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Abstract

This thesis presents low complexity design and decoding schemes for low densi-

ty parity check (LDPC) codes. First, we consider the iterative decoding of LDPC

codes on multiple-input-multiple-output bit-interleaved coded modulation (MIMO-

BICM) channels and two-way relay channels. More specifically, we study the

log-likelihood ratio (LLR) calculation under MIMO-BICM channels when perfec-

t channel information is known and LLR calculation for two-way relay channels

when no channel information is known at the receiver. We propose the optimum

piece-wise linear approximation in the sense of maximizingthe achievable rate of

the channel. Second, we introduce a novel “universal” LDPC code design method.

We design universal LDPC codes based on our method and show that, compared

to existing methods, a lager percentage of capacity is obtained. Then, we propose

two conjectures about the extreme distributions under min-sum decoding based on

numerical observations.
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Chapter 1

Introduction

The focus of this work is on designing and decoding an extremely powerful class

of error-correcting codes calledlow-density parity-check (LDPC) codewith low

complexity. LDPC codes have been shown to perform close to the capacity of

many channels.

In this chapter, we introduce the field of study, the interesting problems in this

area and also discuss some interesting problems with LDPC code which are tackled

in this thesis.

1.1 Overview

People have always sought fast, reliable and secure ways to exchange informa-

tion. However, the communication channel usually introduces noise and interfer-

ence to distort the transmission. To improve the quality of data communication,

error-correcting codes are proposed.

Using error-correction coding, some redundancy is added tothe information by

the channel encoder. The reason for adding redundancy is to combat the channel

noise. Therate of a code is defined as the ratio of the number of input bits and

the output bits of the channel encoder, which is always less than one. For example,

one powerful class of error-correction codes is calledblock codeswhere the input

bit-stream is partitioned into severalk-bit blocks and each block is mapped to an

n-bit (n > k) word calledcodeword. Thus, the rate of block codes isR = k
n
< 1.

In 1948, C.Shannon introduced the limits of reliable transmission over unre-
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liable channels in one of his remarkable papers [1]. Given a channel, Shannon

showed that there is a limit on the maximum code rate, calledchannel capacity,

below which the reliable data transmission is possible. He proved that there exist a

code that can be used to transmit data with arbitrarily smallprobability of error if

the rate of the code is below the capacity. The Shannon limit,which is defined as

the minimum transmission power required to transmit reliably for a given code rate,

is proposed to measure the power efficiency of a coding scheme, Thus, the ultimate

goal of error-correction coding is to find practical capacity-approaching codes.

Shannon used random codes to prove the channel capacity theorem. However,

since the decoding complexity of random codes grows exponentially with the block

length, random coding is not suitable for practical use.

1.2 Codes Defined on Graphs and Iterative Decoding

A coding scheme with its rate close to the capacity was not developed until the

discovery of Turbo codes in 1993 [2]. Byiterative message-passingdecoding algo-

rithms, Turbo codes can approach the capacity with practical decoding complexity.

This class of decoding algorithms is applicable to the codesdefined on graphs. Due

to their reasonable decoding complexity, iterative decoding and graphical codes

have drawn much attention in the past decades.

One of the most attractive properties of iterative decodingalgorithms is that

their complexity grows linearly with the length of the code which means that the

complexity per information bit is independent of the code length. Thus, it allows

us to use long codewords with reasonable decoding complexity to design codes that

approach the channel capacity.

The graphical understanding of codes started with Tanner graphs for linear

codes [3]. Later, Wiberg found that the turbo decoder can be represented graph-

ically as well [4]. Because of the research on turbo code and graphical codes, a

class of codes called LDPC code was rediscovered after been forgotten for several

decades. LDPC codes were first proposed by Gallager in his PhDthesis [5], but

were considered too complex at the time of their discovery.
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LDPC codes are block codes which have a sparse structure. LDPC codes drew

a lot of attention because they have extremely good performance with reasonable

complexity under iterative message passing algorithms. Due to these properties of

LDPC codes, they became one of the most active research topics in coding theory.

LDPC codes are already used in some communication standardssuch as ETSI

EN 302 307 for digital video broadcasting [6] and IEEE 802.16WiMAX standard

[7]. Moreover, the discovery of many new classes of codes defined on graphs are

influenced by the structure of LDPC codes, such as repeat-accumulate (RA) codes

[8], Luby transform codes [9] and Raptor codes [10].

Although lots of researchers have been working in the area ofgraphical codes,

there are still many open problems under study. This thesis has addressed some of

these problems and raises new questions.

1.2.1 The Main Theme of This Thesis

This thesis studies efficient methods for design and decoding of LDPC codes with

low complexity. These problems are studied from a practicalpoint of view. It is

worth mentioning that although we focus on LDPC codes, some of these problems

are discussed beyond their application to LDPC codes. In this section, we will have

an overview of the problems that are addressed.

Decoding LDPC codes starts with computing log-likelihood ratios (LLRs) from

the channel observation. Computing channel LLRs can be a cumbersome task, thus

approximate LLRs are suggested in the literature. However,current approximation

methods, which all focus on single-input-single-output (SISO) channels [11–14],

cannot apply to multiple-input-multiple-output (MIMO) channels and two-way re-

lay channels directly. What is more, the computation of the channel LLRs is too

complicated in these cases. Thus, this is a problem that needs to be solved.

In this thesis, we propose a piece-wise linear method to calculate LLR for LDPC

codes used over multiple-input-multiple-output bit-interleaved coded modulation

(MIMO-BICM) channels when the channel parameters is known at the receiver and

the two-way relay channel when the channel information is unknown at the receiver.
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By maximizing the achievable transmission rate on the channel, our method has

low-complexity and performance close to the actual performance obtained by true

LLR calculation. It is worth mentioning that this method canbe also applied to

other codes decoded by iterative message-passing decoderssuch as turbo codes.

Although carefully designed LDPC codes have very good performance on many

channels, the code design process can be complex and time-consuming since if the

channel condition changes, code has to be designed again. Inthis work, we address

this problem by providing a one-for-all solution. We try to design “universal codes”

which can perform almost the same on all the channels with thesame capacity.

Codes designed by our method can achieve a high percentages of the capacity.

1.3 Thesis Outline

The thesis is organized as follow: Chapter 2 reviews the necessary background

about iterative decoding, LDPC codes, their decoding algorithms and the existing

analysis methods for these decoding algorithms.

In Chapter 3, we investigate non-SISO channels where calculating true LLRs is

difficult. We first assume perfect channel state information(CSI) is known at the

receiver for MIMO-BICM channel and we find the optimum piece-wise linear ap-

proximation of LLRs in the sense of maximizing the achievable rate of the channel.

Then, we extend this piece-wise linear method to the two-wayrelay channel when

no CSI is known at the receiver. In both cases, the maximum achievable rates un-

der the proposed method are quite close to the achievable rate when true LLRs are

applied. The success of our method can be also observed basedon the error rate.

In Chapter 4, we propose a new method to design codes with gooduniversal

properties based on the information combining bounds whichare developed recent-

ly. We use the stability condition of density evolution to analysis our method, and

by designing codes based on the proposed method, we show thatcompared to the

exiting methods, a higher percentage of capacity can be achieved.

We conclude the thesis in Chapter 5 by summarizing the contributions made in

this work and by suggesting possible directions for future work.
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Chapter 2

Preliminaries and Background

In this chapter, we briefly review the necessary background on transmission model,

LDPC codes and their structure, different decoding algorithms and exiting analysis

methods.

2.1 Transmission Model and Channel Coding

In Fig. 2.1, the block diagram of a generic digital communication system is de-

picted, which consists of a transmitter, a channel and a receiver. The transmitter

mainly consists of a binary source, a channel encoder and a modulator. Channel is

the medium through which the information is transmitted, such as free air, optical

fibers, a network link, etc.. The receiver mainly consists ofa demodulator, and a

channel decoder. The ultimate goal of this system is to transmit a data stream from

the transmitter (source) to the receiver (sink) quickly andreliably. In this thesis, we

mainly concern with the channel encoder, decoder and the channel itself.

Definition 2.1 [Binary-Input Memoryless Channel (BMC)]:

A binary-input channel is defined as a system comprising a finite input alphabet

X ∈ X whose members are binary symbols, a finite output alphabetY ∈ Y , and

a set of conditional probability assignments between them,PY |X . A channel is said

to bememorylessif each channel output depends only on the current input.

Remark 2.1 [Channel symmetry]: The channel is said to beoutput-symmetricif

PY |X(y|x) = PY |X(−y| − x) (2.1)

5



Binary
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Channel 

Encoder
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Channel
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Demodulator

Transmitter Receiver

Figure 2.1: The block diagram of a generic digital communication system

The subset of BMC, which is output-symmetric, is also calledbinary-input memo-

ryless symmetric channel (BIMS). The most famous channels in this class are the

binary symmetric channel (BSC) and the binary erasure channel (BEC).

The BSC can be seen as a channel which flips every bit with probability ε, as

shown in Fig. 2.2. It is denoted as BSC(ε). BSC(ε) is used in many studies because

it is one of the simplest noisy channels to analyze. When harddecisions are made at

the receiver, i.e., when the channel output values are quantized into two values, the

channel can be seen as a BSC. Thus, many communication channels can be reduced

to a BSC. Moreover, being able to transmit effectively over the BSC can give rise

to solutions for more complicated channels.

The BEC is also an important channel which mostly occurs in data networks.

The output of the BEC is either correct with probability1 − ε or erased with prob-

ability ε, as depicted in Fig 2.2. In this case, BEC(ε) is error free since when the

receiver gets one bit, it is certain that it is correct. Many real word channels can

be reduced to BEC(ε), such as the packet transmission between two nodes in a data

network, where a packet is either decodable (detected with no error) or undecodable

(completely useless).

Another important channel model which will be used in this work is the binary-

input additive white Gaussian noise (BIAWGN) channel whichadds a random real

number to the binary input,x ∈ {−1, 1}. The additive noise is drawn according to

the Gaussian distribution with zero mean and varianceσ2, denoted asN (0, σ2).

Although the class of BIMS channels is very important in theoretical and prac-

tical use, it is worth mentioning that the channels considered in this thesis are not

necessarily output-symmetric.
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Figure 2.2: Left: The binary symmetric channel wit error probability ε. Right: The
binary erasure channel with erasure probabilityε

2.1.1 Log-Likelihood Ratios

Log-likelihood ratio (LLR), refereed as the soft information, has been widely used

in the communication theory. It is defined as

LLR = l(y) =
PX|Y (0|y)
PX|Y (1|y)

. (2.2)

whereY represents the channel output andX is the binary channel input. It is clear

that LLR is a function of channel outputY , which can be denoted asl(y). The

input binary symbols,{0, 1}, are usually mapped to{+1,-1} by the binary phase-

shift keying (BPSK) modulation. Thus,0 ↔ +1 and1 ↔ −1. Using the channel

symmetry condition, we have

l(y) = log
PX|Y (1|y)
PX|Y (−1|y)

= log
PY |X(y|1)

PY |X(y| − 1)

= log
PY |X(−y| − 1)

PY |X(−y|1)

= log
PX|Y (−1| − y)

PX|Y (1| − y)

= −l(−y).

The distribution of the LLR plays an important role in iterative decoding [15].

We denote it asf(l). It is clear that there is a one-to-one correspondence between

7



Figure 2.3: Upper: the pdf of LLRs for BSC(ε). Down: the pdf of LLRs for BEC(ε)

the probability density function (pdf) of LLR and the channel. For symmetric chan-

nels and assuming the all-zero codeword is transmitted, we have

f(−l) = PY |X(y ∈ l−1(−l)|1)

= PY |X(−y ∈ l−1(l)|1)

= PY |X(y ∈ l−1(l)| − 1)

= e−lPY |X(y ∈ l−1(l)|1)

= e−lf(l).

which means that one side of the pdf can be obtained from the other side. Every

such pdf satisfying this condition is called symmetric or consistent. For a Gaussian

pdf N (µ, σ2), the symmetry condition can be simplified toσ2 = 2µ. Thus, by a

symmetric Gaussian pdf, we mean a Gaussian pdf for whichσ2 = 2µ.

Assuming all-zero codeword is transmitted, a channel can befully specified by

the pdf of its LLR. For example, the LLR pdf of the BSC(ε) is

f
(ε)
BSC(x) = (1− ε)δlog 1−ε

ε
(x) + εδ− log 1−ε

ε
(x) (2.3)

whereδa(x) is the Dirac delta function at the locationa. Also on the BEC(ε), the
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LLR pdf is

f
(ε)
BEC(x) = εδ0(x) + (1− ε)δ∞(x). (2.4)

These two pdfs are drawn in Fig .2.3.

One of the most important properties of a channel is its capacity. The definition

of the capacity is provided in Definition 2.2.

Definition 2.2 [Capacity]: For a channel, the information capacity is

C = max
p(x)

I(X ; Y )

whereI(X ; Y ) is the mutual information between the input and output of thechan-

nel and the maximum is taken over all the input densities,p(x).

For example,C = 1− ε for the BEC(ε), andC = 1− h(ε) for the BSC(ε), where

h(ε) = −(1− ε) log2(1− ε)− ε log2(ε),

is called the binary entropy function [16].

Observed from (2.2), LLR is a sufficient statistic forX givenY , thus the capac-

ity can also be represented from the LLR as

C = max
p(x)

I(X ; llr).

In this case,C can be interpreted as the capacity of the equivalent channelwith input

X, outputllr and the channel transmission functionP (llr|X). Consider a BIMS,

the density of LLR is also symmetric, denoted asf(l). The capacity per channel

use of this channel is given by [17]

C , C(f) =
∫ +∞

−∞
f(l)(1− log2(1 + e−l))dl. (2.5)

The importance of the channel capacity is mainly due to the following theorem:

Theorem 2.1 [Noisy-Channel Theorem [1]]: Given a channel with capacityC,

for any code rateR < C, there exits encoding and decoding rules under which it is

possible to have an arbitrary small probability of error.

Conversely, for any rateR > C, regardless of which encoding and decoding rules

are used, the probability of error is bounded away from zero.

Thus,C is a fundamental limit for reliable data transmission on a channel.
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2.1.2 Some Useful Parameters of A Symmetric Density

In this section, we introduce two important parameters of a symmetric density. For

a BIMS channel with LLR pdff(l), since the channel is symmetric, the optimal

input density is uniform overX ∈ {−1,+1} [18].

The error probability off(l) whenx = +1 (all-zero codeword) is transmitted is

given byPe(·) as

Pe(f) = P{p(x = +1|y) < p(x = −1|y)}+ 1

2
P{p(x = +1|y) = p(x = −1|y)}

= P{l(y) < 0}+ 1

2
P (l(y) = 0)

=

∫ 0−

−∞
f(l)dl +

∫ 0+

0−
f(l)dl.

Thus the error probability can be seen as the area of the negative tail of the density.

For a symmetric density,Pe(f) can be written as

Pe(f) =
1

2

∫ +∞

−∞
f(l)e−( l

2
+| l

2
|)dl.

Another important function for a symmetric LLR density associate is called the

Bhattacharyya parameter [17], which will be used in Chapter4. Supposef(l) is a

symmetric LLR density andx = +1 is transmitted, the parameter is defined as

Definition 2.3 [The Bhattacharyya Parameter]:

The Bhattacharyya parameter associated with the symmetricdensity,f(l), denoted

asB(f) is

B(f) =
∫ +∞

−∞
f(l)e−l/2dl. (2.6)

Remark 2.2 [Extremes of the Bhattcharyya Parameter [17]]: For a arbitrary

symmetric LLR densityf(l), we have

2Pe(f) ≤ B(f) ≤ 2
√

Pe(f)(1− Pe(f)), (2.7)

wherePe(f) is the error probability associated with the symmetric density f . Note

that lower and upper bounds on theB(f) given in (2.7) are satisfied with equality

for a BEC and BSC, respectively.
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2.2 LDPC Codes: Graphical Representation

In this section, we introduce basic concepts of linear blockcodes and the struc-

ture of LDPC codes. In this thesis, all the codewords and information sources are

defined in the binary field, denoted asF2.

2.2.1 Linear Block Codes

Linear block codes are one of the richest classes of codes which have practical en-

coding and decoding complexity. In block coding, the encoder splits the informa-

tion sequence into blocks of fixed lengthk, called message blocks,u, representing

k information bits. Thus, there are a total of2k codewords corresponding to the2k

possible message blocks. Therefore, a linear block codes isdefined as:

Definition 2.4 [Linear Block Codes [17]]: An (n,k) block code is a transforma-

tion of message blocks of lengthk according to a pre-defined rule into blocks of

lengthn (n > k), called codewords. A block code is linear if and only if any

linear combination of codewords is also a codeword.

Let

u = [u1,u2, . . . ,uk]
T ∈ Fk

2

be the vector of information bits. We define thegenerator matrixG of an (n, k)

linear block code as

G = [g1, g2, . . . , gk]
T ∈ Fk×n

2

which generates all the codewords. Letv denote the codeword, then

v = u ·G

=
k
∑

i=1

uigi. (2.8)

Thus, linear block codes are fully specified by the rows of their generator matrixG.

Another matrix which is useful in the decoding process of linear block codes is

called theparity-check matrix, denoted asH. A vectorv of lengthn is a codeword

11



Information sequencesCodewords
(000) (000000)
(001) (001011)
(010) (010101)
(011) (011110)
(100) (100110)
(101) (101101)
(110) (110011)
(111) (111000)

Table 2.1: The information sequences and their corresponding codewords for a (6,3)
linear block code

if and only if v ·HT = 0 (parity check condition), where

H = [h1,h2, . . . ,hn−k]
T ∈ F (n−k)×n

2

In fact, the rows ofH generate the null space ofG, i.e.,G · HT = 0. Thus, in

the decoder, if the received codeword does not satisfy the parity check condition, it

means that errors have occurred during the transmission.

Example 2.1 Consider a (6,3) linear block codes, which has 3-bit messages and

6-bit codewords. The generator matrixG and parity-check matrixH of this code

are given by

G =





1 0 0 1 1 0
0 1 0 1 0 1
0 0 1 0 1 1





and

H =





1 1 0 1 0 0
1 0 1 0 1 0
0 1 1 0 0 1





Thus, we can obtain all the possible codewords according to (2.8), which are listed

in the Table 2.1

The parity-check equations are given as

c0 ⊕ c1 ⊕ c3 = 0 (2.9)

c0 ⊕ c2 ⊕ c4 = 0 (2.10)

c1 ⊕ c2 ⊕ c5 = 0 (2.11)

where⊕ denotes the addition inF2.
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2.2.2 LDPC Codes: Structure

An LDPC code is a special kind of linear block codes which has asparse parity-

check matrix. By sparse parity-check matrix, we mean that the number of nonzero

entries in the parity-check matrixH is much smaller that the total number of entries.

Although LDPC codes can be represented by their generator and party-check ma-

trices like other linear block codes, using graphical representation gives us a more

efficient way to analyze their iterative decoding algorithms.

The graphical representation of linear block codes startedwith Tanner graphs

[3]. Later on, people focused on factor graphs due to their more general nature

[19]. A factor graph is a bipartite graph whose nodes are partitioned to two groups,

variable nodes and function (check) nodes. Thedegreeof a particular node is the

number of edges connected to that node.

The variable nodesvi, which are binary variables{0,1}, represent codeword bits

and the check nodescj represent the even parity constraints on their neighboring

variable nodes, i.e.,
⊕

i:vi∈n(cj)
vi = 0 (2.12)

wheren(cj) represents the set of all variable nodes connected tocj and⊕ shows

the modulo-two sum.

Consideringn variable nodes andr check nodes gives rise to a binary linear

code of block lengthn, dimensionk ≥ n− r and anr × n parity-check matrixH.

In other words, the(j, i) entry ofH, hji, is 1 if and only if thejthe check nodecj is

connected to theithe variable nodevi. The dimension of the code is equal ton− r

if and only if all the parity constraints are linearly independent which is equivalent

toH being full rank.

Any linear block code can be represented by a factor graph. Inthe case of

LDPC codes, the factor graph is a sparse graph whose number ofedges,E, grows

linearly with the number of variable nodesn. LDPC codes can be simply extended

toGF (q), however, in this work, we focus on the binary LDPC codes.

Now, let us look at how a binary linear code or a specifical LDPCcode can be

13



Figure 2.4: A factor graph representing an LDPC code. The graph has 7 variable
nodes and 4 check nodes

represented by factor graphs. Consider a bipartite graphG with n variable nodes

andr check nodes andE edges. We show variable nodes with circles and check

nodes with squares, a simple graph having seven variable nodes and four check

nodes is depicted in Fig 2.4. In this case, the four parity check equations given by

four check nodes can be written as:

c1 : v1 ⊕ v2 ⊕ v3 ⊕ v4 ⊕ v7 = 0 (2.13)

c2 : v1 ⊕ v2 ⊕ v5 ⊕ v7 = 0 (2.14)

c3 : v2 ⊕ v3 ⊕ v4 ⊕ v5 ⊕ v6 = 0 (2.15)

c4 : v3 ⊕ v4 ⊕ v6 ⊕ v7 = 0. (2.16)

LDCP codes can be classified asregularor irregular according to their different

structures. An LDPC code is called regular if all the variable nodes and check nodes

have the fixed equal degreedv anddc, respectively. It means that the numbers of 1’s

in each row and column ofH are constant. For a regular code, it follows that

E = dv · n = dc · r. (2.17)

Therefore, assumingH is full rank, the code rateR can be computed as

R = 1− dv
dc

(2.18)

Otherwise,R > 1− dv
dc

[17].
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Usually, an ensemble of LDPC codes having variable nodes of degreedv and

check nodes of degreedc is represented as (dv, dc)-regular LDPC codes. For exam-

ple, a (3,5) regular-LDPC code refers to a code with variablenodes of degree 3 and

check nodes of degree 5. According to the rate equation (2.18), the rate of this code

is 2/5 bit per channel use (bpcu).

Irregular LDPC codes were first considered in [20] and it was shown that using

irregular graphs can largely improve the performance of LDPC codes. In an irreg-

ular LDPC code, the numbers of 1’s in each row or column ofH are not constant.

By careful design, irregular codes can be found which perform quite close to the

channel capacity. For example, on the additive Gaussian noise channel (AWGN)

channel, irregular LDPC codes can be designed to perform a few hundredths of a

dB way from the Shannon limit [21].

For irregular LDPC codes, the variable and check nodes are usually defined by

two edge degree distributions,{λ2, λ3, . . . , λdv} and{ρ1, ρ2, . . . , ρdc}. In this no-

tation,λi denotes the fraction of edges incident on variable nodes of degreei, ρj

denotes the fraction of edges incident on check nodes of degreej anddv, dc denote

the maximum degree of variable and check nodes, respectively. Thus, the edge de-

gree distributions obey the constrains
∑

i λi = 1 and
∑

i ρi = 1. In polynomial

form, they can be denoted asλ(x) =
∑dv

i=2 λix
i−1 andρ(x) =

∑dc
j=2 ρjx

j−1. For

example, the degree distribution of the LDPC code shown in Fig. 2.4 can be repre-

sented asλ(x) = 1
3
x+ 2

3
x2 andρ(x) = 4

9
x3+ 5

9
x4. Usually, an irregular LDPC code

can be represented asCn(λ(x), ρ(x)), wheren is the code length. In this thesis, we

mainly use the polynomial notation which is more convenient.

Givenλ(x) andρ(x) of an irregular code and its number of edgesE, we can

have the number of variable nodesn

n = E

dv
∑

i=2

λi

i
= E

∫ 1

0

λ(x)dx, (2.19)

and the number of the check nodesr

r = E

dc
∑

j=2

ρj
j

= E

∫ 1

0

ρ(x)dx. (2.20)
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Thus, ignoring the possibility of linearly dependent rows inH, the rate of the irreg-

ular code is given by

R = 1−
∑dc

j=2
ρj
j

∑dv
i=2

λi

i

= 1−
∫ 1

0
ρ(x)dx

∫ 1

0
λ(x)dx

. (2.21)

Example 2.2 consider an irregular LDPC codeC1100(λ(x), ρ(x)) with variable n-

ode degree distributionλ(x) = 0.3x + 0.3x3 + 0.4x7 and check node degree dis-

tribution ρ(x) = x7. Using (2.19) and (2.20), there are4000 edges. According to

(2.21), the rate of this code is5/11 bpcu.

2.3 LDPC Codes: Decoding

LDPC codes are usually decoded by a class of iterative algorithms calledmessage-

passing algorithms. Since themessagespassed in these algorithms are probabil-

ities or beliefs, these algorithms are also called belief propagation algorithms. A

message passing algorithm is an iterative decoding algorithm where there are two

sources of information about the transmitted codewords available at each iteration:

information from the channel and information from previousiteration. At each

iteration, the decoder combines these two sources of information following some

predefined rules to gain better knowledge about the the transmitted codewords.

To further illustrate the idea of iterative decoding algorithms for LDPC codes,

consider the updated message from a variable nodev of degreedv to a check node

in the decoder. In each iteration, this message is computed from dv − 1 incoming

message and the channel message tov. In fact, thesedv − 1 incoming messages are

the outgoing messages of some check nodes which are updated previously. Consid-

er one of these check nodec with degreedc, then the outgoing message is calculated

based the the incomingdc − 1 messages. This process can be seen as a decoding

tree of depth one. Decoding trees of any depths can be obtained by continuing in

the same fashion. Fig.2.5 shows an example of a depth-two decoding tree for an

irregular LDPC code, which represents two message passing iterations.

When a factor graph is cycle-free (there is at most one path between every pair

of nodes in the graph), the messages in the decoding tree of any depth are indepen-
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Channel Message

Channel Message

Figure 2.5: The decoding tree of depth two of an irregular LDPC code.

dent. If the factor graph has cycles with the smallest length(called girth)l, then

up to depth⌊ l
2
⌋ the messages in the decoding tree are independent. Thus the inde-

pendence assumption is valid only up to⌊ l
2
⌋ iteration and cycles make the message

dependent for further iteration.

There are many different message-passing algorithms for LDPC codes. In this

section, we will introduce some of them. We start withSum-Productalgorithm [22],

which is the most powerful iterative message-passing decoding algorithm. Then, we

present the basic idea of other algorithms.

2.3.1 The Sum-Product Algorithm

In this section, we describe the sum-product algorithm and also its message passing

and updating rule to further interpretation.

When the variable nodes only have binary values, the probability messages

passed along the edges have only two values,P (0) orP (1) with P (0) + P (1) = 1.

Here,P (x), x ∈ {0, 1}, denote the probability ofx. Thus, passing only one ofP (0)

or P (1) is enough for passing the message. However, it is usually more advanta-

geous to use LLR instead of probabilities. For binary-valued random variable, LLR

is defined as

LLR = log
P (0)

P (1)
.
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In fact, the sign of LLR shows the hard estimation while its magnitude reflect

the reliability of decision. The reason for using LLR is thatin computer implemen-

tations, the probability values that are very close to zero or very close to one can be

represented without causing a precision error.

For thelth iteration of the sum-product decoding, all incoming LLR are pro-

cessed by check nodes and then the resulting messages, denoted byml
c→v, are sent

back to the variable nodes. These messages are processed by variable nodes and

then sent back to check nodes, these messages are denoted byml
v→c. As there is no

message from the check nodes at iterationl = 0, the variable nodes are initialized

by the message calculated based on the channel output values, m0v, which can be

found by

m0v = log
P (x = 0|y)
P (x = 1|y) , (2.22)

wherex ∈ {0, 1} is the channel input bit andy is the channel output. And the

message at the check node,m
(0)
cj→v is initialized as0.

The iterative process of sum-product algorithm can be described by two iterative

updating rules. The updating rule at a parity-check nodec is

ml
c→v = 2 tanh−1





∏

vi∈n(c)−v

tanh(
m

(l−1)
c→vi

2
)



 , (2.23)

wherema→b shows the message sent from nodea to nodeb andn(a) is the set

of neighboring nodes connected to nodea. In fact, to simplify the notation, we

usually use CHK to denote the check nodes update rule, where CHK(m1, m2) =

2 tanh−1
(

tanh(m1

2
) tanh(m2

2
)
)

. Thus, for a check node of degreedc, the update

rule can be also shown as

ml
c→v = CHK(ml−1

c→v1
, ml−1

c→v2
· · ·ml−1

c→vdc−1
), vi ∈ n(c)− v, i = 1, 2 · · · , dc − 1.

The update rule at a variable nodev is

ml
v→c = m0v +

∑

cj∈n(v)−c

m(l)
cj→v, (2.24)
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Figure 2.6: An example of message passing over factor graph of the code in Fig.2.4

Also, let us assume VAR(m1, m2) = m1 +m2, for a variable node of degreedv the

variable update rule can be simplified as

ml
v→c = Var(m0v, m

l
c1→v, m

l
c2→v, · · · , ml

cdv−1→v), ci ∈ n(v)− c, i = 1, · · · , dv−1.

To clarify these updating rules, a simple example is shown inFig.2.6. At the

lth iteration, the variablev2 passes a message toc2, denoted asml
v2→c2, and then

c2 passes the calculated message tov5, denoted asml
c2→v5

. This process can be

done based on the following procedure. At the first half iteration, v2 calculates its

outgoing message based on the message it received fromc1 and c3 according to

(2.24) and send it toc2. In the next iteration,c2 calculates its outgoing message

based on the messages received fromv1, v2, v7 according to (2.23) and send it tov5.

At the lthe iteration, a decision for a variable nodev can be made based on the

following decision rule:

V =

{

0 if m0v +
∑

cj∈n(v)−c m
(l)
cj→v > 0

1 if m0v +
∑

cj∈n(v)−c m
(l)
cj→v < 0

(2.25)

If m0v +
∑

cj∈n(v)−c m
(l)
cj→v = 0, the decision can be randomly chosen between0

and1 with equal probability.

One key advantage of the sum-product algorithm is that its decoding complexity

grows linearly with the block lengthn because the number of edges is linearly

increased withn. Hence increasing the block length for reducing the gap to capacity

does not increase complexity per information bit.

19



When the code’s factor graph is a tree, i.e. cycle free, the sum-product algorithm

is optimal [4, 19, 23]. However, when the factor graph has cycles, sum-product

becomes sub-optimal [4, 19, 23]. However, since with large block length the girth

of the cycles grows and the graph becomes tree-like, the sum-product algorithm

is still used in the decoding of LDPC codes, and it is also observed that even for

moderate block length (a few hundred bits), the performanceof the sum-product

algorithm is fairly good [19].

2.3.2 The Min-Sum Algorithm

Min-sum decoding is the second most attractive decoding algorithm for LDPC

codes due to its less complexity and easier implementation.Since min-sum is a

simplified version of the sum-product algorithm, it is not aseffective and powerful

as the sum-product algorithm.

In the min-sum algorithm, the update rule at the variable nodes is the same as

sum-product algorithm (2.24), but the update rule at the check node is an approx-

imation of (2.23). As we observe that forx ≫ 1, ln(cosh(x)) ≈ |x| − ln 2. An

approximation for CHK can be obtained as

CHK(m1, m2) ≈ |(m1 +m2)/2|+ |(m1 −m2)/2| (2.26)

= sign(m1)sign(m2)min(|m1|, |m2|).

Applying this approximation in (2.23), the check node update rule for min-sum

algorithm is presented as

ml
c→v = min

vi∈n(c)−{v}
(|m(l−1)

vi→c |)
∏

vi∈n(c)−{v}
sign(m(l−1)

vi→c) (2.27)

This approximation becomes more accurate when the magnitude of the message is

increased. Therefore, in the later iterations, when the magnitude of the messages

usually have become large, the performance of this algorithm is almost the same as

that of sum-product algorithm. Also, there are other message-passing algorithms

such as Gallager’s algorithm A and Gallager’s algorithm B [5,24] which are not the

focus of this thesis.
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2.4 LDPC Codes: Analysis

In order to analyze the performance of an ensemble of LDPC codes, we need to

statistically analyze the message passing decoder. In thissection, we introduce

some analysis methods which are used in the future chapters.Let us first present

some basic background.

In this part, we consider an ensemble of LDPC codes whose rateis less than

the capacity of the channel. As mentioned in the previous section, we have two

sources of information available in the decoder in iterative decoding. One is called

intrinsic information which is observed from the channel and the other one is called

extrinsic information which is from the previous iterations. Based on these two

sources of information, extrinsic information for the nextiteration is calculated. In

a successful decoding, the reliability of extrinsic messages gets better and better

as the decoding continues iteration by iteration. Thus, foranalyzing of iterative

decoders, the statistics of the extrinsic messages are studied at each iteration.

Check Node Symmetry

Consider a check nodec of degreedc, with input LLR messagesm1, m2, · · · , mdc−1,

the check node update rule is symmetric if

CHK(b1m1, · · · , bdc−1mdc−1) = CHK(m1, m2, · · · , mdc−1)(

dc−1
∏

i=1

bi),

wherebi ∈ ±1, i = 1, 2, · · · , dc − 1 and CHK denotes the check node update rule,

which generates an output message based on the inputdc messages.

Variable node symmetry

Consider a degree-dv variable nodev, with input LLR messagesm0, m1, · · · , mdv−1

, the variable node update rule is symmetric if

VAR(−m0,−m1, · · · ,−mdc−1) = −VAR(m0, m1, · · · , mdc−1),

where VAR denotes the variable node update rule, which generates one output mes-

sage based on the inputdv messages which includes the channel messagem0.
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It is shown in [25] that over a BIMS, if the update rules at the check nodes and

variable nodes are symmetric, then the performance of this decoder is independent

of the transmitted codeword. Therefore, in this work, we assume that all-zero code-

word is transmitted. Under this assumption, the error rate can be defined based on

the percentage of messages carrying a belief for ‘1’.

It is worth mentioning that when the block length is large, the effect of cycles in

the decoding performance is small and vanish asymptotically. Therefore, the ran-

dom messages at the input of variable nodes and check nodes become independent.

In this work, we always assume the code length is large enoughsuch that the factor

graph is a tree and all the messages are independent.

2.4.1 Density Evolution

Density evolution, first presented by Richardson and Urbanke in [25], is a general

asymptotic analysis method for the message passing decoders. It can also be used

for other codes defined on graphs associated with iterative decoding [26, 27]. It

tracks the evolution of the pdf of the extrinsic message at each iteration.

The analytical formulation of this technique can be found in[25]. Density evo-

lution is computationally complex thus not suitable for direct use. For practical

use, Chung proposed a quantized version of density evolution calleddiscrete densi-

ty evolutionwhich quantizes the message alphabet and uses probability mass func-

tions (pmf) instead of pdfs in order to make a computer implementation possible.

Discrete density evolution is a powerful tool for code design and performance anal-

ysis [21]. In the rest of this work, when we refer to density evolution, we mean

discrete density evolution. Next, we present some details of this technique for sum-

product decoding.

Before we go to the details, let us first introduce the quantizing function used in

the density evolution, denoted asQ(x). This function can be represented as

Q(x) =







⌊ x
△ + 1

2
⌋ · △ if x ≥ △

2
,

⌊ x
△ − 1

2
⌋ · △ if x ≤ −△

2
,

0 , otherwise
(2.28)

where△ is the quantization interval.
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At the first iteration, the variable nodes are initialized with the pmf of the chan-

nel messages. Then, these messages are sent to the check nodes. And the check

nodes calculate the output pmf based on the incoming pmfs following the check n-

odes update rule (2.23). For a check node with two input pmfspa andpb, the output

pmf is given by

pout[k] =
∑

(i,j):k△=R(i△,j△)

pa[i]pb[j], (2.29)

where

R(a, b) = Q(CHK(a, b)).

These equations can be implemented using a look-up table. For a variable node

with two incoming pmfspa andpb, the output pmf is given by

pout[k] = pa[k]
⊗

pb[k], (2.30)

where
⊗

denotes the discrete convolution which can be easily done byusing fast-

Fourier transform (FFT) techniques. To simplify the notation, let us denote the pmf

update operations for a check node and a variable node on two incoming pmfspa

andpb asCHK(pa, pb) andVAR(pa, pb), respectively.

Also, notice that the update rules discussed in Section 2.3.1 can be written as

CHK(m1, m2, · · · , mdc−1) = CHK(m1,CHK(m2, · · · , mdc−1))
VAR(m0, m1, · · · , mdv−1) = VAR(m0,VAR(m1, · · · , mdv−1)).

(2.31)

This implies that the check nodes and variable nodes operations can be done pair-

wise. Assuming the variable node message pmf ispv (which is the same for all the

variables) and the check nodes message pmf ispc, thuspc andpv can be calculated

by
pc = CHK(pv, CHK(pv, · · · , CHK(pv, pv)).
pv = VAR(p0,VAR(pc, · · · ,VAR(pc, pc)).

(2.32)

wherepo is the intrinsic message pmf. At thelth iteration, we also use

plv = p0
⊗

λ(ρ(pl−1
v ))

as the shorthand for the variable node update rule.

If the all-zeros codeword is transmitted and BPSK is used, ineach iteration

the probability of error of the messages can be represented as the negative tail of
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the pmf. Thus, the decoding is successful if this negative tail vanishes after some

iterations, i.e.,

lim
l→∞

plv = δ∞.

Due to high complexity of the exact density evolution, therehave been some

approximations in the literature. The most important ones are Gaussian approxima-

tions proposed by Chunget al. [28] and semi-Gaussian approximation proposed by

Ardakaniet al. [29]. In the Gaussian approximation, Chunget al. assumed all the

extrinsic messages have Gaussian distributions. In [29], Ardakaniet al. consider

that only variable node messages are Gaussian. These methods have considerably

lower complexity than the density evolution with some penalty in the accuracy.

Density evolution is a powerful tool for analyzing the iterative decoding under

the sum-product algorithm. It is worth mentioning that other iterative decoding

algorithms (e.g., the min-sum algorithm) and other codes defined on graphs which

use iterative decoding can also use density evolution as a powerful analysis tool.

2.4.2 Decoding Threshold of An LDPC Code

The decoding threshold of an LDPC code, first introduced by Richardson and Ur-

banke [25], is defined as the worst channel condition for which the message error

probability converge to zero as the number of iteration goesto infinity. In other

words, when the channel is better than the decoding threshold, density evolution

can converge to an arbitrary small message error rate. When the channel is worse

than the decoding threshold, the error probability remainslarger than a constant

even if the number of iterations goes to infinity. If the threshold of a code is equal

to the Shannon limit, this code is said to be a capacity-achieving code.

The decoding threshold is one of the most important properties of an LDPC

code. It depends on many characters, such as degree distributions, the decoding

algorithm used, etc. For example, the threshold of the (3,6)-regular code on AWGN

channel under sum-product decoding algorithm is 1.1015dB, while under min-sum

decoding algorithm it is 1.6990dB. This means that for successful convergence

under the sum-product decoding, the channel signal-to-noise ration (SNR) must be
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better than 1.1015dB and for the min-sum decoding better than 1.6990dB. It is

worth mentioning that we usually use finite-length codes in practice which would

demonstrate a gap to the asymptotic performance and this gapincreases as the code

length decreases.

2.4.3 Extrinsic Information Transfer Chart Analysis

A fast and efficient approach for analyzing iterative decoders is to use an extrinsic

information transfer (EXIT) chart. The idea of this method,which was first intro-

duced by Ten Brink [30], is to track the evolution of a single parameter iteration by

iteration. In other words, this parameter can be seen as a measure of the decoder’

success. In fact, many parameters can be chosen to present the decoder’s evolu-

tion. For example, one can track the SNR of the extrinsic messages [31, 32], the

mutual information between the transmitted bits and the extrinsic messages in each

iteration [30], or the extrinsic message error probability[29, 33], etc. To help the

understanding, we consider here an EXIT chart based on tracking the message error

rate.

In the EXIT chart method, we express the message error probability at the output

of one iterationpe,out in terms of the message error probability at the input of the

iterationpe,in and the intrinsic messagesp0,i.e.,

pe,out = f(pe,in, p0). (2.33)

For a fixedp0, the EXIT char can be plotted using(pe,in, pe,out) coordinates.

Usually, EXIT charts are presented by plotting bothf and its inversef−1 to better

visualize the behavior of the decoder in each iteration. A sample EXIT chart is

plotted in Fig.2.7. Each arrow in this figure represents on iteration of decoding. If

the tunnel of an EXIT chart is wide, only a few number of iterations is needed for

convergence. When the tunnel is open, we say the EXIT chart isopen. Otherwise,

if the EXIT chart gets closed such as for somepe,in, it happens thatpe,out > pe,in,

the error probability cannot get smaller than a certain value and the convergence

cannot be achieved. An open EXIT chart requires that the curve be always below
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Figure 2.7: An EXIT chart of a (3,5)-regular LDPC codes on theBIAWGN under
the sum-product algorithm. This EXIT chart is based on message error rate.
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the 45-degree line. The decoding thresholdp⋆0, which is the worst channel condition

for an open EXIT chart, can be written as

p⋆0 = arg supp0f(pe,in, p0) < pe,in, for all 0 < pe,in ≤ p0. (2.34)

Since an EXIT chart tracks just the evolution of a single parameter, it is not as

accurate as density evolution in general. However, when thepdf of the extrinsic

messages can be fully represented by a single parameter, such as in the case of

decoding on the BEC or for hard decoding algorithms, EXIT charts are exact and

equivalent to density evolution. Due to their simplicity, EXIT charts are commonly

used for LDPC code design [34]. In the next section, we will briefly discuss how

EXIT charts can help us to find good LDPC codes.

2.5 LDPC Codes: Design Methods

In this thesis, an ensemble of LDPC codes is represented by its check node and

variable node degree distributions,ρ(x) =
∑dc

i=2 ρix
i−1 andλ(x) =

∑dv
i=2 λix

i−1,

respectively. Thus, designing a good code means finding degree distributions which

have a desired performance under some constrains. The LDPC code design is usu-

ally done by numerical optimization method.

There are mainly two methods to design an LDPC code. One is fora given

minimum rate, we seek a code which has the highest decoding threshold. Generally,

this approach is complex and is usually done by search based methods. Details can

be found in [15]. The other method is based on seeking the codewho has the highest

rate for a given threshold.

When we are designing an LDPC code, an analysis method is alsoneeded to

measure the performance. We use EXIT chart to design the codebecause the opti-

mization problem using this approach can be formulated as a linear program which

can be solved efficiently. In the design method of this work, we fix the check de-

gree distribution and optimize the variable node degree distribution due to the result

reported in [15,21].

In the EXIT chart method, we replace the output pdf by a pdf from a family
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of pdfs which has the same entropy at each iteration of density evolution. Given

a channel with capacityC, the channel entropy isH0 = 1 − C. Now denoting the

output entropy of the previous iteration byh, we can define the output entropy of a

degree-i variable node asfi(H0, h), which is also called theelementary EXIT chart

for degree-i variable nodes. Thus, the condition for successful decoding is that

∑

i

λifi(H0, h) < h, for all 0 ≤ h ≤ H0. (2.35)

This is a linear constraint on the design parameters{λi, i ≥ 2}. Givenρ(x) is fixed,

according to (2.21), it is sufficient to maximize
∑

i
λi

i
to obtain the maximum code

rate. Thus, the process of finding the highest rate for a givenBMC can be presented

as the following linear programming problem:

maximize
∑

i

λi

i
(2.36)

subject toλi ≥ 0
∑

i

λi = 1

∑

i

λifi(H0, h) < h, ∀h ∈ [0, H0],

The elementary EXIT chart can be found by density evolution and the EXIT chart

of a code is a linear combination of the elementary EXIT charts.

Although the performance of LDPC codes is not too sensitive to ρ(x), further

optimization onρ(x) will get better results. Suggestions and guidelines can be

found in [15]. During this work, we use this method to obtain close-to-capacity

LDPC ensembles.
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Chapter 3

Low Complexity LLR Calculation

3.1 Introduction

There have been many advances for the iterative decoding algorithms of graphical

codes. Error-correcting codes, such as LDPC codes [5] and turbo codes [2], asso-

ciated with iterative decoding are known to approach the Shannon limit on many

channels [21,35,36]. These codes have been also proposed for MIMO channels and

relay channels [37].

For soft iterative decoding, the messages calculated in each iteration are usually

LLR. LLR are shown to be efficient metrics in the decoding and analyzing the per-

formance of binary graphical codes [15, 19]. The channel LLRusually depends on

the channel output, noise variance, fading characteristics, and also the availability

of the channel state information (CSI) at the receiver. The capacity of the channel

is also affected with the availability of channel parameters at the receiver. Under

a realistic wireless channel, the relationship between LLRand the channel out-

put can be quite complex. For example, under MIMO channels, LLRs are usually

non-linear complicated functions of the channel output even when CSI is perfectly

known. As a result, it may be time and energy consuming for thedecoder to cal-

culate exact LLRs. Consequently, accurate approximate LLRs should be used to

implement efficient decoders.

Calculation of approximate LLRs has been considered in the recent literature,

e.g, see [11–14]. For example, the expected value of channelgain was used as
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an estimation parameter in [20, 36], but this choice cannot guarantee the optimum

performance in the decoder. Another common approximation method is the max-

log approximation. The max-log approximation is usually accurate at high SNRs,

but modern error-correcting codes such as LDPC codes and turbo codes usually

operate at low SNRs [11]. Moreover, when there is no CSI at thereceiver, the max-

log approximation is still quite complex. Thus, alternative methods, which are also

accurate at low SNRs, are much needed.

Piecewise linear LLR calculation has been considered in [11] for soft Viterbi

decoding of convolutional codes in the HIPERLAN/2 standard. In [13], approx-

imating LLRs by linear functions has been proposed for BPSK over symmetric

channels and a measure of LLR accuracy has also been introduced. Using this mea-

sure, linear LLRs have been designed with almost the same performance as true

LLRs. Later, this measure has been generalized to binary asymmetric channels

in [14] and applied to non-binary modulations under BICM [38]. Numerical results

have also shown that the performance loss of their optimizedpiecewise linear LLRs

based on the generalized measure is quite small.

The linear approximate methods considered above are all focused on SISO

channels. MIMO technology plays an important role in modernwireless commu-

nication due to its higher spectral efficiency (more bits persecond per hertz of

bandwidth) and link reliability [17]. The problem of findinga good approxima-

tion method for MIMO channels when CSI is known at the receiver is studied in

this chapter. We find a piecewise linear approximation whichallows for the maxi-

mum achievable rate on the MIMO channels. We also show that the approximation

method closely approaches the capacity under true LLR calculation.

The two-way relay communication channel has gained significant interest re-

cently due to its potential application in modern cellular network. One advantage

of two-way relay channel is that it has higher spectral efficiency than the one-way

relay channel [39, 40]. In this chapter, when no CSI is available at the receiver, we

find a piecewise linear approximation for the two-way relay channel. Numerical

results confirm that the proposed method outperforms the max-log approximation
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and performs closely to the true LLRs.

The rest of this chapter is organized as follows. Section 3.2reviews some pre-

liminaries and studies the proposed approaches. Section 3.3 studies the approxi-

mation method for the MIMO-BICM channel. Approximation method for two-way

relay channel when there is no CSI is studied in Section 3.4. Section 3.5 concludes

the chapter.

3.2 Preliminaries and Approaches

3.2.1 Important Approximation Methods

In this section, we review some approximation methods and background knowledge

which will be used in this chapter.

Max-log Approximation

Consider a sequence of real numberz1, z2, · · · , zn, the method called max-log ap-

proximation is described in (3.1) and is accurate when thereis a dominant term in

the sequence.

log
∑

k

zk ≈ maxk log zk. (3.1)

Minimum Mean Square Error Approximation (MMSE)

Consider a random variabler ≥ 0 with arbitrary pdf and its estimator̂r, its MMSE

is given by

r̂r = argmin
r̂

E(|r − r̂|2). (3.2)

WhereE(·) denotes the expectation. This estimation has a simple solution which

is r̂ = E(r). This approximation has been widely used in the literature [20,36].

3.2.2 Capacity

As we discussed in Chapter 1, the capacity of a BIMS channel can be written via

the pdff(l) of its LLRs. That is

C = 1−
∫ +∞

−∞
(1− log2(1 + exp−l))dx. (3.3)
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This equation is only valid for the BIMS where its LLR is symmetric.

When the channel is asymmetric, we cannot use (3.3). In such cases, if the input

is equally likely 0 or 1, the capacity of the channel is given by [41]:

C = 1− 1

2

∫ +∞

−∞
log2(1 + e−l)p0(l)dl − 1

2

∫ +∞

−∞
log2(1 + el)p1(l)dl (3.4)

wherepb(l) denote the LLR pdf conditioned on theb ∈ {0, 1}.

3.3 Low Complexity Linear LLR Calculation for MIMO-
BICM Channel

MIMO technology has attracted much attention in the past fewdecades since it can

offer high spectral efficiency and reliable wireless communication over a multi-path

environment [42]. BICM is a pragmatic technique which can achieve large diversity

orders in fading wireless channels [38]. The combination ofthese two technologies,

MIMO-BICM, has also received attention recently, because of its lower detection

complexity and near-optimal performance [43–45]. In this section, we study the

piece-wise linear approximation for MIMO-BICM channels.

3.3.1 Background

Multiple Antenna Channel Model

Wireless communication experiences multi-path propagation as the signal is re-

flected by the nearby surfaces on the way to the receiver. As multi-path propagation

causes dispersions in delay, frequency and the spatial domains, each antenna re-

ceives transmitted signals with different attenuation, phase or propagation delay.

If the separations of antennas are sufficiently large, we canassume the received

signals of different antennas are independent. Each equivalent path between each

transmit and receive antenna experiences a complex Gaussian noise with zero mean

and unit variance, denoted asCN (0, 1). This channel model is depicted in Fig. 3.1.

For the fading channel, there are different classificationsbased on differen-

t rules. For example, based on speed of change in the magnitude and phase of

the channel gain, a fading channel can be classified as slow fading or fast fading
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Figure 3.1: MIMO channel model

channel. From the perspective of frequency, a fading channel is classified as flat

fading or frequency-selective fading. In this work, we onlyconsider the slow, flat

fading channel which means that the amplitude and phase of the channel gain can

be seen roughly constant over the period of use and all frequency components of

the signal will experience the same magnitude of fading [42].

MIMO-BICM System Model

The block diagram of a MIMO-BICM system is depicted in Fig.3.2. Here, a flat

slow-fading MIMO channel withMt transmitting antennas andMr receiving an-

tennas is considered.

During the transmission, a sequence of binary information bits generated by the

binary source is first encoded by an error-correcting encoder and then interleaved

to get the sequence{ci}. After being de-multiplexed intoMt antenna sequences,

each group ofm bits are mapped to data symbols,xi ∈ X , i = 1, . . . ,Mt. HereX
denotes the symbol alphabet of size|X | = 2m and unit average power. As a result,

at time indext the transmit vector, which carriesR0 = m×Mt coded bits, is given

by x = (x1, x2, . . . , xMt)
T [12,46].

At the receiver, the received vector is given by

y =
√
γHx+ n.
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Figure 3.2: MIMO-BICM transmission model.

whereH is anMr×Mt channel matrix, the entries of which are all independent, and

n is the additive white Gaussian noise vector,(n1, n2 . . . , nMr)
T , each component

of which is modeled as i.i.d.CN (0, 1). AssumingH with normalized entries and

unit average power,γ is the average SNR per transmit antenna.

At the receiver, the received signaly and the channel matrixH are used to

calculate the LLR value for each bitci. Then, the sequence of LLR values is de-

interleaved and passed to the decoder to obtain an estimation of the information bits

ûi.

In the case of ideal interleaving, the system can be equivalently seen asR0

parallel independent and memoryless binary-input sub-channels [38]. As a result,

the capacity of the MIMO-BICM is given byC =
∑R0

i=1 Ci, whereCi is the capacity

of each sub-channels.

LLR Calculation

Let X b
i denote the sets of transmit vectors for which thei-th coded bitci = b ∈

{0, 1} (i = 1, . . . , R0). Assuming a uniform input distribution and that the channel

matrix is known at the receiver, the true LLR for thei-th sub-channel is given by

li = log
P (ci = 0|y,H)

P (ci = 1|y,H)
= log

∑

x∈X 0
i
p(y|x,H)

∑

x∈X 1
i
p(y|x,H)

, (3.5)

where the conditional pdf,p(y|x,H), is given by

p(y|x,H) =
1

(2π)Mr
exp

(

−‖y −√
γHx‖2
2

.

)

(3.6)

According to (3.5),li is a function ofy denoted asfi (y). Also, it is clear that

the complexity of computation of true LLR values grows exponentially with the
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number of transmit antennas. As we mentioned before, for practical purposes, an

approximation method is desired.

Applying max-log approximation (3.1) to (3.5) results in

li ≈
1

2

(

min
x∈X 1

i

‖y−√
γHx‖2 − min

x∈X 0
i

‖y −√
γHx‖2

)

. (3.7)

Obviously, this method reduces the complexity, but the search space still grows

exponentially withMt. Also, the max-log approximation is usually accurate when

there is a dominant term in the sum, which usually happens at high SNRs. At low

SNRs, therefore, other methods should be considered.

3.3.2 Problem Description and Proposed Method

In this section, we are looking for an efficient LLR approximation method over

MIMO channels with perfect CSI at the receiver. In other words, we seek low-

complexity approximate functionŝli = f̂i(y) which provide good performance. To

optimize the parameters of the proposed approximate LLR calculating functions,

we need an LLR accuracy measure.

LLR Accuracy Measure

Since the capacity of sub-channeli is given by (3.4), for a single-input single-

output channel, it is shown in [14] that good approximate LLRs can be found by

maximizing

R̂i = 1− 1

2

∫ +∞

−∞
log2(1 + e−l̂)p̂0i (l̂)dl̂ −

1

2

∫ +∞

−∞
log2(1 + el̂)p̂1i (l̂)dl̂,

where p̂bi(l̂) is the conditional pdf of approximate LLRs givenci = b. In other

words, approximate LLRs are found in the sense of maximizingthe achievable rate

on the SISO channel.

Similarly, for the MIMO case, we propose the following LLR accuracy mea-
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sure:

R̂ =

R0
∑

i=1

R̂i =

R0
∑

i=1

(

1− 1

2

∫ +∞

−∞
log2(1 + e−l̂)p̂0i (l̂)dl̂

− 1

2

∫ +∞

−∞
log2(1 + el̂)p̂1i (l̂)dl̂

)

. (3.8)

Maximizing this measure is equivalent to maximizing each term of the sum, and

thus maximizing the overall achievable rate on the MIMO channel. This measure

can be seen as the generalization of the method proposed in [14] from the SISO

case to the MIMO case.

Given the LLR accuracy measure of (3.8), the procedure of finding good LLR

approximating functions is as follows. First, for each sub-channeli, a general LLR

approximating function is defined aŝli = f̂Oi

i (y), whereOi denotes the set of

parameters. Next, at any SNR, the optimized parametersOi of each bit-channel are

found by solving the following optimization problem:

Oopt
i = argmax

Oi

R̂i, (3.9)

subject to Ψi(Oi)=0.

Here,Ψi(Oi) = 0 represents the constraints that may be imposed onOi, such as

continuity conditions.

LLR Approximation Functions

To find the desired approximation functions, the first step isto choose the right class

of approximation function. Clearly, many approximation functions can be applied

to solve the optimization problem in (3.9). Here, piecewiselinear functions are

chosen because of their low implementation complexity.

For the MIMO channel of our case,y ∈ C
Mr whereC denotes the set of

complex numbers. First, thisMr-dimension space is partitioned intoNi regions

Ω1, . . . ,ΩNi
. The number of regions and their shapes are chosen based on theshape

of true LLRs and the affordable computational complexity. Next, for each region,

a linear function is proposed for the approximation. Thus, the proposed general
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approximation function for the MIMO-BICM system is as follows:

l̂i = f̂Oi

i (y) =

Ni
∑

k=1

(

αk
i y + βk

i

)

1(y∈Ωi). (3.10)

Here,αk
i = (αk,1

i , . . . , αk,Mr

i ) are row vectors andβk
i are real scalars. Also,1(·)

denotes the indicator function.

Finally,Oi = {α1
i , . . . ,α

Ni

i , β1
i , . . . , β

Ni

i } are the set of parameters needed to be

optimized, andΩi’s are chosen by search. It is worth mentioning that the symmetry

of the true LLRs usually reduce the number of parameters. To better illustrate our

method, two examples are provided in the following.

Example 3.1 (2× 1 MIMO Channels) In the case of2 × 1 MIMO channels, the

received signal is just a complex scalary ∈ C. Thus,αi is also a complex scalar.

Then, (3.31) becomes:

f̂Oi

i (y) =

Ni
∑

k=1

(

αk
i y + βk

i

)

1(y∈Ωi), (3.11)

whereΩi’s partition C into Ni regions by one-dimensional boundaries. Thus, the

parameters needed to be optimized in this case areOi = {α1
i , . . . , α

Ni

i , β1
i , . . . , β

Ni

i }
and are optimized by (3.9).

Example 3.2 (2× 2 MIMO Channels) In the case of multiple receive antennas,

the true LLRs are functions of the multidimensional vectory. For example, in the

case of2 × 2 MIMO channels, the received signaly = (y1, y2)
T and fOi

i are

functions of a two-dimensional complex vector. Letαk
i = [αk,1

i , αk,2
i ], then

f̂Oi

i (y) =

Ni
∑

k=1

(

[αk,1
i , αk,2

i ]

[

y1
y2

]

+ βk
i

)

1(y∈Ωi), (3.12)

whereΩi are segments of theC2 domain. Thus, the parameters here areOi =

{(α1,1
i , α1,2

i ), . . . , (αNi,1
i , αNi,2

i ), β1
i , . . . , β

Ni

i }.

As mentioned earlier, after observing the shape of true LLRs, we decideNi and the

corresponding regions. For example at low SNR, where BPSK iscommonly used,
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observing the shape of true LLRs suggests thatNi = 1 is enough. In other words,

we only haveΩ1 and in factΩ1 = C. This leads to linear approximation functions,

thus minimum complexity. IncreasingNi provides slightly better performance at

the cost of extra complexity. Thus, we have

f̂Oi

i (y) = [α1
i , α

2
i ]

[

y1
y2

]

+ βi. (3.13)

The same process in (3.9) can be applied here to find these approximation functions.

3.3.3 Experimental Results

In this section, the performance of the proposed method is illustrated through ex-

amples and numerical results. Here BPSK is used as the modulation scheme.

According to Section 3.3.2, the first step to find a good approximating func-

tions is to observe the shape of the true LLRs and then proposethe approximating

functions. Next, using the optimization process (3.9), we optimize their parameters.

Example 3.3 Consider a2×1 MIMO-BICM system with perfect CSI in the receiv-

er. Assuming the channel matrixH = [2,−1] and SNR= 5 dB, according to the

shapes of true LLRs, we propose the following approximationfunctions

l̂1 = f̂O1
1 (y) = α1

1 · y, (3.14)

l̂2 = f̂O2
2 (y) =(α1

2 · y + β1
2)1(y≤−r) + (α2

2 · y + β2
2)1(−r≤y≤r)

+ (α3
2 · y + β3

2)1(y≥r). (3.15)

Because of the symmetry properties of true LLRs,α1
2 = α3

2 andβ1
2 = −β3

2

andβ2
2 = 0. Thus, the parameters needed to be optimized areO1 = {α1

1}, and

O2 = {α1
2, α

2
2, β

1
2}. For the given SNR, we optimizeO1 andO2 by solving (3.9) and

we findr via search. The optimized parameters are given byO1 = {−3.5532} and

O2 = {2.5758, 2.1682,−1.3784, 0.55}. And the corresponding approximate LLRs

are depicted in Fig.3.3. Moreover, for the same SNR, approximate LLRs obtained

by max-log approximation and the true LLR values are calculated and plotted in the
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Figure 3.4: Comparing the achievable rate of MIMO-BICM channels with the
achievable transmission rate under proposed approximate LLRs and max-log ap-
proximation.
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same figure. It can be seen that the proposed optimized piecewise linear LLRs are

more accurate than max-log in the small LLR regions, which affects the reliability

of the received bits significantly.

To depict the performance of the piecewise linear LLR functions, in Fig. 3.4,

we plot the maximum achievable transmission rate of our method, max-log approx-

imation and the true LLR versus SNR. It can be seen that the achievable rate of

piecewise linear approximation is always close to the capacity of MIMO-BICM

system and better than that of max-log approximation. For example, at SNR= 2 dB

the gap of achievable rates between piecewise linear approximation and max-log

approximation is about0.5 dB.

Example 3.4 Now consider2×2 MIMO-BICM system without space-time coding.

Assuming the channel matrixH =

[

1 −2
−3 4

]

and the received signaly =

[

y1
y2

]

. As

discussed earlier, for BPSK, we can use linear approximation functions (Ni = 1).

Thus,

l̂1 = f̂O1
1 (y) = α1

1y1 + α2
1y2 + β1

1 , (3.16)

l̂2 = f̂O2
2 (y) = α1

2y1 + α2
2y2 + β1

2 , (3.17)

Thus the parameters areO1 = {α1
1, α

2
1, β

1
1}, andO2 = {α1

2, α
2
2, β

1
2}. Given SNR=

1 dB, the optimized parameters are obtained asO1 = {−0.1581, 0.7797, 0} and

O2 = {0.7257,−1.2574, 0}. The achievable rate of the proposed method is0.4821 bpcu

while the capacity is 0.4859 bpcu and achievable rate of max-log approximation is

0.4574 bpcu.

3.4 Low Complexity Linear LLR Calculation for Two-
way Relay Channel

In this section, we study the piecewise linear approximation for LLR calculation in

two-way relay channels.
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3.4.1 System Model

Relays have been found many applications in wireless network to enhance reliabil-

ity and coverage [39, 40, 47]. Although one-way relaying hasbeen widely consid-

ered in the literature, two-way relaying is more suitable when data flows in both

directions. The two-way relay channel (TRC), which was firststudied by Shan-

non [47], can be used to model many practical communication scenarios such as

two separate mobile terminals communicating with each other by using a base sta-

tion or a satellite. Recently, TRC has gained renewed interest form both academic

and industry due to its numerous potential applications on cellular and peer-to-peer

networks [48–50].

Two-way Relay Channel 

One-way Relay Channel

Phase 1 Phase 2 Phase 3 Phase 4

Phase 1 Phase 2 Phase 3 Phase 4

New Information Exchange 

Figure 3.5: Comparison of information exchange under one-way and two-way re-
laying

One attractive feature of this two-way relay channel model is that it can improve

the spectral efficiency of the one-way relay under half-duplex constrains [39, 40].

With a half-duplex relay node, one-way relaying has to use four phases to exchange

information between two terminals, i.e., it takes two phases to send information
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User 1

Relay

User 2

Figure 3.6: Two-way relay channel

from one terminal to the other terminal and another two phases for the reverse di-

rection (see Fig. 3.5). However, with two-way relaying, we can improve the spectral

efficiency by using only two phases to exchange information between the two ter-

minals (see Fig. 3.5).

There are mainly two strategies at the relay: amplify-and-forward (AF) and

decode-and-forward (DF) [39,50].

Amplify-and-forward:Amplify-and-forward is the simplest form of relaying.

As the name suggests, the relay simply amplifies the receivedsignal before for-

warding it to the destination. However, the main problem of AF is that the relay

amplifies the noise as well, which may degrade the performance.

Decode-and-forward:A decode-and-forward relay will sample, demodulate

and decode the received signal. Then, the regenerated and decoded signal will

be transmitted to the destination. DF relays do not amplify the noise, thus when

detection quality at the relay is good, the performance is usually better than that of

AF relay. Moreover, when the relay decodes and forwards the binary sum (⊕) of the

input messages, comparing to the AF the sum-rate of the two terminals is increased

by 50% and the decoding complexity is also reduced by 50% [50].

In this work, we consider a memoryless two-way relay fading channel with two

communication nodes and one relay node shown in Fig.3.6. These two communi-

cation nodes want to transmit data to each other but without adirect path between

them. Flat slow fading environment is assumed between terminals and the relay.

Let z = c1 ⊕ c2 denotes the decoded symbol at the relay.

The system model is depicted in Fig.3.7. LetUi = [ui,1, ui,2 . . . ui,K], ui,k ∈
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Figure 3.7: System Model

{0, 1} for k = 1, 2, . . . , K denote the information bits at nodei andCi =

[ci,1, ci,2 . . . ci,K ], ci,n ∈ {0, 1} for n = 1, 2, . . . , N denote the coded bits based

onUi. Assuming both nodes using the same channel coding schemesΓ, whereΓ is

a reversible mapping function, the relation betweenUi andCi is shown as

Γ(Ui) = Ci, Γ−1(Ci) = Ui (3.18)

whereΓ−1 represents the decoding process. IfΓ is a linear scheme then we have

Γ(U1 ⊕ U2) = Γ(U1)⊕ Γ(U2). (3.19)

Thus, the same decoding scheme can be used at the relay [51].

At the relay, the received signal is given by

y = r1x1 + r2x2 + n. (3.20)

wherexi represents transmitted symbol at terminali, i = 1, 2, andn is the Gaussian

noise with zero mean and varianceσ2. Also,ri > 0 are independent channels gains

with arbitrary pdfs,fi, i = 1, 2.

For simplicity, BPSK modulation is assumed for the proposedscheme, which

can be extended to other typical modulation as the future work. Thus, the transmit-

ted symbol is given by

xi = 2ci − 1. (3.21)

3.4.2 LLR Calculation and Problem Definition

Assuming thatσ is known at the relay and uniform input distribution, three scenar-

ios can be considered depending on the availability ofri at the relay.
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Known CSI

In this case, both channel gains,r1 andr2, are known at the relay for each bit. This

scenario usually happens when two channels are both good andthere are accurate

channel estimations. Thus, the conditional pdf is given by

p(y|x1, x2, r1, r2) =
1√
2πσ

exp

(

−(y − r1x1 − r2x2)
2

2σ2

)

Let z be the message which the relay would forward to both communication

nodes. The relationship betweenz andx1, x2 is shown in Table 2.1.

x1 x2 z
-1 -1 0
-1 1 1
1 -1 1
1 1 0

Table 3.1: The relation between the output informationz and input information,
x1, x2.

Therefore, the LLR is given by

l(y) = log
P (z = 0|y, r1, r2)
P (z = 1|y, r1, r2)

(3.22)

= log
e−

(y−r1−r2)
2

2σ2 + e−
(y+r1+r2)

2

2σ2

e−
(y−r1+r2)

2

2σ2 + e−
(y+r1−r2)

2

2σ2

.

Partial CSI

In this case, only one channel gain,r1 or r2, is known at the relay for each bit. This

usually happens when only one channel is good. Without loss of generality, we

assume thatr1 is known. Thus the conditional pdf is

p(y|x1, x2, r1)=

∫ +∞

−∞

1√
2πσ

exp

(

−(y − r1x1 − r2x2)
2

2σ2

)

f(r2)dr2 (3.23)
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Then, the LLR is given by

l(y) = log
P (z = 0|y, r1)
P (z = 1|y, r1)

(3.24)

= log
p(y|x1 = −1, x2 = −1, r1) + p(y|x1 = +1, x2 = +1, r1)

p(y|x1 = −1, x2 = +1, r1) + p(y|x1 = +1, x2 = −1, r1)
.

Thus, findingl(y) requires calculating four integrals which is quite complexfor the

practical implementation.

Unknown CSI

In this case, both channel gains,r1 andr2, are unavailable at the relay. This scenario

usually happens when both channels are poor or no accurate channel estimation

applied, which is much more realistic especially for the wireless channels. Thus,

the pdf of the received signal conditioned onx1, x2 being transmitted is given by

p(y|x1, x2) =

∫ +∞

−∞

∫ +∞

−∞
p(y|x1, x2, r1, r2)f(r1)f(r2)dr1dr2 (3.25)

Therefore, the LLR is

l(y) = log
P (z = 0|y)
P (z = 1|y) (3.26)

= log
p(y|x1 = −1, x2 = −1) + p(y|x1 = +1, x2 = +1)

p(y|x1 = −1, x2 = +1) + p(y|x1 = +1, x2 = −1)
.

Thus, findingl(y) requires calculation of four double integrals which is muchmore

complex than the former two cases.

Problem Definition

It is clear that Case 3 is the most general case, i.e., ifri is known, we must replace

its pdf with a delta function which would reduce (3.26) to (3.24), and similar will

reduce (3.24) to (3.22). Thus, we will focus on Case 3 in this work, where no CSI

is available at the relay. As can be seen from (3.26), the relationship between the

LLR and channel output, which includes four double integrations, is rather com-

plex. This means that the calculation of LLR at the relay is highly time and energy
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consuming, which is not practical especially when there arelimited power available

at the relays. Thus, efficient LLRs approximation method is of practical interest.

One simple method is to use expected value ofr (E(r)) as the approximate

channel coefficients. Let us call this method mean square approximation. This

method simply removes the two integrations involved in the LLR calculation, thus

reduces the complexity significantly. However, the expected value,E(r), is only the

minimum mean square error estimation ofr, which cannot guarantee the optimum

performance in the decoder. Besides, the computation is still very large especially

when high-order modulations are used.

Another practical approximation is to use the max-log approximation (3.1),

leading to piece-wise linear approximate LLR functions when perfect CSI is known

at the relay [11]. However, when CSI is not available at the relay, the max-log ap-

proximation becomes

lmax(y) = log
max(x1,x2)∈X 0p(y|x1, x2)]

max(x1,x2)∈X 1p(y|x1, x2)]
. (3.27)

= log









max
(x1,x2)∈X 0

∫ +∞
−∞

∫ +∞
−∞ e−

(y−r1x1−r2x2)
2

2σ2 f(r1)f(r2)dr1dr2

max
(x1,x2)∈X 1

∫ +∞
−∞

∫ +∞
−∞ e−

(y−r1x1−r2x2)
2

2σ2 f(r1)f(r2)dr1dr2









whereX 0 andX 1 denote subsets of transmit vectors whenz = 0 and z = 1

respectively.

It is obvious that it is no longer piece-wise linear and much complicated for

practical implementation as it involves four double integrations. Moreover, max-log

approximation usually performs good at high SNR region, when there is a dominant

term in the sum sequence. However, low SNR region is more common especially

for the wireless channel. Therefore, a better approximation is desired.

3.4.3 Piece-wise Linear Approximation

In this work, we are seeking approximate LLR as piece-wise linear functions of

the outputy when there is no CSI available at the relay. Letl̂ = f̂(y) denotes
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the approximate LLR functions. To optimize the LLR approximating function, an

accuracy measure is required.

LLR Accuracy Measure

Notice that from the point of view of the relay, we can model the channel as a

channel whose input isc1 ⊕ c2 and whose output isy = r1x1 + r2x2 + n. The

capacity of this channel can be given by (3.4).

Instead of true LLR, let us replace them with the approximateLLR. As a result,

(3.4) becomes

R̂ = 1− 1

2

∫ +∞

−∞
log2(1 + e−l̂)p̂0(l̂)dl̂ − 1

2

∫ +∞

−∞
log2(1 + el̂)p̂1(l̂)dl̂, (3.28)

wherep̂b(l̂) is the conditional pdf of approximate LLR givenc = b transmitted. We

can see that (3.28) gives an achievable rate of the system operating under approx-

imate LLRs, thusR̂ ≤ C, where the equality holds when̂pb(l̂) = pb(l) [14]. As

a result, by maximizing (3.28) good approximating functions can be found in the

sense of maximizing the achievable rates on the channel.

LLR Approximation

In this work, we use the piece-wise linear functions as our approximate function

because of its simplicity and ease of implementation. Hence, it can be efficiently

solved by different numerical optimization techniques.

From the definition of LLR in (3.26), it is easy to see thatl(0) = lmax(0) under

BPSK modulation. Let us assume the piece-wise linear approximation also crosses

this point and define

k = l(0) = log

∫ +∞
−∞

∫ +∞
−∞ exp

(

− (r1+r2)2

2σ2

)

f(r1)f(r2)dr1dr2
∫ +∞
−∞

∫ +∞
−∞ exp

(

− (r1−r2)2

2σ2

)

f(r1)f(r2)dr1dr2
. (3.29)

For case 1 (i.e., perfect CSI), using this conditionk can be found in close form as

k = −2r1r2
σ2 . For the case 2, whenr2 is available and under normalized Rayleigh

channel (i.e.,f(r1) = 2re−r21) [52].
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k = log
Φ(−r2/

√

2σ2(1 + 2σ2))

Φ(r2/
√

2σ2(1 + 2σ2))
. (3.30)

whereΦ(t) = 1+
√
πtet

2
erfc(−t) anderfc(·) is the complementary error function.

However, for more general case there is no close form function, andk is obtained

by Monte Carlo simulation.

To summarize, the LLR approximate function can be found by following steps:

Step1) The real number domainR is partitioned into a finite number,N , regions

R1, . . . ,RN . The regions andN is usually chosen based on the shape of true

LLRs and the accuracy requirements.

Step2) For each regionRk, a linear function,̂fk = αky + βk, is proposed. Thus,

l̂ = f̂(y) =
N
∑

k=1

(αky + βk)1(y∈Ri). (3.31)

with l̂(y=0) = k.

where1(·) denotes the indicator function.

Step3) Let O = {α1, . . . ,αN , β1, . . . , βN} denotes the set of parameters, which

can be found by solving the following optimization problem:

Oopt = argmax
O

R̂, (3.32)

subject to Ψ(O)=0.

Here,Ψ(O) = 0 represents the constraints that may be imposed onO, such

as continuity conditions.

Step4) The regionsR1, . . . ,RN can be optimized by search.

3.4.4 Numerical Results and Discussions

In this part, we present examples and numerical results based on the proposed piece-

wise linear approximation for BPSK modulation on TRC model.
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Figure 3.8: Comparison of the shape of true LLR at 5dB with that of piece-wise
linear approximation, max-log approximation and minimum mean-square approxi-
mation

Example 3.5 Consider a two-way relay fading channel with DF at the relay and

the channel between the terminals and the relay are normalized Rayleigh channel

(i.e.,f(r) = 2re−r2, E(r) =
√
π
2

). According to the curves of true LLR, we propose

the following approximation functions:

l̂ = f̂O(y) =(α1 · y + β1)1(y≤−r) + (α2 · y + k)1(−r≤y≤0) (3.33)

+ (α3 · y + k)1(0≤y≤r) + (α4 · y + β4)1(y≥r).

Due to the symmetry of the LLR, it can be assumed thatα1 = −α4, β1 = β4 and

α2 = −α3. Also, because of the continuity conditionr can be obtained by

r =
k − β1

α2 − α1
.
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Figure 3.9: Comparing the achievable rate under the piece-wise linear approxima-
tion, max-log approximation and true LLR

As a result,O = {α1, α2, β1}. For the given SNR, optimized piece-wise linear

approximation function can be found by the steps described in Section 3.4.3.

For example, when SNR= 5 dB the optimized parameters can be found as

O = {6.4606, 1.6667,−1.6113}, andk = −4.811, r = 0.6675. The corresponding

approximate LLRs and true LLRs are depicted in Fig. 3.8. It can be seen that the

piece-wise linear LLR is much closer to the true shape than the max-log approxi-

mation and the minimum mean-square approximation especially around LLR= 0.

In Fig. 3.9, we depict the achievable transmission rate for the designed piece-

wise linear approximation, max-log approximation and the true LLRs case. We can

see that the achievable rate of our method is always closer tothe true capacity than

the max-log approximation especially when SNR is low. For example, at SNR=

5 dB, the achievable rate of the proposed method is 0.3676 bpcu and the capacity

is 0.3740 bpcu, while the achievable rate of max-log approximation is 0.3271 bpcu.

On average, it can be seen from the curves that the gap betweenthe piece-wise
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Figure 3.10: Comparison among the BER of a randomly constructed (3,4)-regular
LDPC code of length 15000 decoded by true and approximate LLRs on two way
relay fading channel.

linear approximation and max-log approximation is around 1dB. What is more,

max-log approximation is much more complex than the proposed method.

To evaluate the decoding performance of the optimized piece-wise linear ap-

proximations, we compare the BER under the proposed method,the max-log ap-

proximation, minimum mean-square approximation and the true LLRs. As an ex-

ample, the performance of a (3,4)-regular LDPC code of length 15000 is depicted

for these four cases in Fig. 3.10. It is clear that the performance of the optimized ap-

proximate LLR is quite close to that of the true LLRs, about 1dB better than that of

the max-log approximation and about 1.5dB better than the minimum mean-square

approximation.
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3.5 Conclusion

LLR calculation can be very complicated in a real wireless communication envi-

ronment. This motivates us to find efficient and accurate approximation methods.

In this chapter, we deal with this problem for two different cases, MIMO channels

and two-way relay channels.

In the Section 3.3, an efficient method using piecewise linear functions for ap-

proximating LLRs over flat slow-fading MIMO channels is studied. The system

considered in this work is MIMO-BICM which allows us to compute LLRs at bit

levels. To this end, an accuracy measure and approximation functions for MIMO-

BICM systems are proposed. We use this measure to optimize the parameters in the

approximation functions. The performance of the proposed method is investigated

in terms of the achievable rate. Our results show that the performance of the op-

timized piecewise linear approximation function is superior to that of the max-log

approximation. In fact, the achieved performance is very close to that of true LLRs.

Compared to max-log, our method is more complex because it needs the parameters

to be optimized. Thus, our method is more attractive when channel gains are not

subject to rapid change.

For two way relay fading channel with DF strategy, the relay has to calculate

channel LLR for the decoding. When no CSI is available at the relay, the LLR

computation is much more complicated and computationally expensive. Thus, ap-

proximate LLR are desired. In Section 3.4, we used an accuracy measure based

on the achievable rate and under this measure, a piece-wise linear approximation

is proposed. For the normalized fading channels, we investigated the performance

of the proposed method in terms of achievable rate and BER. Our experimental re-

sults showed that the proposed piece-wise linear LLR approximation outperforms

the max-log approximation and minimum mean-square approximation and its per-

formance was very close to that of true LLRs. The proposed approximation is less

complex and easier to implement than the max-log approximation or the true LLRs.
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Chapter 4

Design of LDPC Codes with Strong
Universal Properties

4.1 Introduction and Background Knowledge

As we discussed in Chapter 1, LDPC codes can approach the Shannon limit on

many channels. However, design of LDPC codes can be quite complex. For exam-

ple, LDPC codes should be chosen carefully based on different channel types and

channel parameters. If the parameters change, the code design process should be

done again, otherwise, the performance would degrade.

In this chapter, we are dealing with these problems by designing the so called

“universal” LDPC codes. Before we go to further details, letus first introduce some

background knowledge.

4.1.1 Universal Codes

Designing a code that can successfully be used over a multitude of channels is of

great theoretical and practical interest. Such robust codes are called universal codes.

Universal codes have various advantages over channel codesthat are designed for

a specific channel.

Usually, the term “universal codes” have two meanings in thecontext of channel

coding. First, a coding scheme that does not have a specific rate and works well on

a family of channels of different capacity, but of the same type, e.g., BEC with

different erasure rates. Raptor codes [10], for example, are universal in this sense.

54



Second, to have a channel coding scheme which can be employedover all channels

of equal capacity. The latter case is what we mean by an universal code in this

chapter.

There has been some recent efforts to design LDPC codes whichperform suf-

ficiently well on a variety of BIMSs with identical capacity.For example, the idea

of designing a code for a properly chosen surrogate channel,among a limited set of

given channels, and then using it over other members of the set has been discussed

in [53]. This approach is a practical solution, but unfortunately can handle a limited

number of channels. Universal codes can also be found analytically, but those codes

can only achieve a very low percentage of the capacity [54].

4.1.2 Stability Condition for Density Evolution

Fixed point of density evolution is often used to analyze theconvergence of LDPC

codes. When density evolution has only a zero-error fixed point, i.e.,δ∞, the given

code can be successfully decoded. It is desirable that this fixed point bestable.

Thus, the stability property can be seen as a condition whichensures that once the

density has been evolved to something “close” to perfect decoding, it will converge

to the perfect decoding fixed point and the decoding will be successful [17].

For the sum-product decoder, the parameter that characterizes the channel with

respect to the stability of the system is the Bhattacharyya parameterB(·) introduced

in Section 2.3. Thus, we have the following stability condition theorem:

Theorem 4.1 [Stability Condition for Sum-product Decoder [17]]:Assuming we

have a degree distribution pair(λ(x), ρ(x)) and a symmetric channel with LLR pdf

fch. For l ≥ 0 define

fl = f0 ⊗ λ(ρ(fl−1)).

with an arbitraryf0, we have:

[Sufficiency] If λ′(0)ρ′(0)B(fch) < 11, then there does exist a strictly positive con-

stant ξ = ξ(λ, ρ, fch) such that if, for somel ∈ N, Pe(fl) ≤ ξ, thenfl

converge toδ∞.
1λ′(x) andρ′(x) are the derivatives ofλ(x) andρ(x), respectively.

55



[Necessity] If λ′(0)ρ′(0)B(fch) > 1, then there exists a strictly positive constant

ξ = ξ(λ, ρ, fch) such that for allf0 6= δ∞,

lim
l→∞

Pe(fl) > ξ.

Example 4.1 For a BEC(ε) with the LLR pdf given by (2.4), we have

B(fBEC(ε)) =

∫ ∞

∞
(εδ0(x) + (1− ε)δ∞(x))e−x/2dx = ε

which results in the stability condition for BEC channel

λ′(0)ρ′(0) <
1

ε

However, it is worth mentioning that stability condition does not guarantee the con-

vergence of the code. For example, for LDPC codes withλ′(0) = 0, the zero-error

fixed point is always stable while the codes may not converge.

4.1.3 Information Combining Bounds

In the context of LDPC codes and under sum-product decoding,the following

bounds are established in [55,56]:

Theorem 4.2 [Information Combining Bounds]:

Bound 1: Consider a variable node of degreed and assume that all except one

of the input messages have known LLR pdfs. The other input message has

a fixed mutual informationIin with its actual value, but its LLR distribu-

tion is unknown. The mutual information between the output message of the

variable node and its actual value is minimized if this unknown LLR pdf is

fBSC(h−1(1−Iin))(x), whereh(·) is the binary entropy function.

Bound 2: Consider a check node of degreed and the same assumptions with Bound

1. Thus, the mutual information between the output message of the check node

and its actual value is minimized if this unknown LLR pdf isfBEC(1−Iin)(x).
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4.2 Universal Codes Design

In this section, without considering a specific set of channels, our goal is to find

LDPC codes with good universal properties over all BIMSs with a given capacity.

The simplest way to tackle the problem is to use information combining bounds

in order to obtain codes with guaranteed convergence over all channels with the

given capacity. Unfortunately, using these bounds resultsin very conservative (thus

inefficient) codes. To improve the efficiency, a refined Gaussian approximation

together with the information combining bounds is suggested to find codes with

good universal properties. We argue why these codes should have strong universal

behavior and the designed codes is also proved to satisfy theuniversal stability

condition (i.e., stability condition on all channels).

4.2.1 Problem Description

Clearly, information combining bounds can be used to find codes that are guaran-

teed to converge over every channel with a given capacityC. To guarantee universal

convergence, it is sufficient to observe convergence when worst case pdfs at both

variable and check nodes are assumed. EXIT curves can be plotted for the worst

case pdfs, and a sufficient condition on universal convergence is to have an open

tunnel between these two EXIT curves. Therefore, the procedure for finding these

codes is not different from designing codes for specific channels, which are studied

in the literature in various forms [15,33].

Unfortunately, codes obtained by applying both information combining bounds

have poor performance because of the stringent constraintsforced by these bound-

s. For example, whenfv→c(x) (the pdf of input messages to check nodes) is

fBEC(ǫ)(x), the pdf of the output of check nodes (fc→v(x)) is fBEC(1−ρ(1−ǫ))(x).

That is to say,fc→v(x) is of BEC form and not BSC (which is assumed for the

worst case scenario). Interestingly, BEC maximizes the output mutual information

at the variable nodes [55,56]. In other words, in this example, to pass the sufficient

condition of convergence at a variable node, the best pdf (i.e., BEC) in reality, is

replaced with the worst pdf (i.e., BSC).
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Thus, using both bounds, one at the variable nodes and one at the check nodes,

results in too stringent constraints. To improve the efficiency, a new method is

desired. In the rest of this chapter, we denote the method that applies both bounds

as the sufficient condition of the codes’ convergence.

4.2.2 Refined Gaussian Approximation

A symmetric Gaussian pdf for the messages at the output of thevariable nodes is a

common assumption, regardless of the channel type [28]. Notice that under sum-

product decoding, the output messages of variable nodes areobtained by adding all

the input LLR values, so a Gaussian distribution is a reasonable assumption because

of the central limit theorem.

Based on this common practice and the information combiningbounds, a new

approach for designing universal LDPC codes is proposed. Wesuggest replacing

the information combining bound forfv→c(x) with a Gaussian approximation at the

output of variable nodes. But forfc→v(x), we still force the information combining

bound which means that they are assumed to be in BSC form. We call this approach

a refined Gaussian approximation since unlike [28],fc→v(x) is not assumed to be

Gaussian.

To be more specific, given a value of mutual informationIin, at the input of

the check nodes, we find a symmetric Gaussian distribution,fG(x) with σ2 = 2µ,

whose mutual information according to (2.5) is equal toIin. We use this Gaussian

distribution at the input of the check nodes to find their output densityfout(x) via

density evolution [25]. We then find the mutual informationIc→v of this output

density using (2.5). At the input of the variable nodes, we assumefBSC(ǫ)(x), ǫ =

h−1(1− Ic→v), which is the worst case pdf according to the information combining

bounds. Then, the output pdf of degree-i variable nodes will be

g(i)(x) =

[

i−1
⊗

k=1

fBSC(ǫ)(x)

]

⊗ fBSC(η)(x), (4.1)

whereη = h−1(1 − C) andC is the channel capacity. Therefore, the output mutual
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information using (2.5) is

Iout = I
(

∑

λig
(i)(x)

)

=
∑

λiI
(

g(i)(x)
)

.

For code design, we enforceIout > Iin as a constraint for choosingλi. Detailed

formulations of code design are similar with the process introduced in Chapter 2.

This method raises two minor problems. First, if the channelis indeed a BEC,

fv→c(x) remains in the BEC forms for all iterations, i.e., it cannot be approximated

with a Gaussian distribution. Second, for the first iteration wherefv→c(x) is the

channel observation but not the result of summations at the variable nodes, a Gaus-

sian approximation is not accurate. To resolve this issue, we append another set of

constraints, that guarantees the convergence on the BEC, tothe code design formu-

lation. This way, for the first iteration, the worst case pdf is forced at the input of

check nodes too [55,56].

These codes are expected to have good universal properties because of the fact

that for a wide range of channel types, the Gaussian approximation at the output of

variable nodes is a reasonable assumption. Also, at the output of check nodes the

worst case scenario is enforced. In fact, in the next section, it will be proved that

these codes satisfy a universal stability condition.

This code design approach, compared to using both information combining

bounds, results in codes with significantly smaller gap to capacity (particularly at

low capacities). For example atC = 0.2, sufficient condition for universal conver-

gence results in codes that achieve only 70% of the capacity,but our approach gives

codes which achieve more than 85% of the capacity. At capacities close to 1 bpcu,

the worst case and the best case scenario pdfs at variable (check) nodes are alike,

i.e.,

lim
ǫ→0

fBEC(ǫ)(x) = lim
p→0

fBSC(p)(x) (4.2)

Therefore, according to (2.5), the mutual information of the best case scenario

and the worst case scenario are approximately equal. It means that the output mu-

tual information mainly depends on the input mutual information but not the LLR

pdfs. Thus, the rate loss due to enforcing the sufficient condition of convergence
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Figure 4.1: Comparison of the achievable rates of our codes (in terms of achiev-
able percentage of capacity) with codes based on information combining bounds,
analytical codes and an upper bounds.

is minor and a very high percentage of capacity is achievable. This can be seen in

Fig. 4.1.

4.2.3 Stability Analysis

In this section we prove that codes that are designed using the refined Gaussian

approximation satisfy a universal stability condition. Inother words, they satisfy

the stability condition for all channels with the given capacity.

Consider a channel with capacityC and a code designed by using our method.

The message error rate at the input to check nodes is denoted by pin and at the

output of check nodes byǫ. As the decoder gets close to perfect decoding,pin is
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getting closer to 0.

lim
pin→0

ǫ

pin
= lim

pin→0

1− ρ(1− 2pin)

2pin

= lim
pin→0

ρ′(1− 2pin)

2

=
∑

ρi(i− 1)

=ρ′(1).

It means that when the decoder is approaching perfect decoding, ǫ can be ap-

proximated asρ′(1)pin. Therefore, the density of BSC input to variable nodes

is fBSC(ǫ)(x). For degree-i variable nodes, the output error rate will bep(i) =
∫ 0

−∞ g(i)(x)dx, whereg(i)(x) is given in (4.1). For a degree-2 variable node, it

follows that

p(2) =

∫ 0

−∞
fBSC(η) ⊗ fBSC(ǫ)(x)dx

=

∫ 0

−∞

(

(1− ǫ) δlog( 1−ǫ
ǫ

)(x) + ǫ δ− log( 1−ǫ
ǫ

)(x)
)

⊗
(

(1− η) δlog( 1−η
η

)(x) + η δ− log( 1−η
η

)(x)
)

dx

a
=

∫ 0

−∞

(

(1− ǫ) δlog( 1−ǫ
ǫ

)(x) + ǫ δ− log( 1−ǫ
ǫ

)(x)
)

dx

= ǫ,

where (a) results fromǫ ≪ η. The message error rate at the output of the variable

nodes is

pout =

dv
∑

i=2

λip
(i) > λ2ǫ = λ′(0)ρ′(1)pin.

Our code design procedure enforcesIout > Iin, which for consistent Gaussian pdfs

is equivalent topout < pin. Thus, our method guarantees that

λ′(0)ρ′(1) < 1. (4.3)

It is shown in [57] that (4.3) is the worst stability condition a channel might require.

Thus, the method proposed here assures a universal stability condition.
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4.2.4 Design Example

In this section we design codes with strong universal properties using the method

proposed in Section 4.2.2. For a given channel capacityC, the goal of the code

design in this work is to maximize the code rate through optimizing λ(x), when

ρ(x) is assumed given and convergence constraints of Section 4.2.2 are satisfied.

The motivation for fixingρ(x) and optimizingλ(x) stems from the fact (observed

by various authors) that the code performance is much more sensitive to the choice

of λ(x) thanρ(x). For choosingρ(x), following the guidelines of [28], we assume

that ρ(x) comprises at most two consecutive degrees, and we optimizedρ(x) via

search.

Example 4.2 For C = 0.5 bpcu, and allowing a maximum node degree of 50 in the

code, the rate of the optimized code is0.4584 (91.68% of the capacity). The degree

distribution is as follows:

ρ(x) = 0.0899x7 + 0.9101x8. (4.4)

λ(x) = 0.1220x+ 0.3236x2 + 0.2963x8 +

0.0062x9 + 0.2519x49.

A single randomly chosen code has been generated from this degree distribution.

The code has been tested over 1000 randomly generated channels with capacity

C = 0.5 and in all cases convergence is observed. According to the concentration

theorem [25], for a given degree distribution, the performance of a randomly chosen

code converges to the average of the ensemble. Thus, we expect to observe a similar

behavior from any other randomly constructed code from thisdegree distribution.

4.2.5 Numerical Results

The achievable rates over a wide range of channel capacitiesare plotted in Fig.4.1.

The results are also compared with codes that are designed based on applying both

information combining bounds. Besides, the achievable rates of analytically con-

structed universal codes of [54] is also plotted here for thecomparison. All codes
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Figure 4.2: Comparison between message error rates of a rate0.4 universal codes
based on our proposed method and a rate 0.4 code based on the information com-
bining bounds on the BSC and BEC channels. The curves are obtained by running
density evolution for 400 iterations

are obtained with maximum allowed degree of 50 in their Tanner graph. It can been

seen that our proposed code is much more efficient than other existing solutions.

Also, to see how successful our codes are, an upper bound is suggested to com-

pare against. The upper bound here is the rate of LDPC codes designed to work on

both BSC and BEC, which is the necessary (not sufficient) condition of universal

codes. From Fig. 4.1, we can see our codes are quite close to the upper bound.

Other comparisons are also done between a rate 0.4 code basedon both the in-

formation combining bounds and a rate 0.4 code based on the proposed method. In

Fig. 4.2, a curve of decoder’s message error obtained after 400 iterations of density

evolution for these two codes on BEC and BSC channels is plotted. And Fig. 4.2.4
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shows bit error rate comparisons between these codes for randomly constructed

codes of length 76789. From both curves, we can see that although the code based

on the information bounds performs slightly better on BSC, the code based on our

proposed method has much stronger universal properties. Both codes are provided

in Table 4.1, where we denote the codes designed by applying both information

bounds as sufficient code.

Table 4.2 compares our codes in terms of their decoding threshold with codes

designed for specific channels. By decoding threshold, we mean the worst capacity

which a BEC, BSC, AWGN, or Rayleigh channel have to exhibit for successful

convergence using density evolution. While AWGN codes are considered to have
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Table 4.1: Degree distributions for proposed code and sufficient code

Proposed Code Sufficient Code
λ2 0.14555 0.1436
λ3 0.2970 0.2925
λ5 0.0633 0.73
λ7 0.0713
λ9 0.1015 0.1654
λ10 0.1539 0.73
λ18 0.1069
λ50 0.2388 0.2203

ρ7 0.2539
ρ8 0.7461 1

Table 4.2: Comparison between the decoding threshold (in terms of required capac-
ity) of LDPC codes of different rates.

Code Rate (bpcu) 0.40 0.55 0.7

Proposed LDPC Codes 0.43 0.59 0.73
LDPC Codes Designed for AWGN 0.51 0.62 0.76
LDPC Codes Designed for BEC 0.54 0.68 0.85
LDPC Codes Designed for BSC 0.46 0.61 0.75

LDPC Codes Designed for Rayleigh0.48 0.65 0.78

good universal properties [58], Table 4.2 shows that our codes are much stronger

in this sense. At lower channel capacities, e.g 0.4 bpcu, this improvement is even

more pronounced. All the codes in Table 4.2 have a maximum degree of 30 in their

Tanner graph and the AWGN codes are taken from [59].

4.2.6 Extreme Distributions Under Min-Sum Decoder

Current research on universal codes all focus on the sum-product decoder, how-

ever, designing universal code under min-sum decoder is also important due to its

low complexity. As the pdf of the decoder messages at each iteration under min-

sum decoding is not symmetric, the information combining bounds of [55, 56] are

not applicable. Thus, finding the extreme distributions under min-sum decoder be-

65



comes very interesting. In this section, we deal with problem based on numerical

results and we make the following two conjectures.

Conjecture 4.1 Among all channels with capacityC, min-sum decoding can achieve

the highest rate on the BEC.

Under BEC, LLRs are either 0 or infinity. As a result, according to the update rules

introduced in Chapter 2, the output LLR at a check node of bothmin-sum and sum-

product are the same. In other words, min-sum decoding does not incur any penalty

on the BEC and is equivalent to sum-product (optimal) decoding. This supports the

above conjecture.

Conjecture 4.2 Among all channels with capacityC, min-sum decoding achieves

the smallest rate on the BSC.

This conjecture is supported by the fact that when the absolute value of the LLR

values processed at a check node are closer together the approximation becomes

less accurate. On the BSC and in the early iterations, the absolute value of the

LLRs are very close. In fact, in the first iteration, they are all equal.

Fig. 4.4 is also provided to support our conjectures.

4.3 Conclusion

In this chapter, we deal with the problem of designing universal LDPC codes.

A universal LDPC code is a code that is designed for a given capacity, inde-

pendent of the actual channel model and guaranteed to converge on a multitude

of channels. Using a refined Gaussian approximation on decoder messages and a

known bound on information combining, LDPC codes with strong universal proper-

ties can be found. Over a wide range of rates, the suggested universal codes achieve

a large percentage of the channel capacity. Our extensive tests have also verified

successful convergence of these codes on all tested channels.

Based on numerical observations, we also proposed two conjectures regarding

the extreme distributions under min-sum decoding.
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Chapter 5

Conclusion

In this chapter, we first briefly summarize the contributionsof this thesis and then

propose some possible future research directions that may attract future researchers.

5.1 Contributions

In this thesis, several contributions have been made to the field of LDPC codes.

We provide theoretical and practical results for the designand decoding of LDPC

codes. The results can also be used for other codes decoded byiterative decoding,

such as turbo codes.

In the first contribution, we studied the iterative decodingon non-SISO chan-

nels. An optimum and efficient piece-wise linear approximation is proposed to ap-

proximate the channel LLRs. This method is optimum in the sense of maximizing

the achievable rate of the channel. Two different channel scenarios are considered.

For the first scenario, we assume the channel state information is perfectly known

at the receiver of MIMO-BICM channels. For the second scenario, two-way relay

channels are considered when no channel state information is known. For both sce-

narios, we found optimized piece-wise linear approximation functions to calculate

LLR. We also showed that the performance of our method is extremely close to the

channel capacity where true LLRs are applied.

The second contribution made in this thesis is that we investigated the design

method of a class of LDPC codes called universal codes. For a universal code,

convergence is guaranteed for a given channel capacity and regardless of the chan-

68



nel type. A new universal code design method was proposed. Wedesigned LDPC

codes under this method and observed that a large percentageof the channel capac-

ity can be achieved. Based on extensive observations, we also made conjectures for

the extreme distributions under min-sum decoding.

5.2 Possible Future Research

In this section, we present some problems that can be the subject of future research.

The optimum piece-wise linear LLR calculation proposed in this work is proba-

bly the beginning of this research direction, since we only considered the scenarios

under the binary phase shift keying modulation. Thus, extending this method to

higher order modulations is an interesting direction.

The channels considered in Chapter 3 were all uncorrelated or flat fading chan-

nels. Possible future work can be done on extending this method to frequency-

selective, correlated fading channels and orthogonal frequency division multiplex-

ing (OFDM) systems.

It is also quite interesting if one can find the close form functions for the op-

timized parameters in our method, since right now we only consider optimization

through numerical methods.

Since we made conjectures about the extreme distributions under min-sum de-

coding mainly based on numerical observations, the analytical proof of these two

conjectures can be quite important for both theoretical andpractical purposes. Oth-

er research directions can also include designing universal codes under min-sum

decoding.
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