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Abstract

This thesis develops a reliability-based framework for the analysis and design of Fault Tol­

erant Control Systems (FTCS’s). The proposed reliability index is defined based on control 

objectives and hard deadline. For analysis purpose, a semi-Markov model is built from dy­

namical model, and stochastic transitions of Markov states describe degradation of system 

conditions among a finite set of states. This reliability index incorporates the characteristics 

of FTCS’s, and can be used as a probabilistic criterion on overall system performance in 

long term.

Two reliability-based design methods are developed using this new reliability index as 

an optimization objective. The design difficulty lies in the fact that the index can be eval­

uated from a numerical procedure only but lacks analytical expressions. To address this 

problem, the first method considers stabilizing controller parameterization and randomized 

algorithm techniques to find the statistically optimal controller with respect to reliability. 

The second design method is based on a two-stage design scheme: A gradient-based search 

is first carried out on probabilistic performance characteristics for reliability require­

ment; a sequential randomized algorithm with a weighted violation function is then devel­

oped for controller design to satisfy the required Hoo performance, and its convergence is 

guaranteed with probability 1.

The proposed reliability index and evaluation method are based on the Markov model­

ing of fault occurrence and Fault Detection & Isolation (FDI) schemes. But Markov models 

accept only the exponential distribution, which causes a memoryless restriction. To remove 

this restriction, a semi-Markov description is adopted as a general model for cyclic FDI 

schemes. Furthermore, the reliability modeling and evaluation method are extended for this 

general model of FTCS’s.

In the last part, a reliability monitoring scheme is developed. The reliability index is 

defined based on system dynamical responses and a safety boundary; FDI history data is 

used to update its transition characteristics and reliability model. This method provides an 

up-to-date reliability index as demonstrated on an aircraft model.
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Chapter 1

Introduction

1.1 Background

1.1.1 Fault tolerant control systems

Nowadays, advanced control system technologies have been applied in all kinds of pro­

cesses and plants, including those with potential catastrophic effects on environment and 

human life. For instance, faults in chemical or nuclear plants may result in tremendous 

economic losses and environmental damages. This issue imposes higher reliability require­

ments on control systems, which brings forth a new branch of research - Fault Tolerant 

Control Systems (FTCS’s).

Some fundamental terminologies used in FTCS’s are quoted as follows [1]:

Definition 1.1 (Fault) An unpermitted deviation o f  at least one characteristic property or 

parameter o f  the system from the acceptable/usual/standard conditions.

Definition 1.2 (Failures) Permanent interruption o f  a system’s ability to perform a re­

quired function under specified operating conditions.

Definition 1.3 (Fault Detection) A binary decision making process: either the system is 

functioning properly, or there is a fault present in a system.

Definition 1.4 (Fault Isolation) Determination o f  kind, location and time o f  detection o f  a 

faidt. Follows fault detection.

Definition 1.5 (Fault Tolerance) The ability o f a controlled system to maintain control ob­

jectives, despite the occurrence o f a fault. A degradation o f  control performance may be 

accepted.

1
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Fault detection and tolerance have been important concerns for safety-critical systems. 

Traditional methods for fault detection include voting, limit-checking, or spectral analysis 

of critical signals. When a fault occurs, system simply switches to a redundant compo­

nent. These traditional methods are based on physical redundancy. Spare components are 

prepared for faults in important components, and redundant measurements are compared 

to detect faults. However, these methods may not be applicable in certain applications be­

cause of cost and space limitations. Therefore, analytical redundancies are usually adopted 

in FTCS’s, which rely on system model and analytical relations among physical variables 

for fault detection and tolerance.

FTCS’s can be generally classified into the following two categories: passive and active 

FTCS’s.

(1) In passive FTCS’s, a single controller is designed for presumed fault scenarios. Clas­

sical robust control theories can be adopted, and it is easy to implement. However, 

faults often make abrupt changes on system dynamics. It is difficult to design a fixed 

controller over such “uncertainties” of plant model, and the controller tends to be 

conservative [2 ].

(2) Active FTCS’s are mainly composed of two subsystems: a Fault Detection & Isolation 

(FDI) scheme and a reconfigurable controller, as shown in Figure 1.1 [2], Solid lines 

in the figure represent signal flow and dashed lines represent adaptation. The FDI 

scheme provides fault diagnosis information for a supervision scheme to modify the 

reconfigurable controller and to switch off faulty actuators and sensors.

Fault FaultReference

Input

Fault

Output

Actuator SensorPlant

FDI
Supervision

Reconfigurable

Controller

Figure 1.1: Structure of active FTCS

Most FDI schemes are designed based on the assumption of known system models, as

2
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shown in Figure 1.2. Its main idea is to check the consistency between process measurement 

and corresponding estimate calculated from process model. A residual signal is generated 

indicating fault occurrences. Various methods can be applied for residual generation, such 

as observer-based design and identification-based schemes [1].

DisturbancesFaults

OutputInput

♦O

Residua]

Detection
Result

Process

Model

Residual
Evaluation

Figure 1.2: Structure of model-based FDI.

Reconfigurable control is designed to maintain acceptable control performance under 

fault occurrences by modifying controller according to FDI results. For example, the control 

law scheduling method pre-computes gain parameters for all faulty cases and switches to 

the corresponding gain when fault occurs [3]. In model following methods, controllers are 

redesigned such that system state trajectory is close to the desired one generated by an ideal 

model [4], In pseudo-inverse-based methods, controller gain is adjusted to restore desired 

closed-loop system matrix [5].

The afore mentioned reconfigurable control methods usually require perfect informa­

tion about system model and parameters for both normal and faulty cases. But modeling er­

rors and unknown disturbances may cause imperfect decisions of FDI. Consequently, false 

alarms and missing detections may corrupt overall stability and performance of FTCS’s 

[6 , 7]. Many researchers have investigated this issue and proposed the so-called integrated 

design methods by considering the inter-relationship between FDI and reconfigurable con­

trollers. For example, Zhang and Jiang developed an integrated FDI and reconfigurable 

control approach based on Interacting Multiple Model (IMM) Kalman filters and eigen­

value assignments [8 ]; this approach was then further improved to account for performance 

degradation under fault occurrences [9]. Other integrated design methods include the adap­

tive control based approaches [10 , 11], online fault estimation and control accommodation

3
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[12, 13], and robust control methods [14], which can be collectively categorized as de­

terministic Fault Tolerant Control (FTC) design approaches. In contrast, fault and FDI 

behaviors were modeled as two separate Markov processes in a stochastic FTC frame­

work, in which incorrect FDI results are described as mismatched Markov states [6 , 7], 

Stochastic analysis and design have been performed under this modeling framework, e.g., 

[15, 16, 17, 18].

It has been claimed in the literature of FTCS’s that reliability can be improved by FTC 

but very few works have investigated the reliability of FTCS’s directly. Even in the so-called 

reliable control systems [19], the design goals are to maintain basic control performance 

such as stability, but no reliability index is adopted. Classical reliability assessment tech­

niques are not geared toward the analytical redundancy in control systems. Many methods 

consider series-parallel or network structures but few deal with the dynamics and controller 

reconfigurations involved in FTCS’s [20,21,22], Therefore, it is difficult to relate reliability 

to control actions, which prevents the analysis and design from a reliability perspective.

1.1.2 Reliability concepts and evaluation methods

Definition 1.6 (Reliability [23]) Reliability is defined as the probability o f  an item (a com­

ponent or system) performing its intended function adequately in the specified interval o f  

time [0 , t] under stated environmental conditions.

To evaluate reliability, the intended functionality and associated environmental con­

ditions need to be specified, which are often called mission profiles [24]. Reliability is 

computed in terms of probabilities. If the life time of an item is represented by a random 

variable X  and its probability density function represented by / ( f ) ,  the cumulative proba­

bility distribution function of X  is

where Pr{ ■} denotes the probability of an event. Based on Definition 1.6, reliability function 

R(t)  is the following probability:

Clearly, R(0) =  1 and R(oc)  = 0 .  (1.1) implies that reliability function R(t)  is the comple­

mentary cumulative probability function of life time random variable X .  Or equivalently,

( 1. 1)

( 1.2 )

4
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Insights on failure mechanisms can be obtained by examining failure rate or hazard func­

tion, which is defined as

4  X > J X
6t-> 0 St

Pr{f < X  < t + St}
— fini ---- -------------------- :------

<5t—>o (5 fP r{ X > f}
R(t )  — R( t  + St)

<5™o s r n t )  
dR(t)  1 =  f ( t )  

dt R( t )  R(t )

As a function criterion, R(t)  is rarely used as an objective or constraint in design phase. 

An alternative scalar reliability index, Mean Time To Failure (MTTF), is usually preferable 

for controller or system design purpose. It is defined as the expected lifetime of satisfactory 

operation:
ro c  ro c

MTTF 4  E{ X)  =  /  P r{X  > t}dt  = /  R(t)dt,
J o  J o

where the second equal sign is based on the fact that X  is a nonnegative random variable 

and Theorem 1.9 in [25, p.24].

There are mainly three types of reliability evaluation methods: experimental, Monte 

Carlo simulation, and analytical methods [21]. A large quantity of items are tested in ex­

perimental method to estimate the distribution of life time and reliability function. Monte 

Carlo simulation method relies on repetitive simulated operations of physical systems for 

estimation. In analytical methods, mathematical models are set up to describe system op­

eration, based on which reliability criteria are derived and calculated. This method can be 

further classified into the following two categories.

1) Item based method. System is decomposed into basic items from physical point of 

view, and their relationships are represented by reliability block diagrams, such as 

parallel-series or network diagrams. Reliability can be calculated based on the fail­

ure rates of critical elements in the diagram. This method may be used for feedback 

control systems by searching for the equivalent cut/tie sets [26]. But it is not applica­

ble for fault detection and accommodations in FTCS’s.

2) Stochastic modeling methods. System is analyzed from a functional point of view.

Its operational conditions are analyzed and classified into different states, such as

fully functional normal state, faulty degraded states, and failure state. System oper­

ation evolves among these states, starting from normal states, gradually jumping to

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



degraded states if minor faults occur and finally being absorbed in the total failure 

state [24], Based on this idea, a stochastic process can be constructed with its states 

representing operational conditions. Reliability is then equal to the probability of this 

process transiting to nonfunctional failure state.

Markov process is often used to set up reliability models owing to its simplicity of 

calculating transition probability and hence reliability. But, its exponential sojourn 

time distribution imposes a restrictive memoryless property. As a result, the operation 

of practical systems may not be properly described. In this sense, the semi-Markov 

process may be suitable which allows general sojourn time distributions [25, 27],

1.2 A framework of reliability-based FTCS’s

1.2.1 M otivation

It is clear that FTCS’s are targeted at safety critical processes and the ultimate goal is to 

improve reliability [20], However, despite being a subjective goal, reliability has hardly 

been used as an objective criterion that guides the design of FTCS’s [22], Available tech­

niques are likely to restore stability and control performance under faulty conditions, but 

few have discussed the reliability issue directly. In this thesis, a reliability-based framework 

is established to conduct analysis and design.

Reliability is a widely accepted criterion in engineering systems, and it is related to 

different mission profiles in different systems. In control systems, closed-loop control per­

formance objectives can be deemed as their mission profiles, and FTCS’s aim to maintain 

them even when faults occur. The reliability concept in this sense, i.e., the probability of 

satisfying these control performance objectives in a given time interval with the consider­

ation of possible faults, is consistent with controller design objective and provides a more 

detailed and practical description. When using reliability in this sense, control performance 

objectives are not lost; moreover, it gives a clear indication on how well the system will 

continue to satisfy these objectives considering future fault occurrences.

Classical FTC methods mainly concern with retaining stability and taking system to 

a safe state when faults occur in critical components. In this thesis, the reliability-based 

FTC methods are developed for processes under continuous long-term operation; faults 

may occur in many components and cause deterioration of system performance. Moreover, 

interruption of process operation for emergent repair may introduce high costs. Some clas­

sical FTC methods, such as FDI design and stabilization, can be used for fault diagnosis and

6
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control design. But the focus is to achieve high reliability for non-interrupted satisfactory 

operation by accommodating manageable faults. Therefore, reliability-based FTC methods 

are more desirable than classical methods in these applications.

1.2.2 Existing results

1) An ongoing research contribution is made by Wu [12, 22, 28, 29, 30], In this frame­

work, overall system is decomposed into several subsystems and their functional re­

lations and available redundancy are represented by a serial-parallel block diagram. 

Fault tolerance effectiveness is represented by coverage, defined as the conditional 

probability that system is functional when faults occur. It is used as a link between 

reliability indicator and control actions. By proving the monotonic dependence of 

reliability on coverage, it is sufficient to maximize coverage in order to obtain high 

system reliability. A similar system configuration was deployed in [31], where reli­

ability was evaluated from serial-parallel structures and optimization was conducted 

to find the best structure based on reliability and cost. However, this framework is 

restricted to those FTCS’s that can be described by serial-parallel block diagrams.

2) Other methods are based on Markov or semi-Markov reliability modeling. Walker 

proposed a semi-Markov model by defining semi-Markov states as the combinations 

of status of faults and FDI schemes without considering dynamical relations and con­

trol objectives [32], Reliability evaluations from the Markov modeling of FDI were 

used to detennine the residue threshold of FDI and to compare several sensor fault 

detection schemes respectively [33, 34], Harrison, Daly, and Gai established a sim­

ilar discrete-time Markov model for a redundant navigator [35], However, in these 

Markov or semi-Markov models, the states are all simply defined as the combinations 

of fault modes and FDI results, in which the role of control on improving system per­

formance is not considered. Hence, a link between reliability and the overall control 

performance of FTCS’s is missing.

3) A related research area to reliability is the Fault Mode Effects Analysis (FMEA). It 

studies fault effect correlations and propagations among components [36], In a large- 

scale system, there may be many subsystems connected together. A minor fault may 

cause new faults in other components and even failure of the overall system. FTCS’s 

in this scenario should consider not only the control performance in a local subsystem 

but also fault propagation and overall reliability.

7
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4) The latest progresses were reported in an invited session at the Safeprocess con­

ference in 2006, which presented various methods of improving FTC analysis and 

design through an integrated reliability index. For example, a reliability-based recon­

figuration strategy was developed in [37] according to an enumeration of finite system 

structures; a reliability index for a hierarchic diagnostic system was proposed in [38] 

from its functional description; Monte Carlo simulation technique was used in [39] 

to design an FDI scheme with high reliability; a simulation study was presented in 

[40] to quantify the performance of a wireless network on the effects of loop closure 

frequency and nodes’ storage capacity; a fault diagnosis system design was discussed 

in [41] using reliability analysis techniques with application to a practical problem.

1.2.3 Scope o f the thesis

Based on the motivation and existing results in the literature, this thesis intends to investi­

gate the following problems:

• How to define and to analyze the reliability o f  FTCS’s?

Reliability essentially provides a quantitative and probabilistic measure on the abil­

ity of a system to maintain functionality in the long run. It is particularly important for 

FTCS’s when controlling safety-critical processes. But, control system dynamics are usu­

ally not considered in classical reliability analysis. This ignores important characteristics 

of FTCS’s and cannot reflect true mission profiles o f reliability with respect to control ob­

jectives. In addition, FTCS’s contain fault detection and control reconfiguration schemes. 

These features need to be taken into account when defining and analyzing reliability for 

FTCS’s.

• How do dynamic control actions affect reliability? How to design controllers to satisfy 

given reliability requirement?

Control action and reliability are on different time scales: One is usually in seconds 

while the other in days, months, and years. Intuitively, these two concepts are related: Well- 

desiped controller maintains control system functionality, and therefore system can oper­

ate longer with improved reliability; in the opposite way, high reliability can be achieved 

only when individual components such as sensors and actuators are reliable and control 

system is well-designed for required control objectives. Many FTCS’s and reliable control 

designs are performed based on this intuition, which assumes that reliability can be im­

proved when control objectives are maintained under fault occurrences. However, it is not

8
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clear how to quantify control effect on reliability. Designs based on intuitive assumption 

without quantitative analysis may not be an effective solution. If a reliability model relating 

controller and reliability is available, reliability-based controller design can be posed as an 

optimization problem.

1.3 Thesis outline

This thesis has 5 chapters, and the logical sequence is shown in Figure 1.3.

Chapter 2 
Reliability model

Chapter 4 
Controller design II

Chapter 5 
Semi-Markov FDI

Chapter 3 
Controller design I

Chapter 6 
Reliability monitoring

Figure 1.3: Logic sequence among main chapters.

In Chapter 2, a novel reliability index of FTCS’s and its evaluation method are pre­

sented. The index is defined based on control performance and hard deadline. A semi- 

Markov process model is proposed to describe the operation of FTCS’s for reliability eval­

uation. Computed from the transition probabilities of the semi-Markov process, the reli­

ability index incorporates control objectives, performance degradation, hard deadline and 

the effects of imperfect FDI, an index that gives a suitable quantitative measure of overall 

performance.

In Chapter 3, a controller design method is discussed by considering random faults 

and two categories of design objectives: stability requirement and the reliability index pre­

sented in Chapter 2. A parameterization procedure together with a randomization-based 

optimization method is developed to find a statistically optimal controller that can stabilize 

the system and achieve the highest reliability.

In Chapter 4, a two-stage design scheme is developed to optimize MTTF, a long-term 

reliability index: A gradient-based search is first carried out on probabilistic Hoc perfor­

mance characteristics for MTTF requirement; a sequential randomized algorithm with a

9
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weighted violation function is then developed for controller design to satisfy the required 

Hoo performance, and its convergence is guaranteed with probability 1. Two iterative algo­

rithms are carried out alternately to implement this scheme, and a controller can be designed 

for MTTF requirement.

In Chapter 5, the semi-Markov description of FDI is proposed, which removes the re­

strictive memoryless assumption in Markov models and provides a general model for cyclic 

FDI schemes. Furthermore, the reliability modeling of FTCS’s is extended to this case.

In Chapter 6 , a reliability monitoring scheme is developed for active FTCS’s using 

results presented in Chapter 2 and 5. The history data of FDI decisions is used to update 

the transition characteristics of FDI and the reliability model.

The conclusions and future work are discussed in Chapter 7.

10
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Chapter 2

Reliability modeling and evaluation*

2.1 Introduction

In order to meet high reliability requirement of safety-critical processes, major progress 

has been made in FTCS’s [20, 28]. Existing work is mainly focused on restoring control 

performance under faulty conditions. However, imperfect FDI results caused by modeling 

uncertainties and disturbances may corrupt stability, performance, and therefore reliability 

[6 ]. So it is necessary to verify the reliability requirement of FTCS’s, and quantitative reli­

ability analysis is mandatory for safety-critical and industrial systems [42, 43]. Moreover, 

reliability evaluation is prerequisite to reliability-based controller design. For example, in 

the reliability-based design of structural control, the key problem is to evaluate the failure 

probability of control systems, a complementary reliability index [44], For FTC, improv­

ing system reliability is considered to be the ultimate goal. Therefore, reliability evaluation 

and reliability-based FTC design have become prominent and have attracted much attention 

from the control community. Motivated by these considerations, the main objective of this 

chapter is to develop a reliability index and evaluation method for active FTCS’s.

To address the effects of imperfect FDI results, Markov models are used to study the 

reliability evaluation problem for given FTCS. Although the Markov modeling of FDI may 

be restrictive, the influence of FDI imperfectness is directly tackled in this model [6 , 7, 15]. 

The proposed reliability index incorporates the dynamical characteristics of FTCS’s: con­

trol objectives, performance degradation, hard deadline, and the effects of imperfect FDI 

results. Based on the dynamical model of FTCS’s, degraded control objectives are set for 

various fault scenarios, and reliability is defined as the probability of satisfying degraded 

objectives, while temporal violation within hard deadline is allowed. For reliability eval­

‘ Results presented in this chapter has been submitted to the International Journal o f  A pp lied  M athem atics 
a nd  Com puter Science, revised and under review.
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uation purpose, a semi-Markov process is constructed to describe and to predict control 

performance evolution due to fault occurrences and imperfect FDI results, and its transition 

probabilities are computed to determine reliability.

The remainder of this chapter is organized as follows: A reliability index is defined 

in Section 2.2; system model and assumptions are given in Section 2.3; a semi-Markov 

reliability model is presented in Section 2.4; and an example is given in Section 2.5 followed 

by conclusions in Section 2.6.

2.2 A reliability index

Definition 2.1 The reliability function R ( t) o f FTCS’s is defined as the probability that, 

during time interval [0, f], FTCS’s either satisfy presumed control objectives or violate them 

only temporally fo r  a short time no more than the presumed hard deadline T ^ .

A reliability index is introduced in Definition 2.1 to reflect the following dynamical 

characteristics of FTCS’s:

• Control objectives. FTCS’s are said to be functional if they satisfy given control 

objectives. A scalar function 7(f) is assumed to represent control performance at time t, 

and small value indicates good performance. Assume that fault modes are finite, and the 

performance upper bound for the i-th fault mode is denoted as J ' iax. The control objective 

is to maintain 7(f) < 71'liax for each fault mode. More discussions are given in Section 

2.3.2.

•  Performance degradation. FTC deals with systems under various faulty conditions. 

Degraded control objectives, described by different performance bounds under various fault 

modes, are usually applied based on current fault mode and available system resources. For 

example, the performance bound under certain fault is usually higher than that of fault-free 

case.

• Hard deadline. Due to imperfect FDI results and control reconfigurations, 7(f) may 

exceed 7^ax only temporally for a short time, which should be distinguished from a failure. 

The hard deadline concept proposed in real-time system analysis is therefore used in Defi­

nition 2.1 [45]. It is assumed that if the violation time is greater than a particular limit 7hd, 

the system is generally unable to return to functional states. In this sense, 7},d is called the 

hard deadline of FTCS’s.

Let £(f) represent the system fault mode at t. According to Definition 2.1, R.(t) is

12
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calculated as

R(t)  =  1 -  Pr{3fi G [0, £], t - < i  > Thd, Vt G [ f  ,f], J ( r )  >  J xmM, i = C(r)}. (2.1)

Rem ark 2.1 As an overall performance criterion o f  FTCS’s, the reliability function R(t)  

gives system survival probability fo r  any operation period up to time t. The plot o f  calcu­

lated R(t)  can be deemed as a reliability prediction curve, which can be used to examine 

long-term system reliability behavior during offline analysis.

The reliability evaluation problem is then reduced to developing an approach to calcu­

late R(t).  The main idea is to describe the evolution of J( t )  using a semi-Markov process 

and then to calculate R(t )  by solving the transition probabilities of the process.

2.3 System modeling

2.3.1 M arkov dynam ical model

Consider the following nominal linear Markov dynamical model of FTCS’s [7, 15]:

where x(t)  G M", u(rj(t), t) G R " \ w(t)  G R/l, and z(t)  G denote system state, control 

input, exogenous input, and controlled output respectively, and Rn denotes real vector space 

with dimension n. ((<) and //(£) are assumed to be two separate continuous-time Markov 

processes. A , B , C, D,  E.  F,  represent system matrices with compatible dimensions, in 

which £ (t) and 77(f) represent fault and FDI modes respectively, and A represents a vector 

of uncertain modeling parameters.

Based on probabilistic robustness analysis [46], modeling uncertainties A in (2.2) are 

assumed to have known probability distributions in bounded sets without specific struc­

tures. For example, they can be uncertain matrices additive to system matrices or uncertain 

transfer functions multiplicative to the nominal model.

The system in (2.2) can be deemed as a hybrid dynamical system including both contin­

uous state and discrete modes [6 ]: The discrete modes, also referred to as system regimes, 

are represented by £(f) and 77(f) subjected to stochastic evolution, and the dynamics of 

continuous-state x(t)  is described by linear state space equations, Af(£(f), 77(f)), for the 

corresponding system regimes.

£(f) is given as a homogeneous Markov process with finite state space Sj =  {0,1, • • •, 

N i } to describe system fault modes, N\  G N. N denotes the set of nonnegative integers.
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The transition probability from mode i to j ,  i , j  G Si, in the infinitesimal time interval of 

St is given by

where an > 0  are the transition rates of ((f), and o(6t) denotes the high order in­

finitesimal.

77(f) is given as a conditionally Markov process with finite state space S2 =  {0,1, ■ ■ • , iV2} 

to describe FDI results, W2 G N. When ((/,) =  k, k  G S\ ,  the transition probability from 

mode i to j ,  i , j  G S2, in St is given by

where /3-j, f-- > 0 represent the transition rates of 77(f) given (fit) =  k. These transition 

rates compose the generator matrices of ((I) and 77(f), denoted by Ffi — [±Q',j],v1 x n 1 and 

H^j = respectively, where negative sign is taken when i =  j .

2.3,2 Assum ptions

The assumptions made in this chapter are explained as follows:

Assumption 2.1 For the fixed system regime modes (( /)  and (2.2) is reduced to a

linear system model Assume that the control performance o f  77(f))

can be represented by a model-based static performance measure //(•).

The term “static” means that //(•) depends on system model only, but not on system state 

trajectory x(t)  or output response y(t). Essentially, this model-based static performance 

represents an average measure on how the system behaves in a particular regime. This 

assumption is made mainly because of the fact that a reliability index usually concerns 

long-term and average behavior. Average performance measure is therefore more suitable 

for reliability analysis. For example, p(-) can be defined as \\G,w(((t),  rj(t), .s)||, the system 

norm of the transfer function from w to z of the regime model, such as Hoo and H-2 norms. 

With the development of robust and optimal control, system norms represent a widely- 

used static model-based index and have become a standard performance criterion. They 

can be used to describe general control objectives including trajectory tracking, disturbance 

attenuation, model matching, output variance when considering Gaussian disturbance, etc. 

As a practical example, H 00 norm is used in [47] to describe a handling quality control 

problem in an aircraft.

14
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Some objectives depending on system state can be converted into model-based objec­

tives, such as the guaranteed cost control [48]. But in general, time-varying control ob­

jectives depending on system state can not be represented by p(-). For example, if the 

time-varying control objectives are to maintain the system state trajectory within a safety 

region under a Gaussian noise disturbance, /Lt(-) is not applicable, and the methods pre­

sented in [44] can be used instead to estimate the probabilistic performance for reliability 

evaluation.

The performance value J ( t)  is calculated as p(M( ( ( t ) . : rj(t))). Based on Assumption

2.1, it is a constant for fixed ( (t) and 77(f). By abuse of notation, we use ??(t)) =

p( M{ ( ( t ) ,  77(f))) to denote the dependence of this performance value on system regimes.

Assumption 2.2 The probability distribution o f  77(f) can be approximated by its stationary 

distribution.

This assumption is a result of the limiting probability theory of Markov processes [25]. 

Considering the meanings of ((f) and r;(f), the transition rates of 77(f) represent how fast 

FDI modes change for a particular fault mode while those of ( {t) describe how frequent 

faults occur. As fault occurrences are often rare in practice, the transition rates of ((f) are 

usually in a smaller order than those of 7/(f). So the time for FDI to approach its stationary 

distribution is much shorter than the mean time of fault occurrences, and this assumption is 

therefore made though some approximation errors may be introduced.

2.4 A semi-Markov process model for reliability evaluation

A semi-Markov process, denoted as X R(f), is used as an intermediate model between 

FTCS’s and the reliability index - it is constructed based on probabilistic parameters ob­

tained from the dynamical model (2 .2 ), and its transition probabilities are used to compute 

the reliability index R(t)  in (2.1).

2.4.1 State definitions

Two state transition diagrams are shown in Figure 2.1, where Figure 2.1.(a) is for the case 

of two fault modes {(), 1}, and Figure 2.1.(b) four fault modes {0, 1, 2, 3} (in which the 

self-transitions of each state are not shown for the sake of clarity). A'R(t) has five states in 

Figure 2.1.(a), denoted by Sr = {O n , Of , I n , I f , F}, and nine states in Figure 2.1 .(b): ‘F ’ 

represents the unique absorbing failure state, and functional states are represented by a pair 

with a number and a letter in the subscript. The number represents fault mode, the letter

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



‘N ’ indicates satisfactory performance, and ‘F ’ unsatisfactory perfonnance but within the 

hard deadline. For i e  Si ,  in and i f  are defined as

in : {CW =  i, J ( h  n(t)) < J„iax}, iF : {C(t) = i, J(i ,  r)(t)) > J lmax, r  < Tbd)},

where r  denotes the sojourn time at if. Each state of A"R(/) indicates fault mode and

whether or not the control objective is satisfied. By studying the state transitions of X R(t), 

performance evolution and reliability can be analyzed.

Func

Figure 2.1: State transition diagram of X R(t): (a) two fault modes; (b) four fault modes. 

2.4.2 Probabilistic parameters

Considering modeling uncertainties, control performance can be given in terms of a classi­

cal worst-case measure for robustness but it may lead to a conservative result. In contrast, 

probabilistic robustness analysis assumes a probability distribution of parametric uncer­

tainties and evaluates the probability of satisfying a specific performance using randomized 

algorithms [46]. This alternative criterion has clear meaning in practice where the required 

performance objectives are always associated with certain minimum probability levels [49]. 

Following this idea, the following parameter is defined:

Definition 2.2 For a particular fault mode and FDI mode, the probability that the system 

is functional is defined as

N onfunctional
state

(b)

Hi ~  p r { v{t)) < J maxlCW =  'i. r](t) = j }  

= Pr{J( i , j )  < ./max}

=  ?r{p(M( i , j ) )  < J ‘iax}, (2.4)

where i £ S ) , j  G S 2.
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7 ij is the probabilistic performance when the fault mode is i and FDI mode is j .  Based 

on Assumption 2.1, 7 ^ can be estimated using randomized algorithm given by [46],

Rem ark 2.2 7 7  is a key parameter connecting the control performance o f a particular sys­

tem regime and the reliability o f FTCS’s. It demonstrates the influence o f  system dynamics 

and controllers on the reliability index R(t).

Definition 2.3 For a particular fault mode, the stationary distribution o f  the FDI mode is 

defined as

it) =  lim Pr{?y(f) =  j|C(f) =  *}, i e  S i, j  G-S2.
J t—>oc

7r'- can be calculated based on the generator matrix of 77(f) when (fit) = i [25]. Based on 

Assumption 2 .2 ,7r‘ is used to approximate the following probability:

Pr{?l(f) =  M ( t )  = i} «  7r*, i € S i, j  G S 2. (2.5)

Remark 2.3 tt‘ reflects the detection precision o f  FDI. In the ideal case o f  perfect FDI 

detection, 7r) =  0 when i f  j  and tt' =  1. So this parameter gives a probabilistic measure 

on FDI imperfectness.

Definition 2.4 Given X K(t) i^, i G Si, the stationary probability that the FDI process 

equals a specific mode is defined as

w) = lim Pr{r/(f) =  j|A 'R(f) =  ?:N}, i e  S i, j  € S2.
•' / —► oc

Wj can be computed based on the Bayes’ formula as shown below in the example of u}} in 

the case of S2 =  {0, 1}. If 700 and 701 are not equal to zero simultaneously, then

=  ,lim P r{,??W =  0|A:R(f) =  0N} =  lim Pr{rj(f) =  0\((t)  =  0, 7 (0 ,77(f)) < 7°ax}
£—*oo t—»oo

Pr{7(f) < 7 »axl?7(t) =  0, ( (t) =  0 }Pr{?7(t) =  0, f i t )  =  0}
Efe€S2 P r{J W < J maxkK0 =  k, C(<) =  0 } Pr{j?(f) =  k,  C(f) =  0 }

P r{ 7 (0 ,77(f)) < J ^ ax|7?(t) = 0 }P r{ 77(f) =  0|C(f) =  0} Pr{C(f) =  0} 
t^°°  E*eSa P r{'7 ( ° .??W) < JLx\v( t )  = k} Pi{rj(t) = /c|((f) =  0}Pr{C(f) =  0 } 

Pr{7(f) < 7^ 177(0 =  0 , C(0 =  0 }P r{ 7?(0 =  0|C(*) =  0}
(^°° EiteSa P r{ ^  JLx\v{l )  = k, c (t) =  0 } Pf i v( t )  =  = 0 }

P r{ 7 (0 ,0) < J,°nax}lim t- . 0OPr{r/(f) =  0|C(f) =  0}
Efc6 s2 Pr{7(0, k) < J n°lax} linit- ,0 0  Pr{r/(f) =  fc|<(f) =  0}

700 ̂ 0 n— qT7 (J- (2-6)
7oo +  701^1

Considering that all cases of 77(f) =  k form a partition of event space, k G S2, Bayes’s 

fomiula is used in the second line of the above derivations, where the conditional probability
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is converted to known mariginal and other conditional probabilities. If 700 =  701 =  0, woo 

is defined as 7Tq. The calculation procedures are similar for other values of i and j .

Definition 2.5 Given X R(t) = ip , i G Si, the stationary probability that the FDIprocess 

equals a specific mode is defined as

v) =  lim Pr{?7(f) =  j |A * (t)  =  tF}, i G S i, j  G S 2.
J t —>oc

Vj can be calculated in a similar way as wl-.

Based on Assumption 2.2 and (2.5), wl- and are used to approximate the following 

probabilities:

Pr{r?W =  j |A R(f) =  M  «  w), Pr{r](t) =  j |A R(f) =  i?} «  v), i G S i ,  j  G S 2 .

(2.7)

Remark 2.4 vfi and Vj are probabilistic estimates o f FDI modes given the states o f X R{t), 

and determined by the control performance o f  each system regime and FDI imperfectness 

parameters, represented by 7,7 and 7r‘ respectively.

2.4.3 The sem i-M arkov kernel

The associated Markov-renewal process of X R(t) is denoted by (Yn , Tn , n G N). Yn 

denotes the so-called embedded Markov chain, which gives the state sequence visited by 

X R(t) consecutively, and Tn the transition time. The semi-Markov kernel of X R(t) is 

denoted by a matrix function Q,  and its element gives one-step transition probability. For 

example, Q (» -n , Jn> 0  is defined in the following equation, ?N , j u  £  S r, i  G f f i ,  t >  0:

Q(in, Jn , t) = Pr{yn+1 =  j N, Tn+i -  Tn < t\Yn — «N},

the probability of transiting from *n to jn  in one step with sojourn time Tn+1 -  Tn no 

greater than t [25].

According to Assumption 2.1, the state transitions of X R(t) are triggered by the mode 

changes of £(i) or rj(t), implying that faults, FDI decisions, and controller reconfigurations 

have major effects on system performance and reliability. Hence the semi-Markov kernel 

Q is essential for reliability evaluation. By taking the transition of A R (f) from On in Figure

2.1.(a) as an example, the main steps of calculating Q are listed as follows and illustrated 

in Figure 2.2.
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1) The FDI mode r / ( f )  before transition is estimated using w* or v l- based on the state of 

X R(t).

2) Competition between ((£) and //(£). The process that jumps first determines possible 

transitional destination states. For example, if £(t) jumps before 77(f), the destination 

state is I n  or l p ;  otherwise, On  or Of - This competition probability can be calculated 

using a property of exponential distributions.

3) The probability of satisfying control objectives at destination states is calculated by 

using 7 ij.

4) By combining previous steps, the transition probability is calculated using the total 

probability formula.

Qit) = 0 known
C,(t) jumps first: 
In or 1F

Pr{7(0, 7 ( 0 ) 5  7 1 )  

based on yio, yu-

Current state 
X*(/) = 0N

Competition: 
SCO vs. r|(f)

Transitional 
destination states

Estimate r|(/) 
based on w j, tv,0

/  \ r|(f) jumps first: 
0 N or 0 F

0F

Pr{ 7(0, 7 ( 0 )  > 7 1 )  

based on 1-yio, 1-yn.

Prl 7(0, 7 ( 0 )  < 7°̂ , 

based on yoo, yoi-

Pr{ 7(0, 7 ( 0 )  > 7 1 )  

based on 1-yoo, 1-yoi-

Figure 2.2: Calculation procedure of the semi-Markov kernel.

The property of exponential distributions mentioned in step 2) is given as follows:

Let X \ , • • • , X n be independent random variables, with X l following an exponential 

distribution with parameter Aj> i =  1 ~  n.  Then the distribution of niin(ATi, • • • , X n) is 

still exponentially distributed with parameter (Ai  +  • ■ • +  An ),  and the probability of X t 

being the minimum is A , / ( A y  +  ■ • • +  A „ ) ,  i =  1 ~  n .

For example, suppose Qit) = 0 and 77(f) =  0 before transition. Let 77 denote the 

sojourn time of (( t) ,  and tv the sojourn time of 77(f). Because of Markov process theory, tq 

and rr) are exponentially distributed with parameters given in the generator matrix:

Pr{r^ <  t} = 1 -  e _Qo o t , Pr{r^ < t ) =  1 -  e _/3»<A.

Based on the above property,

P r{m in(rc , r„) < f} =  1 -  
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The event 7y  < t 1} corresponds to £(t) transits before 7 7 ( f ) ,  and r r/ < means rj(t) transits 

first. This event appears to be a competition between two processes, and therefore the term 

competition probability is used. The above three probabilities determine the competition 

result and are used in calculating transition probabilities to different destination states, as 

shown in (5.18) in the proof of Theorem 2.1.

Following the similar idea shown in Figure 2.2, the general results on calculating semi- 

Markov kernel are given as follows:

Theorem 2.1 The semi-Markov kernel o f  X R {!,) can be calculated by the following equa­

tions:

where t > 0, i, j  £ Si ,  S-2\k =■ { a | a  £ S2, a f  k},  and S i \ i  =  ( b | b  £ S i,  b f  i). 

Si, S'2, and S r denote the state spaces of £ ( f ) ,  7 7 ( f ) ,  and X R(t) respectively. The indicator 

function l{t>rhd} =  1 if  ̂ > T j u i ; otherwise, 1(07^} =  0.

Q{'i- N, J N ,  t )

Q{>n, :n • t)

,kdS2 0,1 1 kk

(2 .11)

(2 . 10)

Q(if ,  F, t) =  l{(>Thd}(l -  j 'n , Thd) +  < 2 (*f , jv,  Thd))), (2 . 12)

Q{F, F, t) = 1, Q(F, JN, t) = Q(F, j F, t) = 0, j  £ S u (2.13)
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Proof: By applying the total probability formula and conditioning the probability on 

FDI modes, the first case of (2.8) can be decomposed into three parts as shown in the fol­

lowing equation, where (Yn ,T n) denotes the associated Markov renewal process of X R(t):

Q(iN, *n, t) = Pr{Kn+i =  zN, Tn + 1 -  Tn < t\Yn =  zN}

=  P r{rl(T’*) =  k \Y^ =  iN jPrfP ii+ i =  Tn + 1 -  Tn < t\Yn =  iN, r?(T„) =  k} 
kes2

= M r i ( T n) = k\Yn = i N } P r{ J(i, r,(Tn+1)) < C(Tn+1) = i ,

ktzS'j
Tn+i ~ T n < t\Yn =  zN, r/(Tn) =  k}

= ] T  P Hv ( T n) = k\Yn = iN} £  Pr{C (r„+i) =  i, v(Tn+i) =  I,
kes2 ies2\k

Tn+i -  Tn < t\Yn = iN, v(Tn) = fc}Pr{J(z, >](Tn+1)) < J ' iax|C(T„+ i) =  i,

v (Tn+1) =  I, Tn+j - T n < t ,  Yn =  zN, r](Tn) = k}

= Y  P r{V(Tn) = k\Yn =  m } Y .  M a T n + i )  = i, rj(Tn+i) = I
kes2 ies2\k

Tn+i ~  Tn < tK(Tn) = i, v(Tn) =  k} Pr{ J(i,  I) < J ^ } .  (2.14)

The first and last terms in (2.14) can be approximated by the corresponding stationary 

probabilities:

P r{ 7?(T„) =  k\Yn =  zN} «  w lk , P r{./(«, 1) < «  l u . (2.15)

The second term in (2.14) is equal to the competition probability:

Pr{C(7W i) =  i, 7?(Pn+i) =  I, Tn + 1 -  Tn < t|C(Pn) =  i, v(Tn) = k}

=  — ^ r - (  1 - e “ (Q’* + ^ ) (). (2.16)
a ‘i +  Pkk

Substitute (2.15)-(2.16) to (2.14), and the first case of (2.8) follows. The second case of

(2 .8 ) can be proved in similar procedure considering that the mode of (( t)  changes instead
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and the derivation is given as follow s:

Q(in, Jn, 0  -  Pi'{V„+i =  jn i Tn+1 -  Tn < t\Yn =  iN}

=  ] T  Pi{r](T„) =  fc|y„ =  i N } P r { J ( j , r,(Tn+l)) < « T n+1) = j,
kes2

Tn+1 -  Tn < t\Yn =  iu, v iTn) = k]

= Pr {v(Tn) = k\Yn =  ?;N} P r {C ( rn+ i )  =  J, r/(Tn + i )  =  Ar,
kes2

Tn + 1 - T n < t\Yn = i N, v(Tn) = k} P r { J ( j ,  ^ n + i ) )  <  J jU C C T n+ i) =  j ,  

r/(Tn+1) =  A:, Tn+1 -  Tn < t , Y n = zN, rj{Tn) =  fc}

=  £  P rO /( rn ) =  A|yn =  i N} P r{C (Tn+ i)  =  j , r,(Tn+1) =  A,

Tn+ l  ~  T n <  < |C ( P n )  =  i n ,V { T n )  =  k } P l { J ( j , A) <  J ^ }

=  ^ -----T 7 ^ _ ( 1 -  e~(a,'+p,kk)th j k ,  J e  S i \ i .  (2.17)
fces3 a ” +  ^

The proof of (2.9) is similar and the details are omitted.

For (2.10)-(2.12), X R(t) transits from i f ,  and these probabilities depend on Thd. If 

t < Thd, they can be calculated in a similar way as that of ?'n; if t > Tid, Q(i f, Jn, t) and 

Q{i f, Jf> t) maintain the constant values of Q(if ,  js-. Thd) and <3(if, Jf, 7]id) respectively 

while X R(t) transits to F. Therefore, (2.10)-(2.11) have similar expressions as (2.8)-(2.9) 

with t replaced by min(f, Thd) [50]. Q(iy,  F, t) becomes nonzero only i f f  > Thd, and it is 

complementary to the transition probability from i f  to other states within Thd- The indicator 

function l{t>Thd} describes this behavior, and (2.12) follows. (2.13) is obvious considering 

that F is absorbing. ■

In the above derivation, each element of semi-Markov kernel is decomposed into three 

parts: FDI mode estimation, competition probability, and probabilistic performance estima­

tion, and each part can be approximated or calculated using the probabilistic parameters. 

The effects of hard deadline are described by min(t, Thd) and l{t>xhd}.

Once the semi-Markov kernel is established, R(t)  and other reliability criteria, such as 

Mean Time To Failure (MTTF), are readily computed [27], Considering that the state F is 

absorbing, if the initial state is O n, the reliability function R(t )  =  1 — P ( 0 n ,  F, /,), where 

the transition probability function from On to F is denoted by P ( 0 n ,  F, t) = P r{JfR(f) =  

F|X (0) =  O n } .  Compared with Q ( 0 n ,  F, t), P ( 0 n ,  F, t) may involve multiple transitions 

but < 3 (0 n , F, t) is for one transition only.

The main procedure of evaluating reliability forFTCS's is summarized as follows:
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1) Given the Markov model (2.2) of FTCS’s, the states of X R(t) are defined as in Sec­

tion 2.4 .1 to reflect degraded control performance under each fault mode.

2) Continuous-state dynamics analysis. For fixed ( ( f )  and 77( f ) ,  the system in (2.2) is 

reduced to A 4(((t), i](t)), and the robust control performance of this regime model 

under probabilistic uncertainties is represented by a probabilistic parameter 7 y in 

Definition 2.4.

3) Discrete-mode dynamics analysis. FDI imperfectness and its relations with the states 

of X R(t.) are described by the probabilistic parameters in Definition 2.3 through 2.5.

4) The continuous-state and discrete-mode dynamics are combined to construct the 

semi-Markov kernel of X R(t) using Theorem 2.1, and R(t)  is calculated by solv­

ing the transition probabilities of X R(t).

2.5 An illustrative example

A control problem of F-14 aircraft was presented in [47], and also used as a demonstration 

example in MATLAB® Robust Control Toolbox1. This problem considers the design of 

a lateral-directional axis controller during powered approach to a carrier landing with two 

command inputs from the pilot: lateral stick and rudder pedal. At an angle-of-attack of

10.5 degree and airspeed of 140 knots, the nominal linearized F-14 model has four states: 

lateral velocity, yaw rate, roll rate, and roll angle, denoted by v, r, p, and <j> respectively; 

two control inputs, differential stabilizer deflection and rudder deflection, denoted by W tab  

and d'rud respectively; and four outputs: roll rate, yaw rate, lateral acceleration, and side-slip 

angle, denoted by p, r, 1/ac, and ft respectively. These variables are related by the following 

state-space equations:

, f p i 4  =  A f | 4 ^ F I 4  +  -Bf14'"'F14, 2/FI4 =  Cf14-^F14 +  ^ F M ^ F M ,

where .t;k14 =  [u r  p (p}T , uF14 =  [Wtab (Wl]7’, 2/FI4 =  [P P r yac]T, and

’ 0.0622 0.1013 '
-0.0053 -0.0112 
-0.0467 0.0036 '

0  0

'MATLAB and Robust Control Toolbox are the trademarks of The Math Works, Inc.
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-0.1160
0.0027

- 0.0211
0

-227.2806
-0.2590
0.6703
0.1853

43.0223
-0.1445
-1.3649

1 .0 0 0 0

31.6347
0

0

0
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'  0.2469 0 0 O' 0 0

0 0 57.2958 0 0 0

0 57.2958 0 0
1 -DF14 =

0 0

-0.0028 -0.0079 0.0511 0_ 0.0029 0.0023

The control objectives are to have handling quality (HQ) responses from lateral stick 

to roll rate p  and from rudder pedal to side-slip angle 3 match the first- and second-order 

responses respectively: 5 ^  and - 2 .5 - + 2 15^ ~1 252.

“true” airplane

lateral stick

dstabrudder
pedal x >

rod

wind gust 
disturbance

< >

p  HQ Model noise

>0
* 0

P  HQ Model

AG

5----
s + 2

F -1 4 ,

Figure 2.3: Control design diagram for F-14 lateral axis.

The system block diagram is shown in Figure 2.3, where F-14nom represents the nominal 

linearized F-14 model, and A s and A « actuator models. ep and eg represent the weighted 

model matching errors. Actuator energy is described by eact, and noise is added to the 

measured output after anti-aliasing filters. AG and W-In represent the multiplicative uncer­

tainty and its weighting function respectively. The transfer function A G is assumed to be 

stable and unknown, except for being uniformly distributed within the norm-bounded set 

of |! AG||oo < 1- Note that this uncertainty description cannot be represented by uncer­

tainty matrix A in (2.2); however, the estimation of 7 y can still be estimated by generating 

random samples of AG, and the reliability analysis follows identical procedures.

By incorporating performance weighting functions, WicU Wn, Wp, and Wp, a general­

ized plant with 26th order can be constructed from Figure 2.3, corresponding to the nominal 

fault-free regime model M (C(0 > 6 (0 ) in (2 -2 ) for 6 ( 0  =  6 ( 0  — 0 - The control objectives
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are converted to closed-loop H 0o nonn, ||Gzu.(((t), 77(f), s)||oo, where vj is the vector of 

lateral stick and rudder pedal, and 3 =  [e7 e7’ e7ct]7 . An Woo controller K q(s ) is designed 

for the nominal fault-free model, which achieves Woo norm of 0.6671. For brevity, the pa­

rameters of the generalized plant and controller are not given here. See [47] for the details 

of design procedure.

Consider two fault scenarios that the effectiveness of two actuators are reduced by half

respectively, denoted by B ]F14 J3fm
0.5 0 

0  1
and Bp[ 4 B f14

1 0  

0 0.5
, where i?p14

and Bp*14 denote the values of B fh  under faults.

Following similar procedure as the fault-free mode, the generalized plants under faults 

can be derived, corresponding to the faulty regime models in (2.2). And other two con­

trollers, I(\  (.s) and A7:(.s), are designed accordingly for the plant under two actuator faults 

respectively, which achieve Hoc norms of 1.0558 and 0.7021 respectively.

The performance evaluation function is defined as

......................... I 1 , internally unstable at t,
■ J ( C W >  v ( t ) )  =  7 7 ( f ) )  =  ^ | |G ;„ , (C (t ) .»7 (t ) . . s ) l |oo  • *  11 * u i  4. 4.

I intcnially stable at

and J,nax =  0.5455, ./,Jlax =  ./laax =  0.6000. Note that performance degradation has been 

considered since .71{iax and .7 ^  are greater than 7[aax. The hard deadline is assumed to 

be 1 minute.

((t)  and 7}{t) are taking values from =  .S'2 =  {0, 1, 2} in which the three modes 

denote fault-free mode and the loss of effectiveness in the first and second actuator respec­

tively. The generator matrices of these Markov processes are given as follows to describe 

fault occurrences and FDI results:

H C =
'-0 .003 0 .0 0 1 0 .0 0 2 ' r- 0 .0 2 0 .0 1 0 .0 1  '

0 0 0 2 - 2 .0 1 0 .0 1

0 0 0 2 0 .0 1 —2 .0 1 _

' - 2 .01 2 0 .0 1  ' ' - 2 .0 1 0 .0 1 2
0 .0 1 - 0 .0 2 0 .0 1 , = 0 .0 1 - 2 .0 1 2

0 .0 1 2 - 2 .01 0 .0 1 0 .0 1 - 0 .0 2

H i

The time unit of transition rates is selected as minute. According to H^,  the mean occur­

rence time is 1000 minutes for the first fault mode and 500 minutes for the second fault, 

and both fault modes are absorbing. For FDI modes, according to the first row of H®, when 

the aircraft is in fault-free mode, the mean time of false alarms is 100 minutes; and accord­

ing to its second row, the mean time to return to correct detection after a false alarm is 0 .5  

minutes. /7r' and T/ 7 can be interpreted similarly.
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Following the definitions given in Section 2.4.2, four probabilistic parameters are cal­

culated as follows:

Too 7 o i 702 '0 .8 6 0 0 0 0
A

7  = T io 7 n 712 = 0 0 .7 0 0 0 0

.720 721 722. 0 0 0 .9 6 0 0

" * 8 A * 2 " '0 .9 9 0 1 0 .0 0 5 0 0 .0 0 5 0 '
A7r = A A A = 0 .0 0 5 0 0 .9 9 0 1 0 .0 0 5 0

5o2 A A . 0 .0 0 5 0 0 .0 0 5 0 0 .9 9 0 1

w 0 W i '1 0 o '

0
0 Up '0 .9 3 3 3 0 .0 3 3 3 0 .0 3 3 3 '

w  = w l0 in ] w \ = 0 1 0
A

, v  = v } v$ = 0 .0 1 6 1 0 .9 6 7 7 0 .0 1 6 1

.WQ w j 2
W2. 0 0 1_ T ’o A 4 . 0 .1 0 0 0 0 .1 0 0 0 0 .8 0 0 0

7  is calculated based on the closed-loop plant regime models of this F-14 aircraft and Hoc 

norm objective by using a randomized algorithm and taking the random samples of A G  

within its bounded set (Tempo et al., 1998). According to 7 , the probability of satisfying 

the bounds of H qo norm under each mode is 0.86, 0.7, and 0.9 respectively if FDI gives 

correct detection. According to 7r, the stationary probability of correct detection is 0.9901. 

According to ui, when the bounds of Hoc norm are satisfied, the probability that the FDI 

gives correct detection are 1, but FDI may have given wrong estimates of fault modes when 

the bounds of Hoc norm are not satisfied according to v.

The state space of X R(t.) contains 7 states for this system: Sr =  {0N, 0p; In, If , 2n, 2F, 

F). With the above probabilistic parameters calculated from the F-14 aircraft model, the 

semi-Markov kernel of WR(f) for reliability evaluation is obtained by following the proce­

dure in Section 2.4.3. The transition probabilities and reliability curve are then calculated 

as shown in Figure 2.4. Each transition probability curve in Figure 2.4 gives the probability 

that WR(f) is in each state at t starting from the initial state On- From the curves of reliabil­

ity and the transition probability to state F, it is clear that system failure probability remains 

at 0 within 7]ld, a finding consistent with our reliability definition as temporal violation of 

control objectives is not deemed as a failure. We also find P ( 0 n , 2 n , t) is much larger than 

P(0n, I n , t), a finding consistent with 3 ) > H^(l ,  2) and 722 > 7 n -

According to Figure 2.4, the probability of transiting to state Op is much higher than 

those to lp and 2p. So X R(t) transits to F mainly from Of. This implies that the false alarm 

of FDI at the fault-free mode is more likely the reason for system failure than fault occur­

rences themselves, a finding useful for system reliability improvement. To verily this find­

ing, the false alarm rates for (( t )  =  0 is reduced by half by setting H®( 1,2) =  H®( 1,3) =  

0.005 and 1) =  —0.01. The transition probability and reliability curves for the sys­

tem after reducing false alarms are shown in Figure 2.5. As we expected, P(0n, Of, f)
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Figure 2.4: Transition probability and reliability function.

is reduced, and R(t)  is improved. We may also calculate and compare the MTTF of both 

cases: the MTTF of the system before reducing FDI false alarms is 47.3415 minutes while 

the MTTF after reducing false alarms is 80.9144 minutes.

On the other hand, the sensitivity of reliability index with respect to control performance 

can also be demonstrated. Let probabilistic parameters be improved to 700 =  711 =  722 =  

0.99. Based on the definitions of zn in (5.4) and 7 %j  in (2.4), we expect increases in transition 

probabilities to zN, z e  Si .  The transition probability and reliability curves for FTCS’s 

with improved control performance are shown in Figure 2.6. Compared with Figure 2.4, 

P (0n, On, t), P (0n, In, t), and P(0n, 2n, t) are clearly improved. As a result, the 

reliability curve is also improved and MTTF increases to 76.7722 minutes compared to the 

original MTTF o f47.3415 minutes. So the transition probability of X R(t) can not only give 

reliability evaluation but also help to find out the effective solution to improve reliability.

2.6 Conclusions

A reliability evaluation approach for active FTCS’s is presented in this chapter. The in­

dex reflects the characteristics of FTCS's, including a model-based control performance
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Figure 2.5: Transition probability and reliability function with improved FDI scheme.

and hard deadline concept. The semi-Markov model is constructed based four probabilistic 

parameters, and reliability can be thereby calculated. The transition probabilities and reli­

ability function provide valuable information on the long-term safety behavior of FTCS’s. 

Moreover, the effects of FDI and control performance on reliability are demonstrated in an 

illustrative example. With this reliability index and modeling method available, reliability- 

based controller can be designed to optimize overall system reliability.
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Chapter 3

Probabilistic controller design via 
stabilizing controller 
parameterization*

3.1 Introduction

This chapter addresses the design of FTCS’s in the following configuration: Consider a 

plant with a finite set of fault modes and G  =  {G, : i 6  S’i} represents the set of 

dynamical plant models under various fault modes. The evolution of these modes can be 

represented by a Markov process. Usually fault mode is not directly known to controller, 

and an FDI scheme is used to generate estimates from a finite set S^- But FDI modes 

may deviate from true fault modes with an error probability, so another Markov process is 

adopted to represent FDI modes. The reconfigurable controller denoted by K  =  { Kj  : j  £ 

S-2 } is assumed to have a switching structure, and Kj  is engaged for the plant when the FDI 

is in mode j.

This stochastic FTC model is preferable to deterministic ones when considering a prob­

abilistic performance criterion. In contrast to the assumption of known regime or fault 

modes in regular Jump Linear Systems (JLS’s), this model assumes unknown fault modes 

and uses an additional Markov process to represent its estimate, the FDI mode. If FDI 

scheme gives a wrong detection mode j ,  Kj  may be used for plant model Gi, i ^  j ,  even 

though K j  is originally designed for Gj.  As a result of this difference, the design of FTCS’s 

is more challenging, and many existing methods for JLS’s cannot be directly applied, e.g., 

[51, 52, 53, 54]. The related problem in JLS’s to this FTC configuration is the partial 

observation problem [55], which used conditional probability as the estimation precision

‘ Originally published as: Hongbin Li and Qing Zhao, “ Probabilistic Design o f  Fault Tolerant Control via 
Parameterization”, Circuits, Systems, and  Signal Processing , vol. 26, no. 3, pp. 325-351, 2007.
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of regime modes but estimation delay cannot be described. In the literature of FTCS’s, 

Mariton studied the effects of this FDI imperfection including detection delay on system 

stability [6 ]; Srichander and Walker developed the conditions for exponential mean-square 

stability [15]; and much of the latest work was also based on this model, such as output 

feedback stabilization [56], H 2 control [57], and the control of a sampled-data system 

[58], However, these results considered control objectives only, and system reliability index 

was not discussed.

In our problem, in addition to stability requirement, another design objective V'(K) of 

closed-loop system is evaluated for each controller K  via a numerical method. The de­

sign goal is to find the optimal controller K* that can optimize ip(K) subject to stability 

constraint. The motivation is to design FTCS’s based on the reliability index presented in 

Chapter 2, which is evaluated based on a semi-Markov model. Owing to the numerical pro­

cedures of building and solving stochastic reliability models, reliability criteria cannot be 

written as analytical functions of K  in general. To overcome this difficulty, stabilizing con­

troller parameterization and randomization-based optimization algorithms are proposed for 

FTCS’s in this chapter to find the statistically optimal controller with the highest reliability.

Controller parameterization plays an important role in systems and control theory, which 

can facilitate the design of optimal controller by using Linear Matrix Inequalities (LMI’s) or 

other classical optimization techniques. For linear systems, many parameterization results 

have been reported, such as Youla parameterization [59], controller parameterization 

by Riccati equations and by LMI’s [60, 61, 62], covariance controller parameterization 

[63, 64], and stabilizing controller parameterization using quadratic Lyapunov functions

[65], However, to the best of authors’ knowledge, no controller parameterization result has 

been reported for FTCS’s.

Classical optimization techniques and LMI methods usually require objective function 

■ip(-) and parameterization expression to be affine with respect to free parameters [6 6 ]. How­

ever, in our problem, even the analytical expression of tp(-) is not available, and a numerical 

method has to be used to calculate L(-). In this case, some statistical methods, such as the 

randomized algorithms, are useful to perform the design [67,46, 54].

To recapitulate, this chapter presents a parameterization result of stabilizing controllers 

for stochastic FTCS’s and a randomization-based optimization method to search for the sta­

tistically optimal controller with respect to a numerical design objective, e.g., a reliability 

criterion. The remainder of this chapter is organized as follows: Section 3.2 states sys­

tem model and problem formulation; Section 3.3 provides some mathematical preliminar-
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ies; Sections 3.4 through 3.7 present the main results: stabilization conditions, controller 

parameterization, the analysis of stabilizing controller set, and the synthesis of generator 

matrices; and an example is given in Section 3.8 followed by conclusions in Section 3.9.

3.2 Problem formulation

The general Markov dynamical model of FTCS’s is given by 2.2 in Chapter 2. When consid­

ering internal stability, it can be reduced to the following equation by removing exogenous 

input and output equations:

x(t) = (f), A)z(f) +  A)u(r?(t),t), (3.1)

where x(t)  e  K” and u(rj(t), t) € Km denote system state and control input respec­

tively, and .4(£(f), A) and B ( ( ( t ) , A )  system matrices with appropriate dimensions. (3.1) 

represent a set of linear dynamical models G  =  {Gj : i € S)}, where G, denotes 

the dynamical model when £(£) = i. £(£) and rj(t) are assumed to be two separate 

continuous-time Markov processes with finite state spaces Si =  (0 ,1 ,2 , ••• , N \ } and 

S2 =  {0,1,2, ■ . N 2} to represent system faults and FDI results respectively. Detailed

descriptions have been provided in Chapter 2 and are omitted here for brevity.

The closed-loop system structure is shown in Figure 3.1. Here we consider static state- 

feedback controller, u(r/(f),f) — K(r](t))x(t).  For simplicity, we write Uj ( t )  =  Kj x( t )  

for 77(f) — j  € S-2 - The controller is composed of a set of static gains, denoted by K  — 

{Kq, A'i, • • ■ , }• When 77(f) indicates fault mode i, Ki is in use. In practice, it is

impossible to have a “perfect” FDI that always instantaneously indicates the correct fault 

mode. Hence, there may be mismatch between 77(f) and ((t).  In this case, finding K  to 

achieve nominal closed-loop stability (when A =  0) is the first concern in the design of 

FTCS’s.

Rem ark 3.1 The interaction between ( ( t ) and r](t) causes the major difficulty in the stabi­

lizing design o f  FTCS’s. This is the main difference between FTCS’s and regular JL S’s.

Such a stabilizing controller K  is usually not unique. In fact, the set of all stabilizing 

controllers can be found via parameterization. When considering a more specific perfor­

mance criterion f { K ) ,  it is desirable to obtain the optimal stabilizing controller K* with 

respect to ip(K.). This leads to the second stage of design. In this chapter, such a ip(K ) is 

chosen as a reliability criterion.

A stochastic process model is constructed in Chapter 2 to describe the evolution of con­

trol performance under fault occurrences and controller reconfigurations. R(t)  and MTTF
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Figure 3.1: The system structure.

can be calculated based on the transition and stationary probabilities of the stochastic pro­

cess. However, neither of these two reliability criteria has analytic function expressions 

available. In this chapter, </’(K ) is selected as the scalar reliability index, MTTF.

Based on such a rp(K),  a randomization procedure is available to find a statistical opti­

mum K*, an estimate of K*, such that

P r{Pr{7/>(K*) > ip(K*)} <  e} > 1 -  6 , (3.2)

where e E  (0,1) and S E (0,1) are precision parameters of the estimate.

The main procedure of the randomized algorithm presented in [46] is summarized as 

follows, where the key step is to find a parameterization set of stabilizing controllers: 

K. =  {All stabilizing K} =  {K |K  =  tp(z), z E fl}, where <p : Cl —> K  denotes the 

parameterization mapping from a free parameter z within a bounded set fi to a stabilizing 

controller K .

Algorithm 3.1 - estimate the statistical optimum

1) Determine sample quantity Mi  > r/(i-e) based on the precision parameters e and 5 

[46].

2) Generate Mi  independent samples , z (A/l  ̂ in Cl according to the distribution

of z. Calculate the corresponding controllers i = 1, • ■ • , Mi.

3) Evaluate the performance value at each sample controller K- 'T

=  i = !,■■■ M i .

Let zo denote the parameter such that ip(<p(zo)) =  rnaxi^j^ v/, Then K* =  

<p(zo)-

The remainder is then focused on developing a parameterization method for Algorithm 3.1.
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3.3 Preliminaries

The following notation is used throughout the chapter: A ~ ] means (A 1 )_1. A 1  denotes a 

matrix with the following properties: M ( A 1 ) = 1Z(A) and A 1  A 1 '1 > 0, where N ( A )  and 

1Z{A) denote the null and range spaces of A  respectively. =  is used for notation definitions. 

|| • || denotes the Euclidean norm for vectors and the largest singular value for matrices. 

R denotes the set of real numbers, and N the set of nonnegative integers. For notational 

simplicity, in (3.1), for ( ( t ) =  i, r](t) = j,  i E Si ,  j  e  S 2, denote Ai  =  A((( t ) ) ,  Bi  =  

S(C (t)),and  Hj(t) =

Definition 3.1 (EMS stability [15]) An FTCS is said to be Exponentially Mean-Square 

(EMS) stable i f  for any initial Markov states at t =  0, ((0) and r?(0), there exist a >  0, 

b > 0 , and some number S(((0 ),t](0 )) > 0 , such that when ||x'(0 )|| < d(<̂ (0 ), ?/(0 )), the 

following inequality holds fo r  t > 0 :

E{||a:(t)||2 } < 6 |^ ( 0 )||2e - ^ ,

where E{-} denotes the mathematical expectation.

Lemma 3.1 (Stability conditions [15]) An FTCS in (3.1) is stabilized in the sense o f EMS 

stability by the static state-feedback control law

u f t )  = Kj.x(t), i e  S2,

i f  and only i f  fo r  any given k  G Si andi e  S 2, there exist positive-definite matrices P f  > 0 , 

satisfying

A  PikAik + ^  f i jP jk  T ^  ] Qk.jPij < 0;
jSS2 .j^i jeSurfk.

where

A lk A  .4, + B kK,  -  0.5 Y ,  A y -0 -5  Y  akr
jeS-2 ,j/:i j&Si,jjtk

Lemma 3.1 can be used for stability analysis for a given state-feedback controller, but it 

is difficult to solve K t directly using these inequalities. The main difficulty lies in the fact 

that the number of gains Ki  is less than that of inequalities involved in the above condition 

such that each A'j should satisfy multiple inequalities simultaneously. In contrast, regular 

JLS’s do not have this problem, and the controller can be solved using LMI’s [52], The 

partial observation problem of JLS considered in [6 8 ] has similar form as in FTCS’s but 

only a sufficient condition was derived. See [69, 57] for more discussions.
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The following two lemmas are introduced for the purpose of deriving stabilization con­

ditions and a parameterization set.

Lemma 3.2 (Finsler’s theorem [62, 64]) Let matrices M  G  Rnxm and Q  G  Rn*n be

given, and assume that rank (M ) < n and Q =  Q 1. Let (M l, M u) be any fu ll rank factors 

o fM  such that M  = M jM r <wk/rank (M l) =  rank (A//;) =  rank(M). Then

M ± Q M ±t  < 0

i f  and only i f

p M M T - q > 0

fo r  some p. G  R. I f  the above condition holds, all such fi are given by

P > jUmin =  Amax M Q  -  Q M 1 T ( M ^ Q M ±T)~l M ± Q ) N T},

where Amax (■) denotes the largest eigenvalue, and N  =  (AfftA/^) - ‘ 1'/2A

Lemma 3.3 (Projection lemma and parameterization set) Let matrices M  e  R nXm, and 

Q =  Q 1 e  R nxn be given. The following two statements are equivalent:

1) There exists a matrix X  satisfying

M X  +  (M X ) 1 + Q <  0. (3.3)

2) The following condition holds:

M XQ M 1T < 0 or M M t  > 0. (3.4)

I f  statement 2) holds, all matrices X  satisfying statement 1) are given by

X  = g ( L , p \ M, Q)  =  - p - l M r  +  p - 1' 2 L{ p - XM M T -  Q )1/2, (3.5)

where L  is an arbitrary matrix satisfying ||L|| < 1, and p G (0, pmax) a positive scalar. L

and p are immediate variables offunction g, and the symbol ' | 'in  (3.5) is used to indicate 

the dependence o f  X  on M  and Q.

Pmax =  a _ 1  is calculated by solving the following LMI problem:

Min {aA-}a 
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subject to

- a l  X
X r  M X  + ( M X f  +  Q

a >  0 , 

< 0 . (3.6)

(3.7)

Moreover, p e  (0, pm;ix) i f  and only i f  it satisfies

p~xM M T -  Q >  0,

which ensures that (p~xM M 1 — Q ) 1|/2 exists and that (3.5) is valid.

Proof: The equivalence between statements 1) and 2) is a special form of the well- 

known Projection Lemma [6 6 ]. Here, we prove (3.5) only. When the statements 1) and 2) 

hold, it is equivalent to

M X  + { M X ) r +  p X r X  < - Q , (3.8)

for some scalar p > 0. Add p l M M r  to both sides, complete the square in the left hand 

side of (3.8), and we have

( p - ' M  +  X T )p(p~1 M T +  A') < p~l M M T -  Q. (3.9)

Obviously, (3.9) holds if and only if p XM M J — Q > 0 as the left hand side of (3.9) is 

positive semi-definite. By taking the matrix square root, (3.9) is equivalent to

{p- l M M r  -  Q ) - 1/2 ( M p - x + X r )p{p~1M r  + X ) ( p ~ xM M t  -  Q ) ~ 1 /2  < I. (3.10)

Define L  ^  p l^2 ( p - xM T + X ) ( p ~ l M M r  -  Q)~1/2. Then ||L|| <  1 and

A  =  —p~xM T +  p~x!2 L{p~xM M t  -  Q) x/2.

To determine the upper bound of p, convert (3.8) to the following matrix inequality by 

Schur’s complement lemma [6 6 ]:

- p~xI  X
X T M X  +  { M X ) t  +  Q < 0 .

Define a new decision variable a = p~x > 0, and the minimum value of a gives the upper 

bound pmax- Moreover, p e  (0, pmix) ensures p~xM M 1 -  Q > 0 owing to (3.9). ■

Lemma 3.3 is adopted from Corollary 2.3.9 in [64] with modifications to make it suit­

able for our problem. For a given inequality in the form of (3.3), Lemma 3.3 provides a 

solvability condition and a parameterization set of all its solutions:

Q m ,q  = { X \ X  = g(L,p\M,Q) ,  ||L|| <  1, P G ( 0 , /w ) } ,  

where g(L,  p\M,  Q)  is defined in (3.5).

(3.11)
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3.4 Stabilization conditions

Let us begin with the case that the state spaces of ((f) and rf t ) ,  S\  and S 2 , are both equal 

to {0,1}, where ‘0’ denotes the fault-free situation and ‘1’ the faulty mode. This type of 

FTCS’s is referred to as the basic case. The stochastic behavior of ( (f) is governed by 

its generator matrix F\  when ((<) =  0 or 1, the behavior of r/(/.) is determined by the 

corresponding generator matrix H°  or I I ] [25, 70],

The generator matrices are composed of the transition rates of ((f) and ?/(/:), and

fifj, which have the following forms for the basic case:

Hr = -C*00

» 1 0

Q01
—a n > K  =

00)
10

$ 1

- t f i J H v =
Poo P o l  

010 ~P \IX

For the system in (3.1), by Lemma 3.1, {K q ,  K \ } stabilizes the FTCS’s in the sense of 

EMS stability if and only if there exist positive definite matrices Pik,i  G S 2 , k € S i,  such 

that the following inequalities hold simultaneously:

PqoB qK q +  {PqoB oK o)f +  Qoo < 0 ,

PioBqKi + {PioBqKiY + Q 10 < 0 ,

PqiB i K q + (PoiB i K q)1 + Qoi < 0,

P 11B 1K 1 + { P u B \ K \ ) T + Q u  < 0,

(3.12)

(3.13)

(3.14)

(3.15)

where Q tk- i G So, k  e  Si ,  is defined as

n  .............\ ' l ' lQlk ±  ( Ak -  0.5/3f(1_ 0  -  0.5Qjt(1_/c)) Pik +  Pik( Ak -  0.5^ ! _ 0

-O -Sa^i-fc)) +  P(i-i)kPi(l-k) + a k(l-k)Pi(l-k)- (3.16)

The set of all stabilizing controllers can be captured naturally by posing a matrix inequality 

problem (3.12)-(3.15) for {A'o, A'i}. Note that both K q and A'i appear in two inequalities. 

So the intersection of the solution sets of (3.12) and (3.14) gives the set of K q ,  and A'i can 

be obtained in a similar way from (3.13) and (3.15).

Lemma 3.4 For the basic case o f  FTCS’s in (3.1), i f  B q  and B i are row rank deficient, then 

there exists a stabilizing state-feedback controller {Ach K \}  in the sense o f  EMS stability 

only i f  there exist positive-definite matrices Plk, k  6  S i =  {0,1}, i e  S 2 = {0,1}, such
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that

(PooB^Q ooiPooBo)11'

{P1oB0 )1 Q 1 0 (P1 0B 0)±T

(PoiBl )1 Qoi(PoiBl )1-T

( P n B 1 )1 Q n (Pn B 1)1-T

< 0 , 

<  0 , 

< 0 , 

< 0 ,

(3.17)

(3.18)

(3.19)

(3.20)

where ( fit  is defined in (3.16). I f  Bo has fu ll row rank, (3.17) and (3.18) are removed from  

the conditions; i f  B \ has fu ll row rank, (3.19) and (3.20) are removed.

Proof: Based on Lemma 3.3, each inequality in (3.12)-(3.15) has feasible solution K 0 

or K  i if and only if the the corresponding condition in (3.17)-(3.20) holds. Considering that 

(3.12)-(3.15) must hold simultaneously for system stability, (3.17)-(3.20) are only necessary 

conditions. If Bo has full row rank, (3.12) and (3.13) always have feasible solutions for any 

Poo, Pio.Qoo and Q\o, so (3.17) and (3.18) are removed; similarly, if B\ has fall row rank, 

(3.19) and (3.20) are removed. ■

This lemma is derived based on Lemma 3.1, and the proof is given in the appendix. By 

converting the inequalities in Lemma 3.4 to LMI’s, we have the following theorem.

Theorem 3.1 For the basic case o f  FTCS’s in (3.1), i f  Bo and B \ are row rank deficient, 

and all the transition rates o f ((t) and r)(t) are nonzero, then there exist stabilizing state- 

feedback controllers in the sense o f EMS stability only i f  there exist positive-definite matri-

(3.21)

positive scalars k e S i  = {0, 1}, i e  S 2 = {0,1}, such that

r P  1M)0 ^00 + Mo Poo1 OooBoBl Poo P l 1 00
p-1  
1 00 ~ P \0  ! &01 0 < o,

- Pm 0 — Pol L/ a 01.

r p -1  
M0 AT* + AwPfo1 - P iqB qB q p - 1

Mo p - 1 1Mo
p - 1
Mo —PooV^io 0 < 0 ,

-
p - t
Mo 0 -P f iV a o i.

fp -1M l ^ 1  + ^oiPfu1 - O o iB iB f p -1
M l

p - t  i 
M l

T J - 1 
1 01 - P f i V ^ i 0 < 0 ,

- Pol1 0 -Poo1 M o .

r p -1 A[  1 + AuPul ~ Mn P i P / p - 1
M i

p -1  1
M ip -1

Mi -P o i /P lo 0 < 0 ,
p-1
1 li 0 ~ p w M o .

(3.22)

(3.23)

(3.24)

where =  Af. — 0.5/3^1_i  ̂ — O.oopj j.... In case that Bo has fu ll row rank, (3.21) 

and (3.22) are removed from the conditions; i f  B \ has fu ll row rank, (3.23) and (3.24) are
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removed. I f  some transition rates are zero, the corresponding rows and columns containing 

those zero transition rates are removed from the above matrices.

Proof: Take (3.17) as an example, and the derivations are similar for the other three in­

equalities. As Poo > 0  and (PooPo)1 ((PooPo)± )r  >  0 , both (PooPo)1 and (P0oPo)J_Poo 

have full row rank. Considering (PooPo)x PooPo =  0  and (PooPq)1 Poo =  PqL, we have

Pot/^oo 3“ ^ooPoo T  0°olPoo PjqPqq + a o iP )0 PqiPqq < M ooPqPo > (3 .2 5 )

According to Lemma 3.2, all feasible poo are given by /ioo >  lloomin, where Moomin can 

be calculated by the parameters in the inequality. Therefore, if the feasible set of /ioo is 

non-empty, there must be a feasible /too > 0. Furthermore, we need to consider only the 

positive case of /ioo to obtain all the feasible PlJ owing to the following reasoning:

Suppose for any two feasible values of /ioo, Ml < 0 and /t2 > 0, all the corresponding 

feasible solutions of Py in (3 .2 5 ), i , j  £ {0 , 1}, are denoted by V\ and P 2- For every 

element Py e  P i, i , j  £ {0 ,1 }, (3 .2 5 ) holds for this Py and p\.  Again, based on Lemma

3 .2 , this element Py, i, j  £ {0 ,1 }, is also feasible for (3 .2 5 ) corresponding to /i2 as /i2 > p\  

and thereby belongs to P 2. Therefore, V\ C P 2, which means that the feasible solution of 

Pij, h j  £ {0 ,1 }, for (3 .2 5 ) when p < 0 is a subset of those when p  > 0, and we need to 

consider this positive case only.

Suppose that the transition rates /3§i > 0 and «oi > 0. By Schur’s complement lemma

[6 6 ], (3.25) is equivalent to

(PooPo)1 =  Bo Poo1-

So (3.17) is equivalent to

P(^Poo QooPoo B 0 < 0. 

Substitute Qoo and denote Aqo — A) -  Q. bf f  -  0.5qqi to obtain

By Lemma 3.2, this inequality is equivalent to

where poo £ Pre- and post-multiply Pqo,

A qqPqo +  Poo^oo +  /?oi-Pio +  ^oiPqi < MooPooPoPq Poo- (3 .2 6 )

P qo ^ oo ”F -^ oo P qo MooP qP q 1 00 1 00

Pio7 /?oi 0 < 0 - (3 -2 7 )
0  -P o iV o o i.

i-i

3 9
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If some transition rate is zero, the corresponding term involving zero rate in (3.25) is re­

moved, and so are the corresponding row and column in (3.27). For example, if am  =  0,

(3.27) becomes

Poo^oo +  ^oo-Poo1 Moo-So-Bn Poo'
Poo1 -P io 7 /?o°U

< 0.

Poo1
p - i
MM

p - l
MOO

p - i  -i 
MM

5fo V / & 0 0 0
0 - P 2o7 $ 2 0 0
0 0 Poi / a oi 0
0 0 0 P v/< * 02.

Similarly, (3.18)-(3.20)can also be converted to LMI’s that are affine in Pqq1, P ^ 1, P 10\  P n 1, 

M o o ,  M o t  > M to, and p-n- ■

Rem ark 3.2 The above results are fo r  the basic case o f  FTCS’s, and can be readily mod­

ified for the cases o f  multiple fault modes. For example, i f  S \ = S -2 = {0,1, 2}, to ensure 

stochastic stability, there are 9 inequalities in Theorem 3.1, and a typical one is

P ji^ P o o P o o ^ O o P o o 1 -  M00P 0P(T 
Pq-o1p - t  
1 00 
p - l
m mp - t  
MM

<  0.

Theorem 3.1 gives conditions on Ptj, i , j  e {0,1}, to ensure that each single inequality 

in (3.17)-(3.20) has feasible solutions. The stabilizing controller K  =  {A'o, K [ } satis­

fying these 4 inequalities simultaneously can be generated by a randomization procedure 

presented in the next section.

3.5 Controller parameterization

Recall Lemma 3.3 and (3.11), and denote

ACP 4  { { K 0 , K x} \ Kq e  WoolTWoi, K\  e W 10n W n , W tj 4  i , j  6  {0,1}},

(3.28)

where P = {P%j, i , j  G {0 ,1 }}. So ACP is the set of stabilizing controllers associated with 

P. Let V  = {P|P satisfies Theorem 3.1}, the set of all P satisfying Theorem 3.1. P e  V  

ensures that Wy f  0, where 0 denotes the empty set. The set of all stabilizing controllers 

is denoted as

AC 4  {AH stabilizing K} =  ( J  ICP . (3.29)
P e v

Figure 3.2 illustrates the relationship between V  and AC: Each K  e  AC corresponds to some 

P € P ; if ACP f  0, all its elements correspond to and can be generated by P using a 

randomization procedure; if ACP = 0, find another P g P ,  and repeat the procedure.
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\ j c y  \ y p y
all stabilizing K all feasible P

Figure 3.2: Relationship between V  and /C.

The problem considered in this section is to check whether /Cp — 0 or not given P e P ;  

furthermore, if fCp  ^  0, generate samples in /Cp .

Based on (3.28), denote /Cf =  W00 n  W0i and /Cf =  W i0 n  W n . Then fCp = 

/Cf x /Cf, where ‘x ’ denotes the Cartesian product. So /Cp ^  0 if and only if /Cf /  0 

and /Cf ^  0. Take /Cf as an example for the following derivation, and the same procedure 

follows for /C f.

 ^

r "  \

I
x vkVooy

Figure 3.3: Illustration of controller generation.

As shown in Figure 3.3, the basic idea is to generate samples in Woo =  Op00b0 ,Qoo anc  ̂

to test condition (3.14) for Woi to obtain A 0 g  /C f. Recall (3.11) and (3.28), and let the free 

parameters L  and p be unifonnly distributed random variables. K {) = g(L,  p\Pm Bo, Qoo) G 

Woo can be generated by L  and p, where <?(•, |-, •) is defined in (3.5). Obviously, /Cf ^  0 

if and only if the following probability is nonzero:

P r{A 0 6  /Cf |A'o e  Woo} =  Pr{/Co satisfies (3.14)|A"0 € W 0o}- (3.30)

Define an indicator function

, , ,  , _  f 1, A'o e  /Cf given Ao =  g(L,  p|Poo-Bo, Qoo) G Woo;
,f) |o ,  otherwise,

and then P r{/(A , p)  =  1 }  =  Pr{A'o G  /Cf|A '0 6  W0o}- According to the Chemoff’s

bound [67, p. 123], when generating N  > identically and independently distributed
2

(i.i.d.) samples for 62 > 0  and 62 >  0 , the following statistic provides an estimate of the
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probability in (3.30):

p N =  (3.31)

where L, and pl denote i.i.d. samples of L  and p respectively. Furthermore, it satisfies

P r{ |P r{ /(L ,p )  =  1 }  -  PN \ < e2} > 1 -  6 2. (3.32)

Suppose that c2 and S2 are so small that we can use the estimate P,v as the true probability 

in (3.30). So Kq p  0 is equivalent to Pjv > 0, which solves the first problem of this 

section.

If Kq p  0, we can then generate elements in Woo and test (3.14) to obtain samples 

in Kq . Recall Algorithm 3.1 in Section 3.2, and suppose M\  stabilizing controllers are 

needed. The next problem is to determine the number of Kq e  Woo to be tested in order to 

generate M\  controllers Kq e  Kq .

For A/ 2 i-i.d. samples L, and pu denote Yx = /(L i, pi), i = 1, ■ • • , M 2. So ^  *s 

the number of Kq e  Kq and subject to the following Binomial distribution: 

xi2 M2

i = 1 k = M i  v

Set a confidence level S3 , and select M 2 to ensure Yt > Mi} > 1 — S3 . This

means that when testing M 2 samples in Woo, Mi samples of Kq e  Kq are obtained with 

probability 1 -  d'3 . The procedures of generating M i controllers are summarized in Algo­

rithm 3.2.

Algorithm 3.2 - controller generation

1) Let i =  0.

2) For I<i, estimate Pr{A't E K f \ K t E Wio} by P y  in (3.31) for some small parame­

ters e2 and So. If P y  =  0, no stabilizing controller exists and stop.

3) For a small confidence level 43 , select M 2 such that

M-2

P r { £  Yt > K h )  = Y ,  C f ' )  (Pn )H 1 -  PNf U- - k. (3.33)

k—Mi

4) Generate M 2 samples in set Wjo =  Gpi0 B0 ,Ql0■ Test (3.14) if 1 = 0 or (3.15) if i = 1 

for each sample, and record those stabilizing controllers in K f.

5) Let i — 1, and follow steps 2) through 4) to generate the controller samples for K \.
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Remark 3.3 Algorithm 3.2 still applies when there are multiple fault modes. For example, 

i fS \  — S 2 =  {0,1,2}, there are 9 similar inequalities in Theorem 3.1: and each controller 

{A'o, K [ , K n} is in the intersection o f three solution sets.

Algorithm 3.2 generates the controllers for step 2 of Algorithm 3.1 in Section 3.2. The 

design procedure of FTCS’s is finally established as follows by combining Algorithms 3.1 

and 3.2.

Design procedure

1) Determine sample quantity M i > ^asc^ on (he precision parameters e and S.

2) Solve (3.21 )-(3.24) in Theorem 3.1 for P .

3) Use Algorithm 3.2 to generate M \ stabilizing controllers corresponding to P .

4) If M i controllers in Kff are successfully generated, follow step 3) in Algorithm 3.1 

on the generated controllers, and find the statistical optimum K*. If Up =  0, go to 

step 2) to solve for an alternative P .

If this procedure fails to find non-empty K ff, the system is said to be not stabilizable. How­

ever, this non-stabilizability can be checked before applying parameterization algorithms.

Remark 3.4 Note that the freedom o /P  in (3.29) is not exploited in this design procedure 

though it is possible to obtain a set o f feasible solutions P  satisfying Theorem 3.1 by varying 

the settings in the LM1 solver: the target value fo r  the auxiliary convex program o f  the 

feasibility problem [71J. But this may lead to controllers with larger magnitudes which is 

not preferable in practice due to excessive control energy. So we do not solve a set o fP  and 

optimize among controllers with different orders o f magnitudes.

Remark 3.5 This parameterization method can be extended to static output-feedback con­

trollers u(rj(t), t) =  K(r](t))y(t), provided that D( f ( t ) )  = 0 in (2.2). Using output- 

feedback controllers for this special case is equivalent to replacing K  (77(f)) by K  ( 7 7 ( f )  )C (((f)) 

in Lemma 3.1. Although Lemma 3.3 is not applicable due to different stability conditions 

in this case, an alternative parameterization result o f matrix inequality can be applied and 

similar results can be derived [64, p. 29, Theorem 2.3.12], However, for the general case o f  

D(C(f)) f  0 , the stability conditions o f  the closed-loop system will contain matrix inverse 

terms involving I\ ( 7 7 ( f ) ) .  This is a major hurdle for extending the current results.
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3.6 Analysis of stabilizing controller set

In this section, the stabilizing controller set is analyzed based on its connections with the 

standard Linear Quadratic Regulator (LQR) problem. To see this relationship, FTCS model 

is converted to the form of JLS by representing the behaviors of two Markov processes into 

one, called the integrated Markov process <j>(t) [70]; the solutions of LQR problem in this 

JLS form are then compared with the results in Section 3.4.

For the basic case of FTCS’s, the augmented state space of </>{t) is S 3  =  .S'2 x  S i  

=  {(0,0), (0,1), (1,0), (1,1)}, where the first element represents the FDI mode in S2 

and the second the fault mode in Si. Let 7 (jj)(M) denote the transition rate of 4>(t), which 

determines the transition probability of <p(t) from the augmented state ( i , j )  to (k, l)  as 

shown in the following equation:

« 0  = P(„,W, (At)  =  { ' +  ‘ #  k *
’ <J" H \ l - - r ( w u ) A(  +  o(At), i = j ,  k =  t.

As shown in [70], 7(y)(w) can be derived from the transitions rates of ( ( t ) and 1 j(t):

l\ u  ■ ■%, i = k , j  = l ;
_  , i ^ k , j  = l\

aji, 1 -  k, j  ^  l\
0 , i ±  k, 3 ±  I.

t o m i ) (3.34)

For the basic case, the generator matrix F,^ of is given by

— (a 00 +  /?oo)

H<t> =  [7 (i j ) (fc / ) ]4x4  -
ct 10 

0

ttQl $ 1 0

+ Am) 0 001
0 — (c*00 +  All) aoi

Ol0 0\o - ( a i l  +

By replacing ((f) and //(/.) with <j>(t) in (3.1), the FTCS model becomes a standard JLS 

model:

x(t) = A(<l>(t))x(t) + B(</>{t))u(<j>(t),t), (3.35)

The infinite-time LQR problem of JLS’s aims to find a state-feedback controller to 

minimize the following objective:
fOO

J{to,x{to) ,u( t ))  = E{  /  [x1 (t)S{<i>(t))x(t)

+uT {4>(t)A)R((l>(t))u((p(t),t)]dt\x{t0 ),4>(tQ)}, (3.36)

where S(<j>(t)) and R((f>(t)) denote state and control weighting matrices. For </>(f) =  (i , j) ,  

denote A {j A  A(e( t ) ) ,  B rj A  B(<p(t)), A  C(</>(f)), Dtj A D(<f>(t)), u t j (t) A
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u(0(f),f), S tJ = S(4>(t)), and R,j = As system matrices depend on fault mode

only, A-ij = A j,  P,:,- =  B j, Cij = Cj, and D tj = Dj.

Using state-feedback controls in a switching structure, the LQR problem was solved by 

Theorem 5 in [53], which stated that the optimal state-feedback controller is

Uij(t) = ~ R - [B j P ijX(t), {i, j )  e  S3, (3.37)

where Py >  0 satisfies the coupled Algebraic Ricatti Equations (ARE’s):

Aj Pi j  + Pi jAj  -  P i j B j R ^ B j  Pij +'Y(ij)(ij)Pij + 7(ij)(ki)Pki + Sij - 0, (3.38)

where (k , l ) e  5 3.

In JLS’s, the number of switching controllers is equal to that of integrated Markov states 

of 4>(t). For this JLS model in (3.35) converted from an FTCS model, there are 4 controllers 

designed corresponding to 4 states of q>(t) as given in (3.37). When &{t) =  the

following state-feedback gain is in use:

Kij  =  - R j B j P i j ,  ( i j )  e  S 3 . (3.39)

In contrast, in FTCS’s, the number of switching controllers is equal to that of fault modes 

so only 2 controllers exist for the basic case in (3.35). Therefore, JLS’s have more design 

freedom while FTCS’s are more restrictive, and the design methods of JLS’s are not appli­

cable to FTCS’s. But the controller designed in FTCS’s can be analyzed by the methods 

in JLS’s considering that two controllers can be deemed as a special case of two pairs of 

identical controllers. For example, K q and A'i in FTCS’s are deemed to be K q, K q, K\ ,  

and K \ in JLS’s.

Proposition 3.1 (3.21)-(3.24) in Theorem 3.1 are equivalent to ARE’s (3.38) o f the LQR 

problem in JL S ’s. In other words, P  =  {Pij, i . j  £ {0,1}} satisfies Theorem 3.1 i f  

and only i f  it is a feasible solution o f A R E ’s (3.38) corresponding to the following LQR 

weighting matrices:

Sij — pi j Pi j Bj Bj  Pij — ( A tJPu +  PijAij  +  0i{\~i)P{\-i)j "I” aj(i-j)Pi(i-j) ' )’ (3-40)

Rij  -  1 /pi j ,  ( i . f )  e  S3. (3.41)
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Proof: Substitute the system parameters into (3.38), we obtain 4 coupled ARE’s. Note 

that the system matrices depend on the fault mode only, the second element of <p(t). For 

example, A Xj = Aj .  Let us consider the following ARE for <f>{t) =  (0,0).

Poo +  PooAo -  P o o i^ o o  Po Poo -  (“ oi +  /?o°i)Poo +  PoVoi +  QoiPio +  Poo =  0 . 

Use Aqo = Aq — 0.5/?o! -  0.5aoi defined in Theorem 3.1 to simplify this equation, and we

Let Rm = 1/ hoq and compare (3.42) with (3.26). If (3.42) holds, (3.26) obviously holds 

considering Sqo > 0 ; if (3.26) holds, (3.42) also holds with

Poo =  A'ooPooPoPo Poo -  (-^ooPoo +  PooAoo + PoiPw + croiPoi)

=  PooPqPoo1 Po Poo ~ (AooPoo +  PooAoo +  PoiPro +  «oiPoi) > 0 .

So, (3.42) and (3.26) are equivalent. It immediately follows that (3.42) and (3.12) are 

equivalent. Similarly, we can establish the equivalence between (3.13)-(3.15) and the other 

three ARE’s of (3.38) corresponding to <p(t) =  ( 0 , 1) ,  ( 1, 0 ) ,  ( 1, 1) .  ■

Proposition 3.2 The parameterization set Wy in (3.28) contains an LQR controller o f  

JL S’s given in (3.37) corresponding to the weighting matrices in (3.40)-(3.41).

Proof: Recall (3.28) and Lemma 3.3, if Theorem 3.1 holds, the feasible solutions for 

each inequality in (3.12)-(3.15) are parameterized by

where L xj and pt] are free parameters and p,jmax is calculated by (3.6) in Lemma 3.3. Fur­

thermore, by Lemma 3.3, pn e  (0, pxjmax) if and only if it satisfies (3.7): p~Jl Pi jL3jBj  Pi j -

Qij > 0 .

pij may take the value of /r“ ' because

have

AqoPqo +  PoqAqo +  /?0°iPoi +  tfoiPio +  Poo — Poo-BoPqo1 Pq Poo- (3-42)

II Pp  || ^  1, Pij T (0, Pij max ) } ,  i  e  P 2 , j  e  P i , (3.43)

P i j P i j B j B j > Qir i e S 2, j  G P i . (3.44)

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



To see this inequality (3.44), take i = 0 and j  =  0 as an example, and substitute the 

definition of Qoo in (3.16). (3.44) then becomes (3.26), which has been proved in Theorem 

3.1.

Let the free parameter L tj = 0 and the corresponding element in >V,j is

K'ij = PVJ, i G  S 2, j  G  S i. (3.45)

Considering (3.41) in Proposition 3.1,

K'l3 =  -Rj Bf Pi j ,  i G  S 2, j  G  Si (3.46)

which is obviously the LQR controller in (3.39). ■

These two propositions are derived from Theorem 3.1 and Lemma 3.3, and the proofs 

are given in the appendix. Proposition 3.2 shows that Woo and Woi contain an LQR con­

troller of JLS’s, and these sets are around an LQR controller; so the parameterization set 

ICq is also around an LQR controller. This connection provides a meaningful interpretation 

of the stabilizing controller set found in Section 3.5.

3.7 Synthesis of generator matrices

Clearly, the generator matrices of £(f) and r](t) are crucial parameters in the model of 

FTCS’s. In this section, synthesis methods are presented based on two structures of Markov 

processes and the knowledge of failure rates and FDI history data.

Let Y (t ) denote a homogenous continuous-time Markov process in a finite state space 

Sy .  Let To, 7) . To, ■ ■ • denote transition times and Yo, Yj, Y2, ■■ ■ the successive states 

visited by Y(t ) .  If Yn = i, [Tn, Tn+\ ) is called sojourn interval, and Tn+\ — Tn the sojourn 

time at state z, i G S y , n  G N. Markov process theory states that {Yn. n g  N} forms a 

Markov chain, and Tn + 1 -  Tn follows exponential distribution with parameter depending 

on Yn only [25, Chap. 8 ]. This is the first structure of a Markov process.

Let Q y  denote the generator matrix of Y(t )  and Qy ( i , j )  its transition rate. The transi­

tion probabilities of Yn are

Pr{Kn+1 =  j\Y n = t} =  /  j ,  (3.47)
Q y(v<)

and P r{yn+i =  i\Yn = z} =  0, i , j  G  Sy. If Qy( i , i )  — 0, state i is absorbing, and 

Pr{W +i =  j  IYn = i)  =  0 for all j  G Sy.  The sojourn time distribution at state i is

Pr{Tn+1 -  Tn > t\Yn = i} = (3.48)
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Note that Q y { i , j ) > 0 ,  and Qy{i , i )  =  E j e S y  Q v i h j ) ,  * 7^ j-

The second structure uses competitions among independent exponential random vari­

ables to determine sojourn times and successive transition states. When Y( t )  = i, an 

exponentially-distributed random variable with rate Q y ( i , j )  is associated with transi­

tion to j  in Sy .  The transition can be viewed as a competition process among r^ , j  e Sy:  

the state associated with the minimum of is the successive state visited by Y(t ) ,  and this 

minimum value gives the sojourn time at i. Based on the property of independent exponen­

tial random variables [72, p. 243], (3.47) and (3.48) can be derived under this structure.

Using the Markov process C(t) to describe fault occurrences requires the assumption of 

constant failure rates, or equivalently, exponential distribution of lifetime, which is gener­

ally valid for the majority of component lifetime [21], The generator matrix of £(f) can be 

synthesized based on the second structure and failure rates. In the state space 5 j of ("(<), 0 

usually represents fault-free mode, and other states describe specific faults and may also de­

scribe their combinations. The transitions of (( t)  may represent fault occurrences, repairs, 

or recoveries from intermediate faults depending on transition modes and directions.

For example, for a system with two types of faults, Si can be defined as {0,1,2,3}, 

where each mode represents respectively fault-free mode, fault type I, fault type II, and 

their simultaneous occurrences. The transitions from mode 0 to 1 or 2 represent the occur­

rences of fault type I or II respectively, while the transitions of opposite directions represent 

repairs or recoveries from these faults. In cases of multiple faults that may occur at a par­

ticular mode, there exist competitions among exponential lifetime random variables: the 

fault occurring first with minimum lifetime makes (( t)  jump to the corresponding mode 

in Si, and the minimum lifetime gives its sojourn time. So, the transition rates in the 

upper-triangular part of F  correspond to failure rates; and those in the lower-triangular part 

represent the rates of repairs or recoveries. Let the failure rates of two faults be denoted by 

Ai and A2 respectively, and the generator matrix of ((7) is

(A i  +  A2 ) A2 0
0 - A 2 0 A2

0 0 - A i Ai
0 0 0 0

where the transition rates in lower-triangular part are all zeros as no repair or intemiediate 

fault is assumed.

i](t) models FDI results, and its state space S2 is usually identical to Sj. Its generator 

matrix can be estimated using FDI history data based on the first structure of Markov pro­

cesses. This history data should record the transition states and sojourn times of FDI under
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known fault modes, which can be obtained by experimental testing of FDI schemes. Owing 

to (3.47)-(3.48), it suffices to estimate the transition probabilities and the means of sojourn 

time distributions in order to determine the generator matrix of 77(f).

When C(f) =  k and 77(f) =  i, the sample sojourn time of 77(f) at i is recorded as r f \  

I = 1,2, • • • ,N .  The sample average

n  =  £ > < '> /*
1 = 1

converges to 1 //?*; in probability 1 as N  —> 0 0  based on the law of large numbers and 

(3.48). Let =  1 /f; denote the estimate of /?£. If there is no transition from state i for 

77(f), this state is deemed to be absorbing, and /3-j =  0  in this case.

The transition probability can be estimated by transition frequencies. If there are M  

transitions of 77(f) to mode j  within N  transitions leaving i in FDI history data, the transition 

frequency M / N  converges to transition probability with probability 1 as N  —> 0 0 .  Using 

(3.47), the transition rate from i to j  is estimated as

/% =  f t M / N .

Using this method, all elements in the generator matrix of 77(f) can be estimated. Moreover, 

as in (3.32), to ensure specific estimate precisions, the lower bound of sample quantity N  

can be determined using the Chemoff’s bound.

Remark 3.6 Fault effects on system dynamics are described by different system matrices in 

the dynamic model (3.1), A((,(t)).  B((( t ) ) ,  and D(( ( t ) )  depending on ((f). The

FDI scheme can be designed by standard model-based methods using these dynamic models 

[73], Although some iterative algorithms exist to obtain a sequence estimate o f  Markov 

states based on the probabilistic description o f system modes, the computational cost is not 

suitable for online implementation and controller reconfiguration, and the algorithms are 

designed fo r  a discrete-time Markov chain only [74], The transition characteristics o f FDI 

mode can be described by a Markov process from the perspective o f  closed-loop stability 

o f  the reconfigured system [6]. But it is necessary to have FDI history data available fo r  

estimating Markov transition rates.

3.8 An illustrative example

Consider a longitudinal vertical takeoff and landing aircraft model in the form of (2.2) with 

the following system matrices [13]. The subscript ‘0’ represents the fault-free mode and ‘1’
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the faulty mode. In the faulty mode, the actuator failure is considered, and the effectiveness 

of the first actuator is reduced by half as reflected in B \.

-0.0366 0.0271 0.0188 -0.4555
0.0482 -1 .01 0.0024 -4.0208
0.1002 0.3681 -0 .707  1.420

0 0 1.0 0

, A \ — A q

Ba =

'0.4422 0.1761 ' '0 . 2 2 1 1 0.1761 ' '1 0 0 0 "
3.5446 -7.5922 1.7723 -7.5922 0 1 0 0

-5 .52 4.49 , P i = -2 .76 4.49 > Co =
0 0 1 0

0 0 0 0 0 1 1 1_

> Ci =  Co.

The generator matrices of £(t,) and rj(t) are:

'-0 .0017 0.0017'
, H° =

'-0 .0204 0.0204 ' -2.9925 2.9925 '
0 0 3.9039 -3.9039 J •L*Tj 0.0515 -0.0515

H f =

According to H^,  the mean lifetime before fault occurrence is 1/0.0017=588.24 minutes, 

and the fault mode is absorbing as shown in the second zero row of H^,  i.e., there is no 

repair or recovery from intermediate fault. For FDI, according to the first row of H°,  when 

the system is in fault-free mode, the mean time of a false alarm is 1/0.0204=49.02 minutes; 

and according to its second row, the mean time of returning to correct detection after a false 

alarm is 1/3.9039=0.2562 of a minute. H* can be interpreted similarly: the mean time of 

a missing detection is 1/0.0515 = 19.42 minutes, and the mean time of returning to correct 

detection after a missing detection is 1/2.9925 =0.3342 of a minute.

The conditions in Theorem 3.1 for P%] are solved as follows:

-Poo =

Pol =

Pi0 =

P ll  =

0.0114 0.0009 -0.0028 -0.0065
0.0009 0.0043 - 0 . 0 0 1 1 0.0004

-0.0028 - 0 . 0 0 1 1 0.0099 0.0079
-0.0065 0.0004 0.0079 0.0208

3.5840 0.1916 -0.5806 -1.1955
0.1916 3.2196 -0.2804 -0.0447

-0.5806 -0.2804 3.4266 1.1760
-1.1955 -0.0447 1.1760 4.9369

0.0484 0.0050 -0.0073 -0.0084
0.0050 0.0619 -0.0147 0.0052

-0.0073 -0.0147 0.0703 0 . 0 1 0 2

-0.0084 0.0052 0 . 0 1 0 2 0.0669

2.7515 -0.1065 -1.0816 -1.2975
-0.1065 3.5939 -0.1549 -0.0833
-1.0816 -0.1549 3.4801 1.6071
-1.2975 -0.0833 1.6071 3.8389
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Based on Proposition 1, these PtJ correspond the following LQR weighting matrices

Sij and Ri j .
0 .0 1 2 0 0.0184 -0.0303 -0.0113'
0.0184 0.0351 -0.0533 -0.0144

-0.0303 -0.0533 0.0884 0.0279
-0.0113 -0.0144 0.0279 0.0165

'  213.7 1161 -954.4 -307.4"
1161.0 7689.3 -5618.3 -1764.3
-954.4 -5618.3 4436.9 1416.5
-307.4 -1764.3 1416.5 460.1

0.2133 0.3874 -0.4153 0 .0 2 1 2

0.3874 2.7692 -2.4173 0.1968
-0.4153 -2.4173 2.7225 -0.0830
0 .0 2 1 2 0.1968 -0.0830 0.1956

267.1 1348.6 -1027.9 -4 7 8
1348.6 9117.3 -5859.5 -2690.3

-1027.9 -5859.5 4154.7 1921.8
-478 -2690.3 1921.8 891.3

Soo =

So i =

Sio =

5 h  -

Roo = 0.0676, R 0i = 0-0913, R w =  0.1570, R n  =  0.0911.

Following the design procedure with e =  0.02 and <i =  0.02, 194 sample controllers 

are generated and evaluated with respect to MTTF. It is found that the following approx­

imately optimal controller K* =  {f\ {*, f<[} achieves MTTF = 197.3208 minutes with 

Pr{Pr{r/»(K*) > L (K ')}  < 0.02} > 0.98, where t/>(K*) denotes the optimal MTTF with 

the optimal controller K*:

K  o* -

K{  =

-0.6566 -0.7359 2.0731 1.1449
0.4176 1.3777 -1.1316 -1.0322

-0.1117 0.2114 0.1399 0.4621 '
0.0621 0.5747 -0.1667 -0.3248

For comparison, arbitrarily select another stabilizing controller K  =  {Ko, K \ } with MTTF 

= 55.8319 minutes:

K n =
-3.2572 -1.8991 
-0.8941 0.8646

0.0272 0.2312
0.0427 -0.0603

8.0921 6.7639 
1.0997 1.1335

0.0945 0.0146
-0.0534 -0.5202

To compare the time-domain performance of these two controllers, a white noise dis­

turbance is applied to the system. With initial state x(0) =  [2 -  2 2 -  2]T, output

trajectories are shown in Figures 3.4 and 3.5, where (( t )  remains at fault-free mode 0, and

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



§(0

(C
23a-3o

■D
C  
<0 
mW 3 
&3o

Time

Figure 3.4: Output trajectories when using K*.

77(f) is manually set to 1 such that FDI gives false alarms when 5 < f < 10. In fact, the 

sample paths of (( t )  and 77(f) can be generated based on their generator matrices. But, the 

possibility of observing fault occurrences or false alarms in a short time is very small. In 

order to study system responses under false alarms, we manually set the transitions of 77(f). 

Moreover, to examine the robust performance of controllers, system matrices are perturbed 

probabilistically around their nominal values during the simulation.

As shown in Figures 3.4 and 3.5, output trajectories are converging and disturbances 

attenuated by both controllers; overall, K* seems to have better disturbance attenuation 

effects. This can be further validated by comparing the closed-loop Hoc norms. For K*, 

the nominal closed-loop Hoc norm is 0.1294 when 77(f) =  0 and 0.1565 when 77(f) =  1 ; 

for K , it is 0.1088 when 77(f) =  0 and 0.2178 when 77(f) =  1. If probabilistic modeling 

uncertainties are considered, for K*, the probabilities that the Hoo norm is no greater than 

1 are 0.6467 and 0.7600 when 77(f) =  0 and 1 respectively [46]; for K , the probabilities 

are 0.6328 and 0.1043 respectively, much worse than K* especially under false alarms. 

This finding is not surprising because in this example the Hoo norm under probabilistic 

uncertainties has been used as a control objective in the definition of a reliability function. 

The case for missing detection of FDI under fault occurrence can be studied in a similar 

way, which is not included for brevity.

The reliability functions of FTCS’s for these two controllers are shown in Figure 3.6, 

and the reliability shows great improvement by using K*. To verify P r{Pr{7/>(K*) >

52

-5

—  r — ■ ■ -i ■
False alarm

■................. i - ------# 1

------#2

r  —

1 1 1 1 

False alarm
T ' ------#3

------ # 4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



MTTF = 55.8319
10

0

- 10,

CM■Dc(0 F alse alarm

£3a-3o

# 4

°  -2,
Time

Figure 3.5: Output trajectories when using K.

C(K*)} <  0.02} > 0.98, 1000 stabilizing controller samples are generated, and the MTTF 

of the FTCS for each controller is calculated as shown in Figure 3.7. From this figure, it 

is found that only one controller has better MTTF than K*. Therefore, the randomized 

algorithm gives a valid estimate of optimum with the specified precision.

3.9 Conclusion

This chapter presents a probabilistic design method of FTCS’s based on the stability and 

reliability criteria. The basic idea is to develop a stabilizing controller parameterization set 

and to apply the randomized algorithms to find the statistically optimal controller in terms 

of system reliability. The stabilization conditions are given in the form of LMI’s, and the 

free parameters in the controller parameterization set are real matrices and scalars, which 

is convenient for numerical implementation. An example is presented, and the results show 

that a statistically optimal controller with highest reliability can be obtained by this method.
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Figure 3.6: Compare reliability functions when using K* and K.
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Figure 3.7: MTTF of FTCS for 1000 generated stabilizing controllers.
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Chapter 4

Two-stage controller design for 
MTTF*

4.1 Introduction

The reliability-based design is basically an optimization problem with respect to reliability 

index. For example, in the active control of civil engineering structures, reliability-based 

design is usually converted to covariance control or classical optimization problems using 

approximate reliability measures [75,44], Similarly, reliable control aims to guarantee sta­

bility and/or control performance under component faults [19]. However, a valid reliability 

index of FTCS’s is often evaluated from stochastic models and cannot be readily converted 

to a control objective. A reliability-based reconfiguration strategy was recently developed 

for FTCS’s by optimizing system structure to improve reliability but the effects of control 

actions were not considered [76],

Owing to the numerical procedures of building and solving stochastic reliability models, 

it is generally difficult to write the reliability index as an analytical function of controller 

parameters. In order to overcome this difficulty, stabilizing controller parameterization and 

randomization-based methods were developed in Chapter 3 to find the statistically optimal 

controller with respect to reliability. Its advantage is the stabilizing property of designed 

controllers; but the algorithm may need to generate a large set of controllers for optimization 

purpose, which may lead to high computation burden.

This chapter discusses a new controller design method to optimize a long-run reliability 

index, MTTF. This index is evaluated based on probabilistic control performance charac­

teristics, which are used to relate controller to MTTF. The basic idea is to perform MTTF 

optimization in two stages: 1) a gradient-based search is performed on control performance

’ Results presented in this chapter has been submitted to the International Journal o f  Robust and  Nonlinear 
Control, revised and under review.
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characteristics which are updated along the fastest increasing direction of MTTF; 2) the 

updated control performance characteristics are then transmitted to a controller design al­

gorithm, which updates controller accordingly to satisfy these control performance char­

acteristics. Each design stage is completed by one iterative algorithm, and two algorithms 

are carried out alternately to complete controller design. This two-stage design overcomes 

the difficulty caused by the nonexistence of analytical objective functions of MTTF with re­

spect to controller parameters. It also has relatively fast convergence because of the gradient 

information used in the algorithm.

The control performance is characterized by a probabilistic Hoc criterion, defined as the 

probability that the Hoc norm is within specified threshold when assuming bounded random 

uncertainties. Hoc norm is suitable for describing long-term static control performance; 

when transient behaviors are of interest, a model-matching structure can be adopted to rep­

resent transient performance using Hoc norm. To design a controller for this probabilistic 

Hoo criterion, a sequential randomized algorithm is adopted. This algorithm iteratively up­

dates controller based on uncertainty samples, and is effective to handle probabilistic robust 

performance. For example, it has been used for robust guaranteed cost control [48], robust 

linear matrix inequities problem [77], linear parameter varying design [78], and searching 

for common Lyapunov functions [79]. In this chapter, probabilistic H-Xj control is consid­

ered, and the main difference from previous work lies in the introduction of a weighted 

composite violation function to handle multiple regime models in FTCS’s; both state feed­

back and two-degree-of-freedom (2DOF) controls are discussed; and both the convexity of 

violation function and the convergence of algorithms are proved for this new problem.

The remainder of this chapter is organized as follows: System model is introduced in 

Section 4.2; controller design algorithms are discussed in Sections 4.3 and 4.4 for state 

feedback control and 2DOF control respectively; Section 4.5 addresses output feedback 

controller design when state information is unavailable; and an example is finally given in 

Section 4.6 to demonstrate the method.

4.2 Problem formulation

4.2.1 System model

The general Markov model of FTCS’s is given by 2.2 in Chapter 2. As state-feedback 

controller is considered in this chapter, it can be reduced to the following equations by
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removing the output equation:

(x{t )  =  A (£ (t),A )x (t) + B(( ( t ) ,A)u(r j ( t ) , t )  +  E ((( t) , A)w(t),
\ z ( t )  = C m ,  A )x(t) +  £>(((*), A )u{rj{t),t) +  A )w(t),

where x(t)  €  R n,z( t )  e R e  Rp, and w(t) E R9 denote system state, regu­

lated output representing control performance, control input, and exogenous input respec­

tively. R" denotes the real vector space with dimension n. A,  B,  C, D,  E,  and F  denote 

system matrices with compatible dimensions determined by discrete modes ((f) and T](t), 

and affected by uncertainty parameter A. ((f) and r/(f) are assumed to be two continuous­

time Markov processes. A e  R* is assumed to be a random vector with known probability 

distribution in a bounded set fi, and the entries in system matrices are affected by the ele­

ments in A.

Remark 4.1 Different from a measured output, z ( t ) is the regulated output to characterize 

control performance. For example, in tracking control, z(t) can be taken as the tracking 

etror between controlled output and reference command input. w(t) contains exogenous 

inputs to the system, such as reference command input and disturbances, whose effects on 

z( t ) are undesirable and to be suppressed by designing controllers. As w (t) may contain 

various types o f  signals, it cannot be described by a Gaussian white noise, and therefore 

ho stochastic differential equations are not applicable here.

Remark 4.2 The required assumption to describe FDI mode rj(t) as a Markov process 

is the memory less Markov property [25, p. 233J. According to [15, section 2.1], i f  FDI 

schemes are designed based on single sample hypothesis tests and the noise statistics are 

white, this assumption is valid. For general FDI schemes, it is difficult to check this memo­

ry less assumption based on their designs, and semi-Markov processes can be used instead 

as discussed in Chapter 5. I f  FDI history data is available fo r  estimating empirical sojourn 

time distribution, the assumption can be tested by checking whether sojourn time follows 

exponential distribution or not. Under the assumption that FDI modes can be modeled by a 

semi-Markov process, the exponential distribution implies that a Markov process is a valid 

model [25, p. 316]; considering that semi-Markov assumption is usually acceptable for  

describing FDI modes, this sojourn time distribution test can also be used in general to 

check Markov assumption.

Remark 4.3 Model (4.1) is a linear dynamical system subject to Markov switchings and 

has been discussed in many references. According to [7, p. 32], [80, p. 117], and [81,

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



p. 143], the existence conditions o f  a unique solution are the Lipschitz and linear growth 

conditions o f  the right hand side o f  (4.1) with respect to x. For a general setting, a rigorous 

proof is provided in [82, p. 81] fo r  stochastic differential equations with Markov switchings, 

and model (4.1) can be deemed as one o f  its special cases.

A static state feedback controller in a switching structure is considered for FTCS’s. 

Here, static means that the controller is a pure gain. If the exogenous input w(t)  contains 

unknown disturbances only, the controller is composed of a set of state feedback gains, 

denoted by K  =  {K j , j  £ S 2 }, and u ( f t ) , t )  = Kj x( t )  when f t )  = j .  With this 

controller, the closed-loop system equations become

I r ( t ) =  [ A m ,  A)  + B ( f t ) , A ) K , l(t)}x(t) + E ( f t ) , A ) w ( t ) ,
\ z ( t )  = [ C( f t ) ,  A) +  D m ,  A ) K ri{t)]x(t) + F ( f t ) ,  A M t) .

where K v(t) represents K , when f t )  — j.

On the other hand, if the exogenous input contains known reference command input, 

the controller may be in a 2DOF structure, denoted by K, =  {(Kj ,  Lf).  j  £ S'2}, and 

u(rj(t), t ) =  Kj x( t )  +  Ljw(t)  when f t )  = j .  The term 2DOF means there are two control 

gains involved for state feedback and reference feedforward respectively. The closed-loop 

system equations become

f x(t)  =  [A(CW, A) +  B ( f t ) „  A ) K v{t)]x(t) + ( E ( f t ) ,  A)  + B ( f t ) ,  A)IM t ) ]w (t),
\ , ( f )  =  [C(C(0, A) -t D ( a t ) , A ) K r M]x(t) +  [F(((t),  A) + D ( f t ) ,  A ) L v(l)]w(t).

(4.3)

The closed-loop system (4.2) or (4.3) contains two discrete modes f t )  and f t ) ,  also 

referred to as system regime modes. For fixed regime modes f t )  — i and r/(<) =  j ,  (4.2) 

or (4.3) is reduced to a linear uncertain system, and the transfer function from w(t)  to z(t) 

is denoted by Gij(s,  A), called a regime model. So, (4.2) or (4.3) represents a collection of 

linear uncertain regime models denoted by {Gtj(s,  A), i £ S i , j  £ S ^ } .  Owing to possible 

incorrect FDI decisions, each controller Kj  or (Kj,  Lf)  may be used for A’j +  1 possible 

regime models: Goj(s, A), ■ • • , G n 1j(s,  A), j  £ S 2 . This is the major difference from 

jump linear systems, where the number of controllers equals that of regime models [54].

4.2.2 Control perform ance characterization

The control performance of G i f s ,  A) is assumed to be represented by a model-based crite­

rion, such as system norms. Let w  [Gi f s ,  A)) denote the performance measure calculated 

for fixed regime modes f t )  = i, r](t) — j ,  and a particular uncertainty sample A. The
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allowable performance bound when ((f) =  i is denoted by pi. To take into account the ran­

dom uncertainty A, a probabilistic performance description is considered for each regime 

model:

7 ^  = Pr{w{Gij(s,  A)) < pi), i e  Si ,  j  G S2. (4.4)

For fixed £(f) =  i and ?/(f) =  j ,  probabilistic performance 7 7  can be estimated by

1 N
^  ^w(Gij(s,Ah))<Pii (4-5)

h = l

where A;, denotes the generated uncertainty sample according to its distribution, and GtJ 

(s, A^) the close-loop transfer function. The indicator function l w(Gij(s,Ah))<pi equals 1 

if w(Gij (s ,  A/,.)) <  pi and 0 otherwise. N  can be determined based on the allowable 

estimation error using statistical theory, such as Chemoff’s bound [46]. If N  > , the

following inequality holds:

1 N
P f { l 7 i j  -  ^  l r o ( G i j ( s . A h ) ) < P « l  — £ }  ^  1 — <5-

h = l

If N  is large enough, the estimation errors e and 5 can be ignored, and (4.5) can be deemed 

as the true probabilistic performance 7 7 .

Model-based criteria are mainly defined for steady-state or long-term performance. 

When regime modes are under fast transitions, transient performance is of interest and 

should also be reflected in control performance characterization. In this chapter, 7 i norm 

is selected as the model-based criterion and can represent transient performance by using 

suitable weighting functions [83], But, adjusting weighting functions may need trial and 

error, and an alternative method is adopted here based on model-matching H 0c design [47]. 

Its basic idea is shown in Figure 4.1: the required transient performance is represented by 

a desired model, and the controller is designed to minimize the H o o  norm from reference 

input to mismatch error signal. The reference input can be chosen as the exogenous input 

w(t),  and mismatch error as z{i).  In this way, H o c  controller can be designed for tran­

sient performance. The controller may take the 2DOF state feedback structure, and the 

closed-loop equations have similar forms as (4.3).

4.2.3 M TTF gradient

Reliability criteria presented in Chapter 2 provide quantitative measures on overall long- 

tenn performance of FTCS’s. To avoid high costs of emergency repairs between periodic
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Figure 4.1: Model-matching diagram.

maintenance activities, the probability of failure within a maintenance period should be re­

duced to a certain level. For this purpose, the interested problem is to design a controller that 

achieves suboptimal MTTF exceeding MTTF, where MTTF represents minimum MTTF 

requirement and can be determined based on maintenance period.

For the sake of reliability evaluation, a semi-Markov process X R(t) was constructed 

in Chapter 2. Its state space 5 r  is composed of operational or up states and a unique 

down state. The transition characteristics of X R(f) is defined by its semi-Markov kernel 

Q(Xk,  Xf , , t) based on probabilistic performance 7 ,,, where X/̂  and X/, represent the states 

of X R(f). The detailed definition and derivation of Q(Xk- X h, t) can be found in Chapter

2. Based on X R(t), MTTF can be calculated by [27]:

where /  denotes the identity matrix with compatible dimensions, po the vector of initial 

probability distribution of X R(t,), Pup its limiting transition probability matrix, and p  the 

vector of expected sojourn time at up states of X R(t). The elements of these three parame­

ters are defined by

where X^, X/, e  S r , and both are up states. If /  — Pup is not invertible, MTTF =  0 0 , which 

is generally not achievable in practice. In the sequel, I  -  Pup is assumed to be invertible.

Owing to the construction of X R(f), it is difficult to establish the analytical relation 

between controller and MTTF. Considering that MTTF is calculated from the parameters

MTTF =  p2’( / - P up)“ V , (4.6)

P o ( X fc) =  P r { X ( 0 )  =  X * } ,  

P Up ( X * , X fc) =  lim Q ( X k, X h,t),
(—>00
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of X  which is constructed based on control performance characteristics 7+ , 7 ^ can be used 

as a connection parameter between controller and MTTF. Based on (4.6), the derivative of 

MTTF with respect to 7 y can be calculated by

=  pT( /  _  Pup) - ‘^ ( 7  -  Pup)“ V  + P 2 V  -  A p)"1^ - .  (4.7)
dl i j  (*)ij

In the set of controllers K  =  {A’, , j  € S2} or K. =  { ( K j ,  L f ,  j  G i ’2}, each K j or 

(K j, Lj) is designed for i \ \  +1 regime models and therefore determines TVi+1 probabilistic 

performance parameters 7 y, ?' =  0, ■ ■ • , 7Vj. For K j  or (K j , L j ) ,  define the gradient of 

MTTF as
rrfMTTF . . . rfMTTFiT

VMTTF, =  .......t lFxA. (4 .8 )
J /V  1 ttMTTF \9.

Y  2 ^ i g S i '  d ~ ii j  >

which is composed of the derivatives of MTTF with respect to probabilistic parameters 

related to Kj  or (K j , L } ), i G S i, j  G S2 . With VMTTF, available, the following 

gradient-based iterative search algorithm is adopted for MTTF optimization, where K ' =  

|  K j , j  g S2} and K, 1 =  j  (K j. L j ). j  G S2|  represent the state feedback and 2DOF con­

trollers respectively at the 1-th iteration.

Algorithm 4.1: MTTF optimization

1. Initialization: Set I — 0; select minimum reliability requirement MTTF and step size 

r  >  0; randomly generate the initial value of controller K ° or /C°; and estimate 

probabilistic performance 7 ? using (4.5).

2. At iteration /, calculate MTTF based on controller K l or X 1. If MTTF > MTTF, 

stop and the controller at current iteration satisfies MTTF requirement; otherwise, if

S ie S i ( d«irTF) 2 < £> a sma^ Positive number, stop because the algorithm is at a

local optimum but MTTF is not achieved.

3. For each j  G S2, calculate VMTTF' using (4.7)-(4.8); use Algorithm 4.2 to obtain 

K '+1 or X l+l such that 7 ' t 1 > 4 . rVM TTF^ for any i G S\ and j  G 5’2, where 

VMTTF-, denotes the element of VM TTF'.
v J

4. Go to step 2 and start the new iteration 1 +  1.

Rem ark 4.4 In Algorithm 4.1, 7 ij is iterated along the gradient direction o f MTTF, and its 

value is used to direct controller update. Because the convexity o f  MTTF with respect to 7 ^  

is not guaranteed, the gradient search may run into a local optimum, and a controller fo r  

the required MTTF cannot he found. This problem always exists when using gradient search
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fo r  a non-convex problem. It can be handled by the change o f initial values or the relaxation 

o f MTTF. In step 3, the controller is designed to satisfy the probabilistic performance using 

Algorithm 4.2presented in the next section.

4.3 Sequential randomized algorithms for state feedback con-

This section considers the design of a state feedback controller. For notational simplic­

ity, for C(<) =  i, r?(f) =  F i e  S i, j  £ S 2, denote A (A ) A A( ( ( t ) , A) ,  B f  A) =  

fl(C (0 ,A ), Gt(A) A C7(CM,A), A  (A) A D(( ( t ) , A) ,  E f A )  A E{^( t ) ,A) ,  F f A )  A 

F ( « t ) , A ) ,  Ai j (A) A A( ( ( t ) , A ) +B( ( ( t ) ,  A ) K jt  and C tj(A)  A A)+£>(C(t), * ) K j .

Let Gij(s,  A) denote the transfer function from w(t)  to z(t).  Its Hex. norm ||G y(s, A ) ] ^  

is selected as the performance criterion, and the probabilistic performance is reduced to 

7 ij =  P r {j|GtJ(.s, A)Hoc < pi}. The following lemma then provides a sufficient condition 

to check whether ||G,j(.s, A)||oo < p t . In the sequel, A is not shown in system matrices for 

notational simplicity.

Lemma 4.1 For system (4.9), assume that the initial state x(0) =  0 and p ] l  -  F f F i  > 

0, where I  denotes an identity matrix with compatible dimensions. For fixed i , j ,  and a 

particular uncertainty sample A, 11 Cr, y (.s) | [ ̂  < p, holds i f  there exists PLj > 0 such that

The proof is standard by using a quadratic Lyapunov function [84, p. 212], and a proof is 

provided here for clarity.

Proof: For system in (4.9), it is worthwhile to point out that the result to be proved 

is for fixed i , j ,  and uncertainty sample A. In other words, the result is for a fixed linear 

regime system in FTCS’s.

Suppose that the solution Pt j > 0 exists for (4.10). Using Schur’s complement lemma 

and the assumption that ptI  — F f F i  > 0, (4.10) is equivalent to

trol

For fixed C (t) — i and ? f t )  = j ,  (4.2) is reduced to a linear uncertain system

x(t) — A-tj (A)x ( t )  +  Ej(A)w(t ) ,  
z(t) = Ci j (A)x( t )  +  Fi(A)w(t) .

(4.9)

{AisZ p ,:i » P ,,,! ,, v{Cxf r C t, r [ I f  I f  I (Cv )r Fi)(pjI F f F i r f E f P ^ + F f C i f  < 0 .

(4.10)

M u ) ' / ' u  +  PijAij + (CijfCij Pij P.-, +  (CijfFA
E f P i j  + F f C i j  - ( t f T - F f F )  -
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So, for all x(t)  £ R n, w(t)  £ fZ9,

j-in-Xrr-- p y  i tn ■ A1'hA
< 0 . (4.11)

x(t) T

w(t)
x(t)
w( t \

{A ij)1 Pij + PijAyj  +  (Cij)TCij PijEi  +  (Cj j )r Fi 
E j  Pij +  F j C i j  - {f}p - F T Fi)

For notational simplicity, let us drop the time variable t in x(t)  and w(t).  Inequality (4.11)

is obviously equivalent to

a:r [(AlJ)r Plj + PijAij + ( C ^ f C ^ x  + x r lPljE l + (ClJ)T Fi}w+

w t ( E J  Pij + F ?C i j ) x  -  wT ( p p  -  F ?  Fi)w < 0. (4.12)

Consider a Lyapunov function f i j (x)  =  x T P^x ,  and f i j (x)  >  0 as Pl} >  0. Using the

state equation in (4.9), the derivative of f i j (x)  is calculated as

=  x T (A^jPij + Pi jAij )x + x T PijEiW + wT E j  PijX. (4.13)

By substituting (4.13) into (4.12), we have

^  < pfiuTw -  (CijX + Fjiu) 2 (CijX +  Fiw) = p f wTw — ~T ~

o)) -  / u ( x (°)) =  J  dt <  J  (pf w (t)Tw( t ) -  z(t)T z(t))dt.

dt

Taking integration on both sides from 0 to to, we have

rt a dfa(x<M [ ta
/o dt -  Jo

Using f i j ( x{ tQ)) > 0 and f i j{x  (0 )) =  0 , we obtain

f t  0 f t o
/ z( t )T z(t)dt  < pj w( t )Tw(t)dt.. (4.14)

J o  Jo
If w(t) has finite L 2 -norm, (4.14) yields ||C?ij (.s)Hoo < px by taking the limit as to —> 0 0 . 

■
Owing to Lemma 4.1, if inequality (4.10) holds with probability 7 ^  when A varies 

probabilistically, K j  satisfies probabilistic performance 7 y =  P r{ ||G y(s,A )||oo  < Pi}- 

Kj  can be designed using a sequential randomized algorithm presented in this section.

The following notations are adopted in this section: The space of real n-by-m  matri­

ces is a Hilbert space with the inner product (M ,N ) =  Tr(AJ1 N )  and Frobenius norm 

|[ A/1| =  where Tr(-) denotes the trace of a matrix, and m, n  the

dimensions of AI. For a real symmetric matrix M , its projection onto the convex cone of 

nonnegative definite matrices is defined as

M + =  argm in \\M — N\\.  
tv>o

M + can be computed explicitly as follows [48]: If M  =  UAUT , where U is orthogonal 

and A is diagonal with entries Ai, ■ • • , A„, then M + =  U A +UT , where A+ is diagonal 

with entries max{(), A j }, - • • , max{0, An }.
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4.3.1 Violation function and gradient computation

In this subsection, the matrix inequality (4.10) in Lemma 4.1 is converted to a scalar convex 

function. Let us begin with a special case that D t = Ft =  0, and the left-hand side of (4.10) 

is simplified and denoted as Vl}, i e  S\ ,  j  e  So:

Vn 4  A } ' + PijAi + K j B j P {j + Pi jBiKj  + P i j E i E j f f j / p 2 + C j C t < 0. (4.15)

Let /  denote a functional on the space of symmetric matrices which assigns matrix M  

a real number f ( M ) .  The gradient of f { M )  is denoted as d n f ( M ) ,  meaning

f ( M  +  SM)  = f ( M )  +  (dMf ( M ) ,  SM)  + o(\\6 M\\),

where S M  denotes a small perturbation in M.  f ( M )  is convex if and only if [85, p. 69, 

chap. 3]

f ( M  +  SM) > f ( M )  + (dMf ( M ) , 6 M ).

Lemma 4.2 ([79]) The functional f ( M )  = 5 ||A/+ 1|2 is convex and differentiable with gra­

dient given by d \ j f { M )  — M +.

Using Lemma 4.2, a violation function of (4.15) is defined as

Vij iKj ,  Pi3, A ) A  f(Vij)  -- i \ \(AjPij  + P ijA t +  K j  B j  Pxj +  P . f f f K j

+PijE iE j P ij/p* + C j Q ) +f ,  (4.16)

where i G S\  and j  G S 2 . Obviously, vtJ (K } , Pt], A) > 0, and i>ij(Kj, P^ ,  A) 0 if and

only if Vij < 0. In other words, (4.15) holds if and only if Vij(Kj,  Pi3, A) =  0.

Lemma 4.3 v ^ i K j ,  Pl3, A ) is convex in K j and PtJ respectively, and its gradients with 

respect to these two matrix variables are

dKivlj {Kj ,  P^ ,  A) =  2B j P . j V A ,

dPijVij(Kj,  P j , A) =  (BiKj  + Ai + E i E j P ij/ f ^ ) V+ + V + ( K j B j  + A j  

+PljE iE j / p 2i ).

Proof: Recalling (4.16), because f {Vlj) is convex in Vl3, and VtJ is affine in K j, 

Vij(Kj,  P^ ,  A) is convex in Kj  [85, chap. 4], The convexity in P\j will be proved af­

ter calculating the gradients.
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Let 5Kj  denote a small perturbation in K j,  and the function value after applying this 

perturbation is calculated as follows, where denotes the expression in (4.15) without 

any perturbations:

Vij(Kj  +  6 Kj ,Pi j ,  A)

= f (Vi j )  +  ( d v i j M j ) ,  ( S K j f B T P i j  +  P j U M j )  + o ( l l ^ l l )

=  v t j i K j , Pij, A) +  Tr[dVijf ( V xj){5Kj)r B j P tj} + T r ^ . / { V ^ P j B ^ K j }  

+ o ( | | ^ | | )  (4.17)

Considering that

Tr [ d v J i y i j W K j f B j P i j ]  =  Jv{{5KJ)T B j P lJd Vt]f { V iJ)}

= T r l d v J i V ^ P i j B i d K j ] ,  (4.18)

where we have used the facts that Tr(>li?) =  Tr(ZL4), Tr(.4) =  l r ( A T), and the symmetry 

of P^  and d\'ijf{Vij).  By substituting (4.18) into (4.17), we have

Vij{Kj  + SKj ,  Pi j , /K) = Vi j (Kj ,Pi j ,A)  + 2Tr[dVt}f ( V lJ)PlJB i5KJ} + o ( | | ^ | | )

-  Vij(Kj,  Pij, A) +  ( 2 Bf Pi j d v ' J i V i j ) ,  SKj) + o(||JA^ ||).

Therefore, dKjVij{Kj,  P^ ,  A) =  2Bj Pi jdx^  f  (Vl3) = 2B'[PijV + . The gradient with 

respect to P ^  can be proved in a similar way as follows:

vij (K j , Pij ~F SPij, A)

=  f (Vi j )  + (<)yi: f ( V tJ). A] SPtj +  SPijAi + K j  B j  6  Pij +  S P ^B .K , +  

S P i j E i E {  P i j j p \  + P i j E i E j  S P i j f p \ )  + 0(11̂ 11)
=  ( K j , P ^ , A) +  Tr [ d v v M j X A j  + K j  B j  + P ^ E f / p f  )5Plj\

+Tr[dVtjf ( V 1J)5PlJ(Ai + Bi Kj  +  E xE j  Pvj /  pf)} +  0 ( | | ^ | | )  

=  Vij(Kj,  P^,  A) +  Tr [ d w M j K J ?  + K j  B j  +  E i E j  /  pf)5 Pij]

+Tr[(i4j +  Bi Kj  +  E i E j / ^ d v i J i V ^ S P t j ]  + o ( | |^ - | | )

=  Vij(Kj,Pi j ,  A) +  ((BiKj  + Ai + E lE f P i j /p?)V+ 

+ V j ( K j B J  + A j  +  Pi jEiEj / p} ) ,  SPij) +  o ( I I^ H ) .

This proves the gradient in P^.  The convexity in P^  can be shown by the following in-
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equality:

VjjiKj,  PXJ + SP^,  A)  > f(Vi j )  +  {dVij f (Vi j ) ,  A j  SPij + SP^ A 4 +  K j  B j  SPi}

+S P ^ Bi Kj  + SPi jEiE' f  Pi j /pf  + P^  E i E f  SP^/p?

+SPijEiEj SPij/pi)

Vij{Kj, Pij, A )  +  (dfh v, j{K:j. P j ,  A) ,  SPij) 

M d v v M j ) ,  SPijEiEjSPij/pi)

(4.19)

(4.20)

> Vi j (Kj ,Pi j ,A)  +  {dptjVij(Kj,  P,j, A) ,  SP^).  (4.21)

(4.19) is because of the convexity of / ,  (4.20) follows by substituting dptjVi3 (Kj ,  Pt], A) in

(4.19), and (4.21) is true because that f  {V%j ) S Pi j E i E j  SP^ /  p]\ >  0, resulted from 

the semi-definite properties of dv^ f iYi j )  and SPi j Ei Ej 5PVJj  p\.  ■

For the general cases that D{ 7  ̂ 0 and F, /  0, the gradients are given as follows, which 

can be proved in a similar way:

Owing to false alarms, the FDI estimate r/(f) may be different from ((t).  As a result, 

given fixed j  e  S 2 , each controller gain K 3 may appear in N\  +  1 inequalities, Vv  < 0 for 

i =  0,1, • • • , N \ . To take these :V] + 1  inequalities into account simultaneously, a weighted 

composite violation function is defined as

where 9ij denotes a positive weight corresponding to inequality V,j > 0 for C(f) =  i, 

i € Si ,  j  G S 2.

Lemma 4.4 Given j  e  S 2, i f  @ij > 0 for all i € S\, ipj(Kj,  Poj, ■ ■ ■ ,Pn, j )  = Ois 

equivalent to Vl3 < 0 simultaneously for all i (E S\.

if = 0 holds simultaneously for % =  0, 1, • ■ ■ , N\_, j  € S 2. Based on the definition of 

Vij in (4.16), Vi j (Kj , P, j , A)  — 0  if and only if Vjj  < 0 , which concludes the proof. I
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Lemma 4.4 shows that ipj can be used as a composite violation function for multiple 

matrix inequalities if all weights are positive. So, can be selected freely among all 

positive values.

Lemma 4.5 Given j  £ S 2 , i].’j (K v  Poj, • • ■ , P/Vu) is convex in K j and Pij’ i £ Si, and 

its gradients are given by

Ni
dxj ipj iKj ,  Pqj, ■ ■ ■ , Pnxj,  A) =  6 ijdKj vlj {Kj ,  P0j ,  ■ ■ ■ ,PNij ,  A), (4.23)

i= 0

d p M K j ' P b j , - - -  , P Nl j , A )  = QijdptjVij(Kj,PQj,---  , P/vu-, A). (4.24)

Lemma 4.5 is obvious considering (4.22) and the properties of gradient and convexity.

4.3.2 Controller design algorithm

Let S ^ p  represents the robust solution set of (4.22) defined as

S KP =  { (Kj ' Poj ' Pi j ,  ■ ■ ■ . Pn v ) ■ P j i K j - i ’un. • ■ • , Pn iV  a )  = 0 , V A e  fi}. (4.25) 

Two standard assumptions of sequential algorithms are made here as follows [48]:

Assumption 4.1 The solution set S JKP defined in (4.25) contains a nonempty interior for  

any given j  £ So.

Assumption 4.2 I f  (Kj ,  P0j , P^ , -  ■ ■ ,P/vu ) i  s k p > PTU ’j ( K j,  poj, ■ ■ ■ ,P/vu-,A) > 

0 } > 0 .

Based on Assumption 4.1, there exists an interior point { K j  . P(j ,̂ • • • , P jf •) £ S JKp 

and a ball Drj c  /^ .c en te re d  at ( K * , P^j, ■ ■ ■ , Ptf1j)- The knowledge of radius t j  of 

DTj can be used to determine step size in the algorithm presented in this section.

In Algorithm 4.1, the control design algorithm is to find (/vj+1, P ^ t1, • • ■ ) such

that 7 ( t 1 > 7'L +  rVM TTFy , where i £ S i, j  £  S2 , and I £ N represents the iteration 

index of Algorithm 4.1. The algorithm is in an iterative structure: At iteration k £ N, if the 

violation function f j ( K j ,  P0* , ■ • ■ , Pf)tJ- A k) > 0  for a randomly generated uncertainty 

sample A k, K k + 1  and P ^+l are updated by

(4.26)

(4.27)
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where <f>j represents the overall size of the gradient in Lemma 4.5:

4>3 { K k, P ^ - - -  , P kNlV A k) 4  (\\dKj f :i( K k, P kv --- , P kWiJ, A k ) \ \ 2 +
tv,

£  ||aP, 3 f 3 { K k, P kNlP A /c)||2)1//2̂ 4.28)
4 =  0

p k denotes the step-size calculated by

A>)

^  « / ! • * ,  (4'29) 

where r j  > 0 denotes the radius of B Vj c  S /cp centered at (/Cjf, P ^ , ■■■ , P * xj)-

Remark 4.5 In this paper, r j  is assum ed to be a known priori fo r  choosing step size p k 

in the sequential algorithm. I f  r j  is not known, classical choice o f  step size in stochastic

gradient algorithm s can be u sedfor p k. For example, liiri/c p k =  0 and fffk={) il>j  =  00

[78, 86]. Note that the projection operation is used in (4.27) to ensure P ij converge to a 

nonnegative definite matrix. If the violation function rpj(Kk, P krj, ■ ■ ■ , P ^ j ,  A k) =  0, let 

K k+l -  K )  and P k+l = / * ,  i € S u  j  6  S2.

The controller design algorithm is given in Algorithm 4.2, where f *  = 7 * --I-tVMTTF* •, 

i denotes fault mode, j  FDI mode, I iteration index in Algorithm 4.1, and k  iteration index 

in Algorithm 4.2.

Algorithm 4.2: Controller design for probabilistic performance

1. Initialization: Set k =  0, K lf  =  K l;, and P-] — Pj.h taken from iteration I in
J  J  lJ  'J

Algorithm 4.1, i 6 S j, j  e  S-2.

2. At iteration k, estimate the probabilistic performance f k of K lk using (4.5) for all 

i  e  Si .  If 7 [j > 7 ■* for all i e  Sj, stop and return K lk to Algorithm 4.1 as K j +1.

3. Determine positive weight 8 [k based on 7 \k, 7 -*, and VMTTF-j, i e  Si.

4. Generate an uncertainty sample A lk; if f j { K lk. P ^ , -  ■ ■ ,P y u , A ;fc) > 0, update 

K lk and P lk using (4.26) and (4.27) respectively; then, goto step 2.

As the probabilistic performance requirement 7 -* is calculated based on the gradient 

VMTTF-j, it is ideal to have 7 ^  increase along this gradient direction for fast convergence. 

Based on Lemma 4.4, i / j j (Kj ,  p o j V  , PNij,  A) is a valid composite violation function as 

long as the weight 8 lk > 0. Considering that 0lk also appear in gradient calculation (4.23)- 

(4.24), the increasing direction of 7 ^' can be adjusted by determining 0lk based on heuristic 

rules, which helps to reduce iteration number.
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4.3.3 Convergence result

Theorem 4.1 I f  Assumption 4.1 holds, the iterations (4.26)-(4.27) ensure the fo llow ing in­

equality

Ni
K k+l -  K f

where ( K f ,  P ,f ,  ■ • • , P f  ) E Skp denotes a robust solution.

'+ y  pfc+i - p' A^, i j '‘
i=0

2
< A'f -  A #J j

Ni
(4-30)

1 = 0

0j ' N i j

Proof: The proof follows standard procedure in subgradient algorithms [48, 78, 79], 

Owing to Assumption 4.1, define the following feasible solution in Skp-

k , =  Kf  • rj
t,'j(Kj  . l \kj .  - ■■ , P f ^ . K k)

Pii =

(4.31)

(4.32)

So, ip j (Kj , P qj, • • • , P t\ \ j ,  A) =  0 for all A G $>. For notational simplicity, the variables 

of tpj are omitted. If ' if  > 0, we have

K k + 1  -  K * +  V  \ \ p k+l  -  p*.'3 n
»=o

K k -  K f  -  p k- ^J J J rh

< K k -  K *  -  uk <>hjUj 
> 1 f i <t>j

2 M

+ E
i = 0

2 tVi

+ E
1 = 0

r pk : k dK ^ ’j  1 +  p #
■ l j  1  < O j  1

p V

pk _  _  p #
-  P 1 

<f,j V

K k -  K 13 3
# 2/4 K j  -  K f  -  2 p ) ( - ^ A A ,  K  j  -  K f )  i

J <b3

Ah

2

1 = 0

2  2 , 4 ( ^ i .  P k ~ l \ f  -  P tJ -  P*)

+

where the inequality is because of the property of projection operation [48]. Based on 

(4.28), we have

A
dKjWj

N i

UJ y + £
i= 0

ll = { i f f -
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Owing to the convexity of -t/>j in K j  and Ptj, we have

K* -  K j )  >  %  P k -  P l}) > P-

Because of (4.28) and (4.31)-(4.32), we have

* M ’i  17 ^
. P i j - r f i ) = r y

Therefore, we have

#
/Vi

+  V  p .fc.+1 -  p 7̂ Z^ y v

i=o

<
1 = 0

P}' -  K f

- 2 ^ + r j ) .(pj

Ni

+ T , H - p *  +  (<4>
i = 0

By substituting p k defined in (4.29), we have

K k+1 _  K 4
N i tV i

+ E H
tv'+i

i = 0

<

<

P ?  -  Kf

K k -  K *

i = 0

Ni ,

+  V  P fc- -  P-#T Z ^  || 'J *j
i =0

4

So, (4.30) holds, meaning that the distance to the robust solution is decreasing mono- 

tonically. ■

Rem ark 4.6 The iterations (4.26)-(4.27) are originated from subgradient methods, and 

their convergence is usually proved based on the distance between the decision variables 

and the solution set [8 6 , p. 25], Theorem 4.1 also follows this idea: after each iteratidn, the 

distance o f  controller to robust solution set is reduced by at least rj. So only finite updates 

are needed before reaching the solution set. Considering there is a positive probability 

o f performing the update based on Assumption 4.2, this theorem leads to the following 

convergence result o f  Algorithm 4.2.

Proposition 4.1 I f  Assumptions 4.1 and 4.2 hold, Algorithm 4.2 converges in a finite num­

ber o f iterations with probability 1 to a controller satisfying required probabilistic perfor­

mance.

Proof: Considering Assumption 4.2, there is a positive probability of generating an un­

certainty sample with f j ( K j ,  Poj, • • ■ , Pv, j, A)  > 0 and performing the iteration (4.26)- 

(4.27) when ( K k , P ^ , ■ • • , P j^ ■) S k p - In other words, the distance of ( K f  P ^ , • • • , P j^ .
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to S/<-p decreases by at least r 2- with a positive probability when (K 1) , P ^ - ,  ■ • ■ , P /v j) ^ 

S/cp. Therefore, ( F j \  P ^ , • ■ • , P/Vjj) converges to a robust solution in S k p  in a finite 

number of iterations with probability one, which implies the convergence to a controller 

with any probabilistic performance. ■

4.4 Sequential randomized algorithms for 2DOF control

The design of 2DOF control parallels that of state feedback control. For fixed regime modes 

C(t) =  i and 17(f) =  j , i G Si, j  e  S2 , the closed-loop system (4.3) is reduced to a linear 

uncertain system

where the simplified notations in Section 4.3 have been used. Following Lemma 4.1, its 

Hoo norm is non-greater than p, if there exists PVj > 0  such that

As the controller gain Lj  is involved with matrix inverse in this inequality, its convexity is 

violated when D t 7  ̂ 0. So Dt =  0 is assumed in order to apply sequential randomized 

algorithms. Let us begin with the case that Fj =  0, and the matrix inequality is reduced to

Lemma 4.6 Wij(Kj,  L j , P i:j, A) is convex in Kj ,  Lj, and Pij respectively, and its gradi­

ents with respect to these matrix variables are

(4.33)

a ‘} P,j + P j 'Uj + c'ijCij  +  [Pij(Ei +  B i L j ) + c ’ij(Fi  +  DiLj)]

[pfl ~ {Pi +  DiL-j ) 1 (Fi +  DiLj)] x[(Fi +  B i L j ) 1 P^ + (Fj +  D i L j ) 1 C{j\ < 0. (4.34)

Wij ±  A [  P^  + PijAi +  K f  B [  P^  + Pi jBiKj

i P p E ,  + BiLj) (Ei  + B iL j) 1 'P^ / pi +  C f C ,  < 0 . (4.35)

A violation function of (4.35) can be defined as
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Lemma 4.6 can be proved in the same way as Lemma 4.3. This simplified case of 

F% =  0 corresponds to 2DOF control in model-matching design for transient performance 

and is of major interest in this chapter, as demonstrated in Section 4.6. The gradients and 

convexity in the general case of F* ^  0  can be derived in a similar way and are omitted here 

for brevity.

Compared with state feedback control in Section 4.3, 2DOF control involves two con­

trol gains {Kj,  Lj)  and therefore one more decision variable. But, the sequential random­

ized algorithms can be constructed following the same procedures, which are listed as fol­

lows without proof. For convenience and comparison purpose, the same notations are used 

here as in Section 4.3.

The composite violation function is defined as

Ni
il;j ( K j , L j ,  Poj, ■ ■ • ,P jv ij,A ) =  dijWij(Kj, L j (4.37)

i = 0

and its gradients are

®KjL'j (Kj, Lj , Poj, • • ■ , PN lj, A)
Ni

=  ^  9ijdKjwij(Kj, Lj, P0j, ■ ■ • , P^j,  A), (4.38)
2 =  0

&LjWj (Lj 1 Lj , Poj, • ■ ■ , PNlj, A)
Ni

- ^20ijdLjWij(Kj,Lj,Poj,---tPnu,^),  (4.39)
2 =  0

^Pi]Fj(Lji Lj, P0J, • • - , TVi/j A)

=  0ljdpiiwlJ(Kj,Lj ,POj,--- ,PNlj,A),i  =  0 — Ni. (4.40)

At fc-th iteration of randomized algorithm, if the violation function is greater than zero, 

denoted as i>j(Kk, L k , P ^ , -  • • , P ^ i p A k) > 0, K k+l, L k+l, and P k-+l are updated by

I ( M  _  ,4 4 .)
3 3 ^ 3  A.rzsk Tk pk . . .  pk Ak\  ’ l}J M ^ , L k, P kp --- , P kNiJ, A k) ’

, * + 1 =  r k  M L ( ^ ^ k , P kr - - - , P k u , A k )

J ’ ■■ J % r A k) ’

= ,p k k dp' ^ ( K >' L3’P ^ - - ’P ^  A k) 
v  1 y h  o l ( K k, I .k.P (kJ,--- , P kNi j , A k) 1 ’
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fc A '■ .I.).P^y ,
where /x' =  +  r* and

o ,(A '} \/ .* .P * ?. . .  , P ^ j , A k)

4  + fc\||2

Ah
+ E  Wd P i M K b  LV  P kNd , A *)||2)1/2. (4.44)

i= 0

r j  > 0  denotes the radius of S k l p  centered at ( K f , L f , P f -  ■ • • , P f i:l), and S k l p  rep­

resents the robust solution set defined as

S k l p  — {(Kj ,  Lj ,  Poj, P\j,  ■ ■ ■ , P jv j) : 'lPj(Kj,  Lj ,  P0j ,  ■ ■ ■ ,PjVjj, A) =  0, VA e  fi}.

(4.45)

If S k l p  contains a nonempty interior for any given j  e  S 2 , the iterations (4.41)-(4.43) 

ensure the following inequality

^1

I

+ 
-sc ■■

2
+ L k + 1 -  L *

J J
1 \  A pAr-fl _  p #

_r Z_  ̂ ij ij
i= 0

< k 1: -  k * + L k -  L f
Ni

+ V ' \\Pk -  PZ-j  *
i=0

— r3 '

The inequality (4.46) can be derived in a similar way as in Theorem 4.1, which leads to the 

convergence of the iterative updates. The 2DOF controller design algorithm can be imple­

mented by replacing the iterations (4.26)-(4.27) with (4.41)-(4.43) in Algorithm 4.2. And 

it can be used with Algorithm 4.1 to find a 2DOF controller for MTTF optimization. If 

(.K j , L j , Poj, P\j.  ■ ■ ■ , P /v j) 4- S k l p  implies Pi{ ipj (Kj ,Lj ,Poj ,  ■ • ■ , P/v^, A) >  0} > 

0, Algorithm 4.2 with iterations (4.41 )-(4.43) is guaranteed to converge to a 2DOF con­

troller satisfying required performance with probability 1, which can be proved similarly as 

in Proposition 4.1.

Rem ark 4.7 Both the state feedback and 2DOF controller require complete information o f 

states and can be designed using sequential randomized algorithms, in which the iterative 

updates and convergence proof are similar. Their differences lie in the following aspects: 

1) The 2DOF design is originated from model-matching problem and needs the knowledge 

ofw(t ) ;  2) it requires the condition D j =  0 to apply the algorithm; 3) it involves one 

additional feedforward gain Lj, which appears as a new decision variable in the design 

algorithm.
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4.5 Output feedback control

We consider a general scenario when plant state is not available for controller and the plant 

output equation is

y{t) =  f/(C(f), A)x ( t )  +  M(C(t), A)u(f) +  N (( ( t ) ,A )w ( t ) ,  (4.46)

where y(t) G R l represents measured output, and A), M (£(f), A), and A)

system matrices. By using y(t)  instead of x(t)  in the original 2DOF control, the control 

input becomes

Obviously, closed-loop system is well-posed if and only if I  -  K v^ M ( ^ ( t ) , A )  is non­

singular, which leads to

u(t) = [ I -  K v[t)M m ,  A )] -1 [A^(f)t/(C(t), A )s(f) +  (K v{t)N ( a t ) ,  A)  + L„(t)M f)] .

Substitute u{t) into (4.1), and the closed-loop system equation becomes

' i ( t )  =  [ A m ,  A) +  B(C (t ) ,A ){I  -  K v{t)M(C(t),  A ) ) - 1^ , (nC/(C(0, A)]z(f) 
+  [£(£(*), A) +  B ( a t ) ,  A ) ( I  -  K m M(C(t),  A ) ) - 1 

( f f , (t)W (<(f),A) +  L * 0 )M t) ,
' z(t) = [C(C(t), A) +  D(C( t) ,A) ( I  -

+  [F(C(t), A) +  D m ,  a )[/ -  K ^ A i m ,  A ) ] - 1 

A) + Lv^)]w(t ) .

For fixed regime modes £(f) =  i and 77(f) =  j,  i G .S'j, j  G ,$2 , the closed-loop system 

is reduced to a linear uncertain system

where the simplified notations in Section 4.3 have been used. Following Lemma 4.1, a ma­

trix inequality can be derived to have ||Gy (s, A)oo|| < pi- However, matrix inverse terms 

involving controller gains may appear in the inequality and violate convexity. Therefore,

u{t) =  K n{t)y(t) + L v{t)w(t)

= K , {t)U m ,  A)x ( t )  + K v{t)M ( a t ) , A ) u ( t )  

+[Kv(i)N{  C(f), A) +  Lv{t)]w{t). (4.47)

x(t) = [Ai + B i ( I  -  K j M i ) ~ l KjUi}x(t)+
G . [Ei + B i ( I  -  K j M i Y ^ K j N i  + Lj)]w(t),

' z {t) = [Ci +  Di(I  -  K j M i) - 1 K j Ui]x(t)+
[Fi + D i(I  -  K j M ^ K j N i  +  Lj))w{t).

(4.48)
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Dl =  0 and M x =  0 are assumed in order to apply sequential algorithms, and the inequality 

is reduced to:

Wij =  {At + B i K j U i f P i j  + Pij{Ai + BiKjUi)  + C'fC,  +  [ P ^ E ,  +  B lK ]N l 

+ B tL i ) + C j F ^ f i l  -  i f  p y ' i i E i  +  B iK jN i  + B lLl) r PX] +  i f  Cf.

Its violation function can be defined as

W i j i K ^ L ^ P i j ,  A ) ^ | | W f | | 2. (4.49)

Note same notations of violation functions and gradients are used as in Section 4.4 for 

comparison purpose.

Lemma 4.7 wlj ( K J. L j , P lj , A )  defined in (4.49) is convex in K j, Lj, and Ptj, and its 

gradients are

dK.Wij = 2 B l 'p i jW+{Pi jE i + PijB iLj + CTFi + P i j B j K j N j ^ p p  -  F T F O ^ N T ,

cf = 2 B j  PijW':l {PjjBJ.j +  PijEi + Pi j  B iK jN i  + C j  P f i p p  -  i f  i f -1 ,

% w ij = [At + B i K j U i +  (Ei + B i K j N i +  BiL i) (p i l  -  i f  F ^ ^ i f  C,

+(£,- + B iK jN i  +  BiLi) (p j I  -  F T F i ) - l (Ei +  B , K A \  +  B ^ f P ,7] f l f  

+ W + [ A f  +  U j K j B j  +  C[Fi{p ! l  -  i f  Fi)~1 (El + B lK ] N l +  B i U f  

+Pij(Ei + BiKjNi + BiLi)(p2i I  -  F f p y ^ E ,  + BiKjNi  +

Lemma 4.7 can be proved in the same way as Lemmas 4.3 and 4.6. Once a convex violation 

function and its gradients are found, the remaining procedures are similar as (4.37)-(4.44) 

and omitted here for brevity. Compared with 2DOF control using state feedback, output 

2DOF control contains more complicated calculations of gradients. The corresponding 

output feedback control of Section 4.3 is to use only y(t.) for controller design, which can 

be deemed as a special case by making Lj = 0 in (4.47).

4.6 Example

We consider a demonstration example used in [48] which studies the lateral motion of an 

aircraft. The plant model under fault-free mode is given by

' 0 i 0  0  ' 0 0
0 Lp Lp Lr

x p(t) + 0 -3 .91
9 / V 0 Ya - 1 0.035 0

Np + NpY0  N r -  A f -2.53 0.31
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where the components in state x p(t) represent respectively bank angle, directive of bank 

angle, sideslip angle, and yaw rate. Two control inputs are rudder and aileron deflections 

respectively. The considered faulty mode is the 50% loss of effectiveness in both actuators, 

represented by the reduction of control input matrices.

The control objective considered here is to make the side slip angle, the third state of 

x p(t), track pilot’s command, represented by exogenous input w(t).  The desired response 

model from w(t) to side slip angle is represented by a first-order transfer function 

This is a typical model-matching problem as illustrated in Figure 4.1. Let x m(t) denote the 

state of the desired model, and x(t)  =  [x p (t) x m(t)]T , the augmented state vector. The 

model-matching problem can be converted to the following standard set-up

'  0 1 0 0 0 ' O'
0 L P Lp 0 0

g/v 0 Yp - 1 0 x{t) + 0

n p N p N p  +  N y Y p N r - N y 0 0
0 0 0 0 -1_ 1

+B{((t))u(t,r]{t)),  

z {t) =  [0 0  -  1 0  2 }x(t),

where u(t , r] ( t ))  =  K.ry tyx{t)  +  Lvyyw{t )  represents a 2DOF controller in a switching 

structure. represents the fault effects on control input matrices. Let B 0 and B\

denote B ( ( ( t ) )  when ((f) is in mode 0 and 1 respectively:

' 0 0  ' 0 0  '
0 -3 .91 0 -1 .955

0.035 0 , Bi = 0.0175 0

-2 .53 0.31 -1.265 0.155
0 0 0 0

The modeling uncertainties are introduced by aircraft parameters, and the random vec­

tor A =  [Lp Lp L r g / V  Yp Ny Np Np N r ]2 . The mean values of these parameters 

are: Lp = -2 .93, Lp =  -4.75, L r =  0.78, g / V  =  0.086, Yp =  -0 .11 , Ny = 

0.1, Np = -0.042, Np — 2.601, and N r = -0 .29. Each parameter is assumed to be 

perturbed by a relative uncertainty of 10%. For example, Lp is bounded in the interval 

[-3.223, -2.637]. The probability distribution of each parameter is assumed to be a uni­

form distribution within the corresponding interval.

The fault occurrences and FDI mode transitions are characterized by the generator ma­

trices of ((f) and 77(f):

'-0 .005 0.005'
, H ° =

' - 0 .2 0 .2 '
, =

' - 2 2

0 0 2 - 2 > T) 0 .2 - 0 .2
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These parameters can be interpreted as follows: According to H the mean occurrence 

time of faults is 2 0 0  minutes, and the faulty state is absorbing as the components on the 

second row are all zeros; according to H fj, under fault-free mode, the mean time of false 

alarms is 5 minutes and that of returning time from false alarms is 0.5 minute; according 

to H}v the mean time o f missing detections is 5 minutes and mean returning time is 0.5 

minute. So, this FDI may give frequent incorrect detections.

In this standard set-up, the plant state x p(t) and model state x m(t) are both incorporated 

into state dynamics x(t) ,  w(t) represents command input, and z(t)  the mismatch error 

between the plant and desired responses of side slip angle. Under each fixed regime modes 

£(t) =  i and 77(f) =  j ,  the performance measure is selected as the Hoo norm of closed-loop 

transfer function from w(t) to z(t), denoted by ||G ij(s, A)Hoc. It describes the difference 

between the plant response and the desired one; when ||G y(s, A)||oo is small, the plant 

transient behavior of side slip angle is expected to resemble the desired one. The allowable 

Hoo bound pi is assumed to be 0.5 for i — 0 and 0.75 for i =  1. So, when ( ( t)  = 0, the 

system is deemed to fail if ||Gy (s, A)Hoo > 0.5 for a duration over hard deadline Thd =  5 

minutes; when £(f) =  1 , it is deemed to fail if ||Gy (.s', A) Hoc > 0.75 for a duration over 

hard deadline. Our design objective is to find a 2DOF controller such that the overall MTTF 

is greater than 100 minutes (Note that frequent incorrect FDI decisions are assumed and this 

short MTTF design is for demonstration purpose only).

8 £  0-5
- A -  Real value 
- O -  Expected value

■e
& 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

O £ 
CL ^

0.5
- A -  Real value 
-o- Expected value

0.1 0.2 0.3 0.4 0.5 0.6

. -A— O '

0.7 0.8

600
- A -  Real value 
- O -  • Expected value

5 6 7
Iterations

Figure 4.2: Gradient search trajectory.

77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Figure 4.2 shows a searching trajectory of Algorithms 4.1 and 4.2, where 7 ^ denotes 

the probabilistic performance P r{ ||G y(s, A jU^ < p, }. In the figure, the first plot shows 

the related probabilistic performance for controller K q, the second plot for K 1, and the last 

one shows the trajectory of MTTF when updating controllers iteratively. In the first two 

plots, the circles represent the expected performance imposed by the gradient search Al­

gorithm 4.1 in the first design stage, and the triangles represent the achieved probabilistic 

performance of controllers found by Algorithm 4.2 in the second stage; in the last plot, 

the circles represent the MTTF based on expected control performance, and the triangles 

the achieved MTTF using controllers found in Algorithm 4.2. As shown in the figure, the 

achieved probabilistic performance of controllers increases along the direction of expected 

performance and is greater than it at each iteration. Moreover, MTTF is strictly increas­

ing iteratively, and the following controllers are obtained that achieve MTTF = 511.5348 

minutes:

-0.5800 0.2251 -2.1234 1.5100 4.4991 '
, L q =

' 1.7530 '
3.2406 0.5472 3.8520 -0.1351 -6.5038 -1.8396

'-0.5779 0 .2 1 2 2 -2.1297 1.5169 4.4946 '
, L x =

' 1.7533 '
3.2464 0.5368 3.8420 -0.1324 -6.5095 -2.0499

To check the transient performance of the closed-loop system, the side slip responses under 

regime mode Q(t) =  0 and 77(f) =  0 for a particular uncertainty sample is shown in Figure

4.3. It is clear that the plant response has similar transient characteristics as the desired one. 

As the controller is designed for long-term MTTF and probabilistic modeling uncertainties 

exist in regime models, there may be differences on static gains for a particular uncertainty 

sample. Overall, the algorithm provides an effective controller design for MTTF.

2.5

Desired response 
Plant reponse<0

Q.
<A
•aW

Time

Figure 4.3: Transient responses in a regime model.
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4.7 Conclusions

This chapter discusses the design of MTTF suboptimal controller for FTCS’s. The reli­

ability criterion is evaluated from a semi-Markov process model which is built based on 

probabilistic control performance. But, MTTF cannot be written as an analytical expres­

sion of controller parameters. Hence, conventional methods are not applicable to controller 

design with an MTTF objective. To overcome this difficulty, a gradient-based search is first 

carried out on probabilistic performance parameters; the controller is then updated itera­

tively to achieve this performance. This two-stage method gives a controller achieving the 

desired MTTF.
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Chapter 5

Semi-Markov FDI model and 
reliability evaluation*

5.1 Introduction

The Markov models of faults and FDI schemes were initially proposed by Mariton to study 

the effects of FDI delays on system stability [6 ], By using two Markov processes to rep­

resent faults and FDI results respectively, Srichander et al. developed the necessary and 

sufficient conditions for exponential mean-square stability [15]; Mahmoud et al. derived 

the stability of FTCS’s in the presence of noise and summarized their results on the analysis 

and design of FTCS’s based on Markov models [7, 16]. However, Markov models impose 

a memoryless property [32], As discussed in [87], the sojourn time duration of FDI is a 

random variable that may take any probability distribution, but Markov models accept the 

exponential distribution only. This introduces the so-called memoryless restriction of FDI: 

the probability of transiting from one state to another is independent of the amount of time 

that the process has spent in the current state.

This problem was pointed out in [32], but no alternative model was constructed for FDI, 

and a large quantity of conditional probabilities were used instead. In [87], stability in the 

presence of general detection delays was analyzed by modeling the sojourn time as a finite 

state Markov chain or a random variable with a mixture of given probability distributions. 

But Markov chain model can give only fixed values of sojourn times from a finite set. Also, 

these distributions can be described by the more general semi-Markov model of FDI pro­

posed in this chapter. Furthermore, the reliability evaluation method presented in Chapter 

2 is extended to FTCS’s with the semi-Markov FDI description.

’ Originally published as: Hongbin Li and Qing Zhao. “Reliability evaluation o f  fault tolerant control with 
a semi-Markov fault detection and isolation model”. Proceedings o f  the Institution o f  M echanical Engineers, 
Part I: Journal o f  System s a n d  Control Engineering, vol. 220, no. 5, pp. 329-338, 2006.
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Briefly, this chapter is organized as follows: Section 5.2 introduces the model of FTCS’s 

with a semi-Markov FDI description; Section 5.3 presents the reliability evaluation method 

for FTCS’s with this FDI model; an example is given in Section 5.4 to illustrate the semi- 

Markov FDI model and reliability evaluation procedure; and finally, conclusions are reached 

in Section 5.5.

5.2 Semi-Markov FDI model

FTCS’s are modeled as linear dynamical system with Markov transitions determined by 

fault and FDI modes. The general form is given by (2.2) in Chapter 2 and also adopted in 

this chapter but with some modifications to address the limitation of Markov models.

A random variable £(f) e  Si =  {0,1,2, ■ • ■ , iVi} called plant mode is adopted to 

describe fault occurrences among the possible modes in S i. By assuming that no automatic 

repair or intermediate fault occurs and that the failure rate is constant, a Markov chain can 

be used to describe the plant mode [8 8 ], Let £„ G  Si be a discrete-time Markov chain and 

define £(£) =  , nTs < t < (n +  1)TS, n € N. N denotes the set of non-negative integers

and Ts the FDI detection cycle duration. The transition probability matrix of £„ is denoted 

a s  G = [GjyJjVj x .V p  z C j e s ,  =  1> * 6  S ] .

£(£) is not directly measurable, and the FDI scheme is used to produce an estimate 

of the plant mode, denoted as rj(t) G  S 2 =  {0,1, • - - , iVo}. Based on 77(f), the control 

input is applied to the plant. In practice, //(f) is often generated by cyclic sensor

measurements and calculations with a fixed amount of data, e.g., the Shewhart control chart 

and parity space methods [89]. In this case, the cycle duration time, Ts, can be assumed to 

be a known constant.

Let r)n G  .S’2 denote a  discrete-time stochastic process, n G  N, representing the FDI 

mode after the n-th detection cycle, as shown in Figure 5.1. Let 6 m G  5 2 and Tm £ N 

denote the FDI mode and cycle index respectively after the m-th transition of r)n, m  G  N. 

For example, in Figure 5.1, 8 2  = 774 and T2 =  4.

▲
?7, V2 V3 0 ,
V

*2,
7„+,

V75 U '
--------► ►

To T  T2 . . .  Tm r m+1 1

Figure 5.1: A sample path of the FDI process. 
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(0 , T)  = {9m,Tm : rn G N} is called a discrete-time Markov renewal process if

Pr{#ni+i = j, Tm+i -  Tm = l\0o, • • • , 0m; Tq, • • ■ , Tm }

= Pr{tfm+i =  j, Tm + 1 -  Tm = l\0m} (5.1)

holds for fixed (Tm =  Crm+i =  • • • =  CTm+l =  k, k  G  Si, j  G 52, l , m  G  N. rjn = 

9m is then called the associated discrete-time semi-Markov chain of (0, T),  where m =  

suP/igN{^)i ^  n )- The FDI mode at t is defined as jj(t) = rjn , nTs < t < (n + 1 )TS.

Given Crm =  Cr,„+i =  ••■ =  (rm+1 =  k, rn E N, A: 6  S i, (0 ,T) is called time- 

homogeneous if

Q kr,{i , j , l )  =  Pr{6»m+i = j , T m+i - T m = l\0m = k}

is independent of m for any i , j  G S2,Z 6  N. Q k = {\Qk {i, j,l) \i\r2 xN-2J  G N} is called 

the semi-Markov kernel of rjn given ( n — k. Note that the behavior and parameters of rjn 

depend on £« as qn is an estimate of (n.

Given £„ =  k, k G S\,  it can be shown that 0 = {9m : rn E N )  is a Markov chain with 

state space S2 and transition matrix P k =  [Pij]N-2 xN2 — E ( S i  1)]n2 *n 2 [90, 91].

Given Qfm - QIm+i ■■■ = <rm+1 = k, let r k = Tm+1 -  T m if 9m - i and 9m+i = j ,  

k G S i, i , j  G S2. r kj  is the sojourn time of r;n between its transition to state i at Tm and 

the consecutive transition to j  at Tm+\. The probability distribution of rk  is given by

P r{ r k = l} = Pr{Tm+l - T m = l\9m = i, 0m + 1 -  j }  =  (5.2)
ij

with the convention that Qk( i J , l ) / P kj = 1 {/=+0o} if =  0 , i , j  G S2,

I G N.  The indicator function l{/=+oc} =  1 if I = +oo; otherwise, l{/-+oo} =  0. Denote 

H k( i J , l )  4  P r { rk = 1} and H k 4  [Hk(i , j , l)]N, xN2.

Given £n — k, P k, together with H k, determines the stochastic behavior of r)n, or 

equivalently, Qk solely determines r/„ as Qk( i , j , I) = P kj H ( i , j , /).

To recap, the description of FDI is summarized as follows:

1) The FDI mode, r)n, is modeled as a semi-Markov chain conditioning on the plant 

mode, (,'n-

2) The embedded Markov renewal process (9, T )  gives the transition history of .

3) Given a fixed plant mode (n = k, P k describes the transition probability of the 

embedded Markov chain 9m and H k the sojourn time distribution of r)n.
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5.3 Reliability modeling

Considering that the plant and FDI modes are described by discrete-time stochastic models 

and that the fault occurrence within Ts is assumed to be negligible, we are interested in 

evaluating the reliability value at t =  nTs, denoted by Iln = R(n Ts), n G N.

The performance measure at t = nTs is denoted as Jn and the maximum performance 

threshold when Cn =  i is denoted as ./,‘nax, i E Si.  ./„ is determined by a performance

measure function, such as the system norm of the system model corresponding to (n and

i]n . The hard deadline is denoted as 7],d G N, the maximum number of detection cycles Ts 

for a temporal performance violation. Based on Definition 2.1, the reliability index Rn is 

equal to the following probability:

R n =  1 — Pr{3A~ G N, 0 < k < n, n  -  k > d, VI e  N, k < I < n, Ji > ax, i = Q}.

Following similar idea as in Chapter 2, a discrete-time semi-Markov chain X% is pre­

sented to evaluate this reliability index. For each plant mode i, two functional states of 

are defined as follows:

?N ; {Cn — *} n  {Jn < J max}, (5.3)

i? ■ {Cn =  i} n  {Jn > J,*nax} n  {sojourn time < r hd}. (5.4)

The absorbing semi-Markov state ‘F ’ represents the total failure state of the system. If  the 

initial state =  On, R n — 1 -  / )R(0n> F, ri), where P r (0n, F, n) denotes the transition 

probability from On to F at n. Therefore, the reliability evaluation problem is reduced to 

constructing and calculating its transition probability.

To calculate the semi-Markov kernel of X „, several probabilistic parameters are defined 

in Chapter 2, which can be naturally extended as shown in the following equations:

7 i j  =  P r { ,/„  <  J .n J C n  =  i ,  Tin -  j} ,  n )  =  lim Pr{r/„ =  jjC n  =  «},J n —+oo

w) =  lim Pr{r^n =  =  *N}, v) =  lim Pr{??n =  =  iF},
J n —*oc J n —>oc

where i G S i, j  G .SV-

Given Cn =  t and r]n = j ,  the combinational mode ( C n C ? n )  after the subsequent 

transition is determined by which one of (n and r/„ transits first and which mode they 

transit to. For example, if Cn transits first to k  at n +  rn, then (Cn + i , f ? n + i )  =  • ■ • = 

( C n + m - i P / n + m - i )  =  ( i j )  and ( C n + m ,  V n + m ) =  (k, j );  if T)n transits first to I at n +  m, 

then ( C n + l i T n + l )  =  • • • =  ( C n +m  — It V n + m —l )  =  ( i  j )  and ( C n + m ,  Vn + m )  =  ((,()• So Cn
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and r/n can be considered to be competing between each other, and the order of transitions is 

crucial to determine the subsequent mode. We call these transitions competition transitions, 

and their probabilities competition probabilities, as given in the following definition.

Definition 5.1 Given (n = i and pri =  j, the combinational mode is denoted as (i,j),  

i G S i , j  G S 2. Suppose (C„+ 1,r/n+i) =  ••• =  (Cn+m-t, Vn+m-i) =  (i , j ) and the 

next combinational mode after the consequent transition o f or/and r)n at n  +  m is 

(Cn+m: Vn+m) — (k j ), where k f  i or/and I f  j, k G S j , j  G S 2. The probability o f  

this event is called the competition probability, denoted by P(i,j)^(k,i)(m )-

Given (n =  i, Vn = j ,  the sojourn times of („ and ijn are denoted as al and r j  respec­

tively. If the next mode of rjn  is known as I,  the sojourn time of r;„ is denoted as r j (. If the 

plant mode i of is absorbing, Pi {cr2 > rj}  =  1; otherwise,

oo m
p r j ^ T j }  =  i)>

771=1 ies2 h—i 
00

Pr{a, =  rj} =  - G ii) Y t P'j lH i( j , l ,m) ,
m= 1 leS-2

Pr{cr; < rj}  =  1 -  Pr{oy > rj}  -  Pr{cr, =  rj} .

The competition probabilities can be classified into following three cases:

P(i,j)~(i,i)(m) = Pr{??n+m =  I n  r j ; =  m\oi > rj}  P rju , > rj}

=  PjlH i(j, l,m)Pi{<Ti > r j } ,

P(i,j)>—> (k , l ) { a *•) P i  {Cn+m —  Al H  <7 j —  771 D  I jn+ rn  —  I T p  =  771.}

=  G 1f~ 1 GikP^iH i {j, I, m),

P(;i,j)^(kj)(m ) = Pi'{Cn+m = k n a i  = m\<Ji <  rj}Pr{cr; <  rj}

-  G ^ - 1GifePr{<7i < r j } )

where k f  f  j ,  and rn G N.

With these probabilistic parameters, the semi-Markov kernel of reliability model X„  

can be calculated by the following theorem. For notational simplicity, P(l,k)^(J.i)(n l ) as 

Pik^ji,  and P(i,k)~(j,t) (min(m, Thd)) as ,j t .

Theorem 5.1 The semi-Markov kernel o f the reliability semi-Markov chain, X i s  given
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by the following equations:

Q r^NGOM,™) — ^  ' wk y  '  Pik^-’illih  
keS2 leS-2

(5.5)

Q r(*n , jN,m.) = Y W* Y  P i ^ a j u
ktzS2 l€.S2

(5.6)

QR(jNGiF,rn) = y  ' wk y  '  Pikt—nli^- ~  7il)i 
keS-2 i*=s2

(5.7)

<3r(*N, jpG/u) =  Y  wk Y  (■1 -  ) -
kes -2 ies -2

(5.8)

QR(zFi*N,m) =  Y V* Y  P ^ l l i U
kes -2 ies2

(5.9)

Qr(?'f , jN ,m ) =  Y v k Y p ^ ~ j ^ 1’
kES2 ies2

(5.10)

Qr(*f, f , m )
kes2 igs2

(5.11)

Q r («f , h , m ) =  E ^ E ^ m ( 1 - 7 , / ) ,  
kes2 ies2

(5.12)

QR('/F,F,ni) ~  l{m>7'hd}(f y  '  y  1 Qr(*F,“ ,^ )),
h € N , h< m  a£SIta^F

(5.13)

Q r (F , a, rn) = 0, a G  S n (5.14)

where Xjlct denotes the hard deadline, m  6  N, i e  S i, I f  k. The indicator function 

1 {m>7iri} =  1 if m >  Thd; otherwise, l{ r„>7i,d} =  0.

Proof: (</>£,, T^,) denotes the associated discrete-time Markov renewal process of X „ ,  

n, n' G N. (Of, , Th) denotes the associated Markov renewal process of r/n , h  G  N. n, h , and 

??' represent the cycle or transition indices of these processes, but they may correspond to 

the same time instant.

The transitions are caused by the changes in the FDI and plant modes. By the total 

probability formula and conditioning on the FDI modes, the transition probability can be 

decomposed into three parts, as shown in the following equations:

<5R(*N,JN,m) =  Pr{< £*+1 =  *N,r£ +1 -  =  m\(t>* = iN}

=  E  P r { ^ n '+ 1  =  * N , 7 $ + i -  T% = m |< ^ ,  =  ifi neh = k}?r{6h =  k\4%, = i N }
k e S -2

= E  ^  ^   ̂ P r { ^ n + m  — "^max FI Cn+1 — • • ■ — C n+ m  — ?■ H
kes-2 i e S 2

Vn +  m  “  @h+l  —  ̂ F) 1  h + 1 -F/i =  Ftl\(f)ni =  'i+r Fl Oft =  A:)}

=  ̂   ̂ P^{^/i — k\(j)n ' — '<N } ^   ̂ Pr{*^n+m 5: ’-^maxICn+m =  ?' Fl T]n + m  =  (}
k e s 2 i e s 2

Pr{(7j > m  Gl 0h+ [ = l C \ T lkl = 7711Cn =  i n  Oh =  k},  (5.15)
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where rii and o-j denote the sojourn time of („ and //„ respectively. The first two tenns 

in (5.15) can be approximated by the following stationary probabilities in the probabilistic 

parameters:

P r { 0 h  =  =  i N } «  w ’k , ( 5 .1 6 )

P r j ' f n + m  ^  *^maxlCn+m =  'i F\ r /n + m  =  1} ~  T il- ( 5 -1 7 )

The last term in (5.15) is equal to the following competition probability:

Pr{<7, >  m  n  eh+x =  l f l r j ,  =  m |(n =  i (1 6 h -  k} — Pik^ i -  (5.18)

Substitute (5.16)-(5.18) to (5.15) and (5.5) is proved. (5.6)-(5.8) can be proved in a similar

fashion as shown in the following example of (5.6).

Q r ( * n ,  jN ,m ) - Pr{c$ +1 =  h , T * , + 1  -  T %  =  m |< $  =  *N}

=  Y  P r ^ n ' + 1  =  J N > r n '+ i  -  T n> =  m \<t>n> = i n n e h  =  k } ? r { 6 h =  k\4> l, =  zN }
keS2

= 'y '  Pr{$/i — k\<f)n' — ,;'n}  y  '  P r{ ^n + m  '-̂ max ^  Cn+1 • • ■ =  Cn+m -1 =  i
keS2 ieS-2

— J  ^  ^?n+m  — 1 —  ̂ H  X / j _ T / j  =  TTl\(pn/ — i>j D Ofa — &) }

=  Y  Pr^  =  W n '  = *n} Y  ?T{Jn+m < '̂ max ICtiH-jtx — j  0  hn+rn — 1}
kes2 ies2

Pr{ Cn+m =  j  n  <7j =  m  D T]n+m = I D Tlki = m |C „ =  i n  9h =  k,}

=  Y  wk Y  Pik~jnjh (5-19)
keS2 ies2 

where j  f  i, j  £ S {.

For (5.10)-(5.13), when the sojourn time is no greater than Tha, the transition is similar 

to the case of *n; otherwise, X% transits to F. Therefore, the minimum function min(m, T hj) 

is used in (5.10)-(5.12); Q r (*f , F, rn) becomes nonzero only if m  > 7 j,d, and this proba­

bility is complementary to the transition probability to other states within Tm, which is 

calculated based on 1 {m > T hd) in (5.13). ■

Remark 5.1 The main idea o f  the above derivation o f the transition probability is to de­

compose it into three parts: the FDI mode estimation, the competition probability and the 

probabilistic performance estimation. The effects o f the hard deadline are described by 

m in ( m ,T hd) and l {m>TMy

Once the semi-Markov kernel of is obtained, the transition probability and reliabil­

ity function R n can be calculated using available formulas [90, 91].

86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



5.4 Example

Consider a longitudinal vertical takeoff and landing aircraft model in the form of (2.2) 

with the following system matrices [92]. The subscript ‘0’ and ‘1’ in the system matrices 

represent those for plant mode ‘0’ and ‘ 1 ’ respectively. Plant mode ‘0’ represents the fault- 

free mode. Under plant mode ‘1’, an actuator fault is considered, and the effectiveness of 

the first actuator is reduced by half, as reflected in B\ .

A q =

B i  =

0.0366 0.0271 0.0188 - 0.4555' '0.4422 0.1761 '
0.0482 -1 .01  0.0024 - 4.0208 3.5446 -7.5922
0 .1 0 0 2 0.3681 - 0.707 1.420 B  0 = -5 .52 4.49

-
0 0 1.0 0 0 0

'0 .2 2 1 1 0.1761 ' '1 0 0 0"
1.7723 -7.5922 0  1 0 0

-2 .76 4.49 i Co = 0  0 1 0
, A l =  A 0, C\ = Cq,

0 0 0  1 1 1

E q =  [0.05 0.05 0.05 0.05] T IICO

Suppose the cycle duration, Ts, is 1 second. The transition matrix of the plant mode Markov 

chain (n is

G
0.99 0.01 

0  1

According toG , the mean time for the fault occurrence is 1/0.01 = 100 cycles = 100 seconds, 

and this high failure rate is intentionally chosen for this example to reduce the calculation 

burden. The FDI is modeled by a semi-Markov chain r;n with the following parameters:

'0 1' IIQ. o 1
1 0 1 0

P ° =

H°(  0,1, rn) — H l {l, 0, m) =  Pois(m|20),

i f ° ( l ,  0, m) = H 1( 0,1, m) =  B in(m |10,0.5),

where P ° and P 1 are transition probability matrices of the embedded Markov chain and 

H°(  0, l ,m ) , P ° ( l ,0 ,m ) ,  H l (0, l ,m ), P 1 (1,0, rn) are distribution functions of sojourn 

time, m  e  N. ‘Pois( j  )’ and ‘Bin( |-, )’ denote the Poisson and Binomial distributions 

respectively:

Pois(m|20) =
207i
ml

-20

Bin(m |10,0.5) =
10!

m !(1 0  — m)\
0.5m0.510” m,m  < 10.
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Based on these parameters, the stationary distribution of r/n is computed as

0.8 0.2 
«o /ijj l0.2 0.

which shows that the correct and false detection probabilities are 0 .8  and 0 .2  respectively.

The differences between Markov and semi-Markov model of FDI can be shown in the 

sample paths from these two types of models given in Figure 5.2. These two curves are 

given under the plant mode ‘O’, and the generator matrix of the continuous-time Markov 

process model is

G' -0.05 0.05 
0.2 - 0.2

According to G', the stationary distribution is [0.8 0.2], the same as [7Tq 7Tj]. Furthermore, 

the mean sojourn times from mode 0 to 1 and from 1 to 0 are 20 and 5 seconds respectively, 

the same as the means of H °(0,1, m) and H 1( 1,0, m). However, in the sample path of the 

Markov process model in Figure 5.2, there are 2 transitions from 1 to 0 with a sojourn time 

of about 0.05 of a second due to the memoryless property of exponential distribution. These 

transitions are impractical because the FDI needs at least one detection cycle to return mode 

0 from the false alarm. In contrast, the sample path from the semi-Markov model is accept­

able: each sojourn time is an integer multiple of the detection cycle duration. Therefore 

the Markov model may not generate a reasonable sample path for FDI with cyclic detection 

schemes.

Markov model

80 100 120 140 160 180 200
Time

Semi-Markov model

£  1.5 
o

100 120 140
Time

Figure 5.2: Sample paths of FDI models.

The static state feedback controller for the normal and faulty cases are: 

K q =
-0.4558
- 0.1022

-0.5080 1.4881 1.0242 
0.1089 0.1216 0.0486
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-0.1078 0.7452 0.3158 0.6761
0.1680 1.3673 -0.7858 -0.4397

When r)(t) — 0, n =  K qx is in use; when rj(t) — 1, u = K \ x  is switched on.

Here, we use the Hoo norm as the performance measure. The performance evaluation 

function with the thresholds for the two fault modes is defined as follows:

Jn —
1 , unstable at n,

M ,b lea ln -
/0 _nr: /l

'-'max — J ma 0.67,

where Gyw(^n,r)n ,s)  is the transfer function from us to y corresponding to the current 

fault mode („ and the FDI mode ijn. According to the assumption of known probability 

distributions of modeling uncertainties and the randomized algorithm in [46], the following 

probabilistic performance values can be obtained:

700 7oi 0.7033 0.6260'
.710 711. 0.5583 0.6084

For example, 700 means Pr{ Jn < ./ îax | =  0 n  r/n =  0} =  0.7033. 

Other probabilistic parameters are calculated as follows:

^ ’00 1001

W lQ W l l

0.6920 0.3080 
0.3145 0.6855

I’oo I ’o i
5

_1’10 Oil

0.6134 0.3866 
0.3606 0.6394

For example, Pr{r?n =  0|ATR =  0N} «  woo =  0.6920.

Set the hard deadline Tm = 5. By substituting these parameters into Theorem 5.1, we 

obtain the semi-Markov reliability model. The transition probability and reliability function 

curve are then calculated, as shown in Figure 5.3, where R n is the reliability curve and 

P R(1, /, n) the transition probability curve from state #1, On, to state # 1, i = 1 ~  5, n  e  N. 

From P R(1 ,1, n) and P R(1 ,2 , n), we can see that the performance degradation during this 

time period is mainly caused by false alarms of FDI and X R jumps from On to Op with high 

probability. From Rn  and P R(1,5, n), we can see that the probability of system failure is 

zero within Tm , a finding which is consistent with our definition of reliability function.

Next, in order to show the influence of FDI on reliability, we use the same aircraft model 

but with a different FDI, which has the following new parameters:

H ° (0, l , m)  =  =  Pois(m|80),

H°(  1,0, rn) — H l (0,1, rn) = B in(m |3,0.5).

According to H ° (0,1, m), the mean sojourn time for a false alarm increases from 20 to 80

T); according to H°(  1,0, in), the mean recovery time from a false alarm decreases from 10
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•cO.02

n n

Figure 5.3: Transition probability and reliability curves.

to 3 Ts. Following the same procedure, the transition probability curves of the reliability 

model and the reliability curve are given in Figure 5.4. Compared with the results in Figure

5.3, the maximum transition probability to state #2 decreases approximately from 0.2 to 

0.08, and the maximum point shifts from n = 2 0  to n =  80 as a result of the increase 

in the mean time for false alarms. We also note that the shapes of some of the curves are 

very different from those in Figure 5.3. Consequently, the transition probability to state #5 

decreases and the reliability deteriorates more slowly and the system will probably survive 

longer. Therefore, a properly designed FDI is crucial to achieve high reliability of FTCS’s.

0.06

n n

Figure 5.4: Transition probability and reliability curves with a different FDI.
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5.5 Conclusions

This chapter presents a semi-Markov description of FDI and the reliability evaluation of 

FTCS’s with a semi-Markov FDI model. This semi-Markov model of FDI is more general 

than the Markov process model, and the memoryless restriction is thereby removed. The 

reliability evaluation method presented in Chapter 2 is then extended to this general FTCS’s 

model. This reliability evaluation considers the characteristics of FTCS’s, and an example 

is given to illustrate the procedure.
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Chapter 6

Reliability monitoring*

6.1 Introduction

In previous chapters, we considered static model-based control objectives and built a semi- 

Markov model based on imperfect FDI and hard-deadline concepts. However, in many prac­

tical systems, the safety and reliability of operation are often assessed based on dynamic 

system responses. For instance, reliability in structural control is defined as the proba­

bility of system outputs outcrossing safety boundaries and evaluated by using Gaussian 

approximation [93], Also, an online available reliability monitoring scheme using updated 

information may aid maintenance scheduling, provide pre-alarming, and avoid emergent 

overhauls. How to evaluate reliability when it is defined on system trajectory and how to 

implement an online-monitoring scheme are the main motivations of this chapter.

The objectives of this chapter are three-fold. First of all, a Steady State Test (SST) 

is proposed to reduce false alarms of FDI decisions. The stochastic modeling of such an 

FDI scheme is studied based on which the transition characteristics of FDI modes can be 

described. The second objective is to develop a reliability evaluation scheme for FTCS’s 

based on system dynamic responses and safety boundary. At last, online monitoring fea­

tures are considered, such as estimation of FDI transition parameters based on history data 

and timely update of reliability index to reflect up-to-date system behavior.

The remainder of this chapter is organized as follows: The assumptions and system 

structure are given in Section 6.2; FDI scheme, modeling, and parameter estimation are 

discussed in Section 6.3; the determination of out-crossing failure rates and hard-deadlines 

are discussed in Section 6.4; and the reliability model construction is discussed in Section 

6.5 followed by a demonstration example of an F-14 aircraft model in Section 6 .6 .

‘ Results presented in this chapter has been submitted to a special issue in the Journal o f  C ontm l Science  
and  Engineering.
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6.2 Assumptions and system structure

Assumption 6.1 The considered plant is assumed to have finite fault modes, and dynamics 

under each fault mode can be effectively represented by a linear system model.

Fault modes are represented by a set S with N integers; {Mi : i € 5} represents the 

set of dynamical plant models under various fault modes; and {ICj : j  £ S} denotes a set of 

reconfigurable controllers in a switching structure. ICj is designed for fault mode j  based on 

Mj, j  € S. However, true fault modes are usually not directly known, so an FDI scheme 

is used to generate estimates of fault modes, which may deviate from true fault modes with 

error probabilities.

Assumption 6.2 FDI scheme is assumed to generate a fault estimate based on a batch o f  

measurements and calculations for every fixed period Ts.

This assumption states a cyclic feature of FDI, such as statistical tests and Interactive 

Multiple Model (1MM) Kalman filters [94], Discussions in this paper are not restricted to 

specific design schemes. FDI modes are represented by a discrete-time stochastic process 

//„ e S, where n 6 N, the set of non-negative integers. The time duration between consec­

utive discrete indices is equal to FDI detection period Ts. ICj is put in use when r/n =  j ,  

j  € S. Corresponding to r/„, a discrete-time stochastic process £n denotes true fault mode. 

In reliability engineering, constant failure rates are usually assumed for the main part of 

component life cycle. In such a case, („ can be described as a Markov chain [8 8 ], and its 

transition probabilities are denoted as G y  =  P r{ (n+i =  Mn = *}> hi  e  s.

Assumption 6.3 System performance is assumed to be represented by a vector signal z(t).  

Safety region, denoted as Cl, is assumed to a fixed region in space o f z(t) bounded by its 

safety threshold. Failure is assumed to occur when z(t) exists a safety region for the first 

time.

This assumption intends to define an appropriate reliability index based on system dy­

namical response. It is common in control systems to use a signal z(t) to represent per­

formance; and z(t)  is usually to be kept at small values against excitations from exoge­

nous disturbances, model uncertainties, and model characteristic changes caused by faults. 

Safety region Q is assumed to be fixed and known a priori. The scenario that z(t)  exists fl 

represents lost of control and system failures. More discussions on this assumption can be 

found in [75],

Definition 6.1 For a rime interval from 0 to t, the reliability function R(t)  is defined as the
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following probability:

R(t)  =  Pr{VO < r < t ,  z ( t )  e  f i} .

Compared with and r)n, z(t) is typically a fast-changing function determined by both 

continuous and discrete dynamics. £„ and rjn are two regime modes and determine the 

transitions among regime models. When („ — i and rjn = j  are fixed, z(t)  evolves ac­

cording to plant model M x and controller K.j. As a result of this hybrid dynamics, directly 

evaluating R(t)  and MTTF is a difficult problem. Therefore, a discrete-time semi-Markov 

chain X ^  is constructed for reliability evaluation purpose as in previous chapters. The 

main idea is: the hybrid system is decomposed into various regime models; each regime 

model is then evaluated for related safety characteristics; and is constructed to integrate 

these characteristics with transition parameters of regime modes and to solve its transition 

probabilities for reliability evaluation. The structure and main components of reliability 

monitoring scheme are illustrated in Figure 6 .1.

plant faults confirmed FDI 
estimates

switching controllers

plant model FDI scheme

R(t), MTTF

steady state test confirmation test

FDI transition 
characteristics

hard-deadline
(mismatched)

out-crossing failure 
rate (matched cases)

reliability model (semi-Markov chain X *)

Figure 6.1: System structure.

Semi-Markov reliability model X% is the kernel component for calculating MTTF. It 

is constructed based on the following parameters: 1) the transition rates of called plant 

failure rates; 2) the estimates of (n from FDI and confirmation test, called confirmed fault 

modes; 3) the parameters of r;n estimated from history data, called FDI transition charac­

teristics; 4) the probability of z(t) crossing safety boundary during an FDI cycle Ts when 

Cn =  Vn, called failure out-crossing rates. 5) the average number of periods before crossing 

safety boundary when („ f  r;n, called hard-deadlines. Among these parameters, the second 

and third ones can be updated online.
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6.3 FDI scheme and its characterization

6.3.1 Steady state tests

It is well-known that false alarm and missing detection rates are two conflicting quality 

criteria of FDI. One is usually improved at the cost of degrading the other. What is worse, 

the general rules of adjusting FDI to improve these two criteria simultaneously are often 

not known. For example, in a scheme based on IMM Kalman filters, it is not clear how to 

detennine Markov interaction parameters. Considering that most false alarms last for short 

time only, an SST strategy is adopted for post-processing FDI decisions.

SST requires that, when FDI decision changes, new decision is accepted only when it 

stays the same for a minimum number of detection cycles. Let TssTj denote the required 

number of consistent cycles for FDI mode j ,  j  G S. The effectiveness of this SST strategy 

relies on the distribution of false alarm durations. For example, if a nonnegative discrete 

random variable A() denotes the false alarm duration when system fault mode =  0 , Tssto 

can be taken as (1 — a)-quantile of Ao, 0  < a  < 1 , meaning

Pr{A0 > Tssto} < a,

which implies that false alarm probability can be reduce by ratio a  when accepting FDI 

decisions after Tssto- The weakness of this method is additional detection time delay of 

Tsst; when fault occurs. However, this happens only under rare occurrences of faults. 

Compared with the improvement on relatively more frequently transitions of FDI modes, 

this weakness is acceptable.

Detection decisions from SST are represented by r/n and used for controller reconfigu­

rations. In Figure 6.1, the confirmation test is an SST with large test period to further reduce 

false alarms to a negligible level. It generates confirmed fault modes, which are used with 

FDI trajectories for updating transition parameters of r/n and reliability index.

6.3.2 Stochastic models

Following methods in Chapter 5, rjn is modeled as a discrete sem-Markov process. Its 

sample path when applying SST is given in Figure 6.2. Let 8 m G S  and Tm G N denote 

the FDI mode and cycle index respectively after the m-th transition of r)n , m  G N. For 

example, in Figure 5.1, 0\ =  775 and T% =  5. 0rn and Tm together determine FDI trajectory, 

and T]n  =  & s n , where S n = sup{m G N  : Tm < n} is the discrete-time counting process 

of the number of jumps in [l,n]. (6 ,T )  = {0m ,T m : m. G N} is called a discrete-time
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Figure 6.2: A sample path of i]n .

Markov renewal process if

Pr{6W i  =  j ,  Tm+1 - T m = l\90, ■■■ , 0m; T0, ■ ■ ■ , Tm}

=  Pr{6»m+i =  j ,  Tm+1 -  Tm = l\6 m}

holds for fixed Qr,„ =  Ct„,+i =  • • • =  =  k, where A: e  S i, j  £ S 2 , and I, m  £  N.

J7„ =  6 rn is then called the associated discrete-time semi-Markov chain of (9, T ). It can be 

shown that 9rn is a Markov chain, and its transition probability matrix is denoted by P k.

Given Q,m = £rm+i • • ■ =  Cr,„+1 =  k, let r£  =  Tm + 1  -  Tm if 9m = i and 9m+1 =  j ,  

where i . j  £ S 2 and k £ S \. r k- is the sojourn time of rjn between its transition to state i 

at Tm and the consecutive transition to j  at Tm+\. If the transition destination state is not 

specified, let r k denote the sojourn time at state >.

As shown in Figure 6.2, r k is the sum of two variables: a constant Tssx, f°r SST 

period and a random sojourn time a k-. Let hk(t)  and denote the discrete distribution 

functions of r k and crk respectively, which have the following relations:

a- m  _  _  71 _  J  ° ’ l -  T s s t , : ;
>3ij(l -  Tssn),  I < ? S S T i-

l ^ = P r [ T k = l } = {  _  (6.1)

Semi-Markov description provides a general model on FDI mode transitions, but it involves 

a large number of parameters. The transition characteristics of r;n are jointly determined 

by P k and hkrj (or gk-). If S  contains N  fault modes, there are N  transition probability 

matrices P k and TV3 distribution functions hk3. If each hk follows geometric distribution, 

the description of r)n may degenerate to a hypothetical Markov model ifn .

Markov chain can be considered as a special type of semi-Markov chain. If ijn can be 

modeled as a Markov chain with transition probability matrix denoted by H k for Qn =  k,
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the fo llow ing relations hold:

2 tj

h^( i )  =

pA. __
i )

(6.3)

(6 .2)

hf  (I)hi  (I) = (6.4)

It is obvious that hk is a geometric distribution. In fact, this is an essential property of

Markov chain: A discrete-time semi-Markov chain degenerates to a Markov chain if and 

only if the sojourn time at each state (when subsequent state is not specified) follows geo­

metric distribution.

When Tsst is nonzero, the sojourn time of rjn does not follow geometric distribution 

owing to this deterministic constant. However, as Tsst is known, a hypothetical process 

rfn can be constructed by setting T sst to zeros; if the sojourn time of rfn is geometrically 

distributed, it can be described as a Markov chain; the original sojourn time of r/n can be 

recovered by adding Tsst to that of ifn . This method may greatly reduce the number of 

parameters for characterizing FDI results.

6.3.3 Transition param eter estim ation

FDI transition parameters can be estimated as an off-line test on FDI when both fault mode 

and FDI detection results are known. This estimation can also be carried out online using 

FDI history data and confirmed fault modes.

When rin is modeled as a semi-Markov chain, P k and h-y (or gk-) are parameters to be 

estimated. P k can be estimated from the transition history of rjn . For example, when (n is 

kept as a constant k, if there are A/y transitions from i to j  among all M  transitions leaving 

i, the ij-Xh element of P k can be estimated as P k =  M y / M.

The estimation of sojourn time distribution gkj can be completed in two steps: the his­

togram of sojourn time is firstly examined to select a standard distribution such that non- 

parametric estimation is converted to a parametric one; gkj  is then obtained by estimating 

unknown parameters in distribution functions.

If gkj follows geometric distribution for all j, k  e  S,  7]n can be described as a hy­

pothetical Markov chain r)'n under the hypothesis that TssTi =  0. As a result, transition 

probability H k- from i to j  and sojourn time r f  at i have following relation:

97

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Therefore, E ( t^)  — - F , and can be estimated by
i i

H* = J 1 "  E f i J n m r  ^ ' i=1 T̂ M  *  ° ’ (6 5)
( 1 , otherwise,

where r* (/) denote M  sojourn time samples at state i, I =  1, • • • , M.  can be estimated 

based on the transition frequency from state i to j:

=  (1  -  (6 .6 )

where 1 -  / /£  is a normalization coefficient and represents the number of FDI transitions 

from i to j .

6.4 Out-crossing failure rates and hard-deadlines

Owing to FDI delays or incorrect decisions, controller K% may be used for its designated 

regime model M t (namely, matched cases) and other model M j ,  i j  (namely, mis­

matched cases). Matched cases usually account for major operation time, while mismatched 

cases often appear as temporary operation.

Definition 6.2 The out-crossing failure rate in matched cases is defined as

va =  P r{3r, nTs < r  < (n +  1 )TS, z ( t )  $ Q\z(nTs) £ Q, (n = r)n = i } ,  i e  S

Monte Carlo simulation can be used for estimating va: At each sample simulation, system 

is run based on generated sample uncertain plant model and sample disturbance input, and 

the simulation time when system fails is called a sample time-to-failure. With a large num­

ber of time-to-failure samples obtained, va can be estimated as the ratio between Ts and 

sample mean of time-to-failure.

Mismatched cases are usually temporary operation caused by FDI false alarms or de­

lays, and system may return to matched cases if z(t.) does not diverge to unsafe region. So, 

it is important to find out the average tolerable time before system failure. This time limit 

is called hard-deadline, denoted by Xhdy for Cn =  * and r/n = j .  It can also be estimated by 

sample mean of time-to-failure using Monte Carlo simulations.

6.5 Reliability model construction

The states of semi-Markov chain are classified into two groups: one unique failure 

state, denoted by sp, and multiple functional states, defined as state combinations of („ =  i
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and 7j„ =  j ,  denoted as «y, where i £ S i and j  e  S-2 - For example, if two types of faults 

are considered in the plant, and Qn includes states of fault-free, fault type 1, fault type 2 , 

and both fault 1 and 2, represented by S — {0,1,2,3}; and FDI mode ?/„ also takes value 

in S. X% then has 4 x 4  +  1 =  17 states.

The semi-Markov kernel of X% is denoted as Q(-, ■, n),  representing the one-time tran­

sition probability in n  steps. It is determined by the following parameters: 1) transition 

characteristics of fault and FDI modes; 2) outcrossing failure rate in state su denoted by 

va; 3) hard-deadline in state s t] denoted by 4) FDI SST period denoted by PssTj for 

FDI mode j.

Let us begin with the case that FDI mode can be described as a hypothetical Markov 

chain rfn with transition probability denoted by . The calculation of Q  is classified into 

the following cases:

Case 1: The transitions from functional states to themselves are not defined and the 

corresponding elements are assigned as zeros:

where pa = P r{2f L =  X 2 =  ■ ■ ■ =  X TsSTt -  =  *+} =  (1 -  t ’ii)rsSTiG^SSTi, i #  j ,

k /  i, i , j ,  k £ S.

The derivation of these equations are based on Markov transition probabilities and the 

decomposition of each event. For example,

Q(sn,  .sp, TYi) — Pr{A'i — A 2 — — A m—|  — S u ,  X m — sp|ATq =  sp,;}

Q(su, Sii, m )  =  0 ,  Q { s i j ,  Si j ,  m )  =  0, i £ , j  £ S2

Case 2: Failure state sp is absorbing:

Case 3: Matched states su

Q{$ii, Skj, m)

Q{sa, Sij,m)

Q( s a , s F, m)
(1 -  m < Tssii,
})a[(l -  Vii)GiifTF](m_Tss'r‘-P v u , rn >  T s s i i ,

(1 -  va)m~l G™ *(1 — vu)Gij, m  < Tssu,

P » [ (  1 -  1TU. rn >  T SSt „

0, m  <  Tssji,
P « [ ( l  -  v11) G liHl i\ ^ - ^ - ^ ( l  -  i'ii)Gn l l \ y  m  >  T s s t , ,

P ii [ ( l  -  1 -  vu)GlkHip  m >  T ss ii,

0 , m < Tssji,

Px i X i  = X 2 = - - =  X m. x = sa\Xo = .s„}Pr{X, =  sF|X 0 =  Sii}.
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Considering steady state test of FDI, if rn < Tssii,

P v { X l = X 2 = - -  = X m- i  = s« |A T 0 =  stt} =  (1  -  

If m  >  TssTi*

Pr{vYi — =  • • * =

=  P r{X x = X 2 = --- = X TiSJi = .s,,|X0 =  s«}[(l -  vii)Gii/ ^ i](n*-T®T< >>.

Combing these two probabilities with P r jX i =  sfI^o  =  su } =  vu> Q { s u , s r ,m ) is 

obtained.

Case 4: Mismatched states: s^ , i 7  ̂ j .  When m < Tssrj,  the transition probability 

of X *  to any other state is zero because of SST period. When Tssrj < m  < TMlJ, the 

probability of X„  transiting to any other state is zero except to su . The above reasoning 

is based on the facts that FDI rarely jumps to other false modes when current mode is 

incorrect, and mean fault occurrence time is in a much higher order compared with a short 

false FDI detection period. Therefore, when Tsstj < m  < T ^ j ,

Q{s i j , s f ,m)  =  0 ,

=  7 / ; / ' '  ' * ■ '  ' / / C ,  j f - l .  j J c  S .

When m  > T ^  j +  1, X ^  jumps to sy at the earliest time m =  Thdy +  1 only:

Thdtj
Qi ^i j ; PsSTi T 1) — 1 ^   ̂ Q{$ij , Su, Ttl')

fr = 7sSTi + l
1 -  ( / f j1-)Ti5'_TSSTj+1  1 ___ V 331__________ TJX

1 -  Hh

In the general cases, r;n is modeled as a semi-Markov chain, and the competition prob­

abilities methods discussed in Chapter 5 can be utilized. As the states of X £ is mainly 

defined as the state combinations of ( n and r/n , the calculation of the semi-Markov kernel 

of X„ is simplified when competition probability P(i.j,^,(k,l){m) is available, as shown in
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Q(su, skl, m)  — (1

Q(sii rn) = (1

Si i  j m)  = 0,
(

Q(Si j , Skii rn) =
I;

Q(sij , Sp, rn) =

{'
Q( s f , S F , rn) = i

the fo llow ing formulas:

1 I t  J L l l l

m  < TMij and k = l = i,
0 , otherwise

0j TM S  ^hdtj» 

1 -  E m = i  Q{si j,su,  m ) ,  m  >  T hdy ,

1 , m  = 1 ;
0, m  >  1.

Although these formulas appear to be simpler, both the parameter estimation and compe­

tition probability calculations need much more calculation burden than the first case when 

FDI decision is modeled as a hypothetical Markov chain. Once is constructed, calcula­

tion of reliability function and MTTF are straightforward using available formulas [27],

6.6 Example

6.6.1 M odel description

The F-14 aircraft control example used in Chapter 2 is used again to demonstrate the relia­

bility monitoring scheme [47]. The description and system diagram can be found in Chapter 

2 and are omitted here for brevity.

The control objectives are to have handling quality (HQ) responses from lateral stick to 

roll rate p  and from rudder pedal to side-slip angle j3 match ideal HQ models. Under fault 

free modes, the HQ models are 5 - ^  and ~ ^-^7 + 2 5s+i 25s ’ w^en fault occurs, HQ models 

degrade to 5 ^ -  and - 2 . 5— 75s respectively.

The considered fault occurs in two actuators. Under fault-free mode, their transfer 

functions are:
25A s  — A r  =

s + 25
Two types of actuator faults are considered here: each has mean occurrence time 105 of FDI 

periods or its failure rate is 10-5 . Under fault type 1, the transfer function of A s  becomes

4 ,  =  0 . 5 - 2 ^ .
* .S' +  15

Under fault type 2, the transfer function of A r  becomes

a 'r  =  a 5 7 T l o -  

101

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



These fault modes are described as the change of actuator gains and time constants. The set 

of fault modes is denoted by 5  =  {0,1,2,3}, representing fault-free, faut type 1, type 2, 

and simultaneous occurrence of both.

6.6.2 Perform ance characterization o f controller and FDI

Four Hoo controllers are designed for each fault mode to achieve nominal HQ control ob­

jectives under fault-free mode and degraded ones under fault modes. Typical output trajec­

tories under fault-free mode is shown in Figure 6.3. The absolute minimal matching errors 

between the real responses and the ideal or degraded ones are shown in Figure 6.4, which 

are assumed to represent system safety behaviors. When these matching errors go over the 

safety limits, 30% of expected output, aircraft is considered as failed.

. / * \  A  &
f /  V> ?  v* $  \  *

z j ,  V.... .V

.........Real
-  -  Ideal 

------ D egraded

' V/
2 4 6 8 10 12 14 

Time

- « * * *  /.& *>>
*  c  ! /  ? / /  \ x 

i f  't‘ * ' /  v.
V. ?  A £  \ \  s'V \  if \ \  t  \  * 5

v f c *  V ; /

----- Idea)
-  -  -  D egraded

O / /V

_  6
— 4 
®e 2

30
Time

Figure 6.3: Output trajectories.

©£ 0.2

Time

Figure 6.4: The trajectories of matching errors.

An IMM FDI was constructed to detect fault occurrences. To reduce false alarms, a 

steady state test strategy is applied on FDI decisions with T sst7 =  6 for any FDI mode j .  A
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typical FDI trajectory is shown in Figure 6.5. It is clear that the steady FDI mode is free of 

false alarms in the shown time period. But detection time delays are introduced when fault 

occurs at 20 and 50 seconds respectively.

10 20 30 40 00 60

10 20 30 40 50 60

Figure 6.5: FDI trajectory.

1900 2000 2500
Sojourn time

Figure 6 .6 : Histogram of FDI sojourn time.

To represent FDI detection characteristics, a batch of fault and FDI history data is col­

lected for statistical estimation. First, histograms of FDI delays are generated to check its 

distribution type. When there is no fault, the histogram of FDI sojourn time at fault-free 

mode is shown in Figure 6 .6 . It clearly resembles a geometric distribution. Equation (6.5)- 

(6 .6 ) are then used to estimate Markov transition probabilities, and those under fault-free 

mode are obtained as:

0.9990 0 0 .0 0 1 0 0 .0 0 0 0

1 .0 0 0 0 0 0 0

0.1330 0 0.8670 0

0.5000 0 0 0.5000

As a result of FDI false alarms, missed detections, and detection delays, controllers may
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be engaged for various fault modes for which they are not designed. So, it is necessary to 

evaluate system behavior under all possible combinations of FDI and fault modes. Here, 

Monte Carlo simulations are adopted with the following settings: 1) command stick inputs 

are square waves with frequency as a random variable ranging from 0.2 to 2 Hertz; 2) wind 

gust disturbances and sensor measurement noises are assumed to be Gaussian processes; 3) 

actuator saturation effects limit control inputs to 20 and 30 respectively; 4) system failure 

is assumed to occur when model matching errors go over 30% of stick commands. For 

example, with fault mode 2 occurred and K,2 engaged, mean time to system failure is 57403 

seconds when controller K 2 is used, and 6  seconds when K.\ is used. Considering the 

sampling period is 0.1 second for IMM FDI, the out-crossing failure rate and hard-deadline 

are: V22 = 1/574030, Thd2i =  60.

6.6.3 Reliability evaluation

Reliability semi-Markov model can be constructed based on fault transition rates, FDI tran­

sition parameters, out-crossing failure rate, and hard-deadlines. Predicted reliability func­

tion and Mean Time To Failure (MTTF) can be thereby calculated. Using MTTF as an 

objective, an optimization is performed on Tsst- It is found that MTTF will be improved 

from 27727 to 32605 seconds if Tsstj *s reduced from 6  to 1. A comparison of reliability 

functions before and after this optimization is shown in Figure 6.7. It is clearly shown that 

reliability index is improved.

£ 0 965

Time

Figure 6.7: Reliability functions comparison.

Comparisons on the transition probabilities between these two SST periods are shown 

in Figure 6 .8 , in which each sub-figure gives the transition probability curves from .soo to 

other states. For example, the sub-figure at the first row and second column shows the
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transition probabilities to soi is increased from 0 to about 0.008. This is a natural result 

of increased false alarms when reducing Tsstj. In fact, when 7sst, =  1, new Markov 

transition parameters H'° becomes:

H'° =

0.9822 0.0017 0.0122 0.0038'
0.2634 0.7366 0 0
0.1989 0 0.8011 0
0.3530 0 0 0.6470

Compared with H°,  the element on the first row and second column is increased from 

0 to 0.0017, a confirmation of increased false alarms. On the other hand, detection delays 

are reduced approximately from 6  to 1, and system stays less time under mis-matched fault 

and FDI cases. Overall, MTTF is improved.

x 10"*

Figure 6 .8 : Comparison of transition probabilities.

This evaluation procedure can be completed in an online manner. Estimated FDI tran­

sition parameters H  and current mode of provided by confirmed test on FDI can be used 

to provide updated MTTF based on this most recent information.

6.7 Conclusions

A reliability monitoring scheme for FTCS’s is reported in this chapter. The scheme contains 

two post-processing strategies on FDI results to provide estimated fault mode for control 

reconfiguration and confirmed mode for updating reliability. The stochastic transitions of 

FDI mode is represented by a semi-Markov chain with parameters estimated from history 

data. Under geometric sojourn time distributions, FDI mode can be described by an equiv­

alent hypothetical Markov chain that simplifies its model and reliability analysis. Safety
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and satisfactory operation of system is defined by system trajectories and safety bound­

aries; the probability of violating this safety criterion under fixed fault and FDI modes is 

estimated using Monte Carlo simulations. Overall reliability evaluation is obtained through 

a semi-Markov model constructed by integrating FDI transition characteristics and failure 

probabilities under each regime model. This scheme provides timely monitoring on the 

reliability index of FTCS’s, and was demonstrated on an F-14 aircraft model.
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Chapter 7

Conclusions and future work

7.1 Conclusions

This thesis discusses the analysis and design of FTCS’s based on a reliability index in the 

following aspects:

• Reliability analysis of FTCS’s

Constructing a reliability model is the first task in the overall framework. In the litera­

ture, Markov and semi-Markov models are commonly used to model reliability of FTCS’s. 

Assumptions on the memory property of FDI are critical to determine model type. The 

states of the models are usually defined according to the combinations of the fault modes 

and FDI results. These available results provide some general procedures and crucial ideas 

for reliability analysis.

In this thesis, different from these available results, a new semi-Markov reliability 

model is constructed in Chapter 2 from dynamical model, and it considers some fundamen­

tal characteristics of FTCS’s: control objectives, performance degradation, hard deadline 

in FTCS’s, and effects of imperfect FDI. These aspects are incorporated in the proposed 

model, based on which reliability can be analyzed for FTCS’s.

This analysis method also has some limitations. For example, it is developed based on 

two assumptions about static control performance and stationary distribution of FDI mode. 

It can not be applied to other control objectives defined on system transient trajectory. The 

approximation of stationary distribution may introduce some errors on analysis results. In 

addition, this method may involve heavy numerical calculation burdens.

•  Controller design based on reliability

Once the reliability model is constructed, the reliability index is incorporated in de­

sign process, which is essentially an optimization problem with respect to a reliability
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index. Owing to the numerical procedures of building and solving stochastic reliability 

models, reliability criteria cannot be written as analytical functions of controller parameters 

in general. To overcome this difficulty, based on stabilizing controller parameterization, 

randomization-based optimization algorithms are proposed in Chapter 3 to find the sta­

tistically optimal controller with the highest reliability. The designed controller can not 

only stabilize system but also achieve the optimal reliability index, such as MTTF. But this 

method is restricted to certain modeling structures because of the constraints on stability 

and parameterization results.

Another design method is given in Chapter 4 by performing MTTF optimization in two 

steps: 1) a gradient-based search is carried out for control performance characteristics up­

dated along the fastest increasing direction of MTTF; 2) the updated control performance 

characteristics are then transmitted to a controller design algorithm, which updates con­

troller accordingly to satisfy this performance. Each design step is completed by one itera­

tive algorithm, and two algorithms are used alternately to complete controller design. This 

method helps to tackle the difficulty caused by the implicit relationship between the MTTF 

objective and controller parameters.

• Improvement of FDI description and reliability modeling

FDI is described by a Markov process in Chapters 2 through 4, and its sojourn time 

is exponentially distributed. However, Markov process model may not be applicable to 

general FDI schemes. This modeling limitation is addressed in Chapter 5 by using an 

extended semi-Markov description of FDI, which removes the memoryless assumption in 

Markov models and provides a general model for cyclic FDI schemes. Furthermore, the 

reliability index and evaluation method are extended to this general description of FTCS’s.

• Online reliability monitoring

This study aims to develop online reliability monitoring scheme for active FTCS’s. The 

reliability index can be implemented and updated online as an indication of overall system 

performance. It can also be used for performance analysis and design of FTCS’s. The key 

point of online monitoring is to update reliability prediction using current available data 

from FDI and plant outputs. The scheme is developed mainly based on previous results in 

reliability modeling with necessary improvements to account for this online feature.

These reliability-based methods may be applied in the future to processes under con­

tinuous operation. To ensure productivity, operation interruptions for emergent repairs of 

these processes should be avoided, and they are expected to operate with satisfactory per-
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formance until scheduled maintenance. The reliability-based FTC methods can be used to 

handle manageable faults and to retain acceptable performance. The advantage of these 

methods is the optimal reliability index, which can be deemed as a consistent objective of 

improving productivity. For some other safety-critical systems such as aircrafts, classical 

FTC methods may be more suitable because safety throughout each mission duration (e.g., 

flight time) is of top priority.

7.2 Future work

•  Calculation reduction and sensitivity analysis

The proposed reliability is calculated from a semi-Markov model. Its calculation in­

volves model construction and transition probability solution. Although this index may re­

flect characteristics of FTCS’s, the complicated procedure and lack of analytical expression 

have caused difficulties in its applications, especially in controller design. If  its calculation 

can be properly simplified, an approximate index may find extensive applications in both 

analysis and design. For example, an approximate reliability index is widely adopted in 

active structure control [75]. Similar idea may apply to the proposed index for FTCS’s. In 

addition, it is worthwhile to carry out sensitivity analysis on reliability index with respect to 

system and probabilistic parameters to determine the effects of modeling and approximation 

errors.

• Trajectory-related control objective and reliability index

A critical issue of defining an appropriate reliability index for FTCS’s is to incorporate 

control objective and reconfiguration actions such that this index can represent mission pro­

file of control applications. In this thesis, reliability is defined as the probability that system 

satisfies a static objective. This static assumption is made based on the extensive applica­

tions of model-based control objectives and its simplicity. Model-based system norms can 

be used, but trajectory-based objectives are not applicable. However, it may be important 

to study control objectives defined on transient trajectories in some applications. An pre­

liminary effort is made in Chapter 6  using Monte Carlo method to estimate the probability 

of out-crossing a safety boundary. Some design method may be developed following this 

idea.

• FDI imperfectness description and FTC modeling

FDI results provides information for controller reconfiguration, and FDI imperfectness
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has been a critical issue when analyzing overall performance. In this thesis, Markov model­

ing is adopted. The advantage is the availability of stability results and simplicity of Markov 

process. But, it also has weakness on the memoryless restriction of Markov description and 

an appropriate selection of Markov modeling parameters. In practice, an direct description 

of FDI imperfectness is false alarm, missing detection, and incorrect detection probabili­

ties. These parameters can be obtained from FDI history data. Also, many controller design 

techniques are a multiple-model modeling of FTCS’s. It is worthwhile to extend current re­

liability results on these imperfectness parameters and FTC models.

• Integrated design with maintenance activities

Reliability problem discussed in this thesis ignored maintenance and inspection activ­

ities. If these activities are taken into account, a monitoring or prediction scheme may 

provide solutions for condition-based maintenance. We have made some efforts to build 

stochastic models for maintenance scheduling in FTCS’s [95]. This method may be further 

improved to consider controller reconfiguration, FDI, and maintenance in a single model, 

which may help to design a system achieving high reliability using all available engineering 

activities.

• Controller design with semi-Markov FDI description

A semi-Markov description is more general for FDI schemes than Markov one, and a 

reliability index can be extended to this model. But, controller design using this modeling 

and reliability index is still an open problem. The difficulty lies in the stability results on 

this general model which may involve partial differential equations [96]. Some numerical 

methods may be available to solve these equations for controller design. Reliability-based 

design in this case may be achieved using these numerical methods.
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Appendix A

Semi-Markov processes

Let X n represent a random variable defined in a countable set E, and Tn defined in R + 

such that 0 =  To <  2 \ < T2 < • ■ •, n e  N.

Definition A.l (X , T )  =  {X n , Tn : n  G N } is said to be a Markov renewal process with 

state space E  provided that

Pr { Xn + 1 =  j ,  Tn+\ - T n < t\Xo,  • • • , X n : To, ■ • ■ , Tn} = P r { X n + 1 =  j,  T„+\—Tn < t ]Xn } 

fo r  all n  G N,  j  G E  and t G R+. (X,  T)  is time-homogeneous, i f  fo r  any i , j  G E , t  G

R + .
Pr{Xn + 1 =  j , T n + 1 -  Tn < t \ Xn = 2} =  Q(i , j , t ) ,

independent o f n. Q — {Q{i, j,  t) : i , j  G E . t  G R+} is called a semi-Markov kernel over 

E.

Let P(i ,  j )  =  limt^oo Q(i, j, t). It can be shown that P(i ,  j )  > 0 and J2 j es  J) =

1 [25, 27]. So, P ( i , j ) is the transition probability for some Markov chain with sate space 

E.  As Pr{A”n+i =  - ,X n;T0,--- , Tn} = P ( X n, j )  for n  G N , j  G E,  X  =

{ X n : n  G N }  is a Markov chain with state space E  and transition matrix P.

The expectation of the sojourn time in state i, or the mean sojourn time m(z), can be 

calculated by following equation.

rOO
rn(i) = / (1 -  V ]  Q(i, k, t ))dt .  (A .l)

J o  k

For convenience, denote Pr{ |Ao =  *} as Pr4. Define Qn (i , j , t )  = P r,{X n = j ,T n < 

t}, i, j  G E , t G R ~\~, then

= 6 {i , j)  =  1 ^’ lf 1
[ 0 ,  i t  t f  j .
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Qn+1(i, /c, t) can be defined recursively as

Q n + l( i , M )  =  E  f  Q ( h j , d S)Qn ( j , k , t -  s), (A.2)
j e E J °

which is the (n +  l)-order Stieltjes convolution in matrix form.

The following equation gives the Markov renewal function, which plays an important 

role in the calculation of transition probability.

=  £ > { * . =  J ,Tn < i }
n = 0 
oo

=  (A3)
71 — 0

Define L = SupnTn, the life time of Markov renewal process ( X , T ) .  To extend the 

definition to t beyond L , define

Y  _  if Tn < t < Tn+1 ,
' _  \ t ,  if t > L.

where T  is not a elment of E.  Then, Y  =  {Yt , t  > 0} is called minimal semi-Markov 

process associated with (X , T).  Please note that if E  is a finite set, L = oo and there is no 

need for T.

As in the analysis of Markov processes, the most important parameter is the transition 

probability Pt{i , j )  — Prt(Yt =  j).  It can been proved that the transition probability can be 

computed by the following integration [25],

P t ( i J ) = f  R{i , j , ds )h{ j , t  -  s), (A.4)
Jo

where h(j, t) =  1 -  £ fc6 E <2(j, M ) ,  j  € E , t  > 0.
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Appendix B

Reliability calculation from 
semi-Markov process model

Let ATR(t) represents a semi-Markov reliability model. Its state space are classified into 

two complementary sets: let M  represent the set of up states and M  for down states. When 

X R(f) G M,  the system is considered to be functional; otherwise, nonfunctional.

If the down states in M  are absorbing, the reliability function can be calculated from 

the transition probability. Assume that Pr{X(0) =  i} =  Po(i), then

R(t)  =  Pr{Vu G [0, t], X( u )  G M}

= Pr{ X R{t) G M }

= Y ,  £  * { * * (* )  =  J l* (0 )  =  i}Pr{X(0) =  i}
i e M  j e M

= LEw(^)- (BJ)
i e M j e M

In case that the down states are not absorbing, an auxiliary semi-Markov process can be 

constructed from which the reliability of the original process can be calculated using the 

above equation.

MTTF is the expectation of the life time of the item[23, 27], Denote mo as the vector 

of mean sojourn time in the up states and partition the transition probability matrix P  of the 

embedded Markov chain as:
p  _  Poo Pot 

[P w  PnJ

If I  — Pqo is non-singular, MTTF= Pq (I Poo) -1  mo-
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