlet, and the fact that near-bed temperatures at this location are primarily influenced by the 

colder inflows rather than changes in depth. 

Figure 5-5b shows that across the range of λ[DepthU], the F1 values were within 5% of the 

pond averaged value at all locations except the NW inlet. The NW F1 values are up to 18% 

higher (at λ[DepthU]=0.44) compared to other locations, but with increased depth, the 

discrepancy diminishes to less than 2% at λ[DepthU]=1.58. This occurs because the near-bed 

temperatures in a deeper pond approach inflow temperatures. 

Figure 5-5c indicates that, in the Flow scenario, F1 increases linearly for the pond from 36% 

to 56% across the entire range of λ[Flow]. However, at the sampling locations, F1 variation is 

non-monotonic and less sensitive to λ[Flow]. More detailed comparisons are presented in 

Appendix D, Figure C-7, illustrating variations in average temperature versus λ[Flow] at the 

sampling locations and the pond, both at the top (Figure C-7a) and bottom (Figure C-7b), along 

with their difference, i.e., ΔT (Figure C-7c). These results suggest that ΔT and, consequently, F1 

are more influenced by variations in near bed temperatures than surface temperatures in the flow 

scenario. This is attributed to the placement of inlets at the bottom of the pond, which introduce 

cold inflows near the bed. 

Figure 5-5d shows that higher wind speeds are associated with lower F1 across the pond. 

The trend is linear at the SW and SE sampling locations and the pond, with slopes of about 20% 

per unit of λ[Wind], respectively (R²>0.98, p-value<0.01). The trends at the NW and SARM 

inlets are almost linear, but on average, F1 shows lower sensitivity with slopes of about 10% per 

unit of λ[Wind (R²>0.93, p-value<0.01). The reduced responses at the inlets can be attributed to 

the influence of cold inflows, which contribute to more locally stable stratification. More 

detailed results are presented in Appendix C, Figure C-8d, showing that with increasing wind 
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speed, the temperatures of the top and bottom layers gradually converge. Over the range of 

λ[Wind], the top and bottom temperatures decrease by 5.0°C and 2.6°C, respectively. The greater 

reduction in top temperature is attributed to the higher cooling effect of the evaporative heat flux 

at the surface. 

Figure 5-5e illustrates a linear positive correlation between λ[T] and F1 across the pond, 

with an average slope of 2.2%/°C. That is, for every 1.0°C increase in air temperature, the 

occurrence of stratification increased on average by 2.2%. This is because, as shown in 

Appendix C, Figure C-8e, the top temperature increased at a higher rate compared to the bottom 

temperature. For every 1.0°C increase in air temperature, the water temperature increased on 

average by 0.81°C and 0.67°C at the top and bottom, respectively. 
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Figure 5-5: Response of F1 ratio (%) to defined scenarios: a) Depth, b) Uniform depth, c) Flow, d) 

Wind, and e) Temperature scenarios. 

 Impact of Different Scenarios on Retention Time 5.3.4.

Figure 5-6 illustrates the response of retention time (RT) to the different scenarios. The NW 

inlet has the shortest RT across all the scenarios, averaging 9.3 days less than the pond RT (16.8 

days). This is expected, as 74% of inflow enters the pond through this inlet. Similarly, the SARM 

inlet RT is on average 3.4 days less than the pond. In contrast, the SE outlet has the longest RT, 

with a mean of 1.9 days longer than that of the pond. 
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Figure 5-6a shows that RT increased linearly with λ[Depth0], although at different rates 

across the pond. A 50% increase in depth increased the average RT from 18 to 26 days, which is 

a 44% increase. The rates of increase at the SE and SW locations were almost the same as the 

pond average, but lower at the inlet locations. All linear regressions are significant with R²>0.98. 

With the uniform bathymetry of the DepthU scenario, these slopes converge to approximately 

13.5 day/λ[DepthU] (Figure 5-6b). As discussed earlier, the NW inlet has the shortest RT among 

the sampling locations, with 6.0 to 15.3 days shorter than the pond RT. However, the uniform 

bathymetry of the DepthU scenario reduces this difference to approximately 2 days (Figure 5-6a 

and b). 

RT decreases monotonically with λ[Flow] across the pond (Figure 5-6c). A linear regression 

between the logarithm of λ[Flow] and RT is significant for all the locations and the pond 

(R²>0.96). Due to this nonlinear relationship, pond RT decreases at a higher rate for 

λ[Flow]<1.5, resulting in a reduction of approximately 20 days. However, further increases of 

flow (1.5<λ[Flow]<3.4) contributed to less than 5 additional days of decrease. 

The average RT versus λ[Wind] relationship (Figure 5-6d) exhibits a non-linear decreasing 

trend at SW, SE, and the pond, while the trend is non-monotonic at the NW and SARM inlets. 

Nevertheless, these variations are less significant compared to the Depth and Flow scenarios. For 

instance, pond RT changes by less than 5 days over the range of λ[Wind]. Furthermore, wind 

speeds exceeding those of the base-run do not exert a substantial influence on the RT throughout 

the pond; doubling wind speed reduces pond RT by less than 0.5 days. 

In the Temperature scenario (Figure 5-6e), small variations of RT were observed across the 

range of λ[T]. Additionally, the trends of these variations are inconsistent across the pond. For 

example, at the NW inlet and SE outlet, a decreasing rate of 0.3 day/λ[T] and an increasing rate 

of 0.1 day/λ[T], respectively, was observed. 



Chapter 5: Investigating the behaviour of The Study Stormwater pond under various boundary conditions and 

Depth Scenarios using ELCOM-CAEDYM Model 

133 

 
Figure 5-6: Response of retention time, RT (days) to defined scenarios. a) Depth, b) Uniform Depth, 

c) Flow, d) Wind, and e) Temperature scenarios. 

 Impact of Different Scenarios on Total Chlorophyll-a (TCHLA) 5.3.5.

As mentioned earlier, TCHLA dynamics are controlled by the fractional biomass change 

rate, G, which is the sum of the physical transport rate, hd, and the net growth rate, g. While g is 

reasonably well understood as a function of f(I), f(T), f(P), and f(N) limiting factors as well as 

the respiration/mortality/excretion (res) and settling (set) rates, it is not fully clear how  

ECLOM-CAEDYM calculates and employs hd. In this section, the impact of different scenarios 

on TCHLA is described by investigating changes in the aforementioned key factors. 

b)

d) e)

a)

c)
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Figure 5-7 illustrates that TCHLA responds differently to each scenario. However, within 

the runs of each scenario, there is a consistent response at the sampling locations and pond. 

Despite the NW inlet showing lower concentrations compared to the pond average (ranging from 

5 to 15 mcg/L across scenarios), its trend closely aligns with the other locations. Therefore, in 

the following discussion, only pond-averaged TCHLA and the key factors are detailed. Figure 

5-8 illustrates the pond-averaged values of these factors for Depth0, DepthU and Flow scenarios. 

The settling rate is not presented, as its relative magnitude is negligible compared to res. It also 

should be noted that since the potential growth rate, μ, is proportional to the product of the 

limiting factors, its relative change is equal to the sum of relative changes of the limiting factors, 

i.e., Δμ/μ = Δf(I)/f(I) + Δf(Nutrient)/f(Nutrient) + Δf(T)/f(T). Panels a1 and a2 of Figure 5-8 

illustrate that the relative change in f(I) has the greatest magnitude compared to other limiting 

factors, indicating light is the most influential factor in Depth0 and DepthU scenarios. This 

conclusion is further supported as μ (shown in panels b1 and b2) and f(I) exhibit a consistent 

decreasing trend with depth. Given the relatively small changes in res, g also decreases with 

increasing depth. Conversely, hd increases monotonically with depth, as depicted in panels c1 

and c2. The interplay of decreasing g and increasing hd results in a maximum G at 

λ[Depth0]=0.77 (panel c1), while in the DepthU scenario, G decreases monotonically (panel c2). 

Despite the slight changes in G, the exponential nature of algae growth amplifies even small 

variations in G into significant changes in TCHLA over time. For example, an 8% increase in G 

from the base-run value results in approximately a 30% rise in TCHLA. That is, as G increases 

from 0.039 1/day to 0.042 1/day, TCHLA rises from 34 to 44 mcg/L. 

In the Flow scenario (Figure 5-8, panels a3, b3 and c3) μ is primarily influenced by limiting 

factors f(I) and f(P). f(I) decreases linearly at a rate of 0.027/λ[Flow] (R²=0.997, p-value <0.01), 

indicating an inhibitory effect of light on μ as flow increases. This can be attributed to increasing 

total suspended solids as higher inflows lead to increased turbidity and subsequently, a higher 

light extinction coefficient in the water column. However, f(P) increases with inflow up to 



Chapter 5: Investigating the behaviour of The Study Stormwater pond under various boundary conditions and 

Depth Scenarios using ELCOM-CAEDYM Model 

135 

λ[Flow] = 1.5 due to the additional external load, then levels off towards its maximum value of 

1.0. The combined influence of f(I) and f(P) results in μ increasing with an average rate of 0.013 

(1/day/λ[Flow]) up to λ[Flow]=1.5, after which it decreases with a rate of 0.015 (1/day/λ[Flow]). 

As res remains almost constant, g follows the trend of μ. 

Figure 5-8, panel c3 also shows that hd decreases with flow at an average rate of 0.024 

1/day/λ[Flow]. The combined influence of g and hd leads to an almost constant G up to λ[Flow] 

= 0.75 followed by a decreasing trend thereafter. In particular, G is negative for λ[Flow]>2.3. 

The same pattern is reflected in Figure 5-7c, where TCHLA remains nearly constant at 60 mcg/L 

up to λ[Flow]=0.75, followed by a rapid decrease with an average rate of 55 mcg/L/λ[Flow]. 

This decrease is attributed to shorter RT which results in flushing out the algae and insufficient 

time for algae to grow. With further increases in flow (λ[Flow]>1.5), RT becomes so short that 

TCHLA approaches negligible levels, nearly zero at λ[Flow] = 2.5. 
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Figure 5-7: Variations of TCHLA (mcg/L) across the scenarios: a) Depth, b) Uniform Depth, c) 

Flow, d) Wind, and e) Temperature scenarios. 

a) b)

d) e)c)
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Figure 5-8: Key factors influencing TCHLA in; left column) Depth0, middle column) DepthU, and 

right column) Flow scenarios. 

Figure 5-9 illustrates that hd increases monotonically with RT in the Depth0, DepthU, and 

Flow scenarios. Particularly, there is a similar RT-hd dependency in the Depth0 and Flow 

scenarios. It can be inferred that an increase in depth or a decrease in flow, that results in the 

same RT, corresponds to almost the same hd. However, this consistency does not extend to the 

RT-g relationship (Figure 5-10). While increased depth (leading to a longer RT) results in lower 

f(I), decreased flow (also resulting in longer RT) leads to higher f(I) as well as lower f(P) (Figure 
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5-8). Therefore, both depth scenarios show a monotonically decreasing RT-g relationship, while 

in the Flow scenario the relationship is non-monotonic. As a result, management practices to 

control algae biomass by reducing RT through modifications of flow or depth (e.g., Le’on et al. 

2016; Olsson et al. 2022; Sutherland et al. 2014; Woodhouse et al. 2006; Zhao et al. 2023) may 

not work as intended. 

 

Figure 5-9: Physical transport rate (hd) versus retention time (RT) for Depth0, DepthU, and Flow 

scenarios 
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Figure 5-10: Net growth rate (g) versus retention time (RT) for Depth0, DepthU, and Flow 

scenarios 

In the Wind scenario (Figure 5-7d), TCHLA and λ[Wind] have a linear relationship with a 

slope of 30 mcg/L/λ[Wind] (R²=0.99, p-value <0.01). This means increasing wind speed by 50% 

results in increase of TCHLA by 49%. In Figure 5-11, panels a1 and b1 illustrate factors 

influencing μ, resulting in maximum μ at λ[Wind]=1.5. Although the res decreased with 

λ[Wind], due to decrease of temperatures (Appendix C, Figure C-9), g, similar to μ, reaches its 

maximum at λ[Wind]=1.5. However, as presented in Figure 5-11, panel c1, the non-monotonic 

variation of hd with λ[Wind], with a minimum at λ[Wind]=0.75, results in an increase in G and 
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Figure 5-11: Key factors influencing TCHLA in; left column) Wind, and right column) 

Temperature scenarios. 

Figure 5-7e shows that TCHLA is approximately 50 mcg/L for ‑4°C < λ[T] < ‑2°C, but for 

λ[T] > ‑2°C, TCHLA decreases rapidly in a nonlinear manner. The influencing factors on 

TCHLA in the temperature scenario are depicted in Figure 5-11, panels a1, b1 and c1. Although 

f(T) reaches its maximum at λ[T] = 2°C, the combined effects of other key factors results in g 
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λ[T] are more pronounced, decreasing from ‑0.0265 1/day to ‑0.0411 1/day, resulting in 

decreasing G and consequently TCHLA for λ[T] > ‑2°C.  

Other studies have also reported a reduction in TCHLA in warmer scenarios. For example, 

Reilly (2003) reported a decrease in algae biomass in Lake Tanganyika, Africa, over the 80 years 

preceding their study, primarily due to a warmer climate. Additionally, Moss et al. (2003) 

reported that increasing temperature resulted in a decrease in the abundance of certain green 

algae species, such as Chlorophycota. However, Linden et al.(2015) and Trolle (2011) attributed 

the lower algae concentrations simulated in warmer scenarios to the limitations of the ELCOM-

CAEDYM model, particularly in simulating biogeochemical rates. 

In the Wind and Temperature scenarios, no clear relationship was found between hd and 

other state variables. In fact, RT remained relatively unchanged under these scenarios (e.g., 

varied less than 1.0 day in the temperature scenario). It is worth noting that hd could potentially 

be influenced by thermal and density stratification. While several studies have explored the 

impact of stratification and mixing on total algae biomass, they primarily attributed these 

changes to variations in biogeochemical factors like internal nutrient release and availability, 

which are not explanatory factors for hd (e.g., Lofton et al. 2022; Reilly et al. 2003; Ula´nczyk et 

al. 2021). Further research is required to understand how wind and temperature affect hd, 

especially in urban stormwater ponds. 

It is important to note that the driving and state variables discussed above, including g and 

hd, represent pond-integrated values, which are values averaged over the pond and the 

simulation period. However, given the exponential growth/decay nature of algae, temporal 

variations of g and hd can also have a significant impact. For example, in the Temperature 

scenario, average g over the simulation period for λ[T]=3°C is higher than that of the base-run. 

As illustrated in Figure 5-12, water temperatures of the warmer run have exceeded the optimum 

range for algae growth in late June, early July, and early August, as reflected in the f(T) and g 
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plots, thereby hindering algae growth. Although growth rates eventually recovered in the warmer 

run, algae growth was considerably inhibited, leading to a lower averaged TCHLA (17.6 mcg/L) 

compared to that of the base-run (33.8 mcg/L). In an exponential growth, earlier drops in algae 

biomass (e.g., due to flush-outs) or declines in growth rate (e.g., due to adverse biogeochemical 

conditions) can significantly hinder growth. 

 

Figure 5-12: Decrease in TCHLA with warmer air temperature (λ=3°C) compared to the base-run 

(λ=0 C). a) Water temperature, b) temperature limiting factor, c) gross growth rate, and d) 

TCHLA concentration. Shaded areas indicate periods during which the warmer run has a lower 

gross growth rate. 
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 Impact of Different Scenarios on Dissolved Oxygen 5.3.6.

Figure 5-13 illustrates how dissolved oxygen (DO) responds to the defined scenarios. DO 

concentrations at the inlets are notably lower, due to the low-oxygen inflows imposed by 

boundary conditions. Additionally, Figure C-11 in Appendix C presents the same data, but with 

DO averaged at the surface, middle, and near-bed layers. 

Over the ranges of λ[Depth0] and λ[DepthU], pond DO varies less than 0.6 and 0.3 mg/L, 

respectively (Figure 5-13a and b). A decreasing trend in DO is noticeable as λ[Flow] and λ[T] 

increase, with the maximum drop being 1.7 and 2.3 mg/L, respectively. In the Wind scenario, 

however, DO increases by more than 7.4 mg/L across the range of λ[Wind] (Figure 5-13d). 

Wind’s influence on DO, surpassing the impacts of other scenarios, is noteworthy, given wind’s 

milder effects on other state variables (panel d of Figure 5-4 to Figure 5-7). At very low wind 

speeds (λ[Wind]<0.5), pond DO drops below the NW levels that are due to the low-oxygen 

inflows. 

In both Depth0 and DepthU scenarios, the more pronounced drop in near-bed DO (Figure 

C-11a and b) leads to a 2.1 mg/L top-bottom difference at the highest λ values. Similarly, though 

to a lesser degree, the top-bottom DO difference increases with respective λ values in the Wind 

and Temperature scenarios (Figure C-11d and e). The difference remains relatively constant at 

1.0 mg/L in the Flow scenario (Figure C-11c). 
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Figure 5-13: DO (mg/L) at sampling locations and the pond averaged during simulation period. a) 

Depth scenario, b) Uniform depth scenario, c) Flow scenario, d) Wind scenario, and e) 

Temperature scenario. 

 Interrelationship between DO and other variables 5.3.7.

Dissolved oxygen (DO) is influenced by various factors, including water temperature, wind, 

stratification, and biogeochemical activities (Chen et al. 2019; Ji 2017). Figure 5-14 indicates 

that pond temperature is not a reliable explanatory variable for DO, as different scenarios display 

varying patterns: a linear decrease in the Wind and Temperature scenarios, a non-linear increase 

in the Flow scenario, and minimal change in the Depth0 and TP scenarios. Additionally, 

although Figure 5-15 implies that DO decreases with an increase in stratification, the relationship 

is not consistent across the scenarios. Therefore, thermal stratification strength (ΔT) cannot be 

the primary explanatory variable. Despite the presented DO-ΔT relationship being based on 

pond-averaged DO, similar relationship exists when average DO at the top, middle, and bottom 

a) b)

d) e)c)
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layers are used (not presented here for brevity). This is because, as seen in Figure C-11, pond-

averaged DO and average DO at the top, middle, and bottom layers have similar patterns across 

the scenarios. 

Figure 5-16 illustrates the pond TCHLA-DO relationships across the scenarios including the 

TP scenario. Regression analysis confirms a statistically significant linear relationship between 

TCHLA and DO in each scenario. The relationship remains statistically significant when 

aggregating all scenarios except the Wind scenario (slope=0.021 mg DO/mcg TCHLA, R²=0.83, 

p-value<0.01). This suggests that higher algae concentration (i.e. more photosynthesis) leads to 

higher DO. Notably, in Figure 5-16, the Wind scenario stands out with a slope of 0.15 mg 

DO/mcg TCHLA (R²=0.98, p-value<0.01). This elevated slope is attributed to the oxygenation 

of water column by wind-induced mixing in addition to photosynthesis. This is expected and 

consistent with other studies (e.g., Chen et al. 2019). Therefore, it can be concluded that wind is 

the dominant driver of DO in the study pond. 

Furthermore, it can be concluded that the increase in DO due to photosynthesis and wind-

induced oxygenation outweighs other oxygen-depleting processes, such as algae degradation. 

This can be attributed to the pond’s short RT, resulting in the flush-out of algae biomass before 

significant degradation can occur. This conclusion aligns with the findings of (Wium-Andersen 

et al. 2013). 
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Figure 5-14: Pond DO and water temperature in Depth0, Flow, Wind, Temperature and Total 

Phosphorous scenarios. 

 
Figure 5-15: Pond DO and stratification strength ΔT in Depth0, Flow, Wind, and Temperature 

scenarios. 
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Figure 5-16: Pond DO and TCHLA in Depth0, Flow, Wind, Temperature and Total Phosphorous 

scenarios. 

 Relationship between TCHLA and RT 5.3.8.

In Figure 5-17, time series of RT (panel a) and TCHLA (panel b) are plotted for the base-run 

for pond-averaged, as well as depth-averaged values at the sampling locations. A high degree of 

concordance between RT and TCHLA is evident, meaning increases in RT often correspond to 

increases in TCHLA, and vice versa. The Kendall τ test (details in Appendix C.2) confirms a 

strong and statistically significant RT-TCHLA association in the base-run (τ=0.67). The 

association remains statistically significant within all runs in all the scenarios, with a median τ of 

0.65. Furthermore, a stronger association exists in the near-surface layer than in the near-bed 

layer (Figure 5-19a). 

Figure 5-18 is a plot of base-run RT and TCHLA along a curtain passing through NW, NE, 

SARM and SE sampling locations (additional details in Appendix C.2 and Figure C-12). Depth-

averaged RT and TCHLA, averaged over the simulation period, display a strong and statistically 

significant association (τ=0.75). The association remains statistically significant within all the 

runs of different scenarios, with a median τ of 0.72 (Figure 5-19b). 
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Despite the statistically significant association between RT and TCHLA within individual 

runs, attempting to predict TCHLA variations, even approximately, solely based on changes in 

RT and without considering the underlying drivers of that change, can be misleading. For 

example, Figure 5-20 illustrates that while a longer RT resulting from increased inflows (Flow 

Scenario) corresponds to an increase in TCHLA, a longer RT due to greater depths (Depth0 

scenario) generally leads to a decrease in TCHLA. Additionally, it was previously shown in 

Figure 5-3 that an increase in total phosphorus (TP) is associated with higher TCHLA, while it 

does not have any impact on RT. 

 

Figure 5-17: Time series of (top) RT and (bottom) TCHLA at the sampling locations (depth-

averaged) and pond (pond-integrated) for the base-run. 
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Figure 5-18: Depth-integrated TCHLA and RT along the selected axis. The index assigned to each 

point represents their sequential order along an axis extending from the NW inlet to the SE outlet. 

Vertical green lines indicate the positions of the inlets and outlet. 

 

Figure 5-19: Kendall τ correlation coefficient between (a) time series of RT and TCHLA at pond, 

near-bed and near surface layers, and (b) time-averaged RT and TCHLA along a curtain 

connecting the sampling locations. 
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Figure 5-20: TCHLA-RT relationship for Depth0, Flow, Wind, Temperature and Total 

Phosphorous scenarios. 

 Impact of the Scenarios on Pond’s Trophic State 5.3.9.

Based on simulated TCHLA, the pond’s trophic state was assessed under simulation 

scenarios. In Figure 5-21, time series of pond-integrated TCHLA for the base-run are plotted. 

The trophic state of the pond changed throughout the season, with eutrophic being the 

predominant state, occurring in 42% of the time, followed by hypereutrophic, occurring in 21% 

of the time (Table 5-5). 

Moreover, from each scenario, the run that resulted in approximately a 40% decrease in 

average TCHLA from the base-run (34 mcg/L) was selected and presented in Figure 5-21. Thus, 

the average TCHLA for the selected runs is 20±2 mcg/L. As an example, in the TP scenario, the 

λ[TP] = 0.5 run is presented in the figure with an average TCHLA of 21.5 mcg/L. Both Figure 

5-21 and Table 5-5 indicate that despite a 40% decrease in TCHLA, the prevalent trophic state of 

the pond remained eutrophic in all the runs, but the hypereutrophic state that was observed in the 

base-run did not occur. The figure also highlights the differences in the temporal variations of the 
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tropic state between the scenarios. Additional examples of runs from different scenarios are 

presented in Appendix C, Figure C-13 to Figure C-18. 

 

Figure 5-21: Variation of pond-averaged TCHLA in hourly time steps under selected runs of 

different scenarios in the study pond during the simulation period. Dashed lines represent the 

boundaries of trophic states. 

Table 5-5: Percentage of each trophic state over the simulation period for the base-run and selected 

runs in each scenario. 

Selected Runs Oligotrophic Mesotrophic Eutrophic Hypereutrophic 

Base-run 18 18 42 21 

λ[T] = 2°C 20 33 48 0 

λ[Wind] = 0.75 19 39 42 0 

λ[Flow] = 1.40 21 26 54 0 

λ[Depth0] = 1.36 20 27 53 0 

λ[TP] = 0.5 18 18 63 0 

 

Finally, Table 5-6 outlines the required λ values in each scenario to achieve integrated 

TCHLA changes ranging from -50% to +50% from the base-run. These λ values were 
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determined via interpolation (Appendix C, Figure C-18), as none of the predetermined λ values 

exactly resulted in, for example, a 25% change in TCHLA. 

Table 5-6: TCHLA changes from the base-run and required λ values for Temperature, Wind, Flow, 

Depth0 and TP scenarios. 

Change in TCHLA 

from the base-run (%) 

TCHLA 

(mcg/L) 

λ[T]  C λ[Wind] λ[Flow] λ[Depth0] λ[TP] 

+50% 50.7 -1.7 1.53 0.81 0.83 1.97 

+25% 42.3 -0.9 1.25 0.90 0.91 1.47 

0% (base-run) 33.8 0.0 1.00 1.00 1.00 1.00 

-25% 25.4 1.3 0.72 1.14 1.20 0.65 

-50% 16.9 3.1 0.47 1.42 1.48 0.34 

 CONCLUSIONS 5.4.

The ELCOM-CAEDYM model developed for the study pond was used to evaluate the 

impact of various scenarios on different variables whit the goal of determining those more 

influential on TCHLA. The model predicted that TCHLA concentrations were sensitive to 

geometry, temperature, wind, and inflows. Furthermore, the simulated TCHLA concentrations 

were sensitive to external nutrient loading, consistent with Nakhaei et al. (2021). However, 

within the perturbed range of external nutrient loading, this sensitivity was solely attributed to 

phosphorous (more specifically to its dissolved components, i.e., DOPL and PO4), not nitrogen 

components. 

The presented results indicate a direct, albeit nonlinear, association between RT and TCHLA 

within individual runs of all scenarios. Despite the direct RT-TCHLA association, RT alone 

cannot reliably predict trends or approximately magnitudes of TCHLA given that algae biomass 

growth is controlled by both the net growth rate (g) and the physical transport rate (hd). 

Therefore, the impacts of management strategies focused on manipulation of nutrients (e.g., Huo 

et al. 2019; Linden et al. 2015) are more predictable as they only affect g and not hd. However, 

management strategies based on manipulating flow and depth, aiming to reduce hd by decreasing 

RT, can simultaneously influence g, thus not guaranteeing the anticipated impact on TCHLA. 
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A strong correlation was observed between air and water temperature in the study pond. 

However, warmer air temperatures, e.g., due to future climatic scenarios, could either increase or 

decrease TCHLA. In this study and for the simulation period, warmer scenarios resulted in lower 

TCHLA, as an increase in temperature negatively impacted the temperature limiting factor for 

the modelled algae group during the warmer periods and consequently inhibited algae growth. 

Increased wind speed reduced water temperatures and, consequently, increased TCHLA, while 

decreased wind speed had the opposite effect. It was observed that hd is impacted by both 

temperature and wind; however, no clear relationship between hd and RT was identified. The 

influence of temperature and wind on hd is possibly driven by other factors, such as circulation 

patterns and stratification, which needs further investigation in the future. Therefore, water 

quality modeling is recommended to more accurately evaluate the effectiveness of the proposed 

management strategies in the urban stormwater ponds. 
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Chapter 6. SUMMARY AND CONCLUSIONS 

The role of urban stormwater ponds, originally designed to manage excess run off, has 

expanded over time to improve water quality before release downstream. However, these ponds 

may not always perform as expected, facing challenges such as excessive algae growth, 

unpleasant scenery, odors, and concerns about ice safety. This thesis is part of a comprehensive 

research project initiated in response to resident complaints regarding these issues in some 

residential areas of Edmonton, Canada. Since algae serves as a key indicator of water quality, 

investigating the factors impacting the algae dynamics in stormwater ponds became the 

motivation for the current study.  

This study evaluated the performance of the ELCOM-CAEDYM model in representing the 

hydrodynamics and water quality of urban stormwater ponds. It also investigated the factors 

influencing algae dynamics. Furthermore, the calibrated model was used as a predictive tool to 

assess the impact of various climate and management scenarios on algae growth. 

In this thesis, subsets of data acquired from a 2-year field monitoring program in three urban 

stormwater ponds in Edmonton, Canada, collected between October 2013 to October 2015, were 

used. The South Terwillegar2 (ST2) stormwater pond was selected as the main focus for 

investigating water quality. However, available information from two other ponds, Terwillegar 

Towne 2 (TT2) and Silverberry4 (SB4), was also utilized to provide the required data and 

enhance the study of ST2. 

Visual inspection of field data measured at ST2 revealed spatial and temporal variations in 

water quality variables, including water temperature (T), dissolved oxygen (DO), nutrients, and 

total chlorophyll-a (TCHLA), which indicated the need for a three-dimensional (3D) model to 

represent hydrodynamics and water quality of the study pond. The ELCOM-CAEDYM model, 

which has been successfully applied in a wide range of water quality studies, was selected for the 
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purpose of this study. The bathymetry and hypsometric relationships of the ponds were obtained 

through surveying the study area, and used to define the computational domain of the ELCOM-

CAEDYM model. Collected data was further processed to define initial conditions, boundary 

conditions, as well as required datasets for calibration and validation of both hydrodynamics and 

water quality models. 

Field surveying revealed several previously unknown challenges and inaccuracies, including 

differences between designed and as-built dimensions of the outlet structures. Therefore, the 

outlet structures of the three ponds were surveyed, and the stage-discharge curves were updated 

accordingly. 

Direct measurement of inflow and outflow rates, that are very important boundary conditions 

for ELCOM-CAEDYM, was not feasible due to challenges associated with accessing the inlet 

and outlet pipes, concerns regarding the maintenance of flowmeters, and cost constraints. 

Therefore, time series of inflows into and outflows out of the ST2 pond were estimated. 

Outflows were determined based on the observed water levels and the updated stage-discharge 

relationship. Inflows were estimated using reverse level pool routing method. However, this 

back-routing approach significantly amplifies the noise in the measured water level time series, 

resulting in oscillatory inflows. These oscillations could potentially have had a significant impact 

in this study, since time series of estimated inflow may be corrupted with non-physical negative 

values, particularly during dry periods. 

Through analytical and simulation analyses, the amplification factor, defined as the ratio of 

water level noise to inflow noise, was quantified. This factor is directly proportional to the area 

of the pond and inversely proportional to the numerical time step. To mitigate the issue of 

spurious oscillations and hence negative inflows, water levels were pre-processed with a 

Butterworth low-pass filter. While filtering with smaller cut-off frequency (fc) reduces the 

magnitude of the noise, it also more aggressively distorts the shape of the inflow hydrograph. 
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The optimal fc was determined based on limited inflow measurements available at the TT2 and 

SB4 ponds. Comparison between observed and back-routed inflows indicated that, for the 

sampling frequency (fs) of 6 hr⁻¹ used for water level measurements in this study, pre-processing 

water levels with fc= 1/6 hr⁻¹ minimized the RMSE of the calculated inflows while reasonably 

preserving the shape of the hydrographs. Given the similarity of all three ponds and the fact that 

the same measurement instruments were used for them, fc= 1/6 hr⁻¹ was also used to filter the 

water level of ST2 prior to back-routing. 

The ELCOM model was set up based on the defined computational domain and the required 

initial and boundary conditions. The model parameters were initially set at the values 

recommended by Nakhaei et.al (2018). ELCOM was further calibrated through adjustments of 

albedo and Secchi depth, while accounting for atmospheric instability for a calibration period 

between May 16th and October 3rd, 2014, reducing RMSE from 1.53 to 1.37 (°C).  Albedo was 

identified as the most influential model parameter for water temperatures, and the calibrated 

value was determined to be 0.2. Subsequently, ELCOM was validated for the period between 

May 1st and October 14th, 2015. 

ELCOM effectively represented the thermal structure of the pond, closely matching the 

observed patterns of mixed and stratified periods. The model accurately replicated the temporal 

and spatial variations of water temperature, capturing diurnal temperature variations and 

responses to the environmental forcing such as changes in air temperature and inflows. For 

example, ELCOM accurately simulated deepening of the thermocline during extended warm and 

dry periods. The spatial variability of the thermocline depth and thermal stratification was also 

accurately simulated. Shallower thermocline depths and more frequent stratification observed 

near inlets were also captured by the model. The depth of the thermocline generally increased 

from the inlet toward the outlet, and the pond became more mixed. Additionally, the model 

effectively captured the thermally mixed condition of the pond observed after high inflows (e.g., 

the rain event of late July 2014) and in response to cooler air temperatures (e.g., in September 
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2014). Overall, the pond had a warming effect of approximately 4°C as water passed through it. 

Error statistics for both the calibration and validation periods remained within or below the range 

of values reported in similar studies. In general both simulated and observed stratification 

occurrence decreased along the pond’s major axis, with an increase at the SARM inlet. However, 

on average ELCOM underestimated the stratification occurrence by 15%.  

The water quality model, CAEDYM, was configured to simulate the dynamics of 

phosphorus, nitrogen, dissolved oxygen (DO), and dominant algae groups, including 

chlorophytes, cyanobacteria, and cryptophytes in the ST2 stormwater pond. The required 

boundary conditions (e.g., nutrient components and DO) were defined based on direct field 

measurements or estimated based on other measurements. The static model was selected to 

simulate the diagenetic processes of water and sediment. 

CAEDYM was configured initially with the same model parameters reported for stormwater 

ponds (Nakhaei et al. 2021), however results were not satisfactory in terms of simulated 

TCHLA. The model was further calibrated by tuning model parameters and the results 

effectively captured the temporal and spatial variations of TCHLA during calibration period. The 

RMSE of the calibrated model improved from 82.8 (mcg/L) in the initial run to 25.6 (mcg/L), 

however, the RMSE of DO, TN, and TP did not change significantly (between 1% and 8%). 

Dynamics of dissolved oxygen (DO) was also effectively simulated by CAEDYM, with some 

shortcomings in simulating diurnal variations. Total phosphorous (TP) was modelled with 

acceptable accuracy; however, CAEDYM was not successful in simulating total nitrogen (TN). 

The underperformance of the model in simulating nutrients is attributed to the assumptions made 

in assigning nutrient components in the boundary conditions. Nonetheless, visual assessments of 

the results and the RMSE values of DO, TN, and TP obtained in this study were comparable or 

in some cases better than those reported in similar studies (e.g., Nakhaei 2021).  
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The sensitivity of model variables to model parameters was quantified by defining a 

sensitivity index. The sensitivity analysis showed that TCHLA, with an average sensitivity index 

(SI) of 93%, was the most sensitive state variable to the model parameters, followed by DO with 

an SI of 16%. The high sensitivity of TCHLA can be explained by the fact that algae dynamics 

depend, directly or indirectly, on a wide range of parameters and variables. The SI for TN and 

TP was less than 10%. The lack of responsiveness of nutrients to changes in model parameters 

and the underperformance of the model in simulating nutrients suggest that in stormwater ponds, 

TP and TN are more influenced by the boundary conditions.  

Additionally, the model parameters that had the most influence on TCHLA, DO, and TN 

were identified as maximum potential growth rate of phytoplankton (𝜇𝑚𝑎𝑥), respiration, 

mortality, and excretion coefficient (𝐾𝑟), minimum internal phosphorous concentration (𝐼𝑃𝑚𝑖𝑛), 

and light half saturation constant for algae limitation (𝐼𝐾), in the order stated. Three of these 

parameters were also the influential parameters for TP which indicates the interdependencies of 

simulated variables. The discrepancy in the sensitivity of state variables and the influence of 

model parameters between the current research and findings reported for Lake Minnetonka 

(Missaghi et al. 2014) suggests that the sensitivity varies based on the specific application. 

Hence, for modeling water quality in bodies of water similar to the study stormwater pond, 

employing the parameters reported here rather than those obtained for much larger and deeper 

water bodies is expected to provide more accurate simulations.  

This study also distinguishes itself by quantifying the impact of several climatological, 

hydrological, and nutrient scenarios on pond water quality. Simulations were conducted for 

scenarios in which the bathymetry, air temperature, wind speed, flow rate, external loadings of 

phosphorous and nitrogen components were altered and their respective impacts on model 

outputs, with an emphasis on TCHLA were investigated. These simulations showed that water 

temperature (T), stratification, residence time (RT), DO, and TCHLA were sensitive to the 
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changes introduced by the defined scenarios. TCHLA was sensitive to both hydrodynamics, 

quantified by the physical transport rate (hd), and biogeochemical factors, quantified by the net 

growth rate (g). In addition, in nutrient scenarios, g and consequently TCHLA was found to be 

sensitive only to dissolved components of phosphorus, and not to nitrogen. 

It was found that the impacts of strategies that only influence the net growth rate of algae (g) 

are rather intuitive. For example, decreasing nutrient load resulted in a decrease of algae in the 

pond. However, the outcomes of strategies that alter the physical transport rate (hd) are not as 

straightforward, since such strategies can simultaneously alter nutrient availability, light 

penetration, and water temperatures, thereby affecting the net growth rate (g) as well. For 

example, increasing flow can simultaneously increase the influx of nutrients while enhancing the 

flushing of algae and nutrients. Therefore, the interaction between g and hd in these scenarios is 

more complex, which underscores the importance of water quality modeling. 

Results of the Temperature scenario showed, as expected, a strong correlation (R²=0.99) 

between average air and water temperatures in the study pond. Scenarios with an average air 

temperature 2°C warmer than the base-run led to a decrease in TCHLA during the simulation 

period, as higher temperatures during warm days of summer reduced the temperature limiting 

factor and consequently inhibited algae growth. A decrease in wind speed resulted in a decrease 

in TCHLA, which may be attributed to the impact of wind on water temperature. This 

relationship is supported by the increase in simulated water temperature with decreasing wind 

speed (R²=0.99). However, the influence of Temperature and Wind scenarios on hd was not as 

straightforward as the Depth and Flow scenarios where hd was found to be correlated with RT. 

In these scenarios, hd is likely driven by factors such as circulation patterns and stratification too, 

which need further investigation in future studies. 

In this study, TCHLA was considered as the sum of different algae biomasses, aggregated 

for comparison with the observed TCHLA. Future studies could enhance the understanding of 
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algae dynamics by modeling individual species separately. This requires calibrating the water 

quality model for individual algae groups alongside TCHLA. This approach may offer a better 

understanding of how different algae species respond to environmental changes and management 

strategies, thus refining predictive capabilities and enabling more targeted interventions for 

maintaining water quality in stormwater ponds. In addition, incorporating the effects of rooted 

aquatic plants (macrophytes) into the water quality model would enhance understanding of algae 

dynamics in stormwater ponds. Given the relatively small area of stormwater ponds, the littoral 

zone plays a more significant role in their ecological functioning, and macrophytes may compete 

with algae for nutrients and light. Consequently, modeling the interactions between macrophytes 

and algae may contribute to the development of effective management strategies for maintaining 

water quality in stormwater ponds. 

Dissolved oxygen levels were mainly influenced by wind speed and total chlorophyll-a 

concentration (TCHLA). Wind speed affects oxygen transfer at the air-water interface, while 

TCHLA, representing phytoplankton biomass, influences oxygen through photosynthesis and 

respiration. 

The results of the sensitivity analysis of the ELCOM-CAEDYM model can provide general 

guidelines for similar studies, reducing the number of calibration attempts. Sensitivity of the 

model to boundary conditions not only highlighted the importance of accurate field 

measurements, but also can be used to improve the design and management of urban stormwater 

ponds to meet water quality requirements for the current and future conditions. 

Since ELCOM, with its default model parameters, can adequately simulate the thermal 

behavior of waterbodies, preliminary runs can be used during the design stage to predict the 

overall flow patterns and thermal structures of future stormwater ponds. Such preliminary 

simulations can be used to compare different pond layouts, as well as the locations of inlets and 
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outlets. However, the major constraint lies in the available resources, particularly in terms of 

budget and modeling expertise. 

In general, this study demonstrated that ELCOM-CAEDYM is able to simulate the water 

quality of small water bodies such as stormwater ponds with sufficient accuracy. For 

management scenarios aimed at retrofitting a pond design, changes may not always lead to the 

intended results. Therefore, depending on the scope and extent of a project, as well as available 

resources, modeling can be used along with or as an alternative to general design guidelines, to 

improve the design of these types of facilities. 

Preliminary runs can also provide general guidelines for monitoring existing ponds. For 

example, simulated flow patterns and spatial and temporal variations in the degree of water 

column stratification can help identify sampling locations that are more representative of pond 

behavior for the calibration process. Additionally, these simulations can define sampling 

locations where measurements are representative of inflow boundary conditions. Due to the 

spatial and temporal variability of TCHLA and its sensitivity to model parameters, compared to 

nutrients, more frequent water sampling, at least for TCHLA, would improve model calibration 

and validation, and potentially increase the accuracy of the simulated results.  

The results of this study indicated that increasing the depth of the pond by 0.5 m (i.e., 

λ[Depth0] = 1.36) could effectively prevent the occurrence of a hypereutrophic state during the 

peak of summer. This depth adjustment has a comparable impact to reducing the total 

phosphorous external load by 50%. Therefore, the construction of deeper stormwater ponds can 

be considered as a strategy for mitigation of algae blooms.  
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Appendix A. FIELD MEASUREMENTS AND PROCESSING 

 HYPSOMETRIC CURVES OF THE STUDY PONDS A.1.

 

Figure A-1: SB4 hypsometric curves: a) level-volume and b) level-area relationship. 

 

Figure A-2: TT2 Hypsometric curves: a) level-volume and b) level-area relationship. 

a) b)

a)
b)
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Figure A-3: Wind speed and direction illustrated as a windrose measured at (a) SB4 and (b) 

TT2 from October 2013 to October 2015. 

 

Figure A-4: Rainfall intensity in open-water season of 2015: a) SB4 and b) TT2. 

a) SB4 b) TT2

b) TT2a) SB4 
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Figure A-5: Meteorological data measured at 10-minute intervals from the weather station installed 

at ST2: a) solar radiation (SR), and b) relative humidity (RH).  
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 IN-POND INSTRUMENTATION A.2.

Table A-1: Details of in-pond instruments at SB4. 

Installation Date Removal Date Location Instrument Type Distance From Bed 

25-Oct-13 22-Apr-14 SE SWS_TD 

 25-Oct-13 22-Apr-14 NE HOBO_Tidbit 0.28 

25-Oct-13 22-Apr-14 NE HOBO_Tidbit 0.47 

25-Oct-13 22-Apr-14 NE SWS_CTD 0.67 

25-Oct-13 22-Apr-14 NE SWS_TD 0.98 

25-Oct-13 22-Apr-14 NW RBR_Duo 0.29 

25-Oct-13 22-Apr-14 NW SWS_CTD 0.65 

25-Oct-13 22-Apr-14 NW RBR_Duo 0.90 

22-May-14 02-Jun-14 NE HOBO_Tidbit 0.26 

22-May-14 02-Jun-14 NE SWS_TD 0.90 

22-May-14 02-Jun-14 NE HOBO_Tidbit 1.32 

22-May-14 02-Oct-14 SE SWS_TD 

 22-May-14 02-Oct-14 NE HOBO_Tidbit 0.49 

22-May-14 02-Oct-14 NE HOBO_Tidbit 0.68 

22-May-14 02-Oct-14 NE HOBO_Tidbit 1.08 

22-May-14 02-Oct-14 ESE HOBO_Tidbit 0.040* 

22-May-14 02-Oct-14 ESE HOBO_Tidbit 0.36* 

22-May-14 02-Oct-14 SE HOBO_Tidbit 0.33* 

22-May-14 02-Oct-14 SE HOBO_Tidbit 0.04 

22-May-14 02-Oct-14 SSE HOBO_Tidbit 0.02* 

22-May-14 02-Oct-14 SSE HOBO_Tidbit 0.30* 

02-Jun-14 24-Jul-14 NW RBR_Duo 0.25 

02-Jun-14 24-Jul-14 NW HOBO_Tidbit 0.56 

02-Jun-14 24-Jul-14 NW SWS_TD 0.74 

02-Jun-14 24-Jul-14 NW HOBO_Tidbit 0.98 

02-Jun-14 24-Jul-14 NW RBR_Duo 1.33 

02-Jun-14 02-Oct-14 NE SWS_CTD 0.28 

02-Jun-14 02-Oct-14 NE HOBO_Tidbit 0.83 

02-Jun-14 02-Oct-14 NE SWS_CTD 1.29 

19-Jun-14 02-Oct-14 NNW HOBO_Tidbit 0.71* 

19-Jun-14 02-Oct-14 NNW HOBO_Tidbit 0.48* 

19-Jun-14 02-Oct-14 NNW HOBO_Tidbit 0.20* 

30-Jul-14 02-Oct-14 NW RBR_Duo 0.30 

30-Jul-14 02-Oct-14 NW SWS_TD 0.75 

30-Jul-14 02-Oct-14 NW HOBO_Tidbit 0.94 

30-Jul-14 02-Oct-14 NW HOBO_Tidbit 1.20 

11-Oct-14 21-Apr-15 SE SWS_CTD 

 11-Oct-14 21-Apr-15 NE RBR_Duo 0.30 
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11-Oct-14 21-Apr-15 NE HOBO_Tidbit 0.45 

11-Oct-14 21-Apr-15 NE RBR_Duo 0.62 

11-Oct-14 21-Apr-15 NE SWS_CTD 0.85 

11-Oct-14 21-Apr-15 NE HOBO_Tidbit 1.22 

11-Oct-14 21-Apr-15 NE HOBO_Tidbit 0.67 

11-Oct-14 21-Apr-15 NE HOBO_Tidbit 0.87 

11-Oct-14 21-Apr-15 NE HOBO_Tidbit 1.28 

11-Oct-14 21-Apr-15 NE EXO2 0.33 

11-Oct-14 21-Apr-15 NW HOBO_Tidbit 0.22 

11-Oct-14 21-Apr-15 NW HOBO_Tidbit 0.37 

11-Oct-14 21-Apr-15 NW SWS_TD 0.56 

11-Oct-14 21-Apr-15 NW HOBO_Tidbit 0.75 

11-Oct-14 21-Apr-15 NW HOBO_Tidbit 0.97 

11-Oct-14 21-Apr-15 NW HOBO_Tidbit 1.36 

24-Apr-15 22-Jun-15 NE EXO2 1.07 

24-Apr-15 22-Jun-15 NW HOBO_Tidbit 0.20 

24-Apr-15 22-Jun-15 NW HOBO_Tidbit 0.50 

24-Apr-15 22-Jun-15 NW SWS_TD 0.84 

24-Apr-15 22-Jun-15 NW HOBO_Tidbit 1.08 

24-Apr-15 22-Jun-15 NW HOBO_Tidbit 1.28 

24-Apr-15 22-Jun-15 NW HOBO_Tidbit 1.60 

24-Apr-15 22-Jun-15 SE SWS_CTD 

 24-Apr-15 22-Jun-15 NE RBR_Duo 0.29 

24-Apr-15 22-Jun-15 NE SWS_TD 0.67 

24-Apr-15 22-Jun-15 NE HOBO_Tidbit 0.80 

24-Apr-15 22-Jun-15 NE RBR_Duo 0.93 

24-Apr-15 22-Jun-15 NE HOBO_Tidbit 1.30 

24-Apr-15 22-Jun-15 NE HOBO_Tidbit 1.60 

22-Jun-15 12-Aug-15 SE SWS_TD 

 25-Jun-15 12-Aug-15 NE RBR_Duo 0.29 

25-Jun-15 12-Aug-15 NE SWS_TD 0.60 

25-Jun-15 12-Aug-15 NE HOBO_Tidbit 1.15 

25-Jun-15 12-Aug-15 NE RBR_Duo 0.85 

25-Jun-15 12-Aug-15 NE HOBO_Tidbit 1.60 

25-Jun-15 12-Aug-15 NE EXO2 1.09 

14-Aug-15 15-Oct-15 NE RBR_Duo 0.27 

14-Aug-15 15-Oct-15 NE SWS_TD 0.63 

14-Aug-15 15-Oct-15 NE RBR_Duo 0.87 

14-Aug-15 15-Oct-15 NE HOBO_Tidbit 1.13 

14-Aug-15 15-Oct-15 NE HOBO_Tidbit 1.54 

14-Aug-15 15-Oct-15 NE EXO2 0.30 

*Distance is referenced to water surface. 
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Table A-2: Details of in-pond instruments at TT2. 

Installation Date Removal Date Location Instrument Type Distance From Bed 

22-Oct-13 30-Apr-14 NW RBR_Duo 0.34 

22-Oct-13 30-Apr-14 NW HOBO_Tidbit 0.54 

22-Oct-13 30-Apr-14 NW HOBO_Tidbit 0.76 

22-Oct-13 30-Apr-14 NW SWS_CTD 1.05 

22-Oct-13 30-Apr-14 NW HOBO_Tidbit 1.27 

22-Oct-13 30-Apr-14 NW RBR_Duo 1.60 

22-Oct-13 30-Apr-14 SE HOBO_Tidbit 0.34 

22-Oct-13 30-Apr-14 SE HOBO_Tidbit 0.57 

22-Oct-13 30-Apr-14 SE HOBO_Tidbit 0.78 

22-Oct-13 30-Apr-14 SE SWS_CTD 1.05 

22-Oct-13 30-Apr-14 SE HOBO_Tidbit 1.30 

22-Oct-13 30-Apr-14 SE SWS_TD 1.62 

22-Oct-13 30-Apr-14 NE HOBO_Tidbit 0.31 

22-Oct-13 30-Apr-14 NE HOBO_Tidbit 0.58 

22-Oct-13 30-Apr-14 NE HOBO_Tidbit 0.76 

22-Oct-13 30-Apr-14 NE SWS_TD 1.04 

22-Oct-13 30-Apr-14 NE HOBO_Tidbit 1.32 

22-Oct-13 30-Apr-14 NE HOBO_Tidbit 1.52 

22-Oct-13 30-Apr-14 NE HOBO_Tidbit 1.74 

16-May-14 24-Jul-14 NW RBR_Duo 0.37 

16-May-14 24-Jul-14 NW HOBO_Tidbit 0.76 

16-May-14 24-Jul-14 NW HOBO_Tidbit 1.30 

16-May-14 24-Jul-14 NW SWS_TD 1.50 

16-May-14 24-Jul-14 NW HOBO_Tidbit 1.71 

16-May-14 24-Jul-14 NW RBR_Duo 2.17 

16-May-14 02-Oct-14 NE HOBO_Tidbit 0.40 

16-May-14 02-Oct-14 NE SWS_CTD 0.73 

16-May-14 02-Oct-14 NE HOBO_Tidbit 1.11 

16-May-14 02-Oct-14 NE HOBO_Tidbit 1.51 

16-May-14 02-Oct-14 NE HOBO_Tidbit 1.91 

16-May-14 02-Oct-14 NE HOBO_Tidbit 2.32 

16-May-14 02-Oct-14 NE SWS_CTD 2.55 

16-May-14 02-Oct-14 SE HOBO_Tidbit 0.30 

16-May-14 02-Oct-14 SE HOBO_Tidbit 0.90 

16-May-14 02-Oct-14 SE SWS_TD 1.39 

16-May-14 02-Oct-14 SE HOBO_Tidbit 1.80 

16-May-14 02-Oct-14 SE HOBO_Tidbit 2.24 

29-Jul-14 02-Oct-14 NW RBR_Duo 0.36 

29-Jul-14 02-Oct-14 NW HOBO_Tidbit 0.79 

29-Jul-14 02-Oct-14 NW HOBO_Tidbit 1.35 

29-Jul-14 02-Oct-14 NW SWS_TD 1.55 

29-Jul-14 02-Oct-14 NW RBR_Duo 1.84 

29-Jul-14 02-Oct-14 NW HOBO_Tidbit 2.11 

10-Oct-14 21-Apr-15 NE RBR_Duo 0.26 

10-Oct-14 21-Apr-15 NE HOBO_Tidbit 0.86 

10-Oct-14 21-Apr-15 NE HOBO_Tidbit 1.30 

10-Oct-14 21-Apr-15 NE HOBO_Tidbit 1.74 
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10-Oct-14 21-Apr-15 NE RBR_Duo 2.14 

10-Oct-14 21-Apr-15 NE SWS_CTD 2.42 

10-Oct-14 21-Apr-15 NE HOBO_Tidbit 2.82 

10-Oct-14 21-Apr-15 NE SWS_CTD 0.28 

10-Oct-14 21-Apr-15 NE EXO2 1.14 

10-Oct-14 21-Apr-15 NW HOBO_Tidbit 0.32 

10-Oct-14 21-Apr-15 NW HOBO_Tidbit 0.56 

10-Oct-14 21-Apr-15 NW HOBO_Tidbit 0.79 

10-Oct-14 21-Apr-15 NW SWS_TD 1.14 

10-Oct-14 21-Apr-15 NW HOBO_Tidbit 1.40 

10-Oct-14 21-Apr-15 NW HOBO_Tidbit 1.77 

10-Oct-14 21-Apr-15 SE HOBO_Tidbit 0.31 

10-Oct-14 21-Apr-15 SE HOBO_Tidbit 0.74 

10-Oct-14 21-Apr-15 SE HOBO_Tidbit 1.01 

10-Oct-14 21-Apr-15 SE SWS_TD 1.19 

10-Oct-14 21-Apr-15 SE HOBO_Tidbit 1.36 

10-Oct-14 21-Apr-15 SE HOBO_Tidbit 1.68 

10-Oct-14 21-Apr-15 SE HOBO_Tidbit 2.12 

29-Oct-14 21-Apr-15 Centre HOBO_Tidbit 0.19 

29-Oct-14 21-Apr-15 Centre HOBO_DO 0.35 

29-Oct-14 21-Apr-15 Centre HOBO_Tidbit 0.51 

29-Oct-14 21-Apr-15 Centre HOBO_DO 0.70 

29-Oct-14 21-Apr-15 Centre SWS_TD 0.95 

29-Oct-14 21-Apr-15 Centre HOBO_DO 1.17 

29-Oct-14 21-Apr-15 Centre HOBO_DO 1.43 

29-Oct-14 21-Apr-15 Centre HOBO_Tidbit 1.75 

24-Apr-15 23-Jun-15 NE RBR_Duo 0.30 

24-Apr-15 23-Jun-15 NE SWS_CTD 0.60 

24-Apr-15 23-Jun-15 NE HOBO_Tidbit 1.33 

24-Apr-15 23-Jun-15 NE SWS_CTD 1.83 

24-Apr-15 23-Jun-15 NE HOBO_Tidbit 2.32 

24-Apr-15 23-Jun-15 NE RBR_Duo 2.68 

24-Apr-15 23-Jun-15 NE HOBO_Tidbit 3.45 

24-Apr-15 23-Jun-15 SE HOBO_Tidbit 0.30 

24-Apr-15 23-Jun-15 SE HOBO_Tidbit 0.70 

24-Apr-15 23-Jun-15 SE HOBO_Tidbit 1.26 

24-Apr-15 23-Jun-15 SE SWS_TD 1.78 

24-Apr-15 23-Jun-15 SE HOBO_Tidbit 2.27 

24-Apr-15 23-Jun-15 SE HOBO_Tidbit 2.75 

24-Apr-15 23-Jun-15 NW HOBO_Tidbit 0.35 

24-Apr-15 23-Jun-15 NW SWS_TD 0.83 

24-Apr-15 23-Jun-15 NW HOBO_Tidbit 1.31 

24-Apr-15 23-Jun-15 NW HOBO_Tidbit 1.87 

24-Apr-15 23-Jun-15 NW HOBO_Tidbit 2.25 

24-Apr-15 23-Jun-15 NE EXO2 3.00 

29-Apr-15 23-Jun-15 Centre HOBO_DO 0.34 

29-Apr-15 23-Jun-15 Centre HOBO_DO 0.83 

29-Apr-15 23-Jun-15 Centre SWS_TD 1.12 

29-Apr-15 23-Jun-15 Centre HOBO_DO 1.36 

29-Apr-15 23-Jun-15 Centre HOBO_DO 1.83 

25-Jun-15 12-Aug-15 NE RBR_Duo 0.24 
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25-Jun-15 12-Aug-15 NE SWS_TD 0.59 

25-Jun-15 12-Aug-15 NE HOBO_Tidbit 0.96 

25-Jun-15 12-Aug-15 NE HOBO_Tidbit 1.31 

25-Jun-15 12-Aug-15 NE HOBO_Tidbit 1.63 

25-Jun-15 12-Aug-15 NE HOBO_Tidbit 1.97 

25-Jun-15 12-Aug-15 NE RBR_Duo 2.26 

25-Jun-15 12-Aug-15 NE HOBO_Tidbit 2.60 

25-Jun-15 12-Aug-15 NE HOBO_Tidbit 2.98 

25-Jun-15 12-Aug-15 Centre HOBO_DO 0.33 

25-Jun-15 12-Aug-15 Centre HOBO_DO 0.80 

25-Jun-15 12-Aug-15 Centre SWS_TD 1.08 

25-Jun-15 12-Aug-15 Centre HOBO_DO 1.33 

25-Jun-15 12-Aug-15 Centre HOBO_DO 1.84 

25-Jun-15 12-Aug-15 NE EXO2 2.67 

14-Aug-15 15-Oct-15 NE RBR_Duo 0.29 

14-Aug-15 15-Oct-15 NE SWS_TD 0.64 

14-Aug-15 15-Oct-15 NE HOBO_Tidbit 0.94 

14-Aug-15 15-Oct-15 NE HOBO_Tidbit 1.31 

14-Aug-15 15-Oct-15 NE HOBO_Tidbit 1.59 

14-Aug-15 15-Oct-15 NE HOBO_Tidbit 1.93 

14-Aug-15 15-Oct-15 NE RBR_Duo 2.20 

14-Aug-15 15-Oct-15 NE HOBO_Tidbit 2.57 

14-Aug-15 15-Oct-15 NE HOBO_Tidbit 2.96 

14-Aug-15 15-Oct-15 NE EXO2 2.68 

14-Aug-15 15-Oct-15 Centre HOBO_DO 0.35 

14-Aug-15 15-Oct-15 Centre HOBO_DO 0.83 

14-Aug-15 15-Oct-15 Centre SWS_TD 1.13 

14-Aug-15 15-Oct-15 Centre HOBO_DO 1.35 

14-Aug-15 15-Oct-15 Centre HOBO_DO 1.86 
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Table A-3: Details of in-pond instruments at ST2. 

Installation Date Removal Date Location Instrument Type Distance From Bed 

24-Oct-13 30-Apr-14 SW HOBO_Tidbit 0.33 

24-Oct-13 30-Apr-14 SW HOBO_Tidbit 0.56 

24-Oct-13 30-Apr-14 SW SWS_TD 0.82 

24-Oct-13 30-Apr-14 NW HOBO_Tidbit 0.28 

24-Oct-13 30-Apr-14 NW SWS_TD 0.56 

24-Oct-13 30-Apr-14 NW HOBO_Tidbit 0.80 

24-Oct-13 30-Apr-14 NW SWS_CTD 1.08 

24-Oct-13 30-Apr-14 SE RBR_Duo 0.40 

24-Oct-13 30-Apr-14 SE SWS_CTD 0.76 

24-Oct-13 30-Apr-14 SE RBR_Duo 1.04 

16-May-14 24-Jul-14 SE RBR_Duo 0.23 

16-May-14 24-Jul-14 SE HOBO_Tidbit 0.55 

16-May-14 24-Jul-14 SE SWS_TD 0.81 

16-May-14 24-Jul-14 SE HOBO_Tidbit 1.05 

16-May-14 24-Jul-14 SE RBR_Duo 1.45 

16-May-14 02-Oct-14 SW SWS_CTD 0.36 

16-May-14 02-Oct-14 SW HOBO_Tidbit 0.74 

16-May-14 02-Oct-14 SW HOBO_Tidbit 0.97 

16-May-14 02-Oct-14 SW HOBO_Tidbit 1.21 

16-May-14 02-Oct-14 SW SWS_CTD 1.53 

16-May-14 02-Oct-14 NW HOBO_Tidbit 0.32 

16-May-14 02-Oct-14 NW HOBO_Tidbit 0.80 

16-May-14 02-Oct-14 NW SWS_TD 1.27 

16-May-14 02-Oct-14 NW HOBO_Tidbit 1.49 

16-May-14 02-Oct-14 NW HOBO_Tidbit 1.82 

29-Jul-14 02-Oct-14 SE RBR_Duo 0.30 

29-Jul-14 02-Oct-14 SE HOBO_Tidbit 0.59 

29-Jul-14 02-Oct-14 SE SWS_TD 0.81 

29-Jul-14 02-Oct-14 SE RBR_Duo 1.17 

29-Jul-14 02-Oct-14 SE HOBO_Tidbit 1.46 

10-Oct-14 21-Apr-15 NW SWS_CTD 0.41 

10-Oct-14 21-Apr-15 NW EXO2 0.74 

10-Oct-14 21-Apr-15 NW RBR_Duo 0.32 

10-Oct-14 21-Apr-15 NW HOBO_Tidbit 0.75 

10-Oct-14 21-Apr-15 NW HOBO_Tidbit 0.99 

10-Oct-14 21-Apr-15 NW RBR_Duo 1.20 

10-Oct-14 21-Apr-15 NW SWS_CTD 1.47 

10-Oct-14 21-Apr-15 NW HOBO_Tidbit 1.86 

10-Oct-14 21-Apr-15 SW HOBO_Tidbit 0.28 

10-Oct-14 21-Apr-15 SW HOBO_Tidbit 0.56 

10-Oct-14 21-Apr-15 SW SWS_TD 0.73 

10-Oct-14 21-Apr-15 SW HOBO_Tidbit 0.89 

10-Oct-14 21-Apr-15 SW HOBO_Tidbit 1.30 
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10-Oct-14 21-Apr-15 SARM HOBO_Tidbit 0.28 

10-Oct-14 21-Apr-15 SARM HOBO_Tidbit 0.51 

10-Oct-14 21-Apr-15 SARM SWS_TD 0.80 

10-Oct-14 21-Apr-15 SARM HOBO_Tidbit 1.03 

10-Oct-14 21-Apr-15 SARM HOBO_Tidbit 1.44 

24-Apr-15 15-Oct-15 SW HOBO_Tidbit 0.30 

24-Apr-15 15-Oct-15 SW HOBO_Tidbit 0.65 

24-Apr-15 15-Oct-15 SW SWS_TD 0.91 

24-Apr-15 15-Oct-15 SW HOBO_Tidbit 1.23 

24-Apr-15 15-Oct-15 SW HOBO_Tidbit 1.47 

24-Apr-15 15-Oct-15 SW HOBO_Tidbit 1.92 

24-Apr-15 22-Jun-15 NW EXO2 1.95 

24-Apr-15 15-Oct-15 SARM HOBO_Tidbit 0.31 

24-Apr-15 15-Oct-15 SARM HOBO_Tidbit 0.71 

24-Apr-15 15-Oct-15 SARM SWS_TD 1.05 

24-Apr-15 15-Oct-15 SARM HOBO_Tidbit 1.41 

24-Apr-15 15-Oct-15 SARM HOBO_Tidbit 1.88 

24-Apr-15 22-Jun-15 NW RBR_Duo 0.36 

24-Apr-15 22-Jun-15 NW SWS_CTD 0.82 

24-Apr-15 22-Jun-15 NW HOBO_Tidbit 1.11 

24-Apr-15 22-Jun-15 NW SWS_CTD 1.36 

24-Apr-15 22-Jun-15 NW RBR_Duo 1.71 

24-Apr-15 22-Jun-15 NW HOBO_Tidbit 2.04 

24-Apr-15 22-Jun-15 NW HOBO_Tidbit 2.35 

25-Jun-15 12-Aug-15 NW RBR_Duo 0.41 

25-Jun-15 12-Aug-15 NW SWS_TD 0.78 

25-Jun-15 12-Aug-15 NW HOBO_Tidbit 1.02 

25-Jun-15 12-Aug-15 NW HOBO_Tidbit 1.30 

25-Jun-15 12-Aug-15 NW HOBO_Tidbit 1.54 

25-Jun-15 12-Aug-15 NW RBR_Duo 1.74 

25-Jun-15 12-Aug-15 NW HOBO_Tidbit 2.06 

25-Jun-15 12-Aug-15 NW HOBO_Tidbit 2.52 

25-Jun-15 12-Aug-15 NW EXO2 1.99 

14-Aug-15 15-Oct-15 NW RBR_Duo 0.41 

14-Aug-15 15-Oct-15 NW SWS_TD 0.75 

14-Aug-15 15-Oct-15 NW HOBO_Tidbit 1.06 

14-Aug-15 15-Oct-15 NW HOBO_Tidbit 1.32 

14-Aug-15 15-Oct-15 NW HOBO_Tidbit 1.55 

14-Aug-15 15-Oct-15 NW RBR_Duo 1.76 

14-Aug-15 15-Oct-15 NW HOBO_Tidbit 2.08 

14-Aug-15 15-Oct-15 NW HOBO_Tidbit 2.50 

14-Aug-15 15-Oct-15 NW EXO2 1.16 
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 DIRECT FLOWS MEASUREMENT A.3.

 

Figure A-6: Measured inflows (Qin) at the NE inlet (top panel) and the SE inlet (bottom panel) of 

TT2. The data gap at SE inlet, filled using the ratio method, is shown in red dashed line. 

 

Figure A-7: Measured outflows (Qout) at TT2. 
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Figure A-8: Measured inflows (Qin) at different SB4 inlets. 

a) SE Inlet

b) ENE Inlet

c) NE Inlet

d) NW Inlet
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Figure A-9: Measured outflows (Qout) at SB4. 
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 UPDATING RATING CURVES A.4.

The relationship between outflow and the water level can be presented as a rating curve. The 

rating curve of each pond was documented in the design reports provided by the City of 

Edmonton. However, the outlet structures had been modified from the initial design, and the 

rating curves had to be updated to reflect the observed as-built configuration information to 

develop the as-built rating curves of study ponds. Rating curves of study ponds were updated 

based on the equations governing the outflows from outlet structures. The equations and 

assumptions for developing as-built rating curves are presented here. 

When the water levels at TT2 are above the NWL, the flow passes over the contracted weir 

and reaches the second chamber on the downstream side of the weir. The water exits the second 

chamber via a circular orifice and enters a 600 mm diameter pipe. It was assumed that when the 

water levels in the second chamber are lower than levels in the first chamber, the outflow is 

controlled only by the contracted weir. Figure A-10 shows a schematic view of a contracted weir 

functions under free conditions (i.e., the downstream water levels are below NWL) and the 

outflows are estimated as follows: 

𝑄𝑜𝑢𝑡 = 𝐶𝑑 ∙
2

3
∙ (𝑏 − 0.2𝐻) ∙ 𝐻1.5 ∙ √2𝑔 (A-1) 

where 𝑄𝑜𝑢𝑡 (m³/s) is the discharge, 𝐶𝑑 is the dimensionless weir coefficient, 𝑔 (m/s²) is the 

acceleration due to gravity, 𝑏 (m) is the width of the crest, and 𝐻 (m) is the head of water above 

NWL. The contraction effect, velocity of approach, viscosity, and surface tension are accounted 

for by 𝐶𝑑. The discharge coefficient varies as a function of 𝐻 and is given by: 

𝐶𝑑 = 𝐶𝑑∗ + 0.08
𝐻

𝑦
 (A-2) 
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where 𝐶𝑑∗ (dimensionless) was assumed to be 0.61 for a contracted weir, and 𝑦 (m) is the sill 

height (Potter et al. 2011).  

 

Figure A-10: Schematic view of rectangular orifice: a) Side view and b) Front view. 

When the levels at two chambers of TT2 are the same, the flow is controlled by the circular 

orifice which is fully submerged under these conditions. Figure A-11 depicts a schematic view of 

a submerged circular orifice. The outflow through this orifice is calculated as follows:  

𝑄𝑜𝑢𝑡 = 𝐶𝑜 ∙
𝜋

4
𝐷2 ∙ √2𝑔ℎ𝑜 (A-3) 

 

Figure A-11: Schematic view of a submerged circular orifice. a) Side view, b) Front view. 

Outflows at SB4 are controlled by the rectangular orifice. However, for the levels between 

the top and bottom of the opening, the orifice functions as a contracted rectangular weir. Figure 

A-12 shows a rectangular orifice which is not fully submerged and functions as a weir. However, 
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when the water levels are above the top of the orifice opening, the outflows are calculated as 

follows: 

𝑄𝑜𝑢𝑡 = 𝐶𝑔 ∙ 𝑏 ∙ 𝐺√2𝑔(𝐻 − 0.5𝐺) (A-4) 

where 𝐺 (m) is the orifice opening, and 𝐶𝑔 is the dimensionless orifice coefficient that was 

assumed to be 0.61 for the sharp-edged orifice (Water Measurement Manual: A Guide to 

Effective Water Measurement Practices for Better Water Management 2001). In this pond, high 

flow is controlled by a rectangular weir. However, the water level did not reached to the weir 

during the period of this study.  

 

Figure A-12: Schematic view of rectangular orifice which functions as weir. a) Side view, b) Front 

view.  
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 WATER LEVEL ELEVATIONS A.5.

Water level time series at each pond were calculated from the Diver data and manual water level 

measurements. The Divers measure the total pressure (𝐻𝑇𝑜𝑡𝑎𝑙) above their sensors. In order to 

calculate the head only due to the water column (𝐻𝑤), the barometric pressure at the water 

surface (𝐻𝑤𝑠) was subtracted from the total pressure as follows: 

𝐻𝑤 = 𝐻𝑇𝑜𝑡𝑎𝑙 − 𝐻𝑤𝑠 (A-5) 

where all pressures are expressed as meters of water. The barometric pressure (𝐻𝑎𝑖𝑟) was 

measured at the weather station which is ∆ℎ𝑝 meters above the water surface. Therefore, the 

barometric pressure at the water surface is derived by: 

𝐻𝑤𝑠 = 𝐻𝑎𝑖𝑟 +
∆ℎ𝑝 × 𝜌𝑎𝑖𝑟

𝜌𝑤𝑎𝑡𝑒𝑟
 (A-6) 

where 𝜌𝑤𝑎𝑡𝑒𝑟 and 𝜌𝑎𝑖𝑟 are the density of water and air, respectively. Knowing the deployed 

elevation of each sensor, 𝐻𝑖𝑛𝑠𝑡 (m), the water level for each sensor is calculated as: 

𝑊𝐿 = 𝐻𝑤𝑠 + 𝐻𝑖𝑛𝑠𝑡 (A-7) 

where 𝑊𝐿 (m) is the water level elevation above the sea level. Finally, The water level time 

series for each pond was calculated by averaging the water levels acquired from all the divers 

installed within that pond.  
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 WATER QUALITY SAMPLING A.6.

Table A-4: Detection limit, and 95% confidence interval of parameters analysed at the 

Biogeochemical Analytical Service Laboratory (BASL). 

 

Table A-5 and Table A-6 present the results of water quality samples from ST2, analysed at the 

Biogeochemical Analytical Service Laboratory (BASL). 

Table A-5: Water quality sampling results for ST2 (Part I). 

Sample 

Date 

Sampling 

Location 

Depth 

(m) 

Secchi 

Disk 

(cm) 

NH3 

(N 

mcg/L) 

NO2+NO3(N 

mcg/L) 

TN 

(N 

mcg/L) 

TDN 

(N 

mcg/L) 

TKN 

(N 

mcg/L) 

        #2 #1 #10 #10 #10 

12-May-14 NW 0.5 - 5 3 1590 - 1587 

12-May-14 SW 0.5 - <MDL <MDL 1300 - 1300 

12-May-14 SARM 0.5 - <MDL 3 1280 - 1277 

12-May-14 SE 0.5 - 3 3 1280 - 1277 

28-May-14 NW 0.5 - 332 533 1780 - 1247 

28-May-14 SW 0.5 - 203 215 1400 - 1185 

28-May-14 SE 0.5 - 95 96 1060 - 964 

28-May-14 SARM 1 - 102 139 1080 - 941 

12-Jun-14 NW 0.5 - 49 1130 1920 - 790 

12-Jun-14 SW 0.5 - 17 192 942 - 750 

12-Jun-14 SARM 1 - 6 514 1060 - 546 

Analyte Detection Limit Concentration Range Expanded Uncertainty (95% confidence interval)

Alkalinity 2mg/L 5-50mg/L 5.7%

Alkalinity 2mg/L 50-500mg/L 5.1%

Chloride 0.03mg/L 0.3-5mg/L 8.5%

Chloride 0.03mg/L 5-20mg/L 5.7%

Conductivity 0.3uS 3-200uS 1.8%

Conductivity 0.3uS 200-4000uS 0.3%

DOC 0.1mg/L 1-5mg/L 16.7%

DOC 0.1mg/L 5-50mg/L 8.6%

Ammonium 2ug/L 20-200ug/L 9.4%

Ammonium 2ug/L 200-2000ug/L 5.3%

Nitrate/Nitrite 1ug/L 10-200ug/L 6.6%

Nitrate/Nitrite 1ug/L 200-2000ug/L 5.7%

Sulfate 0.05mg/L 0.5-5mg/L 12.4%

Sulfate 0.05mg/L 5-80mg/L 7.3%

SRP/TPP 1ug/L 10-200ug/L 5.9%

SRP/TPP 1ug/L 200-2000ug/L 4.6%

TN/TDN 7ug/L 50-2000ug/L 10.9%

TN/TDN 7ug/L 2000-6000ug/L 9.3%

TP/TDP 1ug/L 10-200ug/L 7.7%

TP/TDP 1ug/L 200-2000ug/L 9.0%

DIC 0.1mg/L 1-50mg/L 10.0%
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12-Jun-14 SE 0.5 - 6 18 564 - 546 

26-Jun-14 SE 0.5 - 9 <MDL 738 - 738 

26-Jun-14 SARM 1 - 53 31 985 - 954 

26-Jun-14 SW 0.5 - 49 <MDL 863 - 863 

26-Jun-14 NW 0.5 - 139 1200 2100 - 900 

16-Jul-14 NW 0.5 - 86 1,350 2380 - 1030 

16-Jul-14 SW 0.5 - 3 <MDL 677 - 677 

16-Jul-14 SARM 1 - 6 155 961 - 806 

16-Jul-14 SE 0.5 - 6 <MDL 670 - 670 

07-Aug-14 SE 0.5 145 <MDL <MDL 727 - 727 

07-Aug-14 NW 0.5 132 5 <MDL 1350 - 1350 

18-Aug-14 SARM 1 75 90 19 1090 - 1071 

18-Aug-14 NW 0.5 60 31 163 1340 - 1177 

03-Sep-14 SARM 1 54 27 <MDL 1100 - 1100 

03-Sep-14 NW 0.5 38 120 99 1500 - 1401 

17-Sep-14 SARM 1 50 <MDL 41 1300 - 1259 

17-Sep-14 NW 0.5 90 47 216 1620 - 1404 

01-Oct-14 SARM 1 89-90 73 <MDL 1560 - 1560 

01-Oct-14 NW 0.5 90 79 93 1600 - 1507 

15-Oct-14 SARM 0.5 45 <MDL <MDL 1490 - 1490 

15-Oct-14 NW 1 45-52 5 22 1700 - 1678 

29-Oct-14 SARM 0.5 49 <MDL <MDL 1480 - 1480 

29-Oct-14 NW 1 44 55 201 1530 - 1329 

07-May-15 S - - 178 793 1040 728 <MDL 

07-May-15 NW - - 136 1,030 1020 732 <MDL 

14-May-15 SARM 0.5 61 <MDL <MDL 703 1048 1048 

14-May-15 SE 0.5 50 3 <MDL 1070 2240 2240 

14-May-15 SW 0.5 55 <MDL <MDL 783 1008 1008 

14-May-15 SW 1.5 55 <MDL <MDL 728 1392 1392 

14-May-15 NW 0.5 59 10 170 1010 1440 1270 

14-May-15 NW 1.5 59 <MDL 2,680 4220 4640 1960 

27-May-15 SARM 0.5 193* 30 <MDL 764 832 832 

27-May-15 SE 0.5 173* 4 <MDL 743 800 800 

27-May-15 SW 0.5 194* 18 <MDL 761 800 800 

27-May-15 NW 0.5 78 40 6 791 1192 1186 

27-May-15 NW 1.5 78 <MDL 2,340 2970 4160 1820 

28-May-15 SARM - - 586 912 2030 2872 1960 

28-May-15 NW - - 36 1,480 2070 2244 764 

10-Jun-15 SARM 0.5 151* <MDL <MDL 930 1060 1060 

10-Jun-15 SE 0.5 168* 44 <MDL 950 924 924 

10-Jun-15 SW 0.5 194* <MDL <MDL 828 896 896 

10-Jun-15 NW 0.5 156 224 66 1370 1480 1414 

10-Jun-15 NW 2 156 657 1,520 3810 4200 2680 

22-Jun-15 SARM 0.5 150 7 <MDL 839 1044 1044 

22-Jun-15 SE 0.5 168 30 <MDL 834 980 980 

22-Jun-15 SW 0.5 148 <MDL <MDL 788 1012 1012 

22-Jun-15 NW 0.5 59 119 <MDL 778 1068 1068 

22-Jun-15 NW 2 59 258 2,020 2720 2908 888 

07-Jul-15 SARM 0.5 126 16 <MDL 802 636 636 

07-Jul-15 SARM 0.5 126 21 <MDL 829 1072 1072 
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07-Jul-15 SARM 0.5 126 23 <MDL 842 992 992 

07-Jul-15 SE 0.5 132 3 <MDL 774 848 848 

07-Jul-15 SW 0.5 101 <MDL <MDL 702 1032 1032 

07-Jul-15 NW 0.5 121 97 4 797 1028 1024 

07-Jul-15 NW 1.5 121 76 1,970 3300 4160 2190 

21-Jul-15 SARM 0.5 77 25 176 764 968 792 

21-Jul-15 SE 0.5 110 8 9 594 872 863 

21-Jul-15 SW 0.5 80 19 207 725 996 789 

21-Jul-15 NW 0.5 42 <MDL 1,410 1730 2336 926 

21-Jul-15 NW 2 42 133 2,075 4380 4360 2285 

04-Aug-15 SARM 0.5 32 72 3 622 1700 1697 

04-Aug-15 SE 0.5 - 76 2 911 1528 1526 

04-Aug-15 SW 0.5 33 27 3 864 1712 1709 

04-Aug-15 NW 0.1 25 13 10 821 3724 3714 

04-Aug-15 NW 0.1 25 10 9 706 3780 3771 

04-Aug-15 NW 0.1 25 8 9 901 3864 3855 

04-Aug-15 NW 2 25 230 1,390 2200 2784 1394 

18-Aug-15 SARM 0.5 25 3 3 805 2132 2129 

18-Aug-15 SE 0.5 25 4 3 982 2084 2081 

18-Aug-15 SW 0.5 24 <MDL <MDL 743 1772 1772 

18-Aug-15 NW 0.5 26 28 21 1080 1872 1851 

18-Aug-15 NW 2 26 136 1,020 1740 2088 1068 

01-Sep-15 SARM 0.5 15 <MDL <MDL 1010 2236 2236 

01-Sep-15 SE 0.5 19 <MDL <MDL 998 2288 2288 

01-Sep-15 Bend 0.5 19 <MDL <MDL 879 2032 2032 

01-Sep-15 NW 0.5 21 10 17 1250 2556 2539 

01-Sep-15 NW 2 21 241 152 1630 2608 2456 

16-Sep-15 SE 0.5 30 101 166 1230 1768 1602 

16-Sep-15 SW 0.5 28 71 344 1230 1724 1380 

16-Sep-15 NW 0.5 22 190 749 1250 2088 1339 

16-Sep-15 NW 2 22 103 3,610 4310 4640 1030 

30-Sep-15 SARM 0.5 40 21 250 1140 1536 1286 

30-Sep-15 SE 0.5 38 17 225 1120 1536 1311 

30-Sep-15 SW 0.5 30 26 213 1650 2052 1839 

30-Sep-15 SW 1.5 30 104 276 1150 1752 1476 

30-Sep-15 NW 0.5 36 21 434 1210 1672 1238 

30-Sep-15 NW 1.5 36 295 867 2540 2776 1909 

13-Oct-15 SE 0.5 35 316 143 1280 1748 1605 

13-Oct-15 SW 0.5 33 298 198 1330 1840 1642 

# Method Detection Limit (MDL)  
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Table A-6 Water quality sampling results for ST2 (Part II). 

Sample 

Date 

Sampling 

Location 

Depth 

(m) 

SRP 

(P 

mcg/L) 

TP 

 (P 

mcg/L) 

TDP 

(P 

mcg/L) 

TPP 

(P 

mcg/L) 

DOC 

(C 

mg/L) 

DIC 

(C 

mg/L) 

TCHLA 

(mcg/L) 

      #1 #3 #4   #0.1 #0.5 #0.2 

12-May-14 NW 0.5 3 124 22 98 10.9 22.3 74.51 

12-May-14 SW 0.5 2 108 21 83 10.7 21.1 56.82 

12-May-14 SARM 0.5 2 95 20 70 10.1 20.9 57.01 

12-May-14 SE 0.5 3 91 20 68 11 20.6 60.76 

28-May-14 NW 0.5 7 103 28 22 9.6 22 13.59 

28-May-14 SW 0.5 3 84 35 47 9.8 24.9 12.22 

28-May-14 SE 0.5 3 67 31 24 10.3 25.9 8.1 

28-May-14 SARM 1 3 62 26 28 10 25.6 10.22 

12-Jun-14 NW 0.5 11 167 18 35 45.3 23 1.52 

12-Jun-14 SW 0.5 6 29 18 12 11 15.4 1.41 

12-Jun-14 SARM 1 4 23 15 10 10.5 13.9 4.67 

12-Jun-14 SE 0.5 3 22 16 10 10.6 14 1.87 

26-Jun-14 SE 0.5 10 45 35 10 11.1 15.1 1.32 

26-Jun-14 SARM 1 11 62 48 10 11.3 16.8 <MDL 

26-Jun-14 SW 0.5 16 56 51 11 11.7 17.5 <MDL 

26-Jun-14 NW 0.5 3 37 21 11 14.9 34 <MDL 

16-Jul-14 NW 0.5 5 80 47 14 11.7 32.8 38.62 

16-Jul-14 SW 0.5 12 51 34 21 9.8 12.7 8.54 

16-Jul-14 SARM 1 10 50 32 21 10.1 16.2 7.62 

16-Jul-14 SE 0.5 4 40 25 18 10.3 10.5 3.85 

07-Aug-14 SE 0.5 5 981 - 17 9.5 14.4 4.1 

07-Aug-14 NW 0.5 3 149 - 85 9.7 11.4 271.08 

18-Aug-14 SARM 1 47 121 - 43 11.1 21.3 12.31 

18-Aug-14 NW 0.5 9 81 - 59 13.3 30.5 42.8 

03-Sep-14 SARM 1 24 127 - 68.6 12.6 26.5 19.43 

03-Sep-14 NW 0.5 10 143 - 63 15.4 30.5 31.82 

17-Sep-14 SARM 1 17 152 - 107.7 12.9 31.5 45.96 

17-Sep-14 NW 0.5 10 114 - 91.7 13 33.6 71.96 

01-Oct-14 SARM 1 18 152 - 63.7 12.7 36.3 47.61 

01-Oct-14 NW 0.5 10 125 - 57.7 12.6 36.9 52.85 

15-Oct-14 SARM 0.5 14 160 - 69 13.8 38.3 80.05 

15-Oct-14 NW 1 17 156 - 73 13.9 42.2 108.93 

29-Oct-14 SARM 0.5 13 120 - 80 13.1 42.4 40.43 

29-Oct-14 NW 1 5 103 - 74 12.1 42.7 27.99 

07-May-15 S - 61 101 70 31.6 4.8 7.8 - 

07-May-15 NW - 62 111 74 43.1 7.5 14.8 - 

14-May-15 SARM 0.5 3 112 25 72.1 8.4 16.4 39.7 

14-May-15 SE 0.5 2 170 63 93.2 9 17.4 66.49 

14-May-15 SW 0.5 1 108 31 77.5 9 15.5 42.47 

14-May-15 SW 1.5 5 198 33 137.5 8.7 16.3 172.58 

14-May-15 NW 0.5 4 100 30 72.3 9.2 16.2 39.49 

14-May-15 NW 1.5 7 95 35 62.5 7.9 61.9 58.99 

27-May-15 SARM 0.5 3 93 43 24.3 12 13.7 0.49 

27-May-15 SE 0.5 2 45 28 17.9 12.5 13.5 0.59 
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27-May-15 SW 0.5 2 42 31 19.4 13.6 13.9 0.11 

27-May-15 NW 0.5 4 80 56 19.2 13.1 19.1 15.87 

27-May-15 NW 1.5 17 164 29 147.5 14.3 61.9 139.29 

28-May-15 SARM - 23 303 28 279.6 10.4 25.7 - 

28-May-15 NW - 34 60 28 36.6 22.5 78.3 - 

10-Jun-15 SARM 0.5 36 99 84 30.4 17 25.5 0.48 

10-Jun-15 SE 0.5 48 121 95 33.6 17.7 24.9 1.69 

10-Jun-15 SW 0.5 42 102 81 30.6 17.7 27 0.95 

10-Jun-15 NW 0.5 60 143 120 30.6 20.9 40.4 0.44 

10-Jun-15 NW 2 532 643 598 52.9 14.7 71.3 1.6 

22-Jun-15 SARM 0.5 7 56 44 24.1 15.6 17.6 9.76 

22-Jun-15 SE 0.5 9 64 49 45.5 15.6 17.7 5.41 

22-Jun-15 SW 0.5 9 81 48 26.2 15.6 20.9 18.8 

22-Jun-15 NW 0.5 20 92 39 54.8 13.3 21.4 15.01 

22-Jun-15 NW 2 45 91 54 43 10.6 39.5 4.34 

07-Jul-15 SARM 0.5 21 77 56 33.7 14.7 16.7 3.52 

07-Jul-15 SARM 0.5 24 90 57 28.4 14.8 16.2 3.92 

07-Jul-15 SARM 0.5 24 96 56 24.5 14.7 16.4 3.68 

07-Jul-15 SE 0.5 24 81 54 37.1 15 16.3 5.89 

07-Jul-15 SW 0.5 34 101 64 50.1 15.3 20.7 7.27 

07-Jul-15 NW 0.5 5 66 31 32.2 16.4 22.3 4.49 

07-Jul-15 NW 1.5 23 168 44 148.7 14.3 56.1 71.32 

21-Jul-15 SARM 0.5 27 96 56 50.9 10.7 18 14.15 

21-Jul-15 SE 0.5 24 77 51 74.5 11.5 17.9 8.92 

21-Jul-15 SW 0.5 3 114 52 91.2 9.7 16.4 12.52 

21-Jul-15 NW 0.5 43 138 36 139.7 8.1 16.5 56.78 

21-Jul-15 NW 2 3 103 54 62.4 9.2 29.8 3.86 

04-Aug-15 SARM 0.5 30 188 71 154.3 9.8 23.8 53.92 

04-Aug-15 SE 0.5 38 188 89 142.2 10 23.2 58.8 

04-Aug-15 SW 0.5 13 161 55 148.9 9.9 24.9 40.96 

04-Aug-15 NW 0.1 14 369 44 445.2 11.6 29 127.58 

04-Aug-15 NW 2 6 99 25 110 11.3 48.8 21.12 

18-Aug-15 SARM 0.5 4 311 45 334.6 10.8 31.9 85.28 

18-Aug-15 SE 0.5 4 300 50 306.4 10.6 31.7 84.85 

18-Aug-15 SW 0.5 5 264 28 304.6 10.6 31.4 90.72 

18-Aug-15 NW 0.5 <MDL 210 40 234.2 11.2 31 125.88 

18-Aug-15 NW 2 8 98 33 112.3 12.6 39.5 22.19 

01-Sep-15 SARM 0.5 7 271 54 185.6 11.9 34.1 89.63 

01-Sep-15 SE 0.5 7 264 44 230 12.7 33.3 94.3 

01-Sep-15 Bend 0.5 6 283 27 294.6 12.1 35 81.9 

01-Sep-15 NW 0.5 8 309 63 233.6 11.9 37.2 97.65 

01-Sep-15 NW 2 11 292 109 174.7 11.3 39.9 72.45 

16-Sep-15 SE 0.5 7 138 42 88.6 7.7 27.3 71.29 

16-Sep-15 SW 0.5 9 153 35 126.9 6.6 23.8 71.66 

16-Sep-15 NW 0.5 8 172 31 124.4 6.1 22.3 30.46 

16-Sep-15 NW 2 31 139 26 97.4 8.3 47.2 5.67 

30-Sep-15 SARM 0.5 10 117 17 100.3 8.1 33.3 54.01 

30-Sep-15 SE 0.5 14 119 14 99.8 7.8 30.8 62.35 

30-Sep-15 SW 0.5 12 169 60 88.8 8.3 31.4 91.77 

30-Sep-15 SW 1.5 10 142 17 110.3 8.1 34.5 56.41 
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30-Sep-15 NW 0.5 13 120 15 101.6 8.3 33.2 60.36 

30-Sep-15 NW 1.5 20 98 47 75.9 8.6 48.4 25.92 

13-Oct-15 SE 0.5 7 116 24 103.1 8 37.9 28.27 

13-Oct-15 SW 0.5 8 128 30 107.1 8.2 18.3 31.8 

# Method Detection Limit (MDL)  
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The following figures depict the measured dissolved oxygen (DO) and temperature (T) at ST2 

used in this study. The data were obtained through measurements conducted either by in-pond 

instruments or profiling. 

 

Figure A-13: Measured temperature (°C) at sampling locations within ST2 in 2014. 
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Figure A-14: Measured temperature (°C) at sampling locations within ST2 in 2015. 

 

Figure A-15: Measured dissolved oxygen (mg/L) at SE sampling location of ST2 in 2014. 
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Figure A-16: Measured dissolved oxygen (mg/L) at measuring locations of ST2 in 2015. 
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In 2014, TCHLA was measured only through water sampling. In 2015, an EXO2 was deployed 

in the NE location to measure TCHLA every 5 minutes. Depth profiles of TCHLA were 

measured at all sampling locations in 2015. 

 

Figure A-17: Measured TCHLA (mcg/L) at measuring locations of ST2 in 2014. 
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The following figures depict the measured total nitrogen (TN), and total phosphorous (TP) used 

in the current study. Data were measured by analysing the water quality samples in the BASL 

 

Figure A-18: Measured TP (mg/L) at different locations in ST2 in 2014. 
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Figure A-19: Measured TP (mg/L) at different locations in ST2 in 2015. 
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Figure A-20: Measured TN (mg/L) at different locations in ST2 in 2014. 
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Figure A-21: Measured TN (mg/L) at different locations in ST2 in 2015. 

Table A-7: Phylum, Class and Family of algae samples along with the average percentage of each 

Class in ST2 during sampling periods of 2014 and 2015. 

 

 

 

Algae Phylum Algae Class Algae Family ST2 Average Percentage of Algae Class

Ulvophyceae Cladophoraceae 4.8

Chlorophyceae

Chlorosarcinaceae, Characiaceae, 

Scenedesmaceae, Selenastraceae,

Volvocaceae, Neochloridaceae, 

Hydrodictyaceae, 28.4

Trebouxiophyceae Chlorellaceae, Oocystaceae 8.7

Charophyta Conjugatophyceae Desmidiaceae, Closteriaceae, Zygnemataceae7.2

Cyanobacteria Cyanophyceae Microcystaceae, Nostocaceae, Rivulariaceae, Oscillatoriaceae,Pseudanabaenaceae, Spirulinaceae22.7

Euglenozoa Euglenophyceae Euglenophyceae 25.8

Cryptophyta Cryptophyceae Chroomonadaceae 1.0

Dinoflagellata Dinophyceae Gymnodiniaceae, Gymnodiniaceae 0.0

Diatom Bacillariophyceae Bacillariophyceae spp 1.5

Chlorophyta
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Appendix B. ELCOM-CAEDYM; CALIBRATION, VALIDATION, 

AND SENSITIVITY ANALYSIS  

B.1. EQUATIONS USED IN CAEDYM, ADOPTED FROM BRUCE AND IMBERGER 

2009, GAL ET AL. 2009, HIPSEY ET AL. 2013, ROMERO ET AL. 2004.  

 B.4.1. Generic Parameterization of Processes  

The index j denotes the generic variable identifier.  
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 B.4.2. Nutrient Uptake Functions 
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 B.4.3. Respiration, Mortality, and Excretion 
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B.2. DIFFERENTIAL EQUATIONS FOR MASS BALANCE OF DISSOLVED OXYGEN, 

PHOSPHOROUS, AND NITROGEN  

It should be noted that all concentrations are subjected to hydrodynamics. 

a) Dissolved Oxygen 
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c) Nitrogen 
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B.3. ESTIMATION OF STATE VARIABLES 

Table B-1: Estimated mandatory state variables used in CAEDYM. 

CAEDYM State Variable Estimated value based on measured data 

DOPL 4TDP PO  

POPL (0.6 0.8) ( )TPP AIP    

PIP TPP POPL  

AIP  :  50 :1;  :  41000 77000C Chla C P   

DONL 
2

( 4 )
3

TKN NH PIN    

PONL 
1

( 4 )
3

TKN NH PIN    

Algae group Measured percentage × Chla 

 Adopted from (Nakhaei 2017) 
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B.4. ELCOM-CAEDYM, MODEL SETUP AND RESULTS 

 B.4.1. Computational Domain 

 

Figure B-1: Computational domain of ST2 used in ELCOM-CAEDYM 

  

NW

SW SARM
SE

Grid of sampling location
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 B.4.2. ELCOM Sensitivity 

 

Figure B-2: Variation of RMSE (°C) of modelled temperature by ELCOM during calibration 

period with: a) NWL (m), when albedo=0.30 and Secchi disk=40 cm, b) albedo, when  

NWL=680.07 m and Secchi disk=40 cm, and c) Secchi disk, when albedo=0.20 and NWL=680.07 m.  
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 B.4.3. Visual Assessment of ELCOM Performance 

Here the modelled temperature for calibration and validation runs are presented for selected 

locations and the results are compared with those measured. For calibration and validation runs, 

the visual assessment was conducted by comparing the modeled temperature versus all 

measurements acquired by both deployed sensors and profiling.  
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Figure B-3: Visual comparison of a) observed, and b) modelled temperature (°C) at NW sampling 

location of ST2 during calibration period (2014). 

 

Figure B-4: Visual comparison of: a) observed, and b) modelled temperature (°C) at NW sampling 

location of ST2 during validation period (2015). 

b) Modelled Temperature (°C) 

b) Modelled Temperature (°C) 

a) Observed Temperature (°C) 

a) Observed Temperature (°C) 
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Figure B-5: Visual comparison of a) observed, and b) modelled temperature (°C) at NW sampling 

location of ST2 during calibration period (2014). 

 

Figure B-6: Visual comparison of: a) observed, and b) modelled temperature (°C) at SW sampling 

location of ST2 during validation period (2015).   

a) Observed Temperature (°C) 

a) Observed Temperature (°C) 

b) Modelled Temperature (°C) 

b) Modelled Temperature (°C) 
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Figure B-7: Visual assessment of modelled temperature at SW sampling station of ST2 during 

calibration period (2014). No measurement at this location during calibration period. 

 

Figure B-8: Visual comparison of: a) observed, and b) modelled temperature (°C) at SARM 

sampling location of ST2 during validation period (2015).   

b) Modelled Temperature (°C) 

a) Observed Temperature (°C) 

b) Modelled Temperature (°C) 
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Figure B-9: Visual comparison of a) observed, and b) modelled temperature (°C) at SE sampling 

location of ST2 during calibration period (2014). 

 

Figure B-10: Visual comparison of a) observed, and b) modelled temperature (°C) at SE sampling 

location of ST2 during calibration period (2014). 

a) Observed Temperature (°C) 

a) Observed Temperature (°C) 

b) Modelled Temperature (°C) 

b) Modelled Temperature (°C) 
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 B.4.4. Assessment of CAEDYM Performance 

 Total Nitrogen 3.2.2.1

Figure B-11 and Figure B-12 display scatter plots of measured and simulated TN during the 

calibration period. The overlaid continuous time series are the simulated TN at the average 

measurement depths. During calibration period, the average RMSE at NW, 1.22 mg/L, was 

lower than at other sampling locations (Table 4-6). The model performed well near the bed with 

an RMSE of 0.49 mg/L, compared to 1.65 mg/L near the surface. The improved agreement near 

the bed is mainly due to the influence of boundary conditions assigned based on the near-bed 

measurements 

Figure B-13 shows that during the validation period, CAEDYM’s performance significantly 

improved at all sampling locations, with an average RMSE of 0.47 mg/L compared to 1.42 mg/L 

in the calibration period (Table 4-6). It should be noted that the inconsistency of boundary 

condition assignment also has affected the simulation results and the statistics.  
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Figure B-11: Measured and simulated TN at NW near surface (top) and near bed (bottom) during 

calibration period. 
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Figure B-12: Measured and simulated TN at near surface of SW (top) SARM (middle), and SE 

(bottom) during calibration period. 
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Figure B-13: Measured and simulated TN during calibration period at sampling location. 

 Total Phosphorous 3.2.2.1

As discussed in Chapter 4 During calibration period, especially from early August to early 

September 2015, CAEDYM underestimated near surface TP across all the sampling locations. 

Here the measured and simulated TP at SW, SARM, and SE sampling locations are presented  
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Figure B-14: Comparison of observed and simulated TP at SW (top), SARM (middle), and SE 

(bottom) during calibration period. 

The simulated TP during validation period at sampling locations is presented in Figure B-15 
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Figure B-15: Comparison of observed and simulated TP at sampling locations during validation 

period. 
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 Dissolved Oxygen 3.2.2.1

Figure B-16 to Figure B-19 compare measured and simulated dissolved oxygen (DO) at all 

sampling locations during the calibration period, illustrating differences between the two 

datasets. DO measurements by deployed instruments were more reliable as the instruments were 

consistently calibrated before deployment. Furthermore, the measured DO was within a 

reasonable range (less than 15 mg/L). Therefore, only deployed measurements were used for 

quantitative assessment (Table 4-6). However, for visual assessment, when available, both 

datasets were considered (Figure B-16 to Figure B-19), indicating that CAEDYM captured DO 

variation with depth in all the sampling locations. Higher DO near the surface and lower DO 

near the bed were well represented by CAEDYM, particularly at the NW sampling location, 

where more stratification was presented. 

 

Figure B-16: Measured and simulated DO at NW sampling location during calibration period 

(2015). 
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Figure B-17: Measured and simulated DO at SW sampling location during calibration period 

(2015). 
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Figure B-18: Measured and simulated DO at SARM sampling location during calibration period 

(2015). 

 

Figure B-19: Measured and simulated DO at SE sampling location during calibration period 

(2015). 

Figure B-20 compares the measured and simulated DO at the SE sampling location during the 

validation period.  
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Figure B-20: Measured and simulated DO at SE sampling location during validation period (2014). 
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Figure B-21: Modelled and observed TCHLA at different locations of ST2 during the calibration 

period. Individual points, vertical and horizontal points represent the data measured by water 

quality sampling, EXO2 profiling, and deployed EXO2. 
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Figure B-22: Modelled and observed TCHLA at different locations of ST2 during the validation 

period.  
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Appendix C.  

C.1. ADDITIONAL FIGURES 

 

Figure C-1: Comparison of pond daily averaged temperature (T) for the largest and smallest values 

of λ[Depth0] during the simulation period, highlighting greater temperature variability at lower λ, 

i.e., the shallower pond. 
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Figure C-2: Percentage of time (FΔT) the stratification strength (ΔT) is greater than a given value at 

sampling locations and pond, averaged over the simulation period for different λ[Depth0].  
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Figure C-3: Percentage of time (FΔT) the stratification strength (ΔT) is greater than a given value 

at sampling locations and pond, averaged over the simulation period for different λ[DepthU].  
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Figure C-4: Percentage of time (FΔT) the stratification strength (ΔT) is greater than a given value at 

sampling locations and pond, averaged over the simulation period for different λ[Flow].  
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Figure C-5: Percentage of time (FΔT) the stratification strength (ΔT) is greater than a given value at 

sampling locations and pond, averaged over the simulation period for different λ[Wind].  
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Figure C-6: Percentage of time (FΔT) the stratification strength (ΔT) is greater than a given value at 

sampling locations and pond, averaged over the simulation period for different λ[Temperature]. 



Appendix C:  

242 

 

Figure C-7: a) Integrated surface temperature (top), b) integrated near-bed temperature (bed), and 

c) integrated Temperature difference between the surface and bed at sampling locations and the 

pond. All temperatures are averaged over the simulation period. 

a) b) c)
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Figure C-8: Integratedt temperature (T) at the surface (top), middle (mid), and near-bed (bed) 

layers, and pond-integrated (Pond), during the simulation period for different scenarios. The 

results indicate that the average pond temperature is higher than the bed layer, but lower than the 

middle layer.  

 

a) b)

d) e)c)
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Figure C-9: Average of pond’s water temperature versus λ[Wind] during simulation period. 
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Figure C-10: Total Phosphorous, TP (mg/L), at sampling locations during simulation period with λ 

corresponded to each scenario: a) Depth, b) Uniform depth, c) Flow, d) Wind, and e) Temperature 

scenarios. 

b)

d) e)

a)

c)
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Figure C-11: Dissolved oxygen, DO (mg/L), at surface, middle and near-bed layers and pond 

averaged during simulation period. a) Depth, b) Uniform depth, c) Flow, d) Wind, and e) 

Temperature scenarios. 

  

a) b)

d) e)c)
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C.2. RT-TCHLA ASSOCIATION USING THE NON-PARAMETRIC KENDALL TEST 

The non-parametric Kendall's correlation coefficient (τ) (Kendall, 1938) was used to 

quantify the strength of the association between RT and TCHLA. Kendall's τ quantifies the 

association between two variables by measuring the proportion of concordant pairs. Similar to 

Pearson’s linear correlation coefficient, a perfect association between the two variables results in 

a correlation coefficient of ±1, while a value of 0 indicates no association. The interpretation of τ 

values could be subjective; however, it is commonly suggested that |τ|>0.3 indicate a strong 

correlation, 0.1<|τ|<0.3 indicate a moderate correlation, and |τ|<0.1 indicate a weak to no 

correlation (Chowdhary 2009; Cuthbertson et al. 2014). To test the significance of the 

association, the Kendall τ independence test was used under the null hypothesis of τ=0. The 

MATLAB correlation function (MathWorks. 2023) computed the strength of the association (τ) 

and the level of statistical significance (p-value). 

First, the Kendall test was conducted to assess the association between RT and TCHLA time 

series in each run (42 total runs) for the Depth0, Flow, Wind and Temperature scenarios. In each 

run, pond-integrated, as well as top and bottom layers averages of RT and TCHLA time series 

were used. All associations were found to be strong and statistically significant(p-value<0.01) 

(Figure 5-19a). 

Next, to assess the association between TCHLA and RT across different locations within the 

study pond, depth-averaged values of these variables were obtained at 99 points along a curtain 

that connects the NW inlet, SW inlet, SARM inlet, and SE outlet (Figure C-12). These variables 

were then averaged over the simulation period. For example, Figure 5-18 depicts average RT and 

TCHLA along this axis for the base-run, highlighting their direct association. Similar to the 

temporal analysis, for each run, the Kendall test was performed using MATLAB. All the tests 

were statistically significant, and with the exception of one run in the Flow scenario, all 

associations were strong (Figure 5-19b). 
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Figure C-12: Small red dots representing locations of water columns for analysis of RT-TCHLA 

association. 

C.3. MORE RESULTS OF ASSOCIATION OF SCENARIOS AND TCHLA 

 

 

Figure C-13: Variation of pond- averaged TCHLA (mcg/L) in hourly time steps under selected runs 

of Temperature scenario in the study pond during the simulation period. Dashed lines represent the 

boundaries of trophic states. 

Inlet/outlet
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Figure C-14: Variation of pond- averaged TCHLA (mcg/L) in hourly time steps under selected runs 

of Wind scenario in the study pond during the simulation period. Dashed lines represent the 

boundaries of trophic states. 

 

Figure C-15: Variation of pond- averaged TCHLA (mcg/L) in hourly time steps under selected runs 

of Wind scenario in the study pond during the simulation period. Dashed lines represent the 

boundaries of trophic states. 
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Figure C-16: Variation of pond- averaged TCHLA (mcg/L) in hourly time steps under selected runs 

of Depth0 scenario in the study pond during the simulation period. Dashed lines represent the 

boundaries of trophic states. 

 

Figure C-17: Variation of pond- averaged TCHLA (mcg/L) in hourly time steps under selected runs 

of TP scenario in the study pond during the simulation period. Dashed lines represent the 

boundaries of trophic states. 



Appendix C:  

251 

 

Figure C-18: Relationship between the average of pond-integrated TCHLA during simulation 

period and λ in different scenarios. 


