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Abstract

This thesis develops a reliability-based framework for the analysis and design of Fault Tol-
erant Control Systems (FTCS’s). The proposed reliability index is defined based on control
objectives and hard deadline. For analysis purpose, a semi-Markov model is built from dy-
namical model, and stochastic transitions of Markov states describe degradation of system
conditions among a finite set of states. This reliability index incorporates the characteristics
of FTCS’s, and can be used as a probabilistic criterion on overall system performance in
long term.

Two reliability-based design methods are developed using this new reliability index as
an optimization objective. The design difficulty lies in the fact that the index can be eval-
vated from a numerical procedure only but lacks analytical expressions. To address this
problem, the first method considers stabilizing controller parameterization and randomized
algorithm techniques to find the statistically optimal controller with respect to reliability.
The second design method is based on a two-stage design scheme: A gradient-based search
is first carried out on probabilistic H., performance characteristics for reliability require-
ment; a sequential randomized algorithm with a weighted violation function is then devel-
oped for controller design to satisfy the required H,, performance, and its convergence is
guaranteed with probability 1.

The proposed reliability index and evaluation method are based on the Markov model-
ing of fault occurrence and Fault Detection & Isolation (FDI) schemes. But Markov models
accept only the exponential distribution, which causes a memoryless restriction. To remove
this restriction, a semi-Markov description is adopted as a general model for cyclic FDI
schemes. Furthermore, the reliability modeling and evaluation method are extended for this
general model of FTCS’s.

In the last part, a reliability monitoring scheme is developed. The reliability index is
defined based on system dynamical responses and a safety boundary; FDI history data is
used to update its transition characteristics and reliability model. This method provides an

up-to-date reliability index as demonstrated on an aircraft model.
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Chapter 1

Introduction

1.1 Background
1.1.1 Fault tolerant control systems

Nowadays, advanced control system technologies have been applied in all kinds of pro-
cesses and plants, including those with potential catastrophic effects on environment and
human life. For instance, faults in chemical or nuclear plants may result in tremendous
economic losses and environmental damages. This issue imposes higher reliability require-
ments on control systems, which brings forth a new branch of research - Fault Tolerant
Control Systems (FTCS’s).

Some fundamental terminologies used in FTCS’s are quoted as follows [1]:

Definition 1.1 (Fault) An unpermitted deviation of at least one characteristic property or

parameter of the system from the acceptable/usual/standard conditions.

Definition 1.2 (Failures) Permanent interruption of a system's ability to perform a re-

quired function under specified operating conditions.

Definition 1.3 (Fault Detection) A binary decision making process: either the system is

unctioning properly, or there is a fault present in a system.
g properly 4 V.

Definition 1.4 (Fault Isolation) Determination of kind, location and time of detection of a

JSault. Follows fault detection.

Definition 1.5 (Fault Tolerance) The ability of a controlled system to maintain control ob-
Jectives, despite the occurrence of a fault. A degradation of control performance may be

accepted.
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Fault detection and tolerance have been important concerns for safety-critical systems.
Traditional methods for fault detection include voting, limit-checking, or spectral analysis
of critical signals. When a fault occurs, system simply switches to a redundant compo-
nent. These traditional methods are based on physical redundancy. Spare components are
prepared for faults in important components, and redundant measurements are compared
to detect faults. However, these methods may not be applicable in certain applications be-
cause of cost and space limitations. Therefore, analytical redundancies are usually adopted
in FTCS’s, which rely on system model and analytical relations among physical variables
for fault detection and tolerance.

FTCS’s can be generally classified into the following two categories: passive and active

FTCS’s.

(1) In passive FTCS’s, a single controller is designed for presumed fault scenarios. Clas-
sical robust control theories can be adopted, and it is easy to implement. However,
faults often make abrupt changes on system dynamics. It is difficult to design a fixed
controller over such “uncertainties” of plant model, and the controller tends to be

conservative [2].

(2) Active FTCS’s are mainly composed of two subsystems: a Fault Detection & Isolation
(FDI) scheme and a reconfigurable controller, as shown in Figure 1.1 [2]. Solid lines
in the figure represent signal flow and dashed lines represent adaptation. The FDI
scheme provides fault diagnosis information for a supervision scheme to modify the

reconfigurable controller and to switch off faulty actuators and sensors.

v

Supervision
I » FDI <
i
Reference : Fault Fault Fault
Input / l l l
y Y Output
Reconfigurable
—> » Actuator »|  Plant Sensor >
Controller
7
>

Figure 1.1: Structure of active FTCS

Most FDI schemes are designed based on the assumption of known system models, as
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shown in Figure 1.2. Its main idea is to check the consistency between process measurement
and corresponding estimate calculated from process model. A residual signal is generated
indicating fault occurrences. Various methods can be applied for residual generation, such

as observer-based design and identification-based schemes [1].

Faults l lDisturbances

Input Output -

» Process

iy Model +

Residual

Evaluation

Detection
Result

E Residual

Figure 1.2: Structure of model-based FDI.

Reconfigurable control is designed to maintain acceptable control performance under
fault occurrences by modifying controller according to FDI results. For example, the control
law scheduling method pre-computes gain parameters for all faulty cases and switches to
the corresponding gain when fault occurs [3]. In model following methods, controllers are
redesigned such that system state trajectory is close to the desired one generated by an ideal
model [4]. In pseudo-inverse-based methods, controller gain is adjusted to restore desired
closed-loop system matrix [5].

The afore mentioned reconfigurable control methods usually require perfect informa-
tion about system model and parameters for both normal and faulty cases. But modeling er-
rors and unknown disturbances may cause imperfect decisions of FDIL. Consequently, false
alarms and missing detections may corrupt overall stability and performance of FTCS’s
{6, 7]. Many researchers have investigated this issue and proposed the so-called integrated
design methods by considering the inter-relationship between FDI and reconfigurable con-
trollers. For example, Zhang and Jiang developed an integrated FDI and reconfigurable
control approach based on Interacting Multiple Model (IMM) Kalman filters and eigen-
value assignments [8]; this approach was then further improved to account for performance
degradation under fault occurrences [9]. Other integrated design methods include the adap-

tive control based approaches [10, 11], online fault estimation and control accommodation
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[12, 13], and robust control methods [14], which can be collectively categorized as de-
terministic Fault Tolerant Control (FTC) design approaches. In contrast, fault and FDI
behaviors were modeled as two separate Markov processes in a stochastic FTC frame-
work, in which incorrect FDI results are described as mismatched Markov states [6, 7].
Stochastic analysis and design have been performed under this modeling framework, e.g.,
[15,16,17,18].

It has been claimed in the literature of FTCS’s that reliability can be improved by FTC
but very few works have investigated the reliability of FTCS’s directly. Even in the so-called
reliable control systems [19], the design goals are to maintain basic control performance
such as stability, but no reliability index is adopted. Classical reliability assessment tech-
niques are not geared toward the analytical redundancy in control systems. Many methods
consider series-parallel or network structures but few deal with the dynamics and controller
reconfigurations involved in FTCS’s {20, 21, 22]. Therefore, it is difficult to relate reliability

to control actions, which prevents the analysis and design from a reliability perspective.

1.1.2 Reliability concepts and evaluation methods

Definition 1.6 (Reliability[23}) Reliability is defined as the probability of an item (a com-
ponent or system) performing its intended function adequately in the specified interval of
time (0, t| under stated environmental conditions.

To evaluate reliability, the intended functionality and associated environmental con-
ditions need to be specified, which are often called mission profiles [24]. Reliability is
computed in terms of probabilities. If the life time of an item is represented by a random
variable X and its probability density function represented by f(t), the cumulative proba-

bility distribution function of X is
¢
P 2P <t} = [ f()ds
0

where Pr{-} denotes the probability of an event. Based on Definition 1.6, reliability function

R(t) is the following probability:
[e 9}
R#)2P{X >t} =1-F(t) = / flz)dz. (1.1)
Jt

Clearly, R(0) = 1 and R(o0) = (. (1.1) implies that reliability function R(t) is the comple-
mentary cumulative probability function of life time random variable X. Or equivalently,

_dR(t)

ry=-220, (12)
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Insights on failure mechanisms can be obtained by examining failure rate or hazard func-

tion, which is defined as

. Pr{X <t+4t|X >t}
lim
5t—0 ot
_ g Prt< X St
T a0 tPr{X >t}
. R(t) - R{t+ 4t)
<51t1210 StR(t)
_dR(t) 1 f(t)

dt R(t) R(t)

e

A(t)

]

As a function criterion, R(t) is rarely used as an objective or constraint in design phase.
An alternative scalar reliability index, Mean Time To Failure (MTTF), is usually preferable
for controller or system design purpose. It is defined as the expected lifetime of satisfactory
operation:

MTTF £ E(X) = /oo Pr{X > t}dt = /Oo R(t)dt,
0 0

where the second equal sign is based on the fact that X is a nonnegative random variable
and Theorem 1.9 in [25, p.24].

There are mainly three types of reliability evaluation methods: experimental, Monte
Carlo simulation, and analytical methods [21]. A large quantity of items are tested in ex-
perimental method to estimate the distribution of life time and reliability function. Monte
Carlo simulation method relies on repetitive simulated operations of physical systems for
estimation. In analytical methods, mathematical models are set up to describe system op-
eration, based on which reliability criteria are derived and calculated. This method can be

further classified into the following two categories.

1) Item based method. System is decomposed into basic items from physical point of
view, and their relationships are represented by reliability block diagrams, such as
parallel-series or network diagrams. Reliability can be calculated based on the fail-
ure rates of critical elements in the diagram. This method may be used for feedback
control systems by scarching for the equivalent cut/tie sets [26]. But it is not applica-

ble for fault detection and accommodations in FTCS’s.

2) Stochastic modeling methods. System is analyzed from a functional point of view.
Its operational conditions are analyzed and classified into different states, such as
fully tunctional normal state, faulty degraded states, and failure state. System oper-

ation evolves among these states, starting from normal states, gradually jumping to
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degraded states if minor faults occur and finally being absorbed in the total failure
state [24]. Based on this idea, a stochastic process can be constructed with its states
representing operational conditions. Reliability is then equal to the probability of this

process transiting to nonfunctional failure state.

Markov process is often used to set up reliability models owing to its simplicity of
calculating transition probability and hence reliability. But, its exponential sojourn
time distribution imposes a restrictive memoryless property. As a result, the operation
of practical systems may not be properly described. In this sense, the semi-Markov

process may be suitable which allows general sojourn time distributions [25, 27].

1.2 A framework of reliability-based FTCS’s

1.2.1 Motivation

It is clear that FTCS’s are targeted at safety critical processes and the ultimate goal is to
improve reliability {20]. However, despite being a subjective goal, reliability has hardly
been used as an objective criterion that guides the design of FTCS’s [22]. Available tech-
niques are likely to restore stability and control performance under faulty conditions, but
few have discussed the reliability issue directly. In this thesis, a reliability-based framework
is established to conduct analysis and design.

Reliability is a widely accepted criterion in engineering systems, and it is related to
different mission profiles in different systems. In control systems, closed-loop control per-
formance objectives can be deemed as their mission profiles, and FTCS’s aim to maintain
them even when faults occur. The reliability concept in this sense, i.e., the probability of
satisfying these control performance objectives in a given time interval with the consider-
ation of possible faults, is consistent with controller design objective and provides a more
detailed and practical description. When using reliability in this sense, control performance
objectives are not lost; moreover, it gives a clear indication on how well the system will
continue to satisfy these objectives considering future fault occurrences.

Classical FTC methods mainly concern with retaining stability and taking system to
a safe state when faults occur in critical components. In this thesis, the reliability-based
FTC methods are developed for processes under continuous long-term operation; faults
may occur in many components and cause deterioration of system performance. Moreover,
interruption of process operation for emergent repair may introduce high costs. Some clas-

sical FTC methods, such as FDI design and stabilization, can be used for fault diagnosis and
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control design. But the focus is to achieve high reliability for non-interrupted satisfactory
operation by accommodating manageable faults. Therefore, reliability-based FTC methods

are more desirable than classical methods in these applications.

1.2.2 Existing results

1) An ongoing research contribution is made by Wu [12, 22, 28, 29, 30]. In this frame-
work, overall system is decomposed into several subsystems and their functional re-
lations and available redundancy are represented by a serial-parallel block diagram.
Fault tolerance effectiveness is represented by coverage, defined as the conditional
probability that system is functional when faults occur. It is used as a link between
reliability indicator and control actions. By proving the monotonic dependence of
reliability on coverage, it is sufficient to maximize coverage in order to obtain high
system reliability. A similar system configuration was deployed in [31], where reli-
ability was evaluated from serial-parallel structures and optimization was conducted
to find the best structure based on reliability and cost. However, this framework is

restricted to those FTCS’s that can be described by serial-parallel block diagrams.

2) Other methods are based on Markov or semi-Markov reliability modeling. Walker
proposed a semi-Markov model by defining semi-Markov states as the combinations
of status of faults and FDI schemes without considering dynamical relations and con-
trol objectives [32]. Reliability evaluations from the Markov modeling of FDI were
used to determine the residue threshold of FDI and to compare several sensor fault
detection schemes respectively [33, 34]. Harrison, Daly, and Gai established a sim-
ilar discrete-time Markov model for a redundant navigator [35]. However, in these
Markov or semi-Markov models, the states are all simply defined as the combinations
of fault modes and FDI results, in which the role of control on improving system per-
formance is not considered. Hence, a link between reliability and the overall control

performance of FTCS’s is missing.

3) A related research area to reliability is the Fault Mode Effects Analysis (FMEA). It
studies fault effect correlations and propagations among components [36]. In a large-
scale system, there may be many subsystems connected together. A minor fault may
cause new faults in other components and even failure of the overall system. FTCS’s
in this scenario should consider not only the control performance in a local subsystem

but also fault propagation and overall reliability.
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4) The latest progresses were reported in an invited session at the Safeprocess con-
ference in 2006, which presented various methods of improving FTC analysis and
design through an integrated reliability index. For example, a reliability-based recon-
figuration strategy was developed in [37] according to an enumeration of finite system
structures; a reliability index for a hierarchic diagnostic system was proposed in [38]
from its functional description; Monte Carlo simulation technique was used in [39]
to design an FDI scheme with high reliability; a simulation study was presented in
[40] to quantify the performance of a wireless network on the effects of loop closure
frequency and nodes’ storage capacity; a fault diagnosis system design was discussed

in {41] using reliability analysis techniques with application to a practical problem.

1.2.3 Scope of the thesis

Based on the motivation and existing results in the literature, this thesis intends to investi-

gate the following problems:
e How to define and to analyze the reliability of FTCS's?

Reliability essentially provides a quantitative and probabilistic measure on the abil-
ity of a system to maintain functionality in the long run. It is particularly important for
FTCS’s when controlling safety-critical processes. But, control system dynamics are usu-
ally not considered in classical reliability analysis. This ignores important characteristics
of FTCS’s and cannot reflect true mission profiles of reliability with respect to control ob-
jectives. In addition, FTCS’s contain fault detection and control reconfiguration schemes.
These features need to be taken into account when defining and analyzing reliability for

FTCS’s.

o How do dynamic control actions affect reliability? How to design controllers to satisfy

given reliability requirement?

Control action and reliability are on different time scales: One is usually in seconds
while the other in days, months, and years. Intuitively, these two concepts are related: Well-
designed controller maintains control system functionality, and therefore system can oper-
atc longer with improved reliability; in the opposite way, high reliability can be achieved
only when individual components such as sensors and actuators are reliable and control
system is well-designed for required control objectives. Many FTCS’s and reliable control
designs are performed based on this intuition, which assumes that reliability can be im-

proved when control objectives are maintained under fault occurrences. However, it is not
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clear how to quantify control etfect on reliability. Designs based on intuitive assumption
without quantitative analysis may not be an effective solution. If a reliability model relating
controller and reliability is available, reliability-based controller design can be posed as an

optimization problem.

1.3 Thesis outline

This thesis has 5 chapters, and the logical sequence is shown in Figure 1.3.

Chapter 2
Reliability model
Chapter 3 Chapter 4 Chapter 5
Controller design I Controller design 11 Semi-Markov FDI

A

Chapter 6
Reliability monitoring

Figure 1.3: Logic sequence among main chapters.

In Chapter 2, a novel reliability index of FTCS’s and its evaluation method are pre-
sented. The index is defined based on control performance and hard deadline. A semi-
Markov process model is proposed to describe the operation of FTCS’s for reliability eval-
uation. Computed from the transition probabilities of the semi-Markov process, the reli-
ability index incorporates control objectives, performance degradation, hard deadline and
the effects of imperfect FDI, an index that gives a suitable quantitative measure of overall
performance.

In Chapter 3, a controller design method is discussed by considering random faults
and two categories of design objectives: stability requirement and the reliability index pre-
sented in Chapter 2. A parameterization procedure together with a randomization-based
optimization method is developed to find a statistically optimal controller that can stabilize
the system and achieve the highest reliability.

In Chapter 4, a two-stage design scheme is developed to optimize MTTF, a long-term
reliability index: A gradient-based search is first carried out on probabilistic H, perfor-

mance characteristics for MTTF requirement; a sequential randomized algorithm with a
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weighted violation function is then developed for controller design to satisfy the required
'Hoo performance, and its convergence is guaranteed with probability 1. Two iterative algo-
rithms are carried out alternately to implement this scheme, and a controller can be designed
for MTTF requirement.

In Chapter 5, the semi-Markov description of FDI is proposed, which removes the re-
strictive memoryless assumption in Markov models and provides a general model for cyclic
FDI schemes. Furthermore, the reliability modeling of FTCS’s is extended to this case.

In Chapter 6, a reliability monitoring scheme is developed for active FTCS’s using
results presented in Chapter 2 and 5. The history data of FDI decisions is used to update
the transition characteristics of FDI and the reliability model.

The conclusions and future work are discussed in Chapter 7.

10
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Chapter 2

Reliability modeling and evaluation™

2.1 Introduction

In order to meet high reliability requirement of safety-critical processes, major progress
has been made in FTCS’s [20, 28]. Existing work is mainly focused on restoring control
performance under faulty conditions. However, imperfect FDI results caused by modeling
uncertainties and disturbances may corrupt stability, performance, and therefore reliability
[6]. So it is necessary to verify the reliability requirement of FTCS’s, and quantitative reli-
ability analysis is mandatory for safety-critical and industrial systems [42, 43]. Moreover,
reliability evaluation is prerequisite to reliability-based controller design. For example, in
the reliability-based design of structural control, the key problem is to evaluate the failure
probability of control systems, a complementary reliability index [44]. For FTC, improv-
ing system reliability is considered to be the ultimate goal. Therefore, reliability evaluation
and reliability-based FTC design have become prominent and have attracted much attention
from the control community. Motivated by these considerations, the main objective of this
chapter is to develop a reliability index and evaluation method for active FTCS’s.

To address the eftects of imperfect FDI results, Markov models are used to study the
reliability evaluation problem for given FTCS. Although the Markov modeling of FDI may
be restrictive, the influence of FDI imperfectness is directly tackled in this model {6, 7, 15].
The proposed reliability index incorporates the dynamical characteristics of FTCS’s: con-
trol objectives, performance degradation, hard deadline, and the effects of imperfect FDI
results. Based on the dynamical model of FTCS’s, degraded control objectives are set for
various fault scenarios, and reliability is defined as the probability of satisfying degraded

objectives, while temporal violation within hard deadline is allowed. For reliability eval-

*Results presented in this chapter has been submitted to the International Journal of Applied Mathematics
and Computer Science, revised and under review.
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uation purpose, a semi-Markov process is constructed to describe and to predict control
performance evolution due to fault occurrences and imperfect FDI results, and its transition
probabilities are computed to determine reliability.

The remainder of this chapter is organized as follows: A reliability index is defined
in Section 2.2; system model and assumptions are given in Section 2.3; a semi-Markov
reliability model is presented in Section 2.4; and an example is given in Section 2.5 followed

by conclusions in Section 2.6.

2.2 A reliability index

Definition 2.1 The reliability function R(t) of FTCS's is defined as the probability that,
during time interval [0, t], FTCS's either satisfy presumed control objectives or violate them
only temporally for a short time no more than the presumed hard deadline Tiq.

A reliability index is introduced in Definition 2.1 to reflect the following dynamical
characteristics of FTCS’s:

e Control objectives. FTCS’s are said to be functional if they satisfy given control
objectives. A scalar function J(¢) is assumed to represent control performance at time ¢,
and small value indicates good performance. Assume that fault modes are finite, and the
performance upper bound for the i-th fault mode is denoted as J? . The control objective
is to maintain J(t) < Ji, for each fault mode. More discussions are given in Section
232

o Performance degradation. FTC deals with systems under various faulty conditions.
Degraded control objectives, described by different performance bounds under various fault
modes, are usually applied based on current fault mode and available system resources. For
example, the performance bound under certain fault is usually higher than that of fault-free
case.

e Hard deadline. Due to imperfect FDI results and control reconfigurations, .J(t) may
exceed J¢,, only temporally for a short time, which should be distinguished from a failure.
The hard deadline concept proposed in real-time system analysis is therefore used in Defi-
nition 2.1 [45]. It is assumed that if the violation time is greater than a particular limit T}q,
the system is generally unable to return to functional states. In this sense, T}q is called the
hard deadline of FTCS’s.

Let {(t) represent the system fault mode at t. According to Definition 2.1, R(¢) is
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calculated as
R(t) =1~ Pr{3t1 S [0, t}, t—t1 > Thg, VT € [tl,t], J(T) > Jli‘axv 1= C(T)} (2.1)

Remark 2.1 As an overall performance criterion of FTCS’s, the reliability function R(t)
gives system survival probability for any operation period up to time t. The plot of calcu-
lated R(t) can be deemed as a reliability prediction curve, which can be used to examine
long-term system reliability behavior during offline analysis.

The reliability evaluation problem is then reduced to developing an approach to calcu-
late R(t). The main idea is to describe the evolution of J(t) using a semi-Markov process

and then to calculate R(t) by solving the transition probabilities of the process.

2.3 System modeling

2.3.1 Markov dynamical model
Consider the following nominal linear Markov dynamical model of FTCS’s [7, 15]:

. {w) = A(C(), A)ar(t) + BIC(E), A)un(t). ) + B0, Bwl®).

C(C(t), A)z(t) + D(C(t), Ayw(t) + F(C(E), A)u(n(t), 1),

N
—_

o~
=

I

where 2(t) € R™, u(n(t),t) € R™, w(t) € R*, and 2(t) € R denote system state, control
input, exogenous input, and controlled output respectively, and R™ denotes real vector space
with dimension n. {(¢) and 7(t) are assumed to be two separate continuous-time Markov
processes. A, B,C, D, E F, represent system matrices with compatible dimensions, in
which ((¢) and 7(t) represent fault and FDI modes respectively, and A represents a vector
of uncertain modeling parameters.

Based on probabilistic robustness analysis [46], modeling uncertainties A in (2.2) are
assumed to have known probability distributions in bounded sets without specific struc-
tures. For example, they can be uncertain matrices additive to system matrices or uncertain
transfer functions multiplicative to the nominal model.

The system in (2.2) can be deemed as a hybrid dynamical system including both contin-
uous state and discrete modes [6]: The discrete modes, also referred to as system regimes,
are represented by ((¢) and 7(¢) subjected to stochastic evolution, and the dynamics of
continuous-state x(t) is described by linear state space equations, M({(t), n(t)), for the
corresponding system regimes.

¢(t) is given as a homogeneous Markov process with finite state space Sy = {0,1,-- -,

N1} to describe system fault modes, Ny € N. N denotes the set of nonnegative integers.
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The transition probability from mode 7 to j, 4, 7 € S, in the infinitesimal time interval of
dt is given by
C(t) iy (5t) = { ?iiai:(s:(jt()),( ;t;é -
where «j, «;; > 0 are the transition rates of ((t), and o(dt) denotes the high order in-
finitesimal.
n(t) is given as a conditionally Markov process with finite state space Sz = {0,1,--- , N}
to describe FDI results, No € N, When ((t) = k, k € 5, the transition probability from

mode 7 to 7,1, € Sy, in dt is given by

B8t + o(6t), i # 7,

. k =

where ﬂ%, % > 0 represent the transition rates of 7)(t) given ((t) = k. These transition
rates compose the generator matrices of ¢(t) and 7(t), denoted by H = [+ j]n, x v, and

H,’;’ =[x ﬁf]] N, x N, Tespectively, where negative sign is taken when 7 = j.

2.3.2 Assumptions

The assumptions made in this chapter are explained as follows:

Assumption 2.1 For the fixed system regime modes ((t) and n(t), (2.2) is reduced to a
linear system model M(((t),n(t)). Assume that the control performance of M(((t), n(t))
can be represented by a model-based static performance measure 1(-).

The term “stzatic” means that ;(-) depends on system model only, but not on system state
trajectory z(t) or output response y(t). Essentially, this model-based static performance
represents an average measure on how the system behaves in a particular regime. This
assumption is made mainly because of the fact that a reliability index usually concerns
long-term and average behavior. Average performance measure is therefore more suitable
for reliability analysis. For example, u(-) can be defined as ||G ., (C(t),n(t), $)||, the system
norm of the transfer function from w to z of the regime model, such as H, and Hy norms.
With the development of robust and optimal control, system norms represent a widely-
used static model-based index and have become a standard performance criterion. They
can be used to describe general control objectives including trajectory tracking, disturbance
attenuation, model matching, output variance when considering Gaussian disturbance, etc.
As a practical example, Ho, norm is used in [47] to describe a handling quality control

problem in an aircraft.
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Some objectives depending on system state can be converted into model-based objec-
tives, such as the guaranteed cost control {48]. But in general, time-varying control ob-
jectives depending on system state can not be represented by p(-). For example, if the
time-varying control objectives are to maintain the system state trajectory within a safety
region under a Gaussian noise disturbance, p(-) is not applicable, and the methods pre-
sented in [44] can be used instead to estimate the probabilistic performance for reliability
evaluation.

The performance value J(t) is calculated as p(AM(¢(t),n(t))). Based on Assumption
2.1, it is a constant for fixed ((t) and n(t). By abuse of notation, we use J(((t),n(t)) £

u(M(¢(t),n(t))) to denote the dependence of this performance value on system regimes.

Assumption 2.2 The probability distribution of n(t) can be approximated by its stationary
distribution.

This assumption is a result of the limiting probability theory of Markov processes {25].
Considering the meanings of ((t) and 7n{t), the transition rates of 7(¢) represent how fast
FDI modes change for a particular fault mode while those of {(t) describe how frequent
faults occur. As fault occurrences are often rare in practice, the transition rates of (() are
usually in a smaller order than those of 7(t). So the time for FDI to approach its stationary
distribution is much shorter than the mean time of fault occurrences, and this assumption is

therefore made though some approximation errors may be introduced.

2.4 A semi-Markov process model for reliability evaluation

A semi-Markov process, denoted as XR(t), is used as an intermediate model between
FTCS’s and the reliability index - it is constructed based on probabilistic parameters ob-
tained from the dynamical model (2.2), and its transition probabilities are used to compute

the reliability index R(t) in (2.1).
2.4.1 State definitions

Two state transition diagrams are shown in Figure 2.1, where Figure 2.1.(a) is for the case
of two fault modes {0, 1}, and Figure 2.1.(b) four fault modes {0, 1, 2, 3} (in which the
self-transitions of each state are not shown for the sake of clarity). X®(t) has five states in
Figure 2.1.(a), denoted by S; = {On, Of, 1n, 1§, F}, and nine states in Figure 2.1.(b): ‘F’
represents the unique absorbing failure state, and functional states are represented by a pair

with a number and a letter in the subscript. The number represents fauit mode, the letter
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‘N’ indicates satisfactory performance, and ‘F’ unsatisfactory performance but within the

hard deadline. For ¢ € Sy, iy and 7 are defined as

in: () =4, I 0(0) < gy dr e (G =14, TG 1) > e T < Tha)}y
2.3)
where 7 denotes the sojourn time at ip. Each state of X®(¢) indicates fault mode and
whether or not the control objective is satisfied. By studying the state transitions of XR®(t),

performance evolution and reliability can be analyzed.

Figure 2.1: State transition diagram of X®(¢): (a) two fault modes; (b) four fault modes.

2.4.2 Probabilistic parameters

Considering modeling uncertaintics, control performance can be given in terms of a classi-
cal worst-case measure for robustness but it may lead to a conservative result. In contrast,
probabilistic robustness analysis assumes a probability distribution of parametric uncer-
tainties and evaluates the probability of satisfying a specific performance using randomized
algorithms [46]. This alternative criterion has clear meaning in practice where the required
performance objectives are always associated with certain minimum probability levels [49].

Following this idea, the following parameter is defined:

Definition 2.2 For a particular fault mode and FDI mode, the probability that the system

is functional is defined as

Il

Pr{J(¢(t), n(t)) < JhaxlC(t) =i, n(t) = j}
= Pr{J(i,5) < Jhu}
= Pr{u(M(i,5)) < Jhuts (2.4)

A~
117

wherei € 51, j € Sa.
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7i; is the probabilistic performance when the fault mode is i and FDI mode is j. Based

on Assumption 2.1, y;; can be estimated using randomized algorithm given by [46].

Remark 2.2 +;; is a key parameter connecting the control performance of a particular sys-
tem regime and the reliability of FTCS's. It demonstrates the influence of system dynamics

and controllers on the reliability index R(t).

Definition 2.3 For a particular fault mode, the stationary distribution of the FDI mode is
defined as
7r;~ £ tlim Pr{n(t) = j|lC(t) =i}, i € Sy, j € Sa.
—00
7r]i- can be calculated based on the generator matrix of n(t) when {(t)} = i [25]. Based on

Assumption 2.2, 7r]i- is used to approximate the following probability:
Pr{n(t) = jl((t) = i} = 7}, i€ S1. j € Sa. (2.5)

Remark 2.3 7TJ‘ reflects the detection precision of FDI. In the ideal case of perfect FDI
detection, 7r]‘ = O when i # j and 7t = 1. So this parameter gives a probabilistic measure

on FDI imperfectness.

Definition 2.4 Given XX (t) = in, i € S, the stationary probability that the FDI process
equals a specific mode is defined as
w; = ’lim Pr{n(t) = j|X®(t) = in}, i€ Sy, j€ S
. e
'wj can be computed based on the Bayes’ formula as shown below in the example of v in

the case of So = {0, 1}. If vy and ~o; are not equal to zero simultancously, then

w) = lim Pr{n(t) = 0X*(t) = On} = Jim Pr{n(t) = 0[¢(t) = 0, J(0,7(t)) < IS}

PO < Sl =0, C() = 0} Pr{n(t) =0, (1) = 0)
t=00 3 g, PT{J(t) < JRaIn(t) = k, ¢(t) = 0} Pr{n(t) = k, ((t) = 0}
- i 20 < Bl =) i) = V() =) PGl =)
t=00 3 e, Pr{J(0,n(t)) < JRuln(t) = k} Pr{n(t) = k|((t) = 0} Pr{¢(t) = 0}
e Pr{J() < Jaun(t) =0, ¢(t) = 0} Pr{n(t) = 0[¢(t) = 0}
t=00 3 s, Pr{J(t) < JhuIn(t) = k, ¢(t) = 0} Pr{n(¢) = k|¢(t) = 0}
Pr{J(0,0) < dex}lunt_,oo Pr{n(t) = 0[¢(t) = 0}
> kes, Pr{J(0, k) < J, } im0 Pr{n(t) = k|¢(t) = 0}
7007T8

— (2.6)
7007T8 + Y017y

Considering that all cases of n{t) = k form a partition of event space, k& € S,, Bayes’s

formula is used in the second line of the above derivations, where the conditional probability
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is converted to known mariginal and other conditional probabilities. If yoo = vo1 = 0, wgo

is defined as 7). The calculation procedures are similar for other values of 7 and j.

Definition 2.5 Given XR(t) = if, i € Sy, the stationary probability that the FDI process

equals a specific mode is defined as
vj» = tlim Pr{n(t) = j|XR(t) = i¢}, i€ Sy, j€ S
—o0

vt

; can be calculated in a similar way as wy.

Based on Assumption 2.2 and (2.5), w} and v} are used to approximate the following

probabilities:

Prin(t) = jIXR(t) = in} = wi, Pr{n(t) = jIX"(t) =ir} =0}, i€ Sy, j€ S
2.7)

Remark 2.4 w} and v}, are probabilistic estimates of FDI modes given the states of X*(t),
and determined by the control performance of each system regime and FDI imperfecmess

parameters, represented by v;; and 7r} respectively.

2.4.3 The semi-Markov kernel

The associated Markov-renewal process of XR(¢) is denoted by (Y, T, n € N). Y,
denotes the so-called embedded Markov chain, which gives the state sequence visited by
XR(t) consecutively, and T}, the transition time. The semi-Markov kernel of XR®(t) is
denoted by a matrix function (7, and its element gives one-step transition probability. For

example, Q(in, Jjn, t) is defined in the following equation, i, jn € S;, t € R, ¢t > 0:
QUin, Jn, t) £ Pr{Yoy1 = jn, Tuga — T < t|Yn = in},

the probability of transiting from iy to jy in one step with sojourn time 7T,,+) — 75, no
greater than ¢ [25].

According to Assumption 2.1, the state transitions of XR(t) are triggered by the mode
changes of ((t) or 7)(t), implying that faults, FDI decisions, and controller reconfigurations
have major effects on system performance and reliability. Hence the semi-Markov kernel
Q is essential for reliability evaluation. By taking the transition of X®(¢t) from Oy in Figure
2.1.(a) as an example, the main steps of calculating () are listed as follows and illustrated

in Figure 2.2.
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1) The FDI mode 7(¢) before transition is estimated using w; or u; based on the state of
XR(#).

2) Competition between ¢(¢) and n(t). The process that jumps first determines possible
transitional destination states. For example, if {(¢) jumps before 7(t), the destination
state is 1y or 1g; otherwise, On or Op. This competition probability can be calculated

using a property of exponential distributions.

3) The probability of satisfying control objectives at destination states is calculated by

using Yij-

4) By combining previous steps, the transition probability is calculated using the total

probability formula.

1y 4PH{JO, 7)< TE )
/ based on Y10, Y1t-
(t) jumps first:
1) =0kn
&) own / 1yorl, \pr[ JO, 7)) >J. )
1z |based on 1-v10, 1-y11.
Current state Competition: | Transitional
X(1) = 0, € vs.m(r) | destination states } Pr{ JO, 7(1)) < J°,, }
\ Estimate (1) / \ n(®) jumps first: based on Yoo, Yor.
0 WO Oyor0
based on wa. 0 NP0, )57
O¢ |based on 1-Yoo, 1-Yo1.

Figure 2.2: Calculation procedure of the semi-Markov kernel.

The property of exponential distributions mentioned in step 2) is given as follows:

Let X;,---, X, be independent random variables, with X; following an exponential
distribution with parameter A;, ¢ = 1 ~ n. Then the distribution of min(X;,--- , X,,) is
stilt exponentially distributed with parameter (A; + --- 4+ Ap), and the probability of X;
being the minimum is A;/(Ar + -+ + Ap), i =1~ n.

For example, suppose ((t) = 0 and 7(t) = O before transition. Let 7, denote the
sojourn time of (¢}, and 7, the sojourn time of 7)(t). Because of Markov process theory, 7¢

and 7, are exponentially distributed with parameters given in the generator matrix:
Pr{r, <t} =1—e %! Pr{r, <t} =1—¢ ot
Based on the above property,
Pr{min(r;, 7)) <t} =1~ ¢~ (@uo+350)t
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Q00
a0 + B9
0
Boo
oo + [580

The event 7 < 7, corresponds to ((t) transits before 7(t), and 7, < 7, means 7(t) transits

Pr{re <m} =

Pr{n, <7} =

first. This event appears to be a competition between two processes, and therefore the term
competition probability is used. The above three probabilities determine the competition
result and are used in calculating transition probabilities to different destination states, as
shown in (5.18) in the proof of Theorem 2.1.

Following the similar idea shown in Figure 2.2, the general results on calculating semi-

Markov kernel are given as follows:

Theorem 2.1 The semi-Markov kernel of X®(t) can be calculated by the following equa-

tions:
Doy Yy —k ,), — et Yy, =
Qlin. v, 1) = {HeS resie @0 ; 29
Z w}c“ B Ugi—(l —e (a11+ukk)t)7jk7 JE€ Sl\iy
kes, Qg + Lk
Z wk Z + 5 — et (1 — ), =14,
. . kk
Q(VI‘N,' .7Ft t) = k€52 ltb(l\lkl " —(Ov +ﬁi )t . y (29)
D wh e (1= e A (1~ ), G e S
\ k€S2 kk
Gi .
Z LA Z kl (“11+dkk)rmn(t Thd)) ”[ .] =1,
QUir, jn, t) = {JKkeS2 €Sy \k i J”j"" (2.10)
Z Uk e~ (it By Jmin(t, 1) )/k j € S1\i,
kES, (e77) + /@kk
~ (@i +8;,, )min(t, Thg) — o~ =
Z Uk Z o +Hl — € )(1 /’Ll)’ J %,
Q(iFy jFa t) — keSy . IGSZY\A kk ) ) (211)
Z Vg~ -+ i (1 - em(ai"+ﬁ:°")mm(t’ﬂ'd))(1 =Yk J € Si\i,
e |
Q(II.'Fv Fv t) = 1{t>Thd}(1 - Z(Q(IF’ jN7 Thd) + Q(iFv jF: ﬂ]d)))7 (212)
J€S5
QEF F t) = 1, QF jv, t)=Q(F, jr, ) =0, j€ 8, (2.13)

where t > 0,4,7 € Si, So\k £ {ala € Sy, a # k}, and S;\i 2 {blb € Sy, b # i}.
Sy, Sa, and S; denote the state spaces of (1), n(t), and XR(t) respectively. The indicator

function Lyogy =1 if t > Thq; otherwise, sy =0
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Proof: By applying the total probability formula and conditioning the probability on
FDI modes, the first case of (2.8) can be decomposed into three parts as shown in the fol-

lowing equation, where (Y;,,T,,) denotes the associated Markov renewal process of XR(¢):

QUin, in, t) £ Pr{Yoi1 = in, Thy1 — Tn < t|Yn = in}

= Z Pr{”](ﬂl) - letn = 2'N}PI‘{Y;L-{J = iN‘ Tn+1 - Tn < tlY;I = IN, n(Tn) = k}
k€S,

= Y Pr{n(Tn) = klYn = in} Pr{J (i, n(T41)) < Jhrar {(Tng) =1,
k€S,
Togr — Tn < Y5 = in, 9(Tn) = k}

= Y Pr(n(T) =kYa =i} Y Pr{¢(Tun) =i n(Tur) =1,

k€S leS\k
Thy1 — Tn S Y, =in, 0(Th) = k} Pr{J(i, n(Th41)) < Jélax'C(Tnﬁ—l) =1,

n(TTH—l) = l7 Tn+] =T <t,Yn=1n, U(Tn) = k}
= Y Pr{n(Ty) =klYa=in} > Pr{{(Tnp) =i, n(Tu1) =1,

kEeS, 1632\1(‘
To1 — To S HC(TR) =14, n(Tn) = k}Pr{J (4, 1) < Jhu}- (2.14)

The first and last terms in (2.14) can be approximated by the corresponding stationary

probabilities:
Pr{n(Ty) = k|Y, = in} = wi, Pr{J(i, ) < Janax} =~ Yil- (2.15)
The second term in (2.14) is equal to the competition probability:

Pr{C(Tn+1) =1, 77(Tn+1) =1, Thy1 —Tn < tIC(Tn) =1, n(T,) = k}

O — (i +84
_ L (1 — e~ (uitB)ty 2.16
Qg + ﬁik( ) ( )

Substitute (2.15)-(2.16) to (2.14), and the first case of (2.8) follows. The second case of

(2.8) can be proved in similar procedure considering that the mode of {(t) changes instead
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and the derivation is given as follows:

Q(iNv jN) t) £ Pr{Yn+l = .jNv Tn+1 - 7;1 S tIYn = 7'N}

= Z Pr{n(T,) = kY, = in} Pr{J(j. n(Thp1)) < T ((Tng1) = 5,
keS,
Tht1 —Tn < t]Yn = 'iN‘77(Tn) = k}

= Y Pr{n(Tn) = kIYn = in} Pr{¢(Tns1) = 4, n(Tnt1) = K,
k€S

Tn+1 - Tn < tD,n = iN, n(Tn) = k} PI‘{J(j, 77(Tn+1)) < Jrjl;axIC(Tn+1) = .7
7](Tn+1) =k Tht1 — T <t, Yo =N, TI(Tn) = k}

= Z Pr{n(T,) = kYn = in} Pr{{(Tn+1) = 4, n(Tht1) = K,
keS:

Turt — T < tQ(Tn) = in,(T) = K} Pr{J (4. k) < Jh}

= kz_;z uk#”ﬁu(l — et Aty j e Si\i. (2.17)

The proof of (2.9) is similar and the details are omitted.

For (2.10)-(2.12), XR(t) transits from if, and these probabilities depend on Tyg. If
t < Thq, they can be calculated in a similar way as that of in; if ¢ > Thy, Q(ir, jn, t) and
Q(ir, jr, t) maintain the constant values of Q(if, jn. Tha) and Q(if, jr, Tha) respectively
while X®(¢) transits to F. Therefore, (2.10)-(2.11) have similar expressions as (2.8)-(2.9)
with ¢ replaced by min(t, Thq) [50]). Q(iF, F, t) becomes nonzero only if ¢ > Tyq, and it is
complementary to the transition probability from if to other states within 7Tj4. The indicator
function 1y 7, describes this behavior, and (2.12) follows. (2.13) is obvious considering
that F is absorbing, B

In the above derivation, each element of semi-Markov kernel is decomposed into three
parts: FDI mode estimation, competition probability, and probabilistic performance estima-
tion, and each part can be approximated or calculated using the probabilistic parameters.
The effects of hard deadline are described by min(¢, Thq) and 14, 7,3

Once the semi-Markov kernel is established, R(¢) and other reliability criteria, such as
Mean Time To Failure (MTTF), are readily computed [27]. Considering that the state F is
absorbing, if the initial state is Oy, the reliability function R(t) = 1 — P(0On, F, t), where
the transition probability function from Oy to F is denoted by P(Oy, F, t) £ Pr{X Rty =
F|{X(0) = On}. Compared with Q(On, F, t), P(On, F, ¢) may involve multiple transitions
but Q(On, F, t) is for one transition only.

The main procedure of evaluating reliability for FTCS’s is summarized as follows:
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1) Given the Markov model (2.2) of FTCS’s, the states of XR(¢t) are defined as in Sec-

tion 2.4.1 to reflect degraded control performance under each fault mode.

2) Continuous-state dynamics analysis. For fixed {(t) and n(t), the system in (2.2) is
reduced to M({(t},7n{t)), and the robust control performance of this regime model
under probabilistic uncertainties is represented by a probabilistic parameter «;; in

Definition 2.4.

3) Discrete-mode dynamics analysis. FDI imperfectness and its relations with the states

of XR(t) are described by the probabilistic parameters in Definition 2.3 through 2.5.

4) The continuous-state and discrete-mode dynamics are combined to construct the
semi-Markov kernel of X®(t) using Theorem 2.1, and R(t) is calculated by solv-
ing the transition probabilities of X®(¢).

2.5 An illustrative example

A control problem of F-14 aircraft was presented in [47], and also used as a demonstration
example in MATLAB® Robust Control Toolbox'. This problem considers the design of
a lateral-directional axis controller during powered approach to a carrier landing with two
command inputs from the pilot: lateral stick and rudder pedal. At an angle-of-attack of
10.5 degree and airspeed of 140 knots, the nominal linearized F-14 model has four states:
lateral velocity, yaw rate, roll rate, and roll angle, denoted by v, r, p, and ¢ respectively;
two control inputs, differential stabilizer deflection and rudder deflection, denoted by dgsian
and d,q respectively; and four outputs: roll rate, yaw rate, lateral acceleration, and side-slip
angle, denoted by p, 7, yac, and /3 respectively. These variables are related by the following

state-space equations:

Tr1s = Ar14zria + Briauria, yria = Criaxria + Driauria,

where zp14 = [ 7 p @|7, uris = [Odstab drua]” s Yr1a = [F DT Yac)”, and

~0.1160 ~227.2806 43.0223 31.6347 0.0622  0.1013
A | 00027 —02590  —0.1445 0 B, | 00053 —0.0112
FI4 =1 _0.0211 06703  —1.3649 0 PRI 00467 0.0036

0 0.1853 1.0000 0 0 0

'MATLAB and Robust Control Toolbox are the trademarks of The MathWorks, Inc.
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0.2469 0 0 0

oo 0 0 57.2958 0 1o 0
Fi4 = 0 57.2958 0 0
0

—0.0028 ~0.0079 0.0511 0.0029 0.0023

The control objectives are to have handling quality (HQ) responses from lateral stick

to roll rate p and from rudder pedal to side-slip angle 3 match the first- and second-order

: ) _ 1.252
responses respectively: 5535 and —2.5 TSI E
“true” airplane
IR IR szEem
Win AG B >
lateral stick —l : B
> 5 A r
md:ac]r > K dstab - F—-14n°m p
pe * 5 AR yac
‘—' wind gust “
O« disturbance
~ X
A
Oyt
L le——
p HQ Model W, [ noise
2 . &
5 »O)
s+2 V-
1.25° »C
_2'552+2.55+1.251 7\5
¢ W, J—
f HQ Model 4 v,

Figure 2.3: Control design diagram for F-14 lateral axis.

The system block diagram is shown in Figure 2.3, where F-14,, represents the nominal
linearized F-14 model, and Ag and Ap actuator models. e, and e represent the weighted
model matching errors. Actuator energy is described by ey, and noise is added to the
measured output after anti-aliasing filters. AG and W, represent the multiplicative uncer-
tainty and its weighting function respectively. The transfer function AG is assumed to be
stable and unknown, except for being uniformly distributed within the norm-bounded set
of IAG]le < 1. Note that this uncertainty description cannot be represented by uncer-
tainty matrix A in (2.2); however, the estimation of +;; can still be estimated by generating
random samples of AG, and the reliability analysis follows identical procedures.

By incorporating performance weighting functions, Wy, Wy, Wy, and W, a general-
ized plant with 26th order can be constructed from Figure 2.3, corresponding to the nominal

fault-free regime model M(¢(1), n(t)) in (2.2) for {(t) = n(t) = 0. The control objectives
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are converted to closed-loop Hy, norm, |G (C(t), n(t), s)|loo, Where w is the vector of
lateral stick and rudder pedal, and z = [6;1; eg el J¥. An Hy, controller Ky(s) is designed
for the nominal fault-free model, which achieves Ho, norm of 0.6671. For brevity, the pa-
rameters of the generalized plant and controller are not given here. See [47] for the details
of design procedure.

Consider two fault scenarios that the effectiveness of two actuators are reduced by half
respectively, denoted by B}"M = Brus [0(')5 (1)] and Bﬁ 4+ = Brua [(1) 005}, where BQM
and Bf3, denote the values of Br)4 under faults.

Following similar procedure as the fault-free mode, the generalized plants under faults
can be derived, corresponding to the faulty regime models in (2.2). And other two con-
trollers, /{3 (s) and Ky(s), are designed accordingly for the plant under two actuator faults
respectively, which achieve H, norms of 1.0558 and 0.7021 respectively.

The performance evaluation function is defined as

1, internally unstable at ¢,

J(C(@), n(t)) = p(M(C(2), n(t)) = { Cew (W) Moe -
lJlllei((cgi;),(rl()i)s,ll)l]w , internally stable at ¢,

and JO,, = 0.5455, JL.. = J2., = 0.6000. Note that performance degradation has been
considered since .J},, and J2,, are greater than JO,,. The hard deadline T4 is assumed to
be 1 minute.

¢(t) and 7(t) are taking values from S; = S = {0, 1, 2} in which the three modes
denote fault-free mode and the loss of effectiveness in the first and second actuator respec-
tively. The generator matrices of these Markov processes are given as follows to describe

fault occurrences and FDI results:

[—0.003 0.001 0.002] [—0.02 001  0.01]
H; = 0 0 0 |,Hy=| 2 -201 001 |,
0 0 0 | | 2 001 -—2.01
[-201 2 0.01] [—2.01 001 2
Hy=|001 -002 001 |,H;=]001 -201 2 |[.
[0.01 2 201 | 001 0.01 —0.02]

The time unit of transition rates is selected as minute. According to H¢, the mean occur-
rence time is 1000 minutes for the first fault mode and 500 minutes for the second fault,
and both fault modes are absorbing. For FDI modes, according to the first row of H?, when
the aircraft is in fault-free mode, the mean time of false alarms i1s 100 minutes; and accord-
ing to its second row, the mean time to return to correct detection after a false alarm is 0.5

minutes. H, and H? can be interpreted similarly.
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Following the definitions given in Section 2.4.2, four probabilistic parameters are cal-

culated as follows:

Yoo Yor  “Yo2 0.8600 0 0
Y& [v0 e = 0 0.7000 0 ,
Y20 Y21 Y22 0 0 0.9600

7y 7} 7 0.9901 0.0050 0.0050
n2 [n} 7} =il = [0.0050 0.9901 0.0050],
2 nd i 0.0050 0.0050 0.9901

w) wi w) 100 vy vy 3 0.9333 0.0333 0.0333
wE (wl wl wll =101 0,v&|v} o} v} =]00161 09677 0.0161

[V

wl wi wl 0 01 vg v2 vg 0.1000 0.1000 0.8000

~ is calculated based on the closed-loop plant regime models of this F-14 aircraft and H o
norm objective by using a randomized algorithm and taking the random samples of AG
within its bounded set (Tempo er al., 1998). According to v, the probability of satisfying
the bounds of H, norm under each mode is 0.86, 0.7, and 0.9 respectively if FDI gives
correct detection. According to 7, the stationary probability of correct detection is 0.9901.
According to w, when the bounds of H, norm are satisfied, the probability that the FDI
gives correct detection are 1, but FDI may have given wrong estimates of fault modes when
the bounds of H ., norm are not satisfied according to v.

The state space of X R (t) contains 7 states for this system: S; = {O, Of, Ix, Lf, 2n, 2F,
F}. With the above probabilistic parameters calculated from the F-14 aircraft model, the
semi-Markov kernel of XR(t) for reliability evaluation is obtained by following the proce-
dure in Section 2.4.3. The transition probabilities and reliability curve are then calculated
as shown in Figure 2.4. Each transition probability curve in Figure 2.4 gives the probability
that X®(t) is in each state at ¢ starting from the initial state On. From the curves of reliabil-
ity and the transition probability to state F, it is clear that system failure probability remains
at 0 within Tiq4, a finding consistent with our reliability definition as temporal violation of
control objectives is not deemed as a failure. We also find P(Oy, 2, t) is much larger than
P(On, 1N, t), afinding consistent with H¢(1,3) > H¢(1,2) and yo3 > 1.

According to Figure 2.4, the probability of transiting to state O is much higher than
those to 1f and 2. So X R(t) transits to F mainly from Og. This implies that the false alarm
of FDI at the fault-free mode is more likely the reason for system failure than fault occur-
rences themselves, a finding useful for system reliability improvement. To verify this find-
ing, the false alarm rates for ((t) = 0 is reduced by half by setting H,‘;(l, 2) = H,?(l, 3) =
.005 and Hg(l, 1) = —0.01. The transition probability and reliability curves for the sys-

tem after reducing false alarms are shown in Figure 2.5. As we expected, P(On, O, t)
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Figure 2.4: Transition probability and reliability function.

is reduced, and R(t) is improved. We may also calculate and compare the MTTF of both
cases: the MTTF of the system before reducing FDI false alarms is 47.3415 minutes while
the MTTF after reducing false alarms is 80.9144 minutes.

On the other hand, the sensitivity of reliability index with respect to control performance
can also be demonstrated. Let probabilistic parameters be improved to yop = 111 = Y22 =
0.99. Based on the definitions of iy in (5.4) and ;5 in (2.4), we expect increases in transition
probabilities to in, 7 € 5. The transition probability and reliability curves for FTCS’s
with improved control performance are shown in Figure 2.6. Compared with Figure 2.4,
P(On, On, t), P(ON, 1In, t), and P(On, 2N, t) are clearly improved. As a result, the
reliability curve is also improved and MTTF increases to 76.7722 minutes compared to the
original MTTF of 47.3415 minutes. So the transition probability of X® () can not only give

reliability evaluation but also help to find out the effective solution to improve reliability.

2.6 Conclusions

A reliability evaluation approach for active FTCS’s is presented in this chapter. The in-

dex reflects the characteristics of FTCS’s, including a model-based control performance

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



0.01

poop T s° ]
S 08 I 30008
é 0.7 g
& o
0 5 10 15 20 0 5 10 15 20
t t
x10™ x10”

P(On,1n.t)
~N
P(ON,lp,t)
o
(<]

P(On,2n,t)
P(On,2F,t)

0 5 10 15 20 0 5 10 15 20
t t
— 1
- 02
= . = o9
z 1 54
g 08
%1 5 10 15 20 01 5 10 15 20
t/minute t/minute

Figure 2.5: Transition probability and reliability function with improved FDI scheme.

and hard deadline concept. The semi-Markov model is constructed based four probabilistic
parameters, and reliability can be thereby calculated. The transition probabilities and reli-
ability function provide valuable information on the long-term safety behavior of FTCS’s.
Moreover, the effects of FDI and control performance on reliability are demonstrated in an
illustrative example. With this reliability index and modeling method available, reliability-

based controller can be designed to optimize overall system reliability.
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Chapter 3

Probabilistic controller design via
stabilizing controller
parameterization™

3.1 Introduction

This chapter addresses the design of FTCS’s in the following configuration: Consider a
plant with a finite set of fault modes Si, and G = {G; : ¢ € S;} represents the set of
dynamical plant models under various fault modes. The evolution of these modes can be
represented by a Markov process. Usually fault mode is not directly known to controller,
and an FDI scheme is used to generate estimates from a finite set S3. But FDI modes
may deviate from true fault modes with an error probability, so another Markov process is
adopted to represent FDI modes. The reconfigurable controller denoted by K = {K; : j €
Sy} is assumed to have a switching structure, and K is engaged for the plant when the FDI
is in mode j.

This stochastic FTC model is preferable to deterministic ones when considering a prob-
abilistic performance criterion. In contrast to the assumption of known regime or fault
modes in regular Jump Linear Systems (JLS’s), this model assumes unknown fault modes
and uses an additional Markov process to represent its estimate, the FDI mode. If FDI
scheme gives a wrong detection mode j, K; may be used for plant model G;, i # j, even
though K is originally designed for G;. As a result of this ditference, the design of FTCS’s
is more challenging, and many existing methods for JLS’s cannot be directly applied, €.g.,
[51, 52, 53, 54]. The related problem in JLS’s to this FTC configuration is the partial

observation problem [55], which used conditional probability as the estimation precision

*Originally published as: Hongbin Li and Qing Zhao, *“ Probabilistic Design of Fault Tolerant Control via
Parameterization”, Circuits, Systems, and Signal Processing, vol. 26, no. 3, pp. 325-351, 2007.
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of regime modes but estimation delay cannot be described. In the literature of FTCS’s,
Mariton studied the effects of this FDI imperfection including detection delay on system
stability [6]; Srichander and Walker developed the conditions for exponential mean-square
stability [15]; and much of the latest work was also based on this model, such as output
feedback stabilization [56], H; control [57], and the H,, control of a sampled-data system
[58]. However, these results considered control objectives only, and system reliability index
was not discussed.

In our problem, in addition to stability requirement, another design objective ¥(K) of
closed-loop system is evaluated for each controller K via a numerical method. The de-
sign goal is to find the optimal controller K* that can optimize ¢/(K) subject to stability
constraint. The motivation is to design FTCS’s based on the reliability index presented in
Chapter 2, which is evaluated based on a semi-Markov model. Owing to the numerical pro-
cedures of building and solving stochastic reliability models, reliability criteria cannot be
written as analytical functions of K in general. To overcome this difficulty, stabilizing con-
troller parameterization and randomization-based optimization algorithms are proposed for
FTCS’s in this chapter to find the statistically optimal controller with the highest reliability.

Controller parameterization plays an important role in systems and control theory, which
can facilitate the design of optimal controller by using Linear Matrix Inequalities (LMI’s) or
other classical optimization techniques. For linear systems, many parameterization results
have been reported, such as Youla parameterization [59], H,, controller parameterization
by Riccati equations and by LMI’s [60, 61, 62], covariance controller parameterization
[63, 64], and stabilizing controller parameterization using quadratic Lyapunov functions
[65]. However, to the best of authors’ knowledge, no controller parameterization result has
been reported for FTCS’s.

Classical optimization techniques and LMI methods usually require objective function
¥(+) and parameterization expression to be affine with respect to free parameters [66]. How-
ever, in our problem, even the analytical expression of ¢(-) is not available, and a numerical
method has to be used to calculate 1(-). In this case, some statistical methods, such as the
randomized algorithms, are uscful to perform the design [67, 46, 54].

To recapitulate, this chapter presents a parameterization result of stabilizing controllers
for stochastic FTCS’s and a randomization-based optimization method to search for the sta-
tistically optimal controller with respect to a numerical design objective, e.g., a reliability
criterion. The remainder of this chapter is organized as follows: Section 3.2 states sys-

tem model and problem formulation; Section 3.3 provides some mathematical preliminar-
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ies; Sections 3.4 through 3.7 present the main results: stabilization conditions, controller
parameterization, the analysis of stabilizing controller set, and the synthesis of generator

matrices; and an example is given in Section 3.8 followed by conclusions in Section 3.9.

3.2 Problem formulation

The general Markov dynamical model of FTCS’s is given by 2.2 in Chapter 2. When consid-
ering internal stability, it can be reduced to the following equation by removing exogenous

input and output equations:

£(t) = A(C(t), A)x(t) + B(C(1), A)u(n(t), b), G.1

where z(t) € R"™ and u(n(t),t) € R™ denote system state and control input respec-
tively, and A(((¢), A) and B(((t), A) system matrices with appropriate dimensions. (3.1)
represent a set of linear dynamical models G = {G; : ¢ € S}, where G; denotes
the dynamical model when ((¢) = 4. ({(t) and n(¢) are assumed to be two separate
continuous-time Markov processes with finite state spaces S; = {0,1,2,---, N7} and
Sy = {0,1,2,--- , Ny} to represent system faults and FDI results respectively. Detailed
descriptions have been provided in Chapter 2 and are omitted here for brevity.

The closed-loop system structure is shown in Figure 3.1. Here we consider static state-
feedback controller, u(n(t),t) = K(n(t))z(t). For simplicity, we write u;(t) = K;z(t)
for n(t) = j € Sy. The controller is composed of a set of static gains, denoted by K =
{Ko, K1, -+ . Kn,}. When 5(t) indicates fault mode ¢, K; is in use. In practice, it is
impossible to have a “perfect” FDI that always instantaneously indicates the correct fault
mode. Hence, there may be mismatch between 7(t) and {(¢). In this case, finding K to
achieve nominal closed-loop stability (when A = 0) is the first concern in the design of

FTCS’s.

Remark 3.1 The interaction between ((t) and n(t) causes the major difficulty in the stabi-
lizing design of FTCS's. This is the main difference between FTCS's and regular JLS's.

Such a stabilizing controller K is usually not unique. In fact, the set of all stabilizing
controliers can be found via parameterization. When considering a more specific perfor-
mance criterion ¢(K), it is desirable to obtain the optimal stabilizing controller K* with
respect to ¥/(K). This leads to the second stage of design. In this chapter, such a ¥/(K) is
chosen as a reliability criterion.

A stochastic process model is constructed in Chapter 2 to describe the evolution of con-

trol performance under fault occurrences and controller reconfigurations. R(t) and MTTF

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



o

Figure 3.1: The system structure.

can be calculated based on the transition and stationary probabilities of the stochastic pro-
cess. However, neither of these two reliability criteria has analytic function expressions
available. In this chapter, ¢*(K) is selected as the scalar reliability index, MTTF.

Based on such a ¢(K), a randomization procedure is available to find a statistical opti-

mum K*, an estimate of K*, such that
Pr{Pr{p(K") > p(K")} < e} > 1, (32)

where € € (0,1) and & € (0, 1) are precision parameters of the estimate.

The main procedure of the randomized algorithm presented in [46] is summarized as
follows, where the key step is to find a parameterization set of stabilizing controllers:
K 2 {All stabilizing K} = {K|K = ¢(z), z € 2}, where p : @ — K denotes the
parameterization mapping from a free parameter z within a bounded set () to a stabilizing

controller K.

Algorithm 3.1 - estimate the statistical optimum

1) Determine sample quantity M > T/%Jli—e) based on the precision parameters € and §

[46].
2) Generate M independent samples z(1) | - .- | (M) in O according to the distribution
of z. Calculate the corresponding controllers K = o(2()), i =1,..-  M;.

3) Evaluate the performance value at each sample controller K():
i = 9(KD) = y(pz")), i=1,--- M.

Let zp denote the parameter such that ¢)(¢(z0)) = maxj<i<ar, ¥i. Then K* =
¢(20)-

The remainder is then focused on developing a parameterization method for Algorithm 3.1.

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



3.3 Preliminaries

The following notation is used throughout the chapter: A~ means (4%)~!. AL denotes a
matrix with the following properties: N'(4A+) = R(A) and A+ A7 > 0, where A'(A) and
R(A) denote the null and range spaces of A respectively. £ is used for notation definitions.
| - || denotes the Euclidean norm for vectors and the largest singular value for matrices.
R denotes the set of real numbers, and N the set of nonnegative integers. For notational
simplicity, in (3.1), for ¢(t) = 4, n(t) = j, i € Sy, j € Sa, denote A; = A(C(t)), B; &
B((1)), and u; (1) £ u(n(t), 1)

Definition 3.1 (EMS stability [15]) An FTCS is said to be Exponentially Mean-Square
(EMS) stable if for any initial Markov states at t = 0, ((0) and 1(0), there exist a > 0,
b > 0, and some number 6(¢(0),n(0)) > 0, such that when ||z(0)| < §(¢(0),7(0)), the
Jollowing inequality holds for t > 0:

E{lz(®)I’} < bllz(0)]?e™*,
where E{-} denotes the mathematical expectation.

Lemma 3.1 (Stability conditions [15]) An FTCS in (3.1) is stabilized in the sense of EMS

stability by the static state-feedback control law
ui(t) = Kz(t), i € Sy,

ifand only if for any given k € Sy and i € Sy, there exist positive-definite matrices Py, > 0,
satisfying
AP+ Pudic+ Y PP+ D oakPy <0,
JES2.JF1 JES1,I#k
where
A 2 A+ BuJ; —05 Y 85 -05 Y
JES2,5#1 €S, j#k

Lemma 3.1 can be used for stability analysis for a given state-feedback controller, but it
is difficult to solve K directly using these inequalities. The main difficulty lies in the fact
that the number of gains £(; is less than that of inequalities involved in the above condition
such that each XK; should satisfy multiple inequalities simultaneously. In contrast, regular
JLS’s do not have this problem, and the controller can be solved using LMI's [52]. The
partial observation problem of JLS considered in [68] has similar form as in FTCS’s but

only a sufficient condition was derived. See [69, 57] for more discussions.
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The following two lemmas are introduced for the purpose of deriving stabilization con-

ditions and a parameterization set.

Lemma 3.2 (Finsler’s theorem [62, 64]) Let matrices M € R™™ and Q@ € R™™" be
given, and assume that rank(M) < nand Q = Q. Let (My,, My) be any full rank factors
of M such that M = M; My and rank(M,) = rank(Mp) = rank(M). Then

MQMIT <0

ifand only if
pMMT —Q >0

Jfor some . € R. If the above condition holds, all such u are given by
K > Hmin £ /\max[‘N(Q - QA'I_LT(A{LQM_LT)~1‘}LILQ)NT]a
where Amax (-) denotes the largest eigenvalue, and N & (MgM})(~1/2).

Lemma 3.3 (Projection lemma and parameterization set) Let matrices M € R"™*™, and

Q = QT € R™*™ be given. The following two statements are equivalent:

1) There exists a matrix X satisfying
MX+MX)'+@Q<o. (3.3)
2) The following condition holds:
MA*QM*T <0 or MMT > 0. (3.4)
If statement 2) holds, all matrices X satisfying statement 1) are given by
X =g(L,plM, Q)& —p'MT + p~2L(p T MMT - Q)'/?, (3.5)

where L is an arbitrary matrix satisfying | L|| < 1, and p € (0, pmax) a positive scalar. L
and p are immediate variables of function g, and the symbol * |’ in (3.5) is used to indicate

the dependence of X on M and Q.
pmax = a~ ' is calculated by solving the following LMI problem:

Min{a,l\v}a
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subject to

a > 0,
—al X
XT Mx+Mx)T+g <Y (3.6)
Moreover, p € (0, pmax) if and only if it satisfies
p MM —Q >0, (3.7)

which ensures that (p~*M MY — Q)'/2 exists and that (3.5) is valid.

Proof: The equivalence between statements 1) and 2) is a special form of the well-
known Projection Lemma [66]. Here, we prove (3.5) only. When the statements 1) and 2)
hold, it is equivalent to

MX+MX)T +pxTX < -@Q, (3.8)

for some scalar p > 0. Add p~*M M7 to both sides, complete the square in the left hand
side of (3.8), and we have

(P M+ XD)p(p M7 + X) < p7'MMT — Q. (3.9)

Obviously, (3.9) holds if and only if p"!M M7 — Q > 0 as the left hand side of (3.9) is

positive semi-definite. By taking the matrix square root, (3.9) is equivalent to
(p*MMT — Q) Y2(Mp™ + XD)p(p ' MT + X) (o' MMT — Q)12 < 1. (3.10)
Define L £ p12(p ' MT 4+ X)(p"'MM" — Q)~/2. Then ||L|| < 1 and
X=—p "MT 4 p2L(p~ ' MMT — Q)12

To determine the upper bound of p, convert (3.8) to the following matrix inequality by

Schur’s complement lemma [66]:

1 X <0
XT MX+MX)T+Q '

Define a new decision variable a £ p~! > 0, and the minimum value of a gives the upper
bound pax. Moreover, p € (0, pmax) ensures p~ M M? — @ > 0 owing to (3.9). B
Lemma 3.3 is adopted from Corollary 2.3.9 in [64] with modifications to make it suit-

able for our problem. For a given inequality in the form of (3.3), Lemma 3.3 provides a

solvability condition and a parameterization set of all its solutions:

g]\'[,Q = {XIX = g(L,pI[\/I,Q), “L” < 1’ r? € (0) pmax)}v (311)

where g(L, p|M, Q) is defined in (3.5).
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3.4 Stabilization conditions

Let us begin with the case that the state spaces of ((¢) and 5(t), S; and Sy, are both equal
to {0, 1}, where ‘0" denotes the fault-free situation and ‘1’ the faulty mode. This type of
FTCS’s is referred to as the basic case. The stochastic behavior of ((¢) is governed by
its generator matrix F'; when ((t) = 0 or I, the behavior of n(t) is determined by the
corresponding generator matrix H° or H' [25, 70].

The generator matrices are composed of the transition rates of ¢(t) and 7(t), a;; and
which have the following forms for the basic case:

0 0 1 1
SRl R e AR e ]

For the system in (3.1), by Lemma 3.1, {Kj, K} stabilizes the FTCS’s in the sense of

;1,_7,

EMS stability if and only if there exist positive definite matrices Fjy, i € Sy, k € S, such

that the following inequalities hold simultaneously:

PooBoKo + (PooBoKo)T + Qoo < 0, (3.12)
PoBoKq + PloB()I&l) +Q10 < 0, (3.13)
Py B1Ko + (PuB1Ko)" + Qo1 < 0, (3.14)
PuBi K+ (PuBiK)T +Qu < 0, (3.15)
where Q;, 71 € Sa, k € Sy, 1s defined as
Qik 2 (Ap — 0505, 5y — 0501-1))" P + P Ax — 0585,
—0.504(1-k)) + B(1 ik Pici=k) + @k(1-k) P —k)- (3.16)

The set of all stabilizing controllers can be captured naturally by posing a matrix inequality
problem (3.12)-(3.15) for { Ky, K1 }. Note that both K and K appear in two inequalities.
So the intersection of the solution sets of (3.12) and (3.14) gives the set of Ky, and A; can
be obtained in a similar way from (3.13) and (3.15).

Lemma 3.4 For the basic case of FTCS’s in (3.1), if By and By are row rank deficient, then
there exists a stabilizing state-feedback controller { Ky, K} in the sense of EMS stability
only if there exist positive-definite matrices Py, k € S1 = {0,1}, i € Sy = {0,1}, such
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that

(PooBo)* Qoo(PooBo)*" < 0, (3.17)
(PioBo)* Qio(PioBo)*" < 0, (3.18)
(PB1)"Qui(PnB1)T < 0, (3.19)
(PuB)*Qu(PuB)'T < 0, (3.20)

where Q. is defined in (3.16). If By has full row rank, (3.17) and (3.18) are removed from
the conditions; if By has full row rank, (3.19) and (3.20) are removed.

Proof: Based on Lemma 3.3, each inequality in (3.12)-(3.15) has feasible solution Kj
or K, if and only if the the corresponding condition in (3.17)-(3.20) holds. Considering that
(3.12)-(3.15) must hold simultaneously for system stability, (3.17)-(3.20) are only necessary
conditions. If By has full row rank, (3.12) and (3.13) always have feasible solutions for any
Poo, Pio, Qoo and Q1g, so (3.17) and (3.18) are removed; similarly, if By has full row rank,
(3.19) and (3.20) are removed. B

This lemma is derived based on Lemma 3.1, and the proof is given in the appendix. By

converting the inequalities in Lemma 3.4 to LMI’s, we have the following theorem.

Theorem 3.1 For the basic case of FTCS’s in (3.1), if By and By are row rank deficient,
and all the transition rates of ((t) and n(t) are nonzero, then there exist stabilizing state-
feedback controllers in the sense of EMS stability only if there exist positive-definite matri-

ces Py, positive scalars py., k € Sy = {0,1}, i € Sy = {0, 1}, such that

[Pyt ALy + Ao Pyg' — oo BoBE Fyp! Pg' ]

Poot —-Pil/88, 0 <0, (3.21)
i Py 0 — Py Joxon
Ppl—ol/i% + “il()Pl_{)l _— ILIOBOB(’{ PII()I Pl—ol 1

Pﬂ)l —Py /8% ? <0, (3.22)
L Py 0 -y /o ]
(Pt AL + An Py — o BABT B! Pyt ]

Po_li -Pt/84 9 <0, (3.23)
i Py 0 —Feo /o]
PAT + AuPl;ﬁ — puuB1BY Pgﬁ Pt

Py —Fy' /Blo 0 <0, (3.24)
L Py 0 =P fong]

where Ay, & Ay — 0.5;?{‘%1_” ~ 0.5y k). In case that By has full row rank, (3.21)
and (3.22) are removed from the conditions, if By has full row rank, (3.23) and (3.24) are
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removed. If some transition rates are zero, the corresponding rows and columns containing

those zero transition rates are removed from the above matrices.

Proof: Take (3.17) as an example, and the derivations are similar for the other three in-
equalities. As Pyo > 0and (PooBo)‘L((PooBo)L)T > (), both (PooBo)J‘ and (P()OB())LPO()
have full row rank. Considering ( PyoBg)* PaoBo = 0 and (PyoBo)*t Poo = B@L, we have

(PooBo)t = By Pyt

So (3.17) is equivalent to
By Pog' Qoo Py BT < 0.

Substitute Qgo and denote Agg = Ay — 0.5535; — 0.5a; to obtain
B (Pyy! Ay + Aoo Py + 31 Poo' ProPyg + o1 Poy' Por Pogt) By T < 0.
By Lemma 3.2, this inequality is equivalent to
Pyt Ay + Ao Py + 851 g’ PioPg' + ao1 Pyg' Por Py < pooBoBg (3.25)
where j1g9 € R. Pre- and post-multiply Py,
ALy Poo + PooAoo + B0y Pro + 01 Por < p00PooBoBg Poo. (3.26)

According to Lemma 3.2, all feasible pgop are given by pgo > foomin, Where ftgomin €an
be calculated by the parameters in the inequality. Therefore, if the feasible set of pugg is
non-empty, there must be a feasible pgg > 0. Furthermore, we need to consider only the
positive case of jigo to obtain all the feasible F;; owing to the following reasoning:

Suppose for any two feasible values of pgg, 41 < 0 and po > 0, all the corresponding
feasible solutions of P;; in (3.25), 4,j € {0,1}, are denoted by P; and P,. For every
element P;; € Py, 1,j € {0,1}, (3.25) holds for this P;; and ;. Again, based on Lemma
3.2, this element P;;, 7, j € {0, 1}, is also feasible for (3.25) corresponding to p2 as pg > g
and thereby belongs to Py. Therefore, P; C P,, which means that the feasible solution of
P;;, 4,5 € {0,1}, for (3.25) when o < 0 is a subset of those when 1 > 0, and we need to
consider this positive case only.

Suppose that the transition rates 33, > 0 and «p; > 0. By Schur’s complement lemma

[66], (3.25) is equivalent to

Poy Ay + AooPO? — pooBoBY POI“U; ) P!
P -P:15 0 < 0. 327)
Poﬂl 100 01 Pl
0o o1 /o1
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If some transition rate is zero, the corresponding term involving zero rate in (3.25) is re-
moved, and so are the corresponding row and column in (3.27). For example, if ag; = 0,
(3.27) becomes
Pt AL + Ao Pyy' — pooBoBY P!
Py - Py /65,

Similarly, (3.18)-(3.20) can also be converted to LMI’s that are affine in PO_OI, P(ﬁl, Pl"ol, Pﬁl ,

< 0.

1005 101, (410, and £ B

Remark 3.2 The above results are for the basic case of FTCS'’s, and can be readily mod-
ified for the cases of multiple fault modes. For example, if S; = S = {0, 1,2}, to ensure

stochastic stability, there are 9 inequalities in Theorem 3.1, and a typical one is

Poo' ATy PooPog' Ao FPog' — 1ooBoBg Py Py Py’ Py
Pyt . 0 0 0
P061 0 _P261/ﬂ82 0 0
Pyt 0 0 Pyt /ag 0
Pyt 0 0 0 Pyt /e
<0.

Theorem 3.1 gives conditions on P, 4, j € {0, 1}, to ensure that each single inequality
in (3.17)-(3.20) has feasible solutions. The stabilizing controller K = {Kj, K1} satis-
fying these 4 inequalities simultaneously can be generated by a randomization procedure

presented in the next section.

3.5 Controller parameterization

Recall Lemma 3.3 and (3.11), and denote

KP £ {{Ko, K1 }|Ko € WooN"Wor, K1 € WionWri, Wij 2 G, 0., 1,7 € {0,1}},

(3.28)
where P £ {P;;, i,j € {0,1}}. So KF is the set of stabilizing controllers associated with
P. Let P £ {P|P satisfies Theorem 3.1}, the set of all P satisfying Theorem 3.1. P € P

ensures that W;; # (), where () denotes the empty set. The set of all stabilizing controllers

is denoted as

K £ {All stabilizing K} = |_J K. (3.29)
PeP
Figure 3.2 illustrates the relationship between P and XC: Each K € K corresponds to some

P ¢ P; if KP # 0, all its elements correspond to and can be generated by P using a

randomization procedure; if ¥ = §}, find another P € ‘P, and repeat the procedure.
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K p/

all stabilizing K all feasible P

Figure 3.2: Relationship between P and K.

The problem considered in this section is to check whether KF = {} or not given P € P;
furthermore, if KF # 0, generate samples in CF.

Based on (3.28), denote K§ = Wy N Wy, and KT £ Wyo 0 Wiy, Then KP =
K¥ x K¥, where “x* denotes the Cartesian product. So K¥ # 0 if and only if K} # 0
and ICF # (. Take ICOP as an example for the following derivation, and the same procedure

follows for KT

,/ \\‘\
T N
v VRN \
e i P ~\,

o |
AN 01 \\\ / ,/
~ A /

\\ WOO//

Figure 3.3: [llustration of controller generation.

As shown in Figure 3.3, the basic idea is to generate samples in Wy = Gp, B,.Q,, and
to test condition (3.14) for Wy, to obtain K € }C(}]’. Recall (3.11) and (3.28), and let the free
parameters L and p be uniformly distributed random variables. Ky = g(L, p|PooBo, Qo) €
Woo can be generated by L and p, where g(-, |-, -) is defined in (3.5). Obviously, KF # 0

if and only if the following probability is nonzero:
Pr{Ky € K} |Ky € Wy} = Pr{K{ satisfies (3.14)| Ky € Wyo}. (3.30)

Define an indicator function

(L, p) = 1, Ky € K¥ given Ko = g(L, p|Poo Bo, Qoo) € Woo;
' 0, otherwise,

and then Pr{I(L,p) = 1} = Pr{Ky € KF|Ky € Wy}. According to the Chernoff’s
bound [67, p. 123}, when generating N > l—“-%ééz—) identically and independently distributed
"2

(i.i.d.) samples for 9 > 0 and €2 > 0, the following statistic provides an estimate of the
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probability in (3.30):

N o
Py = Dzl II\/(,L“pI), (3.31)

where L; and p; denote i.i.d. samples of L and p respectively. Furthermore, it satisfies
Pr{|Pr{I(L,p) = 1} — Py| < eg} > 1 - 4. (3.32)

Suppose that ¢, and d; are so small that we can use the estimate Py as the true probability
in (3.30). So IC(I)’ # 0 is equivalent to Py > 0, which solves the first problem of this
section.

If IC(I):’ # @, we can then generate elements in Wy, and test (3.14) to obtain samples
in KF'. Recall Algorithm 3.1 in Section 3.2, and suppose M, stabilizing controllers are
needed. The next problem is to determine the number of Ky € Wy to be tested in order to
generate M controllers Ky € KF .

For M> i.i.d. samples L; and p;, denote Y; = I(Li, pi),i=1,--- , Ms. So 21:{1 Y; is

the number of K € K} and subject to the following Binomial distribution:

My Mo ]\[2 R . s u
Pr{d Yi>M}= Y ( . )(Pm (1 - Py)tek. (333)
i=1 k=AM,

Set a confidence level 43, and select M» to ensure Pr{Zf‘:’1 Y: > M1} > 1 - d3. This
means that when testing M, samples in Wy, M; samples of Ké € IC(I,) are obtained with
probability 1 — d3. The procedures of generating Af; controllers are summarized in Algo-
rithm 3.2.

Algorithm 3.2 - controller generation
1) Leti =0.

2) For K, estimate Pr{ K € IC})[K,- € Wi} by Py in (3.31) for some small parame-

ters e and ds. If Py = 0, no stabilizing controller exists and stop.

3) For a small confidence level d3, select My such that

LM

k=AM,

4) Generate Mj samples in set Wig = Gp,,B,.0,o- Test 3.14) if i = 0 or 3.15) if i = 1

for each sample, and record those stabilizing controllers in KF.

5) Leti = 1, and follow steps 2) through 4) to generate the controller samples for K.
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Remark 3.3 Algorithm 3.2 still applies when there are multiple fault modes. For example,
if S1 = Sy = {0, 1,2}, there are 9 similar inequalities in Theorem 3.1 and each controller
{Ko, K1, K2} is in the intersection of three solution sets.

Algorithm 3.2 generates the controllers for step 2 of Algorithm 3.1 in Section 3.2. The
design procedure of FTCS’s is finally established as follows by combining Algorithms 3.1
and 3.2.

Design procedure

1) Determine sample quantity A > ﬁ% based on the precision parameters ¢ and 4.
2) Solve (3.21)-(3.24) in Theorem 3.1 for P.

3} Use Algorithm 3.2 to generate M stabilizing controllers corresponding to P.

4) If M, controllers in K are successfully generated, follow step 3) in Algorithm 3.1
on the generated controllers, and find the statistical optimum K*. IfKP =, go to

step 2) to solve for an alternative P.

If this procedure fails to find non-empty KT, the system is said to be not stabilizable. How-

ever, this non-stabilizability can be checked before applying parameterization algorithms.

Remark 3.4 Note that the freedom of P in (3.29) is not exploited in this design procedure
though it is possible to obtain a set of feasible solutions P satisfying Theorem 3.1 by varying
the settings in the LMI solver: the target value for the auxiliary convex program of the
Seasibility problem [71]. But this may lead to controllers with larger magnitudes which is
not preferable in practice due to excessive control energy. So we do not solve a set of P and

optimize among controllers with different orders of magnitudes.

Remark 3.5 This parameterization method can be extended to static output-feedback con-
trollers u(n(t),t) = K{(n(t))y(t), provided that D({(t)) = 0 in (2.2). Using output-
Jeedback controllers for this special case is equivalent to replacing K (n(t)) by K (n(t))C(¢(t))
in Lemma 3.1. Although Lemma 3.3 is not applicable due to different stability conditions
in this case, an alternative parameterization result of matrix inequality can be applied and
similar results can be derived [64, p. 29, Theorem 2.3.12]. However, for the general case of
D(¢(t)) # O, the stability conditions of the closed-loop system will contain matrix inverse

terms involving K (n(t)). This is a major hurdle for extending the current results.
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3.6 Analysis of stabilizing controller set

In this section, the stabilizing controller set is analyzed based on its connections with the
standard Linear Quadratic Regulator (LQR) problem. To see this relationship, FTCS model
is converted to the form of JLS by representing the behaviors of two Markov processes into
one, called the integrated Markov process ¢(t) [70]; the solutions of LQR problem in this
JLS form are then compared with the results in Section 3.4.

For the basic case of FTCS’s, the augmented state space of ¢(t) is S3 = Sy x 51
= {(0,0), (0,1), (1,0), (1,1)}, where the first element represents the FDI mode in S»
and the second the fault mode in Sy. Let 7(;;)(x1) denote the transition rate of ¢(¢), which
determines the transition probability of ¢(t) from the augmented state (4, j) to (k,1) as
shown in the following equation:

YVan kDt + o(At), 1 # §, k# L

&) = piijykn (D) = =
(i) (kt) 1 — ’7(1])(H)At + O(At), 1= 1, k=1

As shown in [70], 7(;;)(x:) can be derived from the transitions rates of ((¢) and 7(t):

ajj +,8gi, i=k j=1

i .
;‘kv ? ?é k» .] = l‘
Vig) (kL) S (3.34)
0, itk j#L
For the basic case, the generator matrix Fy, of ¢(t) is given by
— (a0 + BY) Qg1 I 0
H A [’Y B ]4 4= 10 ”‘(CYll + '360) 0 1[3(%1
# = LRk Ao 0 ~(aoo + 671) oo
0 a1g Blo —(a11 +£h)

By replacing {(t) and 7{t) with ¢(¢) in (3.1), the FTCS model becomes a standard JLS

model:
&(t) = A(S(t)z(t) + B((t))ul(e(t),t), (3.35)

The infinite-time LQR problem of JLS’s aims to find a state-feedback controller to

minimize the following objective:

Jto,x(to) u(t)) = BY ’m[x’f‘(t)sup(t))x(t)

+ul (@(1), ) R(@(8))u(¢(t), )ldtl2(to), (1)},  (3.36)

where S(¢(t)) and R(¢(t)) denote state and control weighting matrices. For ¢(t) = (i, 7)
denote Ai; £ A(6(t)), Bi; & B((t), Cij £ C(6(t)), Dij £ D(¢(t)), wi;(t) £
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u(d(t),t), Si; = S(¢(t)), and R;; £ R(4(t)). As system matrices depend on fault mode
on]y, A.,'j = Aj, quj = Bj, Cij = Cj, and D,‘]' = Dj.
Using state-feedback controls in a switching structure, the LQR problem was solved by

Theorem 5 in [53], which stated that the optimal state-feedback controller is
ugj(t) = —R;' B P;z(t), (i, §) € Ss, (3.37)
where P;; > 0 satisfies the coupled Algebraic Ricatti Equations (ARE’s):
AT Py+ Py Aj = Py BiRG B Py +apap Pat D i P+ S5 =0, (3.38)
(k,D#(,5)
where (7, 5), (k, 1) € S3.
In JLS’s, the number of switching controllers is equal to that of integrated Markov states
of ¢(t). For this JLS model in (3.35) converted from an FTCS model, there are 4 controllers

designed corresponding to 4 states of ¢(t) as given in (3.37). When ¢(¢t) = (i, ), the

following state-feedback gain is in use:
Ky =—R;'Bf Py, (i,j) € Ss. (3.39)

In contrast, in FTCS’s, the number of switching controllers is equal to that of fault modes
so only 2 controllers exist for the basic case in (3.35). Therefore, JLS’s have more design
freedom while FTCS’s are more restrictive, and the design methods of JLS’s are not appli-
cable to FTCS’s. But the controller designed in FTCS’s can be analyzed by the methods
in JLS’s considering that two controllers can be deemed as a special case of two pairs of
identical controllers. For example, Ky and K in FTCS’s are deemed to be Ky, Ky, K,
and K in JLS’s.

Proposition 3.1 (3.21)-(3.24) in Theorem 3.1 are equivalent to ARE’s (3.38) of the LOR
problem in JLS's. In other words, P = {P;;, i,j € {0,1}} satisfies Theorem 3.1 if
and only if it is a feasible solution of ARE’s (3.38) corresponding to the following LOR

weighting matrices:

Sij = wijPi By B} Pij — (AL Py + Py Aij + ﬁg(l‘i)P(l—i)j +aj0-5)Pia-5),  (3.40)

Rij = 1/pij, (i,j) € S3. (3.41)
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Proof: Substitute the system parameters into (3.38), we obtain 4 coupled ARE’s. Note
that the system matrices depend on the fault mode only, the second element of ¢(t). For

example, A;; = A;. Let us consider the following ARE for ¢(t) = (0,0).
A¥ Poo + Poo Ao — Poo BoRgy By Poo — (o1 + 301) Poo + B Poy + 01 Pro + Sgo = 0.

Use Agy = Ag — 0.53); — 0.5cxg; defined in Theorem 3.1 to simplify this equation, and we

have
A%y Poo + PooAgp + B3, Por + aor Pro + Soo = PooBoRgy Bf Poo- (3.42)

Let Rog = 1/pog and compare (3.42) with (3.26). If (3.42) holds, (3.26) obviously holds
considering Spg > 0; if (3.26) holds, (3.42) also holds with

Soo = 100 PooBoBa Poo — (Al Poo + PooAoo + 8% Pio + a1 Por)

= PyoBoRog B Poo — (AyPoo + Poo Ao + 6851 Pio + a1 Por) > 0.

So, (3.42) and (3.26) are equivalent. It immediately follows that (3.42) and (3.12) are
equivalent. Similarly, we can establish the equivalence between (3.13)-(3.15) and the other
three ARE’s of (3.38) corresponding to ¢(t) = (0,1),(1,0),(1,1). B

Proposition 3.2 The parameterization set W;; in (3.28) contains an LOR controller of
JLS's given in (3.37) corresponding to the weighting matrices in (3.40)-(3.41).

Proof: Recall (3.28) and Lemma 3.3, if Theorem 3.1 holds, the feasible solutions for
each inequality in (3.12)-(3.15) are parameterized by

, _ - —~1/2 _
Wi; = {K;|Ki; = “Pile]l P+ pijl/ L '(Pijlf)iijBf})ij - Qi)'

i VA

ILi5ll < 1, pij € (0, pijmax)}, @ € S2, § € S1, (3.43)

where L;; and p;; are free parameters and p;jmax is calculated by (3.6) in Lemma 3.3. Fur-
thermore, by Lemma 3.3, p;i; € (0, pijmax) if and only if it satisfies (3.7): pi_ijU B, B;-I'Pij -
Qij > 0.

pij may take the valuc of /Li_jl because

/Jr‘i,jPiijB_;rPij > QVL‘J', 1 €8s, j €51 (3.44)
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To see this inequality (3.44), take ¢ = 0 and j = 0 as an cxample, and substitute the
definition of Qqq in (3.16). (3.44) then becomes (3.26), which has been proved in Theorem
3.1

Let the free parameter L;; = 0 and the corresponding element in W;; is
K}; = —pi;B] Pj, i € S3, j € S1. (3.45)
Considering (3.41) in Proposition 3.1,
Kj;=-R;'B]Pj, i€ S, j€S (3.46)

which is obviously the LQR controller in (3.39). B

These two propositions are derived from Theorem 3.1 and Lemma 3.3, and the proofs
are given in the appendix. Proposition 3.2 shows that Wgy and Wy, contain an LQR con-
troller of JLS’s, and these sets are around an LQR controller; so the parameterization set
K¥ is also around an LQR controller. This connection provides a meaningful interpretation

of the stabilizing controller set found in Section 3.5.

3.7 Synthesis of generator matrices

Clearly, the generator matrices of ((t) and 7(t) are crucial parameters in the model of
FTCS’s. In this section, synthesis methods are presented based on two structures of Markov
processes and the knowledge of failure rates and FDI history data.

Let Y'(t) denote a homogenous continuous-time Markov process in a finite state space
Sy. Let Ty,T1,T>, - denote transition times and Y, Y7, Ys, - the successive states
visited by Y'(¢). If Yy, = 1, [T5,, Thi41) is called sojourn interval, and T}, 41 — T}, the sojourn
time at state ¢, ¢ € Sy, n € N. Markov process theory states that {Y,,,n € N} forms a
Markov chain, and T;, 4, — T}, follows exponential distribution with parameter depending
on Y, only [25, Chap. 8]. This is the first structure of a Markov process.

Let Qy denote the generator matrix of Y'(t) and Qy- (4, §) its transition rate. The transi-
tion probabilities of Y}, are
Qv (i,g)
Qv (i1)’
and Pr{Y,4; = 1Y, = i} = 0,4,j € Sy. If Qy(4,1) = 0, state 7 is absorbing, and

Pr{Yopr = jlY, = i} = i, (3.47)

Pr{Y,4+1 = j|Y, =i} = Oforall j € Sy. The sojourn time distribution at state i is
Pr{Tpyt — Tp > t|YV, =i} = e Qv @0t (3.48)
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Note that Qy (%,7) > 0, and Qy (4,1) = Zjesy Qv(i,j),1# 7.

The second structure uses competitions among independent exponential random vari-
ables to determine sojourn times and successive transition states. When Y'(t) = i, an
exponentially-distributed random variable 7;; with rate Qy- (7, j) is associated with transi-
tion to j in Sy. The transition can be viewed as a competition process among 7;;, j € Sy:
the state associated with the minimum of 7;; is the successive state visited by Y (), and this
minimum value gives the sojourn time at i. Based on the property of independent exponen-
tial random variables [72, p. 243], (3.47) and (3.48) can be derived under this structure.

Using the Markov process ((t) to describe fault occurrences requires the assumption of
constant failure rates, or equivalently, exponential distribution of lifetime, which is gener-
ally valid for the majority of component lifetime [21]. The generator matrix of {(t) can be
synthesized based on the second structure and failure rates. In the state space S; of ((¢), 0
usually represents fault-free mode, and other states describe specific faults and may also de-
scribe their combinations. The transitions of {(t) may represent fault occurrences, repairs,
or recoveries from intermediate faults depending on transition modes and directions.

For example, for a system with two types of faults, S; can be defined as {0, 1, 2, 3},
where each mode represents respectively fault-free mode, fault type 1, fault type II, and
their simultaneous occurrences. The transitions from mode 0 to 1 or 2 represent the occur-
rences of fault type I or Il respectively, while the transitions of opposite directions represent
repairs or recoveries from these faults. In cases of multiple faults that may occur at a par-
ticular mode, there exist competitions among exponential lifetime random variables: the
fault occurring first with minimum lifetime makes {(¢) jump to the corresponding mode
in S, and the minimum lifetime gives its sojourn time. So, the transition rates in the
upper-triangular part of F’ correspond to failure rates; and those in the lower-triangular part
represent the rates of repairs or recoveries. Let the failure rates of two faults be denoted by

A1 and Ay respectively, and the generator matrix of {(t) is

—(A1+A) Ay A 0

B 0 X 0 X
He = 0 0 =X M|’
0 0 0 0

where the transition rates in lower-triangular part are all zeros as no repair or intermediate
fault is assumed.

7(t) models FDI results, and its state space Sy is usually identical to Sy. Its generator
matrix can be estimated using FDI history data based on the first structure of Markov pro-

cesses. This history data should record the transition states and sojourn times of FDI under
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known fault modes, which can be obtained by experimental testing of FDI schemes. Owing
to (3.47)-(3.48), it suffices to estimate the transition probabilities and the means of sojourn
time distributions in order to determine the generator matrix of n(t).

When {(¢t) = k and 7(t) = 1, the sample sojourn time of n(t) at 7 is recorded as 'ri(l),

[=1,2,---, N, The sample average
AI
T = ZTi(l)/N
I=1

converges to 1/ ﬂf;- in probability 1 as N — oo based on the law of large numbers and
(3.48). Let H{l = 1/7; denote the estimate of 3£. If there is no transition from state  for
n(t), this state is deemed to be absorbing, and /31'; = 0 in this case.

The transition probability can be estimated by transition frequencies. If there are M
transitions of 7(¢) to mode j within /N transitions leaving ¢ in FDI history data, the transition
frequency A /N converges to transition probability with probability 1 as N — o0o. Using

(3.47), the transition rate from 7 to j is estimated as
Bt = BEM/N.

Using this method, all elements in the generator matrix of r)(t) can be estimated. Moreover,

as in (3.32), to ensure specific estimate precisions, the lower bound of sample quantity N

can be determined using the Chernoff’s bound.

Remark 3.6 Fault effects on system dynamics are described by different system matrices in
the dynamic model (3.1), A({(t)), B({(t)), C(¢(t)), and D({(t)) depending on ((t). The
FDI scheme can be designed by standard model-based methods using these dynamic models
[73]. Although some iterative algorithms exist to obtain a sequence estimate of Markov
states based on the probabilistic description of system modes, the computational cost is not
suitable for online implementation and controller reconfiguration, and the algorithms are
designed for a discrete-time Markov chain only [74]. The transition characteristics of FDI
mode can be described by a Markov process from the perspective of closed-loop stability
of the reconfigured system [6]. But it is necessary to have FDI history data available for

estimating Markov transition rates.

3.8 An illustrative example

Consider a longitudinal vertical takeoff and landing aircraft model in the form of (2.2) with

the following system matrices [13]. The subscript ‘0’ represents the fault-free mode and ‘1°
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the faulty mode. In the faulty mode, the actuator failure is considered, and the effectiveness

of the first actuator is reduced by half as reflected in B;.

—0.0366 0.0271 0.0188 -0.4555
0.0482 -1.01 0.0024 —4.0208

Ao=1 01002 03681 -0.707 1420 | A=A
0 0 1.0 0
0.4422  0.1761 ] 0.2211  0.1761 1000
3.5446 —7.5922 17723 —7.5922 010 0
Bo=| 550 440 ['P17 | 276 449 DTl 01 of =%
0 0 [ 0 0 0111

The generator matrices of {(¢) and n(t) are:

He =

-0.0017 0.0017] HO - [—0.0204  0.0204 ] gl [—2.9925 2.9925

0 0 |77 39039 —3.9039] " 0.0515 —-0.0515] "
According to H, the mean lifetime before fault occurrence is 1/0.0017=588.24 minutes,
and the fault mode is absorbing as shown in the second zero row of H, i.e., there is no
repair or recovery from intermediate fault. For FDI, according to the first row of HS, when
the system is in fault-free mode, the mean time of a false alarm is 1/0.0204=49.02 minutes;
and according to its second row, the mean time of returning to correct detection after a false
alarm is 1/3.9039=0.2562 of a minute. H,% can be interpreted similarly: the mean time of
a missing detection is 1/0.0515 = 19.42 minutes, and the mean time of returning to correct

detection after a missing detection is 1/2.9925 =0.3342 of a minute.

The conditions in Theorem 3.1 for F;; are solved as follows:

[0.0114  0.0009 —0.0028 —0.0065]
Poy = 0.0009  0.0043 -0.0011 0.0004
—0.0028 -0.0011 0.0099  0.0079 |’
|~0.0065 0.0004 0.0079  0.0208 |
[3.5840  0.1916 —0.5806 —1.1955]
Doy = 0.1916  3.2196 —0.2804 —0.0447
—0.5806 —-0.2804 3.4266  1.1760 |’
| —1.1955 —0.0447 1.1760  4.9369 |
[0.0484  0.0050 —0.0073 ~0.0084]
Py = 0.0050  0.0619 ‘—070147 0.0052
-0.0073 -0.0147 0.0703  0.0102 |’
 —~0.0084 0.0052  0.0102  0.0669 |
[ 27515 ~0.1065 —1.0816 —1.2975]
Py = —0.1065 3.5939 —-0.1549 —0.0833 _
—1.0816 —0.1549 3.4801 1.6071
| —1.2975 -0.0833 1.6071  3.8389 |
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Based on Proposition 1, these P;; correspond the following LQR weighting matrices

Si; and Ryj:
0.0120  0.0184 -0.0303 -0.0113
0.0184 0.0351 —0.0533 -—-0.0144

S0 =1_00303 —0.0533 00884 0.0279 |’
~0.0113 —0.0144 0.0279  0.0165
213.7 1161  —9544 —3074
Soy = 1161.0 7689.3 —5618.3 —1764.3
—054.4 —5618.3 44369 14165 |’
—307.4 —1764.3 14165  460.1
[ 0.2133  0.3874 —0.4153 0.0212
S10 = 0.3874 27692 24173 0.1968
—~0.4153 —2.4173 2.7225 —0.0830]"’
| 0.0212  0.1968 —0.0830 0.1956 |
[ 267.1 13486 —1027.9 —478 ]
iy = 1348.6  9117.3 —5859.5 —2690.3
~1027.9 —5859.5 41547 1921.8 |’
| 478 —2690.3 1921.8  891.3 |

Ryg = 0.0676, Ry = 0.0913, Ryp = 0.1570, Ry; = 0.0911.

Following the design procedure with ¢ = 0.02 and § = 0.02, 194 sample controllers
are generated and evaluated with respect to MTTF. It is found that the following approx-
imately optimal controller K* = {KZ, K}} achieves MTTF = 197.3208 minutes with
Pr{Pr{y(K*) > v(K*)} < 0.02} > 0.98, where ¢(K*) denotes the optimal MTTF with

the optimal controller K*:

Bt -0.6566 —0.7359 2.0731 1.1449
07104176 13777 -1.1316 -1.0322|’

oy {~0.1117 0.2114 0.1399 0.4621}
K} = )

0.0621 0.5747 -0.1667 —0.3248
For comparison, arbitrarily select another stabilizing controller K = { K, K} with MTTF
= 55.8319 minutes:

Ko [~32572 —18991 8.0921 6.7639
0= |-0.8941 0.8646 1.0997 1.1335|’

K = 0.0272 0.2312 0.0945 0.0146
17 10.0427  —0.0603 -0.0534 —0.5202]°

To compare the time-domain performance of these two controllers, a white noise dis-
turbance is applied to the system. With initial state z(0) = 2 —2 2 - 2|7, output

trajectories are shown in Figures 3.4 and 3.5, where () remains at fault-free mode 0, and

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



~ 4 T ' " False slar 1 -
llllllll se alarm

E F1 =
‘g . b I TP S i ey e
=3
3
O _ o L L ry 2 I

) 2 4 5 8 8 10 " e
A P — I .

. False alarm
: _ #4
o T

VAN N R ik o R
gOr/ e T
2
£ -1 |
=
o _2 ) . ) o - L

0 2 < 5 6 8 10 " "o

Time

Figure 3.4: Output trajectories when using K*.

n(t) is manually set to 1 such that FDI gives false alarms when 5 < ¢ < 10. In fact, the
sample paths of {(¢) and 7{t) can be generated based on their generator matrices. But, the
possibility of observing fault occurrences or false alarms in a short time is very small. In
order to study system responses under false alarms, we manually set the transitions of n(t).
Moreover, to examine the robust performance of controllers, system matrices are perturbed
probabilistically around their nominal values during the simulation.

As shown in Figures 3.4 and 3.5, output trajectories are converging and disturbances
attenuated by both controllers; overall, K* seems to have better disturbance attenuation
effects. This can be further validated by comparing the closed-loop Ho norms. For K*,
the nominal closed-loop Ho, norm is 0.1294 when 7(t) = 0 and 0.1565 when 5(¢t) = 1;
for K, it is 0.1088 when 7n(¢) = 0 and 0.2178 when 7(t} = 1. If probabilistic modeling
uncertainties are considered, for K*, the probabilities that the H, norm is no greater than
1 are 0.6467 and 0.7600 when 7(t) = 0 and 1 respectively [46]; for K, the probabilities
are 0.6328 and 0.1043 respectively, much worse than K* especially under false alarms.
This finding is not surprising because in this example the H,, norm under probabilistic
uncertainties has been used as a control objective in the definition of a reliability function.
The case for missing detection of FDI under fault occurrence can be studied in a similar
way, which is not included for brevity.

The reliability functions of FTCS’s for these two controllers are shown in Figure 3.6,
and the reliability shows great improvement by using K*. To verify Pr{Pr{y(K*) >
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Figure 3.5: Output trajectories when using K.

v,/)(f(*)} < 0.02} > 0.98, 1000 stabilizing controller samples are generated, and the MTTF
of the FTCS for each controller is calculated as shown in Figure 3.7. From this figure, it
is found that only one controller has better MTTF than K*. Therefore, the randomized

algorithm gives a valid estimate of optimum with the specified precision.

3.9 Conclusion

This chapter presents a probabilistic design method of FTCS’s based on the stability and
reliability criteria. The basic idea is to develop a stabilizing controller parameterization set
and to apply the randomized algorithms to find the statistically optimal controller in terms
of system reliability. The stabilization conditions are given in the form of LMI’s, and the
free parameters in the controller parameterization set are real matrices and scalars, which
is convenient for numerical implementation. An example is presented, and the results show

that a statistically optimal controller with highest reliability can be obtained by this method.
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Chapter 4

Two-stage controller design for
MTTF*

4.1 Introduction

The reliability-based design is basically an optimization problem with respect to reliability
index. For example, in the active control of civil engineering structures, reliability-based
design is usually converted to covariance control or classical optimization problems using
approximate reliability measures {75, 44]. Similarly, reliable control aims to guarantee sta-
bility and/or control performance under component faults [19]. However, a valid reliability
index of FTCS’s is often evaluated from stochastic models and cannot be readily converted
to a control objective. A reliability-based reconfiguration strategy was recently developed
for FTCS’s by optimizing system structure to improve reliability but the effects of control
actions were not considered [76].

Owing to the numerical procedures of building and solving stochastic reliability models,
it is generally difficult to write the reliability index as an analytical function of controller
parameters. In order to overcome this difficulty, stabilizing controller parameterization and
randomization-based methods were developed in Chapter 3 to find the statistically optimal
controller with respect to reliability. Its advantage is the stabilizing property of designed
controllers; but the algorithm may need to generate a large set of controllers for optimization
purpose, which may lead to high computation burden.

This chapter discusses a new controller design method to optimize a long-run reliability
index, MTTF. This index is evaluated based on probabilistic control performance charac-
teristics, which are used to relate controller to MTTF. The basic idea is to perform MTTF

optimization in two stages: 1) a gradient-based search is performed on control performance

*Results presented in this chapter has been submitted to the International Journal of Robust and Nonlinear
Control, revised and under review.
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characteristics which are updated along the fastest increasing direction of MTTF; 2) the
updated control performance characteristics are then transmitted to a controller design al-
gorithm, which updates controller accordingly to satisfy these control performance char-
acteristics. Each design stage is completed by one iterative algorithm, and two algorithms
are carried out alternately to complete controller design. This two-stage design overcomes
the difficulty caused by the nonexistence of analytical objective functions of MTTF with re-
spect to controller parameters. It also has relatively fast convergence because of the gradient
information used in the algorithm.

The control performance is characterized by a probabilistic H criterion, defined as the
probability that the H, norm is within specified threshold when assuming bounded random
uncertainties. H., norm is suitable for describing long-term static control performance;
when transient behaviors are of interest, a model-matching structure can be adopted to rep-
resent transient performance using H,, norm. To design a controller for this probabilistic
‘H o criterion, a sequential randomized algorithm is adopted. This algorithm iteratively up-
dates controller based on uncertainty samples, and is effective to handle probabilistic robust
performance. For example, it has been used for robust guaranteed cost control [48], robust
linear matrix inequities problem [77], linear parameter varying design [78], and searching
for common Lyapunov functions [79]. In this chapter, probabilistic H., control is consid-
ered, and the main difference from previous work lies in the introduction of a weighted
composite violation function to handle multiple regime models in FTCS’s; both state feed-
back and two-degree-of-freedom (2DOF) controls are discussed; and both the convexity of
violation function and the convergence of algorithms are proved for this new problem.

The remainder of this chapter is organized as follows: System model is introduced in
Section 4.2; controller design algorithms are discussed in Sections 4.3 and 4.4 for state
feedback control and 2DOF control respectively; Section 4.5 addresses output feedback
controller design when state information is unavailable; and an example is finally given in

Section 4.6 to demonstrate the method.

4.2 Problem formulation

4.2.1 System model

The general Markov model of FTCS’s is given by 2.2 in Chapter 2. As state-feedback

controller is considered in this chapter, it can be reduced to the following equations by
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removing the output equation:

{ﬂﬂ=MG&AWW+BM&AMWW0+MQWAWW, @

z(t) = C(¢(t), A)x(t) + D(C(E), Auln(t), t) + F({(t), A)w(t),
where z(t) € R™, z(t) € R™, u(n(t),t) € RP, and w(t) € R? denote system state, regu-
lated output representing control performance, control input, and exogenous input respec-
tively. R™ denotes the real vector space with dimension n. A, B,C, D, E, and F denote
system matrices with compatible dimensions determined by discrete modes ((t) and n(t),
and affected by uncertainty parameter A. {(t) and 7(t) are assumed to be two continuous-
time Markov processes. A € R! is assumed to be a random vector with known probability
distribution in a bounded set 2, and the entries in system matrices are affected by the ele-

ments in A.

Remark 4.1 Different from a measured output, z(t) is the regulated output to characterize
control performance. For example, in tracking control, z(t) can be taken as the tracking
error between controlled output and reference command input. w(t) contains exogenous
inputs to the system, such as reference command input and disturbances, whose effects on
z(t) are undesirable and to be suppressed by designing controllers. As w(t) may contain
various types of signals, it cannot be described by a Gaussian white noise, and therefore

Ito stochastic differential equations are not applicable here.

Remark 4.2 The required assumption to describe FDI mode 1(t) as a Markov process
is the memoryless Markov property [25, p. 233]. According to [15, section 2.1], if FDI
schemes are designed based on single sample hypothesis tests and the noise statistics are
white, this assumption is valid. For general FDI schemes, it is difficult to check this memo-
ryless assumption based on their designs, and semi-Markov processes can be used instead
as discussed in Chapter 5. If FDI history data is available for estimating empirical sojourn
time distribution, the assumption can be tested by checking whether sojourn time follows
exponential distribution or not. Under the assumption that FDI modes can be modeled by a
semi-Markov process, the exponential distribution implies that a Markov process is a valid
model [25, p. 316],; considering that semi-Markov assumption is usually acceptable for
describing FDI modes, this sojourn time distribution test can also be used in general to

check Markov assumption.

Remark 4.3 Model (4.1) is a linear dynamical system subject to Markov switchings and

has been discussed in many references. According to [7, p. 32], [80, p. 117], and [81,
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p. 143], the existence conditions of a unique solution are the Lipschitz and linear growth
conditions of the right hand side of (4.1) with respect to x. For a general setting, a rigorous
proofis provided in [82, p. 81] for stochastic differential equations with Markov switchings,
and model (4.1) can be deemed as one of its special cases.

A static state feedback controller in a switching structure is considered for FTCS’s.
Here, static means that the controller is a pure gain. If the exogenous input w(t) contains
unknown disturbances only, the controller is composed of a set of state feedback gains,
denoted by K 2 {Kj, j € S2}, and u(n(t),t) = K;z(t) when n(t) = j. With this

controller, the closed-loop system equations become

{a’c(t) = [A(C(0),8) + B0, A)Kolalt) + E(C(), Apu(®),

z(t) = [C(C(1), A) + D(¢(t). A) Ky Jx(t) + F(((1), A)w(t).

where K, ;) represents K; when n(t) = j.

On the other hand, if the exogenous input contains known reference command input,
the controller may be in a 2DOF structure, denoted by K £ {(Kj,L;), j € S}, and
u(n(t),t) = K;z(t)+ Ljw(t) when n(t) = j. The term 2DOF means there are two control

gains involved for state feedback and reference feedforward respectively. The closed-loop

(€(1), A) + B(C(2), D)y Jx(t) + [E(C(E), A) + B(C(8): A) Lyl (t),

system equations become
{a’c(t) (A
2(t) = [C(¢(2), A) + D(C(1), A) Ky )z (t) + [F(¢(2), &) + D(C(t), A) Ly Jw(t).
4.3)

The closed-loop system (4.2) or (4.3) contains two discrete modes ((¢) and 7(t), also

I

referred to as system regime modes. For fixed regime modes ((t) = i and n(¢) = j, (4.2)
or (4.3) is reduced to a linear uncertain system, and the transfer function from w(t) to z(t)
is denoted by G;;(s, A), called a regime model. So, (4.2) or (4.3) represents a collection of
linear uncertain regime models denoted by {G;(s, A),7 € 81,7 € S;3}. Owing to possible
incorrect FDI decisions, each controller K; or (K, L;) may be used for N; + 1 possible
regime models: Goj(s,A),--- ,Gn,;(5,A), j € So. This is the major difference from

jump linear systems, where the number of controllers equals that of regime models [54].

4.2.2 Control performance characterization

The control performance of G;;(s, A) is assumed to be represented by a model-based crite-
rion, such as system norms. Let @(G;;(s, A)) denote the performance measure calculated

for fixed regime modes ((t) = 14, n(t) = j, and a particular uncertainty sample A. The
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allowable performance bound when {(¢) = i is denoted by p;. To take into account the ran-
dom uncertainty A, a probabilistic performance description is considered for each regime
modet:

Yij 2 Pr{w(Gij(s, A)) < /).i}, 1€ 8y, j € 8Ss. 4.4

For fixed {(t) = ¢ and 7(t) = j, probabilistic performance ~;; can be estimated by

N
1
Vi & N Z 1W(Gij (s,An))<po> 4.5)
h=1

where Aj, denotes the generated uncertainty sample according to its distribution, and G;
(s, Ap) the close-loop transfer function. The indicator function Lo(Gij(s,01))<p; €quals 1
if @w(Gi;(s,Ar)) < p; and 0 otherwise. N can be determined based on the allowable
estimation error using statistical theory, such as Chernoff’s bound [46]. If N > l—"%@l, the
following inequality holds:

N

1
Pribv - Y lao@yan<el S € >1-36.
h=1

If N is large enough, the estimation errors € and J can be ignored, and (4.5) can be deemed
as the true probabilistic performance ;;.

Model-based criteria are mainly defined for steady-state or long-term performance.
When regime modes are under fast transitions, transient performance is of interest and
should also be reflected in control performance characterization. In this chapter, H ., norm
is selected as the model-based criterion and can represent transient performance by using
suitable weighting functions [83]. But, adjusting weighting functions may need trial and
error, and an alternative method is adopted here based on model-matching H, design [47].
Its basic idea is shown in Figure 4.1: the required transient performance is represented by
a desired model, and the controller is designed to minimize the H, norm from reference
input to mismatch error signal. The reference input can be chosen as the exogenous input
w(t), and mismatch error as z(t). In this way, H, controller can be designed for tran-
sient performance. The controller may take the 2DOF state feedback structure, and the

closed-loop equations have similar forms as (4.3).

4.2.3 MTTF gradient
Reliability criteria presented in Chapter 2 provide quantitative measures on overall long-

term performance of FTCS’s. To avoid high costs of emergency repairs between periodic
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Figure 4.1: Model-matching diagram.

maintenance activities, the probability of failure within a maintenance period should be re-
duced to a certain level. For this purpose, the interested problem is to design a controller that
achieves suboptimal MTTF exceeding MTTF, where MTTF represents minimum MTTF
requirement and can be determined based on maintenance period.

For the sake of reliability evaluation, a semi-Markov process X®(¢) was constructed
in Chapter 2. Its state space Sg is composed of operational or up states and a unique
down state. The transition characteristics of X ®(t) is defined by its semi-Markov kernel
Q (X, Xp, t) based on probabilistic performance y,;, where X, and X, represent the states
of XR(t). The detailed definition and derivation of Q( X, X}, t) can be found in Chapter
2. Based on XR(t), MTTF can be calculated by [27]:

MTTF = p{ (I - Pyp) i, (4.6)

where [ denotes the identity matrix with compatible dimensions, pgy the vector of initial
probability distribution of XR®(¢), P, its limiting transition probability matrix, and p the
vector of expected sojourn time at up states of X®(¢). The elements of these three parame-

ters are defined by

po(Xk) Pr{X(0) = X4},
Pop( Xk, Xp) = tll{glo Q( Xy, Xp. t),

/om“ - Y QXk, Xy, t)tdt,

X, €Sk

#(Xs)

1

where X, X € Sk, and both are up states. If [ — P, is not invertible, MTTF = oo, which
is generally not achievable in practice. In the sequel, I — P, is assumed to be invertible.
Owing to the construction of XR(¢), it is difficult to establish the analytical relation

between controller and MTTF. Considering that MTTF is calculated from the parameters
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of X which is constructed based on control performance characteristics -;;, v;; can be used
as a connection parameter between controller and MTTF. Based on (4.6), the derivative of

MTTF with respect to «y;; can be calculated by

dMTTF T _1dPup 1 T 1 di
=py (I — P, I1-F +p5 (I - P, _— 47
d’)’ij Po ( up) d is ( up) HT P ( up) d’)’ij 4.7

In the set of controllers K = {K;, j € So} or K = {(Kj, L;),j € Sa}, each K or
(Kj, L;) is designed for N +1 regime models and therefore determines N1 41 probabilistic

performance parameters v;;, i = 0,--- , Ny. For Kj or (Kj, L;), define the gradient of

MTTF as
dE{\ill'lTF c(iiMTTF]T
VMTTF; & 2% dM’T’_V;; , 4.8)
ZieSl( H'Yij )2

which is composed of the derivatives of MTTF with respect to probabilistic parameters
related to K; or (K;,L;), i € Sy, j € So. With VMTTF; available, the following
gradient-based iterative search algorithm is adopted for MTTF optimization, where K* £
{K}, je Sg} and K! & {(K]’-., LY, je Sg} represent the state feedback and 2DOF con-
trollers respectively at the [-th iteration.

Algorithm 4.1: MTTF optimization

1. Initialization: Set ([ = 0; select minimum reliability requirement MTTF and step size
7 > 0; randomly generate the initial value of controller K° or KX%; and estimate

probabilistic performance 'y?j using (4.5).

2. At iteration [, calculate MTTF based on controller K! or K'. If MTTF > MTTF,

stop and the controller at current iteration satisfies MTTF requirement; otherwise, if

D ies, (d':gT,F)?' < ¢, a small positive number, stop because the algorithm is at a
‘ »

local optimum but MTTF is not achieved.

3. For each j € 59, calculate VMTTF; using (4.7)-(4.8); use Algorithm 4.2 to obtain
K!*! or K1 such that */fjl > 'yfj + TVMTTFfj forany i € S; and j € S, where
VMTTFﬁj denotes the element of VMTTF;.

4. Go to step 2 and start the new iteration [ + 1.

Remark 4.4 In Algorithm 4.1, ~y;; is iterated along the gradient direction of MTTF, and its
value is used to direct controller update. Because the convexity of MTTF with respect to vy;;
is not guaranteed, the gradient search may run into a local optimum, and a controller for

the required MTTF cannot be found. This problem always exists when using gradient search
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Jfor a non-convex problem. It can be handled by the change of initial values or the relaxation
of MTTF. In step 3, the controller is designed to satisfy the probabilistic performance using

Algorithm 4.2 presented in the next section.

4.3 Sequential randomized algorithms for state feedback con-
trol

This section considers the design of a state feedback controller. For notational simplic-
ity, for ((t) = i, n(t) = j, i € S1, j € So, denote A;(A) £ A(((t),A), Bi(A) 2
B(((t),A), Ci(D) £ C(L(1),4), Di(d) 2 D(((1),8), E(A) £ E(((t),A), Fy(A) £
F(C(1),A), Aij(A) £ A(C(1), A)+B(((t), A) K, and Cyy(A) £ C(((t), A)+D(((t), A)K;.

For fixed ((t) = i and n(t) = j, (4.2) is reduced to a linear uncertain system

4.9)

o {i-(t) = Ay (A)a(t) + B A)w(t),
Y a0 = Ciy(A)a(t) + Fi(A)uw(t).

Let Gi;(s, AA) denote the transfer function from w(t) to z(t). Its Ho, norm ||Gy;(s, A)|l
is selected as the performance criterion, and the probabilistic performance is reduced to
vij = Pr{||Gi;(s,A)|l < pi}. The following lemma then provides a sufficient condition
to check whether [|G;;(s, &)l < pi. In the sequel, A is not shown in system matrices for

notational simplicity.

Lemma 4.1 For system (4.9), assume that the initial state £(0) = 0 and p?I — F1'F; >
0, whevre I denotes an identity matrix with compatible dimensions. For fixed 1, j, and a

particular uncertainty sample A, |Gy (s)|lco < pi holds if there exists P;; > 0 such that

(@) Pyt Py Aij+(Cig) iyt (Py Bt (Cig) TR (o2 I~ FT F) (BT P+ FITyy) < 0.
(4.10)
The proof is standard by using a quadratic Lyapunov function [84, p. 212], and a proof is
provided here for clarity.
Proof: For system in (4.9), it is worthwhile to point out that the result to be proved

is for fixed 4, j, and uncertainty sample A. In other words, the result is for a fixed linear
regime system in FTCS’s.
Suppose that the solution P;; > 0 exists for (4.10). Using Schur’s complement lemma

and the assumption that p;I — FZ F; > 0, (4.10) is equivalent to
(Ai)" P + Py Ay + (Cy)' Cij PBi + (Cy) B _
ElP;+ FI'Cy (P I-F'F) | =7
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So, for all z(t) € R, w(t) € RY,

[l‘(t)r [(Zia‘)TPu +PjA; +(Cyj)"Ciy PyE; + (aj)TFi] [:L'(t)

A —
w(t) ETP;+ FICj —(p?I - FTF) w(t)] <0. @I

For notational simplicity, let us drop the time variable ¢ in z(t) and w(t). Inequality (4.11)

is obviously equivalent to

—_—

:II,I‘[(—A-M)VI‘P;J‘ + PijZ.,-j + (6,']')’1 Cij]l‘ + xT[P,,-jE.,- + (éi]’)'l'Fi]ll;/"?‘
w'(E] Pj + FICyj)e - w” (p}I - F F)w <0. 4.12)
Consider a Lyapunov function f;;(z) = xTHjm, and fi;(z) > 0 as P;; > 0. Using the

state equation in (4.9), the derivative of f;;(x) is calculated as

dfiy( _ _
fz—éir) = TET(Az;‘Pij + PjA; )z + 2T PjEsw + wT ET Pz, (4.13)
By substituting (4.13) into (4.12), we have
dfi;(z) - .

5 < piwlw — (Cyz + Fw)' (Ciyz + Fw) = p2wlw — 272,

Taking integration on both sides from 0 to t(, we have

to dfi: ty
fotatio)) = £ytal) = [ L < [¥ (utoiTue) - =07 0.
Using fi;(z(tg)) > 0 and f;;(z(0)) = 0, we obtain
ty to
/ ()T z(t)dt < p? / w(t) w(t)dt. (4.14)
0 0
If w(t) has finite Ly-norm, (4.14) yields ||Gi;(s)|lc < p; by taking the limit as tg — oo.

]

Owing to Lemma 4.1, if inequality (4.10) holds with probability v;; when A varies
probabilistically, K; satisfies probabilistic performance v;; = Pr{||Gi;(s,A)ljoc < pi}-
K can be designed using a sequential randomized algorithm presented in this section.

The following notations arc adopted in this section: The space of real n-by-m matri-
ces is a Hilbert space with the inner product (M, N) £ Tr(M* N) and Frobenius norm
M| & \/Z?:l 21 (M (i, j))?, where Tr(-) denotes the trace of a matrix, and m, 7 the

dimensions of A{. For a real symmetric matrix M, its projection onto the convex cone of

nonnegative definite matrices is defined as
M™* & argmin [M — N|.
N>0

M can be computed explicitly as follows [48]: If M = UAUT, where U is orthogonal
and A is diagonal with entries A1,--- , A, then M+ = UATUT, where A" is diagonal

with entries max{0, A1}, -+, max{0, A, }.
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4.3.1 Violation function and gradient computation

In this subsection, the matrix inequality (4.10) in Lemma 4.1 is converted to a scalar convex
function. Let us begin with a special case that I; = F; = 0, and the left-hand side of (4.10)
is simplified and denoted as V;;, 1 € Sy, 5 € Sa:

Vij & AT P + PyjAi + K[ Bl P;j + Py BiK; + PyE:E[ Pj/p} + C[ C; <0. (4.15)

Let f denote a functional on the space of symmetric matrices which assigns matrix M

a real number f(M). The gradient of (M) is denoted as Og f(M ), meaning
f(M +6M) = f(M)+(dm f(M),6M) + o(||6M]]),

where M denotes a small perturbation in M. f(M) is convex if and only if {85, p. 69,
chap. 3]
F(M + M) > f(M) + (9r (M), 6M).

Lemma 4.2 ([79]) The functional f(M) = %HM *||? is convex and differentiable with gra-
dient given by Oy f(M) = M.

Using Lemma 4.2, a violation function of (4.15) is defined as

1., o ]

vis(Kj, Py, A) & f(Vyy) = SI(ATP; + PyAs + K B P + P BiK;
+P;EE] P;/p} + CIC) TP, (4.16)
where ¢ € Sy and j € S,. Obviously, vi;(Kj, Pij, A) > 0, and v (K, P;;, A) = 0 if and

only if V;; < 0. In other words, (4.15) holds if and only if vi;( K, P;j, A) = 0.

Lemma 4.3 v;;(K;, P;;, A) is convex in K; and Pj; respectively, and its gradients with

respect to these two matrix variables are

Ik, vij(Kj, Pij, A) 2BI:TPijVJ,
Op,;vi;(Kj, Py, A) = (BiK;+ A+ E:E Py /o) + V(K] Bl + AT

+P,EEY /p?).

Proof: Recalling (4.16), because f(V;;) is convex in Vj;, and V;; is affine in Kj,
vi; (K, P;j, A) is convex in K [85, chap. 4]. The convexity in P;; will be proved af-

ter calculating the gradients.
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Let 0K; denote a small perturbation in K;, and the function value after applying this
perturbation is calculated as follows, where V; denotes the expression in (4.15) without

any perturbations:

v,'j(Kj + 51(]', P,']',A)

F(Vig) + (Ov, F(Vig), (6K;)" B] P;j + PyBidK;) + o( | 5K;]))

= vi;(Kj, Py, A) + Trldv, f(Vij)(0K;)T BT Pj] + Trldv,, £ (Vi;) P Bid K]

+o(|loK; ) (4.17)

Considering that

Tr(dv,, f(Vi;)(8K;)T B P;j] Tr((6K;)" BY Pjov, f(Viy)]

= Tr{ov;, f(Vij) Pi; Bid Kj], (4.18)

where we have used the facts that Tr(AB) = Tr(BA), Tr(A) = Tr(AT), and the symmetry
of P;; and dy;, f(V;;). By substituting (4.18) into (4.17), we have

vij(Kj + 6K;, Pij, &) = vy(Kj, Py, A) + 2Tr[0v,, f(Vi;) P55 Bid K] + o(||0 K )
= vj(Kj, Py, A) + (2B Pydv,, f(Vig), 6K;) + o(||6K; ).
Therefore, O, vi; (K, Py, A) = 2B Py, f(Vi;) = 2BI P;;V;F. The gradient with
respect to P;; can be proved in a similar way as follows:
vij(Kj, Pij + 0P, A)
= f(Viy) + (0w, f(Vij), AT8Py+0P;A;+ K] Bl 6P + 6P;; BiK; +
8P, EiE! Pj/p} + Py E:E]P;/p?) + o(||6P;)
= vi;(K;, Py, A) + Teldv,, £ (Vig)(AT + K] Bl + PE.E] /p7)6P;)
+Tt[dv,, f(Vij)8Pii(Ai + BiK; + E;E] Pij/p})] + o(|6P;4))
= vi;(Kj, Py, &) + Telov,, f (Vi) (AT + K Bl + E;E] /p})5P;]
+T((A; + BiK;j + EiE] [p})dv,, f(Vij)8P;5] + o([8Py1)
= (K, Py, A) + ((BiK; + Ai + BB Py o)V}
+Vi (K] BY + AT + PEE] /p}), 6P;) + o||0Py])).

This proves the gradient in /%;. The convexity in F%; can be shown by the following in-
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equality:

v

F(Vig) + (8vi, f (Viy), AT 6Py + 6P, A + K BT 6 P
+6P; B;K; + §P;E:El P;j/p} + PyE:E} 6Py /]

+86P,E;E 6P,/ p?) (4.19)
= vy(Kj, Pij, A) + (0p,;vij(Kj, Pij, A), 6F;;)
+(8v;, f(Vij), 6P, E;ET6P;;/p?) (4.20)

> (K, Py, A) + (9p,vi(Kj, Py, A), 65;).  (4.21)

(4.19) is because of the convexity of f, (4.20) follows by substituting dp, ;v (K, P, A) in
(4.19), and (4.21) is true because that Tr[dv;, f(V; YoP;; E;ET6P;; /p?] > 0, resulted from
the semi-definite properties of dy;, f(Vi;) and  P;; E; ET6P;/p}. B

For the general cases that D; # 0 and F; # 0, the gradients are given as follows, which

can be proved in a similar way:

Ix,vi;(Kj, Pij, A) = 2[BI'Pj+ DIC;+ DI Fi(p?I - FTF,)"'ET PL
+(D{'Di + D{ Fi(p} I — F' F)) ' ' D))K;|V;},
op,,vi;(Kj, Pij, A)

[Ai + BiK; + Ei(p}1 - F'F)"'FI(C\ + D,K;) + E;
(1~ FTR) BNV + VIIAD + K Bi+ (Ci+ DiK5)T
F(p?1 - FIF)7E; + Ei(pl - F'F)'E{

Owing to false alarms, the FDI estimate 7(t) may be different from {(t). As a result,
given fixed j € S, each controller gain K; may appear in N1 + 1 inequalities, V;; < 0 for
i=0,1,---, Ny. To take these N} + 1 inequalities into account simultaneously, a weighted
composite violation function is defined as

N1
V(K Pojy-++ Py 8) = D bivi5(K;, Py, B), (4.22)
=0

where 6;; denotes a positive weight corresponding to inequality V;; > 0 for ((t) = 1,

iESl,jGSZ.

Lemma 4.4 Given j € Sy, if 0;5 > 0 for all i € Sy, ¥j(K;, Poj,--- ,Pn,;) = O is
equivalent to Vi; < 0 simultaneously for all i € 5.

Proof: As 6;; > 0and vi;j(Kj, B;, A) > 0,v9;(Kj, Pyj,- -+, Pnyj, A) = 0 if and only
if v;; = 0 holds simultaneously forz =0, 1, ---, Ny, j € S;. Based on the definition of
vi; in (4.16), vi; (K;, Pij, A) = 0 if and only if Vi; < 0, which concludes the proof. B
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Lemma 4.4 shows that v; can be used as a composite violation function for multiple
matrix inequalities if all weights are positive. So, §;; can be selected freely among all

positive values.

Lemma 4.5 Given j € Sy, v;(Kj, Poj, -+, Pnyj) is convex in K; and P, i € Sy, and
its gradients are given by

Ny

Ok ¥i(KG, Pog, - Py, ) = Zgijakjvij(Kj,POj,“' , Py, ), (4.23)
=0

Op;¥i(Kj, Poj, -+, Pnij &) = 0450p,vi5(Kj, Poj, -+, Pnyj, A). (424)

Lemma 4.5 is obvious considering (4.22) and the properties of gradient and convexity.

4.3.2 Controller design algorithm

Let Sf( p represents the robust solution set of (4.22) defined as
S{(P £ {(Kj, Poj, Py Prnyj) 1 95(KG, Pog, - Py, A) =0, VA € Q). (4.25)
Two standard assumptions of sequential algorithms are made here as follows [48]:

Assumption 4.1 The solution set S‘],; p defined in (4.25) contains a nonempty interior for

any given j € So.

Assumption 4.2 If (K, Py, Pij,--- , Pnyj) € Skp, Pr{y;(Kj, Poj,--+ , Pn,j, &) >
0} > 0.

Based on Assumption 4.1, there exists an interior point (K ]# , Po%;” . ,P,f’fu.) € S’f\. p
and a ball B,, C Sjpcentered at (K7, Pft,---, P ;). The knowledge of radius r; of
B, can be used to determine step size in the algorithm presented in this section.

In Algorithm 4.1, the control design algorithm is to find (K;“, Pé}.“, . lev+111> such
that ,),1{;}1 > ij + TVMTTFﬁj, where © € S;, j € Sg, and [ € N represents the iteration
index of Algorithm 4.1. The algorithm is in an iterative structure: At iteration k € N, if the
violation function ¢;(K¥, P, -+ , PR, ;+AF) > 0 for a randomly generated uncertainty

sample AX, K]’F“ and Pj;*! are updated by

dejl/)](I(;*‘P&]» v 7P/l\cllj! AL)

KMl = Kk I . , (4.26)
’ T Gi(RG B Py AR)
a9 o (Ik pk ... pk k
P-k-+1 _ [p.k._udeijd'](K]‘:P()j; )PNlj)A )]+ (427)
7] ) .

1 ; e - N N
1 g’ (P](A;ap(;}a )])]ItfljaAk)
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where ¢; represents the overall size of the gradient in Lemma 4.5:
& (K, Pogo-- PR,y AF) 2 (101, (KF Py, Phyyj AR +
Ny
S N0p, i (KE PE, - PR, AR (4.28)

uf denotes the step-size calculated by

k2 V3B Py - Py Ak) (4.29)
! ¢(I(k Péjy" Pﬁ,],Ak)
where 7; > 0 denotes the radius of B,; C S p centered at (K J# , ng Pﬁl J)

Remark 4.5 In this paper, r; is assumed to be a known priori for choosing step size ,ujf
in the sequential algorithm. If v; is not known, classical choice of step size in stochastic
gradient algorithms can be used for u;‘. For example, limy,_, . ,u;-‘ =0and 12, uf =0
[78, 86]. Note that the projection operation is used in (4.27) to ensure P;; converge to a
nonnegative definite matrix. If the violation function 9;( K ]’9, P({‘]-,- . ,PI’\‘}I o AFY =0, let
Ki*'=Kkand PS*' = Pk ic 81,5 € S,

The controller design algorithm is given in Algorithm 4.2, where 7 =7 +TVMTTF1‘ I
i denotes fault mode, j FDI mode, { iteration index in Algorithm 4.1, and k iteration index

in Algorithm 4.2.

Algorithm 4.2: Controller design for probabilistic performance

1. Initialization: Set & = 0, K ]’-0 =K Jl-, and Pfjo = P”, taken from iteration [ in

Algorithm 4.1, i € 51, j € Sa.
2. At iteration k, estimate the probabilistic performance /¥ of K'¥ using (4.5) for all

i€ 57. If%" > ')‘* for all 7 € Sy, stop and return A]l-k to Algorithm 4.1 as KJI-H.

|
3. Determine positive weight 0 based on ')”, */1 o and VMTTEF;;, 7 € 5;.

4. Generate an uncertainty sample A'¥; if 'L/JJ(K”C P ... vlyAlk) > 0, update
K; tk and P”c using (4.26) and (4.27) respectively; then, goto step 2.

As the probabilistic performance requirement 'yf; is calculated based on the gradient
VMTTFf j» it is ideal to have ”/f}“ increase along this gradient direction for fast convergence.
Based on Lemma 4.4, v; (K, Py;,-- -, Pn,;,A) is a valid composite violation function as
long as the weight 9“?' > 0. Considering that 0.“? also appear in gradient calculation (4.23)-
(4.24), the increasing direction of ~! 7 * can be adjusted by determining 9”‘ based on heuristic

rules, which helps to reduce iteration number.
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4.3.3 Convergence result

Theorem 4.1 [f Assumption 4.1 holds, the iterations (4.26)-(4.27) ensure the following in-

equality
2 2 .
(ot i +Z Pt — Pt < ||k - - Pt =12 @30
, # pHE o # . ,
where (K PO], PR, J-) € Sk p denotes a robust solution.

Proof: The proof follows standard procedure in subgradient algorithms {48, 78, 79].

Owing to Assumption 4.1, define the following feasible solution in Sk p:

_ I, ;i K JPE oo PR AR
9;(K3, Po]»" Py, 8%)
_ Op, b (K¥, Py, , Pk 5, AF)
Pij = 1‘)1;#—}-1‘]- J 17 —. 1€ 5]. (4.32)
Y ¢ (KF, By, Py 5, AF)

So, ¥;(K;, Poj. -+, Pn,j, A) = 0 forall A € Q. For notational simplicity, the variables

of 1, are omitted. If z,m > 0, we have

Kk+1 K#
Nl . 2
ek e k”\ ¥ kI Vi ot
=K — K~y Py !! ; —/’:f_g;,‘”] - P
I, 5 i d
< K K# §(Is7¢] Z Pk_l] K Y; Pl?e
] i=0 %5
5 oo oo 2
P _()1\ i = o~ k9K — Ok
= ||k} I\j#‘ - o (—2 Kk Kj>~z,1,§<¢+j1, K; - KF)+ ,L;?Tj]
2 Op, ;i = Op,y —
- P - UG P - Pay) - 20— Py - )
j J
op, ¥ |?
+ uk,L ,
s )
where the inequality is because of the property of projection operation [48]. Based on
(4.28), we have
TR A R P )
Wy |
“a i=0 J
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Owing to the convexity of 4; in K; and F;;, we have

;¥ K 7@}2&, Ip,b; k . .
b; ¢ 9 i

Because of (4.28) and (4.31)-(4.32), we have

( (

OKJ.'([L‘ —_— . M ap v —
<__¢__i, K- KF+) (=, Py - Py =1;.

J i=0 ¢.7
Therefore, we have
K+l 2 k #112 k\2
% s fwg - G Y
k Vi
—2p5 (=L + ;).
J qu J

By substituting /J,f defined in (4.29), we have

M .

k+1 #11” k1 _ p#)? k_ ] )2

| — kS| P - PR < K - K LN
1=0

2 s
#

< “K]’F - - pf ‘2 2

J

So, (4.30) holds, meaning that the distance to the robust solution is decreasing mono-

tonically. I

Remark 4.6 The iterations (4.26)-(4.27) are originated from subgradient methods, and
their convergence is usually proved based on the distance between the decision variables
and the solution set [86, p. 25]. Theorem 4.1 also follows this idea: after each iteration, the
distance of controller to robust solution set is reduced by at least r . So only finite updates
are needed before reaching the solution set. Considering there is a positive probability
of performing the update based on Assumption 4.2, this theorem leads to the following

convergence result of Algorithm 4.2.

Proposition 4.1 [f Assumptions 4.1 and 4.2 hold, Algorithm 4.2 converges in a finite num-
ber of iterations with probability 1 to a controller satisfying required probabilistic perfor-
mance.

Proof: Considering Assumption 4.2, there is a positive probability of generating an un-
certainty sample with v;(K;, Foj,--- , Pn,j, A) > 0 and performing the iteration (4.26)-
(4.27) when (K POJ, e ,P,’Qvlj) ¢ Sicp. In other words, the distance of(K;“, P(;"j, e P;f,lj)
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to Sy p decreases by at least rf with a positive probability when (Kf, Pé‘j, e ,P,’f,l ;) ¢
Sk p. Therefore, (K J" , P(fl-, s, Pf{,l j) converges to a robust solution in Sk p in a finite
number of iterations with probability one, which implies the convergence to a controller

with any probabilistic performance. B

4.4 Sequential randomized algorithms for 2DOF control

The design of 2DOF control parallels that of state feedback control. For fixed regime modes
((t) =tand n(t) = j, i € 51, j € Sa, the closed-loop system (4.3) is reduced to a linear

uncertain system

G, {m) = E‘iﬂgt) + (B + BiLy)u(t), 433)

Z(l‘,) = Ci]'ll t) + (Fi + DiLj)w(t.),
where the simplified notations in Section 4.3 have been used. Following Lemma 4.1, its

‘H - norm is non-greater than p; if there exists F;; > 0 such that
- - == - =T
Aijpij + Piinj + Ci]-Cij + [Pij(bi + BiLj) + CU(E + DiLJ‘)]

[0F1 = (Fi + DiLy) (Fi+ DiLp)| " (Ei + BiLy)' Py + (Fi + DiL;) Cy] < 0. (4.34)
As the controller gain L; is involved with matrix inverse in this inequality, its convexity is
violated when D; # 0. So D; = 0 is assumed in order to apply sequential randomized
algorithms. Let us begin with the case that F; = 0, and the matrix inequality is reduced to

"Vij = A;FPL'J' + Pi,in + K;[BlTPZJ + PijB,‘Kj
+Py(E; + BiL))(Ei + BiL;)' Py/pf + C/C; < 0. (435)
A violation function of (4.35) can be defined as
1
wij (K, Lj. Py, ) & f(Wij) = 'Q'H(AiTPij + P;jA; + K] Bl P + P; BiK;
+P;(Ei + BiL;)(Ei + BiL;)" P/} + C C:)* |2 (4.36)
Lemma 4.6 w;;(K;, L;, P;;, A) is convex in Kj, L;, and Py; respectively, and its gradi-

ents with respect to these matrix variables are

ak’jwi]'(Kj’Ljyf,iij) QBITPU"V+

iy

wii(Kj, Ly, Py, A) = 2B PyWiPy(BiL; + Ey),

Op,wij(Kj. Lj Py, &) = |BiKj + Ai+ (Ei + BiL;)(Ei + BiL;) P/l |W ]
+WHK] B + AT + P(E; + B;L))(E; + B;L;)" /o).
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Lemma 4.6 can be proved in the same way as Lemma 4.3. This simplified case of
F; = 0 corresponds to 2DOF control in model-matching design for transient performance
and is of major interest in this chapter, as demonstrated in Section 4.6. The gradients and
convexity in the general case of F; # 0 can be derived in a similar way and are omitted here
for brevity.

Compared with state feedback control in Section 4.3, 2DOF control involves two con-
trol gains (K;, L;) and therefore one more decision variable. But, the sequential random-
ized algorithms can be constructed following the same procedures, which are listed as fol-
lows without proof. For convenience and comparison purpose, the same notations are used
here as in Section 4.3.

The composite violation function is defined as

Ny
¥i(Kj, Ly, Poj, -+, Pnyj, A) = Zgijwij(Kj:Lj,Pij,A)a (4.37)
i=0

and its gradients are

;4 (K5, Ly, Pojs -+ Prvyjn A)

1\’1

= Y 0,0k, wy(Kj Ly, Pojy-+  Pryjn A), (4.38)
=0
Or,05(Kj, Ly, Poj, -+ Pryj, A)
N;

= ZoijaLﬂl’ij(Kj,Lj»POjs'" !PNL’]",A)$ (439)
i=0

Op, 03 (K, Lyjs Pojy -+ Py jy B)
= Hij(‘)pijw,-j(l(j,Lj, POja s ,PNij A),? =0--- Nl. (440)

At k-th iteration of randomized algorithm, if the violation function is greater than zero,
. 1k pk k k k+1 k41 k+1
denoted as d)j(K;,L;f,P(fj,-- -, PR, AF) >0, Kj+ , L]-+ ,and Pij+ are updated by

de]w](I(’f)Lfap&]a T ,le\cllj1Ak)

Kl = Kk - , 4.41)
! J J QSI(K;:, L-,;ﬁp(';}1 1P]k\:[l]~Ak)
TR+ L’s‘—p,’v("b.i'd"i(Kf’Lf»P(fr"‘7P§'u’Ak) (4.42)
J J J Qﬁj(KJ’?,L?-.Pij,"' »E’\cr]ijk) )

g o (Kk Tk pk ... pk k
P = [P} 2RV B By, ’PN”"A)]*, (4.43)

b 7 ¢](K;)L§7P(§])7P[k\‘[1])Ak)
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by (K5, LY P PRy ;.0%)

Jay
= -k [k pk 9 :
¢j(]\]' -Lj :Poj:"’vPNlijA)

5 k o
where 47 + 7, and

d)j(K]k‘ L‘I;yp[;ty te sP[’flljaAk)
2 (Ilaqu/)J(A’_}k’Lévakj) o 7P[I\c/1ijk)”2 + ”aLJw](KJk)L;CaP&y v vP]lfllj’Ak)HQ

Ny
+ Y 18m,ws(K5, LY, Py -+, Phygs ARIP)Y2. (4.44)
i=0
r; > 0 denotes the radius of Sk p centered at (KJ#, Lf, ng, e ,Pﬁlj), and Sk p rep-

resents the robust solution set defined as

Skrp £ {(Kj,Lj, Poj, Pij, -+, Pnyj) s (K, Ly, Poj, - -+, Pnyj, A) = 0, VA € Q}.
(4.45)
If S p contains a nonempty interior for any given j € Sy, the iterations (4.41)-(4.43)

ensure the following inequality

. Ny
D) 2 2
~k+1 #| k+1 # A+1 #
’l&j —Kj“+HLJ- —L]-H-l-g IPU _P”l
=0
& et]? kr#|? ZNI k p#l? 2
i=0

The inequality (4.46) can be derived in a similar way as in Theorem 4.1, which leads to the
convergence of the iterative updates. The 2DOF controller design algorithm can be imple-
mented by replacing the iterations (4.26)-(4.27) with (4.41)-(4.43) in Algorithm 4.2. And
it can be used with Algorithm 4.1 to find a 2DOF controller for MTTF optimization. If
(Kj,Lj, Poj, Pij, -+, Pnyj) & Sicrp implies Pr{y;(Kj, Lj, Poj, -+ , Pnyj, &) > 0} >
0, Algorithm 4.2 with iterations (4.41)-(4.43) is guaranteed to converge to a 2DOF con-
troller satisfying required performance with probability 1, which can be proved similarly as

in Proposition 4.1.

Remark 4.7 Both the state feedback and 2DOF controller require complete information of
states and can be designed using sequential randomized algorithms, in which the iterative
updates and convergence proof are similar. Their differences lie in the following aspects:
1) The 2DOF design is originated from model-matching problem and needs the knowledge
of w(t); 2) it requires the condition D; = 0 to apply the algorithm; 3) it involves one
additional feedforward gain L;, which appears as a new decision variable in the design

algorithm.
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4.5 Output feedback control

We consider a general scenario when plant state is not available for controller and the plant

output equation is
y(t) = U(C(), A)a(t) + M({(2), A)u(t) + N(((2), A)w(t), (4.46)

where y(t) € R! represents measured output, and U(¢(t), A), M(((t), A), and N({(t), A)
system matrices. By using y(t) instead of z(t) in the original 2DOF control, the control

input becomes

u(t) = Kymy(t) + Ly w(t)
= KynU(C(t), A)z(t) + Ky M(C(2), A)u(t)
+[K,7(t)N(C(t), A) + Ln(t)]w(t)- 4.47)

Obviously, closed-loop system is well-posed if and only if I — K, M ({(t), A) is non-

singular, which leads to
u(t) = [I — Kpy M(C(2), A)]"I[K,,(t)U(((t), A)x(t) + (Kpy N(C(t), A) + Ly )w(t)].
Substitute u(t) into (4.1), and the closed-loop system equation becomes

(&(t) = [A(C(1), &) + B(2), A)I ~ Ky MC(8), A)) ™ Koy U(C(2), A)(t)
HEG(), &) + B(C(t), A)(I — Ky M(¢(2), A))7
(Ko N(C(t), A) + L) w(t),

z(t) = [C(¢(1), A) + D(¢(t), A) (I — Kyiy M({(8), A)) T Ky U (1), A)l=(2)
+HF(C(1), A) + D(¢(t), A ~ Ky M(¢(t), A))
(K N(C(2), A) + Ly w(t).

For fixed regime modes {(t) = iand n(t) = j, i € S1, j € 59, the closed-loop system

is reduced to a linear uncertain system

z(t) = [Ai + B;(I - I&’j]\/fi)—lKjUi]I(t)+

Ei + Bi(I — K; M) (K;N; + Ly)w(t),
2(t) = [ + Dill — K; M)LK Uiz (t)+

(F: + Di(T - K; M)~ (K, Ny + Ly)w(t).

Gij : (448)

where the simplified notations in Section 4.3 have been used. Following Lemma 4.1, a ma-
trix inequality can be derived to have ||G;;(s, A)w|l < pi. However, matrix inverse terms

involving controller gains may appear in the inequality and violate convexity. Therefore,
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D; = 0and M; = 0 are assumed in order to apply sequential algorithms, and the inequality

is reduced to:

Wi 2 (4 + B:K;U)"Pj + Pj(Ai + B;K;U;) + CI'C; + [Pj(E; + BiK;N;
+B,L;) + CTE)(p*] — FTF)™Y(Ei + B;K;N; + B;L;)T P; + FF Cy).

Its violation function can be defined as
1.
wii (K, Ly, Py, 8) 2 5[ Wi ™. (4.49)

Note same notations of violation functions and gradients are used as in Section 4.4 for
comparison purpose.

Lemma 4.7 w;;(K;. L;, P;j, A) defined in (4.49) is convex in K;, L;, and Py, and its

gradients are

Ox,Wi; = 2B]PyW[}(PE;+ P;BiL;+ C]F; + P;B.K;N;)(p}I — FIF)"' N/,
0, Wij = 2B PjW}(P;BiLj+ P;Ei+ PjBiK;N; + CTF)(p}] - F )™,
B, Wij = [Ai+ BiK;Ui+ (i + BiK;N; + B;L)(p*l — FTF)'EFI ¢y

+(Ei + BiK;N; + BiLi)(p}I - F/ F,)""(E; + BiK;N; + B L) Py |w}

+WHAT + Ul K] BY + CTFi(p}1 ~ FTF)" (Ei + B.K;N; + B;L;)"

+P;j(E; + BiK;N; + B;L) (021 — FI'F})"Y(E: + B;K;N; + B;L,)"],
Lemma 4.7 can be proved in the same way as Lemmas 4.3 and 4.6. Once a convex violation
function and its gradients are found, the remaining procedures are similar as (4.37)-(4.44)
and omitted here for brevity. Compared with 2DOF control using state feedback, output
2DOF control contains more complicated calculations of gradients. The corresponding

output feedback control of Section 4.3 is to use only y(¢) for controller design, which can

be deemed as a special case by making L; = 0 in (4.47).

4.6 Example

We consider a demonstration example used in [48] which studies the lateral motion of an

aircraft. The plant model under fault-free mode is given by

0 1 0 0 0 0
R (R AR Lo | 0 -391
Bt = |v o Yy “1 | TOF e o | 4O
N[j ]Vp JV[; -+ N[}Yﬂ N, — ]VB -2.53  0.31
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where the components in state z,(t) represent respectively bank angle, directive of bank
angle, sideslip angle, and yaw rate. Two control inputs are rudder and aileron deflections
respectively. The considered faulty mode is the 50% loss of effectiveness in both actuators,
represented by the reduction of control input matrices.

The control objective considered here is to make the side slip angle, the third state of
zp(t), track pilot’s command, represented by exogenous input w(t). The desired response
model from w(t) to side slip angle is represented by a first-order transfer function 5%1
This is a typical model-matching problem as illustrated in Figure 4.1. Let z,,,(t) denote the

& 1,.T

state of the desired model, and z(t) = [z, (t) zm(t)]7, the augmented state vector. The

model-matching problem can be converted to the following standard set-up

0 1 0 0 0 0
0 L, Lg L, 0 0
2y = lov 0 Y S0 e+ o] w
IVB N, Nz+ NﬁYB N, - NS 0 0
0 0 0 0 -1 1

+B(((t))ult, n(t)),
2(t) = [0 0 -1 0 2z(t),

where u(t,n(t)) = Kyuz(t) + Lyw(t) represents a 2DOF controller in a switching
structure. B(((t)) represents the fault effects on control input matrices. Let By and B,

denote B(((t)) when ((t) is in mode 0 and | respectively:

0 0 0 0
0 -3.91 0 —1.955

By = 10.035 0 , By = 10.0175 0
—2.53 0.31 -1.265 0.155

0 0 0 0

The modeling uncertainties are introduced by aircraft parameters, and the random vec-

are: L, = -293, Lg = —4.75, L, = 0.78, g/V = 0.086, Y3 = —0.11, Ny =
0.1, N, = —0.042, N3 = 2.601, and N, = —0.29. Each parameter is assumed to be
perturbed by a relative uncertainty of 10%. For example, Lg is bounded in the interval
[-3.223, —2.637]. The probability distribution of each parameter is assumed to be a uni-
form distribution within the corresponding interval.

The fault occurrences and FDI mode transitions are characterized by the generator ma-

trices of ((t) and n{t):

_[-0.005 0.005] ,o_[-02 02] . [-2 2
HC"[ 0 0}’H"“[2 -2]’Hn"[o.2 —0.2]'
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These parameters can be interpreted as follows: According to H¢, the mean occurrence
time of faults is 200 minutes, and the faulty state is absorbing as the components on the
second row are all zeros; according to H,(,’, under fault-free mode, the mean time of false
alarms is 5 minutes and that of returning time from false alarms is 0.5 minute; according
to H,ll, the mean time of missing detections is 5 minutes and mean returning time is 0.5
minute. So, this FDI may give frequent incorrect detections.

In this standard set-up, the plant state x,(t) and model state z,, () are both incorporated
into state dynamics z(t), w(t) represents command input, arid z(¢) the mismatch error
between the plant and desired responses of side slip angle. Under each fixed regime modes
((t) = i and n(t) = 7, the performance measure is selected as the H,, norm of closed-loop
transfer function from w(t) to z(t), denoted by ||G;;(s, A)|lo. It describes the difference
between the plant response and the desired one; when ||Gy;(s, A)llo is small, the plant
transient behavior of side slip angle is expected to resemble the desired one. The allowable
H oo bound p; is assumed to be 0.5 for i = 0 and 0.75 for i = 1. So, when ((¢) = 0, the
system is deemed to fail if ||G;;(s, A)|lo > 0.5 for a duration over hard deadline Thg = 5
minutes; when ((t) = 1, it is deemed to fail if |G;;(s, A)|l« > 0.75 for a duration over
hard deadline. Our design objective is to find a 2DOF controller such that the overall MTTF
is greater than 100 minutes (Note that frequent incorrect FDI decisions are assumed and this

short MTTF design is for demonstration purpose only).

-

T T T T T T T Awo‘,' =
R —ﬁ— FElealvtal:e | A—.G-"A"
2 M - —O— Expected value - - 4
;:;,. 0.5 P A:e-—A=v:O'b‘"'e
Q - -
E o o b T ) ) : N .
§ [ 0.05 0.1 0.15 0.2 0.25 03 0.35 04 045
8 Yoo
k] K
£ 1
s 1 T v v T T ; e
n%;'- —A— Real value _ é-:é/t/
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Yo1
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Figure 4.2: Gradient search trajectory.
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Figure 4.2 shows a searching trajectory of Algorithms 4.1 and 4.2, where v;; denotes
the probabilistic performance Pr{||Gi;(s,A)|lc < pi}. In the figure, the first plot shows
the related probabilistic performance for controller Ky, the second plot for K, and the last
one shows the trajectory of MTTF when updating controllers iteratively. In the first two
plots, the circles represent the expected performance imposed by the gradient search Al-
gorithm 4.1 in the first design stage, and the triangles represent the achieved probabilistic
performance of controllers found by Algorithm 4.2 in the second stage; in the last plot,
the circles represent the MTTF based on expected control performance, and the triangles
the achieved MTTF using controllers found in Algorithm 4.2. As shown in the figure, the
achieved probabilistic performance of controllers increases along the direction of expected
performance and is greater than it at each iteration. Moreover, MTTF is strictly increas-
ing iteratively, and the following controllers are obtained that achieve MTTF = 511.5348
minutes:

g _ [F05800 02251 -2.1234 15100 44991] [ 1.7530
07 1 3.2406 05472 3.8520 —0.1351 -6.5038|' ~°~ |-1.8396|’

—0.5779 0.2122 -2.1297 1.5169 4.4946 1.75633
K= , L= -

3.2464 0.5368 3.8420 —0.1324 —6.5095 —2.0499

To check the transient performance of the closed-loop system, the side slip responses under
regime mode ({t) = 0 and 7(t) = 0 for a particular uncertainty sample is shown in Figure
4.3. It is clear that the plant response has similar transient characteristics as the desired one.
As the controller is designed for long-term MTTF and probabilistic modeling uncertainties
exist in regime models, there may be differences on static gains for a particular uncertainty

sample. Overall, the algorithm provides an effective controller design for MTTF.

25
2 -
[
?:» Desired response
& 157 ——— Plant reponse |
2
k7
2 ]
o
0.5 1
0 . . . .
0 2 4 6 8 10

Time

Figure 4.3: Transient responses in a regime model.
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4.7 Conclusions

This chapter discusses the design of MTTF suboptimal controller for FTCS’s. The reli-
ability criterion is evaluated from a semi-Markov process model which is built based on
probabilistic control performance. But, MTTF cannot be written as an analytical expres-
sion of controller parameters. Hence, conventional methods are not applicable to controller
design with an MTTF objective. To overcome this difficulty, a gradient-based search is first
carried out on probabilistic performance parameters; the controller is then updated itera-
tively to achieve this performance. This two-stage method gives a controller achieving the
desired MTTE.
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Chapter 5

Semi-Markov FDI model and
reliability evaluation™

5.1 Introduction

The Markov models of faults and FDI schemes were initially proposed by Mariton to study
the effects of FDI delays on system stability [6]. By using two Markov processes to rep-
resent faults and FDI results respectively, Srichander et al. developed the necessary and
sufficient conditions for exponential mean-square stability [15]; Mahmoud et al. derived
the stability of FTCS’s in the presence of noise and summarized their results on the analysis
and design of FTCS’s based on Markov models [7, 16]. However, Markov models impose
a memoryless property [32]. As discussed in [87], the sojourn time duration of FDI is a
random variable that may take any probability distribution, but Markov models accept the
exponential distribution only. This introduces the so-called memoryless restriction of FDI:
the probability of transiting from one state to another is independent of the amount of time
that the process has spent in the current state.

This problem was pointed out in [32], but no alternative model was constructed for FDI,
and a large quantity of conditional probabilities were used instead. In [87], stability in the
presence of general detection delays was analyzed by modeling the sojourn time as a finite
state Markov chain or a random variable with a mixture of given probability distributions.
But Markov chain model can give only fixed values of sojourn times from a finite set. Also,
these distributions can be described by the more general semi-Markov model of FDI pro-
posed in this chapter. Furthermore, the reliability evaluation method presented in Chapter

2 is extended to FTCS’s with the semi-Markov FDI description.

*Originally published as: Hongbin Li and Qing Zhao, “Reliability evaluation of fault tolerant control with
a semi-Markov fault detection and isolation model”, Proceedings of the Institution of Mechanical Engineers,
Part I: Journal of Systems and Control Engineering, vol. 220, no. 5, pp. 329-338, 2006.
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Briefly, this chapter is organized as follows: Section 5.2 introduces the model of FTCS’s
with a semi-Markov FDI description; Section 5.3 presents the reliability evaluation method
for FTCS’s with this FDI model; an example is given in Section 5.4 to illustrate the semi-
Markov FDI model and reliability evaluation procedure; and finally, conclusions are reached

in Section 5.5.

5.2 Semi-Markov FDI model

FTCS’s are modeled as linear dynamical system with Markov transitions determined by
fault and FDI modes. The general form is given by (2.2) in Chapter 2 and also adopted in
this chapter but with some modifications to address the limitation of Markov models.

A random variable {(¢t) € S; = {0,1,2,--- , N} called plant mode is adopted to
describe fault occurrences among the possible modes in S;. By assuming that no automatic
repair or intermediate fault occurs and that the failure rate is constant, a Markov chain can
be used to describe the plant mode [88]. Let (;, € S; be a discrete-time Markov chain and
define ((t) = ¢, nTs <t < (n+ 1)T;, n € N. N denotes the set of non-negative integers
and 7 the FDI detection cycle duration. The transition probability matrix of (;, is denoted
as G = [Gij]n, <Ny, Dojes, Gij = L i € Sy

¢(t) is not directly mecasurable, and the FDI scheme is used to produce an estimate
of the plant mode, denoted as n(t) € Sz = {0,1,--- , Na}. Based on n(t), the control
input u(n(t),t) is applied to the plant. In practice, 7(t) is often generated by cyclic sensor
measurements and calculations with a fixed amount of data, e.g., the Shewhart control chart
and parity space methods [89]. In this case, the cycle duration time, T;, can be assumed to
be a known constant.

Let n, € Sz denote a discrete-time stochastic process, n € N, representing the FDI
mode after the n-th detection cycle, as shown in Figure 5.1. Let 6, € Spand T,,, € N
denote the FDI mode and cycle index respectively after the m-th transition of ,,, m € N.

For example, in Figure 5.1, 85 = ny and Ts = 4.

”n+2”n+3
"o
é

’7,. r]n+l !

9’"

T, T,, !

Figure 5.1: A sample path of the FDI process.
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(6, T) 2 {8,,, Ty, : m € N} is called a discrete-time Markov renewal process if

Pr{em—i—l = jv Tm+1 - Tm = ll@(), t 79m;T()> te 1Tm}

= Pr{HnH—l = jv Tm+1 —Ty = llam} (51)

holds for fixed (7,, = (141 = - = (Tpyy =k, k€ 51,5 € S, l,m e N g, =

#, is then called the associated discrete-time semi-Markov chain of (6, T), where m =

suppen{Th < n}. The FDI mode at t is defined as (t) £ n,, nTy < t < (n + 1)T,.
Given {7,, = (Toutt = = (s = k., m € N, k€ Sy, (6,T) is called time-

homogeneous if
@0, 3.1) & Pr{bmst = j. Tt = T = Ui = k}

is independent of m for any i,j € S2,1 € N. QX £ {[Q(4, 4, )]n,xn,, L € N} is called
the semi-Markov kernel of n, given (, = k. Note that the behavior and parameters of 7,
depend on (, as 7, is an estimate of (,,.

Given (,, = k, k € Sy, it can be shown that § £ {6, : m € N} is a Markov chain with
state space So and transition matrix P¥ £ [Pf]n,wn, 2[00 QF (i, 5, 1)] v, x v, [90, 91].

Given (1, = (ft1 -+ = Clyy = ko let 755 = Trpyy = Ty if 0y = i and Onqy = 5,
kebSy,ij € Ss. Tf} is the sojourn time of 7,, between its transition to state ¢ at T}, and
the consecutive transition to j at 15,4 ;. The probability distribution of 7'{3— is given by
Qp (i 5.0)

Pr{r)y =1} = Pr{Toy1 — Trn = U0 = i,0pp1 = j} = E
i

(5.2)

with the convention that QX(7, j, 1)/ P = 1y_ oy if PE = Qk(4,5,1) = 0,4,5 € S,
!l € N. The indicator function 1, o} = 1 ifl = +00; otherwise, 17—} = 0. Denote
H*(i, j,1) £ Pr{rf =1} and H* £ [H*(i, 5, )] Ny x v,

Given (¢, = k, P*, together with H*, determines the stochastic behavior of T, OF
equivalently, Qf;' solely determines 7,, as Q’g(i,j, )= Pf;H (1,7, 1).

To recap, the description of FDI is summarized as follows:

1) The FDI mode, 7, is modeled as a semi-Markov chain conditioning on the plant

mode, .
2) The embedded Markov renewal process (6, 7"} gives the transition history of 7,,.

3) Given a fixed plant mode ¢, = k, P* describes the transition probability of the

embedded Markov chain 6,, and H* the sojourn time distribution of 7,,.

82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



5.3 Reliability modeling

Considering that the plant and FDI modes are described by discrete-time stochastic models
and that the fault occurrence within 7§ is assumed to be negligible, we are interested in
evaluating the reliability value at t = nTy, denoted by R,, £ R(nT}), n € N.

The performance measure at £ = nTy is denoted as J,, and the maximum performance
threshold when ¢, = i is denoted as J},,, i € Sy. J,, is determined by a performance
measure function, such as the system norm of the system model corresponding to {, and
7ln. The hard deadline is denoted as Tyq € N, the maximum number of detection cycles T
for a temporal performance violation. Based on Definition 2.1, the reliability index R, is

equal to the following probability:
Ro=1-Pr{3keN0<k<nn-k>ThVeNk<l<nJ >J, i=(}

Following similar idea as in Chapter 2, a discrete-time semi-Markov chain X} is pre-
sented to evaluate this reliability index. For each plant mode i, two functional states of X}

are defined as follows:

it {G =N {Jn < Jhahs (5.3)
ik {CG =1} N{Jn > i} N {sojourn time < Thg}. (5.4)

The absorbing semi-Markov state ‘F’ represents the total failure state of the system. If the
initial state Xg = On, Ry = 1 — PR(0y,F,n), where PR(0Oy,F,n) denotes the transition
probability from Oy to F at n. Therefore, the reliability evaluation problem is reduced to
constructing XX and calculating its transition probability.

To calculate the semi-Markov kernel of XX, several probabilistic parameters are defined

in Chapter 2, which can be naturally extended as shown in the following equations:

fI>

71,} PI'{Jn S J;imen - 7:77]71 = J}v ﬂ; é nlggopr{nn ZJICTL = 2})

wj & lim Pr{m = jlX5 = in}, o & lim Pr{n, = jIX3 = ir},
wherei € 51, j € Ss.

Given (, = ¢ and 7, = j, the combinational mode ((,,7,) after the subsequent
transition is determined by which one of ¢, and 7, transits first and which mode they
transit to. For example, if ¢, transits first to & at n + m, then ((pa1,Ppy1) = -+ =
(Cntm—1:Mn+m—1) = (4,4) and (o, nam) = (k, 7); if 7y, transits first to [ at n + m,
then (Cat1,Mnt1) = -+ = (Catm—1s Inym—1) = (4,J) and (Coym, Tnm) = (4,1). So ¢y
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and 7, can be considered to be competing between each other, and the order of transitions is
crucial to determine the subsequent mode. We call these transitions competition transitions,

and their probabilities competition probabilities, as given in the following definition.

Definition 5.1 Given (, = i and m,, = j, the combinational mode is denoted as (i, j),
i € S1,j € Sa. Suppose (Cur1,Mnt1) = = (Crtm-1,Tmtm-1) = (i,5) and the
next combinational mode after the consequent transition of (, or/and 1, at n + m is
(CntmsMnym) = (k.1), where k # iorland | # j, k € Sy,j € Sy. The probability of
this event is called the competition probability, denoted by p(; ;)1 (m).

Given (, = i, 7, = j, the sojourn times of (,, and 7,, are denoted as o; and T‘: respec-
tively. If the next mode of 7,, is known as [, the sojourn time of 7,, is denoted as 7! i If the

plant mode i of ¢, is absorbing, Pr{c; > Tj} = 1; otherwise,

Pr{o; >T;} = ZG Z JZHi(j,l,}z),
m=1 €S, h=1
oc

Pr{ai:/’;} = ZG"' ! (1-Gy; Z 'J,l m)

m=1 leSy

Pr{o; < T]L} 1-Pr{o; > T;} — Pr{o; = T;}

The competition probabilities can be classified into following three cases:

Pljy—ian(m) = Pr{nym=1N T;l = m|o; > T]’} Pr{o; > T]’}
= ‘}'lHi(j,l,m) Pr{o; > T;},
Ply—kn(m) = Pr{Gum =AkNoi=mNim =10 TJI:, =m}

= GI'GuPyH(j,l,m),

il

P gk, j) (M) Pr{Gitm =kNo; =mlo; < T}}Pr{ai < ‘r]’}

= G 10kPr{01<T}
where k # 4,1 # j,and m € N.

With these probabilistic parameters, the semi-Markov kernel of reliability model X}

can be calculated by the following theorem. For notational simplicity, p; ky.—.(;p)(m) as

Pikijt> a0 P gy (min(mm, Tha)) as ot ).

Theorem 5.1 The semi-Markov kernel of the reliability semi-Markov chain, X, is given
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by the following equations:

Qulinyinm) = Y W > PikeitVits (5.5)
k€S, lESy

Qrlin,inam) = > wh Y pikegtit, (5.6)
keSy €S,

Qrlinyie,m) = Y wh Y pabit(1 = i), 5.7
keS> leS,

Qrlin,grm) = D wh > putsgt(l = 750, (5.8)
keS, €Sy

Qrlir,inem) = > vk Y PR, (59
kE€Sy leS,

Qrlirgnom) = Yok Y AR (5.10)
keS; €S,

Qrlip,ie,m) = > vf > Pt (1 - ), (.11
keS8, €S,

Qrlir.Jr,m) = > vk Y pRm (1= i), (5.12)
k€S2 15

Qr(ip, Fom) = Lgpop (1 - Z > Qrlir,a,h)), (5.13)

heN,h<m a€ S, a#F
Qr(F,a,m) = 0,a€ S, (5.14)
where Ty denotes the hard deadline, m € N, ¢z € 51, [ # k. The indicator function
sty = Lifm > Thg; otherwise, 1,57, = 0.

Proof: (%, TX) denotes the associated discrete-time Markov renewal process of X2,
n,n’ € N. (0, Tj) denotes the associated Markov renewal process of 71,,, h € N. n, k, and
n’ represent the cycle or transition indices of these processes, but they may correspond to
the same time instant.

The transitions are caused by the changes in the FDI and plant modes. By the total
probability formula and conditioning on the FDI modes, the transition probability can be

decomposed into three parts, as shown in the following equations:
o R R _ .
Qr(in,in,m) =Pr{oy 1 = zN,Tn/_H TR = m|#R, = in}

= Y Pr{ghy =in, TNy — TR = mleR = in N0y, = k}Pr{0), = Klo% = in}

keS:
= Z Pr{9h = kl(P”/ = ’IN} Z Pf{Jn+m S ﬂ Cn+1 = <n+m =1N
keS, leSy

Dtm = Opp1 = (N Thy1 — Ty = m|gs = in N0, = k)}

= Z Pr{f) = kw)ﬁ’ =in} Z Pr{Jn4m < JlilaxKTH-m =i N Nntm =1}
ke Sq €S,
Pr{o; > mNbp =107, =m|¢, =iNb, =k}, (5.15)
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where Ti.l and o; denote the sojourn time of ¢, and 7, respectively. The first two terms
in (5.15) can be approximated by the following stationary probabilities in the probabilistic

parameters:
Pr{6; = k|¢% = in} = w], (5.16)
Pr{Jn+m < JpaxlGntm = 1 N Tl = 1} % v (5.17)
The last term in (5.15) is equal to the following competition probability:
Pr{o; > mNOpp =INT, =m|C =iNO, =k} = pigit. (5.18)

Substitute (5.16)-(5.18) to (5.15) and (5.5) is proved. (5.6)-(5.8) can be proved in a similar
fashion as shown in the following example of (5.6).
Qr(in, in,m) =Pr{gR | = jn, TR ) — TN = m|¢% = in}

= Y Pr{¢} 1 = jn, T y1 — Toy = mldh = in N 6n = k}Pr{6h = k|ok = in}

keSs
= > Pr{Oh =klgw =in} Y Pr{Jnim < Jhu NVong1 e = Cngmor =
keSy leS,

NCrgm =JF N ngm = Opg1 = INThyy — T = mlwlr{;' =iNNbp = k)}

= Z Pr{‘gh = k'(p'rRL’ = iN} Z Pr{']n+m < J[imen—f-m =7 N Ypgm = l}
keS8, €S,

Pr{Cpim =N = MmN Guym = LN T = m|C = iN Oy = k}

= ) _u > Pik—itits (5.19)

keS:  1eS
where j #£ 14, j € Sy.

For (5.10)-(5.13), when the sojourn time is no greater than T4, the transition is similar
to the case of iy; otherwise, Xff transits to F. Therefore, the minimum function min(m, Thq)
is used in (5.10)-(5.12); Qr(ir,F, m) becomes nonzero only if m > Ty, and this proba-
bility is complementary to the transition probability to other states within 714, which is

calculated based on 1¢,,, 1,y in(5.13). @

Remark 5.1 The main idea of the above derivation of the transition probability is to de-
compose it into three parts: the FDI mode estimation, the competition probability and the
probabilistic performance estimation. The effects of the hard deadline are described by
min(m, Tha) and 1(n57,3-

Once the semi-Markov kernel of XR is obtained, the transition probability and reliabil-

ity function R,, can be calculated using available formulas [90, 91).
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5.4 Example

Consider a longitudinal vertical takeoff and landing aircraft model in the form of (2.2)
with the following system matrices [92]. The subscript ‘0’ and ‘1’ in the system matrices
represent those for plant mode ‘0’ and ‘1’ respectively. Plant mode ‘0’ represents the fault-
free mode. Under plant mode ‘1°, an actuator fault is considered, and the effectiveness of

the first actuator is reduced by half, as reflected in B;.

—~0.0366 0.0271 0.0188 —0.4555 0.4422  0.1761
A _ | 00482 -101 00024 -4.0208 _3.5446 —7.5922
0= 101002 03681 -0.707 1.420 |’ 7°7 |_-552 449 |’
0 0 1.0 0 0 0
0.2211 0.1761 1000
1.7723 —17.5922 0100 ,
Bi=1| 976 449 |'°= |0 0 1 o A=A C1=C
0 0 011 1 )

Eo = [0.05 0.05 0.05 0.05]7, E; = Ey.

Suppose the cycle duration, T, is 1 second. The transition matrix of the plant mode Markov

o= [0.99 0.01J _

chain ¢, is

0 1
According to GG, the mean time for the fault occurrence is 1/0.01 = 100 cycles = 100 seconds,
and this high failure rate is intentionally chosen for this example to reduce the calculation

burden. The FDI is modeled by a semi-Markov chain 7),, with the following parameters:

o [0 1] o1 [o 1
=l =)

HY%0,1,m) = H*(1,0,m) = Pois(m|20),
H°(1,0,m) = H'(0,1,m) = Bin(m|10,0.5),

where 0 and P! are transition probability matrices of the embedded Markov chain and
H(0,1,m), H°(1,0,m), H'(0,1,m), H'(1,0,m) are distribution functions of sojourn
time, m € N. ‘Pois(-|-)’ and ‘Bin(:|-,-)’ denote the Poisson and Binomial distributions
respectively:

20™ 9
-20
e 1

Pois(m|20) = —

10!

Bin(m|10,0.5) = ml(10 — m)!

0.50.5'9"™ m < 10.
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Based on these parameters, the stationary distribution of 7,, is computed as
[7r8 w?} _ [0.8 0.2}
g wH T |02 0.8]°
which shows that the correct and false detection probabilities are 0.8 and 0.2 respectively.
The differences between Markov and semi-Markov model of FDI can be shown in the
sample paths from these two types of models given in Figure 5.2. These two curves are

given under the plant mode ‘0, and the generator matrix of the continuous-time Markov

process model is

, _[-0.05 0.05
¢ = [ 0.2 —0.2]'

According to G, the stationary distribution is [0.8 0.2], the same as [7J 7?]. Furthermore,
the mean sojourn times from mode 0 to 1 and from 1 to 0 are 20 and 5 seconds respectively,
the same as the means of H° (0,1, m) and H'(1,0,m). However, in the sample path of the
Markov process model in Figure 5.2, there are 2 transitions from | to 0 with a sojourn time
of about 0.05 of a second due to the memoryless property of exponential distribution. These
transitions are impractical because the FDI needs at least one detection cycle to return mode
0 from the false alarm. In contrast, the sample path from the semi-Markov model is accept-
able: each sojourn time is an integer multiple of the detection cycle duration. Therefore

the Markov model may not generate a reasonable sample path for FDI with cyclic detection

schemes.
Markov model

2»
(-]
B
E 15
o
w

1

L L L L L . . L .
0 20 40 60 80 100 120 140 160 180 200
Time
Semi-Markov model

2_
)
B
E 151
<}
w

1 b

180

L . L . L ) . .
0 20 40 60 80 100 120 140 160
Time

200

Figure 5.2: Sample paths of FDI models.

The static state feedback controller for the normal and faulty cases are:

| —0.4558 —0.5080 1.4881 1.0242

Ko = —-0.1022  0.1089 0.1216 0.0486]°
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0.1680 1.3673 -0.7858 —0.4397|

When 7(t) = 0, u = Koz is in use; when n(t) = 1, u = K;z is switched on.

K [~--v0.1078 0.7452  0.3158  0.6761
1:

Here, we use the M, norm as the performance measure. The performance evaluation

function with the thresholds for the two fault modes is defined as follows:

JIGHW(CH 17]11’3)”00
141G yw (Gn it 8)oc *

7 = 1, unstable at n,
" stable at n,

JO ., =05, JL =067,

where Gy (Cn, 7, 8) is the transfer function from w to y corresponding to the current
fault mode (,, and the FDI mode 7,. According to the assumption of known probability
distributions of modeling uncertainties and the randomized algorithm in [46], the following

probabilistic performance values can be obtained:

Yoo Yor{ _ |0.7033 0.6260
yio vii| ~ |0.5583 0.6084| "

For example, oo means Pr{.J, < JO |¢, = 0Nn, = 0} = 0.7033.

Other probabilistic parameters are calculated as follows:

Wop Wo1 _ 0.6920 0.3080 Voo Vor| _ 0.6134 0.3866
wyg wyy| |0.3145 0.6855|° |vyg wvir| |0.3606 0.6394|°

For example, Pr{n,, = 0| XX = 0N} ~ wpy = 0.6920.

Set the hard deadline T4 = 5. By substituting these parameters into Theorem 5.1, we
obtain the semi-Markov reliability model. The transition probability and reliability function
curve are then calculated, as shown in Figure 5.3, where R, is the reliability curve and
PR(l, i,n) the transition probability curve from state #1, Oy, to state #7,7 =1 ~ 5, n € N.
From PR(1,1,n) and PR(1,2,n), we can see that the performance degradation during this
time period is mainly caused by false alarms of FDI and XR jumps from Oy to O with high
probability. From R, and PR(1,5,n), we can see that the probability of system failure is
zero within 7}, a finding which is consistent with our definition of reliability function.

Next, in order to show the influence of FDI on reliability, we use the same aircraft model

but with a different FDI, which has the following new parameters:
H(0,1,m) = H'(1,0,m) = Pois(m|80),
H®(1,0,m) = HY(0,1,m) = Bin(m|3,0.5).

According to H°(0, 1,m), the mean sojourn time for a false alarm increases from 20 to 80

T; according to H°(1,0, m), the mean recovery time from a false alarm decreases from 10
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Figure 5.3: Transition probability and reliability curves.

to 3 T;. Following the same procedure, the transition probability curves of the reliability
model and the reliability curve are given in Figure 5.4. Compared with the results in Figure
5.3, the maximum transition probability to state #2 decreases approximately from 0.2 to
0.08, and the maximum point shifts from n = 20 to n = 80 as a result of the increase
in the mean time for false alarms. We also note that the shapes of some of the curves are
very different from those in Figure 5.3. Consequently, the transition probability to state #5
decreases and the reliability deteriorates more slowly and the system will probably survive

longer. Therefore, a properly designed FDI is crucial to achieve high reliability of FTCS’s.
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Figure 5.4: Transition probability and reliability curves with a different FDI.
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5.5 Conclusions

This chapter presents a semi-Markov description of FDI and the reliability evaluation of
FTCS’s with a semi-Markov FDI model. This semi-Markov model of FDI is more general
than the Markov process model, and the memoryless restriction is thereby removed. The
reliability evaluation method presented in Chapter 2 is then extended to this general FTCS’s
model. This reliability evaluation considers the characteristics of FTCS’s, and an example

is given to illustrate the procedure.
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Chapter 6

Reliability monitoring”*

6.1 Introduction

In previous chapters, we considered static model-based control objectives and built a semi-
Markov model based on imperfect FDI and hard-deadline concepts. However, in many prac-
tical systems, the safety and reliability of operation are often assessed based on dynamic
system responses. For instance, reliability in structural control is defined as the proba-
bility of system outputs outcrossing safety boundaries and evaluated by using Gaussian
approximation [93]. Also, an online available reliability monitoring scheme using updated
information may aid maintenance scheduling, provide pre-alarming, and avoid emergent
overhauls. How to evaluate reliability when it is defined on system trajectory and how to
implement an online-monitoring scheme are the main motivations of this chapter.

The objectives of this chapter are three-fold. First of all, a Steady State Test (SST)
is proposed to reduce false alarms of FDI decisions. The stochastic modeling of such an
FDI scheme is studied based on which the transition characteristics of FDI modes can be
described. The second objective is to develop a reliability evaluation scheme for FTCS’s
based on system dynamic responses and safety boundary. At last, online monitoring fea-
tures are considered, such as estimation of FDI transition parameters based on history data
and timely update of reliability index to reflect up-to-date system behavior.

The remainder of this chapter is organized as follows: The assumptions and system
structure are given in Section 6.2; FDI scheme, modeling, and parameter estimation are
discussed in Section 6.3; the determination of out-crossing failure rates and hard-deadlines
are discussed in Section 6.4; and the reliability model construction is discussed in Section

6.5 followed by a demonstration example of an F-14 aircraft model in Section 6.6.

*Results presented in this chapter has been submitted to a special issue in the Jowrnal of Control Science
and Engineering.
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6.2 Assumptions and system structure

Assumption 6.1 The considered plant is assumed to have finite fault modes, and dynamics
under each fault mode can be effectively represented by a linear system model.

Fault modes are represented by a set S with N integers; {M; : i € S} represents the
set of dynamical plant models under various fault modes; and {K; : ; € S} denotes a set of
reconfigurable controllers in a switching structure. K; is designed for fault mode j based on
M;, j € S. However, true fault modes are usually not directly known, so an FDI scheme
is used to generate estimates of fault modes, which may deviate from true fault modes with

error probabilities.

Assumption 6.2 FD/ scheme is assumed to generate a fault estimate based on a batch of
measurements and calculations for every fixed period Tj.

This assumption states a cyclic feature of FDI, such as statistical tests and Interactive
Multiple Model (IMM) Kalman filters [94]. Discussions in this paper are not restricted to
specific design schemes. FDI modes are represented by a discrete-time stochastic process
1 € S, where n € N, the set of non-negative integers. The time duration between consec-
utive discrete indices is equal to FDI detection period T5. K; is put in use when 7, = j,
j € S. Corresponding to 1),,, a discrete-time stochastic process (,, denotes true fault mode.
In reliability engineering, constant failure rates are usually assumed for the main part of
component life cycle. In such a case, (;, can be described as a Markov chain [88], and its

transition probabilities are denoted as Gy; = Pr{(p41 = jI¢ =1}, ¢, 5 € S.

Assumption 6.3 System performance is assumed to be represented by a vector signal z(t).
Safety region, denoted as 3, is assumed to a fixed region in space of z(t) bounded by its
safety threshold. Failure is assumed to occur when z(t) exists a safety region for the first
time.

This assumption intends to define an appropriate reliability index based on system dy-
namical response. It is common in control systems to use a signal z(t) to represent per-
formance; and z(t) is usually to be kept at small values against excitations from exoge-
nous disturbances, model uncertainties, and model characteristic changes caused by faults.
Safety region {2 is assumed to be fixed and known a priori. The scenario that z(t) exists {2
represents lost of control and system failures. More discussions on this assumption can be

found in [75].
Definition 6.1 For a rime interval from 0 to t, the reliability function R(t) is defined as the
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following probability:
R(t) =Pr{v0 <7 <t, z(r) e Q}.

Compared with ¢, and 7,, =(t) is typically a fast-changing function determined by both
continuous and discrete dynamics. ¢, and 7, are two regime modes and determine the
transitions among regime models. When (, = ¢ and 5, = j are fixed, z(t) evolves ac-
cording to plant model M; and controller ;. As a result of this hybrid dynamics, directly
evaluating R(t) and MTTF is a difficult problem. Therefore, a discrete-time semi-Markov
chain XR is constructed for reliability evaluation purpose as in previous chapters. The
main idea is: the hybrid system is decomposed into various regime models; each regime
model is then evaluated for related safety characteristics; and XX is constructed to integrate
these characteristics with transition parameters of regime modes and to solve its transition
probabilities for reliability evaluation. The structure and main components of reliability

monitoring scheme are illustrated in Figure 6.1.

R(1), MTTF

T

reliability model (semi-Markov chain X : )

plant faults confirmed FDI

. estimates
out-crossing failure hard-deadline FDI transition

rate (matched cases) (mismatched) characteristics

switching controllers steady state test| |confirmation test

Figure 6.1: System structure.

Semi-Markov reliability model XR is the kernel component for calculating MTTF. It
is constructed based on the following parameters: 1) the transition rates of ¢,, called plant
failure rates; 2) the estimates of (;, from FDI and confirmation test, called confirmed fault
modes; 3) the parameters of 7),, estimated from history data, called FDI transition charac-
teristics; 4) the probability of z(t) crossing safety boundary during an FDI cycle T; when
(n = 7n, called failure out-crossing rates. 5) the average number of periods before crossing
safety boundary when ¢,, # n,,, called hard-deadlines. Among these parameters, the second

and third ones can be updated online.
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6.3 FDI scheme and its characterization

6.3.1 Steady state tests

1t is well-known that false alarm and missing detection rates are two conflicting quality
criteria of FDI. One is usually improved at the cost of degrading the other. What is worse,
the general rules of adjusting FDI to improve these two criteria simultaneously are often
not known. For example, in a scheme based on IMM Kalman filters, it is not clear how to
determine Markov interaction parameters. Considering that most false alarms last for short
time only, an SST strategy is adopted for post-processing FDI decisions.

SST requires that, when FDI decision changes, new decision is accepted only when it
stays the same for a minimum number of detection cycles. Let Tsst; denote the required
number of consistent cycles for FDI mode j, j € S. The effectiveness of this SST strategy
relies on the distribution of false alarm durations. For example, if a nonnegative discrete
random variable A denotes the false alarm duration when system fault mode ¢, = 0, Tss1o

can be taken as (1 — a)-quantile of A9, 0 < o < 1, meaning
Pr{Xo > Tssto} < a,

which implies that false alarm probability can be reduce by ratio o when accepting FDI
decisions after 75sto. The weakness of this method is additional detection time delay of
Tsst; when fault occurs. However, this happens only under rare occurrences of faults.
Compared with the improvement on relatively more frequently transitions of FDI modes,
this weakness is acceptable.

Detection decisions from SST are represented by 7, and used for controller reconfigu-
rations. In Figure 6.1, the confirmation test is an SST with large test period to further reduce
false alarms to a negligible level. It generates confirmed fault modes, which are used with

FDI trajectories for updating transition parameters of 7),, and reliability index.

6.3.2 Stochastic models

Following methods in Chapter 5, 7, is modeled as a discrete sem-Markov process. Its
sample path when applying SST is given in Figure 6.2. Let 6,, € S and T),, € N denote
the FDI mode and cycle index respectively after the m-th transition of n,,, m € N. For
example, in Figure 5.1, 8y = n5 and T = 5. 6,, and T}, together determine FDI trajectory,

and n, = g, , where S, = sup{m € N : T};, < n} is the discrete-time counting process

n?

of the number of jumps in [1,n). (6,T) £ {fm,Tm : m € N} is called a discrete-time
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Figure 6.2: A sample path of n,,.

Markov renewal process if

Pr{t9m+1 = j, Tm+1 - Tm = ”90‘, T ’em; TOa T TTH}
= Pr{0m+1 = j,Tn1+l ~ Ty = llem}

holds for fixed {7, = (1,41 = - = (1., = k, where k € Sy, j € Sy, and,m € N.
T = O, is then called the associated discrete-time semi-Markov chain of (6, 7). It can be
shown that 6,, is a Markov chain, and its transition probability matrix is denoted by P*.

Given (1, = (Ts1 -+ = By = ko let 75 = Ty — Ty if Oy = G and Opiqq = 5,
where i, 5 € Sy and k € 5. Ti}; is the sojourn time of 7, between its transition to state 7
at T;, and the consecutive transition to j at 7},,, 1. If the transition destination state is not
specified, let 7/ denote the sojourn time at state i.

As shown in Figure 6.2, Ti’; is the sum of two variables: a constant Tsgt; for SST
k

period and a random sojourn time o7;. Let hfj(l) and gfj(l ) denote the discrete distribution

functions of Ti’; and afj respectively, which have the following relations:

0, [ <Tssmi;

| ©.1)
g5 (1 = Tssri), 1 < Tssmi-

hf](l) = Pr{‘ri’; =l}= {

Semi-Markov description provides a general model on FDI mode transitions, but it involves
a large number of parameters. The transition characteristics of 7, are jointly determined
by P* and Af; (or gf). If S contains N fault modes, there are N transition probability
matrices P* and N* distribution functions hf;. If each h¥ follows geometric distribution,
the description of 1, may degenerate to a hypothetical Markov model 7.

Markov chain can be considered as a special type of semi-Markov chain. If 7, can be

modeled as a Markov chain with transition probability matrix denoted by H* for ¢,, = k,
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the following relations hold:

HkE
P = —L, (6.2)
& 1~ HE
hE() = (HH'HE, (6.3)
RE() = (HE'H(1 - H), (6.4)

It is obvious that h¥ is a geometric distribution. In fact, this is an essential property of
Markov chain: A discrete-time semi-Markov chain degenerates to a Markov chain if and
only if the sojourn time at each state (when subsequent state is not specified) follows geo-
metric distribution.

When Tsst1 1s nonzero, the sojourn time of 7, does not follow geometric distribution
owing to this deterministic constant. However, as Tgst is known, a hypothetical process
7, can be constructed by setting Tsst to zeros; if the sojourn time of 7], is geometrically
distributed, it can be described as a Markov chain; the original sojourn time of 7,, can be
recovered by adding Tsst to that of 7],. This method may greatly reduce the number of

parameters for characterizing FDI results.

6.3.3 Transition parameter estimation

FDI transition parameters can be estimated as an off-line test on FDI when both fault mode
and FDI detection results are known. This estimation can also be carried out online using
FDI history data and confirmed fault modes.

When 7, is modeled as a semi-Markov chain, P* and h,i-“j (or gf'j) are parameters to be
estimated. PP* can be estimated from the transition history of 7,. For example, when ¢, is
kept as a constant k, if there are A{;; transitions from 7 to j among all A{ transitions leaving
i, the 75-th element of P* can be estimated as Pf; = M;;/M.

The estimation of sojourn time distribution qf] can be completed in two steps: the his-
togram of sojourn time is firstly examined to select a standard distribution such that non-
parametric estimation is converted to a parametric one; (}fj is then obtained by estimating
unknown parameters in distribution functions.

If qf) follows geometric distribution for all ¢, j,k € S, n, can be described as a hy-
pothetical Markov chain 7, under the hypothesis that Tsst; = 0. As a result, transition

probability Hz’} from 7 to j and sojourn time T,ik at ¢ have following relation:

Pr{rf = n} = (HR)" (1 - HE).
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Therefore, E(7F) = 1‘_1”.», and HX can be estimated by

_ 1 Mk .
k= {1 S L O/M 20, 65)
1, otherwise,
where Tik(l ) denote M sojourn time samples at state ¢,/ = 1,--- , M. H lkj can be estimated
based on the transition frequency from state ; to j:
HY = (1- HE)wk /M, (6.6)

where 1~ H % is anormalization coefficient and wfj represents the number of FDI transitions

from i to j.

6.4 Out-crossing failure rates and hard-deadlines

Owing to FDI delays or incorrect decisions, controller K; may be used for its designated
regime model M; (namely, matched cases) and other model My, i # j (namely, mis-
matched cases). Matched cases usually account for major operation time, while mismatched

cases often appear as temporary operation.

Definition 6.2 The out-crossing failure rate in matched cases is defined as
vii 2 Pr{3r, nTy <7 < (n+ DT, 2(7) € Qe(nL) € A (o=ma =i}, i€ S

Monte Carlo simulation can be used for estimating v;;: At each sample simulation, system
is run based on generated sample uncertain plant model and sample disturbance input, and
the simulation time when system fails is called a sample time-to-failure. With a large num-
ber of time-to-failure samples obtained, v;; can be estimated as the ratio between Ty and
sample mean of time-to-failure.

Mismatched cases are usually temporary operation caused by FDI false alarms or de-
lays, and system may return to matched cases if z(t) does not diverge to unsafe region. So,
it is important to find out the average tolerable time before system failure. This time limit
is called hard-deadline, denoted by Thy,; for (, = i and 1, = j. It can also be estimated by

sample mean of time-to-failure using Monte Carlo simulations.

6.5 Reliability model construction

The states of semi-Markov chain X2 are classified into two groups: one unique failure

state, denoted by sp, and multiple functional states, defined as state combinations of {,, = 7

98

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



and 7, = j, denoted as s;;, where ¢ € Sy and j € S3. For example, if two types of faults
are considered in the plant, and (, includes states of fault-free, fault type 1, fault type 2,
and both fault 1 and 2, represented by S = {0, 1,2, 3}; and FDI mode 7, also takes value
in S. XR then has 4 x 4 + 1 = 17 states.

The semi-Markov kernel of XX is denoted as Q(-, -, n), representing the one-time tran-
sition probability in n steps. It is determined by the following parameters: 1) transition
characteristics of fault and FDI modes; 2) outcrossing failure rate in state s;; denoted by
vy;; 3) hard-deadline in state s;; denoted by Thg;j; 4) FDI SST period denoted by Tsst; for
FDI mode j.

Let us begin with the case that FDI mode can be described as a hypothetical Markov
chain 7}, with transition probability denoted by H. fj The calculation of Q is classified into
the following cases:

Case 1: The transitions from functional states to themselves are not defined and the

corresponding elements are assigned as zeros:

Q(s4ii, 55, m) =0, Q(%],SU, ) =0,1€ 5,5 €5
Case 2: Failure state sy is absorbing:

1, m=1;
SE, SF, M) =
@sr. s, m) {0, m > 1.

Case 3: Matched states s;;:

(1 - ,U”)m—IGTIl—l,,”, m < TSlev
pu ’U”)G”Hl] m—Tssti- l)v m > TSSTi7

Q(sii, sp, m)

I

1 - Un m—le 1( U“)GU) m < Tssti,
pn — Vi GnHz} m=Tssri- 1)(1 - UH)GLJI:I m > Tssti,
0, m < Tsgri,
piil(1 — v3i) Gy HE = Tssmi-1)(1 — vit) Gy, m > Tssti,

Q(sii, S m) =

m < Tssti,
pu Uu Gzsz] m= 7SST1_1)(1 - Uu)szH

17?7

Q(8ii, S5, m)

Q(sii, i, m) = {
B { m > Tssti,
where p; = Pr{X; = == X1y, = il Xo = su} = (1 — vy )ISS“GYS”’ i# 7,
k#4,1,5,ke S.
The derivation of these equations are based on Markov transition probabilities and the

decomposition of each event. For example,

Q(si,sp,m) = Pr{X; =Xy = = Xyt = 501, X = 58| Xo = 843}
= Pr{X1 = XQ == Xm_'[ = Sivi[Xo = Sii}Pl'{Xl = SFIXO = 31‘1‘}-
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Considering steady state test of FDI, if m < Ty,

Pr{Xi=Xo =" =X 1 = sl Xo = s} = (1 —vie)" ' G

)

Ifm> TSSTi’

Pr{X|; =Xy = = X1 = 5] Xo = sii}
= PI’{X1 = X2 == XTSSTi = 5ii|}(0 = S,‘,’}[(l - vii)Gi,‘HZi](m_Tssn 1).

Combing these two probabilities with Pr{X;, = s¢|Xo = s;i} = vii, Q(sii,sF,m) is
obtained.

Case 4: Mismatched states: s;;, i # j. When m < Tsgry, the transition probability
of X,‘f to any other state is zero because of SST period. When Tsst; < m < Thqij, the
probability of X! transiting to any other state is zero except to s;;. The above reasoning
is based on the facts that FDI rarely jumps to other false modes when current mode is
incorrect, and mean fault occurrence time is in a much higher order compared with a short

false FDI detection period. Therefore, when Tsst; < m < Thaig,

Q(sij, 87, m) = 0,
Q(sij, 85,m) = [H]l;j}’"‘us'r"‘i1H}1= J#L 5 le s

When m > Thgij + 1, XX jumps to s at the earliest time m = Tpg;; + 1 only:

Thaij
Q(sij, 88, TosTs +1) = 1- Z Q(si5, $ii,m)
k=Tssti+1
_ 1— (Hji_j)ﬂj—l’ssrjﬂ i
— i ji
1 - Hj;

In the general cases, 1), is modeled as a semi-Markov chain, and the competition prob-
abilities methods discussed in Chapter 5 can be utilized. As the states of X} is mainly
defined as the state combinations of (, and 7,, the calculation of the semi-Markov kernel

of X® is simplified when competition probability P(s,5)—(k,1) () is available, as shown in
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the following formulas:

Qsiis sktm) = (1= )" p(i iyt .ty (M),

Qsiiyseom) = (1= v)™ Moy,

Q(si,5u,m) = 0,

(k) (M), M < Thgijand k =1 =1,

p
Q(sij, sk, m) = )
(i3, Skt m) 0, otherwise

0, m< Thdij»
Q(sij, sp.m) = Thass
1= 32020 Q(sigs siim), m > Thaig,
1, m=1;
Q(sp.s5p,m) = ’ ’
( ) 0, m>1.
Although these formulas appear to be simpler, both the parameter estimation and compe-
tition probability calculations need much more calculation burden than the first case when
FDI decision is modeled as a hypothetical Markov chain. Once XR is constructed, calcula-

tion of reliability function and MTTF are straightforward using available formulas [27].

6.6 Example

6.6.1 Model description

The F-14 aircraft control example used in Chapter 2 is used again to demonstrate the relia-
bility monitoring scheme [47]. The description and system diagram can be found in Chapter
2 and are omitted here for brevity.

The control objectives are to have handling quality (HQ) responses from lateral stick to
roll rate p and from rudder pedal to side-slip angle (3 match ideal HQ models. Under fault

free modes, the HQ models are 5% and —2.5 ; when fault occurs, HQ models

1.257
$+2.55+1.25
degrade to 57 1 and —2. 5S+1 55+0 =7 respectively.

The considered fault occurs in two actuators. Under fault-free mode, their transfer

functions are:
25
s+25
Two types of actuator faults are considered here: each has mean occurrence time 10° of FDI

Ag = Ap =

periods or its failure rate is 10~°. Under fault type 1, the transfer function of Ag becomes

;. 1D
‘45 = O":)s T 15
Under fault type 2, the transfer function of Ag becomes
Al = 10
s+10°
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These fault modes are described as the change of actuator gains and time constants. The set
of fault modes is denoted by S = {0, 1,2, 3}, representing fault-free, faut type 1, type 2,

and simultaneous occurrence of both.

6.6.2 Performance characterization of controller and FDI

Four H,,, controllers are designed for each fault mode to achieve nominal HQ control ob-
jectives under fault-free mode and degraded ones under fault modes. Typical output trajec-
tories under fault-free mode is shown in Figure 6.3. The absolute minimal matching errors
between the real responses and the ideal or degraded ones are shown in Figure 6.4, which
are assumed to represent system safety behaviors. When these matching errors go over the

safety limits, 30% of expected output, aircraft is considered as failed.

8
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Figure 6.3: Output trajectories.
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Figure 6.4: The trajectories of matching errors.

An IMM FDI was constructed to detect fault occurrences. To reduce false alarms, a

steady state test strategy is applied on FDI decisions with T5gr; = 6 for any FDI mode j. A
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typical FDI trajectory is shown in Figure 6.5. It is clear that the steady FDI mode is free of
false alarms in the shown time period. But detection time delays are introduced when fault

occurs at 20 and 50 seconds respectively.
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Figure 6.5: FDI trajectory.
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Sojourn time

Figure 6.6: Histogram of FDI sojourn time.

To represent FDI detection characteristics, a batch of fault and FDI history data is col-
lected for statistical estimation. First, histograms of FDI delays are generated to check its
distribution type. When there is no fault, the histogram of FDI sojourn time at fault-free
mode is shown in Figure 6.6. It clearly resembles a geometric distribution. Equation (6.5)-
(6.6) are then used to estimate Markov transition probabilities, and those under fault-free

mode are obtained as:

0.9990 0 0.0010 0.0000
1.0000 0 0
0.1330 0.8670 0
0.5000 0O 0 0.5000

<

HO —

o]

As aresult of FDI false alarms, missed detections, and detection delays, controllers may
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be engaged for various fault modes for which they are not designed. So, it is necessary to
evaluate system behavior under all possible combinations of FDI and fault modes. Here,
Monte Carlo simulations are adopted with the following settings: 1) command stick inputs
are square waves with frequency as a random variable ranging from 0.2 to 2 Hertz; 2) wind
gust disturbances and sensor measurement noises are assumed to be Gaussian processes; 3)
actuator saturation effects limit control inputs to 20 and 30 respectively; 4) system failure
is assumed to occur when model matching errors go over 30% of stick commands. For
example, with fault mode 2 occurred and K3 engaged, mean time to system failure is 57403
seconds when controller K is used, and 6 seconds when K; is used. Considering the
sampling period is 0.1 second for IMM FDI, the out-crossing failure rate and hard-deadline

are: vag = 1/574030, Theo1 = 60.

6.6.3 Reliability evaluation

Reliability semi-Markov model can be constructed based on fault transition rates, FDI tran-
sition parameters, out-crossing failure rate, and hard-deadlines. Predicted reliability func-
tion and Mean Time To Failure (MTTF) can be thereby calculated. Using MTTF as an
objective, an optimization is performed on Tggr. It is found that MTTF will be improved
from 27727 to 32605 seconds if Tggr; is reduced from 6 to 1. A comparison of reliability
functions before and after this optimization is shown in Figure 6.7. It is clearly shown that

reliability index is improved.

0995 . . Optimized

099
0.985
098

0975

Predicted reliability function

PR R . . L R . .
100 200 300 400 500 600 700 800 900 1000
Time

Figure 6.7: Reliability functions comparison.

Comparisons on the transition probabilities between these two SST periods are shown
in Figure 6.8, in which each sub-figure gives the transition probability curves from syg to

other states. For example, the sub-figure at the first row and second column shows the
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transition probabilities to s¢; is increased from 0 to about 0.008. This is a natural result
of increased false alarms when reducing Tsgr;. In fact, when Tgst; = 1, new Markov

transition parameters H'0 becomes:

0.9822 0.0017 0.0122 0.0038

O = 0.2634 0.7366 0 0
~ 10.1989 0 0.8011 0
0.3530 0 0 0.6470

Compared with HY, the element on the first row and second column is increased from
0 to 0.0017, a confirmation of increased false alarms. On the other hand, detection delays
are reduced approximately from 6 to 1, and system stays less time under mis-matched fault

and FDI cases. Overall, MTTF is improved.
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Figure 6.8: Comparison of transition probabilities.

This evaluation procedure can be completed in an online manner. Estimated FDI tran-
sition parameters H and current mode of ,, provided by confirmed test on FDI can be used

to provide updated MTTF based on this most recent information.

6.7 Conclusions

A reliability monitoring scheme for FTCS’s is reported in this chapter. The scheme contains
two post-processing strategies on FDI results to provide estimated fault mode for control
reconfiguration and confirmed mode for updating reliability. The stochastic transitions of
FDI mode is represented by a semi-Markov chain with parameters estimated from history
data. Under geometric sojourn time distributions, FDI mode can be described by an equiv-

alent hypothetical Markov chain that simplifies its model and reliability analysis. Safety
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and satisfactory operation of system is defined by system trajectories and safety bound-
aries; the probability of violating this safety criterion under fixed fault and FDI modes is
estimated using Monte Carlo simulations. Overall reliability evaluation is obtained through
a semi-Markov model constructed by integrating FDI transition characteristics and failure
probabilities under each regime model. This scheme provides timely monitoring on the

reliability index of FTCS’s, and was demonstrated on an F-14 aircraft model.
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Chapter 7

Conclusions and future work

7.1 Conclusions

This thesis discusses the analysis and design of FTCS’s based on a reliability index in the

following aspects:
¢ Reliability analysis of FTCS’s

Constructing a reliability model is the first task in the overall framework. In the litera-
ture, Markov and semi-Markov models are commonly used to model reliability of FTCS’s.
Assumptions on the memory property of FDI are critical to determine model type. The
states of the models are usually defined according to the combinations of the fault modes
and FDI results. These available results provide some general procedures and crucial ideas
for reliability analysis.

In this thesis, different from these available results, a new semi-Markov reliability
model is constructed in Chapter 2 from dynamical model, and it considers some fundamen-
tal characteristics of FTCS’s: control objectives, performance degradation, hard deadline
in FTCS’s, and effects of imperfect FDI. These aspects are incorporated in the proposed
model, based on which reliability can be analyzed for FTCS’s.

This analysis method also has some limitations. For example, it is developed based on
two assumptions about static control performance and stationary distribution of FDI mode.
It can not be applied to other control objectives defined on system transient trajectory. The
approximation of stationary distribution may introduce some errors on analysis results. In

addition, this method may involve heavy numerical calculation burdens.
o Controller design based on reliability

Once the reliability model is constructed, the reliability index is incorporated in de-

sign process, which is essentially an optimization problem with respect to a reliability
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index. Owing to the numerical procedures of building and solving stochastic reliability
models, reliability criteria cannot be written as analytical functions of controller parameters
in general. To overcome this difficulty, based on stabilizing controller parameterization,
randomization-based optimization algorithms are proposed in Chapter 3 to find the sta-
tistically optimal controller with the highest reliability. The designed controller can not
only stabilize system but also achieve the optimal reliability index, such as MTTF. But this
method is restricted to certain modeling structures because of the constraints on stability
and parameterization results.

Another design method is given in Chapter 4 by performing MTTF optimization in two
steps: 1) a gradient-based search is carried out for control performance characteristics up-
dated along the fastest increasing direction of MTTF; 2) the updated control performance
characteristics are then transmitted to a controller design algorithm, which updates con-
troller accordingly to satisfy this performance. Each design step is completed by one itera-
tive algorithm, and two algorithms are used alternately to complete controller design. This
method helps to tackle the difficulty caused by the implicit relationship between the MTTF

objective and controller parameters.
¢ Improvement of FDI description and reliability modeling

FDI is described by a Markov process in Chapters 2 through 4, and its sojourn time
is exponentially distributed. However, Markov process model may not be applicable to
general FDI schemes. This modeling limitation is addressed in Chapter 5 by using an
extended semi-Markov description of FDI, which removes the memoryless assumption in
Markov models and provides a general model for cyclic FDI schemes. Furthermore, the

reliability index and evaluation method are extended to this general description of FTCS’s.
¢ Online reliability monitoring

This study aims to develop online reliability monitoring scheme for active FTCS’s. The
reliability index can be implemented and updated online as an indication of overall system
performance. It can also be used for performance analysis and design of FTCS’s. The key
point of online monitoring is to update reliability prediction using current available data
from FDI and plant outputs. The scheme is developed mainly based on previous results in
reliability modeling with necessary improvements to account for this online feature.

These reliability-based methods may be applied in the future to processes under con-
tinuous operation. To ensure productivity, operation interruptions for emergent repairs of

these processes should be avoided, and they are expected to operate with satisfactory per-
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formance until scheduled maintenance. The reliability-based FTC methods can be used to
handle manageable faults and to retain acceptable performance. The advantage of these
methods is the optimal reliability index, which can be deemed as a consistent objective of
improving productivity. For some other safety-critical systems such as aircrafis, classical
FTC methods may be more suitable because safety throughout each mission duration (e.g.,

flight time) is of top priority.

7.2 Future work

¢ Calculation reduction and sensitivity analysis

The proposed reliability is calculated from a semi-Markov model. Its calculation in-
volves model construction and transition probability solution. Although this index may re-
flect characteristics of FTCS’s, the complicated procedure and lack of analytical expression
have caused difficulties in its applications, especially in controller design. If its calculation
can be properly simplified, an approximate index may find extensive applications in both
analysis and design. For example, an approximate reliability index is widely adopted in
active structure control [75]. Similar idea may apply to the proposed index for FTCS’s. In
addition, it is worthwhile to carry out sensitivity analysis on reliability index with respect to
system and probabilistic parameters to determine the effects of modeling and approximation

errors.
e Trajectory-related control objective and reliability index

A critical issue of defining an appropriate reliability index for FTCS’s is to incorporate
control objective and reconfiguration actions such that this index can represent mission pro-
file of control applications. In this thesis, reliability is defined as the probability that system
satisfies a static objective. This static assumption is made based on the extensive applica-
tions of model-based control objectives and its simplicity. Model-based system norms can
be used, but trajectory-based objectives are not applicable. However, it may be important
to study control objectives defined on transient trajectories in some applications. An pre-
liminary effort is made in Chapter 6 using Monte Carlo method to estimate the probability
of out-crossing a safety boundary. Some design method may be developed following this

idea.
e FDI imperfectness description and FTC modeling

FDI results provides information for controller reconfiguration, and FDI imperfectness
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has been a critical issue when analyzing overall performance. In this thesis, Markov model-
ing is adopted. The advantage is the availability of stability results and simplicity of Markov
process. But, it also has weakness on the memoryless restriction of Markov description and
an appropriate selection of Markov modeling parameters. In practice, an direct description
of FDI imperfectness is false alarm, missing detection, and incorrect detection probabili-
ties. These parameters can be obtained from FDI history data. Also, many controller design
techniques are a multiple-model modeling of FTCS’s. It is worthwhile to extend current re-

liability results on these imperfectness parameters and FTC models.
¢ Integrated design with maintenance activities

Reliability problem discussed in this thesis ignored maintenance and inspection activ-
ities. If these activities are taken into account, a monitoring or prediction scheme may
provide solutions for condition-based maintenance. We have made some efforts to build
stochastic models for maintenance scheduling in FTCS’s [95]. This method may be further
improved to consider controller reconfiguration, FDI, and maintenance in a single model,
which may help to design a system achieving high reliability using all available engineering

activities.
o Controller design with semi-Markov FDI description

A semi-Markov description is more general for FDI schemes than Markov one, and a
reliability index can be extended to this model. But, controller design using this modeling
and reliability index is still an open problem. The difficulty lies in the stability results on
this general model which may involve partial differential equations [96]. Some numerical
methods may be available to solve these equations for controller design. Reliability-based

design in this case may be achieved using these numerical methods.

110

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Bibliography

{11 J. Chen and R. Patten, Robust model-based fault diagnosis for dynamic systems.
Boston: Kluwer Academic Publisher, 1999.

[2] R. Patton, “Fault-tolerant control systems: the 1997 situation,” in IFAC Symposium on
Fault Detection Supervision and Safety for Technical Processes, R. Patton and J. Chen,
Eds. Kingston Upon Hull, UK: IFAC, 1997, vol. 3, pp. 1033-1054.

[3] D. Moerder, N. Halyo, J. Broussard, and A. Caglayan, “Application of precomputed
control laws in a reconfigurable aircraft flight control system,” Journal of Guidance,
Control, and Dynamics, vol. 12, no. 3, pp. 325-333, 1989.

[4] Z. Gao and P. Antsaklis, “Reconfigurable control system design via perfect model
following,” International Journal of Control, vol. 54, no. 4, pp. 763-798, 1992.

(5]

, “Stability of the pseudo-inverse method for reconfigurable control systems,”
International Journal of Control, vol. 53, no. 3, pp. 717-729, 1991.

[6] M. Mariton, “Detection delays, false alarm rates and the reconfiguration of control
systems,” International Journal of Control, vol. 49, pp. 981-992, 1989.

{7] M. Mahmoud, J. Jiang, and Y. Zhang, Active Fault Tolerant Control Systems: Stochas-
tic Analysis and Synthesis. Berlin: Springer-Verlag, 2003.

[8]1 Y. Zhang and J. Jiang, “Integrated active fault-tolerant control using imm approach,”
IEEE Transactions on Aerospace and Electronic Systems, vol. 37, no. 4, pp. 1221-
1235, 2001.

[9] ——, “Accepting performance degradation in fault-tolerant control system design,”
IEEE Transactions on Control Systems Technology, vol. 14, no. 2, pp. 284-292, 2006.

[10] G. Tao, S. Chen, and S. Joshi, “An adaptive control scheme for systems with unknown
actuator failures,” Automatica, vol. 38, no. 6, pp. 1027-1034, 2002,

[11] X.Zhang, T. Parisini, and M. Polycarpou, “Adaptive fault-tolerant control of nonlinear
uncertain systems: an information-based diagnostic approach,” IEEE Transactions on
Automatic Control, vol. 49, no. 8, pp. 1259-1274, 2004.

[12] N.E. Wy, Y. Zhang, and K. Zhou, “Detection, estimation, and accommodation of loss
of control effectiveness,” International Journal Adaptive Control Signal Processing,
vol. 14, pp. 775-795, 2000.

[13] Y. Zhang and J. Jiang, “Active fault-tolerant control system against partial actuator
failures,” /EE Proceedings of Control Theory and Applactions, vol. 149, no. 1, pp.
95-104, 2002.

{14] D. Campos-Delgado and K. Zhou, “Reconfigurable fault-tolerant control using gime

structure,” IEEE Transactions on Automatic Control, vol. 48, no. 5, pp. 832-839,
2003.

111

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



[15] R. Srichander and B. Walker, “Stochastic stability analysis for continuous-time fault
tolerant control systems,” International Journal of Control, vol. 57, pp. 433-452,
1993.

[16] M. Mahmoud, J. Jiang, and Y. Zhang, “Stochastic stability analysis of active fault-
tolerant control systems in the presence of noise,” IEEE Transactions on Automatic
Control, vol. 46, no. 11, pp. 1810-1815, 2001.

[17] F. Tao and Q. Zhao, “Stochastic fault tolerant control for optimal H; performance,”
International Journal of Robust and Nonlinear Control, vol. 17, no. 1, pp. 1-24, 2007.

(18]

, “Synthesis of fault tolerant control in the presence of random fdi delay,” Inter-
national Journal of Control, vol. 80, no. 5, pp. 684-694, 2007.

[19] R. Veillette, J. M. J, and W. Perkins, “Design of reliable control systems,” IEEE Trans-
actions on Automatic Contyrol, vol. 37, no. 3, pp. 290-304, 1992.

[20] M. Blanke, M. Staroswiecki, and N. E. Wu, “Concepts and methods in fault-tolerant
control,” in Proceedings of American Control Conference, Arlington,USA, 2001, pp.
2606-2620.

[21] W. Kuo and M. Zuo, Optimal Reliability Modeling. Hoboken: John Wiley and Sons,
2002.

[22] N. E. Wu, “Coverage in fault-tolerant control,” Aufomatica, vol. 40, pp. 537-548,
2004.

[23] N. Viswanadham, V. Sarma, and M. Singh, Reliability of Computer and Control Sys-
tems. Amsterdam: Elsevier science pubilishers, 1987.

(24] A. Birolini, On the Use of Stochastic Processes in Modeling Reliability Problems.
Berlin: Springer-Verlag, 1985.

[25] E. Cinlar, Introduction to Stochastic Processes. Englewood Cliffs: Prentice Hall,
1975.

[26] H.Liand Q. Zhao, “A cut/tie set method for reliability evaluation of control systems,”
in American Control Conference, Portland, 2005.

[27] N. Limnios and G. Oprisan, Semi-markov Processes and Reliability. Boston:
Birkhauser, 2001.

[28] N. E. Wu and R. Patton, “Reliability and supervisory control,” in /FAC Symposium
on Fault Detection Supervision and Safety for Technical Processes, N. E. Wu, Ed.
Washington D.C., USA: IFAC, 2003, vol. 5, pp. 1033-1054.

[29] N. E. Wu, “Reliability prediction for self-repairing flight control systems,” in Pro-
ceedings of the 35th IEEE Conference on Decision and Control, Kobe, Japan, 1996,
pp- 184-186.

, “Reliability of fault tolerant control systems: part i and part ii,” in Proceed-
ings of the 40th IEEE Conference on Decision and Control, Orlando, USA, 2001, pp.
1460-1471.

[31] F. Guenab, D. Theilliol, P. Weber, J. Ponsart, and D. Sauter, “Fault tolerant control
method based on cost and reliability analysis,” in The 16th IFAC World Congress,
Prague, Czech, 2005.

[32] B. Walker, “Fault tolerant control system reliability and performance prediction using
semi-markov models,” in IFAC Symposium on Fault Detection Supervision and Safety

Jor Technical Processes, R. Patton and J. Chen, Eds. Kingston Upon Hull, UK: IFAC,
1997, vol. 3, pp. 1053-1064.

112

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



(33]

, “Fault detection threshold determination using markov theory,” in Fault Diag-
nosis in Dynamic Systems: Theory and Application, R. Patton, P. Frank, and R. Clark,
Eds. Prentice Hall, 1989.

[34] D. Schrick and P. Miiller, “Reliability models for sensor fault detection with state-
estimator schemes,” in Isswes of Fault Diagnosis for Dynamic Systems, R. Patton,
P. Frank, and R. Clark, Eds. London: Springer-Verlog, 2000.

[35] J. Harrison, K. Daly, and E. Gai, “Reliability and accuracy prediction for a redundant
strapdown navigator,” Journal of Guidance and Control, pp. 523-529, 1981.

[36] M. Blanke, M. Kinnaert, J. Lunze, and M. Staroswiecki, Diagnosis and Fault-Tolerant
control. Berlin: Springer, 2003.

[37] F. Guenab, D. Theilliol, Y. Z. P. Weber, and D. Sauter, “Fault tolerant control system
design: a reconfiguration strategy based on reliability analysis under dynamic behav-
ior constraints,” in Proceedings of Safeprocess, Beijing, 2006, pp. 1387-1362.

[38] C. Bonivento, M. Capiluppi, L. Marconi, A. Paoli, and C. Rossi, “Reliability evalua-
tion for fault diagnosis in complex systems,” in Proceedings of Safeprocess, Beijing,
2006, pp. 1405-1410.

[39] R. Patton, F. Uppal, S. Simani, and B. Polle, “A monte carlo analysis and design for fdi
of a satellite attitude control system,” in Proceedings of Safeprocess, Beijing, 2006,
pp. 1393-1398.

[40] N. E. Wu and S. Thavamani, “Effect of acknowledgement on performance of a fault-
tolerant wireless network,” in Proceedings of Safeprocess, Beijing, 2006, pp. 1411-
1416.

[41] J. Figueras, P. Vicencc, and J. Quevedo, “Multiple fault diagnosis system design using
reliability analysis: application to barcelona rain-gauge network,” in Proceedings of
Safeprocess, Beijing, 2006, pp. 1399-1404.

[42] M. Blanke, “Consistent design of dependable control systems,” Control Engineering
Practice, vol. 4, no. 9, pp. 13051312, 1996.

[43] W. Goble, Control Systems Safety and Reliability. Research Triangle Park: Instru-
ment Society of America, 1998.

[44] B. Spencer, M. S. C. Won, D. Kaspari, and P. Sain, “Reliability-based measures of
structural control robustness,” Structural safety, vol. 15, pp. 111-129, 1994,

[45] K. Shin and H. Kim, “Derivation and application of hard deadlines for real-time con-
trol systems,” IEEE Transactions on Systems, Man and Cybernetics, vol. 22, no. 6, pp.
1403-1412, 1992.

[46] R. Tempo, E. Bai, and F. Dabbene, “Probabilistic robustness analysis: explicit bounds
for the minimum number of samples,” Systems & Control Letters, vol. 30, no. 5, pp.
237-242, 1997.

[47] G. Balas, A. Packard, J. Renfrow, C. Mullaney, and R. M’Closkey, “Control of the
f-14 aircraft lateral-directional axis during, powered approach,” Journal of Guidance,
Control, and Dynamics, vol. 21, no. 6, pp. 899-908, 1998.

[48] B.Polyak and R.Tempo, “Probabilistic robust design with linear quadratic regulators,”
Systems and Control Letters, vol. 43, pp. 343353, 2001.

[49] 1. Yaesh, S. Boyarski, and U. Shaked, “Probability-guaranteed robust H., perfor-
mance analysis and state-feedback design,” Systems & Control Letters, vol. 48, no. 5,
pp. 351364, 2003.

113

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



[50] G. Ciardo, R. Marie, B. Sericola, and K. Trivedi, “Performability analysis using semi-
markov reward processes,” IEEE Transactions on Computers, vol. 39, no. 10, pp.
1251-1264, 2001.

[51] Y. Fang and K. Loparo, “Stabilization of continuous-time jump linear systems,” [EEE
Transactions on Automatic Control, vol. 47, no. 10, pp. 1590-1643, 2002.

[52] L. Ghaoui and M. Ati-Rami, “Robust state-feedback stabilization of jump linear sys-
tems via Imis,” International Journal of Robust and Nonlinear Control, vol. 6, no.
9-10, pp. 1015-1022, 1996.

[53] Y. Ji and H. Chizeck, “Controllability, stabilizability, and continuous-time marko-
vian jump linear quadratic control,” IEEE Transactions on Automatic Control, vol. 35,
no. 7, pp. 777-788, 1990.

[54] V. Ugrinovskii, “Randomized algorithms for robust stability and guaranteed cost con-
trol of stochastic jump parameter systems with uncertain switching policies,” Journal
of Optimization Theory and Applications, vol. 124, pp. 227-245, 2005.

[55] M. Fragoso and O. Costa, “Mean square stabilizability of continuous-time linear sys-
tems with partial information on the markovian jumping parameters,” Stochastic Anal-
vsis and Applications, vol. 22, no. 1, pp. 99-111, 2004.

[56] A. Samir, J. Christophe, and S. Dominique, “Output feedback stochastic stabiliza-
tion of active fault tolerant control systems: Lmi formulation,” in /6th IFAC World
Congress, Prague, 2005.

[57] F. Tao and Q. Zhao, “Design of stochastic fault tolerant control of Hy performance,” in
Proceeding of Joint 44th IEEE Conference on Decision Control and European Control
Conference, Seville, Spain, 2005.

[58] L. Hu, P. Shi, and B. Huang, “’H, control for sampled-data linear systems with two
markov processes,” Optimal Control Applications and Methods, vol. 26, pp. 291-306,
2005.

[59] K. Zhou and J. Doyle, Essentials of Robust Control. Upper Saddle River: Prentice
Hall, 1997.

[60] J. Doyle, K. Glover, P. Khargonekar, and B. Francis, “State-space solutions to standard
Hs and H, control problems,” IEEE Transactions on Automatic Control, vol. 34,
no. 8, pp. 831-847, 1989.

[61] P. Gahinet, “A new parameterization of H, suboptimal controllers,” International
Journal of Control, vol. 59, no. 4, pp. 1031-1051, 1994.

[62] T. Iwasaki and R. Skelton, “All controllers for the general H, control problems: Lmi
existence conditions and state space formulas,” duromatica, vol. 30, no. 8, pp. 1307-
1317, 1994.

[63] R. Skelton and T. Iwasaki, “Liapunov and convariance controllers,” International
Journal of Control, vol. 57, no. 3, pp. 519-536, 1993.

[64] R. Skelton, T. Iwasaki, and K. Grigoriadis, 4 Unified Approach to Linear Control
Design. London: Taylor & Francis, 1997.

[65] T.Iwasakiand R. Skelton, “Parameterization of all stabilizing controllers via quadratic
lyapunov functions,” Journal of Optimization Theory and Applications, vol. 85, no. 2,
pp- 291-307, 1995.

[66] S. Boyd, L. Ghaoui, E. Feron, and V. Balakrishnan, Linear Matrix Inequalities in
System and Control Theory. Philadelphia: SIAM, 1994,

114

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



[67] G. Calafiore, F. Dabbene, and R. Tempo, Randomized Algorithms for Analysis and
Control of Uncertain Systems. London: Springer-Verlag, 2005.

[68] J. do Val, J. Geromel, and A. Gongalves, “The Hy-control for jump linear systems:
cluster observations of the markov state,” Automatica, vol. 38, pp. 343-349, 2002.

[69] M. Mahmoud, J. Jiang, and Y. Zhang, “Stabilization of active fault tolerant control
systems with imperfect fault detection and diagnosis,” Stochastic Analysis and Appli-
cations, vol. 21, no. 3, pp. 673-701, 2003.

[70] H. Li and Q. Zhao, “Analysis of fault tolerant control by using randomized algo-
rithms,” in Prococeeding of American Control Conference, Portland, USA, 2005.

[71] P. Gahinet, A. Nemirovski, A. Laub, and M. Chilali, LMI Control Toolbox User’s
Guide. The MathWorks, 2005.

[72] S. Ross, Introduction to probability models, 6th ed.  San Diego: Academic Press,
1997.

[73] R. Isermann, “Model-based fault-detection and diagnosis - status and applications,”
Annual Reviews in Control, vol. 29, pp. 71-85, 2005.

[74] A. Doucet and C. Andrieu, “Iterative algorithms for state estimation of jump markov
linear systems,” JEEE Transactions on Signal Processing, vol. 49, no. 5, pp. 1216—
1227, 2001.

[75] R. Field and L. Bergman, “Reliability-based approach to linear covariance control
design,” Journal of Engineering Mechanics, vol. 124, no. 2, pp. 193-199, 1998,

[76] F. Guenab, D. Theillol, P. Weber, Y. Zhang, and D. Sauter, “Fault tolerant control
system design: a reconfiguration strategy based on reliability analysis under dynamic
behavior constraint,” in Proceedings of Safeprocess, Beijing, China, 2006, pp. 1387-
1392.

[77] G. Calafiore and B. Polyak, “Stochastic algorithms for exact and approximate feasi-
bility of robust Imis,” IEEE Transactions on Automatic Control, vol. 46, no. 11, pp.
1755-1759, 2001.

[78] Y. Fujisaki, F. Dabbéne, and R. Tempo, “Probabilistic robust design of lpv control
systems,” Automatica, vol. 39, no. 8, pp. 1323-1337, 2003.

[79] D.Liberzon and R. Tempo, “Gradient algorithms for finding common lyapunov func-
tions,” in Proceedings of the 42nd IEEE Conference on Decision and Control, Hawaii,
USA, 2003, pp. 4782-4786.

[80] A. Skovrokhod, Asymptotic Methods in the Theory of Stochastic Differential Equa-
tions. Providence: American Mathematical Society, 1989.

[81] W. Wonham, “Random differential equations in control theory,” in Probabilistic Meth-
ods in Applied Mathematics, A. Bharucha-Reid, Ed. New York: Academic Press,
1970.

[82] X. M. X and C. Yuan, Stochastic Differential Equations with Markovian Switching.
London: Imperial College Press, 2006.

[83] J. Hu, C. Bohn, and H. Wu, “Systematic weighting function selection and its appli-
cation to the real-time control of a vertical take-off aircraft,” Contro! Engineering
Practice, vol. 8, no. 3, pp. 241-252, 2000.

[84] G. Dullerud and F. Paganini, 4 Course in Robust Control Theory: a Convex Approach.
New York: Springer-Verlag, 2000.

115

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



[85] S. Boyd and L. Vandenberghe, Convex Optimization. New York: Cambridge Uni-
versity Press, 2004.

[86] N. Shor, Minimization Methods for Non-Differentiable Functions. Berlin: Spring-
Verlag, 1985.

[87] M. Mahmoud, “Continuously variable duration markov models for detection delays in
linear jump systems,” in Proceedings of American Control Conference, Denver, USA,
2003, pp. 4851-4856.

[88] W. Kuo and M. Zuo, Optimal Reliability Modeling. Hoboken, USA: John Wiley and
Sons, 2002.

[89] N. Viswanadham, V. Sarma, and M. Singh, Reliability of Computer and Control Sys-
tems. New York: Elisevier Science, 1987.

[90] V. Barbu, M. Boussemart, and N. Limnios, “Discrete-time semi-markov model for
reliability and survival analysis,” Communications in Statistics Theory and Methods,
vol. 33, no. 11, pp. 2833-2868, 2004.

[91] R. Howard, Dynamic Probabilistic Systems. New York: Wiley, 1971, vol. IL

[92] Y. Zhang and J. Jiang, “Active fault-tolerant control system against partial actuator
failures,” IEE Proceedings on Control Theory and Applications, vol. 149, no. 1, pp.
95-104, 2002.

{93] J. Song and A. Kiureghian, “Joint first-passage probability and reliability of systems
under stochastic excitation,” Journal of Engineering Mechanics, vol. 132, no. 1, pp.
65-77, 2006.

[94] Y. Zhang and X. Li, “Detection and diagnosis of sensor and actuator failures using
IMM estimator,” /EEFE Transactions on Aerospace Electronic Systems, vol. 34, no. 4,
pp. 1293-1313, 1998.

[95] H. Li and Q. Zhao, “Maintenance modeling and scheduling in fault tolerant control
systems,” in Proceedings of Safeprocess, Beijing, 2006, pp. 829-834.

[96] D. Sworder, “Control of a linear system with non-markovian modal changes,” Journal
of Economic Dynamics and Control, vol. 2, pp. 233-240, 1980.

116

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Appendix A

Semi-Markov processes

Let X,, represent a random variable defined in a countable set F, and T, defined in R,

suchthat0 =T < T7 <Th <---,neN.

Definition A.1 (X,7) = {X,,,T,, : n € N} is said to be a Markov renewal process with

state space E provided that

Pr{Xn+1 = ja Tn+1_Tn < t‘X01 T »Xn : TO-, T 7Tn} = P"{Xn+1 = .7 Tn+1_'T'n < tIXn}’

forallm e N,j € Fandt € R,. (X,T) is time-homogeneous, if, for any i,5 € E,t €
Ry,
Pr{X'n-}-l = jv 7171.-}—1 - Tn S tIXn = 2} = Q("’v]vt)7

independent of n. Q = {Q(i,5,t) i,j € E,t € Ry} is called a semi-Markov kernel over
E.

Let P(4, j) £ lim; 0 Q(3, j, t). It can be shown that P(4,5) > Oand 3, s P(4,5) =
1 [25, 27). So, P(i, j) is the transition probability for some Markov chain with sate space
E. As Pr{X,y1 = j|Xo, -, Xn;Tp, -+ , T} = P(Xy,j) forn € N,j € E, X =
{X, : n € N} is a Markov chain with state space E and transition matrix P.

The expectation of the sojourn time in state ¢, or the mean sojourn time m(z), can be

calculated by following equation.

m(i) = / (1= Qi k,t))dt. (A.1)
0 k
For convenience, denote Pr{-| Xy = i} as Pr;. Define Q"(4,4,¢t) = Pri{X,, = 5,1, <
t}, 4,7 € E,t € Ry, then
1, if i = j,

Or: _ P3) —
Q (7‘1]’{’)_6(27])_{0’ lfl#_}
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Q"*1(i, k, t) can be defined recursively as

t
Q ikt =Y / QUi,J,ds)Q" (. k. t — 5), (A2)
jegv0
which is the (n + 1)-order Stieltjes convolution in matrix form.

The following equation gives the Markov renewal function, which plays an important

role in the calculation of transition probability.

oo
R(i,j,t) = > Pr{X,=j T, <t}

n=0

> Qi 1). (A3)
n=0

Define L = Sup,Tn, the life time of Markov renewal process (X,T). To extend the
definition to ¢ beyond L, define

Y, = Xn: if Tn§t<Tn+1:
T, it t> L

where T is not a elment of E. Then, Y = {Y;,¢ > 0} is called minimal semi-Markov
process associated with (X, T'). Please note that if £ is a finite set, L = oo and there is no
need for T.

As in the analysis of Markov processes, the most important parameter is the transition
probability P;(7,5) = Pr;(Y; = j). It can been proved that the transition probability can be
computed by the following integration [25].

t
Pii.) = /0 R(i, j,ds)h(i,t - ), (A4)

where h(j,t) =1~ 3 kg QUi k,t),j € E,t > 0.
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Appendix B

Reliability calculation from
semi-Markov process model

Let X®(t) represents a semi-Markov reliability model. Its state space are classified into
two complementary sets: let M represent the set of up states and M for down states. When
XR(t) € M, the system is considered to be functional; otherwise, nonfunctional.

If the down states in M are absorbing, the reliability function can be calculated from

the transition probability. Assume that Pr{X (0) = i} = Fy(¢), then

R(t) = Pr{Vue[0,t], X(u) € M}
= Pr{X®(t) € M}
= Y ) Pr{X®(t) = j|X(0) = i}Pr{X(0) = i}
i€eM jeM

= > ) R~ ). (B.1)

ieM jeM
In case that the down states are not absorbing, an auxiliary semi-Markov process can be
constructed from which the reliability of the original process can be calculated using the
above equation.

MTTF is the expectation of the life time of the item[23, 27]. Denote mg as the vector

of mean sojourn time in the up states and partition the transition probability matrix P of the

Pyo Pm}
P = .
[Pw Py

embedded Markov chain as:

If I — Py is non-singular, MTTF= Py(I — Pyy)~'my.
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