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Abstract

This thesis presents low complexity design and decodingreels for low densi-
ty parity check (LDPC) codes. First, we consider the itggtlecoding of LDPC
codes on multiple-input-multiple-output bit-interleaMeoded modulation (MIMO-
BICM) channels and two-way relay channels. More specifjcalle study the
log-likelihood ratio (LLR) calculation under MIMO-BICM @mnels when perfec-
t channel information is known and LLR calculation for twayvrelay channels
when no channel information is known at the receiver. We gsepthe optimum
piece-wise linear approximation in the sense of maximiziregachievable rate of
the channel. Second, we introduce a novel “universal” LDB@eadesign method.
We design universal LDPC codes based on our method and slabwctmpared
to existing methods, a lager percentage of capacity is ddai Then, we propose
two conjectures about the extreme distributions undersam-decoding based on

numerical observations.
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Chapter 1

Introduction

The focus of this work is on designing and decoding an exthepawverful class
of error-correcting codes callddw-density parity-check (LDPC) codeith low
complexity. LDPC codes have been shown to perform close docépacity of
many channels.

In this chapter, we introduce the field of study, the intengsproblems in this
area and also discuss some interesting problems with LDBEEwhich are tackled

in this thesis.

1.1 Overview

People have always sought fast, reliable and secure waysctamege informa-
tion. However, the communication channel usually intrafunoise and interfer-
ence to distort the transmission. To improve the quality athdcommunication,
error-correcting codes are proposed.

Using error-correction coding, some redundancy is addduetainformation by
the channel encoder. The reason for adding redundancy mmbat the channel
noise. Therate of a code is defined as the ratio of the number of input bits and
the output bits of the channel encoder, which is always less obne. For example,
one powerful class of error-correction codes is cabéatk codesvhere the input
bit-stream is partitioned into severalbit blocks and each block is mapped to an
n-bit (n > k) word calledcodeword Thus, the rate of block codesit= % < 1.

In 1948, C.Shannon introduced the limits of reliable traission over unre-



liable channels in one of his remarkable papers [1]. Givemannoel, Shannon
showed that there is a limit on the maximum code rate, callexhnel capacity
below which the reliable data transmission is possible. i&gx that there exist a
code that can be used to transmit data with arbitrarily spralbability of error if
the rate of the code is below the capacity. The Shannon hahitch is defined as
the minimum transmission power required to transmit réji&dr a given code rate,
is proposed to measure the power efficiency of a coding schEnus, the ultimate
goal of error-correction coding is to find practical capg@pproaching codes.
Shannon used random codes to prove the channel capacitgtheblowever,
since the decoding complexity of random codes grows expa@igrwith the block

length, random coding is not suitable for practical use.

1.2 Codes Defined on Graphs and Iterative Decoding

A coding scheme with its rate close to the capacity was noeldeed until the
discovery of Turbo codes in 1993 [2]. Bierative message-passidgcoding algo-
rithms, Turbo codes can approach the capacity with prda&zoding complexity.
This class of decoding algorithms is applicable to the caldéimied on graphs. Due
to their reasonable decoding complexity, iterative demgdind graphical codes
have drawn much attention in the past decades.

One of the most attractive properties of iterative decodilggprithms is that
their complexity grows linearly with the length of the cod@ieh means that the
complexity per information bit is independent of the codeglin. Thus, it allows
us to use long codewords with reasonable decoding complexitesign codes that
approach the channel capacity.

The graphical understanding of codes started with Tanngphgr for linear
codes [3]. Later, Wiberg found that the turbo decoder canepeesented graph-
ically as well [4]. Because of the research on turbo code aaghical codes, a
class of codes called LDPC code was rediscovered after loegotfen for several
decades. LDPC codes were first proposed by Gallager in histRédds [5], but

were considered too complex at the time of their discovery.



LDPC codes are block codes which have a sparse structureCldoges drew
a lot of attention because they have extremely good perfoceavith reasonable
complexity under iterative message passing algorithm tDuhese properties of
LDPC codes, they became one of the most active researcls iogoding theory.

LDPC codes are already used in some communication stanslactisas ETSI
EN 302 307 for digital video broadcasting [6] and IEEE 802/M®1AX standard
[7]. Moreover, the discovery of many new classes of codeséddfon graphs are
influenced by the structure of LDPC codes, such as repeatradate (RA) codes
[8], Luby transform codes [9] and Raptor codes [10].

Although lots of researchers have been working in the aregagfhical codes,
there are still many open problems under study. This thessaddressed some of

these problems and raises new questions.

1.2.1 The Main Theme of This Thesis

This thesis studies efficient methods for design and degaafih DPC codes with
low complexity. These problems are studied from a pracpcaht of view. It is
worth mentioning that although we focus on LDPC codes, sointieese problems
are discussed beyond their application to LDPC codes. $stition, we will have
an overview of the problems that are addressed.

Decoding LDPC codes starts with computing log-likelihoatios (LLRS) from
the channel observation. Computing channel LLRs can be detsame task, thus
approximate LLRs are suggested in the literature. Howewerent approximation
methods, which all focus on single-input-single-outpuS@) channels [11-14],
cannot apply to multiple-input-multiple-output (MIMO) ahnels and two-way re-
lay channels directly. What is more, the computation of thenmel LLRs is too
complicated in these cases. Thus, this is a problem thasredze solved.

In this thesis, we propose a piece-wise linear method tatzkeLLR for LDPC
codes used over multiple-input-multiple-output bit-ne@ved coded modulation
(MIMO-BICM) channels when the channel parameters is knoitheareceiver and

the two-way relay channel when the channel information swomn at the receiver.



By maximizing the achievable transmission rate on the chlarour method has
low-complexity and performance close to the actual perforoe obtained by true
LLR calculation. It is worth mentioning that this method da@& also applied to
other codes decoded by iterative message-passing desuaéras turbo codes.
Although carefully designed LDPC codes have very good perdmce on many
channels, the code design process can be complex and timseroing since if the
channel condition changes, code has to be designed agéims imork, we address
this problem by providing a one-for-all solution. We try tesiign “universal codes”
which can perform almost the same on all the channels withs#imee capacity.

Codes designed by our method can achieve a high percentaitpescapacity.

1.3 Thesis Outline

The thesis is organized as follow: Chapter 2 reviews the sseog background
about iterative decoding, LDPC codes, their decoding &lgos and the existing
analysis methods for these decoding algorithms.

In Chapter 3, we investigate non-SISO channels where @dingltrue LLRs is
difficult. We first assume perfect channel state informafi@8l) is known at the
receiver for MIMO-BICM channel and we find the optimum piegise linear ap-
proximation of LLRs in the sense of maximizing the achieealalte of the channel.
Then, we extend this piece-wise linear method to the two-+etgy channel when
no CSI is known at the receiver. In both cases, the maximuneeable rates un-
der the proposed method are quite close to the achievablevhan true LLRs are
applied. The success of our method can be also observed tvased error rate.

In Chapter 4, we propose a new method to design codes with gowdrsal
properties based on the information combining bounds wéiieldeveloped recent-
ly. We use the stability condition of density evolution taafysis our method, and
by designing codes based on the proposed method, we showotihatred to the
exiting methods, a higher percentage of capacity can bewasthi

We conclude the thesis in Chapter 5 by summarizing the daritons made in

this work and by suggesting possible directions for futuoekw
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Chapter 2

Preliminaries and Background

In this chapter, we briefly review the necessary backgroumtamsmission model,
LDPC codes and their structure, different decoding algorg and exiting analysis

methods.

2.1 Transmission Model and Channel Coding

In Fig. 2.1, the block diagram of a generic digital commutiara system is de-
picted, which consists of a transmitter, a channel and aweceThe transmitter
mainly consists of a binary source, a channel encoder anddalator. Channel is
the medium through which the information is transmitted;hsas free air, optical
fibers, a network link, etc.. The receiver mainly consista afemodulator, and a
channel decoder. The ultimate goal of this system is to tnresdata stream from
the transmitter (source) to the receiver (sink) quickly egl@bly. In this thesis, we

mainly concern with the channel encoder, decoder and theneh#self.

Definition 2.1 [Binary-Input Memoryless Channel (BMC)]:

A binary-input channel is defined as a system comprising gefinput alphabet
X € X whose members are binary symbols, a finite output alphgbet)’, and

a set of conditional probability assignments between th@my. A channel is said

to bememorylessf each channel output depends only on the current input.
Remark 2.1 [Channel symmetry]: The channel is said to beutput-symmetriaf

Pyix(ylz) = Pyix(—y| — z) (2.1)

5



Channel

Binary Channel
| Decoder

Source Encoder

—» Modulator | » Channel > Demodulator —|

Transmitter Receiver

Figure 2.1: The block diagram of a generic digital commutigcasystem

The subset of BMC, which is output-symmetric, is also cabiedry-input memo-
ryless symmetric channel (BIMS). The most famous chanmelBis class are the
binary symmetric channel (BSC) and the binary erasure cidBEC).

The BSC can be seen as a channel which flips every bit with piiilya:, as
shown in Fig. 2.2. It is denoted as BS{.(BSCE) is used in many studies because
itis one of the simplest noisy channels to analyze. When tiectsions are made at
the receiver, i.e., when the channel output values are peahinto two values, the
channel can be seen as a BSC. Thus, many communication ¢haande reduced
to a BSC. Moreover, being able to transmit effectively over BSC can give rise
to solutions for more complicated channels.

The BEC is also an important channel which mostly occurs ta datworks.
The output of the BEC is either correct with probability- = or erased with prob-
ability €, as depicted in Fig 2.2. In this case, BELIs error free since when the
receiver gets one bit, it is certain that it is correct. Maaglrword channels can
be reduced to BEE], such as the packet transmission between two nodes in a data
network, where a packet is either decodable (detected widtnor) or undecodable
(completely useless).

Another important channel model which will be used in thigkvs the binary-
input additive white Gaussian noise (BIAWGN) channel whaclids a random real
number to the binary input; € {—1, 1}. The additive noise is drawn according to
the Gaussian distribution with zero mean and variartcelenoted ad\/' (0, o).

Although the class of BIMS channels is very important in tle¢ical and prac-
tical use, it is worth mentioning that the channels congden this thesis are not

necessarily output-symmetric.



Figure 2.2: Left: The binary symmetric channel wit errorlpability . Right: The
binary erasure channel with erasure probabdity

2.1.1 Log-Likelihood Ratios

Log-likelihood ratio (LLR), refereed as the soft infornati has been widely used

in the communication theory. It is defined as

_ Pxy(0ly)
Py (1ly)

whereY represents the channel output axids the binary channel input. Itis clear

LLR = I(y) (2.2)

that LLR is a function of channel outpdf, which can be denoted d&y). The
input binary symbols{0, 1}, are usually mapped tpt+1,-1} by the binary phase-
shift keying (BPSK) modulation. Thu§,«+> +1 and1 < —1. Using the channel

symmetry condition, we have

Pxy(1]y)
PX\Y(_HZJ)
PY\X<y|1)
Pyix(y| —1)
Pyx(—y| —1)
PY\X(_Z/H)
Pxpy (=1 —y)
Pxpy (1] —y)
= —l(-y).

l(y) = log

= log

= log

The distribution of the LLR plays an important role in itevatdecoding [15].

We denote it ag (/). It is clear that there is a one-to-one correspondence leetwe
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Figure 2.3: Upper: the pdf of LLRs for BS€( Down: the pdf of LLRs for BECA)

the probability density function (pdf) of LLR and the chahrieor symmetric chan-

nels and assuming the all-zero codeword is transmitted,ave h

F=) = Poxly el (D)
= Pyx(-ye Q)
— Pyxlyel (-1
= By €17 D))
= Q).

which means that one side of the pdf can be obtained from tier gide. Every
such pdf satisfying this condition is called symmetric onsigtent. For a Gaussian
pdf V' (i, 0%), the symmetry condition can be simplified4® = 2u. Thus, by a
symmetric Gaussian pdf, we mean a Gaussian pdf for wiich 2.

Assuming all-zero codeword is transmitted, a channel calbespecified by
the pdf of its LLR. For example, the LLR pdf of the BS(¢(s

Fha0(@) = (1= €)d1q 122 (%) + €6 _ 1o 1< () (2.3)

whered, () is the Dirac delta function at the locatian Also on the BECK), the



LLR pdfis
She (@) = 200(2) + (1 — £)0 (). (2.4)
These two pdfs are drawn in Fig .2.3.
One of the most important properties of a channel is its agpdte definition

of the capacity is provided in Definition 2.2.

Definition 2.2 [Capacity]: For a channel, the information capacity is

C=max[(X;Y)
p(z)
wherel(X;Y) is the mutual information between the input and output oftien-

nel and the maximum is taken over all the input densitiés).

For exampleC = 1 — ¢ for the BECE), andC = 1 — h(e) for the BSCE), where

h(g) = —(1 —¢)logy(1 — &) — elogy(e),
is called the binary entropy function [16].

Observed from (2.2), LLR is a sufficient statistic férgivenY’, thus the capac-

ity can also be represented from the LLR as

C = max [ (X;r).

p(z)
In this case( can be interpreted as the capacity of the equivalent chantieinput

X, outputllr and the channel transmission functifii/r| X). Consider a BIMS,
the density of LLR is also symmetric, denoted8$). The capacity per channel

use of this channel is given by [17]
“+oo

C2C(f) = F()(1 —logy(1+e™h))dl. (2.5)

The importance of the channel capacity is mainly due to tHeviing theorem:
Theorem 2.1 Noisy-Channel Theorem [1]]:  Given a channel with capacity,

for any code ratekR < C, there exits encoding and decoding rules under which it is
possible to have an arbitrary small probability of error.

Conversely, for any rat& > C, regardless of which encoding and decoding rules

are used, the probability of error is bounded away from zero.

Thus,C is a fundamental limit for reliable data transmission on argiel.

9



2.1.2 Some Useful Parameters of A Symmetric Density

In this section, we introduce two important parameters ofrarsetric density. For
a BIMS channel with LLR pdff(l), since the channel is symmetric, the optimal
input density is uniform ovek’ € {—1, +1} [18].

The error probability off (/) whenxz = +1 (all-zero codeword) is transmitted is

given byP.(-) as

Pe(f) = Plp(z =+1y) <plz = -1fy)} + %P{p(fv = +1ly) = plz = —1y)}

= P{i(y) < 0} + 5 P(iy) =0)

_ /f(l)dH— W

Thus the error probability can be seen as the area of theinedat of the density.
For a symmetric densit.(f) can be written as
1 [T

Pf)=5 [ fOeEHa

Another important function for a symmetric LLR density asate is called the
Bhattacharyya parameter [17], which will be used in ChagteBupposeg (1) is a

symmetric LLR density ana = +1 is transmitted, the parameter is defined as

Definition 2.3 [The Bhattacharyya Parameter]:
The Bhattacharyya parameter associated with the symnasrisity,f (/), denoted
asB(f)is

B(f) = - f(he " 2dl. (2.6)

Remark 2.2 [Extremes of the Bhattcharyya Parameter [17]]: For a arbitrary

symmetric LLR densitf(/), we have

2P.(f) < B(f) < 2/ Pe(f)(1 = Pe(f)), (2.7)

whereP,(f) is the error probability associated with the symmetric dsng. Note
that lower and upper bounds on ti# f) given in (2.7) are satisfied with equality

for a BEC and BSC, respectively.

10



2.2 LDPC Codes: Graphical Representation

In this section, we introduce basic concepts of linear bloo#les and the struc-
ture of LDPC codes. In this thesis, all the codewords andrin&tion sources are

defined in the binary field, denoted &s.

2.2.1 Linear Block Codes

Linear block codes are one of the richest classes of codeshwiaive practical en-
coding and decoding complexity. In block coding, the encadits the informa-
tion sequence into blocks of fixed lengthcalled message blocks, representing
k information bits. Thus, there are a total2¥fcodewords corresponding to thé

possible message blocks. Therefore, a linear block codkfiised as:

Definition 2.4 [Linear Block Codes[17]]:  An (n,k) block code is a transforma-
tion of message blocks of lengthaccording to a pre-defined rule into blocks of
lengthn (n > k), called codewords. A block code is linear if and only if any

linear combination of codewords is also a codeword.

Let

u:[ul,uz,...,uk]TE}_é‘

be the vector of information bits. We define thenerator matrixG of an (n, k)
linear block code as

G = [g17g27"'7gk]T Efgxn

which generates all the codewords. etenote the codeword, then
v=u-G
k
i=1

Thus, linear block codes are fully specified by the rows oifrthenerator matrixG.
Another matrix which is useful in the decoding process aédinblock codes is

called theparity-check matrixdenoted a$#1. A vectorv of lengthn is a codeword

11



Information sequencesCodewords|
(000) (000000)
(001) (001011)
(010) (010101)
(011) (011110)
(100) (100110)
(101) (101101)
(110) (110011)
(111) (111000)

Table 2.1: The information sequences and their correspgratidewords for a (6,3)
linear block code

if and only if v - HT = 0 (parity check condition), where
H = [hy hy, ... h, T € 7m0
In fact, the rows oftl generate the null space 6, i.e., G - HT = 0. Thus, in

the decoder, if the received codeword does not satisfy thygdeck condition, it

means that errors have occurred during the transmission.

Example 2.1 Consider a (6,3) linear block codes, which has 3-bit messagel

6-bit codewords. The generator matkixand parity-check matrid{ of this code

100110
G=| 0 0101
001011

110100
H=|1010120
011001

Thus, we can obtain all the possible codewords according.®)(which are listed
in the Table 2.1

The parity-check equations are given as

are given by

—_

and

co@ecr ez =0 (29)
CoD oDy = 0 (210)
C1 @ Co @ Cy = 0 (211)

where® denotes the addition is.
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2.2.2 LDPC Codes: Structure

An LDPC code is a special kind of linear block codes which haparse parity-
check matrix. By sparse parity-check matrix, we mean thanthmber of nonzero
entries in the parity-check matrH is much smaller that the total number of entries.
Although LDPC codes can be represented by their generatbparty-check ma-
trices like other linear block codes, using graphical reprgation gives us a more
efficient way to analyze their iterative decoding algorithm

The graphical representation of linear block codes stastiéid Tanner graphs
[3]. Later on, people focused on factor graphs due to theirengeneral nature
[19]. A factor graph is a bipartite graph whose nodes aratfmaréd to two groups,
variable nodes and function (check) nodes. tkgreeof a particular node is the
number of edges connected to that node.

The variable nodes, which are binary variablef0,1}, represent codeword bits
and the check nodes represent the even parity constraints on their neighboring

variable nodes, i.e.,

P vi=0 (2.12)

iwien(c;)
wheren(c;) represents the set of all variable nodes connected &md & shows
the modulo-two sum.

Consideringn variable nodes and check nodes gives rise to a binary linear
code of block lengtm, dimensionk > n — r and anr x n parity-check matrixt.

In other words, théj, i) entry of H, hj;, is 1 if and only if thejthe check node; is
connected to théhe variable node;. The dimension of the code is equakte- r

if and only if all the parity constraints are linearly indeygent which is equivalent
to H being full rank.

Any linear block code can be represented by a factor graphthdncase of
LDPC codes, the factor graph is a sparse graph whose numeedget,/, grows
linearly with the number of variable nodes LDPC codes can be simply extended
to GF(q), however, in this work, we focus on the binary LDPC codes.

Now, let us look at how a binary linear code or a specifical LOf@e can be

13



Figure 2.4: A factor graph representing an LDPC code. Thplghas 7 variable
nodes and 4 check nodes

represented by factor graphs. Consider a bipartite géaplith » variable nodes
andr check nodes and& edges. We show variable nodes with circles and check
nodes with squares, a simple graph having seven variablesnald four check
nodes is depicted in Fig 2.4. In this case, the four parityckleguations given by

four check nodes can be written as:

LV DUV PUrsDU D=0 (2.13)
Co VL DUy DusPur =0 (2.14)
C3: VP3P vy P uvsPug =0 (2.15)
Cs V3 DUy D vgDur=0. (2.16)

LDCP codes can be classifiedragular or irregular according to their different
structures. An LDPC code is called regular if all the vargatddes and check nodes
have the fixed equal degrégandd,, respectively. It means that the numbers of 1's

in each row and column dfl are constant. For a regular code, it follows that
E=d,-n=d.-r. (2.17)

Therefore, assuming is full rank, the code rat& can be computed as

R=1 —% (2.18)

Otherwise,R > 1 — % [17].
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Usually, an ensemble of LDPC codes having variable node&gifegd, and
check nodes of degrek is represented ag(, d.)-regular LDPC codes. For exam-
ple, a (3,5) regular-LDPC code refers to a code with variablges of degree 3 and
check nodes of degree 5. According to the rate equation)2Herate of this code
is 2/5 bit per channel use (bpcu).

Irregular LDPC codes were first considered in [20] and it wasas that using
irregular graphs can largely improve the performance of CiBdes. In an irreg-
ular LDPC code, the numbers of 1's in each row or columiadire not constant.
By careful design, irregular codes can be found which perfquite close to the
channel capacity. For example, on the additive Gaussiaeraiannel (AWGN)
channel, irregular LDPC codes can be designed to perfornvdfmdredths of a
dB way from the Shannon limit [21].

For irregular LDPC codes, the variable and check nodes aralysiefined by
two edge degree distribution§),, A3, ..., \g, } and{p1, p2, ..., pa.}. In this no-
tation, \; denotes the fraction of edges incident on variable nodesgfed:, p;
denotes the fraction of edges incident on check nodes otdé@ndd,,, d. denote
the maximum degree of variable and check nodes, respactiMels, the edge de-
gree distributions obey the constraipg \; = 1 and)_, p; = 1. In polynomial
form, they can be denoted agz) = 3¢, \iz’"! andp(z) = >, pja/~". For
example, the degree distribution of the LDPC code showngnZ# can be repre-
sented as\(z) = sz + 22% andp(z) = 52° + 32*. Usually, an irregular LDPC code
can be represented 83(\(z), p(z)), wheren is the code length. In this thesis, we
mainly use the polynomial notation which is more convenient

Given A(z) andp(x) of an irregular code and its number of edgéswe can

have the number of variable nodes
d’u )\ 1
n=EY_ —= E/ Az)d, (2.19)
i=2 0
and the number of the check nodes

de 1
p.
r==~F E 7] = E/ p(x)dx. (2.20)
j=2 0
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Thus, ignoring the possibility of linearly dependent rows, the rate of the irreg-

ular code is given by

R:1—%:1—M. (2.21)
> ico G fo Ax)dx
Example 2.2 consider an irregular LDPC codé!''“°(\(z), p(x)) with variable n-
ode degree distribution(x) = 0.3z + 0.32® + 0.427 and check node degree dis-
tribution p(z) = 27. Using (2.19) and (2.20), there am)00 edges. According to

(2.21), the rate of this code ig/11 bpcu.

2.3 LDPC Codes: Decoding

LDPC codes are usually decoded by a class of iterative aligosi callednessage-
passing algorithms Since themessagepassed in these algorithms are probabil-
ities or beliefs, these algorithms are also called belieppgation algorithms. A
message passing algorithm is an iterative decoding atgonthere there are two
sources of information about the transmitted codewordsadla at each iteration:
information from the channel and information from previatesation. At each
iteration, the decoder combines these two sources of irgtom following some
predefined rules to gain better knowledge about the therhriditesl codewords.

To further illustrate the idea of iterative decoding altjums for LDPC codes,
consider the updated message from a variable nafelegreed, to a check node
in the decoder. In each iteration, this message is compubedd, — 1 incoming
message and the channel message to fact, thesel, — 1 incoming messages are
the outgoing messages of some check nodes which are updateolysly. Consid-
er one of these check nodevith degreel.., then the outgoing message is calculated
based the the incoming. — 1 messages. This process can be seen as a decoding
tree of depth one. Decoding trees of any depths can be obtaineontinuing in
the same fashion. Fig.2.5 shows an example of a depth-twaddegtree for an
irregular LDPC code, which represents two message padsiragions.

When a factor graph is cycle-free (there is at most one pdthds every pair

of nodes in the graph), the messages in the decoding tree alegrth are indepen-
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Figure 2.5: The decoding tree of depth two of an irregular COdéde.

dent. If the factor graph has cycles with the smallest lerigdiied girth)/, then
up to depthL%J the messages in the decoding tree are independent. Thuslthe i
pendence assumption is valid only up@q iteration and cycles make the message
dependent for further iteration.

There are many different message-passing algorithms f&?@.Dodes. In this
section, we will introduce some of them. We start vsilim-Producéalgorithm [22],
which is the most powerful iterative message-passing degadgorithm. Then, we

present the basic idea of other algorithms.

2.3.1 The Sum-Product Algorithm

In this section, we describe the sum-product algorithm dsalits message passing
and updating rule to further interpretation.

When the variable nodes only have binary values, the prbtyabmessages
passed along the edges have only two val&&8) or P(1) with P(0) + P(1) = 1.
Here,P(z),z € {0, 1}, denote the probability of. Thus, passing only one &f(0)
or P(1) is enough for passing the message. However, it is usually mdvanta-
geous to use LLR instead of probabilities. For binary-vdltendom variable, LLR

is defined as
P(0)
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In fact, the sign of LLR shows the hard estimation while itsgmigude reflect
the reliability of decision. The reason for using LLR is thmtomputer implemen-
tations, the probability values that are very close to zeneoy close to one can be
represented without causing a precision error.

For thelth iteration of the sum-product decoding, all incoming LLR @ro-
cessed by check nodes and then the resulting messagesdiegot., ., are sent
back to the variable nodes. These messages are processaddblesnodes and
then sent back to check nodes, these messages are denatéd byAs there is no
message from the check nodes at iteratien 0, the variable nodes are initialized
by the message calculated based on the channel output valgiesvhich can be
found by
(2.22)

mo, = log

wherez € {0, 1} is the channel input bit angl is the channel output. And the
message at the check node, ., is initialized as0.

The iterative process of sum-product algorithm can be de=tby two iterative
updating rules. The updating rule at a parity-check noige

(I-1)

_ Me—v;
ml_,=2tanh " [ J] tanh( ;) : (2.23)

vien(c)—v

wherem,_., shows the message sent from ned® nodeb andn(a) is the set
of neighboring nodes connected to nadeln fact, to simplify the notation, we
usually use CHK to denote the check nodes update rule, whek&(@,, m,) =

2tanh~" (tanh(™) tanh(22)). Thus, for a check node of degrég the update

rule can be also shown as
l -1 -1 -1 .
mc—)v:CHK(mc—wl?m ceem )7”2'6”(0)_@7@:172“'7dc_1-

e—vg " T ey, g

The update rule at a variable nodés

mh.=mo,+ Y mi, (2.24)

cjen(v)—c
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Figure 2.6: An example of message passing over factor grihie code in Fig.2.4

Also, let us assume VAR, my) = my + me, for a variable node of degrek the

variable update rule can be simplified as

I I I ! ~
vose = Var(mo,, me, _,,, m ceem ),ci €n(v) —ci=1,---,d,—1.

m co—? y Hheq, —1—w

To clarify these updating rules, a simple example is showfi@?2.6. At the
Ith iteration, the variable, passes a messagedq denoted asn! and then

va—rca?
¢, passes the calculated messagestodenoted asn. _,, . This process can be
done based on the following procedure. At the first half tierg v, calculates its
outgoing message based on the message it receiveddr@md c; according to
(2.24) and send it t@,. In the next iterationg, calculates its outgoing message
based on the messages received figm,, v; according to (2.23) and send itte.

At the lthe iteration, a decision for a variable nodean be made based on the

following decision rule:

. O]
v 0 if Mo, + ZCjEn(v)—c Mej—v > 0 (225)
1 |f Mo, + ZCjEn(v)—c m((;l])_w < 0

If 110, + 3 en)—e M6+ = 0, the decision can be randomly chosen between

and1 with equal probability.

One key advantage of the sum-product algorithm is that itedi@g complexity
grows linearly with the block lengtlhh because the number of edges is linearly
increased witln. Hence increasing the block length for reducing the gappacity

does not increase complexity per information bit.
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When the code’s factor graphis a tree, i.e. cycle free, thegroduct algorithm
is optimal [4, 19, 23]. However, when the factor graph hadesjcsum-product
becomes sub-optimal [4, 19, 23]. However, since with langelblength the girth
of the cycles grows and the graph becomes tree-like, themonhict algorithm
is still used in the decoding of LDPC codes, and it is also oleskthat even for
moderate block length (a few hundred bits), the performaridbe sum-product

algorithm is fairly good [19].

2.3.2 The Min-Sum Algorithm

Min-sum decoding is the second most attractive decodingrighgn for LDPC
codes due to its less complexity and easier implementat8ince min-sum is a
simplified version of the sum-product algorithm, it is notediective and powerful
as the sum-product algorithm.

In the min-sum algorithm, the update rule at the variableesdd the same as
sum-product algorithm (2.24), but the update rule at thekmede is an approx-
imation of (2.23). As we observe that for> 1, In(cosh(z)) ~ |z| — In2. An

approximation for CHK can be obtained as

CHK(my,mqe) =~ [(m1+m2)/2|+ |(m1 —m2)/2] (2.26)

= sign(my)sign(ms) min(|m|, |msl).
Applying this approximation in (2.23), the check node updatle for min-sum
algorithm is presented as

mb,,= min_ (m{7) J[ signm{) (2.27)

Uien(c)_{v} U,'En(c)_{v}

This approximation becomes more accurate when the magnitithe message is
increased. Therefore, in the later iterations, when themnitade of the messages
usually have become large, the performance of this algorigralmost the same as
that of sum-product algorithm. Also, there are other mesgsgsing algorithms
such as Gallager’s algorithm A and Gallager’s algorithm R which are not the

focus of this thesis.
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2.4 LDPC Codes: Analysis

In order to analyze the performance of an ensemble of LDP@goae need to
statistically analyze the message passing decoder. Irséuon, we introduce
some analysis methods which are used in the future chaptetsus first present
some basic background.

In this part, we consider an ensemble of LDPC codes whosdgdéss than
the capacity of the channel. As mentioned in the previoui@ecwe have two
sources of information available in the decoder in itemtecoding. One is called
intrinsic information which is observed from the channed &éme other one is called
extrinsic information which is from the previous iteratfonBased on these two
sources of information, extrinsic information for the ndgtation is calculated. In
a successful decoding, the reliability of extrinsic megsagets better and better
as the decoding continues iteration by iteration. Thusaftalyzing of iterative

decoders, the statistics of the extrinsic messages aredtatdeach iteration.

Check Node Symmetry

Consider a check nodeof degreel.., with input LLR messagesi,, ma, - -+ , mq, 1,
the check node update rule is symmetric if

de—1

CHK(byma, -+, ba.—1ma,—1) = CHK(my,my, -+ ma_1) (] ] b2).
=1

whereb; € +1,i =1,2,--- ,d. — 1 and CHK denotes the check node update rule,

which generates an output message based on thedpmgssages.

Variable node symmetry

Consider a degreé; variable node, with input LLR messages, my, - - -, mgq, 1

, the variable node update rule is symmetric if
VAR(_m07 —Mmy, -, _mdc—l) - _VAR(m07 my, - - 7mdc—1)7

where VAR denotes the variable node update rule, which gég®one output mes-

sage based on the inpdit messages which includes the channel message
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It is shown in [25] that over a BIMS, if the update rules at theck nodes and
variable nodes are symmetric, then the performance of #uedkr is independent
of the transmitted codeword. Therefore, in this work, weiassthat all-zero code-
word is transmitted. Under this assumption, the error ratelie defined based on
the percentage of messages carrying a belief for ‘1’.

It is worth mentioning that when the block length is large, #ffect of cycles in
the decoding performance is small and vanish asymptoticaherefore, the ran-
dom messages at the input of variable nodes and check noclemééndependent.
In this work, we always assume the code length is large ensugihthat the factor

graph is a tree and all the messages are independent.

2.4.1 Density Evolution

Density evolution, first presented by Richardson and UrbanK25], is a general
asymptotic analysis method for the message passing dexcdtlean also be used
for other codes defined on graphs associated with iterageeding [26, 27]. It
tracks the evolution of the pdf of the extrinsic message el @aration.

The analytical formulation of this technique can be foun{P)]. Density evo-
lution is computationally complex thus not suitable foredir use. For practical
use, Chung proposed a quantized version of density evalaéitbeddiscrete densi-
ty evolutionwhich quantizes the message alphabet and uses probaktél#y func-
tions (pmf) instead of pdfs in order to make a computer im@etation possible.
Discrete density evolution is a powerful tool for code desagd performance anal-
ysis [21]. In the rest of this work, when we refer to densitpletion, we mean
discrete density evolution. Next, we present some detiils®technique for sum-
product decoding.

Before we go to the details, let us first introduce the quargifunction used in
the density evolution, denoted @§). This function can be represented as

(2410 ifz>2,

Qz) =} [£-1]-A ifa<-2, (2.28)
0 , otherwise

whereA is the quantization interval.
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At the first iteration, the variable nodes are initializedhthe pmf of the chan-
nel messages. Then, these messages are sent to the chesk Aadethe check
nodes calculate the output pmf based on the incoming pnitsafiig the check n-
odes update rule (2.23). For a check node with two input pméndp,, the output
pmfis given by

pout[k] = Z pa[i]pb [j]? (229)
(i,5):kA=R(A,jA)

where
R(a,b) = Q(CHK(a,b)).

These equations can be implemented using a look-up tablea Fariable node

with two incoming pmfgp, andp,, the output pmf is given by

Pout K] = pa[k] () p[K], (2.30)

where@) denotes the discrete convolution which can be easily donesing fast-
Fourier transform (FFT) techniques. To simplify the naiatilet us denote the pmf
update operations for a check node and a variable node omteming pmfsp,,
andp, asCHK (pa, pp) andV AR (p,, py), respectively.

Also, notice that the update rules discussed in Sectiod 2&h be written as

CHK(ml, mo, - ,mdc_l) = CHK(ml, CHK(mg, s ,mdc_l)) (2 31)

VAR(mo, my, - - ,mdv_l) = VAR(m(], VAR(ml, cee ,mdv_1)>. '
This implies that the check nodes and variable nodes opasatian be done pair-
wise. Assuming the variable node message pmf iavhich is the same for all the

variables) and the check nodes message pmy, husp. andp, can be calculated

by
Pe = CHIC(pU, C%K(pva o 7CHIC(pv7pv))
P = VAR (po, VAR(pe, -+, VAR(pe, pe))-

wherep, is the intrinsic message pmf. At tlin iteration, we also use

(2.32)

P =p0 @R Mp(ph ™))

as the shorthand for the variable node update rule.
If the all-zeros codeword is transmitted and BPSK is usedgaoh iteration

the probability of error of the messages can be represesttiteanegative tail of

23



the pmf. Thus, the decoding is successful if this negatilevémishes after some
iterations, i.e.,
lliglopi’ = 0o

Due to high complexity of the exact density evolution, theewe been some
approximations in the literature. The most important omeszaussian approxima-
tions proposed by Churgf al.[28] and semi-Gaussian approximation proposed by
Ardakaniet al.[29]. In the Gaussian approximation, Chueigal. assumed all the
extrinsic messages have Gaussian distributions. In [2&@akaniet al. consider
that only variable node messages are Gaussian. These radtioel considerably
lower complexity than the density evolution with some pgni the accuracy.

Density evolution is a powerful tool for analyzing the iteva decoding under
the sum-product algorithm. It is worth mentioning that othiterative decoding
algorithms (e.g., the min-sum algorithm) and other coddimeé on graphs which

use iterative decoding can also use density evolution asvarnbal analysis tool.

2.4.2 Decoding Threshold of An LDPC Code

The decoding threshold of an LDPC code, first introduced loh&idson and Ur-
banke [25], is defined as the worst channel condition for tvitihee message error
probability converge to zero as the number of iteration goesfinity. In other
words, when the channel is better than the decoding thrésdehsity evolution
can converge to an arbitrary small message error rate. Wigechiannel is worse
than the decoding threshold, the error probability rem#&nger than a constant
even if the number of iterations goes to infinity. If the threlsl of a code is equal
to the Shannon limit, this code is said to be a capacity-aaigecode.

The decoding threshold is one of the most important propedi an LDPC
code. It depends on many characters, such as degree distnigyuthe decoding
algorithm used, etc. For example, the threshold of the {&@llar code on AWGN
channel under sum-product decoding algorithm is 1.102 5while under min-sum
decoding algorithm it is 1.699@58. This means that for successful convergence

under the sum-product decoding, the channel signal-tsermaition (SNR) must be
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better than 1.1018B and for the min-sum decoding better than 1.69%0 It is
worth mentioning that we usually use finite-length codesracfce which would
demonstrate a gap to the asymptotic performance and thisigagases as the code

length decreases.

2.4.3 Extrinsic Information Transfer Chart Analysis

A fast and efficient approach for analyzing iterative decsdeto use an extrinsic
information transfer (EXIT) chart. The idea of this methadhich was first intro-
duced by Ten Brink [30], is to track the evolution of a singéggmeter iteration by
iteration. In other words, this parameter can be seen as aureeaf the decoder’
success. In fact, many parameters can be chosen to presemédbder’s evolu-
tion. For example, one can track the SNR of the extrinsic agss [31, 32], the
mutual information between the transmitted bits and tharesit messages in each
iteration [30], or the extrinsic message error probabil9, 33], etc. To help the
understanding, we consider here an EXIT chart based ontigattke message error
rate.

Inthe EXIT chart method, we express the message error pitpabthe output
of one iterationp. ,,; in terms of the message error probability at the input of the

iterationp, ;, and the intrinsic messaggsii.e.,

Pe,out = f(pa,in:pO)' (233)

For a fixedpy, the EXIT char can be plotted usirn@. ., pe.ou:) COOrdinates.
Usually, EXIT charts are presented by plotting bgthnd its inversef —! to better
visualize the behavior of the decoder in each iteration. W@a EXIT chart is
plotted in Fig.2.7. Each arrow in this figure represents eration of decoding. If
the tunnel of an EXIT chart is wide, only a few number of itevas is needed for
convergence. When the tunnel is open, we say the EXIT chapasa. Otherwise,
if the EXIT chart gets closed such as for some,, it happens thap. ;. > pe.in.
the error probability cannot get smaller than a certain aod the convergence

cannot be achieved. An open EXIT chart requires that theechevalways below
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Figure 2.7: An EXIT chart of a (3,5)-regular LDPC codes on BW&WGN under
the sum-product algorithm. This EXIT chart is based on ngssaror rate.
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the 45-degree line. The decoding threshgldvhich is the worst channel condition

for an open EXIT chart, can be written as

pa - arg Sugof(pe,impO) < pe,im fOf a” 0 < pe,in S Po- (234)

Since an EXIT chart tracks just the evolution of a single paater, it is not as
accurate as density evolution in general. However, whemptlief the extrinsic
messages can be fully represented by a single parametér,asua the case of
decoding on the BEC or for hard decoding algorithms, EXITrtshare exact and
equivalent to density evolution. Due to their simplicit)XE charts are commonly
used for LDPC code design [34]. In the next section, we wiktfty discuss how

EXIT charts can help us to find good LDPC codes.

2.5 LDPC Codes: Design Methods

In this thesis, an ensemble of LDPC codes is representedsphéck node and
variable node degree distributiongz) = 2%, p;zi~! andA\(z) = 2%, Ao,
respectively. Thus, designing a good code means findingedelistributions which
have a desired performance under some constrains. The LB&RCdesign is usu-
ally done by numerical optimization method.

There are mainly two methods to design an LDPC code. One ia fgiven
minimum rate, we seek a code which has the highest decodiesiibld. Generally,
this approach is complex and is usually done by search bas#tbds. Details can
be found in [15]. The other method is based on seeking thewbdéas the highest
rate for a given threshold.

When we are designing an LDPC code, an analysis method isaksded to
measure the performance. We use EXIT chart to design thelmxiise the opti-
mization problem using this approach can be formulated aeear program which
can be solved efficiently. In the design method of this work,fix the check de-
gree distribution and optimize the variable node degreebligion due to the result
reported in [15, 21].

In the EXIT chart method, we replace the output pdf by a pdfnfra family
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of pdfs which has the same entropy at each iteration of demsilution. Given
a channel with capacitg, the channel entropy i#, = 1 — C. Now denoting the
output entropy of the previous iteration hywe can define the output entropy of a
degreervariable node ag;( Hy, ), which is also called thelementary EXIT chart

for degreet variable nodes. Thus, the condition for successful degpidithat

> Xifi(Ho,h) < h, forall 0<h< H, (2.35)

This is a linear constraint on the design paramefars: > 2}. Givenp(x) is fixed,
according to (2.21), it is sufficient to maximi€, *7 to obtain the maximum code
rate. Thus, the process of finding the highest rate for a gdM@ can be presented

as the following linear programming problem:
maximize _ ﬁ (2.36)
- 7
subject to\izz 0
d =1
> Xifi(Ho, h) < h,Vh € [0, Hy),
The elementary EXIT chart can be found by density evolutia the EXIT chart
of a code is a linear combination of the elementary EXIT chart
Although the performance of LDPC codes is not too sensitivg i), further
optimization onp(x) will get better results. Suggestions and guidelines can be

found in [15]. During this work, we use this method to obtaiose-to-capacity
LDPC ensembles.
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Chapter 3

Low Complexity LLR Calculation

3.1 Introduction

There have been many advances for the iterative decodingthlgs of graphical
codes. Error-correcting codes, such as LDPC codes [5] abd todes [2], asso-
ciated with iterative decoding are known to approach then8ba limit on many
channels [21,35,36]. These codes have been also propaddtM® channels and
relay channels [37].

For soft iterative decoding, the messages calculated imigzration are usually
LLR. LLR are shown to be efficient metrics in the decoding andlgzing the per-
formance of binary graphical codes [15, 19]. The channel lusRally depends on
the channel output, noise variance, fading charactesistied also the availability
of the channel state information (CSI) at the receiver. Tdy@acity of the channel
is also affected with the availability of channel paramei&rthe receiver. Under
a realistic wireless channel, the relationship between laod the channel out-
put can be quite complex. For example, under MIMO channdl®d.are usually
non-linear complicated functions of the channel outpuhevBen CSl is perfectly
known. As a result, it may be time and energy consuming fordgmoder to cal-
culate exact LLRs. Consequently, accurate approximatesLétduld be used to
implement efficient decoders.

Calculation of approximate LLRs has been considered ine¢bent literature,

e.g, see [11-14]. For example, the expected value of chagjaielwas used as
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an estimation parameter in [20, 36], but this choice cannatantee the optimum
performance in the decoder. Another common approximatiethad is the max-

log approximation. The max-log approximation is usuallglaate at high SNRs,
but modern error-correcting codes such as LDPC codes ahd tiodes usually

operate at low SNRs [11]. Moreover, when there is no CSI ateabeiver, the max-

log approximation is still quite complex. Thus, alternatimethods, which are also
accurate at low SNRs, are much needed.

Piecewise linear LLR calculation has been considered ih fdrisoft Viterbi
decoding of convolutional codes in the HIPERLAN/2 standalrd [13], approx-
imating LLRs by linear functions has been proposed for BPSKr symmetric
channels and a measure of LLR accuracy has also been inedusing this mea-
sure, linear LLRs have been designed with almost the sanferpemce as true
LLRs. Later, this measure has been generalized to binammagyric channels
in [14] and applied to non-binary modulations under BICM][38umerical results
have also shown that the performance loss of their optinpeszewise linear LLRs
based on the generalized measure is quite small.

The linear approximate methods considered above are alksémton SISO
channels. MIMO technology plays an important role in modsmeless commu-
nication due to its higher spectral efficiency (more bits pecond per hertz of
bandwidth) and link reliability [17]. The problem of findirg good approxima-
tion method for MIMO channels when CSI is known at the reaeigestudied in
this chapter. We find a piecewise linear approximation whikbdws for the maxi-
mum achievable rate on the MIMO channels. We also show tleapproximation
method closely approaches the capacity under true LLR ledion.

The two-way relay communication channel has gained sigmfinterest re-
cently due to its potential application in modern cellulatwork. One advantage
of two-way relay channel is that it has higher spectral efficy than the one-way
relay channel [39, 40]. In this chapter, when no CSI is abédlat the receiver, we
find a piecewise linear approximation for the two-way rel@marmnel. Numerical

results confirm that the proposed method outperforms thelogaapproximation
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and performs closely to the true LLRs.

The rest of this chapter is organized as follows. Sectiorr&/ws some pre-
liminaries and studies the proposed approaches. Sectiostiddies the approxi-
mation method for the MIMO-BICM channel. Approximation rhetl for two-way
relay channel when there is no CSl is studied in Section 34ti& 3.5 concludes

the chapter.

3.2 Preliminaries and Approaches

3.2.1 Important Approximation Methods

In this section, we review some approximation methods ackidraund knowledge

which will be used in this chapter.

Max-log Approximation

Consider a sequence of real numbegrz, - - - , z,,, the method called max-log ap-
proximation is described in (3.1) and is accurate when tleeaedominant term in

the sequence.
log Z 2 & maxy log zy. (3.1)
k

Minimum Mean Square Error Approximation (MMSE)

Consider a random variable> 0 with arbitrary pdf and its estimatay, its MMSE
is given by

7y :argm}nE(\r—ﬂz). (3.2)
Where E(-) denotes the expectation. This estimation has a simpleisohathich

is7 = E(r). This approximation has been widely used in the literat@ée 36].

3.2.2 Capacity

As we discussed in Chapter 1, the capacity of a BIMS chanmebeawritten via
the pdff(l) of its LLRs. That is

C=1- /+OO(1 —logy (1 + exp™))dz. (3.3)

o0
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This equation is only valid for the BIMS where its LLR is symime
When the channel is asymmetric, we cannot use (3.3). In sagdscif the input
is equally likely O or 1, the capacity of the channel is giver{4i]:
C=1- % /+OO log, (1 + e Hp°(1)dl — %/w logy(1 +ep'(Ddl  (3.4)

(o) [e.e]

wherep® (1) denote the LLR pdf conditioned on thes {0, 1}.

3.3 Low Complexity Linear LLR Calculation for MIMO-
BICM Channel

MIMO technology has attracted much attention in the pastdevades since it can
offer high spectral efficiency and reliable wireless comination over a multi-path
environment [42]. BICM is a pragmatic technique which caniexe large diversity
orders in fading wireless channels [38]. The combinatiatme$e two technologies,
MIMO-BICM, has also received attention recently, becaulsisdower detection
complexity and near-optimal performance [43—-45]. In thest®n, we study the

piece-wise linear approximation for MIMO-BICM channels.

3.3.1 Background
Multiple Antenna Channel Model

Wireless communication experiences multi-path propagadis the signal is re-
flected by the nearby surfaces on the way to the receiver. Ats-paih propagation
causes dispersions in delay, frequency and the spatialidem@ach antenna re-
ceives transmitted signals with different attenuatiorggghor propagation delay.

If the separations of antennas are sufficiently large, weasanme the received
signals of different antennas are independent. Each dguoivipath between each
transmit and receive antenna experiences a complex Gaussge with zero mean
and unit variance, denoted @8/(0, 1). This channel model is depicted in Fig. 3.1.

For the fading channel, there are different classificatibased on differen-
t rules. For example, based on speed of change in the magratnd phase of

the channel gain, a fading channel can be classified as stingf@r fast fading
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M, transmit M, receive
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L °
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Figure 3.1: MIMO channel model

channel. From the perspective of frequency, a fading cHasraassified as flat
fading or frequency-selective fading. In this work, we onbnsider the slow, flat
fading channel which means that the amplitude and phasesafttAnnel gain can
be seen roughly constant over the period of use and all fresyueomponents of
the signal will experience the same magnitude of fading.[42]

MIMO-BICM System Model

The block diagram of a MIMO-BICM system is depicted in Fig@.3Here, a flat
slow-fading MIMO channel with\/; transmitting antennas and, receiving an-
tennas is considered.

During the transmission, a sequence of binary informatitdenerated by the
binary source is first encoded by an error-correcting encadd then interleaved
to get the sequencf;}. After being de-multiplexed intd/, antenna sequences,
each group ofn bits are mapped to data symboig,c X',: = 1,..., M,. HereX
denotes the symbol alphabet of sj2¢ = 2™ and unit average power. As a result,
at time indext the transmit vector, which carrid&, = m x M; coded bits, is given
byx = (21, 79,...,2)7 [12,46].

At the receiver, the received vector is given by

y =+/7Hx +n.
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Figure 3.2: MIMO-BICM transmission model.

whereH is anM, x M; channel matrix, the entries of which are all independert, an
n is the additive white Gaussian noise vecter,, n, ..., ny.)*, each component
of which is modeled as i.i.dCA/(0,1). AssumingH with normalized entries and
unit average power is the average SNR per transmit antenna.

At the receiver, the received signgland the channel matriKl are used to
calculate the LLR value for each hit. Then, the sequence of LLR values is de-
interleaved and passed to the decoder to obtain an estm@dtibe information bits
Uj.

In the case of ideal interleaving, the system can be equitiglseen ask,
parallel independent and memoryless binary-input sulohobla [38]. As a result,
the capacity of the MIMO-BICM is given by = Eﬁl C;, whereC; is the capacity

of each sub-channels.

LLR Calculation

Let X denote the sets of transmit vectors for which tite coded bitc; = b €
{0,1} (1 = 1,..., Ro). Assuming a uniform input distribution and that the chdnne

matrix is known at the receiver, the true LLR for thth sub-channel is given by

Plc; = H xex0 P\Y X, H
l; = log (c; = Oly, H) = logZ it bl ), (3.5)
P(Ci = 1|Y7 H) er)(il p(Y|X7 H)
where the conditional pdfi(y|x, H), is given by
y — /7/Hx|?
p(y|X7 H) = (27T)J\/[r €xXp <_ || \/2_ || ) (36)

According to (3.5)/; is a function ofy denoted ag; (y). Also, it is clear that

the complexity of computation of true LLR values grows exguatmally with the
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number of transmit antennas. As we mentioned before, fartiped purposes, an
approximation method is desired.
Applying max-log approximation (3.1) to (3.5) results in
1
I ~ = | min ||y — /7Hx||* — min ||y — /7Hx||? | . 3.7
5 (il = VARXI? iy — /788 3.7)

k3

Obviously, this method reduces the complexity, but the deapace still grows
exponentially with)/;. Also, the max-log approximation is usually accurate when
there is a dominant term in the sum, which usually happengat3NRs. At low

SNRs, therefore, other methods should be considered.

3.3.2 Problem Description and Proposed Method

In this section, we are looking for an efficient LLR approxitoa method over
MIMO channels with perfect CSI at the receiver. In other v&radle seek low-
complexity approximate functioris = ﬁ(y) which provide good performance. To
optimize the parameters of the proposed approximate LLBuUtating functions,

we need an LLR accuracy measure.

LLR Accuracy Measure

Since the capacity of sub-channeis given by (3.4), for a single-input single-
output channel, it is shown in [14] that good approximate ELdan be found by
maximizing

R 1 [T " WA ] [t . A
Ry=1- 5/ logy (1 + e~")pl(1)dl — 5/ logy (1 + €")p; ()dl,

Where;ﬁﬁ?(i) is the conditional pdf of approximate LLRs giveph = b. In other
words, approximate LLRs are found in the sense of maximithegachievable rate
on the SISO channel.

Similarly, for the MIMO case, we propose the following LLRcacacy mea-
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sure:
“+oo

. Ro . Ro 1 . o
=1 =1 -

[e.9]

1 [ Pl
—5/ 1og2(1+el)gs}(5)dz>. (3.8)

Maximizing this measure is equivalent to maximizing eagimtef the sum, and
thus maximizing the overall achievable rate on the MIMO ctedn This measure
can be seen as the generalization of the method proposed]ifirpin the SISO
case to the MIMO case.

Given the LLR accuracy measure of (3.8), the procedure ofrfindood LLR
approximating functions is as follows. First, for each shiannel, a general LLR
approximating function is defined ds = /% (y), where®, denotes the set of
parameters. Next, at any SNR, the optimized paramélgos each bit-channel are

found by solving the following optimization problem:

OP' = arg max R;, (3.9)

subject to ¥;(0;)=0.

Here, U, (O;) = 0 represents the constraints that may be impose®grsuch as

continuity conditions.

LLR Approximation Functions

To find the desired approximation functions, the first stép choose the right class
of approximation function. Clearly, many approximatiométions can be applied
to solve the optimization problem in (3.9). Here, piecewisear functions are

chosen because of their low implementation complexity.

For the MIMO channel of our casg; € CY whereC denotes the set of
complex numbers. First, thi/,-dimension space is partitioned infg, regions
Q4,...,Qy,. The number of regions and their shapes are chosen basedsireihe
of true LLRs and the affordable computational complexitgxh for each region,

a linear function is proposed for the approximation. Thhe, proposed general
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approximation function for the MIMO-BICM system is as fols:

Ni
= = (afy + B) Lyea,)- (3.10)
k=1
k k,1 k, My k
Here,af = (a;"",...,a;"") are row vectors an@; are real scalars. Alsd,,

denotes the indicator function.
N;

Finally, 0; = {al,...,a g}, ..., 3V} are the set of parameters needed to be
optimized, and),’s are chosen by search. It is worth mentioning that the sytrtyme
of the true LLRs usually reduce the number of parameters.eti@billustrate our

method, two examples are provided in the following.

Example 3.1 ¢ x 1 MIMO Channels) In the case o2 x 1 MIMO channels, the
received signal is just a complex scalar= C. Thus,q; is also a complex scalar.
Then, (3.31) becomes:

N;

=" (afy+ ) Lyean. (3.11)

k=1

5

where(2;’s partition C into N; regions by one-dimensional boundaries. Thus, the
parameters needed to be optimized in this cas&are {a!,... o 8L, ..., BN}

and are optimized by (3.9).

Example 3.2 ¢ x 2 MIMO Channels) In the case of multiple receive antennas,
the true LLRs are functions of the multidimensional vegtoFor example, in the
case of2 x 2 MIMO channels, the received signgl = (y1,1,)” and f° are
functions of a two-dimensional complex vector. &ét= o', a?), then

N;
7w =3 (1t ek ] 4 ) 2en, (3.12)

i Y2

where(); are segments of thE€? domain. Thus, the parameters here d@g =

{(O[il’l’ail’2)7"'7<O[’fVi’17O[ZA{Vi’2>7 7}7"'7ﬁi]\7i}'

As mentioned earlier, after observing the shape of true L.MRsdecideV; and the

corresponding regions. For example at low SNR, where BPQi¢gnsmonly used,
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observing the shape of true LLRs suggests fat 1 is enough. In other words,
we only have2; and in fact(2; = C. This leads to linear approximation functions,
thus minimum complexity. Increasinyy; provides slightly better performance at
the cost of extra complexity. Thus, we have

f7 ) = [od o] Bj + B (3.13)

The same process in (3.9) can be applied here to find thesexamjattion functions.

3.3.3 Experimental Results

In this section, the performance of the proposed methoduistibted through ex-

amples and numerical results. Here BPSK is used as the nimhudgheme.
According to Section 3.3.2, the first step to find a good appnakng func-

tions is to observe the shape of the true LLRs and then prapesapproximating

functions. Next, using the optimization process (3.9), w&mize their parameters.

Example 3.3 Consider & x 1 MIMO-BICM system with perfect CSl in the receiv-
er. Assuming the channel mati = [2, —1] and SNR= 5 dB, according to the

shapes of true LLRs, we propose the following approximdtiontions
I, = Alol(y) =aj -y, (3.14)

b= f52(y) =(ab -y + B3)Liye—r + (@2 -y + B reyer
+ (0 -y + B3) Lyzr). (3.15)

Because of the symmetry properties of true LLR$,= a3 and 5 = —f3;
and 32 = 0. Thus, the parameters needed to be optimizedare= {«}, and
O, = {a3, a3, 43 }. For the given SNR, we optimiz8, andO, by solving (3.9) and
we findr via search. The optimized parameters are give®by- {—3.5532} and
O, = {2.5758,2.1682, —1.3784,0.55}. And the corresponding approximate LLRs
are depicted in Fig.3.3. Moreover, for the same SNR, apprate LLRs obtained

by max-log approximation and the true LLR values are catedland plotted in the
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Figure 3.3: Comparing the true bit LLR valukesith the optimized piecewise linear
LLRs and max-log approximation for BPSK at= 5 dB.
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Figure 3.4: Comparing the achievable rate of MIMO-BICM chels with the
achievable transmission rate under proposed approxima®s land max-log ap-
proximation.
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same figure. It can be seen that the proposed optimized pseénear LLRs are
more accurate than max-log in the small LLR regions, whid¢acas$ the reliability
of the received bits significantly.

To depict the performance of the piecewise linear LLR furdi in Fig. 3.4,
we plot the maximum achievable transmission rate of our otgtimax-log approx-
imation and the true LLR versus SNR. It can be seen that thie\adble rate of
piecewise linear approximation is always close to the dapa¢ MIMO-BICM
system and better than that of max-log approximation. Fanmgpte, at SNR- 2 dB
the gap of achievable rates between piecewise linear ajppaton and max-log

approximation is about.5 dB.

Example 3.4 Now consideR x 2 MIMO-BICM system without space-time coding.

1 =2
-3 4
discussed earlier, for BPSK, we can use linear approxinmatimctions (V; = 1).

Thus,

Assuming the channel matiix = } and the received signgl = Bl] . As
2

L= [ (y) = aiyi + adys + 51, (3.16)

Iy = f5(y) = abys + adys + B3, (3.17)

Thus the parameters af® = {a],a?, 51}, andOy = {3, a3, 53 }. Given SNR=

1 dB, the optimized parameters are obtaineddas= {—0.1581,0.7797,0} and

O, = {0.7257,—1.2574,0}. The achievable rate of the proposed meth@d4821 bpcu
while the capacity is 0.4859 bpcu and achievable rate of loguapproximation is
0.4574 bpcu.

3.4 Low Complexity Linear LLR Calculation for Two-
way Relay Channel

In this section, we study the piecewise linear approxinmefios LLR calculation in

two-way relay channels.
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3.4.1 System Model

Relays have been found many applications in wireless n&tteognhance reliabil-
ity and coverage [39, 40, 47]. Although one-way relaying basn widely consid-
ered in the literature, two-way relaying is more suitableewldata flows in both
directions. The two-way relay channel (TRC), which was fatstdied by Shan-
non [47], can be used to model many practical communicaenarios such as
two separate mobile terminals communicating with eachrdifieising a base sta-
tion or a satellite. Recently, TRC has gained renewed istéoem both academic
and industry due to its numerous potential applicationsatilar and peer-to-peer
networks [48-50].

One-way Relay Channel

New Information Exchange

Figure 3.5: Comparison of information exchange under oag-and two-way re-
laying

One attractive feature of this two-way relay channel maoglthat it can improve
the spectral efficiency of the one-way relay under half-dwmonstrains [39, 40].
With a half-duplex relay node, one-way relaying has to use pinases to exchange

information between two terminals, i.e., it takes two plsagesend information
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Figure 3.6: Two-way relay channel

from one terminal to the other terminal and another two ph&sethe reverse di-
rection (see Fig. 3.5). However, with two-way relaying, va@ anprove the spectral
efficiency by using only two phases to exchange informatienvieen the two ter-
minals (see Fig. 3.5).

There are mainly two strategies at the relay: amplify-amvard (AF) and
decode-and-forward (DF) [39, 50].

Amplify-and-forward: Amplify-and-forward is the simplest form of relaying.
As the name suggests, the relay simply amplifies the recesiggthl before for-
warding it to the destination. However, the main problem &f i that the relay
amplifies the noise as well, which may degrade the performanc

Decode-and-forward:A decode-and-forward relay will sample, demodulate
and decode the received signal. Then, the regenerated aodetk signal will
be transmitted to the destination. DF relays do not amphi&/ noise, thus when
detection quality at the relay is good, the performance uslhg better than that of
AF relay. Moreover, when the relay decodes and forwardsitieypsum () of the
input messages, comparing to the AF the sum-rate of the twonals is increased
by 50% and the decoding complexity is also reduced by 50% [50]

In this work, we consider a memoryless two-way relay fadingrmel with two
communication nodes and one relay node shown in Fig.3.6s€ltveo communi-
cation nodes want to transmit data to each other but withalitegt path between
them. Flat slow fading environment is assumed between taisiand the relay.
Letz = c; & c, denotes the decoded symbol at the relay.

The system model is depicted in Fig.3.7. WL&t= [u;1,u;2... Ui k], Uig €
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Figure 3.7: System Model

{0,1} for k = 1,2,..., K denote the information bits at nodeand C; =
[Cin,Cio. .. Cikl|,cin€4{0,1} for n=1,2,..., N denote the coded bits based
onU;. Assuming both nodes using the same channel coding scHéméeerel” is

a reversible mapping function, the relation betwégandC; is shown as
L(U;) =C;, T'HC) =U; (3.18)
wherel'~! represents the decoding procesd. 1§ a linear scheme then we have
DU, @ Uy) =T(Uy) & T'(Uy). (3.19)

Thus, the same decoding scheme can be used at the relay [51].

At the relay, the received signal is given by
Y =112 + roTo + n. (3.20)

wherez; represents transmitted symbol at termiinal= 1, 2, andn is the Gaussian
noise with zero mean and variane& Also,r; > 0 are independent channels gains
with arbitrary pdfsf;, i = 1, 2.

For simplicity, BPSK modulation is assumed for the proposeieme, which
can be extended to other typical modulation as the futuré&widntus, the transmit-
ted symbol is given by

x; = 2¢; — 1. (3.22)

3.4.2 LLR Calculation and Problem Definition

Assuming thatr is known at the relay and uniform input distribution, threersar-

ios can be considered depending on the availability; at the relay.
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Known CSI

In this case, both channel gaing,andr,, are known at the relay for each bit. This
scenario usually happens when two channels are both gootharelare accurate

channel estimations. Thus, the conditional pdf is given by

_ 1 (y —rizy — T2$2)2
p(}"$1,$2,7’1,7"2) = exp | —

V2o 202

Let z be the message which the relay would forward to both comnatioit

nodes. The relationship betweemandz, 2, is shown in Table 2.1.

r1 | o || Z
-11-1(0
-1(1 1
1 1)1
1|1 (|0

Table 3.1: The relation between the output informatioand input information,
Ty, T2.

Therefore, the LLR is given by

(y) = log——— (3.22)
P(z = 1]y,71,732)
_ r1—r9)? _ (y+r1+r2)>
1 e 202 + e 202
0g _ (y—r14re)? (yt+ri-ro)?”
(& 202 + (& 202

Partial CSI

In this case, only one channel gaif,or 5, is known at the relay for each bit. This
usually happens when only one channel is good. Without lbggeerality, we

assume that; is known. Thus the conditional pdf is

B ( (y—Tlxl—TﬂQ
exp | —

2
e o= ))f(rz)drg (3.23)
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Then, the LLR is given by

P(z=0|y,r)
P(z=1|y,r)
plylzr = =120 = —=1,71) + p(y|z1 = +1, 20 = +1,71)
p(ylry = =1, 20 = +1,1) + p(y|lry = +1,20 = —1,71)

l(y) = log (3.24)

= log

Thus, findingl(y) requires calculating four integrals which is quite comgtaxthe

practical implementation.

Unknown CSI

In this case, both channel gaimg andr,, are unavailable at the relay. This scenario
usually happens when both channels are poor or no accuratenehestimation
applied, which is much more realistic especially for theehass channels. Thus,

the pdf of the received signal conditioned.on z, being transmitted is given by

“+oo “+oo
p(}’|$17932)=/_ /_ p(ylz1, 22,71, m9) f (1) f(ro)dridrs (3.25)

Therefore, the LLR is

P(z =0ly)
P(z =1ly)
Pyl = —1,22 = —1) + p(y|zs = +1,22 = +1)
p(ylz1 = =120 = +1) + p(ylz1 = +1, 22 = —1)

l(y) = log (3.26)

log

Thus, finding/(y) requires calculation of four double integrals which is moubre

complex than the former two cases.

Problem Definition

It is clear that Case 3 is the most general case, i.e; j$known, we must replace
its pdf with a delta function which would reduce (3.26) to2@®), and similar will
reduce (3.24) to (3.22). Thus, we will focus on Case 3 in thoskwwhere no CSI
is available at the relay. As can be seen from (3.26), thdioakhip between the
LLR and channel output, which includes four double inteigre, is rather com-

plex. This means that the calculation of LLR at the relay ghhi time and energy
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consuming, which is not practical especially when therdiam¢éed power available
at the relays. Thus, efficient LLRs approximation method isractical interest.

One simple method is to use expected value ¢f(r)) as the approximate
channel coefficients. Let us call this method mean squareogppation. This
method simply removes the two integrations involved in th&Lcalculation, thus
reduces the complexity significantly. However, the expéetdue,F(r), is only the
minimum mean square error estimation-pfvhich cannot guarantee the optimum
performance in the decoder. Besides, the computationliszesty large especially
when high-order modulations are used.

Another practical approximation is to use the max-log apipnation (3.1),
leading to piece-wise linear approximate LLR functions whperfect CSl is known
at the relay [11]. However, when CSl is not available at thayrehe max-log ap-

proximation becomes

MaX (¢ oy)exoP(Y |71, 22)]
MaX (g, zp)ext P(Y |71, T2)]

_(y—ri=g —rgug)?

lnaz(y) = log (3.27)

max_ [T [N f () f(ro)drdry
-] (w1,m2)€X0 770 T
8 too ptoo — (¥mrimi—ryes)?
max [T [T e 202 f(r1) f(ra)dridry
(xl,l'z)EXl o0 o0

where X° and X! denote subsets of transmit vectors wher= 0 andz = 1
respectively.

It is obvious that it is no longer piece-wise linear and muomplicated for
practical implementation as it involves four double intggms. Moreover, max-log
approximation usually performs good at high SNR region,mihere is a dominant
term in the sum sequence. However, low SNR region is more aomespecially

for the wireless channel. Therefore, a better approximasiaesired.

3.4.3 Piece-wise Linear Approximation

In this work, we are seeking approximate LLR as piece-wigedr functions of

the outputy when there is no CSI available at the relay. Let f(y) denotes
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the approximate LLR functions. To optimize the LLR approating function, an

accuracy measure is required.

LLR Accuracy Measure

Notice that from the point of view of the relay, we can moded thannel as a
channel whose input is; © ¢, and whose output is = rizy + 7922 + n. The
capacity of this channel can be given by (3.4).

Instead of true LLR, let us replace them with the approxinhdfe. As a result,

(3.4) becomes

A

1 +o0 . A 1 +o0 . A
R=1- —/ log, (1 + e Hp°(1)dl — 5/ log,(1 +ept(l)dl, (3.28)

2 [e.9] — 0o
Whereﬁb(i) is the conditional pdf of approximate LLR given= b transmitted. We
can see that (3.28) gives an achievable rate of the systeratopeunder approx-
imate LLRs, thusk < C, where the equality holds whe#i(l) = p°(l) [14]. As
a result, by maximizing (3.28) good approximating functia@an be found in the

sense of maximizing the achievable rates on the channel.

LLR Approximation

In this work, we use the piece-wise linear functions as oyr@xmate function
because of its simplicity and ease of implementation. Hei@an be efficiently
solved by different numerical optimization techniques.

From the definition of LLR in (3.26), it is easy to see th@) = /,,,,.(0) under
BPSK modulation. Let us assume the piece-wise linear afipation also crosses
this point and define

S22 e (<) P f ()i
J25 7 exp (‘%) F ) f(ra)dridry

For case 1 (i.e., perfect CSl), using this conditionan be found in close form as

k= 1(0) = log (3.29)

k = —2172 For the case 2, when is available and under normalized Rayleigh

o2

channel (i.ef(r,) = 2re~"?) [52].
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k= log @(—7’2/\/202(1—0—202))' (3.30)
O(ry/+/20%(1 + 202))
whered(t) = 14 /zte’” erfc(—t) anderfc(-) is the complementary error function.
However, for more general case there is no close form functiadk is obtained
by Monte Carlo simulation.

To summarize, the LLR approximate function can be found ligfong steps:

Stepl) The real number domaiR is partitioned into a finite numbe#y, regions
Ry, ...,Ry. The regions andV is usually chosen based on the shape of true

LLRs and the accuracy requirements.

Step2) For each regioiR;, a linear functionf, = ay + By, is proposed. Thus,

~

N
I=Fy) = ) (awy+B) Lyer,. (3.31)
k=1
with i(y=0) = k.

wherel ., denotes the indicator function.

Step3) LetO = {a,...,an, b1, .., On} denotes the set of parameters, which

can be found by solving the following optimization problem:

O = arg max R, (3.32)

subject to ¥(0)=0.

Here, ¥ (O) = 0 represents the constraints that may be impose@ osuch

as continuity conditions.

Step4) The regionR,, ..., Ry can be optimized by search.

3.4.4 Numerical Results and Discussions

In this part, we present examples and numerical resultslmasthe proposed piece-

wise linear approximation for BPSK modulation on TRC model.
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Max-log Approximation
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—— Minimum Mean-square Approximation

LLR

Figure 3.8: Comparison of the shape of true LLR at 5dB with tifgpiece-wise
linear approximation, max-log approximation and minimumam-square approxi-
mation

Example 3.5 Consider a two-way relay fading channel with DF at the relapda
the channel between the terminals and the relay are noredlRayleigh channel
2

(i.e.f(r)=2re " E(r) = @). According to the curves of true LLR, we propose

the following approximation functions:

[ = fOy) =(a1 -y + B1)Liy<—n) + (@2 -y + k)L _rey<) (3.33)

+ (a3 -y + k) Lo<y<r) + (a -y + Ba)Lyzr).

Due to the symmetry of the LLR, it can be assumed that —a4, 5, = 5, and
ap = —ag. Also, because of the continuity conditiertan be obtained by

k=B

042—041.

T =
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Figure 3.9: Comparing the achievable rate under the pigse-mear approxima-
tion, max-log approximation and true LLR

As a result,O = {ay, a9, 51}. For the given SNR, optimized piece-wise linear
approximation function can be found by the steps describ&ection 3.4.3.

For example, when SNR 5 dB the optimized parameters can be found as
O = {6.4606, 1.6667, —1.6113}, andk = —4.811,r = 0.6675. The corresponding
approximate LLRs and true LLRs are depicted in Fig. 3.8. it lba seen that the
piece-wise linear LLR is much closer to the true shape thamtbhx-log approxi-
mation and the minimum mean-square approximation espeai@und LLR= 0.

In Fig. 3.9, we depict the achievable transmission ratetferdesigned piece-
wise linear approximation, max-log approximation and the LLRs case. We can
see that the achievable rate of our method is always clogbettvue capacity than
the max-log approximation especially when SNR is low. Faaregle, at SNR
5 dB, the achievable rate of the proposed method is 0.3676 bptthancapacity
is 0.3740 bpcu, while the achievable rate of max-log appnaxion is 0.3271 bpcu.

On average, it can be seen from the curves that the gap betwegnece-wise
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Figure 3.10: Comparison among the BER of a randomly contdu@,4)-regular
LDPC code of length 15000 decoded by true and approximatesLdrRtwo way
relay fading channel.

linear approximation and max-log approximation is aroundBl What is more,
max-log approximation is much more complex than the proposethod.

To evaluate the decoding performance of the optimized pigse linear ap-
proximations, we compare the BER under the proposed methednax-log ap-
proximation, minimum mean-square approximation and the LRs. As an ex-
ample, the performance of a (3,4)-regular LDPC code of led&000 is depicted
for these four cases in Fig. 3.10. Itis clear that the peréoroe of the optimized ap-
proximate LLR is quite close to that of the true LLRs, abodi3lbetter than that of
the max-log approximation and about #.B better than the minimum mean-square

approximation.
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3.5 Conclusion

LLR calculation can be very complicated in a real wirelesswocwnication envi-
ronment. This motivates us to find efficient and accurate @ppration methods.
In this chapter, we deal with this problem for two differeases, MIMO channels
and two-way relay channels.

In the Section 3.3, an efficient method using piecewise tifi@actions for ap-
proximating LLRs over flat slow-fading MIMO channels is siedl The system
considered in this work is MIMO-BICM which allows us to coniplL.LRs at bit
levels. To this end, an accuracy measure and approximatiations for MIMO-
BICM systems are proposed. We use this measure to optinmezeaitameters in the
approximation functions. The performance of the proposethod is investigated
in terms of the achievable rate. Our results show that thiopeance of the op-
timized piecewise linear approximation function is supeto that of the max-log
approximation. In fact, the achieved performance is vevgelo that of true LLRs.
Compared to max-log, our method is more complex becausedsthe parameters
to be optimized. Thus, our method is more attractive whemigblagains are not
subject to rapid change.

For two way relay fading channel with DF strategy, the relag ko calculate
channel LLR for the decoding. When no CSI is available at t#lay; the LLR
computation is much more complicated and computationaipersive. Thus, ap-
proximate LLR are desired. In Section 3.4, we used an acguregasure based
on the achievable rate and under this measure, a piece-iwese bpproximation
is proposed. For the normalized fading channels, we inyat&d the performance
of the proposed method in terms of achievable rate and BEReKperimental re-
sults showed that the proposed piece-wise linear LLR app&tion outperforms
the max-log approximation and minimum mean-square appraton and its per-
formance was very close to that of true LLRs. The proposedoopation is less

complex and easier to implement than the max-log approxomat the true LLRs.
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Chapter 4

Design of LDPC Codes with Strong
Universal Properties

4.1 Introduction and Background Knowledge

As we discussed in Chapter 1, LDPC codes can approach then@mndimit on
many channels. However, design of LDPC codes can be quitpleamnor exam-
ple, LDPC codes should be chosen carefully based on diffeteannel types and
channel parameters. If the parameters change, the codgdesicess should be
done again, otherwise, the performance would degrade.

In this chapter, we are dealing with these problems by desiygine so called
“universal” LDPC codes. Before we go to further detailsuefirst introduce some

background knowledge.

4.1.1 Universal Codes

Designing a code that can successfully be used over a nddtiéichannels is of
great theoretical and practical interest. Such robustcadecalled universal codes.
Universal codes have various advantages over channel toategre designed for
a specific channel.

Usually, the term “universal codes” have two meanings irctirgext of channel
coding. First, a coding scheme that does not have a sped#iana works well on
a family of channels of different capacity, but of the samgetye.g., BEC with

different erasure rates. Raptor codes [10], for exampkyaiversal in this sense.
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Second, to have a channel coding scheme which can be emmwegedll channels
of equal capacity. The latter case is what we mean by an wsalveode in this
chapter.

There has been some recent efforts to design LDPC codes warébrm suf-
ficiently well on a variety of BIMSs with identical capacitizor example, the idea
of designing a code for a properly chosen surrogate chaamelng a limited set of
given channels, and then using it over other members of theasdbeen discussed
in [53]. This approach is a practical solution, but unfoetety can handle a limited
number of channels. Universal codes can also be found &allyt but those codes

can only achieve a very low percentage of the capacity [54].

4.1.2 Stability Condition for Density Evolution

Fixed point of density evolution is often used to analyzedtwevergence of LDPC
codes. When density evolution has only a zero-error fixedtppe.,d.., the given
code can be successfully decoded. It is desirable that t#tad fpoint bestable
Thus, the stability property can be seen as a condition wémnsures that once the
density has been evolved to something “close” to perfeabdiag, it will converge
to the perfect decoding fixed point and the decoding will bexessful [17].

For the sum-product decoder, the parameter that charaeteghe channel with
respect to the stability of the system is the Bhattachargyarmpetei3(-) introduced

in Section 2.3. Thus, we have the following stability coratittheorem:

Theorem 4.1 [Btability Condition for Sum-product Decoder [17]]: Assuming we
have a degree distribution paii\(z), p(x)) and a symmetric channel with LLR pdf
fen. FOrl > 0 define

fi=fo@Ap(fi-1))-

with an arbitrary f;, we have:
[Sufficiency If X'(0)p'(0)B(f..) < 1%, then there does exist a strictly positive con-

stanté = £(\, p, fen) such that if, for somé € N, P.(f;) < &, then f
converge to.

1\ (x) andp’ () are the derivatives of(x) andp(x), respectively.
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[Necessity If \'(0)p'(0)B(f.,) > 1, then there exists a strictly positive constant
& =&(N, p, fern) such that for allfy # 0,

lim Pe(fl) > £
=00
Example 4.1 For a BECE) with the LLR pdf given by (2.4), we have

B(fprce)) = /oo(eéo(x) + (1 —e)du(x))e ™ 2dx = ¢

o0

which results in the stability condition for BEC channel

N(0)6/(0) < -

However, it is worth mentioning that stability conditionekonot guarantee the con-
vergence of the code. For example, for LDPC codes with) = 0, the zero-error

fixed point is always stable while the codes may not converge.

4.1.3 Information Combining Bounds

In the context of LDPC codes and under sum-product decodheyfollowing
bounds are established in [55, 56]:

Theorem 4.2 | nformation Combining Bounds]:

Bound I Consider a variable node of degreeand assume that all except one
of the input messages have known LLR pdfs. The other inpsagesas
a fixed mutual information;, with its actual value, but its LLR distribu-
tion is unknown. The mutual information between the outpmgsage of the
variable node and its actual value is minimized if this unknd_LR pdf is

fBsc(-1(1-1,)) (), whereh(-) is the binary entropy function.

Bound 2 Consider a check node of degrand the same assumptions with Bound
1. Thus, the mutual information between the output mesddge check node

and its actual value is minimized if this unknown LLR pdfgsca-r,) ().
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4.2 Universal Codes Design

In this section, without considering a specific set of chésyneur goal is to find
LDPC codes with good universal properties over all BIMSshveitgiven capacity.
The simplest way to tackle the problem is to use informatiomisining bounds
in order to obtain codes with guaranteed convergence ovehahnels with the
given capacity. Unfortunately, using these bounds reguitery conservative (thus
inefficient) codes. To improve the efficiency, a refined Gausspproximation
together with the information combining bounds is suggkstefind codes with
good universal properties. We argue why these codes shautlgirong universal
behavior and the designed codes is also proved to satisfurtiversal stability

condition (i.e., stability condition on all channels).

4.2.1 Problem Description

Clearly, information combining bounds can be used to findesatiat are guaran-
teed to converge over every channel with a given capé&cifyo guarantee universal
convergence, it is sufficient to observe convergence whastwase pdfs at both
variable and check nodes are assumed. EXIT curves can lhedfot the worst
case pdfs, and a sufficient condition on universal convergeénto have an open
tunnel between these two EXIT curves. Therefore, the puaeefibr finding these
codes is not different from designing codes for specific olets) which are studied
in the literature in various forms [15, 33].

Unfortunately, codes obtained by applying both informattombining bounds
have poor performance because of the stringent constfanced by these bound-
s. For example, wherf,_..(z) (the pdf of input messages to check nodes) is
fBEC(e)(2), the pdf of the output of check nodeg.(,(x)) is farc(—pi—e) ().
That is to say,f.,(x) is of BEC form and not BSC (which is assumed for the
worst case scenario). Interestingly, BEC maximizes thpwunhutual information
at the variable nodes [55, 56]. In other words, in this examal pass the sufficient
condition of convergence at a variable node, the best pelf BEC) in reality, is
replaced with the worst pdf (i.e., BSC).
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Thus, using both bounds, one at the variable nodes and ohe alh¢ck nodes,
results in too stringent constraints. To improve the efficie a new method is
desired. In the rest of this chapter, we denote the methdapdies both bounds

as the sufficient condition of the codes’ convergence.

4.2.2 Refined Gaussian Approximation

A symmetric Gaussian pdf for the messages at the output ofatti@ble nodes is a
common assumption, regardless of the channel type [28]ic&lttat under sum-
product decoding, the output messages of variable nodedtamed by adding all
the input LLR values, so a Gaussian distribution is a redsleressumption because
of the central limit theorem.

Based on this common practice and the information combibgnds, a new
approach for designing universal LDPC codes is proposedsMjgest replacing
the information combining bound fgf,_,.(z) with a Gaussian approximation at the
output of variable nodes. But fgt._,, (x), we still force the information combining
bound which means that they are assumed to be in BSC form. NMihisapproach
a refined Gaussian approximation since unlike [28],,(x) is not assumed to be
Gaussian.

To be more specific, given a value of mutual informatin at the input of
the check nodes, we find a symmetric Gaussian distribufiefy;) with o2 = 2,
whose mutual information according to (2.5) is equal;to We use this Gaussian
distribution at the input of the check nodes to find their atigensity /.., (x) via
density evolution [25]. We then find the mutual informatifn,, of this output
density using (2.5). At the input of the variable nodes, waia®e fpsc()(z), € =
h='(1-I._,), which is the worst case pdf according to the information bimimg

bounds. Then, the output pdf of degreeariable nodes will be

& fBSC(n)(l'), (4.1)

gt (z) = [® fesc(o ()
k=1

wheren = h=(1 — C) andC is the channel capacity. Therefore, the output mutual
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information using (2.5) is

]out = I(Z )\Zg(l)(x)) = Z)\Zz(g(l)({t))

For code design, we enfordg,; > I, as a constraint for choosing. Detailed
formulations of code design are similar with the proces®ohiced in Chapter 2.

This method raises two minor problems. First, if the chamneideed a BEC,
fo—se(x) remains in the BEC forms for all iterations, i.e., it cannetdpproximated
with a Gaussian distribution. Second, for the first itematicheref, ..(z) is the
channel observation but not the result of summations atdhahble nodes, a Gaus-
sian approximation is not accurate. To resolve this isseegappend another set of
constraints, that guarantees the convergence on the BE®& tmwde design formu-
lation. This way, for the first iteration, the worst case gifarced at the input of
check nodes too [55, 56].

These codes are expected to have good universal propeztiasde of the fact
that for a wide range of channel types, the Gaussian appegiamat the output of
variable nodes is a reasonable assumption. Also, at theibotgheck nodes the
worst case scenario is enforced. In fact, in the next secitiowill be proved that
these codes satisfy a universal stability condition.

This code design approach, compared to using both infoomatombining
bounds, results in codes with significantly smaller gap fgacéy (particularly at
low capacities). For example @t= 0.2, sufficient condition for universal conver-
gence results in codes that achieve only 70% of the capadaitypur approach gives
codes which achieve more than 85% of the capacity. At capaatose to 1 bpcu,
the worst case and the best case scenario pdfs at varialelekjamodes are alike,
ie.,

11_{% JBEC(0) (z) = })l_f}(l) IBsc@) €] (4.2)

Therefore, according to (2.5), the mutual information @ best case scenario
and the worst case scenario are approximately equal. Itsrteahthe output mu-
tual information mainly depends on the input mutual infotima but not the LLR

pdfs. Thus, the rate loss due to enforcing the sufficient itimmdof convergence
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Figure 4.1: Comparison of the achievable rates of our codete(ms of achiev-
able percentage of capacity) with codes based on informatonbining bounds,
analytical codes and an upper bounds.

is minor and a very high percentage of capacity is achievaliies can be seen in

Fig. 4.1.

4.2.3 Stability Analysis

In this section we prove that codes that are designed usmgetimned Gaussian
approximation satisfy a universal stability condition. dther words, they satisfy
the stability condition for all channels with the given caipa

Consider a channel with capacifyand a code designed by using our method.
The message error rate at the input to check nodes is dengteg bnd at the

output of check nodes by As the decoder gets close to perfect decodingis
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getting closer to 0.

1 — p(1 —2piy,
lim £ lim d Pin)
Pin—0 pln Pin—0 2p1n
_ i P 2P)
pin—>0 2
= Z pi(i —1)
=p'(1)

It means that when the decoder is approaching perfect degodcan be ap-
proximated ag/'(1)pi,. Therefore, the density of BSC input to variable nodes
is fsc(e(x). For degree- variable nodes, the output error rate will pe) =
[ g (x)dz, whereg®(z) is given in (4.1). For a degree-2 variable node, it

follows that
0
p® = / fBscm) @ fesce (x)d

_ /0 <(1 = €) Oigg(ize) (7) + 65—log<1—?>(x)) “

— 00

(1= 1) By () + 10 gy (2))

n n

0
2 / ((1 —€) 510g(%)(x) +ed_ log(l—:)(x>) dx

= E’
where (a) results fromm < 7. The message error rate at the output of the variable

nodes is

d'u
Pout = Z )\z'p(i) > g€ = )\,<0)p,<1)pin-

=2
Our code design procedure enfordgs > I,,,, which for consistent Gaussian pdfs

is equivalent t,.; < pin. Thus, our method guarantees that
N(0)p'(1) < 1. (4.3)

Itis shown in [57] that (4.3) is the worst stability conditia channel might require.

Thus, the method proposed here assures a universal stabihitition.
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4.2.4 Design Example

In this section we design codes with strong universal ptoggeusing the method
proposed in Section 4.2.2. For a given channel capdtithhe goal of the code
design in this work is to maximize the code rate through ogiimy \(x), when
p(x) is assumed given and convergence constraints of Sectioh &€ satisfied.
The motivation for fixingp(x) and optimizing\(x) stems from the fact (observed
by various authors) that the code performance is much mogtse to the choice
of A\(x) thanp(x). For choosing(x), following the guidelines of [28], we assume
that p(z) comprises at most two consecutive degrees, and we optirpizedvia
search.

Example 4.2 For C = 0.5 bpcu, and allowing a maximum node degree of 50 in the
code, the rate of the optimized code)i$584 (91.68% of the capacity). The degree

distribution is as follows:

p(r) = 0.08992" + 0.9101z®. (4.4)
AMz) = 0.1220x + 0.323627 + 0.29632° +
0.00622" + 0.2519z*.

A single randomly chosen code has been generated from threalelistribution.
The code has been tested over 1000 randomly generated thavitiecapacity
C = 0.5 and in all cases convergence is observed. According to theecration
theorem [25], for a given degree distribution, the perfanoeof a randomly chosen
code converges to the average of the ensemble. Thus, wetéxpbserve a similar

behavior from any other randomly constructed code fromdbgree distribution.

4.2.5 Numerical Results

The achievable rates over a wide range of channel capaartgsiotted in Fig.4.1.
The results are also compared with codes that are desigsed ba applying both
information combining bounds. Besides, the achievablesraf analytically con-

structed universal codes of [54] is also plotted here forcinaparison. All codes

62



10° ¢

107

=
o
N

|
w

Message Error Rate
=
o

!
IS

=
o

107

Proposed Code,BSC

Code Based On Information Bounds, BSC
= = = Proposed Code,BEC

1
1
A
1
1
1
1
1
1
1
1
1
| DA
1
1
1
1
1
1
1
1
1
1
!
1
)
]
1

" Code Based On Information Bounds, BEC
10 ‘ : :
0.39 0.4

X | |
0.41 0.42 0.43

0.44 0.45 0.46
Capacity (bpcu)

Figure 4.2: Comparison between message error rates of 8./ateiversal codes
based on our proposed method and a rate 0.4 code based ofotineaition com-

bining bounds on the BSC and BEC channels. The curves argmebthy running
density evolution for 400 iterations

are obtained with maximum allowed degree of 50 in their Tagnaph. It can been
seen that our proposed code is much more efficient than otrsting) solutions.
Also, to see how successful our codes are, an upper bounddgssied to com-
pare against. The upper bound here is the rate of LDPC codémee to work on
both BSC and BEC, which is the necessary (not sufficient) itimmdof universal
codes. From Fig. 4.1, we can see our codes are quite close tpger bound.
Other comparisons are also done between a rate 0.4 codedrabeth the in-
formation combining bounds and a rate 0.4 code based on dp@ged method. In
Fig. 4.2, a curve of decoder’s message error obtained &iteitdrations of density

evolution for these two codes on BEC and BSC channels isgulo#nd Fig. 4.2.4
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Figure 4.3: Comparison between BER of a rate 0.4 universisdased on pro-
posed method and a rate of 0.4 code based on the informatiordb@n the BSC
and BEC channels. The curves are obtained for randomly rwamtetl a code of
length 76789

shows bit error rate comparisons between these codes fdomay constructed
codes of length 76789. From both curves, we can see thauglthihe code based
on the information bounds performs slightly better on B3(@, ¢ode based on our
proposed method has much stronger universal propertidh. dddes are provided

in Table 4.1, where we denote the codes designed by applytigibformation
bounds as sufficient code.

Table 4.2 compares our codes in terms of their decodingtibteésvith codes
designed for specific channels. By decoding threshold, wanrttee worst capacity
which a BEC, BSC, AWGN, or Rayleigh channel have to exhibit$accessful

convergence using density evolution. While AWGN codes aresiclered to have
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Table 4.1: Degree distributions for proposed code and serfticode

Proposed Code| Sufficient Code
Ao 0.14555 0.1436
A3 0.2970 0.2925
A5 0.0633 0.73
A7 0.0713
Ao 0.1015 0.1654
Ao 0.1539 0.73
A1g 0.1069
As50 0.2388 0.2203
p7 0.2539
08 0.7461 1

Table 4.2: Comparison between the decoding thresholdrfimstef required capac-
ity) of LDPC codes of different rates.

Code Rate (bpcu) 0.40| 0.55| 0.7

Proposed LDPC Codes 0.43| 0.59] 0.73
LDPC Codes Designed for AWGN| 0.51| 0.62| 0.76
LDPC Codes Designed for BEC || 0.54| 0.68| 0.85
LDPC Codes Designed for BSC|| 0.46| 0.61| 0.75
LDPC Codes Designed for Rayleigh0.48 | 0.65| 0.78

good universal properties [58], Table 4.2 shows that ouesate much stronger
in this sense. At lower channel capacities, e.g 0.4 bpcs,ityprovement is even
more pronounced. All the codes in Table 4.2 have a maximumeéegf 30 in their

Tanner graph and the AWGN codes are taken from [59].

4.2.6 Extreme Distributions Under Min-Sum Decoder

Current research on universal codes all focus on the sushdptalecoder, how-
ever, designing universal code under min-sum decoder dgsimlgortant due to its
low complexity. As the pdf of the decoder messages at eacdtite under min-
sum decoding is not symmetric, the information combiningras of [55, 56] are

not applicable. Thus, finding the extreme distributionsarmdin-sum decoder be-
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comes very interesting. In this section, we deal with problesed on numerical

results and we make the following two conjectures.

Conjecture 4.1 Among all channels with capacify min-sum decoding can achieve
the highest rate on the BEC.

Under BEC, LLRs are either O or infinity. As a result, accogdio the update rules
introduced in Chapter 2, the output LLR at a check node of bothsum and sum-
product are the same. In other words, min-sum decoding duieseur any penalty
on the BEC and is equivalent to sum-product (optimal) dewgpdl his supports the

above conjecture.

Conjecture 4.2 Among all channels with capacity, min-sum decoding achieves

the smallest rate on the BSC.

This conjecture is supported by the fact that when the absetlue of the LLR
values processed at a check node are closer together thexapation becomes
less accurate. On the BSC and in the early iterations, thelwbsvalue of the
LLRs are very close. In fact, in the first iteration, they alteequal.

Fig. 4.4 is also provided to support our conjectures.

4.3 Conclusion

In this chapter, we deal with the problem of designing urgaet DPC codes.

A universal LDPC code is a code that is designed for a giveaa@gp inde-
pendent of the actual channel model and guaranteed to geeer a multitude
of channels. Using a refined Gaussian approximation on éecodssages and a
known bound on information combining, LDPC codes with sgraniversal proper-
ties can be found. Over a wide range of rates, the suggestestsal codes achieve
a large percentage of the channel capacity. Our extensst® bave also verified
successful convergence of these codes on all tested ckannel

Based on numerical observations, we also proposed twodongs regarding

the extreme distributions under min-sum decoding.
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Capacity

Figure 4.4: Comparison of (3,6)-regular LDPC code overeddht channels under
min-sum decoding via density evolution.
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Chapter 5

Conclusion

In this chapter, we first briefly summarize the contributiohshis thesis and then

propose some possible future research directions that tiragtfuture researchers.

5.1 Contributions

In this thesis, several contributions have been made to ¢ie dif LDPC codes.
We provide theoretical and practical results for the desigth decoding of LDPC
codes. The results can also be used for other codes decodteddtive decoding,
such as turbo codes.

In the first contribution, we studied the iterative decodamgnon-SISO chan-
nels. An optimum and efficient piece-wise linear approxiorats proposed to ap-
proximate the channel LLRs. This method is optimum in theseesf maximizing
the achievable rate of the channel. Two different chanresiagos are considered.
For the first scenario, we assume the channel state infametiperfectly known
at the receiver of MIMO-BICM channels. For the second sdenarvo-way relay
channels are considered when no channel state informatloroivn. For both sce-
narios, we found optimized piece-wise linear approxinrafimnctions to calculate
LLR. We also showed that the performance of our method ity close to the
channel capacity where true LLRs are applied.

The second contribution made in this thesis is that we inyatsd the design
method of a class of LDPC codes called universal codes. Farieensal code,

convergence is guaranteed for a given channel capacityegraddiess of the chan-
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nel type. A new universal code design method was proposediesigned LDPC
codes under this method and observed that a large percesftgeechannel capac-
ity can be achieved. Based on extensive observations, werglde conjectures for

the extreme distributions under min-sum decoding.

5.2 Possible Future Research

In this section, we present some problems that can be thedwdjjfuture research.

The optimum piece-wise linear LLR calculation proposedis tvork is proba-
bly the beginning of this research direction, since we oolysidered the scenarios
under the binary phase shift keying modulation. Thus, edtenthis method to
higher order modulations is an interesting direction.

The channels considered in Chapter 3 were all uncorrelatéatdading chan-
nels. Possible future work can be done on extending this adeti frequency-
selective, correlated fading channels and orthogonat&eqgy division multiplex-
ing (OFDM) systems.

It is also quite interesting if one can find the close form tiorws for the op-
timized parameters in our method, since right now we onlys@®T optimization
through numerical methods.

Since we made conjectures about the extreme distributioderumin-sum de-
coding mainly based on numerical observations, the aralyproof of these two
conjectures can be quite important for both theoretical@adtical purposes. Oth-
er research directions can also include designing univecgies under min-sum

decoding.
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