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ABSTRACT

Miscible displacement has long been recognized as being one of the more efficient
schemes for oil recovery. However, application of such a technique is limited partially
because high expenditure is involved, and partially because the theoretical description of
miscible displacement is incomplete. As previous researchers have demonstrated, there are
many factors influencing the outcome of a miscible displacement employed either in the
laboratory or in the field. In general, the efficiency of a miscible displacement process is
related to the stability of the displacement. The most influential factors known to affect the
stability of miscible displacements are the displacement rate, the viscosity and density
differences of the flu.ds, the properties of the porous medium and the geometric

dimensions of the core used for the miscible displacement.

The study presented here was essentially experimental. Miscible displacements using
fluids of unequal density and unequal viscosity were conducted in glass-bead columns of
varying length. Using a new theoretical interpretation of the critical stable-zone length,
together with a dimensionless scaling group developed previously, the effect of core length
on the instability of the displacements was studied. The experimental data were interpreted
and examined by applying different empirical relationships for the evaluation of the

dispersion coefficients.

It is shown that, under the same experimental conditions, the breakthrough recovery of
a miscible displacement remained relatively unchanged when the displacement was
predicted to be stable, but the breakthrough recovery decreased significantly with an
increase in pack length when the displacement was predicted to be unstable. This

observation may suggest that the instability of a displacement is related to core length



because a difference in core length may cause differences in magnitude of the dispersion

coefficients and differences in the patten of the finger development.
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1. INTRODUCTION

The search for an effective and economical miscible-flooding process has continued
since the early 1950s. It is known that two fluids are miscible when they can be mixed
together in all proportions, and when the mixture of the miscible fluids remains single
phase. The objective of miscible displacement, therefore, is to reduce residual oil saturation
to its lowest possible value by eliminating the interfacial tension between the oil and the
displacing fluid. Such a process, however, has not been as widely applicable as
waterflooding because of the higher expenditure involved in using chemicals, such as
micellar/polymer or light crudes, as displacing fluids, and because of the lack of certainty in

displacement efficiency due to an incomplete understanding of the fingering process.

Numerous theoretical and supporting laboratory studies lead to the conclusion that the
low efficiency of miscible displacement in enhanced oil recovery processes is mainly
because of mixing effects. Three mechanisms contribute to the mixing of miscible fluids:
diffusion, microscopic convective dispersion, and macroscopic convective dispersion.
Molecular diffusion is a result of the random thermal motion of molecules. When flu'ds
flow through a porous medium, more mixing takes place in the direction of flow than
would be expected from molecular diffusion alone. This additional mixing appears to be
explained by microscopic and macroscopic inhomogeneities. The microscopic process, or
longitudinal dispersion, depends fundamentally on flow conditions as well as on fluid and
medium properties; the macroscopic process, or channeling, which results in by-passing of
the resident fluia in large regions of the medium, can result from permeability stratification,

segregation of the fluids by gravity, and viscous fingering.



Longitudinal and transverse microscopic dispersion coefficients are commonly used to
describe mixing of fluids by dispersion. There are many factors influencing the process of
mixing and the evaluation of dispersion coefficients from laboratory displacements.
Variables such as displacement rate, mobility ratio, density ratio, model dimensions,
particle-size distribution and particle shape all affect the magnitude of the dispersion

coefficients to some degree.

Several experimental investigatiors have suggested that the length of a porous system
may also be one of the important factors which affects the efficiency of miscible
displacement. More recently, some authors have noted, that in a one-dimensional system,
the measured dispersion coefficients increase with the length scale of a miscible
displacement, and that, in a two-dimensional system, fingering development becomes
length dependent because the ratio of viscous force to gravity force increases with the

length of the system.

Few theoretical models seem able to include length dependence as a variable because of
the need to simplify the problem by assuming an infinitely long system. A newly
developed analytical model, which was proposed by Coskuner and Bentsen, enables one

to examine the effect of length on the onset of instability in a porous medium with a finite

length.

This investigation focuses mainly on the experimental research needed to verify the
effect of core length on the instability of miscible displacements which is predicted in
Coskuner's mathematical model. Moreover, there is a great need to establish both a
theoretical and a physical basis to explain why and how core length affects the instability of

miscible displacements.



2. LITERATURE REVIEW

Being aware of the importaxce of applying miscible displacement techniques to
improve oil recovery, various investigators have reported theoretical studies as well as
experimental analyses. The displacement of oil by first-contact miscible solvent in
homogeneous porous media is mechanistically simple when the process is free of
fingering. Under such conditions the oil is displaced efficiently ahead of the solvent, and
the solvent does not penetrate into the oil except as dictated by dispersion. When the
displacemernt front is stable, laboratory miscible displacement experiments may be
interpreted in terms of the one-parameter convection-dispersion equation. The dispersion
equation has been solved numerically as well as analytically to obtain concentration profiles

and to determine the dispersion coefficients.

However, when the mobility ratio of the miscible fluids is greater than one, the
displacement has a quite different character: the solvent front becomes unstable, and
numerous fingers of solvent develop and penetrate into the oil in an irregular fashion. With
unstable displacements, the validity of many mathematical models and their solutions
becomes limited. Viscous fingering occurs when a more viscous fluid is displaced by a
less viscous fluid. Finger-shaped intrusions of displacing fluid into the displaced fluid
have been observed and reported in the literature for immiscible as well as miscible
displacement processes. These viscous fingers result in earlier solvent breakthrough and
poorer oil recovery after breakthrough, for a given volume of solvent injected, than would
be the case if the displacing front were to remain stable. The mechanisms and factors
which contribute to the development of fingers and to the dispersion process are also far

from being well understood.



2.1 VISCOUS-FINGER-FREE AND GRAVITY-STABLE DISPLACEMENT

The displacement of oil by first-contact miscible solvents in homogeneous porous
media is mechanistically simple when the solvent/oil mobility ratio is less than or equal to
one and when gravity does not influence the displacement by segregating the two fluids.
Under these conditions, oil is displaced efficiently ahead of the solvent, and no solvent
fingers penetrate into the oil except as dictated by dispersion. Gravity-stable displacements
are those in which gravity prevents solvent overriding or gravity tonguing. In order to
apply this technique, the density difference between solvent and oil is exploited by injecting
the less dense solvent at the top of the core and conducting the displacement downward at a
rate low enough for the density difference between the solvent and the oil to overcome the

tendency for solvent fingers to protrude into the oil.

2.1.1 Diffusion and Dispersion Phenomena of Miscible Fluids

Molecular diffusion and convective dispersion phenomena are known to have a strong
influence, not only on the mixing of solvent with oil in miscible displacements, but also on
the efficiency cf the displacements. Molecular diffusion is a result of random thermal
motion of the molecules. It is known also that molecular diffusion is the dominant mixing
process at reservoir conditions of rate, length and pore size. When a miscible displacement
is conducted in a porous medium, the mixing of the two fluids is caused by microscopic
convective dispersion and macroscopic convective dispersion, which are associated with
inhomogeneities in the shape and size of the particles, the pore structure, the permeability
heterogeneities and the diniensions of the porous medium. Because of this mixing, a

transition zone, composed of a mixture of solvent and oil, separates 100% solvent from
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100% oil. Mixing in the direction of flow is called "longitudinal dispersion", and mixing

orthogonal to the direction of flow is called "transverse dispersion”.

2.1.1.1 Molecular Diffusion Coefficient

If two miscible fluids are in contact with an initially sharp interface, mixing by
diffusion will take place subsequently. As tirne passes, the sharp interface between the two
fluids will become a mixed zone with a concentration gradient from one pure fluid to the
other. The mixing caused by molecular diffusion is represented by the well-known Fick's

[1] diffusion equation.

Typically, the molecular diffusion coefficient defined in Fick's equation is a function of
concentration. However, to simplify the problem, it is often possible to represent diffusive
behavior approximately by selecting an average diffusion coefficient which is constant and

independent of concentration.

The molecular diffusion coefficient is usually determined experimentally. Taylor [2]
has shown that the diffusion coefficient can be calculated by plotting per cent of initial
tracer concentration versus traveling distances from the original interface at each particular
time on arithmetic-probability co-ordinate paper, which yields a straight line for equal-

viscosity and equal-density miscible fluids.

With little information available on the molecular diffusion coefficients of reservoir
fluids, Van der Poel [3] reviewed Reamer and Sage's [4] and Trevoy and Drickamer’s [5]
reports. He suggested that the molecular diffusion coefficients have the same order of
magnitude (/0-5 cm?/sec.) in both water-glycerine systems and reservoir fluid mixtures.
The measurement of diffusion in multi-compositional and vnequal-density liquids, to the

best of author's knowledge, is not as advanced; nor are experimental data as plentiful as for
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single-composition fluids. An empirical expression developed by Warren and Skiba [6]

may be used to calculate the diffusion coefficients approximately.

In the oil industry, the apparent diffusion coefficient in a porous medium must be
adjusted to account for the tortuous path for diffusion in the pores of the rock. Many
investigators [3,7,8] have recognized that there is an analogy between apparent diffusion

and electrical conductivity in porous media.

2.1.1.2 Longitudinal and Transverse Dispersion

In porous media there are flow channels of varying sizes with frequent junctures
between the channels. More mixing between oil and solvent tends to occur in this complex
geometry than in a straight capillary. The increased mixing caused by rock
inhomogeneities, permeability heterogeneities, or concentration gradients resulting from
fluid flow is designated dispersion. The degree of mixing depends on the interplay
between the mechanisms of molecular diffusion and convective dispersion. Molecular
diffusion perpendicular to the direction of flow tends to decrease the convective dispersion
produced either by velocity variations in a single channel or by velocity variaiions arising

from geometrical complexities of the porous medium.

There are two types of dispersion to be considered: longitudinal dispersion and
transverse dispersion. Each type of dispersion has two components: one due to diffusion
and another due to mechanical mixing. Considerable effort has been directed to the study
of dispersion phenomena in flow through porous media. In 1954, Morse [9] observed that
the length of the mixing zone is dependent on variables such as rate of displacement,
distance traveled, and viscosity ratio of the fluids. He also feund that the mixing zone
grows rapidly at the beginning, and the rate of growth then gradually falls off to where it

becomes nearly stabilized. Brigham et al. [7] observed that mixing zone length increases at
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very low and at very high flow rates; and that the mixing-zone length achieves a minimum
value at a particular growth rate. At this velocity, diffusion contributes only a small

fraction of the total dispersion coefficient.

In 1965, Kyle and Perrine [10] conducted a series of experiments to measure the
growth rate of the mixing zone as a function of the viscosity ratio and average fluid
velocity. The experimental results show that, in the range of flow rates used, mixing zone
expansion depends on the amount of solvent injected, and not on the displacing rate, for a

given viscosity ratio of fluids used.

After reviewing published data on diffusion and dispersion in porous inedia, Perkins
and Johnston [11] suggested that if one flows fluid through a pack at a very low rate, then
there may be enough time for diffusion to equalize concentration variation within each pore
space. However, if one increases the velocity in the interstices to a high enough value, one
will eventually reach a velocity at which there is insufficient time for diffusion to equalize
concentration within each pore space. The ratio of the time needed to smooth away
concentration variations to the time available is proportional to a dimensionless parameter,
or Peclet number, Ud,/D’. Hence, the dimensionless group should be a measure of how
effectively diffusion can equalize concentration within pore spaces. Perkins and Johnston's
data also show that transverse dispersion is dominant compared to transverse diffusion if
Ud,/D’ is greater than about 100; therefore, under such a displacement condition, there is
not enough time to equalize the concentration variation within the pore space by diffusion.
Slobod and Thomas [12] also observed that, at low flow rates of the order of I fr/day,
which provides a long residence time for the fluid to remain in contact, transverse diffusion
is sufficiently rapid to modify the finger geometry. Blackwell [13] suggested that the
dimensionless parameter Ud,/D’ characterizes the relative importance of convective

dispersion and molecular diffusion in the microscopic mixing process in a porous
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medium. Moreover, Blackwell observed that the transverse dispersion becomes more

influential as the particle radius d,, decreases.

In most miscible displacements, which are not stabilized by gravity, transverse
dispersion plays a much more important role than does longitudinal dispersion. This is
because, in such displacements, solvent fingers penetrate into the oil for a variety of
reasons, exposing a large surface area along the sides of the fingers over which transverse
dispersion can occur. Thus, transverse dispersion can affect the growth of viscous fingers

(especially in laboratory models) and have an influence on the sweepout of the oil.

2.1.2 Microscopic Dispersion Coefficients

The diffusion-convection equation, given below as Eq. 2.1.1, describes the overall
transport and mixing of fluids flowing through a porous medium [2]. Terms here show

the relation " convective flow " plus " dispersive flow " equals " accumulation "; that is,
P

—(U-VC) + V-(D-VC) = % @2.1.1)

where D is the tensor formulation of dispersion coefficients, which represents both the
longitudinal and the transverse dispersion coefficients. Furthermore, both of the dispersion
coefficients include a molecular diffusion contribution and a convective dispersion
contribution. However, convective dispersion is nonisotropic Lecause the longitudinal and

transverse convective dispersion coefficients are not equal.

For a constant velocity in the x direction only, Eq. 2.1.1 becomes

3%C a%c 3%, _oC _ocC
D D & &
Srw R drw e R "l (2.1.2)



The first term in Eq. 2.1.2 accounts for longitudinal dispersion in the x direction, and the
second and third terms account for transverse dispersion in the y and z directions. The
parameters D; and Dy stand for longitudinal and transverse dispersion coefficients,

respectively.

One of the goals of laboratory miscible displacement is to obtain longitudinal and
transverse dispersion coefficients. Typically, the experiments are conducted by using
equal-viscosity and equal-density fluids, and by assuming that no fingering exists during
the miscible displacement; consequently, the flow is described well by convection-
diffusion theory. Methods for determining longitudinal and transverse dispersion
coefficients from laboratory displacements are discussed by various authors. These
methods generally involve fitting the solvent effluent concentration profile from a
laboratory displacement with an appropriate solution of the diffusion-convection equation,
and determining the value of the dispersion coefficient that results in the best agreement of

experimental and calculated concentration profiles.

The classic work of Sir G. Taylor [2] and its extension by Aris [14] have shown that it
is possible to describe, theoretically, the amount of mixing in single straight capillaries
when solvent displaces a fluid of equal viscosity and equal density. Aris showed that the
lengths of the mixing zones, L,, , corresponding to /0% and 90% concentration levels of

the solvent, is related to either D; or Dr by Eq. 2.1.3; thatis,

Ly =3.62vDt (2.1.3)

If one prefers to use other concentration values, such as 20% and 80% , or 16% and 84%, a
different constant would be necessary (e. g., 2.380 for 20 and 80 per cent concentrations).

These constants can be obtained from any standard table of error integrals [7].
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Blackwell [13] presented the results of an experimental investigation conceiniag the
mixing of miscible fluids in sand-packed tubes. By plotting D/D’ versus Udp,/D’, he
demonstrated that for values of Udp/D’ less than 0.04, which correspond to small particle
sizes and/or low rates typical of reservoir conditions, the dispersion coefficient is equal to
the molecular diffusivity divided by a tortuosity factor of 1.5. This tortuosity factor is
typical of values obtained for unconsolidated sand packs. For values of Ud,/D’ greater
than 0.04, convective mixing causes the dispersion coefficients to increase above the

molecular diffusivities. For values of Udp/D" greater than 0.5, all the results can be

represented by Eq. 2.1.4

ud
R=g_3( Py1.17 (2.1.4)

D' D’

Furthermore, convective dispersion becomes important for values of Ud,/D’ greater than 6
in capillary tubes, and for values of Ud,/D’ greater than 0.04 in porous media. The fact
that convective dispersion in porous media becomes dominant for smaller values of
Udp/D’ is interpreted as being a result of unequal flow velocities in adjacent channels.
Blackwell also suggested that 2 correlation of dispersion coefficients with Udp/D’ may give

adequate approximations of dispersion coefficients for most practical calculations.

In 1961, Brigham et al. [7] showed a convenient method for determining the
longitudinal dispersion coefficient for fluids using a favorable viscosity ratio. For the
purposes of simplifying the measurement, they defined an error function parameter, U,
which is expressed as (Vp, - V;)/V;!/2, and related the parameter to the longitudinal
dispersion coefficient. By plotting the per cent of displacing fluid versus the error function

parameter on probability co-ordinates, a best straight line can be drawn through the data
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points. Values of Uy are read from this line at the /0 per cent U;, and 90 per cent Ugg

concentration values. The dispersion coefficient is then defined as follows

by =L [L(U90—U10)T
VoTL 3625

For fluids having an unfavorable viscosity ratio, as they have shown, the data exhibit
obvious curvature, instead of a straight line, on probability co-ordinates, which indicates

both a greater amount of mixing and the effect of instability.

In 1962, after reviewing the published data on longitudinal and transverse dispersion
coefficients, Perkins and Johnston [11] recommended the following equations for
calculating the longitudinal dispersion coefficient, D , and the transverse dispersion

coefficient, Dy , for fluids of equal-viscosity and equal-density:

DL _1 Uod,, Uod,,

-‘E- = -}—;—q)-'f' 0.5 D N ( D < 50) (216)
and

__D' = -F—¢T+ 0.0157 D ( D <10 ) (217)

where o is defined as the inhomogeneity parameter; for unconsolided uniform beads, & is
equal to one. The formation factor, F, was shown by Slawinski [15] to be a function of

porosity of the porous media; that is,
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_ 13219 - 0.3219-0f

o (2.1.8)

F

In 1988, Arya et al. [16] examined the length dependence of the macroscopic

dispersivity, o ; , and defined it as follows

$DL (2.1.9)

Cmd = -7

As they pointed out, measured dispersion coefficients increase with the length scale of the
displacement, which is considered a reflection of the fact that larger-scale local variations in
permeability can be present as the length of the system increases. In an examination of the
data of Lelleman-Barres and Peaudecerf, as well as Pickens and Grisak [17], they made
log-log data fits to present an empirical relationship which may be applied for a single type

of porous medium; that is,

g = O. o4a M3 2.1.10)

However, as they noted, Eq. 2.1.10 should not be considered conclusive because of a

wide scatter in the data used.

In 1990, by assuming that the flow is described well by convection-diffusion theory,
Udey and Spanos [18] suggested that the longitudinal dispersion coefficient , which varies
linearly with both velocity and length of the porous medium, could be estimated from

effluent concentration measurements using Eq. 2.1.11 as follows



13

by = D{LU 2.1.11)

where the D;0 is given by

2
1

0 _ l - L S , ______l_____.
Dy = 3 (Uilc=016 )-(\Ui|c=084 r~——Ui|c=0.84) (2.1.12)

Ui|c=0.16

InEq. 2.1.12, U;; c=9.;6 and U; ;¢ g4 are time-independent isoconcentration velocities at

solvent concentration values of 0.16 and 0.84, respectively.

Theoretical and experimental investigations of transverse dispersion have been few,
and data are in scant supply, especially when the viscosity and density of fluids are not
equal. Pozzi and Blackwell [19] presented the results of an investigation which tested the
effects of viscosity and density differences on the transverse dispersion coefficient. They
observed that there is a close similarity between the correlation of D/D’ versus d,U/D’ for
equal-density, equal-viscosity fluid systems and the correlation of Dy/D’ versus d,U/D'N,,
for unequal-density, unequal-viscosity fluid systems, where Np, is oil recovery (fraction of
a pore volume). Therefore, they suggested that the transverse dispersion coefficient for
fluid systems of equal-density and equal-viscosity may be adapted for use in unequal-

density and unequal-viscosity fluid systems.

However, several experimental observations [7, 19] have shown that a small increase
in the density difference of the fluids used resulted in a significant decrease in the
transverse dispersion coefficient. Van der Poel [3] used a simple approach, which was
referred to as "technique of steady-state experiments”, to determine the transverse

dispersion coefficient under steady-state conditions. The technique enables one to calculate
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the coefficient by measuring the width of the transition zone due to molecular diffusion.
The experiments, performed in horizontally laid glass-bead packs ranging in permeability
from 805 darcies to 0.43 darcies, showed that a transition zone is formed whose width,
once steady-state is reached, varies with distance traveled, but not with time. In particular,
these experiments demonstrated that the width of the transition zone increases in direct

proportion to the square root of the distance traveled.

2.1.3 Factors Affecting Miscible Displacement Behavior

There are many factors that control the efficiency of miscible displacements. In
general, these factors influence the mixing process at both the microscopic level and the

macroscopic level.

2.1.3.1 Effect of Viscosity Ratio

Various investigators have noted that the dispersion coefficient decreases as the
mobility ratio of the miscible fluids becomes more favorable. In particular, Lacey et al.
[20] found that the length of the mixing zone increases as the oil viscosity increases.
Blackwell et al. [21] presented an investigation on the effects of adverse mobility ratics in
which they observed that both breakthrough and cumulative recoveries decrease because of
the increased instability in the displacements. Brigham et al. [7] reported that the value of
the dispersion coefficient and the rate of dispersion increase with an increase in mobility
ratio, and that with an unfavorable mobility ratio, viscous fingering usually occurs and the
theoretical error function curve is no longer valid. Perkins and Johnston [11] suggested
that a favorable mobility ratio will tend to suppress the effects of packing or permeability

heterogeneities.



2.1.3.2 Effect of Density Differences

It has been well recognized that unequal density of fluids may, as a result of
gravitational forces, influence dispersion. Favorable gravity forces tend to suppress
dispersion while unfavorable gravity forces tend to increase the length of the mixing zone.
However, in some reservoirs with dip, gravity can be used to advantage to improve
sweepout and oil recovery. This is achieved by injecting the solvent updip and producing
the reservoir at a rate low enough for gravity to keep the less dense solvent segregated from

the oil, suppressing fingers of solvent as they try to form.

2.1.3.3 Effect of Velocity

It was first shown by Lacey et al. [20] that the mixing-zone length increases as the flow
rate increases. Brigham et al. [7] have suggested that the dispersion coefficient is a
measure of the rate of dispersion, and thus would be proportional to velocity.
Blackwell et al. [21] noted that at low flow rates no fingers were observed and a piston-like
displacement of the oil was achieved, but fingers were observed at high flow rates, and
poor displacement efficiencies resulted. They also found that the dispersion coefficient at
low flow rates for spherical glass bead packs is 70 per cent of the molecular diffusion

coefficient.

At high flow rates, Keulemans' theory [22] predicts that the dispersion coefficient is
proportional to the first power of flow rate. Other theories predict a second power
dependence. Brigham et al. [7] showed that the magnitude of the exponent should lie
somewhere between the values of I and 2, which agrees with the 1./7 power reported by

Blackwell et al. [21], and a 1.20 power suggested by Aronofsky and Heller [23].
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2.1.3.4 Effect of Model Dimensions

Control of displacement efficiency is also found to depend on the geometry of the
model. In 1954, Offeringa and Van der Poel [24] first noted the deviations in the results of
miscible displacements using short cores as compared to those using long cores. In the
tests reported, results with tubes of 1.60 and 3.0 in in length are in good agreement,
whereas those with a 1.03 m tube show appreciable deviations. The reason for the
difference, as they suggested, may possibly be that the diameter of the short tube (6.4 cm)

is too small as compared to the grain size of the sand (0.07 cm).

Lacey et al. [20] reported that an increase in core diameter causes a drastic increase in
the length of the mixing zone, which they explained by postulating an increased variation in
permeability for larger diameter cores. As a consequence, they concluded that the
transverse dispersion process may stabilize laboratory displacements because disturbances
are limited to short 'wave lengths', but that it may not stabilize field floods because of the
larger cross section of reservoirs. Blackwell et al. [21] presented similar observations as
those of Lacey et al., in which they found that breakthrough recovery decreases with

decreasing length-to-width ratio of the model.

However, Brigham et al. [7] showed an opposite observation from those of Lacey et
al.; that is, they observed a longer mixing zone in a smaller diameter pack. Their
explanation of this fact is that boundary effects arise when smaller models are considered,

or that it is more difficult to achieve uniform packing in a small tubing.

Coskuner and Bentsen extended the small perturbation theory of Chuoke [25,26],
which enables one to describe the effect of length theoretically. The variational analysis
from the theory indicates that fingers are more readily formed in a longer system than in a

shorter one under similar flow conditions, provided that the transverse dimensions are the
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same in both systems. They suggested that it is due to the fact that perturbations in the
flow direction have wavelengths longer than the length of the porous medium and,
therefore, the instability can not manifest itself. As a consequence, the system behaves as
if it were stable. However, in a longer porous medium, these perturbation will be felt

causing the displacement to be unstable.

2.1.4 Mathematical Models and Solutions

It has been shown [7,22,27,28] that, for fluids having favorable viscosity ratios, the
diffusion equation with convection satisfactorily describes the behavior of a miscible
displacement in a porous medium. Moreover, Taylor's [2] theory of displacement in
capillary tubes, Keulemans' [22] "eddy diffusion” theory, Scheidegger's [27] statistical
theory of porous media and Frankel's [28] "stagnant pockets” theory all predict that
longitudinal dispersion is governed by the diffusion-convection equation, and that a plot of
the concentration profile shows a straight line on arithmetic probability co-ordinate paper

because the solution of the diffusion-convection equation is an error function.

2.1.4.1 Convection-Dispersion Model

For viscous-finger free and gravity-stable miscible displacement in a linear uniform
porous medium, the convection-dispersion equation is often used to describe the

displacement process; that is,

D iF-UE -5 2.1.13)
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Brigham [29] presented several solutions of Eq. 2.1.13 which differ in form
according to the different boundary conditions imposed. These solutions generally include
an error function term and some other terms from the asymptotic expansion. However,
the results calculated from different solutions, as Brigham has shown, become identical
when the porous medium is long compared with the length of the mixed zone. The well-

known solution of Eq. 2.1.13 for predicting effluent flowing (instead of in-situ)

concentration is

= 1--Vpi )2
1 1-Vpi 1 2+/Vpi/y
Cs¢ = _Z-Crfc(2JVpi/y)+ 2-\/7vai e (2.1.14)

where Cyis related to the in-situ concentration C by Eq. 2.1.15
~c-DLC
Cs=C i (ax) (2.1.15)
Correa et al. [30] presented the dimensionless form of Eq. 2.1.13; that is

32CD _dCp _ dCp
axlz) aXD atD

(2.1.16)

where xp = (U/Dy)x, tp = (U2/Dp)t, and Cp(xp,tp) = (C(x,1)-Co)/(C;-Cp). Here, Cp equals

the initial solvent concentration in the core and C; equals the solvent concentration at the

injection face.
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The analytical solution for the flowing concentration from Eq. 2.1.16is

1 xp-tp xp XD+iD
CfD(xthD)" ) CrfC( 2-\/5 )+e erfc( 2@ )] (2.1.17)

where the flowing concentration is related to the in-situ concentration by Eq. 2.1.18

dCp(xp.tp) 2.1.18)

Cop(xp.tp) = CD(xD,tD) - aXD

Often, in the laboratory, one measures the effluent concentration at the outlet of the core.
Therefore, it has been practical to set x equal to L, and to set xp, equal to (U/D;)L. The
dimensionless flowing concentration can be calculated for various values of injected pore
volume. By taking the same approach as Brigham's [29], and noting that xp/tp results in
UtIL , or Vp;, which is pore volumes injected, the resulting equation is given by Eq.

2.1.19.

i+Vpi

Waho | (119

1-V5;
Cep (Vi % )=l erfo( ———to— ) + e*D erfc(
fD pt D 2

Z,JVpi/xD

2.1.4.2 Coats-Smith Model

When the porous medium is not uniform, the effluent concentration may not be

described by Eq. 2.1.13, and an early breakthrough should be expected. To -epresent the
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effect of rock heterogeneity or non-uniform flow, Deans [31] proposed a finite-stage
model consisting of the mixing cell model augmented by terms accounting for mass
transfer from the flowing stream into the stagnant volume. This "capacitance” model has
three parameters: number of stages, amount of stagnant volume, and a rate constant for the
mass transfer to the amount of stagnant volume. The capacitance model allows
determination of the amount of the dead-end pore space in a porous matrix and the effect of
velocity on the rate of diffusion into this space. Coats aad Smith [32] extended Deans'

model to include the effects of dispersion in the flowing fraction. The Coats-Smith (C-S)

model is
*
#Cp _ ¥p _ _dCp - <h
— -— —— oo — + - ——
axlz) Jxp atp otp (2.1.20)
and
*
Npe "D *
a- f)m"gg = (Cp ~Cp) (2.1.21)

where Cp cqilals the in-situ concentration in the flowing fraction, and Cp* equals the in-situ
concentration in the stagnant fraction. The three parameters are the flowing fraction, £, the
macroscopic Peclet number, N, , and the Damkohler number, Np, . The C-S model can
be solved either by a fully explicit finite-difference method, or by Lapiace transform to

obtain analytical approximations for short and long times [30]. The C-S model has been
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used extensively to interpret miscible displacements in the reported investigations.
However, as Coats and Smith pointed out, if macroscopic heterogeneity is present, in the
sense that regions of the porous medium are significantly different in permeability or pore
structure, none of the currently available convection-dispersion models which allow an
analytical solution take heterogeneity into account. Furthermore, the C-S model does not

take into consideration displacements with fluids of unfavorable viscosity ratio.

2.1.4.3 Porous-Sphere Model

A more complex model, the Porous-Sphere (P-S) model, was presented by Bretz and
Orr [33]. In addition to taking convection and longitudinal dispersion in the flowing
fraction into consideration, diffusive interchange of material in the pore spheres with fluid
flowing past them is included as well. In the P-S model, flow occurs between spheres,
which are themselves porous. The model is quite similar to the C-S model except that
there is an explicit representation of the length scale of the low-permeability (stagnant)
regions. Moreover, the P-S model also depends on three parameters which are the
fractional flow, the Peclet number associated with convection and dispersion in the flowing
stream, and a second Peclet number which is defined as a ratio of characteristic times for

diffusion in the spheres to that for the flow through the core.

However, the P-S model has the same limitations for miscible fluids, as it requires
matched viscosities and densities. Furthermore, as Bretz and Orr observed, the theoretical
prediction using the P-S model for slower displacements agrees well with experimental
data; at higher velocities, kowever, it is not as good. Neither the prediction of the P-S
model nor the best fit of the C-S model fits the experimental observations at higher

velocites, which may be explained as effects of instability.
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2.1.4.4 Transverse-Matrix-Diffusion Model

A similar approach to that of the P-S model was taken by Grisak and Pickens [34]; that
is, convection and longitudinal dispersion are considered in the flowing fraction, and

transverse diffusion is taken into account between the flowing and stagnant fractions. The

equations are as follows,

3%Cp oCp ,d9Cp 1 BCB
- =f + (1-f)—
ax2 oxp  oip A\ 9zp 20 (2.1.22)
and
ap %
ap  a} (2.1.23)

where zj, = z/hy, z = the vertical thickness of the core, 4; = the thickness of the stagnant

zone, and

"
t

M= pipr = NeeNpe, (2.1.24)

Correa et al. [30] presented the solution of Eq. 2.1.22 and 2.1.23 in Laplace space, and

used an efficient numerical inverter to invert the model solutions from Laplace space to
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real-time space. They suggested that the transverse-matrix-diffusion model is suitable for
describing reservoir miscible performance, provided the parameters may be determined

from laboratory displacements.

2.2 THEORY OF UNSTABLE DISPLACEMENT

It has long been recognized that miscible displacement with a low viscosity fluid
displacing a more viscous oil will be an unstable process leading to the development of
viscous fingers. Although laboratory experiments [35-42] and perturbation theory [28,39]
have indicated the manner in which fingers will be initiated and grow, there is little direct
evidence that fully developed finger growth will necessarily depend on the geometrical
features of the porous medium. It has been shown that, for favorable viscosity ratios, the
convection-dispersion equation and its extended models may describe satisfactorily the
behavior of miscible displacements in porous media; however, the prediction fails
whenever viscous fingering occurs. Numerous attempts [35-41] to develop a satisfactory
mathematical description for the case of an unfavorable viscosity ratio have been reported,
but they have met with only partial success. These attempts, which are reviewed by Koval
[40], have taken two approaches: 1) development of a flow model analogous to the
Buckley-Leverett method by neglecting the effects of mixing, and 2) simultaneous
application of the diffusion equation with a convection term for mass transfer. The former
method is simpler from a mathematical point of view, but is limited to displacements with
negligible mixing effects. The latter method has to be solved numerically even though it

represents a more precise description of the process.
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2.2.1 Viscous Fingering

The exact process of finger initiation is still obscure although it generally is attributed to
the small microscopic variations in a porous medium. Finger initiation takes place in any
porous medium whose pore structure is microscopically random. Viscous fingers are
observed even in laboratory Hele-Shaw models, which are physical models constructed of
two parallel plates with a gap between the plates for the flow of the liquids. Apparently,

even slight variations on the plate surface and/or of the gap width are sufficient to initiate

fingers.

By applying Darcy' s equation for linear flow and assuming that longitudinal dispersion
is negligible, it is found that a small perturbation of the undisturbed front grows
exponentially with time when the mobility ratio is larger than one, but decays exponentially

with time if the mobility ratio is less than unity.

Frontal perturbation theory [39,41,42] has been used commonly to describe finger
initiation. In this method, a spectrum of wavelengths of perturbations of the front is
assumed. The resulting analysis shows that for any given set of displacement conditions,
perturbations below a critical wavelength will be eliminated by dispersion which acts to
oppose finger growth by moderating the viscosity contrast; that is, only perturbations
above the critical wavelength will grow continuously at an unfavorable mobility ratio. The
theory also suggests that transverse dispersion is insufficient to damp out all the flow

perturbations in most laboratory cores.

Gardner and Ypma [42] published the following equation to calculate the critical

wavelength for the case of an initially sharp solvent/oil interface
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A, = 5.65697 (2.2.1)

Once fingers above the critical wavelength are initiated, they begin to grow in length, and
the fingering mechanism rapidly becomes dominant. They found that longitudinal
dispersion is a relatively unimportant factor in the growth of fingers. A large degree of
transverse dispersion, on the other hand, can stabilize the displacement by eliminating

fingers, or at least suppressing them to one or two large ones.

2.2.2 Mathematical Models and Solutions

Miscible displacement at an unfavorable mobility ratio is known to be subject to
viscous fingering of solvent into the oil. There have been many attempts to characterize
this phenomenon through laboratory experiments, empirical methods, and direct
simulations. These studies focused mainly on the factors determining fingeiing behavior

in miscible displacement, such as adverse mobility ratio, system size and heterogeneity.

2.2.2.1 K-Factor Method

In 1963, Koval [40] introduced the K-factor method for the mathematical treatment of
viscous fingcring in miscible displacement. Koval's K-factor method allows for taking
into account the effects of viscosity ratio and heterogeneity of porous media. He suggested
that fingering is caused by viscosity differences, and is aggravated by inhomogeneities in
the porous medium. Effects of mixing, as considered by Koval, could be represented by a
single parameter, H, called the heterogeneity parameter. To take into account the decrease
in the actual viscosity ratio, which happens when solvent dissolves in the oil, he defined the

following expression for the effective viscosity ratio
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g Y4 4
E=[0.78+0.22(;3] } (2.2.2)

The product of H and E was termed the K-factor. Application of the K-factor is limited
because it neglects the most important miscible phenomena, namely, diffusion and
dispersion. The method produces good matches with some experimental data in which
diffusion and dispersion have little influence on the formation of viscous fingers.
However, when the effect of dispersion is not negligible, good matches are not easy to
produce, as some investigators [38] have found. Furthermore, it is at least questionable to
assume a linear dependence of relative permeability on saturation. Koval's justification for
the linear dependency was the assumption that no interaction occurred between solvent and

oil, which may not hold true in the mixing zone where the individual identities of the fluids

are no longer retained.

In Koval's investigation, although length, length to diameter, and length to cross
sectional area of the cores used varied over a considerable range, no systematic study was
made to evaluate the specific effects of these variables. In general, it was observed that the
shorter the core, the higher the heterogeneity factor. This observation could be the result of

the greater significance of longitudinal dispersion in short cores.

2.2.2.2 Dougherty's Method

In 1963, Dougherty [38] presented a pair of non-linear hyperbolic partial differential
equations for a one-dimensional unstable miscible displacement, which are based upon a
flow model similar to the Buckley-Leverett model for immiscible displacement. The effect
of mixing 1is included and three parameters, in addition to the heterogeneity factor, are

used to characterize the mixing process. Numerical integration of the nonlinear hyperbolic
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partial differential equations gives volumes of dissolved and undissolved solvent as
functions of space and time. By using a trial-and-error approach, the values of the
parameters can be obtained to make theoretical predictions in agreement with experimental

Tesults.

Dougherty suggested that the heterogeneity factor H proposed by Koval may be a
satisfactory concept only for korizontal systems. Moreover, he observed that mixing
varies in a highly nonlinear manner with the degree of fingering and the concentration of

solvent in the oil phase.

2.2.2.3 Jankovic's Method

Jankovic [41] introduced an analytical model to represent miscible relative permeability
curves which enables one to predict the saturation distribution and recovery efficiency at
breakthrough for both stable and unstable miscible displacements. However, there are at
least three concerns which need further examination. These are 1) the problem of an
unclearly defined solvent fractional flow equation; 2) the assumption that the dispersion
coefficient is a linear function of velocity, which may not be valid at high flow rates as
some investigators have shown; and 3) the fact that the solution is only exact where the

solvent fractional flow is equal to the solvent concentration.

2.2.2.4 Peaceman And Rachford's Method

In 1962, Peaceman and Rachford [43] presented a finite-difference method for
calculating miscible displacement of fluids in porous media. The approach takes into
account the influence of gravity, permeability variations, two-dimensional dispersion, and

fluid viscosity and density differences. The set of partial differential equations are
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k
v. H(VP +pgVh) = 0 (2.2.3)
and
D 82C+D~~ azC+V-—(i(VP-mth)=¢1>a—c 2.2.4
LaxZ " Toy2 " o @24)

They introduced an average density and viscosity to represent the mixed fluids, which are

expressed as the following functions of the solvent concentration

Pm =pPsC +po(1-C) 2.2.5)
and
Inpy, = Xlnpg +(1-X)Iny, (2.2.6)
where
; 2.2
X = a0 2.2.7)

Peaceman and Rachford' s numerical procedure permits one to calculate viscous fingers
formed spontaneously in the presence of small, random variations of permeability with
position. However, whenever a numerical approach is taken, problems such as grid
orientation, numerical instability and numerical dispersion may affect adversely the results

of numerical solutions, which limits the application in many cases.



2.2.2.5 Vossoughi's Method

Based on material-balance concepts, Vossoughi et al. [44] developed a generalized
form of the convection-dispersion equation for one-dimensional miscible flow where the
viscosity ratio may .e unfavorable, and consequently viscous fingers may exist. The
mathematical model incorporates a fractional flow function in the convection term, and the
fractional flow is derived from Darcy's law by using a concentration-dependent average

viscosity. The partial differential equation in dimensionless form is given by

3%Cp s Cp dCp
xg NPe3S Sxp - atp (2.2.8)

The fractional flow function, fs, as defined by Vossoughi et al., is different in form for

stable and unstable displacement processes. If the displacing and displaced fluids have

equal viscosities, and the displacement is stable, then

fg=S 2.2.9)
Hence,

ofg

= =1 (2.2.10)

But, if the viscosity ratio becomes unfavorable, the relationship is given by

M—[S+(1-S)M1/ a ]a
fS = T (2.2.11)
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The complexity of Eq. 2.2.8 makes it impossible to achieve an analytical solution.
Vossoughi et al. suggested that a variational Galerkin [45] method, which makes the highly
non-linear original partial differential equations linear, should be used to integrate Eq.

2.2.8.

2.2.3 Criterion of Instability in Miscible Displacement

The stability of a miscible displacement is of particular importance, as it determines the
success of the miscible drive and the recovery efficiency of the process. When the
displacement is stable, a piston-like mixing zone tends to reduce finger development and,
eventually, to suppress the growing fingers. Otherwise, the viscous fingers will develop
increasingly and lead to an early breakthrough of displacing solvent. A few investigations
have been conducted to study the conditions under which the displacement becomes
unstable, or under which a gravity tongue and/or viscous fingers begin to develop. In
particular, Dumore [46] derived a stability criterion by investigating how the pressure
gradient, determined using Darcy's law, changed with depth in the direction of flow, while
Coskuner and Bentsen [47] employed small-perturbation theory to obtain a stability

criterion.

2.2.3.1 Dumore's Method

In 1964, Dumore [46] presented a criterion for predicting the instability of vertical
flow in a homogeneous permeable medium saturated with oil which is displaced
downwards by a less viscous solvent. In the development of such a criterion, Dumore
assumed that a horizontal interface divided the oil and solvent initially, and that the
pressures at the interface were distributed evenly; but that the pressure at the interface

becomes unevenly distributed even with a small protrusion of solvent into the oil phase.
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The interface is neutrally stable or unstable depending on whether the pressure gradient in
the solvent is less than, equal to, or greater than that in the oil. By applying Darcy's law, a

critical velocity was given as follows

Po—Ps
V. =29 %S g 2.2.12
© = Yo—Hs g ( )

Practically, the horizontal interface will be stable if the velocity has a lower value than the
critical velocity. A similar determination of instability applies to the case of immiscible

flow.

Taking the effect of mixing into account, Dumore suggested that the displacement
would be completely stable when the pressure gradient in the mixing zone increases
continuously with depth, which implies that the second derivative of pressure with respect
to vertical distance must have a positive value for each layer in the mixing zone. The stable

velocity, which differs from the critical velocity, is defined by

B (Po—ps)
Vet = K
St io(npg - Inpg) g (2.2.13)

The ratio of the stable and the critical velocity is given by

Vst _ B(I‘Kli)“"M (2.2.14)
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where Bis the empirical constant shown in Eq. 2.2.7. Dumore noted that if the actual
average displacement velocity, V, is greater than V¢, that is, if V>V, the displacement is
unstable and solvent fingers into the oil. If V<Vg;, the displacement is completely stable.
However, if Vg<V<V¢, a portion of the transition zone is unstable and fingers into the oil.
When this latter condition is met, as observed by Dumore, there is no instability causing
the pure solvent to finger into the oil because the displacement rate is below the critical rate.
However, fingering within a portion of the solvent/oil transition zone causes more rapid
dilution of a solvent slug by mixing than would be the case with a completely stable
displacement. The experimental resuits showed fair agreement with the behavior predicted
using the instability criterion. For velocities above the critical rate, pronounced viscous
fingers were observed, which led to a further decrease in recovery at breakthrough.
Moreover, the breakthrough recovery is low if V>V, and continuously decreases as the
displacement rate increases. Nevertheless, as Dumore observed, oil recovery at one pore
volume injected is not as much affected by velocity as that at breakthrough; that is, the
breakthrough recovery may decline from 90% to 40% as soon as the displacing rate
exceeds the critical rate, but oil recovery at one pore volume injected varies less than 10% at
such a displacing rate. The amount of solvent needed for 100% recovery of oil increases

when V>V, whereas it remains the same when V<V,

2.2.3.2 Coskuner and Bentsen's Method

Coskuner and Bentsen [47] derived a dimensionless scaling group and a theoretical
marginal instability boundary for miscible displacement in a three-dimensional porous
medium, which was extended for application in a Hele-Shaw system as well. The theory

is based on small perturbation concepts, and a variational technique is utilized to solve the



33

resulting equations with appropriate boundary conditions. The resulting analytical

expression for determining the marginal instability boundary is shown to be

2 2
2 1= 2= 2
R =— == +0° | = + K4o 79
o2 (Lz ](Lz d ) 2.2.15)

where K4 is the ratio of the transverse to the longitudinal dispersion coefficient, and - R? is
a function of fluid and porous medium properties. For a three-dimensional system, - R? is

defined by

_RP= - K[ggg =t _ 5 c=C } ac|
HoDy, | c-¢ (2.2.16)
and o%is defined by
o = "2[512: ¥ 3:12;] 2.2.17)
For an infinitely long porous medium, Eq. 2.1.15 becomes
-R? = K40? (2.2.17)
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The experimental results of Coskuner and Bentsen demonstrated the validitv of the
criterion for miscible flows in a Hele-Shaw system. A uistorted zero concentration line at
the displacing front was observed whenever the instability number was greater than the
marginal instability boundary; and an almost unperturbed zero concentration line was
observed when the instability number was less than the marginal instabiiity boundary.
However, as noted by Coskuner and Bentsen, the magnitude of any instability criterion
which is derived by using any small-perturbations theory may not be used to describe the
degree of the instability in the displacement. In other words, the instability number may be
used only to determine whether a displacement is stable or not by comparing the number
with the marginal boundary; a large instability number may not indicate that a more
distorted zero concentration line at the displacing front would occur. Furthermore,
Coskuner and Bentsen's model, like all the existing analytical analyses of unstable miscible
displacement, does not take into account the effect of heterogeneity in a porous medium,

and is limited to fluids with small density and viscosity differences.
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3. STATEMENT OF THE PROBLEM

From the review of the previous research on miscible displacement in porous media, it
becomes clear that several factors have been identified as being influential in the stability,
dispersion and oil recovery of miscible displacements. These factors are the heterogeneity
of the porous medium, the viscosity ratio, the density difference, the displacement rate and
the geometry of the porous medium. The length of the porous medium, however, has
been studied little, even though it has been theoretically identified as being influential [47].
Thus, there is a need for obtaining more theoretical and experimental information

concerning the effect of the core length on the instability of miscible displacements.

The main objectives of this investigation were two-fold. The first objective was to
derive a scaling group which removes the limitation, underlying Coskuner and Bentsen's
instability criterion, of having fluids with the same (or a small difference in) viscosity and
density. The second was to study linear miscible displacement in glass-bead packs which
varied in length, and thus to verify experimentally the effect of system length on the

instability of the displacements as predicted by Coskuner and Bentsen's instability theory.

In order to realize the first objective, it is proposed to use a material balance technique
to derive a generalized concentration-dispersion equation which takes into account the
difference of density and viscosity between the displacing fluid and the displaced fluid.
Then, by using this equation, together with the small perturbation and instability theory of
Coskuner and Bentsen, it is proposed to derive a new scaling group, which allows one to
estimate the distance from the inlet face of a linear porous medium at which the
displacement becomes unstable. Moreover, an attempt will be made to establish a

theoretical basis for the dependence of instability on core length.
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In order to apply Coskuner and Bentsen's instability criterion, which was given as a
scaling group, one has to evaluate parameters such as the transverse and longitudinal
dispersion coefficients of the miscible fluids. Previous theoretical and experimental
investigations of miscible displacement have shown that a stable miscible displacement
may be described adequately by the convection-dispersion equation, and that the dispersion
coefficients may be determined experimentally, provided that the densities and viscosities
of the fluids are matchable. However, there is a lack of adequate models and the means of
determining dispersion coefficients for displacements where viscous fingers occur and
appear to dominate the process. In the present study, as the fluids had an unfavorable
viscosity ratio and different densities, the available theoretical and/or empirical correlations
for estimating these coefficients were no longer valid. Thus, a problem arises in finding a
method to estimate the dispersion coefficients approximately. Consequently, an attempt
will be made to develop an approach for approximating the longitudinal dispersion

coefficient under the conditions employed in this study.



4. THEORY

This chapter consists of two main sections. In the first section, a new approach is
presented to show the development of a generalized convection-dispersion equation and its
simplified form which incorporates a fractional flow term in the convection term. This
fractional flow term is derived from Darcy's law and is related to solvent concentration.
This new approach is based on a differential material balance technique, which leads to a
generalized convection-dispersion equation by taking into account miscible fluids with
unequal density and unequal viscosity. In comparison with other generalized convection-
dispersion equations [see Appendix A], this model gives clearer insight into the
mathematical description of the miscible displacement process.

In the second section, using the generalized convection-dispersion equation, together
with the small perturbation and instability theory of Coskuner and Bentsen, a new scaling
group is derived, which defines the distance from the inlet face at which a miscible
displacement in a ¢ ne-dimensional porous system becomes unstable. This new criterion
allows fluids to have large differences in density and viscosity. Moreover, a correlation
between the core length of porous media and the amplitude of perturbations in solvent
concentration is presented to show a theoretical basis for the dependence of instability of a

miscible displacement on core length.

4.1 A ( "NERALIZED CONVECTION-DISPERSION EQUATION

It is assumed that the flo.. sysem is comprised of two miscible fluids: oil with

density Po and viscosity K, which is the displaced fluid; and solvent with density P and

viscosity ¢, which is the displacing fluid. The viscosity ratio of the two fluids may be
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unfavorable, and consequently viscous fingers may exist. The two fluids are
incompressible and miscible in all proportions. It is also assumed that displacements take
place in a one-dimensional homogeneous and isotropic porous medium. The linear
displacement is in the x direction, and there is a net dispersion of material only in the

direction of flow.

Consider now a resident oil being displaced by a solvent. The solvent, which is called a
free solvent, has the properties of pure solvent. A free solvent phase exists when a solvent
of lower density displaces a heavier oil. The fraction of pore volume occupied by this
phase is defined to be the solvent saturation, which is designated S. The fraction of pore
volume occupied by the oil phase ic designated S,. The solvent-oil mixing phase consists
of oil containing dissolved solvent; hence, it has properties of the mixture such as density
Pm and viscosity Bm which vary with the composition of the mixture. The fractional
volume of the solvent in the oil phase is designated by the symbol C, which is also called
the solvent volume concentration. Solvent is transferred from the free solvent phase to the
solvent-oil phase at a rate which depends on the composition of the mixing phase, the

solvent saturation as well as the solvent-oil saturation, or Z-S-S,.

A material balance on the displacing fluid across the inlet plane of an element gives

ACCUMULATION = INPUT - OUTPUT (4.1.1)

If two miscible fluids are brought into contact with an initially sharp interface, the
subsequent transport and mixing of the fluids occurring at the inlet face of the element,
which is located at x , is the amount of solvent entering the element by convection and

dispersion in a time interval Ar, The convection term is represented by a fractional flow
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function, f; , and the dispersion term is represented by two kinds of dispersive contribution

in the direction of flow; that is, the longitudinal dispersion of the free solvent phase with the
solvent-oil mixing phase, and of the mixing phase with the oil phase. The resulting

expression is given by

[V fs P - DL (5 Ps) + == [11- - 5) € pm]ﬂ‘ A (4.1.2)

where V is the volumetric velocity, D; is the longitudinal dispersion coefficient, which is a
function of velocity, core-length and the effective viscosity ratio defined by Koval [40].
The subscripts s, 0, and m denote free solvent, oil and the mixture of the two, respectively.

The displacing fluid fractional flow, f;, is defined as

f= 3 (4.1.3)

where ¢, is the solvent, or the displacing fluid flow rate, and q is the total volumerric flow

rate. Similarly, at the outlet plane of the element, or x+Ax, the amoun! of solvent leaving

the element by convection and dispersion over the time interval At is given by

At (4.1.4)

d 0
[V fs Ps - DL[g; (Sps) + 3 [(1-S-S5)C Pm])] ot Ax

Finally, the accumulation of solvent in the length increment Ax over the time interval At is
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6 [(Sleean - Slt) Ps AX + (1-5-S0) Clevar - (5-So) Clt) pm &x] (415

If Eqs. 4.1.2, 4.1.4 and 4.1.5 are substituted into Eq. 4.1.1, both sides of Eq. 4.1.1 are
divided by Ax At , and AX — 0, Ar — 0 arc allowed, Eq. 4.1.1 becomes

2 2 o,
DL{3S 5 4 9 f1-5-5,)Cpm]| V5o Ps
axz Ps axz[ 0 pm] ox

kS
Lot

(4.1.6)

=4 = Ps+ -aa—[[u =S -So) cpm]]

If 2 pseudoconcentration, or an average in-situ mass concentration across the planar slice at

which the material balance is made, C;, is defined as

Ci; = Spg + (1-S-5,)CPm 4.1.7)
where the density of the solvent-oil mixture is defined as
Pm=PsC+po(1-C) (4.1.8)
then Eq. 4.1.6 becomes
3%C; Ay, aC;
DL—5 -Vps 5> =0 —" (4.19)

ax2 ox ot
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Assuming that the displacing fluid must leave the core at a rate equal to the rate at which it
crosses a plane lying at a distance x along the core, the rate, g, , at which the displacing

fluid crosses any plane, is defined by

oC
qs=UA¢C - Dy, A(I)'S(' 4.1.10)

where U is the interstitial velocity which is related to the average volumetric velocity V by

V = U, and A is the cross-sectional area of the core. As the total volumetric flow rate is

UA¢, the fractional flow of displacing fluid defined in Eq. 4.1.3 may be written as

q

Dy 9C 4.1.11)

ofc aC Dy 22
§ LI7C (4.1.12)

and substituting Eq. 4.1.12 into Eq. 4.1.9 and rearranging yields

2 2~ =
D; 9%C; 1 9C;
9C ,DLIG (X ! (4.1.13)

+ ——— - Y e——

D =
a2 psdox?  x  ps &t



It is interesting to note that Eq. 4.1.13 is similar in form to the convection-dispersion
equation except that in two of the partial derivative terms the solvent concentration, C, is
replaced by the pseudoconcentration, C;, and that an extra function of porosity and solvent
density appears in front of the second-order partial derivative term, and that the solvent
density appears on the right-hand side of the equation. However, it is essential for

application purposes to define the pseudoconcentration term, C;, properly.

After solvent breakthrough, as shown in the experiments of the present study, the
concentration variation for stable displacements reveals different features from that for
unstable displacements. In stable displacements, the solvent concentration profile follows
the typical error function curve aftcr solvent breakthrough, whereas in unstable
displacements, it shows two distinguishable periods of increase in solvent concentration:
in the first period, the concentration value fluctuates with an increase in pore volume
injected, which suggests that a finger-shaped solvent front passes through the outlet
together with the displaced oil during this period; in the second period, the concentration
profile follows the error function curve, which seems to indicate a solvent-oil mixture
arriving at the outlet. Consequently, it is assumed that the free-solvent saturation S and the
oil saturation S, become negligible, once the major solvent-oil mixture arrives at the outlet,

and that the pseudoconcentration is given by

& =Cp,, (4.1.14)

where C is the average volumetric concentration of the solvent-oil mixture. Noting that the
density of the solvent-oil mixture is also a function of the concentration C, as shown in Eq.

4.1.8, Eq. 4.1.14 can be rewritten as

42
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C; =Cps C+po (1-0)] @113

Taking the first- and the second-order derivatives of C; with respect to the distance x, and
taking the first-order derivative of C; with respect to the time ¢, and substituting the

resulting derivative terms into Eq. 4.1.13, one obtains

2c 2D - 2
DL[F<C>+ps¢1a s+ 2L Pl Sy L4

o Jax? Psd ox ox  pg

where

F(C) = po + 2C( Ps- Po) (4.1.17)

The above partial differential equation (Eq. 4.1.16) is a generalized convection-dispersion
equation which takes into account the effects of unequal density and unequal viscosity. In
Eq. 4.1.16, the difference in viscosities of the fluids does not appear explicitly. However, it
is known [7,11,20,21,50] that the longitudinal dispersion coefficient, Dy, is dependent on
viscosity ratio. Consequently, when the viscosities are not equal, value of Dy which

reflects this fact must be used.

In general, such a complex non-linear partial differential equation can be solved only by
using a numerical approach. The numerical solution of Eq. 4.1.16 is not the object of the

present study, and will not be discussed further here. To obtain an analytical solution of
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Eq. 4.1.16, a simplification has to be made. If the displacing and displaced fluids have

equal densities (Po= Ps), and noting that F(C) = Po, Eq. 4.1.16 becomes

l 2
DL [1+-]a—9 p¥.€ (4.1.18)

Eq. 4.1.18 is identical in form to the convection-dispersion equation for stable
displacement, except that there is a function of porosity in front of the second-order partial
derivative term. This function appears because the effect of dispersion (see Eq. 4.1.11) is
taken into account in defining solvent fractional flow. By neglecting the effect of the

dispersive term in the solvent flow rate, one obtains

Qs = UAJC (4.1.19)

and the fractional flow is given as

fs=C (4.1.20)

Hence, Eq. 4.1.9 becomes

826i oC _ G
L ) Vps FY ¢ Y (4.1.21)
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Similarly, for the case where dispersion is neglected in the fractional flow term, another
generalized convection-dispersion equation for miscible fluids of unequal density and

unequal viscosity can be derived. The resulting equation is given by

ox

2 2D - 2
D [F(Cﬂa 5 + 2PL{Ps oY LTy 5 . L gy (4.122)

psd |ox? Psd \ax ;s.

If the fluids have equal densities, Po= Ps, F(C) = Po, and Eq. 4.1.22 becomes the familiar
classical convection-dispersion equation shown below:

Dp 9%C .. aC _aC |
—qp—};f-u_c’;;—_a? (4.1.23)

In comparison with Eq. 4.1.18, Eq. 4.1.23 seems to represent less impact of dispersion
on the solvent concentration profile which is a function of space and time. Moreover, Eq.
4.1.23 is limited because it holds true only when the displacing fluid and the displaced fluid
have equal densities, and only when the solvent fractional flow, f; , is equal to the solvent-

oil mixture concentration, C.

By assuming that the porous medium extends infinitely in both the +x and -x

directions, the boundary conditions are given as

as X — +oo Cxt)—0

and
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at x = Ut Cx,t) = 0.5 (4.1.24)
The resulting solution of Eqs. 4.1.18 and 4.1.23 is well known [48]. Itis

C= 1 e;fc[-—i‘:z

2 12 (4.1.25)

For the solution of Eq. 4.1.18 D, is

DL'=Dp [12;’:‘2} (4;1.26)
and for the solution of Eq. 4.1.23 D;’ is

D = 2L (4.1.27)

o

Often, in the laboratory, one measures the effluent concentration at the outlet end of the
core. Therefore, it is more practical to set x equal to L in Eq. 4.1.25 and express the

concentration in terms of injected pore volumes of the displacing fluid. If this is done, Eq.

4.1.25 may be written as
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(4.1.28)

where Vp; = V;/ Vp, or Ut/L; and where ¥, which is equal to UL/D;’, is called
dimensionless dispersion by Brigham [29]. Note that Y is defined in terms of D, * instead
of D; , as defined by Brigham. To emphasize this difference, Y is written as Ym in the

next chapter.

Noticing the error in the theoretically predicted material balance, Brigham defined an
effluent flowing concentration of the displacing fluid to make the convection-dispersion
equation consistent with the boundary conditions. By Brigham's definition, the flowing

concentration, C, is equal to the rate of displacing fluid divided by the total rate; that is,

=% _c.DLac
Ct = Gar =C- 05, (4.1.29)

By taking the same approach as Brigham, one may evaluate the flowing concentration, Cr,

by differentiating Eq. 4.1.25 as follows

2
(x-Ut
o _ 190 x-Ut i~ 1 - 2WJ
ox 2 ox [eﬁ(2JDL'tJ]_ 2JDL'tne (4.1.30)

Substituting Eqs. 4.1.25, and 4.1.30 into Eq. 4.1.29, and evaluating the resulting

expression at x = L, one obtains
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2
1 1- Vpi 1 2./Vpil ¥
Ctf = — erfi pt
F=2° °[24vpi/y}* N L (4.131)

Notice that the effluent flowing concentration at one pore volume injected can be evaluated

from Eq. 4.1.31 by setting V,,; equal to unity; that is,

[1 + ?/1:=7J (4.1.32)

Nl

cflvpi=1 =

Eq. 4.1.32 shows that one can expect the effluent concentration at one pore volume
injected to be greater than 50%. Moreover, Eq. 4.1.32 shows the possibility of a new
approach to determine the longitudinal dispersion coefficient. As shown in Eq. 4.1.32, ¥
is equal to UL/ Dy’ . By determining the effluent concentration value at one pore volume
injected, one may estimate the longitudinal dispersion coefficient using Eq. 4.1.32. Itcan
be shown that, when the fluids used have a favorable viscosity ratio, the longitudinal
dispersion coefficient determined using both the straight-line method [7] and the method
suggested above yield comparable values. For example, in one of Brigham et al.'s
displacements [7], the fluids had a viscosity ratio of 0.175, the core length was 83.3 cm
(bead pack 131-1) and the velocity varied from 5.2 to 6.3 x10" 3cm/sec. The dispersion
coefficients obtained from the straight line on probability co-ordinate paper (Fig. 1) varied
from 6.9736 to 8.4479 x10~5cm?/sec. The dispersion coefficients obtained using the
etfluent concentration curve of the displacement conducted in this bead pack (Fig. 2A)
varied from 6.3015 x105cm?/sec.to 1.3107 x10~%cm? /sec. Because the straight-line

method depends on many points on the plot, whereas the second method depends on one
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point on the concentration profile, it is suggested that when fluids have a favorable

viscosity ratio, to be more precise, one should use the straight-line method to estimate the

longitudinal dispersion coefficient.

4.2 THE STABLE MIXING-ZONE LENGTH

Linear perturbation theory has been utilized by Coskuner and Bentsen [47] fo develop a
dimensionless scaling group to predict the instability of miscible displacements in three-
dimensional porous media. However, the convection-dispersion equation used in their
derivation is limited to fluids having identical density and viscosity. It is desirable to obtain
a new scaling group defining the marginal instability boundary for a one-dimensional flow

system when fluids of unequal density and unequal viscosity are considered.

Consider a vertical column of a homogeneous permeable medium saturated with oil.
A solvent less dense and less viscous than the oil is used to displace the in-situ fluid
downwards in the z direction at a constant rate. It is assumed that thc two fluids are
miscible in all proportions and the velocities of the oil and the solvent in the column are
uniform. Generally, as a result of molecular diffusion and convective dispersion effects, a
transition zone between the displacing fluid and the displaced fluid develops when the two
miscible fluids are in contact. It is assumed that in the transition zone the solvent
concentration C , which is a function of space and time, monotonically decrea..2s from the
solvent region to the oil region. Moreover, following Peaceman and Rachford's approach
[43], it is assumed that the viscosity and density of the .nixture, Um and pPm , are

monotonic functions of solvent concentration, as shown in Egs. 2.2.5 and 2.2.6.

The mathematical models describing the displacement are as follows:
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awW JP
%"}__a_l_ T Eén_w - Pppg = 0 (4.2.1)

and

(4.2.2)

DL[F(C)+pS¢]azc , 2DL(ps" po)( a_C)z_ w2 g
s Jaz? Ps \ 9z oz pg o

where W is the volumetric velocity of the mixture in the z direction.

According to small perturbation theory, each variable can be expressed as a sum of
unperturbed values (constant) of the variable and its arbitrarily s'aall perturbed value

(function of space and time); that is,

E=E+t" (4.2.3)
where

E=C.W. P, Pris o 4.2.4)

In Eq. 4.2.3, the variables superimposed with a bar represent values at stable or
unperturbed conditions, whereas the asterisk variables represent small arbitrary
perturbations. Small perturbation theory provides a method to predict the stability of the
flow system by examining whether the perturbed values grow or decay with time. The

equations describing stable displacements are defined as follows:



W = V = CONSTANT (4.2.5)
P 1 — R
=+ RV Pug=0 (4.2.6)

and

o [ECrpd 12T 2DL(pspo)( 3TV, 3 _ ¢ pzdC
R S P Ps \ 9z 9z pg at

Substituting Eqs. 4.2.3 througn 4.2.7 into Eqs. 4.2.1 and 4.2.2, respectively, and
eliminating the products of small perturbations because the values are negligible, the

resuldng equations are

-— * * -—
Pm oW P Hm

* V * *
o o 5t tgfm - Pmg=0 (4.2.8)

and

DL[F(C)+ps¢]azc* L 2Du(ps Po)f QC_"j){ W aa_f v 959"i
z

Ps _| 322 Ps l~ oz B

_ 9 oo
- FCY= (4.2.9)
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For perturbations in linear systems, a general disturbance can be represented by a Fourier

series. Thus, the perturbed variables are given by

£ = £y o™ (4.2.10)

where E(2) represents the amplitude of the disturbance, and  is called the time coefficient
[47]. Coskuner and Bentsen suggest that the stability coefficient may be used to determine
the instability of displacements; that is, the displacement is stable when the value of the
stability coefficient is negative as the perturbation decays with time; and the displacement is

unstable when the value of the ..-ability coefficient is positive, as the perturbation grows

with time.

If the viscosity and the density of the mixture are expanded in a Taylor series about the

mean solvent concentration, C , it follows that

— — a * 4 7
b = B ¥ = Bp@ + TR C 4 (4.2.17)
and that

Pm = P+ P’ = Pm(@ + Bm " o (42.12)

If the second and higher order terms in the Taylor series expansion can be neglected, Egs.

42.11and 4.2.12 lead to



b= Lot (4.2.13)
and
3 ,
P = —ng c’ (4.2.14)

Substituting Eqs. 4.2.10, 4.2.13 and 4.2.14 into Egs. 4.2.8 and 4.2.9, and assuming tha:

oP*/9z is negligible, the following two ordinary differential equations are obtained:

¢Pm - Vouy
|l = K| pqm
- - C:C C=C €
W = 0Pm , Fm @ £ 2.15)
o K

and

— ~ =\2
DL[F(C)«»psMaZC . 2DL(ps~ po)( a_C) (ot

Ps oz ps  \oz
- 9C oC o _= F
=W =2+ V== +-=FQC) (ae®) ¢ (4.2.16)

Ps

Substituting Eq. 4.2.15 into Eq. 4.2.16 and rearranging



- ~ =\2
DL[F(C)««psﬂaZC , 2DL(ps- po)f 29_) &0t

ps  Jaz2 Ps \ 32
_ .y 9C o R T
=V 5_2. + (NC —a-z— + -‘-): F(C) (ae )J C (4—.2.17)
where
g%Pm| _ Vim
N oC[c=C Ko |cF
c= oPm N Bm (4.2.18)
o K

Eq. 4.2.17 is a non-linear, second-order differential equation. In order to obtain the
solutions of €(z) and W(z) , two other definitions of solvent concentration have to be
introduced. Brigham k.s shown [29] that the average concentration flowing across a plane
is always greater than the concentration in the plane, and that the flowing concentration is
the concentration one obtains from the effluent concentration measurement. This flowing

concentration at each plane is given as

_c.9LC
c=c- TLE (4.2.19)

where Cris the flowing concentration, and C is the in-situ concentration. According to
f g

small-perturbation theory, one may cefiv.: the flowing concentration at each plane as a

combination of the unperturbed conc:ntration, C, and the perturbed concentration, C*.
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Considering that solvent concentration decreases with core length (or depth) at each

particular displacing moment, the expression is given as

Cg=C-C*=C - Cz) e™ (4.2.20)

Defining the average in-situ concentration, C , as the unpertubed concentration, C, and

equating Eq. 4.2.19 with Eq. 4.2.20 gives

A o0t $DL 3C )
C@@)e v 3 4.2.21)

Coskuner and Bentsen have suggested that the condii:on of marginal instability is
characterized by @= 0, provided that the principle of exchange of stabilities is valid. If o

equals zero, Eq. 4.2.21 becomes

oy = 2L
¢@ = £L (4.2.22)

Eq. 4.2.22 is a linear, first-order differencial equation which can be solved by applying

inner or outer boundary conditions. At the inlet boundary (z=0), one has

0l
Il
—t
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and
(4.2.23)
Ciz)=0
Then, the solution of Eq. 4.2.22 is given as
E(z) = e(V/¢DL)z (4.2.24)
Substituting Eqgs. 4.2. 18 and 4.2.24 into Eq. 4.2.15, one has
(4.2.25)

W(z) = N e(V/¢DL)z

It can be seen frein Eqs. 4.2.24 and 4.2.25 that the amplitudes of the perturbed
concentration and the perturbed velocity are exponential functions of the distance traveled
by the displacing front, z. That is, the further the plane is displaced from the inlet, the
grester the perturbation of the solvent concentration and the velocity at the displacing front.
This length dependency of the perturbation provides a theoretical basis for explaining the

length dependency of the instability of the miscible displacement.

Substituting Eq. 4.2.24 into Eq. 4.2.17, one obtains



— 2 " 2 -—v—z
DL[F(C)+ps¢M v J . ‘-DL(ps'Po)( v ) oL

Ps oD Ps ¢D
IRV I T R
“No 37+ gp + RO ) (4.2.26)

Letting a equal zero to obtain a marginal instability condition, Eq. 4.2.26 becomes

= v
DL[F(C”“"S“’] 4+ APs-Po) opr °
Ps Ps

_(eDL2|.. aC v2
(%) {Nc N gpj] (4.2.27)

By rearranging Eq. 4.2.27, it may be shown that

A%
edDL z= M, (4.2.28)
from which it follows that
2= ‘“\’,L InM (4.2.29)

where
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M= —Ps (NCDL oC F@)

T2APs-py\ UZ 2 P
P Po s (4.2.30)

In Eq. 4.2.29, z is the distance from the inlet face of the core to the displacing front where
the miscible displacement becomes unstable. It can be seen that this distance is
proportional to the longitudinal dispersion coefficient, and that it is inversely proportional
to the velocity. In other words, the greater the longitudinal dispersion i;, the more quickly
unevenly distributed fingers will be smeared out; and the higher the velocity is, the shorter

the length of the stabilized mixing zone [21].

Coskuner and Bentsen [25] suggested that a displacement process is considered to be

stable if

dW(z)
- =0 (4.2.31)

Taking the derivative of Eq. 4.2.25 with respect to z, and setting it equal to zero, one can
see that the two possible solutions for Eq. 4.2.31 are either that the velocity, V', equals
zero, or that Nc equals zero. If the latter condition applies, the critical stable velocity can be

defined as

- Kg|%®m ﬂlﬂ}l
Ves = K g[dc ) Ym] (4.2.32)

where Ves is the critical stable velocity. When fluids have unequal density and unequal

viscosity, the derivative terms such as dpy, /dC and du, / dC are given as follows [43]:



d

_%:f& = Ps - Po (4.2.33)
and

dpm B

Sm Inpe - In

ic = Mm (npg - Inyo) C+p0-OF (4.2.34)

When fluids have equal density and equal viscosity, from Egs. 4.2.33 and 4.2.34 one has

Py, / 4C=0

and

4o /400 (4.2.35)
m /dC=

As a consequence, when fluids have unit viscesity and density ratios, Eq. 4.2.32 becomes

undefined.

In comparison with Dumore's criteria (Eqgs. 2.1.13 and 2.1.14), the critical stable
velocity, Ves, defined in Eq. 4.2.32 is different £ .om either the stable velocity or the critical
velocity defined by Dumore. The difference is due to the factor, [C + B(1 - C)]2 /B , which

results in the smallest value of the three critical velocities. In fact, the evaluation of

dom , dim : : .
ac | Tqc at the aver . oncentration of the mixture may represent the mixing and

dispersion process mo:e precisely. Itis suggested that this critica! stable velocity may be



used to determine the initiation of fingering while the stable velocity defined by Dumore
may be used to determine the tendency for fingers to grow. That is, it is assumed that, at
this critical stable velocity, viscous fingers may initiate, but that they may be suppressed by
diffusion. However, at the stable velocity defined by Dumore, fingers may start to grow
slowly when the displacing velocity is lower than the stable velocity, and more quickly

when the velocity is greater than the stable velocity.
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5. EXPERIMENTAL

Laboratory fluid flow experiments have great utility in discovering and investigating
fundamental displacement mechanisms and in developing mathematical techniques as tools
for predicting and simulating miscible displacement processes. Experimental models are
also useful in studying extremely complex processes and in evaluating the reliability of
mathematical descriptions and techniques. Consequently, laboratory models provide one
of the most convincing methods for verifying a particular solution, or suggesting improved

assumptions to be used in the theoretical model.

In order to validate the effect of a permeable core's length on the instability of miscible
displacements, a series of experiments was carried out in several rectangular core holders
which varied in length, and which were packed with glass beads. For each experiment, the
glass-bead pack was saturated with a white oil, Marcol 72, which was displaced
downwards by a gasoline, Varsol, at several constant rates. The effluent was collected in
cylinders to measure the volume of total production, and samples were taken regularly to
mcasure their refractive index. The refractive index of the samples was used to determine
the proportion of each oil in each of the samples. No attempt was made to simulate an
actual reservoir. The results, therefore, reflect only some aspects of the fundamental

behavior of miscible displacement processes in unconsolidated porous media.

5.1 Experimental Apparatus

A schematic diagram of the experimental apparatus used in this investigation is shown

in Figure 1. There were three essential parts included in the experimental system: 1) the
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glass-bead packs used as porous media, 2) reservoirs which contained the fluids to be

injected, and 3) a displacement pump to inject fluids at a constant rate.

The glass-bead packs were 15 ¢m in width, 5 cm in height and varied from 30 cm to
150 cm in length. Three rectangular core holders, which were 30, 60 and 90 cm in length,
were made of aluminium. The core holders were also connected together to obtain various
desired lengths. The core holders were packed with glass beads, which served as the
porous medium. The glass beads used were smooth and spherical and had a mean
diameter of 2.643 mm (7-10 mesh). At the inlet and outlet ends, there were two end-pieces
used to contain the glass beads in the core holder. The two end-pieces were pyramidal in
shape and were filled with larger glass beads which were held in place by a glass plate
made of fine fused glass beads. Such a design was considered to be capable of providing
an evenly distributed entrance and discharge of fluids dvsing displacements. Two cylinders
(one containing Marcol and the other containing Varsol) were connected to the glass-bead
pack to supply displacing and displaced fluids. A Ruska pump was uscd 1o inject
displacing fluid at the desired constant rates for each pack length of interest. The flow rates

used in the experiments were 194.6 cc/hr, 324.8 cc/hr and 778 4 cc/hr.

5.2 Properties of the Porous Medium

The design of the laboratcry experiments required high displacing rates and high
permeabilities to minimize both the time required for the studies and the size of the models.
Under these conditions, velocity variations between flow channels become important, and
mixing (in the direction of flow) in tne laboratory models between the 1 and the solvent
results primarily from convection. Utilizing glass beads to construct the porous media
offered many advantages, especially when uniform permeability distributions having high

permeabilities (>10 darcies) were desired. The properties of the porous media are shown
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in Table 1. The average pore volume of the bead packs varied from 751 cc to 3716 cc, the
average porosity was 33 per cent and the average permeabilities of each particular bead
pack ranged from 2754 darcies to 2795 darcies. Unlike the porosities of the porous
medium, which were rather consistent in value, the permeabilities increased slightly with

length because of difficulties in achieving uniform bead packs.

£.3 Experimental Procedure

The experimental procedure included five steps: 1) packing, assembling and pressure-
testing the bead-pack; 2) measuring pore properties of the bead-pack; 3) d* nlacing in-situ
oil (Marcol) by solvent (Varsol) at the desired constant rate and taking samples _ uring the
displacement; 4) cleaning and drying the bead-pack; and 5) measuring the .- 'ractive index

of the effluent. Each step of the procedure is described in detail in the following sect’ 's.

5.3.1 Packing

The core holder used for the experiments was mounted vertically. With the outlet head
attuched to the bottom of the core holder, ar:: with an extra core holder connected to the top
of the core holder to allow the addition of relatively the same amount o weight an the
upper layers of glass beads, 750 cc of glass beads were poured into the core Lolder each
time. After vibrating the pack with a vibrator for about 20 minutes, this procedure was
repeated unti! the level of the beads rose to a height 30% greater than the original height of

the core holder.

The period of vibration time was increased with increasing pack length; that is, the core
holder was vibrated for 25 minutes after each addition of the glass beads into \he 7120 cm
core holder, and for 30 minutes after each addition of the beads for the 150 cm core holder.

Even then, a consistent bead pack for each core hc.der was difficult to achieve because the
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TABLE 1. THE PROPERTIES OF THE POROUS MEDIA
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Pack Mol Length | Ave | Average Standard Average Standard
P - .| Porosity Deviation Permeability Deviation
(cm) (cc) (%) (darcies)

1 30 751 33.4 0.1 2755 11

2 60 1516 33.7 0.3 2766 14

3 90 2272 33.7 0.5 2778 15

4 120 2991 33.2 0.1 2787 32

5 150 3716 35.0 0.2 2796 43
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vibrator was too small to vibrate adcquately the longer core holders. From measurements
of the permeabilities of the bead-packs, a looser packing in the longer cores was observed.
In fact, some other researchers [487 also observed such a variation in both porosity and

permeability along the longitudinal section of the sandpack.

5.3.2 Determination of Porc ¥’roperties

The determination of the pore properties was of iraportance for coth experimental and
theoretical reasons. The porosity and the absolute :«::=. i, of the porous media were
used to evaluate instabilities of the displacements using Coskuner and Bentsen's instakil ty
criteria, and to predict the siability of the displicements using the critical stable velocity

developed ir .2 present study.

The porosities of the bead packs were deiermined by measuring ti.e amount of fluid
(Marcol) used to saturate the core completely. In order to achieve a better accuracy in each
measurement, two approaches were taken to obtain the value. First, a vacuum was drawn
on the clean bead-pack under test for a period of rime, ... on the displaced fluid (Marcol)
was allowed to imbib~ 1to the bead-pack . The amount of iluid imbibed was considered
to be the pore volume ot the bead-pack. Second, after completion of the displacement, the
fluid inside the bead-pack was displaced using air. The amount of fluid collected also

represented the value of the pore volume.

In comparison with the first procedure, the second one was observed to be less accurate
because Varsol tended to vaporize after its arrival at the outlet end during the displacement
by air, which resulted in some error in the total volume calculations. Using the first
approach, the pore volume of the two end pieces was measured three times. The average
nore volume of the three measuremei.is was 322 cc. The porosity of each bead-pack was

measured by taking an average value of the three measurements. The average porosity of
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each bead-pack is given :n Table 1. According to one of the methods for estimating

standard deviation frow sample range (small number ~f sim;: es), the standard deviation
from three samples car: be determined by the formula: miean sample range/1.693 (the
constant varies accc. ding to the numbers of samples), where the mean sample range can be
calculated by subtracting the minimum value from the maximum value. By using this
method, the maximum and the minimum standard deviations of the mean porosity for the

fifteen measurements are estimated as 0.5 and 0.1.

After the bead-packs were saturated with oil, the absolute permeabilities of the bead-
packs were determined using several flow rates with the displacing cii injecied at the
bottom. The pressure drop between the top and the bottom face f the core holder was
measured for each flow rate. These pressure drops, together with the cross-sectional area
and te length of the core holder, and the visc sity of the injected fluids, were used in
conjunction with Darcy's law to estimate the absolute permeability of the bead-pack. The
arithmetic av..rage value over five measurements for each pack is given in Table 1.
Similarly, by using the method mentioned above, the maxiinrum and the minimum
standard deviations of the mean permeability for the fifteen measurements are estimated as

43.3 and 10.9.

According to the sencitivity analysis shown in the next chapter, the errors arising out of
the packing procedure have negligible influence on the instability analysis of the
displacements. Therefore, both the porosity and the pen.ieability were measured only three
times for each bead pack. With five groups of three points, an anzlysis of variance could
be done. However, if one uses the power of the test for analyzing the variance, it turns out
that the probability of making the second type error is about fifty percent, which means that

an analysis of the variance has little utility.



5.3.3 Displacement

Displacements for each bead-pack were conducted at three different rates. These rates
were selected on the basis of Dumore's criteria [46]. For solvent and oil densities of 0.841
and 0.780 gm/cc, respectively, and for solve.:t and oil viscosities of 1./25 and 22.001 cp,
respectively, th - critical rate was calculated using Eq. 2.2.12 and was multiplied by the
bead-pack cross-section area. These values, for cach of the different packs, are reported in
Table 2. The stable rates (stable velocity multiplied by the bead-pack cross-section area),
for the same values of viscosity and density, were calculated using Eq. 2.2.13, where B
equals 9.529. These results are also reported in Table 2. The critical stable rates reported in
7 sbjc 2, were calculated using Eq. 4.2.32. The three displaci- g vates (196.4 cc/hr., 324.8
cc/hr. and 778.4 cclhr.) were select i in suc’- . way that the first rate was less than the
estimated stable rate, the second was close to the stable ra:e and the third was somewhere

between the stable rate and the critical rate.

In preparation for a run, the bead-pack was saturated with Marcol. Varsol, which is
lighter and less viscous than Marcol, was used as the displacing fluid. The displacing fluid
was injected into the top of the core holder at a constant rate. Initially, the effluent was
collected in a large graduated cylinder located at the bottom of the core holder. When the
arrival of the mixed zone was imminent, the large cylinder was replaced with smaller
cylinders to enable more accurate measurement of the amount of fluid produced. Prior to
30 per cent of the in-situ oil being displaced, samples (5 cc) were taken for each 5 per cent
of pore volume injected. After 30 per cent, the samples were taken more frequently. Each
sample was assurtied 10 be representative of the Tuid passing the end of the pack during the
small sampling time interval. For each run, the displacement was continued until

approximately 1.5 to 2 pore volumes of displacing fluid we- injected.
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TABLE 2. THE STABLE AND CRITICAL RATES

Pack No|] Length | Avg. Permeability | Stable Rate Critical Rate | Critical Sti' ' Rate
(cm) (darcies) (cc/hr.) (cc/hr) (cc/hr.)
1 30 2754.6 354.6 2100.6 83.7
2 60 2765.7 356.0 2109.0 84.0
3 90 2778.3 357.7 2118.6 84.4
4 120 2786.5 358.7 2124.9 84.6
5 150 2795.8 359.9 2132.0 84.9




The refractive index of each sample was measured and the proportions of displacing
and displaced fluid were determined from an experimental calibration curve. The oil break-
through recoveries from each displacement were determined by noting the first refractive
index which appeared to be less than 1.4610. This breakthrough was verified by checking
to see if the next sample also had a refractive index of icss than 1./610. The oil recovery

was considered to equal /00 per cent when five consecutive refractive indexes were found

to equal to 7 -1355.
5.3.4 Cleaning

.der 0 keep consistent pore properiies of each bead-pack, instead of repacking it

- zach run, the bcaa-pack was cleaned foliowing a specific procedure. The cleaning
procedure consisted of four steps: 1) displacing Varsol with air and drying the bead-pack
with air, 2) circvlating methano! through the bead-pack to wash away residual Varsol, 3)
circulating water through the bead-pack to wash away residual methanol and 4) drying the

bead pack with air and drawing a vacuum on the bead-pack.

Several experiments were repeated in order to examine the quality of the cleaning and
to investigate whether the cleaning procedure had any impact on the experimental results.
It was observed that the concentration profiles obtained from the different runs yielded
essentially identical results. The results from two of the repeated experiments are plotted in
Figure 2. As shown in the plot, good agreement was achieved between the data obtained
using a new bead-pack and that obtained using a cleaned bead-pack, which suggests that

the cleaning procedure was technically acceptable.
5.3.5 Measurement of Refractive Index

In order to determine the solvent (Varsol) concentration of the effluent, an experimental

calibration curve had to be prepared before the displacements were undertaken. Figure 3
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shows such a calibration curve. As can be seen from Figure 3, the refractive index
depends linearly on the volume per cent of Varsol in the Varsol-Marcol mixture. During
each displacement, samples (5 cc) were taken from the effluenr :sing measuring tubes, and
an Abbe refractometer was used to measure the refractive index of the sample. Two to
three sample readings were taken to provide a more accurate measurement, and the average
value over the three readings was recorded. The difference in the readings checked was
within 0.0001, which contributed to a maximum 0.78 per cent error in the solvent

concentration evaluation.

71



72

SNOILIANOD MOTA TVOIINAAI LV SNNY OML NIIMLAA
NOSHVAINOD dTIH0dd NOILLVILNIIONOD LININTAAH T TANDII

(%) da/TA

0s1 YA 001 SL 0s
\lull\l'.l.llllllllllllj 0

o ln

T_Uny woxd ejeq—Q— ov

¥»1T Uy woxy eleq —e—- ~

09

08

uTw/ud ZZL0'0 : A3jTooTea

_

T e e e e w of : yabusT Woeg =i (0]

1141

(%) TOSaBA 3JUSD ISg SUMTOA



73

TOSHVA INAD ¥dd dWNTOA 40 NOLLONNA V SV SHINLXIN
TODYVIN-TOSAVA A0 YIAWNN XIAANI FJAILOVILAAY € FINDIA

(%) TOSaeA 3U8) IO SUMTOA

001 08 09 oy 9 0
] T b1
£
/ﬂ/ ~
vl
B i
. & LA
g s P
. F
-
J/
o op'T
I1°4 bayjooug --
I°d paaxnsesn
Ly'i

IoquMN X9pUIl SATIORIFOU



74

6. RESULTS AND DISCUSSION

‘"he goals of this experimental investigation were: 1) to conduct miscible displacements
using glass-bead packs with various lengths; 2) to verify the theoretical prediction of a
length effect on the instability of the displacements using the Coskuner-Bentsen marginal

instability number; and 3) to verify that the instability had an effect on the breakthrough

recovery of the displacements.

6.1 The Properties of Miscible Fluids

In order to calculate the instability number from experimental dat. 22 aig Cosku.~r and
Bentsen's dimensionless scaling group (see Appendix B), the properties of the miscible
fluids had to be determined experimentally. These properties include the viscosities and the
densities of the oil (Marcol), the solvent (Varsol), and the mixture of the twc -+, .. furction

of solvent volumetric concentration at room temperature.

A density meter was used to deter: ine the densities of the fluids, while a digital visco-
meter was used to determine the viscosities of the fluids. The pr-perties of pure oil and
pure. solveﬁt are given in Table 3. It is known that both the densities and the viscosities of
miscible fluids are functions of solvent concentration. These functions are shown in Figure

4 and Figure 5, and the results of the measurerent are given in Table 3.

In Figure 4 the empirical curve illustrates that the density of the mixed fluids, Pm, is a
linear function of the solvent concentration, C; in other words, the following expressior is

adequate to represent the relation between P and C:



TABLE 3. PROPERTIES OF THE MISCIBLE FLUIDS
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Marcol Varsol Density (g/cc) Viscosity (cp)
(%) (%) Measwred  [Calculated |  Measured  [Calculated
100 0 0.841 0.841 22.001 22.000
98 2 0.839 0.840 19.665 19.700
96 4 0.837 0.839 17.715 17.707
94 6 0.836 0.837 15.955 15973
92 8 0.835 0.836 14.446 14.459
90 10 0.835 0.835 13.138 13.131
85 15 0.831 0.832 10.442 10.457
80 20 0.829 0.829 8.458 8.473
75 25 0.825 0.826 6.961 6.971
70 30 0.823 0.823 5.824 5.814
65 35 0.818 0.820 4.914 4.910
60 40 0.816 0.817 4.198 4.192
55 45 0.814 0.814 3.621 3.616
50 50 0.810 0.811 3.134 3.147
45 55 0.805 0.807 2.748 2.762
40 60 0.803 0.804 2.449 2.442
35 65 0.801 0.801 2.162 2.175
30 70 0.799 0.798 1.945 1.949
25 75 0.797 0.795 1.754 1.757
20 80 0.791 0.792 1.594 1.592
15 85 U.788 0.789 1.450 1.450
10 90 0.785 0.786 1.325 1.327
8 92 0.784 0.785 1.287 1.282
6 94 0.783 0.784 1.236 1.249
4 96 0.782 0.782 1.204 1.200
2 98 0.781 0.781 1.158 1.161
0 100 0.780 0.780 1.125 1.125
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Pm = psC + po(1-C) (6.1

where C is the solvent concentration.

In Figure 5 the empirical curve shows that the viscosity of the mixed fluids, Hm, is a
non-linear function of solvent concentration. If one uses Peaceman and Rachford's
correlation [43] to represent the the viscosity-concentration curve obtained in this study, the

following equation is needed:

Inpm =XlInpg+(1-X)Inug (6.2)
where
—C
X=CBa0) 6.3)

A trial-and-error approach was taken to estimate the empirical constant, B, using the
viscosity-concentration curve shown in Figure 5. When B = 0.529, the correlations (Egs.
6.2 and 6.3) give an excellent agreement with the experimental data reported in Table 3.
Furthermore, the functions (Egs. 6.1 through 6.3) are similar to those suggested

previously in the literature.

If one uses Lederer's equation, which is a modified version of the classic Arrhenius
expression [49] ,to represent the viscosity-concentration curve obtained in this study. the

following equation is needed:
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Inpg, = Xa Inpg + Xg Inyg (6.4)
where
oC
Xa=ooramg 2 Xe= 1o Xa (6.5)

The empirical constant, w, is correlated to the viscosities of miscible fluids and to a

function of fluid densities, or an Einsteinian constant, T. That is,

T
© = -
In(g / ng) (6.6)
and
T = 17.04 pg.2745 pé.6316 (Po _ps)0.5237 6.7)

Using Egs. 6.6 and 6.7, T and o are calculated to be 1.4895 and 0.5009, respectively, for
the fluids used in this study. The Lederer equation (Eqs. 6.4 through 6.7) also gave an
excellent fit to the experimental data. In comparison with Peaceman and Rachford's
correlation, Lederer's correlation is more desirable and easier to obtaine because it requires
only the input of the densities and viscosities of the oil and the solvent. Moreover, using

Lederer's correlation, the two empirical coefficients, » and 7, can be estimated empirically;



whereas the empirical constant, B, in Peaceman aad Rachford's expression, has to be

determined experimentally.

6.2 Evaluation of the Relevant Parameters and Variables

In order to predict the instability of the displacements, some other parameters and
variables also had to be estimated [see Appendix B]. These parameters are: the viscosity
gradient and the density gradient evaluated at the average unperturbed concentration, &,
which corresponds to the average viscosity, H; the transverse dispersion and longitudinal

dispersion coefficients; and the average concentration gradient evaluated at C = 0.5.

6.2.1 The Viscosity and Density Gradients

The arithmetic-average unperturbed viscosity of the fluids used in this study is
calculated as 11.563 cp. Once  has been determined, the average concentration, ¢ ,
corresponding to fi, can be calculated by using Eqs. 6.2 and 6.3. That is, letting £ = p,
and substituting Mo and s into Eq. 6.2, one obtains a value of X; substituting X into Eq.

6.3, one obtains the average concentration, C.

Having X= 0.2164, and C = 0.1275, one may obtain the viscosity gradient, dp, / dC,
and the density gradient, dp,, /dC evaluated at C= 0.1275 . Differentiating Eq. 6.3
yields:

o OB g su6
dCle=C [C+0.529(1-T)) (6.8)

Hence, using Eq. 4.2.34, the viscosity gradient dup, /dC at €= 0.1275 is given by
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dim

dX —
o _ xi[lnps-Inpy]=-0.0524 Pas (6.9)

¢=€  dC| ¢c=C

and, using Eq. 4.2.33, the density gradient dp,, /dC at C=0.1275 is given by

dPm - = M3
el =ps-po=-61.0 KeM (6.10)

The negative values of du, /dCand dpy, /dC agree with experimental observation; that
is, both viscosity and density of the mixture decrease with an increase in solvent

concentration.

6.2.2 Molecular Diffusion Coefficient

The molecular diffusion coefficient of the miscible fluids is essential for estimation of
the transverse dispersion coefficient using Perkins and Johnston's correlation [11].
Because no adequate experimental means were available for determining the molecular
diffusion coefficient for miscible fluids with unequal density and unequal viscosity, such as
the fluids used in this study, some empirical methods had to be used. In this study, a
correlation [6] for estimating the molecular diffusion coefficient of fluids having equal
density and equal viscosity was used. The value of the molecular diffusion coefficient was
estimated to be 1.1286 x 10" ® cm?/sec. This value is similar in magnitude to that
(3.2 x 10" & cm?/sec.) obtained experimentally by Brigham et al. [7] using two mineral

oils of equal density.



6.2.3 Transverse Dispersion Coefficient

For reasons similar to those noted with respect to estimating the molecular diffusion
coefficient, the transverse dispersion coefficient also had to be estimated using the available
correlations for fluids having equal viscosity and equal density. In the present study,
Perkins and Johnston's correlation (Eq. 2.1.7) was used to estimate the transverse
dispersion coefficients. In order to use this correlation, one has to determine the formation
factor of the glass beads, F, and the inhomogeneity factor, ¢. Using Slawinski's [15]
theoretical expression (Eq. 2.1.8), which is based on models of unconsolidated spheres in
contact, the formation factor F was estimated to be 4.4784. For the unconsolidated glass
beads used as a porous medium, ¢ =1 [11], Under the experimental conditions
considered, the transverse dispersion coefficients varied from g . 9103 x 10" & cm?/sec. at

PO

the lowe: velocity to 3 . 7015 x 10" 5 cm?2/sec. at the higher velocity.

6.2.4 Longitudinal Dispersion Coefficient

Among all the parameters to be determined, the longitudinal dispersion coefficient was
found to have the greatest impact on the evaluation of the instability number. While many
theoretical and empirical correlations enable an accurate estimation of the dispersion
coefficient [11,13,15,17,20, 27], provided that the displacing and the displaced fluids have
equal density and equal viscosity, none of the currently available correlations are capable of
predicting accurately the longitudinal dispersion coefficient when the fluids have unequal

densities and unequal viscosities.

In the present study, it was necessary to assume that the difference in the viscosity and
density of displacing and displaced fluids was small, so that the correlation for estimating

the longitudinal dispersion coefficient of equal-viscosity, equal-density fluids could be



applied approximately to unequal-viscosity and unequal-density fluids. For comparison
purposes, four different approaches were chosen for estimating the longitudinal dispersion
coefficient. These methods were Arya's empirical correlation (Egs. 2.1.9 and 2.1.10),

Blackwell's expression (Eq. 2.1.4), Perkins and Johnston's method and a modified

method.

A comparison of the results estimated using the four methods is given in Table 4. As
can be seen in Table 4, the approximations of the longitudinal dispersion coefficient vary in
magnitude in accordance with the methods used. Using Arya's empirical relationship, the
results show that the longitudinal dispersion coefficient increases with both velocity and
core length. Using Blackwell's and Perkins and Johnston's correlations, the results show
that the longitudinal dispersion coefficient varies with velocity only; that is, the higher the
velocity, the greater the value of the dispersion coefficient. It is interesting to note that even
if the three met'iods are suggested to be used for fluids having favorable viscosity and
density ratios only, there is a lack of consistency in the results of the estimation using these
three methods. In particular, the results obtained using Blackwell's method are
approximately three order of magnitude smaller than those obtained using Perkins and
Johnston's method. One possible explanation is that Blackwell's correlation represents

both convective and diffusive dispersion while Perkins and Johnston's represents diffusive

dispersion only.

Considering that the fluids used in this investigation had an unfavorable viscosity and
density ratio, and that the difficulty encountered in choosing an adequate correlation to
evaluate the longitudinal dispersion coefficient, it seems necessary to develop some other
approaches for estimating the longitudinal dispersion coefficient. In the present study, a
correlation for such a purpose was derived by taking into account the effects of unfavorable
viscosity ratio and the core dimensions. According to Perkins and Johntson's correlation,

if the fluids used have unit viscosity and density ratios, the longitudinal dispersion
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TABLE 4. COMPARISON OF EVALUATION OF
LONGITUDINAL DISPERSION COEFFICIENT

I

Run|Length| Velocity| Arya's |Blackwell's]  Perkins and Modified | Gamma | Gamma
No. Method | Method |Johnston's Method] Method History
cm |cm/min. [sq. cm/sec] sq. cm/sec. $q. cmy/sec. sq. cm/sec{Calculated| Matching

1 30 0.0432 0.0045 0.1695 0.0003 0.0166 973 1355
4 60 0.0432 0.0098 0.1695 0.0003 0.0259 1246 2016
7 90 0.0432 0.0155 0.1695 0.0003 0.0319 1519 555
10 120 0.0432 0.0215 0.1695 0.0003 0.0362 1792 897
13 150 0.0432 0.0276  0.1695 0.0003 0.0393 2065 915
2 30 0.0722 0.0075 0.3092 0.000s 0.0278 973 1817
5 60 0.0722 0.0164  0.3092 0.0005 0.0433 1246 1189
8 90 0.0722 0.0259 0.3092 0.0005 0.0533 1519 1355
11 120 0.0722 0.0359 0.3092 0.0005 0.0605 1792 2158
14 150 0.0722 0.0462 0.3092 0.0005 0.0657 2065 2340
3 30 0.1730 0.0179 0.8595 0.0011 0.0666 973 370
6 60 0.1730 0.0393 0.8595 0.0011 0.1038 1246 555
9 90 0.1730 0.0621 0.8595 0.0011 0.1278 1519 1355
12 120 0.1730 0.0860 0.8595 0.0011 0.1449 1792 2191
15 150 0.1730 0.1106 0.8595 0.0011 0.1575 2065 2378
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coefficient is given as

DL = p-+0.5Uod,

(6.11)
Let us suppose that
* DL
Dy =
LT ieM 6.12)

where D * is defined as the modified dispersion coefficient, and £(8,M) is the correction
factor for taking into account the effect of the core length and the unfavorable viscosity ratio

of the fluids. Substituting Eq. 6.11 into Eq. 6.12, one obtains

D'/F$ + O.SUcdp
£(3,M) (6.13)

E
Dy =

If one knows a correlation for evaluating the correction factor, £f(5,M), the longitudinal
dispersion coefficien. can be determined by using Eq. 6.13. In the present study, a history
matching of the experimental concentration profiles with the theoretical predictions was
performed i~ order to obtain the correction factor. According to Brigham's observation
[29], if an experimental concentration profile can be described by the error function

solution, the Jongitudinal dispersion coefficient can be correlated to a dimensionless

dispersion, Y; that is,



Dy = -—UE
Y (6.14)
To be consistent with the ideas developed in Section 4.1, the longitudinal dispersion

coefficient, Dy, should be used to replace Dy, in Eq. 6.14. Substituting Eq. 4.1.26 into

Eq. 6.14 and rearranging, on¢ has
Dy' Dg 1+¢ 6.15)

If the fluids have unfavorable viscosity and density ratios, one may replace the longitudinal
dispersion coefficient, Dy, , in Eq. 6.15 by Dy * (see Eq. 6.13). Substituting the resulting
equation into Eq. 6.13 and rearranging, a new expression for dimensionless dispersion, ¥,

can be written as

£(5,M) _ £(5.M)

’Y =
+ —_— =Y
[FVL L |o °'5°d9[1 ¥ 050d,FV [ 6.16)

Eq. 6.16 shows that the dimensionless dispersion, 7V, is related to the correction factor,
f(5,M). Based on the values of gamma obtained by history matching, the correction factor

for fluids used in this study was determined to be

£(5,M) = 4.82018 + 2.4719 (6.17)
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where 6 is a dimensionless length defined as the ratio of the length of shorter bead packs
to the length of the longest bead pack. It is to be noted that Eq. 6.17 was deter:nined using
only on value of M. Two groups of gamma are given in Table 4. The first group was
obtained from history matching of the concentration profiles, and the second group was
evaluated by using Eq. 6.16. As can be seen in Table 4, there is a lack of consistency in
the values of gamma for the two short packs (30 cm and 60 cm), as compared with those
evaluated using Eq. 6.16. One possible explanation is that when the packs were too short
to meet the infinite length requirement, some model error was introduced into the

theoretica) predictions of the concentration profile.

The longitudinal dispersion coefficient obtained using the modified method (Egs. 6.15,
6.16 and 6.17) is given in Table 4. The results are observed to be dependent on both the
pack length and the velocity. It is also observed that, at the lowest velocity, the dispersion
coefficient seems to increase slightly with core length, and at higher velocities, the increase
in the magnitude of the longitudinal dispersion coefficient is more significant. In
comparison with the longitudinal dispersion coefficient obtained using the three other
methods, the one obtained using the modified method is comparable in magnitude with the

one obtained using Arya's method.

6.2.5 The Average Concentration Gradient

In order to predict the stability of a displacement at any given displacing rate and core
length using the Coskuner-Bentsen criterion, the average value of the maximum
unperturbed concentration gradient, 3C / 3z, needs to be defined and calculated. Coskuner
and Bentsen [26] suggested that one should use an average concentration gradient evaluated

at 50 per cent solvent concentration and averaged over the life of an experiment, which
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gives the best agreement between the theoretical prediction and the experimental

observation in a Hele-Shaw system. If this approach is taken, it follows that

oC Vv

dzlc=0.5 = \YmeLDy (6.18)

Because all variables in Eq. 6.18 can be obtained or determined, it is possible to calculate
the average concentration gradient and to predict the stability of a displacement usin g other

known experimental conditions.

Two other approaches were also taken for estimating the unperturbed concentration
gradient. These included one that used the concentration gradient (Eq. 4.1.30) evaluated at
50 per cent solvent concentration and one that used the concentration gradient evaluated at
the average concentration, C = 0.127 . The results obtained were different fro- those
obtained using Eq. 6.18. Furthermore, if one evaluated the instability number by using
these two concentration gradients, the stability prediction would be inconsistent with the
experimental observations. As it is unclear whether or not the concentration gradien:
defined in Eq. 4.1.30 is equivalent to the unperturbed concentration gradient theoretically,

one should be cautious about using these two methods.

6.3 Effect of Bead-Pack Length on Breakthrough Recovery

The oil recovery at solvent breakthrough was found to be relevant to the instability of
the miscible displacement. In general, a stable displacement yielded a higher recovery of
the displaced oil at breakthrough than that obtained in an unstable displacement. In the
present study, breakthrough of the displacing solvent was identified by measuring the

refractive indexes of the effluent. Furthermore, it was noticed during sampling that, when



solvent arrived at the outlet end, a visible irregular boundary between Varsol and Marcol
was observed in the samples for a short period of time (5 - 10 min.). This observation was
taken as evidence that the effluent contained pure solvent as well as a mixture of solvent
and oil. A tabulation of the breakthrough recoveries obtained from the 15 runs conducted
in this study is given in Tabi= 5. Figure 6, which compares the data from five different
pack lengths and three different velocities, shows that, at the lowest rate, breakthrough
recoveries are independent of pack length. At the second rate, the breakthrough recovery
decreases 2.53 per cent when the length increases from 30 to 60 cm. Because this decrease
is less than maximum decrease (3.22%) in breakthrough recovery which occurred among
the five lengths employed at the lowest rate, it is thought that the displacement is still stable
at a length of 60 cm. When the length is inc.2ased to 90 cm, however, the magnitude of the
increase in breakthrough recovery (4.53%) is greater than the variation seen at the lowest
velocity. This suggests that this decrease is significant and that, as a consequence, the
displacement is unstable at a length of 90 cm. Such drops in recovery become even more
significant in the two longer packs (120 and 150 cm). At the highest rate, the breakthrough
recoveries demonstrate a consistent decline with increasing pack length. It is noted that in
Table 5 the pore volume injected at 100% recovery also increases with increasing pack

length, particularly at high displacing rates.

6.4 The Stable Mixing-Zone Length

The stable mixing-zone length, as defined in Eq. 4.2.29, is the distance from the inlet
face of the core at which the miscible displacement becomes unstable, or fingers start to
grow at the interface. It is known that in a stable miscible clisplacement, there are three
zones existing in a core: the solvent zone followed by the solvent-oil mixing zone and the
oil zone, and that in an unstable displacement, there are possibly four zones: the solvent

zone, the solvent-oil mixing zone where no distinct solvent fingers exist, the fingering zone
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TABLE §. DISPLACEMENT RESULT SUMMARY

| RunNo. | Length(cm) | Velocity (cmymin) | B.T Recoverv(%)

| P.V inj. at 100% Rec.

10

13

11

14

12

15

30

60

90

120

150

30

60

90

120

150

30

60

90

120

150

0.0432

0.0432

0.0432

0.0432

0.0432

0.0722

0.0722

0.0722

0.0722

0.0722

0.1730

0.1730

0.1730

0.1730

0.1730

82.88

§1.33

79.82

80.02

79.66

79.12

76.59

72.06

68.10

66.35

58.82

50.04

44.45

32.92

1.08

.11

1.14

1.21

1.24

1.25

1.32
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where distinct solvent fingers can be observed and the oil zone. During the course of the

displacement, one zone is displaced by another until the time when only the pure solvent is
left in the core. It is evident that the longer the stable mixing-zone length, the less severe is

the fingering of solvent into the displaced oil.

In the present study, four groups of stable mixing-zone lengths were calculated by using
Eq. 4.2.29, together with Eq. 4.2.30 in which F(C) was evaluated at ¢=0.1275. The
results are given in Table 6 in accordance with the longitudinal dispersion coefficients
recorded in Table 4. As can be seen in Table 6, the magnitude of the longitudinal
dispersion coefficient affects the calculated lengths of the stable mixing-zone significantly;
that is, the prediction of the stable mixing-zone length may be meaningless unless an

accurate longitudinal dispersion coefficient is available.

In comparison with the experimental observations, Blackwell's dispersion coefficient
gives too optimistic a prediction of the stable mixing-zone length for all the runs, whereas
Perkins and Johnston's dispersion coefficient gives too pessimistic a preuiction. The
results obtained using Arya's and the modified dispersion coefficients are comparable, and
both of the predictions show that the stable mixing-zone length is a strong function of core
length, but that its dependency on velocity is less significant. While theoretically the
velocity of the displacement should have an effect on the length of the stable mixing-zone
length, the results of this study show that velocity has only a slight impact on the length of
the stable mixing-zone length. This is because Dy has been assumed to be directly
proportional to V. If, however, Dy, had been assumed to be proportional to V17 the

impact of velocity on the stable mixing-zone length would have been more significant.
6.5 Evaluation of the Instability Number

The effect of bead-pack length on the instability of miscible displacement is of both

theoretical concern and experimental interest. This is because some experimental models,



TABLE 6. COMPARISON OF THE STABLE MIXING-ZONE LENGTH

Run No.| Length | Velocity Stable Mixing-Zone Length (z, cm)
(cm) | (cm/min) | Arya's |Blackwell's| Perkins &Johnston's] Modified Method
1 30 0.0432 4.00 154.03 0.27 14.83
4 60 0.0432 8.80 154.44 0.27 23.33
7 90 0.0432 13.92 153.84 0.27 28.70
10 120 0.0432 19.06 151.54 0.26 32.14
13 150 0.0432 24.32 150.41 0.26 34.67
2 30 0.0722 3.98 166.03 0.27 14.79
5 60 0.0722 8.80 167.02 0.27 23.25
8 90 0.0722 13.88 166.65 0.27 23.60
11 120 0.0722 18.99 164.33 0.26 32.04
14 150 0.0722 24.30 163.23 0.26 34.57
3 30 0.1730 3.96 190.27 0.24 14.74
6 60 0.1730 8.78 192.06 0.24 23.19
9 90 0.1730 13.86 191.93 0.24 28.53
12 120 0.1730 18.95 189.47 0.24 31.93
15 150 0.1730 24.22 188.32 0.24 34.50



94
either scaled or unscaled, may not have sufficient core length to meet the "infinitely long"

requirement in modeling the displacement process, and one should know how a short core
length at the same experimental conditions as those for the long core, affects the theoretical
prediction of the displacement and experimental results. Moreover, it is also desirable to
have a more appropriate understanding of how dispersive mixing is related to viscous

fingering in miscible displacements when the effect of length is taken into account.

It is apparent from the definition of the marginal instability number, 7,,, , (see Appendix
B, Eq. B-4) that the marginal instability number can be defined either as a function of
dimensionless length, £2, cr as a constant, 7. Inthe present study, as the ratio of the
transverse dispersion coefficient to the longitudinal dispersion coefficient, K4, varies

slightly with velocity, the constant (n%= 9.87) was chosen as the onset instability number.

In order to predict the instability of each displacement, the actual instability number, /,
(see Appendix B) has to be evaluated according to each specific experimental condition.
Coskuner and Bentsen have shown that displacements in a Hele-Shaw system were
observed to be stable if the experimental instability number, I, fell below the marginal
instability boundary, and that the displacements were observed to be unstable if /, fell
above the marginal instability boundary. Similarly, in the present study, the instability
numbers for displacements in the porous medium were evaluated and compared with the
onset instability number, 72, to determine whether or not the displaccment was stable. The
experimental instability numbers calculated are summarized in Table 7. Table 7 shows the
instabiiity numbers calculated using the four groups of longitudinal dispersion coefficients
recorded in Table 4. It can be seen that the differences in the value and magnitude of
dispersion coefficients result in significant differences in the prediction of the instability of
the displacement. The experimental observation of the instability of the displacements is

also given in Table 7. The displacement was considered to be stable when the



TABLE 7. COMPARISON OF THE INSTABILITY NUMBERS

Run No. | Length Velocity Ie Experimental Ie Experimental
(cm) (cm/min) Arya's Observation | Blackwell's | Observation
1 30 0.0432 -171.37 Stable -0.80 Stable
4 60 0.0432 -146.97 Stable -2.34 Stable
7 90 0.0432 -130.59 Stable -4.33 Stable
10 120 0.0432 -117.02 Stable -6.58 Stable
13 150 0.0432 -107.79 Stable -9.07 Stable
2 30 0.0722 48.70 Stable 0.20 Stable
5 60 0.0722 36.19 Stable 0.51 Stable
8 90 0.0722 30.92 Unstable 0.89 Unstable
11 120 0.0722 30.84 Unstable 1.51 Unstable
14 150 0.0722 29.15 Unstable 2.15 Unstable
3 30 0.1730 242.56 Unstable 0.79 Unstable
6 60 0.1730 196.18 Unstable 2.19 Unstable
9 90 0.1730 172.49 Unstable 3.99 Unstable
12 120 0.1730 161.05 Unstable 6.32 Unstable
15 150 0.1730 149.85 Unstable 8.85 Unstable
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TABLE 7. COMPARISON OF THE INSTABILITY NUMBERS (CONTINUED)

Run No.| Length | Velocity Ie Experimental Ie Experimental
(cm) | (cm/min) | Perkins&Johnston's| Observation [Modified Method| Observation
1 30 0.0432 -4712.75 Stable -25.67 Stable
4 60 0.0432 -5179.42 Stable -37.36 Stable
7 90 0.0432 -4728.33 Stable -48.81 Stable
10 120 0.0432 -4202.01 Stable -58.94 Stable
13 150 0.0432 -3826.26 Stable -68.81 Stable
2 30 0.0722 1358.27 Stable 7.23 Stable
5 60 0.0722 1308.70 Stable 9.19 Stable
8 90 0.0722 1147.68 Unstable 11.53 Unstable
11 120 0.0722 1133.85 Unstable 15.48 Unstable
14 150 0.0722 1062.13 Unstable 18.60 Unstable
3 30 0.1730 7387.80 Unstable 35.78 Unstable
6 60 0.1730 7661.18 Unstable 49.68 Unstable
9 90 0.1730 6877.12 Unstable 64.16 Unstable
12 120 0.1730 6332.93 Unstable 80.68 Unstable
15 150 0.1730 5822.67 Unstable 95.29 Unstable



breakthrough recovery was high, and the displacement was considered to be unstable when

the breakthrough recovery declined significantly.

As can be seen in Table 7, evaluation of the experimental instability number depends
strongly on how the longitudinal dispersion coefficient is evaluated. Using Arya's
dispersion coefficients, the prediction of the instability is consistent with the experimental
observations except for the prediction for the two short packs (30 cm and 60 cm) at the
second velocity. Using Blackwell's dispersion coefficients, the displacements are predicted
to be absolutely stable for all the displacements, which is in good agreement with the
experimental observations for the displacements at the lowest velocity, but is in
disagreement for the displacements at higher velocities. Using Perkins and Johnston's
dispersion coefficients, the prediction is similar to that of using Arya's, but the magnitude
of the instability numbers are one to two orders of magnitude greater than the latter, which
results from the difference in the values of the longitudinal dispersion coefficient used to
calculate the instability number. As can be seen in Table 7, using the modified dispersion
coefficients, the prediction of the instability is in good agreement with the experimental

observation of the breakthrough recoveries for all the displacements.

A comparison of the breakthrough recoveries with the instability numbers calculated
using the modified dispersion coefficients is given in Figure 7. As can be seen in Figure 7,
a vertical line divides the graph into two zones: the zone on the left-hand side represents the
stable zone, in which the instability numbers are less than the onset instability number, 2 ,
and the zone on the right-hand side represents the unstable zone, in which the instability
numbers are greater than the onset instability number. In the stable zone, a dashed line was
drawn through the data points, which represents the average value of the breakthrough
recoveries obtained from the displacements at the lowest velocity. As the pack lengths
decrease from the shortest pack length (the data point above the average line), the

breakthrough recoveries show a slight decline from the data point above the average line to
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the data points below the average line. Two of the data points from the displacements at
the second velocity are in the stable zone; as a result, the breakthrough recoveries from
these two runs remained high. When the bead pack got longer, the displacements became
unstable; as a consequence, the breakthrough recoveries decreased significantly. At the

highest velocity, the data points are all in unstable zone, and the breakthrough recoveries

declined consistently.

Consequently, the instability of the displacement seems to be core-length dependent
when the displacement is predicted to be unstable. Thatis, if the displacement is unstable,
under the same experimental conditions, the displacement may yield a lower breakthrough
recovery in a longer porous medium. However, the instability of the displacement appears
to be unaffected by core length when the displacement is stable. This observation can be
explained as follows. It is thought that finger initiation processes existed for all three of the
velocities used because the displacements were carried out at velocities greater than the
stable critical velocity estimated using Eq. 4.2.32. In fact, this suggestion agrees with the
stable mixing-zone length estimations, as the mixing-zone lengths (see Table 6) are shorter
than the core lengths, except for the evaluation using Blackwell's dispersion coefficient.
Therefore, fingers may start to grow at a very early stage of the displacement. However, at
the lower displacing rate, the displacing time was long enough to allow transverse
dispersion to eliminate finger development. In the longer packs, possibly because of the
existence of inhomogeneity and permeability stratification in the bead-packs [48], the
penetration of the finger into the displacing front worsened during the displacement

process.

6.6 Comparison of the Concentration Curves

When one analyzes concentration curves from miscible displacements it is always

desirable to have an approximate analytical model for predicting the concentration profiles
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as well as for predicting the breakthrough recoveries. The solution (Eq. 4.1.31) to the

generalized convection-dispersion equations (Eq. 4.1.16 and Eq. 4.1.22) enables the
theoretical prediction of breakthrough recoveries, provided that certain conditions are met.
These conditions are 1) the differences in viscosity and density of the displacing and
displaced fluids are small; and 2) the dispersion coefficients can be determined either

experimentally or empirically.

Assuming that the miscible fluids used in the experiments of this study satisfy the
above conditions, the theoretical predictions of the breakthrough recovery and the
concentration profiles are made using a numerical approximation of Eq. 4.1.31 [see
Appendix C]. The longitudinal dispersion coefficients used for the calculation are the ones

obtained using the modified Method.

Table 8 shows a comparison of the experimental breakthrough recoveries estimated for
the fifteen runs with the theoretical predictions. As can be seen in Table 8, for the three
longer packs (90, 120 and 150 cm), good agreement between the prediction and the
breakthrough recovery was obtained for both stable and unstable displacements. For the
two short packs (30 and 60 cm), the predicted breakthrough recovery, on average, was
about 30 per cent less than the observed value, and therefore was not given in Table 8. One
possible explanation for this inaccurate prediction in short packs is that the two short bead
packs failed to meet the assumption that the porous medium was "infinitely long", which

was invoked to simplify the solution.

A matching approach was taken to compare experimental concentration profiles with
those obtained theoretically. Figures 8 through 10 show such plots (results from the rest of
the runs are shown in Appendix D). In Figure 8, when the displacement (Run 13) was
predicted to be stable, the results of the comparison showed that both the observed

breakthrough recovery and the experimental concentration profile were well matched with
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TABLE 8. COMPARISON OF EXPERIMENTAL BREAKTHROUGH

RECOVERY WITH THEORETICAL PREDICTIONS

Run No.| Pack Length Velocity B.T Recovery (%) B.T Recovery (%)
(cm) (cm/min. ) ( Experimental ) ( prediction)

1 30 0.0432 82.88 -

4 60 0.0432 81.33 -

7 90 0.0432 79.82 78.9

10 120 0.0432 80.02 80.02

13 150 0.0432 79.66 79.66

2 30 0.0722 79.12 -

5 60 0.0722 76.59 -

8 90 0.0722 72.06 73.1

11 120 0.0722 58.45 58.45

14 150 0.0722 52.64 52.64

3 30 0.1730 66.35 -

6 60 0.1730 58.82 -

9 90 0.1730 50.04 48.23

12 120 0.1730 44 45 44 .45

15 150 0.1730 32.92 35.46
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the theoretical prediction. However, in Figures 9 and 10, when both of the displacements

(Run 14 and Run 15) were predicted to be unstable, the calculations showed a considerable
disagreement between the observed and the predicted breakthrough recoveries if the same
longitudinal dispersion coefficient was used to predict both the theoretical concentration
profile and the breakthrough recovery. Note that the breakthrough recoveries reported in
Table 8 were estimated using a different longitudinal dispersion coefficient. In fact, the
theoretical model failed to describe the concentration perturbations at early breakthrough
which demonstrated the breakthrough of a long solvent finger. It is interesting to note that
the observed concentration profiles match the predicted concentration profiles when the
mixing-zone arrives at the outlet end, which is represented by the portion of the curves
appearing as an "S" shape. It appears that, after solvent finger breakthrough at the outlet,

the experimental concentration curves exhibit perturbations until mixing-zone breakthrough

occurs.

Figure 11 is presented so as to be able to compare one set of Brigham's experimental
data [7] with the theoretical prediction using the same approach as above. The
concentration data were obtained from an unstable displacement using fluids having an
unfavorable viscosity ratio. As can be seen in Figure 11, good agreement between the
observed and predicted concentration profiles was also achieved. However, such a match
may not prove that the theoretical model is valid for the whole displacement process;

rather, the theoretical model may be valid only subsequent to ‘iﬁe arrival of the mixing zone.

In order to obtain a good match of the experimental and the theoretical concentration
profiles, a trial and error approach had to be taken to obtain the modified dimensionless
dispersion coefficient, Y, . The modified dimensionless dispersion coefficient defined in
this study differs from the one defined by Brigham because an extra term involving

porosity appears in the expression. That is,
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- (2T
tm= (59 [DpJ (6.19)

where D, is defined as a pseudo-dispersion coefficient. The pseudo-dispersion coefficient,
Dp , was found to have different values from the longitudinal dispersion coefficient, Dy,
obtained from the experimental concentration profile even for stable displacements, as can
be seen in Table 9. One possible explanation is that the two dispersion coefficients
represent different stages of the mixing process. In other words, Dy, represents mainly the
mixing at early breakthrough, or at solvent finger breakthrough, and Dp represents the
mixing of the mixing zone which is an average effect of all the mixing processes. An
attempt was made to correlate the pseudo-dispersion coefficient with the transverse
dispersion coefficient, D, and the longitudinal dispersion coefficient, Dy, , but no evident

correlation was found.

Two sets of the dimensionless dispersion coefficient, Ym, are given in Table 9. As can
be seen in Table 9, when the displacement is stable, Ym has the same value for predicting
the breakthrough recovery and the concentration profiles. When the displacement is
unstable, one has to use different values of Ym for predicting the breakthrough recovery
and the concentration profiles. It is interesting to note that this inconsistency appears only
when the displacement is unstable. One possible explanation is that when the displacement
is unstable, different values of the longitudinal dispersion coefficient should be used to
define the early and late periods of the displacement. In other words, if a displacement is
stable experimentally and theoretically, the same dispersion coefficient may be used for the
prediction of the breakthrough recovery and the concentration profile. If a displacement
gives evidence of distinct "fingers" of displacing fluid running ahead of the mixing-zone
front, different values of the dispersion coefficient must be used to predict the breakthrough

recovery and the concentration profile. This disagreement may demonstrate that when the



108

TABLE 9. THEORETICAL CONCENTRATION PROFILE CALCULATIONS

Run [Length| Velocity |Experimental Dimensionless Dispersion Coefficient
No Dispersion Coefficient Dl Dp
(cm) | (cm/min) | Observation| For B.T | For Profile | (cm*2/sec.) | (cm”2/min.)

1 30 0.0432 Stable - 1255 0.1191 0.000258
4 60 0.0432 Stable - 2016 0.1336 0.000324
7 90 0.0432 Stable 855 855 0.2962 0.001145
10 120  0.0432 Stable 897 897 0.5785 0.001441
13 150  0.0432 Stable 915 915 1.0601 0.001758
2 30 0.0722 Stable - 1817 0.0324 0.000298
5 60 0.0722 Stable - 1189 0.0266 0.000918
8 90 0.0722  Unstable 255 1355 0.0142 0.001208
11 120 0.0722  Unstable 258 2038 0.0061 0.001060
14 150 0.0722  Unstable 201 2340 0.0029 0.001149
3 30 0.1730  Unstable - 370 0.0740 0.003509
6 60 0.1730  Unstable - 555 0.0627 0.004712
9 90 0.1730  Unstable 80 1355 0.0349 0.002894
12 120 0.1730  Unstable 121 2191 0.0158 0.002363
1S 150 0.1730  Unstable 78 2378 0.0069 0.002709
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displacement is unstable, neither of the simplified models (Eq. 4.1.21 and Eq. 4.1.23) is

suitable for representing the miscible displacement when the fluids have unequal density

and unequal viscosity.

6.6 Discussion of Errors

There were two types of errors: errors from raw data, and errors from the estimation of
dispersion coefficients. Errors in the raw data were those involving porosity and
permeability measurements and those involving refractive index measurements, especially
the readings to identify breakthrough recovery. Errors in the dispersion coefficient
determination were those resulting from the use of Perkins and Johnston's expression for
calculating transverse dispersion coefficients, which was valid only for fluids having
favorable viscosity ratios, and those resulting from estimating the solvent concentration at

one pore volume injected from the experimental concentration curves.

The errors in porosity and permeability measurements have a negligible effect on the
instability predictions and the theoretical concentration profile calculations. For example, a
five per cent increase (or decrease) in porosity results in a 0.2 per cent decrease (or
increase) in the values of the instability number. A seven per cent increase (or decrease) in
permeability results in less than a three per cent decrease (or increase) in the values of the
instability number. These changes makes no difference in identifying the instability

condition of the displacements.

Errors in the refractive index measurements were kept under control by checking the
first sample appearing to show a slight drift of the refractive index from that for pure
displaced fluid (Marcol) against a sample reference at least three times. The same
procedure was followed for identifying 700 per cent oil recovery. Unlike the refractive

index measured at the beginning and the end of each displacement, the refractive index of
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samples taken after the mixing zone had arrived at the outlet were easier to distinguish

from one another, which reflects a greater variation in the solvent concentration.

Little was known about the errors introduced when one determines the transverse
dispersion coefficients using an inadequate estimation, particularly when viscous fingers
developed. The evaluation of the longitudinal dispersion coefficients presented in this
study had a significant effect on the determination of the instability of the displacements, as
can be seen in Table 7. Consequently, it seems that comparison of the experimental
instability number with the marginal instability number could be an adequate approach for
identifying whether or not a displacement is stable, provided that the longitudinal
dispersion coefficient can be determined adequately. However, a more accurate way for
estimating the longitudinal dispersion coefficients of miscible fluids at unfavorable
viscosity ratios needs to be defined, and the method used in this study needs further

investigation for application purposes.
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7. SUMMARY AND CONCLUSIONS

An experimental investigation has been carried out in glass-bead packs using miscible
fluids to study the effect of system length on linear miscible displacements. The porous
medium was made of five different lengths, and three different displacing rates were used
to perform the floods downward. The displacing and displaced fluids were chosen to have
unequal viscosities and unequal densities in order to achieve a relatively greater dispersion
than that of fluids with matched properties. Effluent concentration profiles developed at the

outlet were obtained by taking frequent samples and measuring their refractive indices.

Based on the experimental and analytical results presented herein, the following

conclusions have been drawn for displacements conducted in this investigation:

1. Theoretically, the dimensionless scaling group proposed by Coskuner and Bentsen
is valid only when the fluids used have same density and viscosity. However, it is
observed from the present study that, when fluids of unequal density and unequal
viscosity are used, the dimensionless scaling group for the theoretical prediction of
instability of the miscible displacements may be applicable for fluids having small
differences in density and viscosity, provided that the dispersion coefficients can be
determined adequately. A comparison of the experimental instability number with
the marginal instability number may be used to predict the instability condition of

the displacement.

(S

The length of the porous medium is an important variable which may affect the
instability of miscible displacements. That is, longer systems result in earlier
breakthroughs in comparison with shorter ones under the same displacing

conditions, or a displacement may change from stable in a short bead pack to
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unstable in 2 longer one. When the displacements are stable, however, the effect of

length on breakthrough recovery seems to be insignificant.

It is shown from the modified method that the longitudinal dispersion coefficient
appears to be a function of the bead-pack length. Moreover, at low velocities, the
dispersion coefficient increases slightly with the bead-pack length, and at high
velocities, the dispersion coefficient increases with the bead-pack length more

significantly.

If the core-length dependency of the longitudinal dispersion coefficient is
theoretically conclusive, the stable mixing-zone length is also length dependent.
Moreover, the greater the longitudinal dispersion coefficient, the longer the stable
mixing-zone length. Because Dy, has been assumed to be proportional to V, the

impact of velocity on the length of stable mixing zone has been slight.

Contrary to the observations of Brigham et al., at viscosity ratios above 1.0, the
theoretical error function curve may still be valid when a displacement is stable,

provided that one uses a properly defined longitudinal dispersion coefficient.
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8. SUGGESTIONS FOR FUTURE STUDY

The following investigations are suggested in future studies of miscible

displacements:

1.

Numerical solution of the generalized convection-dispersion equation should be
studied, and experiments using fluids having an unfavorable density ratio should be

conducted to verify the theory presented in this study.

Experiments should be conducted to study the relationship between the stable
mixing-zone length and the longitudinal dispersion coefficient using fluids of
unequal density and unequal viscosity. The experimental apparatus should allow
one to measure the stable mixing-zone length at different times during the

displacement.

Experiments should be conducted using the same displacing rate and the same
porous medium to investigate the effect of unfavorable viscosity ratio on the

estimation of the longitudinal dispersion coefficient.

Experiments should be conducted to investigate how to determine the transverse
dispersion coefficient for miscible fluids having unfavorable viscosity ratios. The
experimental apparatus should allow one to measure the stable mixing-zone width

which relate approximately to the transverse dispersion coefficient.

A theoretical and experimental investigation of the molecular diffusion coefficient
for miscible fluids of unequal viscosities and unequal densities should be made for

more practical miscible displacement studies.
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APPENDIX A

A Generalized Convection-Dispersion Equation

Assuming that the flow system is comprised of two miscible fluids: fluid 1 and fluid 2,
Udey and Spanos [18] derived a generalized convection-dispersion equation which took

into account the differences in fluid properties. It is written as

dCsr2

+V.VCsy =
E 2

V- (oD -VCs2) (A.1)

1
p

where Cp, is defined as the solvent flowing concentration which is related to the solvent
mass concentration C2 by €r2=C2/p, and D,, is defined as the apparent dispersion which

varies from point to point in the flow system. Other variables are defined as follows:

p=p2+(p1-P2)81 (A.2)
and
g = CTVH+C ¥y
p (A.3)

where
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and
S; = S G=12)
pPi (A.6)

Assuming a one-dimensional flow system and that the apparent dispersion, D,, , may be

replaced by the longitudinal dispersion coefficient, D; , substituting Eqs. A.2 through A.6

into Eq. A.l and rearranging the equation, one obtains

azcszLl 3p 3Cy 1{PIK,1  prKso \KAP OCy _9CH
X2 “pdX X pl g p JoL X a (AD)

DL

Differentiating Eq. A.2 with respect to X and noting that S; = 1- S yields

9 _p-p19Cy

Substituting Eq. A.8 into Eq. A.7 shows that
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It should be noted that it may be difficult to obtain values of relative permeability for each
miscible fluid, which may limit the utility of Eq. A.9. When the fluids have equal

densities and equal viscosities, K;; = Kr2 = 1/2, and Eq. A.9 becomes

9%Cy 1,92 _3Cy

DL o) X ot (A.10)

That is, Eq. A.10 becomes the well-known convection-dispersion equation.



APPENDIX B

Marginal Instability and Instability Number of Experiments

The marginal instability number of a displacement in a three-dimensional porous
system, which is the stability criterion used to determine the condition for marginal
instability, was initially defined by Coskuner and Bentsen. The condition of marginal
instability divides perturbations which are damped periodically from those which grow
periodically, provided that the principle of exchange of stabilities holds true. Dictated by
the smallest non-zero eigenvalue, the approximation to the condition for the onset of

instability is given as

ac “ac®at “xy
Xy

2.1 1
= 2 (=+1)(—+K{)
Q Q (B.1)

where Ky is the ratio of the transverse dispersion, Dy , to the longitudinal dispersion
coefficient, Dy. The gradients du:/dC and dp/dC are evaluated at the average concentration
value defined at the average viscosity of the two fluids, and € is a dimensionless length

defined t

122 +L§,)
Q=
LZXLZy (B.2)
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Previous studies [20, 23] have indicated that longitudinal and transverse dispersion
coefficients vary with displacing rate and core length. Hence, it seems prudent to assume
that Kz is also dependent on displacing rate and core length. For the flow conditions used
in this study, the maximum variation in the values of (1/ Q + Kq) based on the three
velocities and the five core lengths used is about 0.5%. In order to eliminate the velocity
dependence of the group of parameters on the right-hand side of Eq. B.1, it seems

preferable to bring (1/ 2 + Kg) ( 1/ Q+ 1) to the left-hand side of Eq. B.1. Rearranging

Eq. B.1 in such a way leads to

Udu dp )
K(ch ng) aC IZ;xl‘y - 2
_ 1 1 =
FODL (+D(=+Ka) oz LL+L5 (B.3)

If one defines the right-hand side of Eq. B.3 as the marginal instability number, I, , it

follows that

2 B.4)

Moreover, if one defines the left-hand side of Eq. B4 as the experimental instability

number, /it follows that

2 9oy 1212
1 *ac "ac® i Ly

€ _ 1 1 2,12
HODL (=+1)(5+Kq) % Ly+Ly (B.5)
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According to the Coskuner-Bentsen stability theory, which has been validated
experimentally only for a Hele-Shaw system, when I, , for a particular core length, is less
than 7, , the displacement should be stable. In other words, no viscous fingers will appear
to distort the isoconcentration line at the displacing front. However, when I, is greater

than J,,, viscous fingers will develop and cause early breakthrough recovery.

The instability numbers /;, and /. in Eqs. B.4 and B.5 were calculated in the following

manner. Given that

L=0.6m
Lx=0.05 m

Ly=0.15m

it may be shown that

(B.6)

and

I, = 7* = 9.8696 (B.7)

For the following experimental conditions applied in this stuc  one has
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12033 x 10° m/s

2.7657 x 10 m?
= 0.3368
= 0.01156 Pa-s

\4
K
¢
T

and the other parameters were calculated as those presented in Chapter 6; that is,

Hmi  _ . 0.0524 pas

dC | ¢=C

Pm =0 - = . M3
C | oo =ps-po=-61.0 KgM

JFollowing the modified Method, one may estimate the longitudinal dispersion coefficient,

D;. For Run 35, the longitudinal dispersion coefficient was estimated to be 0.0433 sq.

cm/sec.

The values of longitudinal dispersion coefficients are given in Table 4. The maximum

unperturbed concentration gradient is

€ Ny A -1
dzlc=0.5  \mLD, 21137 m (B.8)

Using Eq. 2.1.7 to calculate the transverse dispersion coefficient, and then the ratio of the
transverse to longitudinal dispersion coefficient, X4 one may evaluate the instability

number of the displacement from Run 5. If one has



Dy = 1.5574%10"°m? /s

and Kq = 3.5968x10™*m? /s
then
Udy dp 2.9
K(z—=-—=8) 55 LiL
I, = Kdc dc> 9C "x7y _g1g

— 1 T o o9z12.12
RODL(Z+Ka)(G+D ¥ Li+Ey

The values of the instability number for other runs are given in Table 7.

(B.9)
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APPENDIX C

Numerical Evaluation of Concentration Curves

Typically, concentration and pore-volumes-injected data from miscible displacements
are reported in the form of concentration curves. After breakthrough of the displacing
fluid, such curves should show an "S" shape, if fluids with a favorable viscosity have been
used. When such is the case, the convection-dispersion equation (Eq. 2.1.1) can be
applied to describe the concentration curve. Brigham et al. [7] observed that the instability
effects of an even slightly unfavorable viscosity ratio (1.002) would cause
disproportionately more elongated concentration curves as compared to those pertaining to
a favorable viscosity-ratio (0.998) displacement, and that with a higher viscosity ratio (i.e,
5.71), the concentration curve failed to keep an "S" profile. As a result, the convection-

dispersion equation (Eq. 2.1.1) was no longer valid.

The concentration curves obtained in this study, which used fluids with an unfavorable
viscosity (19.55), do have "S" shapes after the arrival of the mixing zone. The "S" shape
concentration curves obtained from the experimental data of this study suggested that the
simplified form of the convection-dispersion equation (Eq. 4.1.18) might be used to
describe and interpret the data theoretically. The solution of Eq. 4.1.18 is the well-known
error function given in Eq. 4.1.31. The error function, erfc(X), can be evaluated
numerically, which returns the complementary calculation of the error function with a
fractional error everywhere less than 1.2 x 10 ~/. The numerical procedure is shown as

follows. If one defines:
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Z = ABS (X) (C.1

and

T= 1575 (C.2)

one has

erfc (X) = TXEXP( -Z2- 126551223 + Tx(1.00002368 + Tx(0.37409196 + Tx(0.09678418
+ Tx(- 0.18628806 + Tx(0.27886807 + Tx\- 1.13520398 + Tx(1.48R51587 + Tx

(- 0.82215223 + Tx0.17087277))))))))
(C.3)

If X < 0, one has

erfc (X) = 2 - TXEXP( -Z2- 126551223 + Tx(1.00002368 + Tx(0.37409196 + Tx(0.09678418
+ Tx(- 0.18628806 + Tx(0.27886807 + Tx(- 1.13520398 + Tx(1.48851587 + Tx
(- 0.82215223 + Tx0.17087277)))))))))

(C4)
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APPENDIX D

Concentration Profiles
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