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ABSTRACT

Let G be an arbitrary group, w = w(z;, ... , z,) be a word in alphabets
1, ... , Tn and G(w) the verbal subgroup of G, generated by {w(g1, ... , gn); gi €
G}. The length ¢(v) of an element v in G(w) is the minimal number of w*! words
in a product equaling v. When w is a commutator, we call c(v) as the “commutator
length” of 4. This concept has been studied by many authors.

This thesis deals with the problems associated with the commutator length
of certain classes of groups. The basic class of group which we consider is the
class of free groups. We use simple and explicit algebraic methods to prove the
following results:

1. Let w be a word in the free group F(z,y),(freely generated by z and y)
for which the total exponent of each alphabet is zero. We consider F(w) and we
find a suitable lower bound for the length of an arbitrary element v of F(w). And
we discuss the interesting case ¥ = w™ (n € N).

2. In F(z,y) we introduce a formula to write [z, y]" as a product of [n/2] + 1
commutators which is the best lower bound for [z,y]. It is also the least upper
bound, hence we find a simple algebraic proof for M. Culler’s formula [C].

3. We also find another formula to write ([u1,v1] ... [ug,v])" as a product

of n(k —1) +[n/2] + 1 commutators.



4. In F(z,y) we show that [z,y]"(where n € N is an odd number) is never
the product of two squares, although it is the product of three squares.

5. We discuss two questions rasied by Edmunds ([E-R],[L]) regarding com-
mutators.

6. We show that if G is free nilpotent group of rank 2 and class 3 then the
commutator length of G is equal to 2 and we calculate the commutator length of
certain element of this group.

7. We show that if G is free abelian by nilpotent group of rank n then the
commutator length of G is equal to n except in the trivial case where G is abelian.

8. We find lower and upper bounds for the commutator length of a free
solvable group of rank n and class 3.

9. We know that if F is a free group then ¢(F) = 0o. We show the following
interesting fact:

“ The commutator length of the wreath product of any group by the infinite cyclic

group is less than or equal to 3.”
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CHAPTER 1
INTRODUCTION

In this thesis, we are mainly concerned with the commutator length of certain
finitely generated groups. The basic class of the groups which we consider is the
class of free groups. Each chapter contains the required definitions and notations.
In this chapter we describe a brief survey of the main results of the other chapters.

In chapter 2, we consider the free group F = F(z,y) of rank 2, freely gen-
erated by z,y. A word w € F is a commutator word, if there exist k;,/; €

Z such that

y and z": ki = i li=0
i=1 i=1

Let F(w) = ( w(f1, f2) ; f1,f2 € F ) be the verbal subgroup of F, defined by w.
The fact that each element ¥ € F(w) can be written in different manners as a
product of w-words or their inverses leads us to define “the minimal number of
w-words or their inverses equaling v ” as the length of the element v, and we
denote it by ¢(v).

The main purpose of this chapter is to provide a suitable lower bound for
c(v) in F(w), and the following results will be obtained:

(i) ¢(w™) > 00 asn — o0

(ii)c(w™) # 1, for any n € N,n £ 1.
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Hence, it follows that no nontrivial commutator word in a free group is a proper
power. This result for the case w = [z, y] the commutator of z and y was obtained
by Schiitzenberger [S], and it follows also from later more general result of Karrass,
Magnus and Solitar [K-M-S] and G. Baumslag [B] and Steinberg [St].

In chapter 3, we continue considering free group F = F(z,y) of rank 2 freely

generated by z,y, and we assume w = [z,y]. In [C] M. Culler has proved that

(1) ([z,9]") =[/2] + 1

In which [n/2] denotes the greatest integer part of n/2, also in (Ba] C. Bavard, es-
tablished formula (1) for ¢([z, y]®) and proved a generalization for c(fur,v1] ... [ug,ve))”
where uy,...,ug,v1,...,v belong to a basis of a free group F of rank r,r > 2k.

Lower bounds are estimated by a clever argument using a quasimorphism
(which is defined in chapter 1) of 1;he free group due to R. Brooks [Br]. If we apply
the main theorem which is proved in chapter 1 for special case when w = [z, y] we
get the same lower bounds.

These estimates were shown to be upper bounds as well, by applying a
topological calculus using surface topology to develop commutator identities. In
chapter 3 we introduce a formula to write [z,y]" as a product of n/2] +1
commutators and also a formula for ([u1,v1] ... [ug,vk])", and finally in this
chapter we discuss two questions raised byEdmundss ([E-R],[L}]) regarding to the
commutators, and we provide suitable answers to these questions.

In chapter 4 we establish the square length of [z, y|". Let G be a group,

2



G' =([h,g]; h,g € G) be the derived subgroup of G and G? = (g% g€@G).

It is known that G’ C G? , indeed, if k, g are elements of G, then:
[2, 9] = hgh™'g™ = (hg)*(g7*h2g)?*(g~1)?

Again assume F = F(z,y), the free group of rank 2 freely generated by z,y. Let
v € F', “the minimal number of squares which is required to express v as the
product of squares” is called the square length of 4 and denoted by Sq (7). It was
shown by R.C. Lyndon and M. Newman [L-N] that [z,y] is never the product of
two squares in F, although it is always the product of three squares in F.

In chapter 4 we consider the more general case, i.e. [z,y]*, n € N an
odd integer and we show that the equation [z,y]® = a2? has no solution in F,
although Sq [z,y]" = 3. Two proofs of this theorem are given. The first one is
by considering a suitable quotient of F’ (which is much shorter than the second
proof). The second proof is similar to the proof for the case n = 1 in [L-N] and it
is based on a matrix argument.

In chapter 5 we consider Fin,ty = (21, ..., zn) the free nilpotent group of
rank n and class ¢ . P.W. Stroud in his Ph.D thesis [Str] in 1966, proved that
for all t, every element of the commutator subgroup F('n't) can be expressed as
a product of n commutators. In 1985 H. Allambergenov and V.A. Romankov
[Al-R] proved that the minimal number ¢ (F{, 5) required to express an arbitrary
element of Fy, , is precisely n provided n > 2,t >24o0rn>3,t>3. They proved
this fact by providing an element d, in v, (F(n,y)) that can not be written as a
product of less than n commutators. For the case n = 2,c = 3 they proved that

3
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every element of 3 (F(n,y) is a commutator, and clamied that ¢ (F(, 3)) is one.
We show that the element (z;,2;]* can not be written as a commutator in the
group Fi; 3y = (21, 2;), this is done in the following theorem:

THEOREM 5.3. Let F; 3) = (z1,2;) be the free nilpotent group of class
3 on 2 generators z1,z2. Then ¢(F(;3)) =2. [A-R]

In [B-M] C. Bavard and G. Meigniez considered the same problem for the
n-generator free metabelian group M,,. They showed that the minimal number
c(Mpn) of commutators required to express an arbitrary element of the derived

subgroup M, satisfies the inequality
n/2] < e(Mn) <n

Where [n/2] is the greatest integer part of n/2. Since Fn,3) groups are metabelian,
the result of Allambergenov and Romankov [Al-R] shows that ¢ (Mp)>nforn>3
and theorem 5.1 deals with the remaining case n = 2 and we have ¢ (M,) = n for
n 2> 2. We extend results in [B-M] and [AI-R] to the larger class of groups i.e. the
class of abelian by nilpotent groups and we prove the following:

THEOREM 5.6. Let G = (z;, ... z,) be non-abelian free abelian by
nilpotent group freely generated by z1, ... z,. Then ¢(G) = n. If A is an abelian
normal subgroup of G and G/A is nilpotent, then every element of G’ is a product
of n commutators [z1,91]%[z2,92]°2 ... [Tn,gn]®" for suitable g1, ..., gn in G
and ay, ..., an in A. [A-R]

Then we prove the following theorem which establishes a lower as well as an upper
bound for the commutator length of a finitely generated free solvable group of

4



class 3.

THEOREM 5.9. Let G = (21, ... za) be a free solvable group of class 3,

then

n < ¢(G) £n(n+3)/2

Then we prove a theorem about powers of certain commutators in Fla,3).

In chapter 6, we consider the wreath product of the free group by the infinite
cyclic group, and we establish a suitable bound for the commutator length of
this class of groups and we show it is a “c-group” (recall G is a c-group if there
exists n € N such that every element of G’ can be expressed as a product of n
commutators) and this is done in the following theorem

THEOREM.6.1. Let F be a free group and W = FwrC,, where C, is the

infinite cyclic group, then every element of W’ is a product of three commutators.



CHAPTER 2
THE LENGTH OF THE VERBAL
SUBGROUP OF THE FREE GROUP

Let F be a free group on a countably infinite set {z;,2;,...} and let w =
w(z;y, +-+ ,Zi,) be a word in F. Given an arbitrary group G the subgroup, G(w) =
(w(g1, -+ ,9k); 91, --. »gx € G) is called the verbal subgroup of G defined by
w. For example if w = [z,y] = zyz~1y™! (called the commutator of z and y) then
G(w) is just the derived subgroup of G which is usually denoted by G'. As we
mentioned in chapter 1, an element ¥ € G(w) can be written in a number of ways
as the product of w-words, “the minimal number of w-words necessary to express
¥” is called the w-length of v and denoted by ¢,,(v) or simply the length of v and

denoted by ¢(y). We set

¢(G) =sup{ c(7); v € G(w) }

For example in case of the free group F of rank more than 1, length of F is infinity
with respect to any proper, nontrivial word(the verbal subgroup is proper and
nontrivial subgroup of G). In the case when w is a commutator word we show this
fact in corollary 2.4 (see chapter 1 for definition).

Let F = F(z,y) be the free group of rank 2, freely generated by z and y. The
commutator length of elements of F has been studied by many authors, notably
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M. Culler [C], who found the remarkable identity:
[z,9]° = [zyz ™,y 2yz 2]y~ 2y, 7]

and proved that:

c([z’ y]n) = [n/2] +1

where [n/2] denotes the greatest integer part of n/2.

The idea of a quasi-morphism is very useful in finding a lower bound for c(F).
C. Bavard in [Ba] estimated a lower bound for ¢([z, y]*) by using a quasi-morphism
of the free group due to R. Brooks [Br]. We find the desired lower bounds for c(v)
and ¢(w") in F(w), where w is any commutator word in z and y, by introducing
a suitable quasi-morphism in F.

Definition: Let G be an arbitrary group, a quasi-morphismin G is a map f :
G — R such that |f(hg) — f(h) - f(g)|, (h,g € G)is bounded and sup |f(hg)—

k,geG
f(R) = f(g)| = D is called the defect of f. We say f is anti-symmetric if f(h~!) =

—f(h).

Given a reduced word M in F, let ©3¢(X) be the number of occurrences of

M in the reduced expression of an element X € G and set

Fm(X) = Op(X) — Op-1(X)

First we check fur is a quasi-morphism, let X, Y be two reduced words. Assume

first XY is also reduced, then

mM(XY) = fu(X) + fu(Y) 4+ éu(X,Y)

7



where dp(X,Y) is the number of occurrences of M “straddling” X, Y minus the
number of occurrences of M~! “straddling” X, ¥ (say X = X'h, ¥ = gY’ where
X', h, gand Y’ are reduced words in F and length(h)=length(g)=length(M) -1

then XY = X'hgY” and dp(X,Y) = far(hg)) hence:

[63(X,Y)| < length(M) — 1
Ezample: Let X = [z,y], ¥ = [z,4?]. If M = y~1z then p(X, Y)=1;
if M = (y'z) then 6y(X,Y) = —1; and finally, if length(M)=2 and M ¢
{y~'z,(y=1z) "'} then 8y (X,Y) = 0.
More generally X, Y can be written respectively as X’A, A~1Y’ (where

X'Y" is reduced), then:
fu(X'Y") = fu(X) + fu(Y) + (X', Y') = 6pe(X', A) — 63(A™L, Y")
Hence:
[fm(X'Y") = fue(X) = fu(Y)] = 16a (X", Y') = 6m(X', A) — 6pg(A™L, )|

Hence the defect of fj is bounded above by 3(length(M)-1).

Now in the case of a commutator word w = w(z,y) = zk1ylr ... gkrylr S ki=
> i=1li = 0. The idea behind our proof is to find a good choice of the quasi-
morphisms to give the desired lower bound for ¢(v) in F(w) and especially for
¢(w") in F(w). To do so, we first need some arrangements:

Let X' be a the descending sequence consisting of all positive powers of z in w;

+ . .
Xt ki, ok

8



where kj > ... 2kj, 20andkj, (p=1, ... ,s) is a positive power of z in w.
Similarly assume that X'~ is an ascending sequence consisting of all negative

powers of z in w;

X7 lmyy eeny Im,

wherelm, < ... <lm, <0andlm, (g=1, ... ,t) is a negative powers of z in w.
Delete from X'*, X' those integers which are additive inverses of each
other, and call the remaining sequence X%, X~. Hence in X+, X~ we have |kj, | #

[Im,|- Now let
€1 =ma.xX+, €2 =min X"~ and €12 =€ + ¢

Then either [e1| > |ez] or |ez2| 2 |e1], in the first case replace €; by €; ; in X+ and
call the new sequence X,+ , and in the second case replace €; by €; 2 in X~ and
call the new sequence X~ (in this way we break the powers such that they become
additive inverses of each other, see the following example). We repeat in this way
until all the powers of z are broken down such that they are additive inverses of
each other, we do the same for the powers of y.

Ezample: If w = z5y2z~ 2y~ 1z 1y3z~2y4then:

{X"': 5 Yt: 3, 2
X-:-2,-2, -1 Y-:-4, -1
And;

& =max Xt =35, € =minX" = -2
hence:

e12 =max Xt + minX~ =3

9



Then;

+ .
{ X;r: 3 and  w=zlrdylr2y~lz—1y8 -2yt
X{:-2, -1
Now
maxX; + minX; =3-2=1

Then;

XF: 1

° and w=2zizlrylz"2y 1zl 3, 2y
X2 :-1

The process is finished for z. Now we repeat for y:

max¥Yt +minY " =3-4=~—1

Then;
{ 1}:; -i 1 and w=z2zlrylz 2y Ty 2y 3y 1
Again;
maxYF + min¥;" =2-1=1
Then;
{ I};zt —1 and  w=z?rlryyr—2y~lelyPr—2y~3y~]

Hence we break down the powers four times.
Now let
Nz(w) = the number of times we apply above process for the powers of

Ny(w) = the number of times we apply above process for the powers of y

N(w) = Nz (w) + Ny(w) +2r =1

10



In this way we write w = 2{* ... 27 such that 25 ; i =1, ..., + arein pair
inverses of each other.

THEOREM 2.1. Let F =< z,y > be a free group on free generators z, vy,
and let w € F' such that w = z{* ... zI’ represents an inverse pairing of subwords
of w, let ¥ € F(w) with ¢(v) = k, and let f be an anti-symmetric, quasi-morphism

of F with defect D. Then

o (409

Proof. Suppose ¥ = wyw; - - - wg, where each w; = Utp1Uts * Ugyr (E= (1 =1)1")
is the inverse pairing of w; induced by the given pairing of w, above. Thus, letting
N = kr', we have 4 = ujuy - - - un. Note that since f is an anti-symmetric and the
u;’s are in an inverse pairing, Eil f(ui) = 0. Therefore,
[F(] = 1f(v1uz - un)|

= |[f(uruz -+ un) = f(ur) ~ fluzus - - -un)] + [f(uzus - un) + f(u1)]]

< D+ |[f(uaus - un) + fu1)]|

=D +|[f(vaus---un) — f(uz) — f(usus---up)]

Hf(usus - un) + f(u2) + f(ur)]|

< 2D + [[f(uaua---un) + f(u1) + f(uz)]] =

< (VN =2)D +|[f(un-1un) + f(u1) + f(u2)] + - + F(un—s)|

= (N =)D +|[f(un-1un) - Fur-1) — Flun)] + 3 F(us)

=1

SV =1)D+]3° f(u)

1=1

11



=(N-1)D
= (kr' = 1)D
= (e(1)N (w) - 1)D.
The theorem follows immediately. O

Now let w = zk1yhs ... zF-yl» be given and put:

wz, if w starts with some positive power of z i.e. k; > 0
wz = -1 - i . .
wz™", if w starts with some negative power of z i.e. k; <0

we define:

n1 = fr2(wz) = Op2(wz) — O p-2(w2)
And similarly
nz = fy2(w2), ns = fry(wz), ne = fyz(w2), ns = fo-1,(wz), ne = fry-1(wz)
In the previous example we have:
nm=2 n=n3=ng=0, ng =ng = -2

Since Z-linear combinations of (antisymmetric) quasi-morphisms are (antisymmet-

ric) quasi-morphisms. We define :
f=nifra + 7"2fy2 + n3fzy + anyz + nsz:"’-y + ﬂszy"1

and f is the desired quasi-morphism which we promised to introduce.
To prove the next theorem, we need to find the defect of f, which is done in the
following lemma:

12



LEMMA 2.2. The defect of f is the maximum of the union of the

following sets:

{Ir1 — (ne +n5)l, Ine = (ns5 +n1)|, Ins ~ (n1 +n4)l}
{In1 — (ns +n6)l, Ins — (ne +n1)l, Ine ~ (n1 + ns)|}
{In2 — (na +n6)l, Ine — (n6 +n2)l, Ine — (n2 +ny)[}
{Inz — (ns +ns)|, Ins = (ns +n2)|, Ins — (n2 +ns)|}
{[nal, Inz|, [n3], In4l, Ins|, Ine|}
Proof: let X = X'A, Y = A~'Y’ where X, Y and X'Y’ are reduced words.

First we calculate:
Afu = fu(X'Y") - fu(X) ~ fu(Y) = (X', Y') —6p(X', A)—dp(A72, V")
Where

Me{M =z M, =y* Ms =zy, M, =z ly, Ms=zy~!, Mg = yz} =B

Then we find Af = f(X'Y') - f(X) — f(Y).
First case: If one of the words 4, X’ or Y’ is the empty word.

if X' =1 then Afy = —oy(A71, 1)
if Y'=1 then Afm =~dm(X', A)
if A=1 then Afm =dm(X',Y')

Since M eB; |[Afu| <1
Now we have f = Z?=1 n;fuM;, and in each case at most one of the A fm; #0,
so in this case D = max{[n;[; i =1, ... ,6}.

13



Second case: None of the words A, X’ and Y” is the empty word. In the
beginning it seems that there are 24 possibilities, but we observe in those cases

which we have:

X :...g9 , Y:h ...
Xi:... A7 Y{:971 ...

where g, h are the generators of F or their inverses, and A is the same in both

cases, we get:
[63¢(X", Y') 1 (X', A)=8m(A™Y, Y')| = 6m(X], ¥{)=6p (AL, YY) =8pe (X!, A)|

hence |Afy| is the same for both cases, and we left with only the following 12

cases:

(Case.2.1.} If we have:

X':...z XY :... zy

A:z... X'A:... 2

Y :y... ATY": oz ly ...
then:

Afa= -1 Afyz =0 Afzy =1

Afyz=0 Afzy-1=0 Afp-1y=~1
Therefore:

Af =n3 —(n1 + ng)
(Case.2.2.) If we have:
X :...z
A:z...
Y.y,
then, similar to the above case we have:

Af =ns —(n + ng)
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(Case.2.3.) If we have:

then:

(Case.2.4.) If we have:

then:

(Case.2.5.) If we have:

then:

(Case.2.6.) If we have:

then:

(Case.2.7.) If we have:

X :...z
Ay
Y :z...

Af=n —(n3 +ns)

X:....z

Y'.y~L...

Af =ns —(nz + n3)

X' :...z
Ayt
Y':y...

Af =n3 —(nz + ns)

X:...z
Ayt
Y :z...

Af =ny ~ (ng + ns)

X :...z71
A:z71...
Y:y...

15



then:

(Case.2.8.) If we have:

then:

(Case.2.9.) If we have:

then:

(Case.2.10.) If we have:

then:

(Case.2.11.) If we have:

then:

Af =ng ~(n; +n3)

X' :...z1
A:z71...
Y :y~1..

Af =n4 —(n1 + ns)

Af =n4 — (n2 + ng)

X' :...z71
Ayl
Y :y...

Af =ng — (n2 +ny)

X:...y
A:z...
Y':y...

Af =n3 — (ng + ng)
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And our final case is:

(Case.2.12.) If we have:
X':o..y

A:z71, ..
Y:y...
then:

Af=n, —(n3 +n5)

hence from case 1 and case 2 we get the result. O
The case when 7 is equal to w™ is interesting. This is done in the following

theorem.

THEOREM.2.3. With the above notations:

o) 2 o (L) +1)

where
an.—1 n§ + nsl, forw : z71 .. y~1
f(w“) [n Z;—1 n —ny|, forw : z
an.-l 2 4 ng, forw : z ... y1
In g=1 n' +n6[s for w : 3—1 e Y.

Proof. By Theorem 2.1 we have:

o) 2 s (2 1)

where D is obtained as in the last lemma. Let f = Z?=1 nifum; to complete the

proof we need to find f(w"), and we have the following four cases:

(Case.1) If we have:

17



then
f(w™) = ni(nny) + na(nny) + na(nnz) + ng(nng — 1) + ns(nns) + ng(nne)

(Case.2) If we have:

then
f(w") = ny(nng) + na(nny) + n3(nn3) + ng(nng) + ns(nns) + ng(nng + 1)

(Case.8) If we have:

then
f(w") = ny(nny) + na(nny) + nz(nn3) + ng(nng) + ns(nns + 1) + ng(nng)

and finally

(Case.4) If we have:

then
f(w") = ni(nny) + na(nny) + nz(nns + 1) + ng(nny) + ns(nns) + ne(nng).

Hence the result is clear. O
If we consider the special case when w = [z,y] is the commutator of z, y
then D = 2, N(w) =4 and f(w™) = 4n — 1. Hence we get the exact lower bound
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for C([z,y])" i-e. [n/2]+1 (which is found by M. Culler in [C]), and in the chapter
3 we introduce a formula to write [z, y]” as a product of [n/2] + 1 commutators.
Now from theorem 2.3 the following corollary is clear:

COROLLARY.2.4. With the above notations, We have:

(i) c(w™) > 00 asn —+ oo

(ii)c(w™) #£ 1, for any n € N,n # 1.
hence it follows that C(F) = oo with respect to any commutator word, and also it
follows that no nontrivial commutator word in a free group is a proper power. This
result for the case w = [z,y] was obtained by Schiitzenberger [S], and it follows
also from later more general result of Karrass, Magnus and Solitar [K-M-S] and

G. Baumslag [B] and Steinberg [St].
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CHAPTER 3
SOME COMMUTATOR EQUATIONS IN FREE GROUPS

In this chapter we use the following notations:

Let f,g be elements of a group h! = ghg™!, [h,g] = hgh~2g~! and [r] denotes
the greatest integer part of r € R, and let F = F(z,y) be a free group of rank 2
freely generated by z, y.

This chapter consists of two sections. In the first section, we consider the
elements [z,y]" in F, as we have noted in chapter 2, M. Culler has proved that
¢([z,y]") = [n/2] + 1 by using the theory of surfaces [C], and also Theorem 2.3 in
chapter 2 implies that [n/2] + 1 is a lower bound for ¢([z,y|"). In this section we
introduce a formula to write [z,y]" as a product of [n/2] + 1 commutators. Then
we consider the elements ([uj,v1] ... [uk,ve])", where uy, ..., ug,vq, ..., v
belong to a basis of a free group of rank r, r > 2k. C. Bavard in [Ba] has proved
that c([ug,v1] ... [ug,ve])® = n(k—1)+[n/2]+1, and we also introduce a formula
to write ([uy,v1] ... [uk,ve])" as a product of n(k — 1) + [n/2] + 1 commutators.

Finally in the second section of this chapter we discuss two questions raised
byEdmundss ([E-S],[L])regarding commutators and we provide suitable answers to
these questions.

§ 3.1. To establish the required formula for [z,y]® we need only the following
identities which hold in any group.
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LEMMA.3.1.1 The following identities hold in any group G with z, y € G.
) % y2] 2.4 = [2,02 [2~1,971]]Y (22, 251)"
(1) [, 2] loaf? = [y, 02 1] 12,01
(I11) [,y 21"z, y? = [z1,y~2 [z, ] vy [22, z~1y] yzy—!
(V) (22,27 9]"" [z, ] = [, 572 [y, 2] " [y 2, ya] @
Proof. To prove these identities we use the following easily verified rules for com-

mutators. Let a, b and ¢ be arbitrary elements in any group we have:
abca™'67tc™! = [ac™L, ] caba™'b"1c™! = [a, B°
We start with proving I:

[v™2 92 [2,4]° = (y™)(@) (@ 2y ay)(z 7 Yy e, ]
=@ EE =y DE (e ) ()
(v-z 7'y 'z [2,y])
=[5 L] Wy e t) g

=[] [

Now we prove II:

272 ey ™yl = (=7 -y - 2Pyl ey - 2 gy - ) ([2,y) [y

-1

-1 g2 [y, z-—l]]!l-"" [y ,y‘lz‘l]"

=[y

(since: [z,y] [y™2,2z] = [y, 4~ 3-1] )

Now we prove III:

21
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[V, 9727 ] [24)* = (y2) (y- 27 -y P2y y ™ - 2 yay iz -y oY)
(v [=71y7Y) (yz) !

= [z74, 472 [z,4]]"™ [2%, 2~y ver™
(since: [y'l,z] [z"l,y‘l] = [zz,z’ly] v

Finally we prove (IV):

-1
[zz,z-1y] yzy [z,y]2 = (yzy~) (z-y-z 2y leyz~1.y~1. sy~ lz—lyz?. z71).

=74y [y, 2™]) (w297t

-1

- [y, =2 [y-l’ z]]yzy z[y-z,yz] (v.z]

-1

the last equality is by: [z71,y7!] [y,z7!] = [v72,yz]"  and this complete the

proof. [J

Let us put:
A=[y,z71 [y1,2]]" . B=[ry? oLy
C=[y %2 [z,  D=[oLy2[r,y]]""
E=[y,c2[yL,2]]"" " |,  P=[y2 4
G= [z—za zy-l] y 3 = [y2’ y-lx_l]yz
I=[z2,z 1" , J=B.-C-D-.E
K=B-G , L=B-C-H
M=B-C-D-I

Hence in the above lemma we proved that:
(I) F-[z,y)*=B-G
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II) G-[z,yP=C-H
(III) H-[z,y =D-I
(IV) I-[z,y]* = E . Flv=l
Now we use the above identities to write [z, y]" as a product of [n/2] + 1 commu-

tators. It is enough, we consider the case when n is an odd number.

1 -1, -1

[z.4P =(z-y 27y oyt -yt oy le Yy 2y lzy g2 ly
=A- [y‘z,yz] =A-F

[.9]° = [z, 4] [z, 4]* = A [y2, y2] [z, 9]?
=A-F.[z,yP=A-B-G=A4-K by()

[,4]" = [2,y°[z,4]* = A-B- G- [z,y]?
=A-B-C-H=A-L by(II)

[2,4]° = [2,y]"[z,9] =A -B-C- H - [z,y]?
=A-B-C-D-I=A-M by(II1)

[z,4]" = [z,y]°[z,9]* =A4-B-C-D-I-[z,y]?
=A-B-C-D-E-Fvsl = 4. 7. Fl by(IV)

[2,4]" = [z,4]"[¢,4]* =A-B-C-D-E-[y,2|(F - [z,y]*)[z, 4]
=A-B-C-D-E-(B-G)¥l by(I)

=A.J- K=l
Similarly we obtain the following identities:
[z,y]'5=A4.J. Ly
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[z,y]"" =A- T M=l
[z,y]® =A-J.JWwsl . ploal?

[,y =A.J-Jwa . glve?

[z,y]® =A4.J.JWsl . [y

[z,y]>* = A-J. Jwnsl . plvef?

[2, 4" = 4. J - Jwl . ginsl® . ply.l®
[z,y]?* = 4. J. Jwel . Jlal? | gly.e)®

Now we are able to establish the general formula. Let n 2 0 be an odd integer,

we have the following two cases.

(Case 1) If n < 9, then the commutator 4 = v,z [y, z]]¥ is a common
factor for [z,y]", and we have c([z,y]”) ~ 1 = [n/2] = 4N + R where N € {0, 1}

and R € {0, 1, 2, 3}, hence we have the following equations:

(A- MY forR=0
A-FN+1 forR=1
A-KNH' forR=2
\ A- LN+ forR=3

[z,y]* = d

(Case 2)Ifn >9,then A-B-C-D-E = A-J is a common factor for [z,y]?
and ¢([z,y]") ~5 =4N + R, where R € {0, 1,2, 3Yand N {0, 1, 2, 3, ...}
But ¢([z,y]"*) = [n/2] + 1, hence we get [n/2] = 4(N + 1) + R and we obtain the
following result:
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PROPOSITION.3.1.2. Let F be a free group and z, y € F and let:

1

A=[y,z7! [y7,2]]" ,  B=[z,y? [z7yY]"
C=[y1,2*[y -‘B-l]]w.1 , D= [z71,y~? [z, y)]"*"
B=[y,a2 [y %)™, P=[y ]
G= [z'z,.ty‘l] v , H= [yz,y‘lz‘l] vz
I=[z2,z71y]""" , J=B.C-D-E
K: B . G ’ L= B . C . H
M=B-C-D-I.
Then:
(A.g.- g gl L gV el fR =0
A-J. - Jwa . gval® L gl | plva™ g R=1
n .
[, 3]" = | A-J-Jw . gva? . gledY | glva¥t R =9
A-J-Jwa . glvd® . glvelY | plvEl™ R =3,
Now we consider more general case; let u;, ..., ug, v, ..., vx be elements
of a free group. We show that how ([u3,v1] ... [uk,vk])" may be written as a

product of n(k — 1) +[n/2] + 1 (n, k € N) commutators.
First we need to prove the following lemma:
LEMMA.3.1.3. With the above notations, and let X = [u;,v;], ¥ =

[uz,v2], Z = [v1, (v11) Y 0}*]™, W = [v;),Yu;] and k€N then:

I (XY) = 2w (V3X)Y = zwYy?xy
II. Y?* (XY)® = (ZW)¥ " Y22 xy
III. Y2k XY = XY y2k+t
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Proof. First we prove [ ;

(XYl =u; . v (ui o7 Yurviur?) o7 (uro7 ey “togu ) o]
(o7 Y urvuy?) (Y XY)
= [o1, (1) vot| " ot Vi Y2XY
= ZWY*XY
but Y2XY = Y-1Y3XY = (Y°X)Y  and we have already written ¥° as a
product of two commutators, hence (XY)? can be written as a product of 5 com-

mutators.

Now we prove II

Y2 (XY)? = Y*ZWY2XY (by( 1))
= Y2kzwy-2ky2k+2XY
= (ZW)Y" y+2xy
and III is clear.O

Let n > 0 be an odd integer, we use the above lemma to write

An,k = ([ul,vl] con [uk, Uk])n

as a product of n(k — 1) + [n/2] + 1 commutators. If £ = 1 then Ani = [up,n]"
and we have already found the equations for this case. Hence fix k = 2, and let
n 2 0 be an arbitrary odd integer. We find the required equation for A,-‘,z as
follows:
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The case n =3 is done in part I of above lemma and;

(XY)® = (XY)*(XY)? = ZWY?XY (XY)’  (by (lemma.3.1.3.T))
= (ZW)Y*(XY)® = (ZW)(ZW)" Y*(XY) (by (lemma.3.1.3.IT))
and identity III of lemma 3.1.2 implies that:

(XY)® = (Z2W) (ZW)Y" XY'y$

But we know Y* can be written as a product of 3 commutators, hence (XY)® can
be written as a product of 8 commutators.

Let n = 7 then we have:

(XY)" = (XY)* (XY)? = (2W) (2W)"" V4 (XY)°
=(ZW)(Z2W)¥" (ZW)Y'Y® (XY)  (by (lemma.3.1.3.01)

= (ZW)(ZW)*" (2W)Y XYY"  (by (lemma.3.1.3.ITI))

But Y7 can be written as a product of 4 commutators. Similarly we have:
(XY)° = (2W) (2wW)Y (Zw)Y' (zw)¥" x¥'Y®
Now let n = 2/ — 1. If we have;
(XY)*t = (2w) (ZW)Y ... (Zw)Y" " x Yy
then we get:

(Xy)ﬂ-l—l = (Xy)Zl—-l (XY)2
=(ZW)(ZW)Y ... (2W)¥" " XY Pyt (xyy?
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Now since:
Xyzl-zyzl_l (XY)Z - Y21-2XY-2I+2Y21-1 (Xy)z —_— Y21-2 (XY)3

we imply that:

Y?l—(

(XY = (Z2W) (2W)Y" - (Zw)Y" " v  xy)?

and by part II and III of lemma 3.1.2 we get:
(XY = (Z2w) (2W)Y" ... 2W)Y" " (zw)Y" " v (xY)

*
“ = (ZW)(ZW)Y" ... W)Y (zw)Y* " xYyuh
but Y2+1 can be written as a product of [(2/ +1)/2] + 1 commutators, hence by
the last equation (XY)?*! can be written as a product of 20 +14[(21 +1)/2] +1
commutators.

So we have proved that if k = 2, for any n € N, (XY)" can be written as

a product of n(k — 1) + [n/2] + 1 = n + [n/2] + 1 commutators. Now suppose we

have the result for k. We prove the result for & + 1, let
Xl = [ulavl] ) X2 = [u2,02] gy ey Xk+1 = [‘Uk+1,'vk+1] ’

where u;,vi (1 <i < k+1) are elements of a free group. Let n = 2m + 1, and
put X2X3 . Xk+1 = M, Xl =N = [u1301]: Z1 - [vlﬁ(vlul)-lei‘l ¥y , and

W = [vl' I,Mul] . By apling (x) to N and M, we get:
(NM)*™ = (ZWh) (ZuW) M (ZW)M* .. (2,7 M7 NME™ ppomett

and by induction M?™+! can be written as a product of (2m + 1)(k — 1) +
[(2m +1)/2] + 1 commutators, hence (N M )2™*! can be written as a product of
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24+2m—2+14+(2m+1)(k—1)+[2m + 1)/2] +1 = @m+ 1)k +[(2m + 1)/2]+1=

n(k+1—1)+[(2m +1)/2] + 1 commutators, hence we have:
PROPOSITION.3.1.3. Let u;,v; (=1, ---, k) be elements of a free

group . Then for any n € N we can introduce a formula to write ([u;, vy]- - - [uk, vi])®

as a product of n(k — 1) + [n/2] + 1 commutators.
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§ 3.2. In this section we discuss two equations about commutators, raised
byEdmundss. In 1974, in an attempt to test the power of the methods then avail-
able for solving equation in free groups,Edmundss ([E-R],[L]) asked the following
questions:

(1) ¥ [v,w][z,y] = 22 (# 1) in a free group, does it follow that = is a
commutator, i.e. if ¢(2?) = 2, does it follow that ¢(z) = 17

(2) ¥ [v,w][z,y] = 22 (# 1) in a free group and z is a commutator, does it
follow that [v,w] = [z,4]? (i.e. If ¢(z) = 1 and ¢(22) = 2 with [v, w][z,y] =22 in
a free group, does it follow that [v,w] = [z,3]?)

In 1990, question (1) was answered negatively by J. Comerford and Y. Lee
[C-L] using a clever computer search based on the methods of D. Piollet combined
with an algebraic translation of a representation of the generators for the mapping
class groups due to J. Birman and D. Chillingworth. We also answer this question
negatively just by finding suitable examples as follows.

We need the following result of M. J. Wicks [W]

“w is a commutator in a free group if and only if some conjugate of w is identically
equal to zyzz~ly~1z-1.”

Regarding question (1) we find the following three examples:

The following identities are easily checked;

1 -1

([=~%, 4] [:c,y"l])2 =[z7l,y [z‘l,y]][z-l'y]zy- [yz~2, zy]"
(lz.9] [272,4])° = [22,57 =, )] " ¥ o, yz~ly~1]

(=91 [2,97%))° = [y~2, 27142z, yloy 221 ] =0l [zy~1z71, zy%z 1],
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hence we conclude that:

e([e™9] [z.97!])* <2
ERNERN)ES
c(lz,y] [z,572]) % < 2.

By Wicks’ result, we are able to check that a word in a free group is a
commutator or not. Recall a word W is a “cycle” of the word X if and only if
there are words X;, X, such that X = X1X; and W = X, X;. The (finite) set of
cycles of X will be denoted by {X*}. And the following negative transformations
are defined in a free group:

(¢) Deletion: Xhh-lY — XY.

(¢¢) Full deletion: AXh~1 — X.

These transformations are called negative since they decrease the length of the
words.

Now suppose we are given an arbitrary word U in a free group. A sequence
of negative transformations applied to U eventually yields a cyclically reduced
conjugate U*. We consider the set {U*} obtained from U in an effective manner
and U will be a commutator just in the case some member of {U*} is in the form
XYZX~Y~1Z~! for some elements X, Y and Z of the free group. It is clearly
possible to determine whether or not a given word is in the form XY ZX -1y ~1z-1
in a finite number of steps(in fact this can be done in a number of steps which is
a polynomial in the length of the word being tested).

Hence by using Wicks’ result, one would be able to check that none of the following
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products of commutators is a commutator;

(%9] [z07'])' [27%9] [my™!]
[.1:, y] [ -2, y]) [z, y] [z-27y]
(29 [2.,97%])%  [=9][z977].

(For example let U = [z~1,y] [z,y~!] then

U} = {z7"yzy Loy 2™y, yzlyzylzy e, 2lyz lyay oyt

y ey yzy s, oyl lye ey, ylzylr yr~lys,
zylzy T e yz Ty, yoy ey ey )
One can check that none of the elements of {U'*} is in the form XY ZX~1y-12-1
hence U = [z71,y] [z,y™2] is not a commutator and c(U) = 2.)

Hence we have:

c([z7%u] [2y7])* = (e 4] [257]) =2
c(lz,4] [z7%y])" = c(lz.y] [z2%,y]) =2

c(fz9] [2,972]))" = e (lz.9] [z,472]) =2

In [E-R] C. C.Edmundss and G. Rosenberger have answered question (2)
negatively, by finding a suitable example, we also find the following example re-

garding to the second question:

One can easily check the following identity:
[z, 0] = [y, 2] [z [y, 27] ,y]

and clearly [y~1,z] # [z [v~ 1,271 ,y].
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CHAPTER 4
POWERS OF COMMUTATORS AS PRODUCT OF SQUARES

In this chapter we use the same notations as chapter 3. It has been shown
[L-N] by R. C. Lyndon aﬁd M. Newman that in the free group F = F(z,y),
freely generated by z, y the commutator [z,y] = zyz~1y~! is never the product
of two squares in F, although it is always the product of three squares in F. Let
v € F’, the “minimal number of squares which is required to write v as a product
of squares in F” is called the square length of 4 and denoted by Sq(v). In this
chapter we consider more general case, i.e. Sg[z,y]”, n € N and our object here
is to prove the following theorem:

THEOREM.4.1. Let F = F(z,y) be the free group of rank 2 freely gen-
erated by z, y, then Sq[z,y]* = 3, if n € N is odd and, Sqlz,y]* = 1ifnis
even.

Proof. The case when n is even the result is clear, hence let n be an odd
integer.

First we show that [z, y]" can be written as a product of 3 squares in F. Put

[z,y] = W, then one can check the following identity:

2
W2k+1 [z,y]zk"'l = ((kay) W") (ka-1)2 ((W—kz-l)y)2 .
In the case k = 0 we get:

e8] = @) (57) (™)),
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hence

Sqlz, y]" <3,

hence to complete the proof it is enough to show that:

Sq[z,y]" #2,

so we prove that W25+ o£ a2} for any k € Z and a,b € F, we prove this part of
theorem in two different ways as follows:

First proof. Let a®b* = W™ for some r € Z, then:
a®t? = (ab)?  mod F'.

Since a?b? € F', (ab)® € F”, hence ab € F' and a = ub~! for some x € F'. Now
a? = (ub™1)? = wub™'b~2, hence uub™ = W and W = u? ( mod v3(F)).

But 72(F)/73(F) = Cox and it is generated by W = [z, y]. Since W is the
generator of 7;(F) mod v3(F), u? = W™ has solution iff r is even, hence we
proved that W2k+1 £ a2p2 for any k € Z. O

Note: In a similar way a®b™ = W for somer € Z implies that:
a® = (ub ) =uub b . b Ve

g~1 g2 —-(n—-1)
a™d™ = uub” Wb Lyt

for some u € F'. And we have:

SO
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hence

a"b* £ W™ if ntr

Second proof. It is similar to the proof in [L-N] by R. C. Lyndon and M. Newman

for the case [z,y] # a2b?. Let
G =PSL(2,Z)=SL(2,Z)/{xI}
We write elements of G as matrices instead of cosets, the group G is generated by

s=(s 1) 7=(4 o)

and it is the free product of the cyclic group (T') of order 2 and cyclic group (ST)

of order 3.

G=(S,T)=(T)*(ST)

G’ is a free group of rank 2 and index 6 and is freely generated by

=1 1) r=(4 1)

[X,Y] = XYX~ly—1 = _g6 = (‘01 :‘;’)

and

The exponent of S modulo G’ is six and by Kurosh Theorem two commuting
elements of G are necessarily powers of the same elements of G (for more details
see chapter 6 [Ro]).

We need the following two lemmas:
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LEMMA .4.2. All solutions of the equation
(1) A2B? = —§6(C2n+1)

in SL(2,Z) are given by A = §3@r+UM~1 B = MS-322+V N where M, N are
any elements in SL(2, Z) such that MN=NM, (NS "3(2"'*'1))2 =-I.

Proof. Since A2B? = —S§%(n+1) we get:
A232 I = _36(2n+1) -I= _253(2»-{—1).
By multiplying on the left by A~! and on the right by B—! we have:

AB - (BA)‘1 = -2A“153(2n+1)B-1,

hence:
0 = tr(AB) — tr(BA)™* = tr (-2A-133(2"+1>B-1) :
Therefore:
tr (A-153(2n+1)B-1) =0,
hence:

(A—153(2n+1)B—1)2 =_I,

which we can rewrite as:

2
(2) (ABS“‘(""“)) =-I,
as well as:
(3) _S3(2n+1)B—1 —_ ABs-3(2n+1)A,
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from (1) it follows that
(4) AB = (A"S“z"“)) : (—33(zn+1) 3-1) ,
from (3) and (4) we get:

AB = ( Al 53(2u+1)) ( AB) (3-3(2n+1) A) .

If we put
AB=N, A715%Gn+D) - pp,

then MN=NM and;

A= 53(2n+1)M—1, B = MS-3(2n+1)N, ABS-3(2n+1) - Ns-3(2n+1).

So by (2), we have:
(NS-3(2n+l)) 2 = —I,

hence:

(5) Ns—3(2n+1)N = _53(2n+1).

Now we have:

A2B? = §3Qn+1) pr-1g3(2n+1) p -1 ( M S—3(2n+1) N) ( MS—3(2n+1) N)
= §3@n+1) jr g-3(2n+1) 5r
=~ §3(2n+1) (_ 53(2n+1)) by (5)
= ~§62n+1)

37



Therefore all the solutions of (1) are in the form indicated by the lemma. [J
It is not difficult to prove the following lemma. (see [L-N])

LEMMA.4.3. Let V belong to SL(2,Z), V2 = —I. Then neither of con-
gruences

W? =1V mod3

has a solution W in SL(2,Z).
Now we turn to the proof of the theorem.
It is enough to show that equation (1) considered as an equation over G’ has no

solution in G’. Suppose the contrary, then there exist 4, B € G’ such that:

N=ABeG', MS™3(n+tl) = 41 ¢ ¢/,
since MN=NM, we have:

M=U* N=U® (UcG).
Since by (5), (NS—3¢n+1)? = _I in SL(2,Z), in G we have:
( NS—3(2n+1)) 2 =1,

and;
(6) N=vs§@rtl) y2_1 veg.

Since
Ms—3(2n+1) = Uas-3(2n+1) € G’,
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we also have:

M65—3(2n+1)b = Uabs-s(zn-(-l)b el

(Generally, let K be an arbitrary group and H < K. K for z,y € K we have
zy € H then z"y" also belong to H for any integer n.) So S3(2n+1b ¢ &' since
vteg.

Now since the exponent of S modulo G is 6, b must be even, thus for some
W € G we have:

N=U'=w?

and by (6) W2 = V§3(2n+1) hepce:
@) W2=V mod 3,

and by (5), as an element of SL(2,Z), V? = (NS-3Cn+1)® — _I But then
Lemma 4.3 implies that there is no solution for (7), so we get a contradiction and
this completes the proof. O
Note: In F(z,y), Sq[z,y]® = 3 for any odd number n € N. But there exist
commutators with square length equal to two. Obviously [A2, g] and [h, g?] are
product of two squares, and a nontrivial commutator is never a square([S] or see
chapter 2). Thus Sq[h?,g] = Sq[h,g?] =2.

But it is not the only case in which the square length of a commutator is

two. As was shown by L.P. Comerford and C.C.Edmundss in[C-E]
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CHAPTER 5
COMMUTATOR LENGTH OF CERTAIN
FINITELY GENERATED GROUPS!

In this chapter we use the following notations:

Fnt =(Z1, ..., Zn) denotes the free group of rank n and nilpotency class ¢ freely
generated by zy, ..., Za, [z,y] = 27y zy and z¥ = y~lry for any z, y elements
of a group.

In this chapter we show that if G is a free nilpotent group of rank 2 and
class 3 then c¢(G)=2. We also show that if G is a free abelian by nilpotent group
of rank n then ¢(G) = n except in the trivial case where G is abelian. We prove
some results about powers of [z1,z;] in F3 3 = (z;,z;) and we use these results
to discuss question (2) in chapter 3 in a nilpotent group. Finally we find lower
and upper bound for the commutator length of a finitely generated free solvable

group of class 3.

We begin by establishing a technical result required in the proof of Theorem 5.3.

LEMMA.5.1. The following system of three equations in variables 81,82,T1, T2, @

and 8 has no integer solution.

(1) 981 —risy =2

L A version of pages 40-46 of this chapter will appear in [A-R]
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sira(rz ~1)  risa(sz —1)
2) 1222 _n .

+r282(81 ~r1)—ar; +8s; =0

res1(sy —1) risy(ri—1)
3) 2121 _1221

—ary +08s; =0.

Proof. Put ¢; = ar; —fs3, c¢; = ary — f3s; then

€1 —82 r2 ¢

c2 —81 81€1 — S2C2 ry c2 ricy —raca2
a= - - = , B = > = .

re —s82 2 -2 2

ry =81

Hence we need sjc; ~ s2cz and rye; ~ rpes to be even.

_ 811'2(1'2 - 1) _ 1‘182(82 - 1)
N 2 2

+ra82(sy — 1)

r281(81 - 1) _ 1'182(7'1 - l)
2 2 )

C =
Hence we have:

2c; = slrg —~ 811y — rlsg + 71182 + 2817282 — 2r 138,
= 7’2(817'2 - 7‘132) - (817‘2 - 7‘152) - 32(1'132 - 817'2) —~T1T282 + 817282

= —242(rz + 32) — r282(r1 — s1).
And we have:
2

2c; = sfrg — 81Ty — rfsz +r18 = -2 +s%r2 —~riss.

Hence we need to satisfy the following conditions:

(1)
(4)

re8) —Tr180 = 2

2c1 = —2+ 2(rz + 83) — r282(ry — 31)
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(5) 20, = -2+ sfrz - rfsz
(6) s1€1 + s2¢2 = rcp + r2cz =0 (mod 2)
Case 1. r1s2 = 2k for some integer k. Then

g =-1 +(1‘2 +32) —krp +(1 +k)82

c2=—1+(1+k)sy —kry.

And modulo 2,

(N 0 =s101 + 8202 =51 + 3182 + 8
and

(8) O0=rici+reco =1y +rir0 19,

From (7) and (8) it follows that r;,r;,s; and s; are all even. But then r1S2 — T8y

is divisible by 4 contradicting (1).

Case 2. r1s; is odd. It follows from (1) that r;,rs, sy, s2 are all odd.

s1¢1 + 8202 = % s3ro(re — 1) - -21; s1ris2(s2 — 1) + sysara(s; — 1)

+ 3 saras1(s1 — 1) —% siri(r —1)

= 3 (8112 — sary)(s1r2 + 8aT1) — % s1(s1r2 —r183) — 7 s182(r182 — ro81)

— £ s2(r281 — s2ry) + 818272(sy — r1)

= (s172 + S27m1) — 81 + 8152 — 82 + s1827m2(81 — 1)
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which is odd and contradicts (6).
We shall use the following well known identities regarding groups which are

nilpotent of class 3.

LEMMA.5.2. Let G = (z,y) be nilpotent of class 3. Then, for all integers

r, s the following hold.

[z",y] = [z, y]" [z, y, 2]~ V/2

[.2:', ya] = [:8, y]ra[z, v, z]ra(r-l)/z [z, v, y]ra(a-l)/2.

THEOREM.5.3. Let F 3 = (z;,72) be the free nilpotent group of class 3
on free generators z1, z;. Then ¢(F3) = 2.
Proof. Let h, g be any two elements of F3 3\v3(F3,3). We study the form of

the element [h,g]. Since v3(F, 3) lies in the center of F, 3 we may express h as

21 233 [22, )P and g as z{*z32[z;, 21]*. Put z = [z2,z1], w1 = 2% and yp = 2°.

Then
[k, 9] = [21'23%, 23 22*][2 ] 222, Yo [y1, 232 257]
= [er' 27, 2’ lle1 2%, 21 |[2 2%, 277, 23], wal o2, v, 23] [9n
= [o1%, 29?)[27*, 22%, 222 ][23%, )22, 2t 23] [z, 2]
X [22,2]2[z, 22]P*2(2, z,]P*
= [.1:1,:z,'z]"l"’[:l:l,:z:z,:zl]m.‘]'sl':r_ll [z4, zz,zz]mm (z1, 22, 22222
x [332,2-'1]"""[3"2,101,:132.’]1'12“;2:}'l [.tz,au,3:1]2""%‘:ll [z2, 21, 22 2192

% [22, 21,$1]—°rl+ﬂ'1[22, T, 2,2]—azrz+ﬁiaz
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= [z2, z1]Mz2, 21, 22]*[22, zy,71]Y
where

A= r8; —ri8;

_ sina(ra—1)  risy(sz - 1)
2 2

—rir282 + 128182 + 832 — ar;g

_ rsi(sy —1) _ S2ri(n —1)
- 2 2

+ﬂ81 - Qar.

Since [z3,21], [22,21,22] and [z3,2;,21] are basic commutators and the group
under consideration is the free nilpotent class 3 group, it follows that if (h,g] =
[2,21]® then A = 2, g = v = 0. But by Lemma 5.1 there are no integers
a, 8,11, 81,72, $; for this set of equations to hold and we conclude that c(Fp3) > 2.
Since ¢(F2,3) < 2 by [AL-R] or [B-M], we obtain the equality.

The proof of next theorem makes use of the following two results. The first
is elementary; the second is a result of Peter Stroud [Str]. We shall include the
proofs since Stroud’s result never got published, except in his Ph.D. thesis, due to
his untimely death. In the case of a finite group G, Brian Hartley [H] has given
bound for ¢(G) in terms of the Fitting length of G. His proof incorporates Stroud’s

proof given below.

LEMMA.5.4. Let A be a normal subgroup of G = (Z1,...,zn). f A is
abelian or A lies in the second center (3(G) of G then every element of [G, A] has

the form _]E[l[z,-, ail, a; € A.

Proof. Consider [g,d], d€ Aand g = T} ---z;" where g; € {1,~1}. Write
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ziy =z, €& =¢ and g = z°. Then [g,d] = [z°y,d] = [z,d?][y,d] if A < (2(G)
and [g,d] = [z°, d][z%, d, y]ly, d] = [2*, d] [y, d[d, z°]] if A is abelian. If ¢ = ~1 then
use [z71,d] = [z,zd"1z].

Iterate-the process r times to obtain [g,d] = J_]zil[z.-j,dj] with d; € 4. Finally
use the identity [z, d)][z,dz] = [z, d1d] to see that every O[z;;,dj], d: € A has

the form '_lzll[z,-, ail, a; €A.

LEMMA.5.5. (P. Stroud) Let G = (zy,...,z,) be a nilpotent group. Then
every element of the commutator subgroup G’ is a product of n commutators

[z1,91] - [Zn, gn] for suitable g; in G.

Proof. Use induction on the nilpotency class of G. If G is abelian then G’ = 1
and the result is clear. So let G € N4, nilpotent of class r + 1, and assume the
result for groups in the class A;. Let T' = 4,41(G) = [v-(G), G]. Then an element

g of G’ has the form g = [z, k1] - - [zn, hn]d for some d € T. By Lemma 5.3,

g= [zls hl] te [.’Bn, hn][zla al] cer [zna an]

n

= H[zi, hia;].

i=1
THEOREM.5.6. Let G = (z,,...,z,) be non-abelian free abelian-by-nilpotent
group freely generated by z,,...,z,. Then ¢(G) = n. If 4 is an abelian normal
subgroup of G and G/A is nilpotent, then every element of G’ is a product of
n commutators [1,91]%(z2,92]%2... [z, gn]*" for suitable g1,---,g9n iIn G and
ays...,an in A.
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Proof. By hypothesis, there exists a normal abelian subgroup A of G such
that G/A is nilpotent. By Lemma 5.4, [A,G] = {[z1,a1]"- - [Zn, an]; ai € A}, and
since G/[A,G] is nilpotent, using Stroud’s result, every element g € G’ has the
form

n n
g= (H[zi,gi]) (H[-‘Bi, ai]) with a; €4
i=1 i=1

n
= H([z,—, ai][zi,g:]%)  for suitable d; € A.

i=1
Now [z, giai] = [2i, ail[zi, 9:]* = ({2, ai][=, i])*. Thus [z:, ail[zi, gi] = [2:, giai]*7
and g = f[l[x,-,g,-a.-]"‘“f-l, with dia7! € A. Thus ¢(G) < n and every element of
G’ has th; required form. Since G is free abelian-by-nilpotent and non-abelian,
the free metabelian group on n-generators is a quotient of G and hence so is the
free nilpotent-class-three group on n generators. By Theorem 1 for the case when
n = 2 and by [Al-R] for n > 2, ¢(G) > n. This shows that ¢(G) = n and
completes the proof.
Now we prove some result about powers of [z,,z;] in F3

THEOREM.5.7. Let F; 3 = (z1,z2) be a free nilpotent group of rank 2

and class 3 freely generated by z,, z;. Let z = [z2,z1]. Then
(1 fn=0 mod4 and z"= [a1/2agan/a42, 22 20 /o]

c(z") = J 1 ifn=+1 mod 4 and 2" = [zlzg+lz"+1/2,z1z2zn+1/2]

(2 #fn=2 mod4 and z"=[z}z] [zl,zz,z;(n—n/z]

Proof. We use the same notations as Lemma 5.1. In Theorem 5.3 we have proved
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that if A = z'z]? [zg,zl]p y § =Z7'z3% [22,21]% and;
Al =r381 —78;
Az =sira(r2 —1)/2 —r183(s2 — 1)/2 + rasy(sy ~ry) — arg + Bsg
A3 =rz81(s1 —1)/2 = r183(r1 = 1)/2 — ary + B3y,

then:

(%) [h,g] = [z2,21]™ [22, 21, z ™ [22,21,25].

We use this result in the following cases:

Case 1. Let n be an odd number, and choose
rn=s=38=1 rn=n+l, a=F=n+1/2,

then it follows that:
ra81 —T1S2 =n
sira(rz —1)/2 —risa(s; —1)/2 4 r282(81 —7r1) —ar; + s =0
r2s1(s1 —1)/2 —r183(r; —1)/2 —ar; + Bs; = 0.

Hence by () :

[z27z1]n = [zlz;1+1zn+1/2’z1z22n+1/2]

it covers the case n = +1 mod 4.
Case 2. Let n =2 mod 4, we show that the following equations in variables

81, $2, T1, T2, a and B has no integer solution.
281 —T182 =n
s1r2(rz —1)/2 —r182(s2 — 1)/2+rasa(sy —r1) —ary + Bsp =0
r2s1(s1 —1)/2 —rys2(ry — 1)/2 — ary + Bs; =0.

The proof is similar to the proof of Lemma 5.1, put;

&1 =ary; —fs;, ¢ =ar;—fs,,
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then:

_ s16 — 8202 riC1 —TraC2

a=2"0% 5 DG nc

n n

So we need:
$1€p — 8262 =0 modn, ric;—ryc2 =0 modn,
in which:

C1 =arp — ,832 = 811'2(1'2 b 1)/2 - 1’182(82 - 1)/2 + 1'232(81 - 1'1)

c2 =ary — fBs) =rys1(s1 —1)/2 ~rysp(r; — 1)/2.

Hence we have:

2c; = 811‘% - 817y — 7'18% + 1182 + 2817287 — 2r17r38,

= 7‘2(817'2 - 7'132) - (317'2 - 7'1-92) - 52(7'182 - 811'2) —T1re82 + 817282

TN —n 4+ nsy — ra8z(ry — 1)
=-n+ n(rg + 82) - 1‘282(7’1 - 81).
And we have:
2¢y = 8%1‘2 — 8§12 — 1'382 +ris, =—-n+ 3%1’2 - 1'%32.

Hence we get:

r281 — 1182 =n =2( mod 4)
2c; = —n+ n(rg + 32) - 7‘282(1'1 - 31)
2¢s = ~n + s%rz - rfsz

S1€1 +82c2 =r1c; +12¢c2=0 modn
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Now we consider the following two cases:

Case 2.1. rys; = 2k for some integer k. Then rys; =0 mod 2 , SO

r281 =n+2k
2¢c1 = —n +n(ry + s2) — 2kry + (n + 2k)s;
= —n +nry +nsz — 2kry + nsy + 2ks;
= —n +ry(n —2k) + 2s2(n + k).

Let n = 2k;, hence:

c1 = -k +1‘2(k1 - k) +82(2k1 -+ k)
2c2 = —n + (n + 2k)s1 — r1(2k) = 2(—ky + (k + k1)sy ~ kry)
¢y =—k; —kr; + (k +k1)81.

Hence we have:

0=s1c1 +32¢2 modn
= (—s1k1 + r2s1(k1 — k) + s182(k + 2k;))
+ (k182 — kris; + ks1s2 + kys;82).

But in modulo 2,

n=Ersy =18 =0, k1 =1,

hence it follows that:

8182 — (81 + 82) =0 mod 2,

hence s;, s; are even. We show r; and r2 are also even.
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We have:

0= T1C1 — ra2C3 mod n
= (-kﬂ‘l + klrlrg - krﬂ'z + 2’611‘182 + kf‘lsz)

+ (kﬂ‘z + kryry ~ kras; — k1811'2).

Since in modulo 2,

we get:

nNEris; =res = 0, k1 = 1,

0= ri1c1 —rC2 = (1'1 +1‘2) +rirg mod 2.

Hence r1, r; are even, so in modulo 4;

n=rzs5; —r182 =0,

but we know n = 2 in modulo 4, hence we get a contradiction.

Case 2.2. Let r2s; = rys; = 1 in modulo 2, hence r1i, T2, $1, and s; are

odd and we have:

si1c1 + 82¢2 =

8%7‘2(7’2 - 1) _ 811‘132(82 - 1)

+ 31821‘2(31 -_ 7‘1)

2 2
s2ras1(s1—1)  riri(r ~1)
2 2
_Siri—s3ri  sirp—siris;  siris? — s2spr
- 2 2 2
818979 — 82r
~ o122 22 21 -{-8%821‘2 — 81717282
- (r2s1 —r1s3)(r2s;y + r1s2) _ 81(rzs1 —r18) _ 8189(r183 —135)
2 2 2
S2(r281 —r183
5 3 ) + s1r2(s182) — (s1r2)(r1s2)
_n(rzs; +r182) sin sy1sn sn
= ) - ) + D) - 2 +(3182)(811‘2) - (rzsl)(rlsg)

=1 mod 2. (sincen/2=s;=s, =1, =r; =1 mod 2)
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But we know s1¢; + s3c; =0 mod 2, hence in the case n = 2 in modulo 2it is

not possible to write [z2,2;]" as a commutator, so
c [zZa zl]n =2,

and we have:

[z2,7:1]" = [z}, 4] [xl,zz,z;("'l)/z] )

Case 3. Let n = 0 in modulo 4, we show that c[z2,21]" = 1. Let n = 4k for
some integer k, choose sy =r; =2k, r; =4, s, =2,0 = 3k + l,andf8=k+2

then:
281 =118 =4:2k~-2k-2=4k=n
s172(r2 — 1)/2 —r183(s2 — 1)/2 + ras3(s; — 1) — ary + Bs, =0
r2s1(s1 —1)/2 —rise(r1 —1)/2 — ary +8s1 =0,

hence by (*) we have:

[3:2,21]" = [zz, 31]“

k+2 2k
1

= [a:f"x%z y L g 3k+1]

TH2

= [z;lﬂzgzn/uz, AL z3n/4+1] ’
and this completes the proof. O

In chapter 3, we have discussed the following question, raised by Edmunds
([E-R],[L]) in a free group.

K [v,w][z,y] = 2% (# 1) in a free group and z is a commutator, does it follow
that [v,w] = [z,y]? (i.e. Fc(z) = 1 and ¢(z2) = 2 with [v,w][z,y] = 2% in a free
group, does it follow that [v, w] = [z, y]?)
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As we know this question has been answered negatively in a free group. Now
let F3,3 = (z1, z;) be a free nilpotent group of rank 2 and class 3 freely generated by
1, Z2, and let z = [z3,z;]® then 2% = [zz,zlls (22,21}, clearly [zg,zlls # [22,21]

and by the last theorem
(®) =2, clzs,z]’ =1

hence in this case also we have a negative answer to the above questions in F} 3.

In 1990 in [E-R] C.C.Edmunds and G. Rosenberger made the following con-
Jjecture:

Conjecture: if [v,w][z,y] = z" has a solution in a free group F with n > 2
and z # 1, thenn < 3.
Regarding the above conjecture in F33,if z = [z3,2;] then for any n = 2 in modulo
4, c¢(2™) = 2, hence in this case we have negative answer to this conjecture.

The proof of the next theorem requires the following lemma proved by Hart-
ley in [H] and based on an argument of Rhemtulla[R2].

LEMMA.5.8. Let G =(z,,...,z,) and Hbe a nilpotent normal subgroup
of G. Suppose that H = (y€,... ,y€) is generated by conjugacy classes in G of
elements yj,...,y,. Then every element of [H,G] can be expressed in the form:

n 3

IT e [T [RS0s]  (hiokf € )

i=1 =1
where the product is taken in order of increasing suffices.

THEOREM.S5.9. Let G = (z,,... »Tn) be a free solvable group of class 3,
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then:

n(n + 3)

n<ce(G) < 3

Proof. Let

s < . G6.61,6]
GGl /TG, GT, 6

It is clear that M is a nilpotent group, by Lemma 5.5 every element of M’ is

congruent modulo [, G] / [[(Y, G'], G] to a product of n commutators of the form
[zi,9i] (9: € G) modulo [[G",G'],G]. Since G'/ [[G',G"],G] is nilpotent, using
Lemma 5.8 every element of [G',G] /[[G',G"], G] has the following form modulo
[l¢'.¢1,6l,

fI[kaz] fI[:c;,h.-],

=1 =1

with h;, k1 € G', s=n(n—~1)/2 and X; € {lzi,2j]; 1<i<j<n}.

Finally use Lemma 5.3 to see that every element g € G has the following

form:
g= H Xlskl]H[zn ’]II zumt]H 31,9: II Ii,m ]
=1 i=1 i=1 =1 =1

’

With my, m,- eG’ .

Now we have;

I =i R [] lzi,mi) = [I (zismi] [zi, hi)%  for suitable d; € G

=1 =1 i=1

n
= H [z, h.'m'.]d.—m.-'l with d.-m,-“l € G'.

i=1

And
n n
II (zi,gi] H[z.-,m:-] = H [zi, gim '] ™ with dmi™teG".

=1 i=1 =1
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Thus:

¢(G) <n(n—-1)/2+2n =n(n+3)/2.

Since the free metabelian group on n generators is a quotient of G and hence so
is the free nilpotent-class-three group on n generators. By Theorem 1 for the case

n =2 and by [Al-R] for n > 2, ¢(G) > n. This completes the proof. O
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CHAPTER 6
COMMUTATOR LENGTH OF THE WREATH PRODUCT
OF FREE GROUP BY INFINITE CYCLIC GROUP

In this chapter we use the same notations as chapter 5. Let F be a free
group, as we know F is not a c-group (recall G is a c-group if there exists n € N
such that every element of G’ can be expressed as a product of n commutators),
but if we consider the group W = FwrCq, the wreath product of F by the infinite
cyclic group we show that W is a c-group, this is done in the following theorem.

THEOREM.6.1. Let F be a free group and W = FwrC,, where C,, is the
infinite cyclic group, then every element of W is a product of three commutators.
The proof of this theorem requires the following preparatory lemma.

LEMMA..8.2. Let A be a free abelian group and W = AwrC., where Co,
is the infinite cyclic group, then W is a c-group and furthermore the commutator
length of W is equal to 1.

Proof. Let B = iger.- where A; >~ A, be the base group of W and let

T = (t) ~ Coo. Then W is the semidirect product of B by T;
W = BT.

Clearly,

W' = [W,W] =[BT, BT] = [B, T].
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Now B is a normal abelian subgroup of W, Lemma 4.4 of Rhemtulla’s thesis [R1]

shows that

[B’T]={ [bat] b€ B}

(We sketch an analogous proof of this lemma:
It is clear that

{[bt],beB}C[B,T]

Let [by,2™][b;,t™2] --- [b;,t™] belong to [B,T]. Since [b,¢~1] = [6~1,#]*"" we may

assume my > 0 (1 < k <¢). Then one can check that
[x, t™] = [b}, 1],
where b}, =™ ... btb;. And
[63, t][Bg, ] --- [bf,¢] = [b18) --- B,1].

Hence [B,T] = {[b,t], b€ B }.)
And this completes the proof. O
Now we return to the proof of Theorem 6.1.
Proof. Let B = ‘_2_5 rF; where F; ~ F, be the base group of W and let

T = (t) ~ Ceo. Then W is the semidirect product of B by T;
W = BT.

Now modulo B’,

W ~ AwrC,
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where A ~ F/F"'.

Clearly by Lemma 6.2, modulo B’,

c(W)=1.

To get the result, it suffices to show that every element of B’ = le)z rF} is a product
1
of two commutator.
Letg =(g9i)iez=(-"-, 1,1, 1, 91,92, *"* , gk, 1, 1, 1, ---) be an arbitrary

element of the base group of W, for convenient we establish the following notation:

g = (gi)iez = (91, g2, --- , g&)-

(It means g or its conjugate is equal to (g1, g, --- , gk).)

Let w = (w;)iez = (w1, wy, -+ , wy) bean arbitrary element of B’, where
wi = [hi1, gar][hiz, gie] -+ [Rirgir); i=1, .-, m.
Our object is to find suitable elements a, b of the base group of W such that:
w=(w, wy, :+- , Wy)= [g"l,t"‘] [_b_"l,tz"‘] .

Let [@7,t™] = (zx)rez, and let [b1,#2™] = (yi)rez.

Now if we find a, b such that

[a71,t™] = (h11, ko1, -+, Ami1, G11, G215 -+ » Gma,
TR YT o B N TR s
Fi2, haz, -+-, hm2, 12, 922, ***, Gm2,
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-1 -1 -1 -1 -1
hus hass -+, hm2s 912 > 9225 *°* s Im2

.
.
.
3
.
.

hir-1, h2r-g, ---, Rmr-1, gir-1, 92r-15 °** s Gmr—1,
hlr—l’ 2r1-1’ T h;l}'—l’ gl_;-l-l, 92-1-1.11 Tty gmf._p
hlrs h2rs T hm,-, girs 92ry *** , Imry
hi-;-ls h2r7 Tty ;1‘9 91.1-1’ 9‘2.1'1’ s G
w1, w2, **c , Wm)

= (Zk)kez

—1\t™ -1
=g(a™!) = (arail, ez,

and,

[b-l t2m] “(hll H 21: "t h;&; 91-11, 92-111 Tty gr;ia

hi1, ha1y -+ Ami, G11, 921, -+ 5 Gmi,
h12’ hzza " hm27 912, 922 1 " g;i,
hiz, haz, *++; hm2, G12, 922, *** , gma2,
hit, hzra oy har 957 ng’ O
hir, h2ey -+ 5 hmr, 917y G2ry =** 5 Gmr)

=(Yk)rez

=5 (67" = Babgtymeez

Then we have w = (w1, wy, -+ , wp) = [g-l,t"‘] [Q’l,tz”‘] , and we are done.
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First we find @ = (a¢)rez. We have z¢ = ara;},,, hence ai = zraim;

a1 =z =hn

az =z = hy

Am—-1 = Tm-1 = Rm-11
Gm = 2Tm = hml
Am+1 = Tm+161 = gu1hn

Am42 = Tm42Q1 = 921h21

AQ2m = I2mam = gmlhml
-1
A2m+1 = Z2m+10m+1 = A7 guih11

-1
@G2m+2 = T2m+28m+2 = hay go1haa

-1
a3m = T3ma2m = hmlgmlhml
— —_ =171 —
G3m+1 = T3m+1a2m+1 = g1y hu guhny = [911, hu]

A3m+2 = T3m4+2@2m+2 = [g21, ha1]

Aim = Tamazm = [gm1, hml]

@am+1 = hi12[g11, h11]
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asm = hmz[gml’ hml]

A(4r—1)m+1 = T(4r-1)m+1C(4r-2)m+1 = [g1r hlr][gu-l,hlr-ﬂ o+ [g11, h1]

A(ar-1)m+2 = T(ar-1)m+28(4r-2)m+2 = [92r, hor][g2r~1, har—1] --- [g21, h21]

Arm = TarmQ(4r—-1)m = [9mrs hmr][gmr—la hmr—l] ce [gmla hml]-

Hence if we choose;

a = (ar)rez = (h11, k21, -*- , Ami,

guhiy, gnhoi, --- , gmibmi,

[91rs R1rllg1r—1, R1r—1] - -+ [911,P11],

(92r: R2r][g2r—1, hor—1] -+~ [g21,h21],

[,gmr, hmr][gmr-l ) hmr—l] e [gm1, hml])-
Then [a™%,t™] = (zi)rez especially,

Tarm+1 = aaf.-l)m.'.l = [h11,911][k12, g12] --- [R1r,g17] = wy

Tarm+2 = Qgr_1ym2 = [R21,921][h22, g22] -+ [har, g2r] = ws

Ts5rm = a-i-r];n = [hmlygml][hmh ng] T [hmr,gmr] = Wn.

Now we introduce b = (bx)xez such that:

71, 82™] = (ye)rez = (bebil,, )kez-
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Hence;

b=y =h

by = z3 = hgy'

bm = Ym = h;&

—_ -1
bnt1 = Ym+1 =Gy

bom = Yom = gr;i
bom+1 = Yom+1by =1

bom+2 = Yom42be =1

b4m = y4mb2m =1
bam+1 = Yam+102m+1 = hy

bam+2 = Yam+2bomi2 = hyy

bSm = ySmb3m = h;é

bsm+1 = Ysm+1b3m+1 = g5

bem = Yembam = g3
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-1
b4rm-4m+1 = Y4rm—-am+1 b4(r—1)m-2m+1 = h1r

— k=1
b4rm—4m+2 = y4m-4m+2b4(r-1)m-2m+2 - hzr

birm—2m = y4rm-2mb4(r-l)m =g,;f.

Hence if we choose;

b= (bk)kez =(hﬁli hi’lls *Tt h;g]i,

-1 -1
J11: 921 " 9m1s

-1 -1 -1
h12’ hzz’ T hm2’

-1 -1 -1
9125 9225 °°" s Im2y

hl-rl’ h';rlv T h;}-,
9ir» 920 " " s e
,1,1,---,1,1, 1, ---,1, 1,
,1,1.---,1,1,1, ---,1, 1,
then we have, [677, £2™] = (yk)kez.
We may rewrite a, b as follows:
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Let @ = (ar)rez = (@1, **- ,a4rm) (hence ax =1 fork # 1, --- 4rm) and
b= (be)eez = (b1, --- ,b4rm—2m) (hence by =lfork # 1, --- , 4rm —2m). Then
k = 4lm + ¢ for some integer numbers i and ! (1 <i < 4m, 0 <! <r—1). Hence
we may rewrite a; and b; as following:

( Ril4+1Qk—m forl1<i<m

Ji-mil+1Gk—m form+1<i<2m

Ak = Q4im+i = -1 .
R omip18k-m for2m+1<i<3m

| 9 smi419k-m for 3m+1<i<4m,

and,
hzi, forl<is<m

b = bgim4i = gi'__lm,+1 form+1<i<2m

1 for2m+1<i<4m.

Then we have:

w (wh Wz, *-° wm) = [Q-l’tm] [é—l,th]’

and we are done. (J
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