~4 University of Alberta

00

Ay

A First Implementation of Modular Smalltalk

by

Wade Holst
Duane Szafron

Technica Report TR 93-07
May 1993

DEPARTMENT OF COMPUTING SCIENCE
The University of Alberta
Edmonton, Alberta, Canada

A First Implementation of Modular Smalltalk

Wade Hol st
Duane Szafron

Department of Computing Science,
University of Alberta,
Edmonton, Alberta,
CANADA T6G 2H1

{wade, duane} @cs.ualberta.ca

ABSTRACT

A "first" implementation of the Modular Smalltalk object-oriented programming language is
presented. The implementation includes an object-oriented parser, object-oriented representation for code
fragments and an object-oriented C-code generator, all implemented in Smalltalk-80. Thisimplementation
validates two of the five design principles of the Modular Smalltalk language and provides a vehicle for
validating the other three design principles. The macro-based C-code generator is easily adaptable to
generating production code in other languages like assembler. In addition, the generation technique
applies to source languages other than Modular Smalltalk. The implementation includes an efficient
method dispatch based on new extensionsto incremental cache table coloring.

KEY WORDS: Modular Smalltalk, object-oriented, programming language, compiler, interpreter, method
dispatch, code generation.

-1- Modular Smalltalk Technical Report 93-07

1. Introduction

Modular Smalltalk (MS) is an object-oriented descendant of the Smalltalk-80 (ST-80) [Gold83]
programming language. Several desirable goals for an object-oriented language guided its specification.
These goals were [WBW8§] :

1. toprovideasimple, consistent execution semantics,
to increase programmer productivity through code reuse and code re-definition,
to provide efficient facilities for design and implementation in multiple programmer applications,

to provide for efficient implementations, and

o WD

to be simple enough for new usersto learn easily.

This paper describes a "first" implementation of MS (there are no previously published
implementations, although there may be some unpublished ones in the commercial sector). The
implementation is a prototype one, implemented in ST-80. ST-80 was chosen to allow us to quickly
experiment with different implementation strategies and interpretations of the language specification.
However, since one of the language goalsisto provide for efficient implementations, the architecture that
was developed is an efficient one and C-code can be generated and compiled on a production C-compiler.
Section 1 gives a brief specification of the language. A more complete description can be found in
[Tek89]. Section 3 describes the internal representation of MS programs as ST-80 objects. The internal
representation was designed to separate the extensive compile-time responsibilities from the minimal run-
time responsibility (execution). Compile time responsibilities include: symbol tables, coloring dispatch
tables, dispatch optimization, de-compilation, and generation of an equivalent C language program. An
interpreter written in ST-80 can be used to interpret thisinternal form. Section 4 describes the parser that
translates M S to the internal form. The parser is object-oriented and implemented in ST-80. Section 5
describes our approach to method dispatch. We have chosen an incremental coloring [AR92] approach
instead of the slower dynamic look-up approach of ST-80. Section 6 describes the C-code generator that
trandates the internal representation of a program into an equivalent C program that can be compiled and
executed with any ANSI C compiler. Section 7 discusses our conclusions and future directions.
Appendix A contains a sample of the C-code generated and Appendix B contains the method dispatch
algorithm.

The research contributions of this paper are:
1. Vadlidation of the design goal that the execution semantics of Modular Smalltalk are consistent.
2. Vdidation of the design goa that an efficient implementation of Modular Smalltalk is possible.

-2- Modular Smalltalk Technical Report 93-07

3. The generation of a platform to support the validation of the other three design goals of Modular
Smalltalk: increased programmer productivity through code reuse and code re-definition, design and
implementation efficiency for multiple programmer applications and simplicity for new users.

4. A concise description of an object-oriented parser, that can serve as the basis for a parser framework.

5. Caorrectionsto the André-Royer [AR92] incremental coloring algorithm and extensions that support
inheritance exceptions which occur in Modular Smalltalk.

6. A new macro approach to C-code generation that can easily be modified to generate assembly
language code and could be adapted for other programming environments.

2. Modular Smalltalk

Since a compl ete definition of Modular Smalltalk has appeared in [Tek89], this section gives only a
brief description of the language in terms of its differences from ST-80.

2.1 Literals

MS provides for literal representations of integers, floating point numbers, strings, selectors, and
arrays of these literals. Such literals are immutable, so the object represented by a literal is aways
apparent from its lexical representation. The result of attempting to modify literals is implementation
dependent. Any object with aliteral representation can be used in litera arrays.

2.2 Messages

Message sending in M S follows the normal conventions established by ST-80. All messages return
a single object when method execution is complete. A method is executable code that can retrieve state
information from the receiver object, modify the state of the receiver object and initiate other messages.
Methods can be recursive. The precedence of message sendsisthe same asin ST-80.

2.3 ldentifiers and Expressions

There are three types of identifiers: module constants, method parameters, and temporary variables.
Of these three, only temporary variables may have their values changed via an expression. An expression
may consist solely of amessage send, or it may assign avalue to multiple variables.

2.4 ldentifier Scoping

Temporary variables are the only variablesin MS. Their scoping rules are more complex than for
Smalltalk. An object bound to an identifier declared within ablock isinaccessible by that identifier outside
the block. The samerule appliesto identifiers that are declared in modules (module constants), unless the
identifier is exported by the declaring module and imported by another module. Identifier scopes can be
statically nested by nesting blocks, but modules cannot be nested.

-3- Modular Smalltalk Technical Report 93-07

2.5 State

Unlike most other O-O languages, M S has no instance variables. Instead, state is represented by
groups of messages that are implemented as stored methods as opposed to computed methods. Named
instance variables from Smalltalk (or member-data from C++) are replaced by a pair of messages
(accessing and assignment) for a simple state. The assignment message has as its single argument an
object that will be used as the new state value of the receiving object and the return value of this messageis
this new state value. The return value of the accessing message is the last value assigned by the
corresponding assignment message, or nil if the assignment message has not yet been sent.

Indexed instance variables from Smalltalk are replaced by a set of four messages that define an
indexed state. An accessing method uses a single-keyword selector and its argument specifies which part
of the state to access. Two different types of indexed state exist: object-valued and byte-valued. If no
value has been set at the given index, the value nil is returned for object-valued states, and thevalue O is
returned for byte-valued states. Object-valued states may assume any value, whereas byte-valued states
are restricted to objects representing integers in the range 0 to 255 inclusive. The assignment method uses
atwo-keyword selector where the first argument is an index that identifies part of the indexed state and the
second argument is the new value for that part of the state. The method returns the second argument.
Two other selectors are associated with indexed states. One returns the number of indexable states
associated with the two selectors above. The other sets the total number of indexable states dynamicaly.

2.6 Methods

A method declaration consists of a message selector, avisibility attribute and a method. A method
declared as private is only understood (executed) if its sender and receiver are in the same class. Unlike
C++, there is no protected visibility mode that allows senders to be objects from subclasses. Thisis due
to the philosophical view that subclasses are clients of their superclasses with no specia status beyond
what any other client class can claim.

There are six types of method implementation. The first three are abstract, undefined and primitive.
An abstract or undefined method requires no more information. A primitive method is uniquely specified
by its class and selector and does not require any other MS information. The fourth type of method, called
an aliased method, renames a method that is inherited from an immediate superclass. The fifth type of
method is a stored method that specifies part of a state declaration, as described in Section 2.5.

The sixth type of method is ablock method. A block method consists of alist of formal parameters,
alist of temporary variables, and alist of expressions. When ablock isevaluated, it returnsaclosure. A
closure consists of the block and a context. The context maintains the values of variables defined within
an enclosing block during a particular execution of the method represented by that block.

-4- Modular Smalltalk Technical Report 93-07

2.7 Classes

A class declaration can inherit from zero or more existing class declarations, aslong as the intended
superclasses are visible within the module containing the class declaration and as long as the intended
superclasses do not inherit from the class being defined (the inheritance hierarchy must be acyclic).

A class declaration consists of an instance behavior (instance methods) and a class behavior (class
methods). Class declarations are static. They are not objects or expressions and do not exist during the
execution of a program. Thus, classes cannot be created at run-time or have their behavior modified.
However, each classitsalf is an object and its state can change at run time in response to class messages.

The instance behavior of a class consists of the locally declared instance behavior and instance
behaviors inherited from all superclasses. The class behavior issimilarly derived. There are four rules
governing the merging of local and inherited behavior.

1. All method declarations in the local behavior are included and all inherited method declarations with
the same sdlector are excluded.

2. Otherwise, if a selector is bound to exactly one inherited method, that binding isincluded. Thisis
true even if the binding is shared by more than one superclass. A method is shared only if the
superclasses in question inherited the method from the same ancestor, and none of the ancestors
between that ancestor and the superclass (including itself) re-defined a selector with the same name.

3. Otherwisg, if al but one of the bindings from the inherited behavior is declared as abstract, the non-
abstract binding is included.

4. Otherwise, thereisaconflict and the program isinvalid.

2.8 Modules

M odules manage the scope of names. A module consists of a module name and a set of constant
bindings between names and objects. Each binding has one of three forms. an import declaration, a class
declaration or an expression declaration. When a module imports an object by name from another module,
it may create alocal aliasfor that object in the importing module. Each name binding in amodule has an
associated visibility attribute, private or public, that determines whether other modules can import the
name. Modules are not objects and do not exist during the execution of a program.

Modules aso provide afacility for class extension, whereby behavior can be added to a class (which
was presumably imported from a different module). Class extensions are not allowed to remove or
redefine existing behavior.

-5- Modular Smalltalk Technical Report 93-07

3. The Internal Representation of MS Programs

This section describes the internal representation of MS programs. Each subsection describes one
or more of the classes that represent program fragments. These classes make extensive use of inheritance.
The implementation described in this paper was written in ST-80, but another object-oriented language
could have been used instead.

An MS program consists of a hierarchical collection of node objects. The internal representation was
designed to separate the extensive compile-time responsibilities from the minimal run-time responsibilities.
Compile-time responsibilities include parsing, de-compilation, re-coloring and generation of an equivalent
C language program. However, since the implementation is object-oriented, most of the compile-time
responsibilities are distributed throughout the nodes themselves.

The separation was accommodated by defining a ST-80 run-time class that represents each syntactic
aspect of an MS program. Additional compile-time behavior was then added by defining a compile-time
subclass for each run-time class. Essentially, run-time objects know only how to evaluate (execute)
themselves while compile-time objects have the appropriate additional responsibilities. We intend to
extend this object-oriented approach to parsing and program fragment representation to produce a
framework for object-oriented parsing, representation and code-generation. Such a framework would
represent BNF grammar rules as objects that are instances of special hode classes.

3.1 MSObject and MSClass

Every instance of MSObject knows its class and its state. The state is divided into three parts:
named sub-states, indexed sub-states and byte-indexed sub-states. Syntactically, a class consists of alist
of superclasses, an instance behavior, and a class behavior. Required run-time information consists of the
number of named, indexed and byte indexed states for the instance behavior. In addition, if a naive
recursive look-up method dispatch strategy is used, then a map of selectors to methods and visibility
attributes is required for instances and for classes. The equivalent compile-time class stores a mapping
from selectors to methods for both instance and class behaviors.

3.2 MSName, M SContext

An MSvariableis represented by an instance of class MSName. It consists of alevel and an offset
that specifies where to find the object bound to the name, starting from the current context. A context is
represented by an instance of M SContext and consists of an ordered list of objects bound to all names
visible at the current level, plus areference to the parent context.

3.3 M SStatement, M SAssignment, MSReturn and M SM oduleExpression

The M SStatement classis an abstract superclass for al classes that contain anon-trivial referenceto
an expression: MSReturn, MSAssignment, M SModuleExpression and MSMessageSend. An explicit

-6- Modular Smalltalk Technical Report 93-07

return within a block is stored in an MSReturn, and consists solely of the expression to be returned. An
assignment consists of an M SName to represent the variable and an expression whose evaluated result will
be assigned to this variable at run-time. An MSModuleExpression is awrapper than contains one of: an
M SMessageSend, an MSName or an MSLiteral.

3.4 MSMessageSend, M SCascadedM essageSend and M SM essage

Syntactically, a message send contains a receiver, a selector, and zero or more arguments.
However, an instance of M SMessageSend consists of areceiver and a message. The receiver can be any
expression. The message is an instance of MSMessage and consists of the selector and the arguments.
The receiver-message pair representation simplifies support for cascaded message sends that have asingle
receiver and multiple selector-arg pairs. A MSCascadedMessageSend is similar to an M SM essageSend
except that it contains an array of MSMessages instead of a single one.

3.5 MSModule, MSImport and M SClassExtension,

At run-time, an MSModule maintains a context of name-value pairs. The compiler replaces names
by levels and offsets, and the offsets are used to index the context. An MS module can bind a name to one
of four things, an M SClass, an M SImport, an M SClassExtension, or an M SM odul eExpression.

A module can bind aname to the object represented by a name that isimported from another module.
An MSImport object contains an MSName, whose offset reflects the position in the context of the
exporting module. Since an exporting module is executed before a module that imports fromit, the object
will exist when it isreferenced. M SClassExtensions have not been implemented yet.

3.6 M SBlock

Syntactically, a block contains lists for: formal arguments, temporary variables and message
expressions. The only information needed at run-time is the number of arguments and temporaries, and
the list of statements. The compile-time node maintains the list of arguments and the list of temporary
variablesin dictionaries to facilitate rapid look-up.

3.7 MSMethod

M SPrimitive methods have an associated ST-80 method and C function name. The former is used
for interpretation in the environment and the latter is used during C-code generation. Within aclass, each
MSStateM ethod is assigned a unique state index. There are 10 subclasses, representing all possible types
of state methods (named, indexed, byte indexed; accessing, assignment, size assignment). MSBlock
methods have already been described.

The node classes for M SCAbstractM ethod, M SCUndefinedMethod and M SCAliasedMethods are
place-holders for de-compilation, since such methods have atrivia implementation. M SCAliasedMethods
store areference to an immediate superclass and the selector from this class which isto be renamed.

-7- Modular Smalltalk Technical Report 93-07

3.8 MSClosure

An M SClosure contains a block and a context. At run-time, an M SClosure exists for each method
or literal block that is currently executing and for some literal blocks that are not executing. An MSClosure
is created for aliteral block when the code that containsit is evaluated. The context contains a static link to
the containing block. The code for this MSClosure is executed when the block itself is evaluated. For
example, assume that aliteral block is bound to a name in one method and passed to a second method as
an argument. Assume that the block is evaluated in the second method by sending it avalue message. An
MSClosureis created when the literal block is bound to aname in the first method and is the object that is
passed to the second method as the argument block. Since recursive and mutually recursive calls can be
made, multiple closures can exist for the same method bl ock.

3.9 M SReturnObject

An MSReturnObject is a special wrapper that contains an MSObject. Consider a method block that
containsalitera block. If an explicit returnis executed in the literal block, then control must be returned to
the caller of the method block. Note that the literal block may have been passed as an argument to an
arbitrary number of methods before it was actually executed.

The literal block returns an M SReturnObject to its caller. The M SReturnObject contains the actual
return object as well as the method in which the literal block lexically appears. When the caller receives an
M SReturnObject, it returns this object to its caller without executing any more code. This process
continues until the method that lexically contains the literal block is reached. This method, removes the
M SReturnObject "wrapper" and returns the actual result that it contains. The mechanism for determining
the lexical container of aliteral block isbased on a static link comparison.

4. The Parser

The previous section described the run-time responsibilities of MS objects. This section describes
their parsing responsibilities. In addition to the node classes, some utility classes are also used for
parsing. These include a scanner (M SScanner), a programming environment (M SPEnv), an inheritance
conflict resolution class (MSConflictSet) and many token classes (subclasses of MSToken). This
approach maps BNF rules to node classes. We are currently developing a framework that encapsulates
this approach and it will be described in afuture paper.

4.1 Programming Environment

An MSPEnNv provides facilities for browsing and manipulating the internal representation of MS
code. In addition, it maintains the method cache tables and performs the incremental coloring and re-
partitioning needed to provide efficient method dispatch. A discussion of this incremental coloring
algorithm, and method dispatch in general is given in Section 5.

-8- Modular Smalltalk Technical Report 93-07

4.2 Tokens

All token classes are subclasses of MSToken. As with most languages, the distinction between
lexics (that define tokens) and syntax (that defines parse nodes composed of tokens) is somewhat
ambiguous. In thisimplementation of MS, all character sequences representing syntactic delimiters are
tokens, identifiers are tokens, and al MSliterals are tokens, even literal arrays. Nothing elseis atoken.

4.3 Scanner

An MSScanner is responsible for converting an M S source string into tokens. It knows the string to
be parsed and the current position in the string. The primary behaviors of an MSScanner are to scan the
next token and to peek at the next token(s). For MS, a look-ahead of more than two tokens is never
required. For tokens that consist of a single character, atoken object of the appropriate classis returned
immediately. For longer tokens, dedicated methods are called based on theinitial character. The scanner
is also responsible for error handling. If a syntax error occurs either during the tokenization process, or
within anode parse, amessage is sent to the scanner, who reports the error to the user.

4.4 Node classes

There is no parser class for MS. Instead, each compile-time node knows how to parse the MS
source string that it represents. Each node object is passed an instance of a scanner that accesses the
program segment being parsed. A node parses its source by continually asking the scanner for the next
token and performing activities based on the type of the resulting token and its definition in the grammar.
Since node objects are composed of other nodes, each node requires only afew tokens before passing the
responsibility of parsing to one of its components. That is, a node obtains its terminal information by
asking the scanner for tokens. When appropriate, it creates a component node of the appropriate class and
tellsits component node to parse itself. In the case when the class of a component node may be dependent
on the next token, the node peeks at the next token before creating the component object and telling it to
parseitself. When anode finishes parsing itsdlf, it returnsitself to its parent node.

5. Method Dispatch

As with other object-oriented languages, the selection of a method dispatch algorithm for MSis a
trade-off between time and space [CU91]. The basic ST-80 method dispatch algorithm is a dynamic one,
starting in the method dictionary of the receiver of the message[GR 89]. If no method for the message
selector is found, the method dictionary of the superclassis checked. If this process continues to the root
class, Object, and no method is found there, a messageNotUnder stood method is invoked to warn the
user. This algorithm is slow for long inheritance chains and is even slower in MS where multiple
inheritance isinvolved and multiple superclass chains need to be searched.

-9- Modular Smalltalk Technical Report 93-07

On the other hand, the fastest possible implementation would be a cache table which stores a method
to use for each class-selector pair. At run-time, asingle look-up in this table would contain areference to
the correct method. Although this approachisfast, it is not feasible since the space required is the product
of the number of classes and selectors.

A dlightly slower cache algorithm [DM SV 89] involves the use of atwo dimensiona cache table with
classes that index the columns and colors that index the rows. The algorithm assigns a color to each
selector, and it is possible for two different selectors to be assigned the same color. For example, consider
the case where there are three groups of classes in a program. Assume the first group recognize the
message selector alpha but not beta. Assume the second group recognize the message selector beta, but
not alpha. Assume that the third group recognizes neither. A single color can be used to represent the
selectors alpha and beta. Cache table entries for the first group in this color row would contain the method
for alpha. Cache table entries for the second group would contain the method for beta and cache table
entriesfor the third group would contain nil.

However, as pointed out in [AR92], this method requires prohibitive initial time to perform
coloring, since recoloring may be required after adding even asingle selector. The same paper suggests an
improved agorithm that is based on incremental coloring and we will refer to this algorithm asthe André-
Royer algorithm. Our iterative color/partition (ICP) algorithm is based on the André-Royer algorithm.
Although the ICP algorithm was implemented for MS, it is described in an language-independent manner
so it can be applied to other object-oriented languages aswell. Unlike the André-Royer algorithm, the ICP
algorithm supports inheritance exceptions that can occur in MS when a message is removed from the
protocol of aclassby adiasing it to a new name.

We are currently investigating optional static typing in MS so the actual ICP algorithm is more
complex than the version presented in this paper. For example, the actual ICP agorithm is responsible for
recording class-selector pairs where the selector is not redefined in any sub-tree. Thisinformation is used
to bypass the cache table by inserting a method address directly in the code. We are preparing a separate
paper that presents the compl ete al gorithm and introduces some optimizations using multiple cache tables.

5.1 ICPA Dispatch Classes
Four classes are defined to implement the ICP algorithm.
M SSelector and M SDivison

Each M SSelector has a unique integer index, a color (integer) and a set of defining classes. The
defining classes do not include classes that just inherit the selector. For each selector, ICP logically
dividesthe classes that recognize it into mutually exclusive MSDivisions. Each division determines a set
of classes that form a connected component of the inheritance hierarchy and use the same method for a

-10- Modular Smalltalk Technical Report 93-07

given selector. The root of this sub-graph is the defining class for the selector and no other class in the
sub-graph defines the selector.

MSCacheTable

An MSCacheTable contains a two dimensional array (matrix) with rows indexed by colors and
columns indexed by class indexes. The values of the matrix are MSDivisions. In each row, all of the
classes in the same M SDivision have the same cache table entry. Any class that does not support a selector
for agiven color contains an M SEmptyDivision in its column.

The M SCacheTable supplies other services in addition to the cache matrix. It maintains maps for:
ST-80 selector symbols to MSSelectors (for efficient compilation), ST-80 selector symbols to unique
selector indices (for efficient execution) and unique selector indexes to colors (for efficient execution).

At run-time, when executing a message send, the M SMessageSend node knows its receiver and
MSMessage. The receiver knowsits classindex. The MSMessage knows its selector index. To find the
method, the selector index is used to obtain the color index. The color index and class index are used to
access a color/class entry in the cache. Note that a run-time check must be performed to ensure that the
selector associated with the stored method is the same as the current selector (due to the coloring algorithm
mapping multiple selectors to the same color). This overhead will be discussed in more detail later.

Our implementation contains two cache tables, one for instance methods and one for class methods.
For each selector, the compiler generates two indices, one for each cache. At run-time, the appropriate
index is used, depending on whether the receiver is a class object or not. It is possible to combine these
two cache tables into one, but the compiler must still generate two indices because the same message
selector may be used for a class and an instance message and there is no way to tell at compile-time
whether the receiver isaclass or not. We are currently studying the merits of one cache table versus two
aswell as multiple cache tables, one for each tree in the inheritance forest.

M SConflictSet

An MSConflictSet is responsible for resolving message selector name conflicts due to multiple
inheritance. It does this by recording conflicts and removing them when aliases are compiled. When all
conflicts have been removed, an M SConflictSet inserts the correct division into the cache table.

5.2 Actions During Class Definition

When a class declaration is compiled, a new class column is added to the cache table. Each entry in
the new column is a shared instance of MSlnitial Division (one of two subclasses of MSEmtpyDivision).
For each color, the corresponding entries in all superclass columns are compared. |If they are identical,
then that division is copied to the new class/color entry. Otherwise, the action taken depends on the
conflict resolution scheme of the language. These may include: reporting an error, picking one of the
conflicting entries by some algorithm or waiting until conflicts have been resolved, asis donein MS where

-11- Modular Smalltalk Technical Report 93-07

conflicting methods (i.e. methods with different implementations but identical selectors) must be aliased to
enforce uniqueness. The M SConflictSet class handles this form of resolution automatically.

A common form of conflict occurs when two classes, say A and B, have different selectors stored at
the same color (say alpha and beta at color 1) and anew class, C, inherit from both of them. Then alpha
and beta would no longer be alowed to have the same color. If such a conflict is detected during
inheritance copying, one of these selectors must be moved to adifferent color. In addition to changing the
color of the associated M SSelector, this involves moving the M SDivisions from the original color row to
the new color row and placing a shared instance of M SInitialDivision in the old row.

5.3 The ICP Algorithm

The cache table also needs to be modified when each new method is compiled. The definitionsin
Table 1 and Table 2 are required to understand this process. Many of the definitions are loosely based on
the André-Royer algorithm. The letters C and Cj refer to classes, G to agroup of classes, Sto a selector,
L to acolor, D to an MSDivision and Q2 to an empty cache table entry. The notation Cj < C means that
class Cj isin the inheritance sub-graph with root class C. Table 2 defines partition types for divisions,

where S = divisionSelector(D) and C = divisonDefiningClass(D).

Symbol Definition
divisonAt[L, C] the cache table entry for color L and class C
color(S) color mapped to selector S
divisonSelector(D) the selector associated with division D
divisionDefiningClass(D) the root class of the divison D
definedBehavior(C) set of all selectors explicitly defined in class C
all SubClasses(C) ={Ci|Ci<C}
allSuperClasses(C) ={Ci|C<C(Cj}
relatedClasses(C) = allSubClasses(C) U allSuperClasses(C) u {C}
colorsFreefor(G) =N cec{ L |divisionAt[L, C] = Q}
classesUsingColor(L) ={C|divisionAt[L, C] = Q}
classesDefiningSel ector(S) ={C | S e definedBehavior(C)}
subBeha\/lor(C) = UCI € alSubclasses(C) definedBehavi OI'(Ci)
superBehavior(C) = Uci € allSuperclasses(C) definedBehavior(Cj)
dependentClasses(D) ={Cj | Cj < C and S¢ definedBehavior(Cj) &
if Se definedBehavior(Cj) then not (Cj < Cj)}
Table 1 Definitions for the ICP Algorithm
Partition Definition
specific(D) = [classesDefiningSelector(S) = { C}]

-12- Modular Smalltalk Technical Report 93-07

separate(D) = [relatedClasses(C) N classesDefiningSelector(S) = { C}]
redefined(D) =[S e superBehavior(C)]
declared(D) = [not specific(D) and not separate(D) and not redefined(D)]

Table 2 Partition types for divisions.

Figure 1 shows the ICP agorithm. Figure 2 shows a small inheritance graph based on the graph
from [AR92], but with an inheritance exception added. The exception occurs by aliasing the o message to
ainclass A (denoted 0 -> a). Table 3 shows the results of coloring this graph using the ICP agorithm.

AlgorithmICP(in C: Cass, in S: Selector, in/out T: CacheTabl e)

let D= a newdivision with divisionSelector(D) =S
and di vi si onDefiningC ass(D) = Cand let L = color(S)
if specific(D) then
set color(S) from col orsFreeFor(all SubC asses(C) U {C})
el se
let E = divisionAt[C, L]
i f (divisionDefiningdass(E) = C then
return
el se
if (divisionSelector(E) = S) then
MoveSel ect or ToFr eeCol or (di vi si onSel ect or (E))
endi f
if separate(D) or declared(D) then
i f (dependentd asses(D) N cl assesUsi ngColor(L) = ¢) then
no col or change
el se
et G = classesUsi ngCol or(color(S)) U dependentC asses(D)
set color(S) from col orsFreeFor (G
endi f
else /* redefined */
no col or change
endi f
endi f
endi f
for G in dependentd asses(D)
set divisionAt[C, L] =D
endf or
end | CP

Procedure MoyveSel ect or ToFreeCol or (S)
G = cl assesUsi ngSel ector (S)
select L from col orsFreeFor(Q
set D = new MSInitial Division
for G in G
set divisionAt[C, L] = divisionAt[Ci, color(9S)]
set divisionAt(C, color(S)] =D

Figure 1 The ICP agorithm

-13- Modular Smalltalk Technical Report 93-07

Figure 2 An example inheritance graph with an inheritance exception

L/C (O (A |Al A2 Al2 (D |El |E1l E F |F1 |DEF
1 Q aA aA2 |aAl2 |qo |aEljaEl Q Q |aFl|laFl
2 Q | [alAl|q alAl|o [0 |@ o |f:F|f:F [f:F
3 o0 | A2 [a2.A2 0O | 0O | 0O 00O |oa0O| o0 |00
4 Q | |@ Q Q Q | |elEll |eE [|g eE
5 Q | | Q Q Q | |ellEll|e | |@ def:DEF
6 Q | |@ Q Q dD |dD |dD Q | [@ dD

Table 3 An ICP generated coloring for the inheritance graph of Figure 2

To test the algorithm on real graphs, we developed an ST-80 to M S conversion program. We are
translating the Collection classes and modifying them to reflect the multiple inheritance class re-
factorization developed by [Co092]. So far, we have translated and re-factored the ST-80 collection
classes. Collection, SequenceableCollection and Set to the M S classes: Collection, IndexedCollection,
SequenceableCollection and Set. The ICP algorithm generated 49 colors for the 90 selectors.

Comparisons with the André-Royer Algorithm

Figure 3 contains the André-Royer algorithm, using the definitions from this paper. The following
notes compare it with algorithm ICP.

Switch partition of S
1. specific: find free color for subclasses of C (see NOTE 1)
2. redefined: no change
3. separate
If color(S) € freeCol orsFor({C}) then no change (see NOTE 2)
else find free color for classesUsi ngSel ector(color(S)) (see NOTE 3)
4. decl ared
If V X< C, color(S) € colorsFreeFor({X}) v S € definedBehavior(X) then
no change (see NOTE 4)
else find free color for classesUsi ngCol or(color(S)) (see NOTE 5)

Figure 3 The André-Royer Algorithm

-14 - Modular Smalltalk Technical Report 93-07

1. The André-Royer Algorithm makes the assumption that there are no exceptionsto inheritance. Since
MS does allow for such exceptions (by aliasing an inherited selector), the ICP algorithm must check
class C for afree color as well. Without exceptions, we don't need to check C. In fact, we don't
really have to check all subclasses either, only the leaf subclasses. With exceptions, a superclass
may use selectors that a subclass does not, so the entire sub-graph must be checked.

2. Infact, itisnot sufficient to check only that the current color isfreein C. It must also be freein al
subclasses of C. For example, suppose class B inherits from class A, and a selector beta is defined
in class B, with color of 1. If class A later defines alpha, it is not sufficient to ensure that color 1is
freeonly for A - it must also be free for B, since B will inherit alpha. With this change, the code for
the separate case now matches the code for the declared case so they can be merged.

3. Finding afree color for al classes currently using the current color is not sufficient. In addition, the
color must be free for class C and all of its subclasses. For example, suppose classes D and E have
color 3 free, and that selector alpha has been defined somewhere and has color 1. Suppose further
that class A isin adifferent tree from D and E, and that alpha is being defined for it. If color 1in A
is not free, a new color must be found. It is not sufficient to look for free colorsin D and E -
obvioudy the color must be freein A and all of its subclasses.

4. ltisnot necessary to check every subclass of C against one or another of the two tests. The second
test can be avoided, and the number of subclasses tested reduced by asking only for dependent
subclasses (those subclasses which inherit S from C).

5. Asin note 3, we must also insure the color is free for the dependent classes of C. In this case,
however, this will be some subset of C and its subclasses, since some subclasses re-define S
(otherwise, the partition would be separate instead of declared).

5.4 Space Efficiency (Tail Removal)

There are several ways to reduce the run-time space requirements for cache table dispatch. These
reductions are often obtained by increasing compile-time space requirements which in most cases are not
important.

Suppose the basic cache table has size N (colors) x M (classes). Let n be the color index of the last
non-empty selector in a class column, m. The entries from row index n+1 to N are called the tail of
column m and this tail can be discarded. Therefore the cache table can be implemented as an array of
columns of variable size.

Note that the specific color associated with a group of selectors is not important; only that the
selectors in the group have the same color. Thus, entire rows of the cache table can be swapped. To
optimize the size of the cache table, rows should be swapped to maximize the sum of the tail sizes.

-15- Modular Smalltalk Technical Report 93-07

5.5 The Method Dispatch Algorithms

Appendix B contains two method dispatch algorithms. One based on cache tables, the other on the
traditional ST-80 class look-up algorithm. The information required to perform method dispatch in each
caseislisted in Table 4.

Cache Table Approach Class Look-up Approach
Divisons a selector and a method amethod and avisibility (public/private)
Selectors aunique index and a color index aunique index
Classes an index an index and adictionary of divisions

Table 4 Method dispatch information

The current implementation uses the table approach with separate cache tables for class and instance
selectors with tails removed. For table dispatch, the appropriate selector index and cache table are
determined at run-time by determining whether the receiver is a class or instance object. Next, the
color/class entry in the appropriate table is obtained. This entry is a division, but its method is not
necessarily the correct one. Two exceptional conditions must be checked for; the division may be empty
or the division may define a selector that is different than the one in question. In either case, the desired
selector is not understood by the receiver, and an appropriate error message is generated. If neither of
these cases occur, the division specifies the method to execute.

For class look-up dispatch, the execute algorithm simply asks for a division by calling
lookup_dispatch. If the resulting division is empty, a messageNotUnder stood message is sent, otherwise,
the associated method is executed and returned as the resullt.

The lookup_dispatch algorithm isrecursive. It needs areceiver, a current class, and the instance
and class selectors. The current class is initially the class of the receiver, but may change in recursive
calls. The behavior type of the receiver (instance or class object) is used to obtain the appropriate selector
index, aswell the proper method dictionary from the current class. Next, the specified selector is searched
for in the method dictionary. Even if the selector exists, atest must be made to determine whether the
method is private. If itis, the method is only applicableif the class of the receiver is equal to the current
class (definition of privatein MS). If amethod isfound and islegal, itsdivision isreturned. Otherwise, a
recursive call must be made to lookup_dispatch, with the receiver and selectors remaining the same, but
with the current class being changed to one of the superclasses of the current class. If the result of this
recursive call isan empty division, it is attempted again on another superclass, until a non-empty division
is found, or all super classes have been searched. The resulting division is returned as the result of the
algorithm, even if it isempty.

Table 5 contains comparative performance results for the class look-up and coloring dispatch
algorithms, based on illustrative code that will not occur in practice. Subclasses of the array class were

-16- Modular Smalltalk Technical Report 93-07

created at depths of: 1, 5, 10, 15 and 19. The same array initialization message was sent to instances of
the leaf node classes of these inheritance chains and the time was recorded. The array initialization codeis
given in Appendix A for the subclass at depth 1. In every case, an array size of 50 and iteration size of
5000 were used so that atotal of 250,000 dispatches were done. Thetrials were done on a SPARC ELC
and the average of 10 trials was used in each case.

Depth class look-up coloring cache |improvement
dispatches / sec | dispatches / sec

1 19,400 24,500 26%

5 10,400 24,500 135%

10 5,720 24,500 328%

15 3,750 24,500 553%

19 2,980 24,500 722%

Table 5 Method dispatch comparison

6. C-Code Generation.

Each of the node classes representing the parse tree of an MS program knows how to generate C
code to execute itself correctly.

6.1 C-Structures

A variety of C data structures are used. A program'’s execution environment is stored in an M SPEnv
structure. The environment includes: an array of modules (type MSModule), an array of literal objects, an
array of contexts and two dispatch tables (type M SCacheTable), one for instance messages and one for
class messages.

A module is represented by an MSModule structure that contains a context and an integer
representing the index of the module within the environment's module array. The cache tables store C
function addresses and unique selector indices for each class-color pair that define a method.

The most import C data structure, called an MSODbject, is used to represent an MS object. For
efficiency reasons, objects are dynamically allocated arrays. In this section, stored behaviors will be
referred to as instance variables, where each instance variable is named, indexed or byte-indexed. Each
object aso stores a flag denoting whether the object isthe result of an explicit return from a method, aflag
denoting whether the object isimmutable or not, the position within the object of the first indexed instance
variable and first byte indexed instance variable, and the size of the object. Indexed and byte indexed
instance variables are implemented as arrays, whose first element isthe M S integer object denoting the size
of the variable, and whose successive elements are the values of the variable.

-17 - Modular Smalltalk Technical Report 93-07

For uniformity, M S class objects are stored as MSObjects. A variety of predefined named instance
variables exist for every class. These include the number of named, indexed and byte indexed variables
for instances and classes, and the unique integer index representing the class. To compare the class |ook-
up method dispatch a gorithm with color-table dispatch, additional tables were temporarily included in each
class. The extratables were hash tables for defined instance and class behaviors and associated visibility
tables.

Contexts are treated as MS objects, that are instances of the MSContext class. A context has two
named instance variables, one referencing its static link, the other referencing the end of the static link
chain (i.e. the context of the module in which the context was created). Static links are used to access non-
local variables. This second variable is used to recognize the appropriate time to remove the wrapper from
a return object (see Section 3.9). The class also has one indexed instance variable, that represents the
values of the context. The dynamic execution context stack isimplemented as an array of contexts, so
contexts do not need to explicitly store dynamic links.

6.2 Library and Primitive C Functions

There are severa C-code library functions and primitive functions. The execute library function was
described in Section 5.5. The undefinedMethod and abstractMethod primitives are used to generate errors
if an inappropriate selector isused. The msBasicNew primitive function has a class object as an argument
and is used to create a new instance object and to initialize its state. Named instance variables are
initialized to nil and the size of indexed instance variablesis set to zero. The makeClass library function
creates a new class object and its arguments are used to initialize the new class. There are a variety of
other less important library functions as well.

6.3 C-code implementation

The tranglation of an M'S program from internal representation to C code relies entirely on macros.
There is no explicit reference to any variable, nor are there any syntactic constructs (other than the
assignment operator which is easily changed) that tie the code generated to the C language.

The rationale behind the macro abstraction is the ability to use the C preprocessor to implement the
code in an arbitrary language by changing the macro expansions. This provides a method of switching
from an implementation in C to one in assembly language without having to modify the ST-80 based code
generator. This macro abstraction incurs no time-inefficienciesif the C-compiler optimizes simple literal
expressions like 1+3 and 2* 4.

A distinction must be made between function addresses and function strings. Function addresses
will be referred to by un-delimited names. Function strings will be denoted by C-strings. For example,
the function address of the function main() is main, and the function string is "main". Thisdistinctionis

-18- Modular Smalltalk Technical Report 93-07

crucia in order to understand the argument types expected by the macros. Appendix A includes a sample
of the macros generated.

Program Code Generation

A program consists of a main module and all of its recursively imported modules. Each time a
program is generated, a new ST-80 compiler environment is created, all required modules are re-parsed,
and the resulting minimal cache table and selector coloring is used. Thus, only those modules that are
used by a program are included and no references to selectors from unused modules occur in the cache
tables.

A function for executing the program and functions for initializing the cache tables and selector-to-
color mappings, as well as a function for creating all literals used in the environment are placed in the
programfile. For efficiency, the M SPEnv environment structure is aglobal variable, declared within the
program file. Executing the program consists of first initializing the environment, then executing each
module in sequence. This sequence is dictated by the constraint that any module that imports another
module must be executed after the imported module.

The M S specification states that literals are immutable. 1n thisimplementation, each literal is only
created once and stored as part of the environment. The classes that have literal representations are:
Integer, Float, Character, MethodSelector, String, and Array. The first three of these do not have any
explicit state, so nothing needs to be done to insure their immutability. For the last three classes, literal
instances are marked as immutable. Inside the state methods for these classes, an instance is checked to
seeif it isimmutable before changing its state.

Module Code Generation

A module is executed by afunction that allocates space for the module's context, then executes each
binding specified in the module. Modules exist only within the environment, and the execution of a
module results in a context that is inserted into the module array of the environment. The name of the
function used to execute amodule is uniquely determined by the name of the module.

There are only three kinds of bindings that exist within modules. class declarations, import
specifications and module expressions. An import specification copies the value of an index of one
module's context to an index within the current module's context. A class declaration or module
expression assigns the result of a function call to the appropriate slot in the module's context. The
function names are uniquely defined by the binding names. Note that class extensions have not yet been
implemented, and explicit module imports are treated as short-hand for implicit importation of every
binding within the specified module. All code generated for amoduleis placed inasinglefile.

-19- Modular Smalltalk Technical Report 93-07

Class Definition Code Generation

The default action of a class defining function isto ssimply call the makeClass library routine with the
appropriate arguments. |If class look-up method dispatch is used then code to create a hash table for each
selector in the instance and class behaviors is generated before the call to makeClass is made. Thisis
another source of inefficiency for the class look-up method dispatch approach.

Method Code Generation

Method definitions are common module expressions. Each method definition generates a three
argument C-function that is used to execute the method. The function nameis uniquely determined by the
class name and selector for the method. The first argument is the receiver of the message, the second is an
array of arguments to the method and the third is an integer representing the number of arguments.

The code generated for methods depends on the type of method. For undefined and abstract
methods, the name of the C-function is renamed (using the C #define preprocessor command) to the
primitive functions undefinedMethod and abstractMethod respectively. For primitive methods, the
function is renamed to the name of the C primitive since al primitives within the ST-80 environment are
expected to specify the name of the primitive in both ST-80 and in C. For aliased methods, the code
generated depends on the type of the method that is aliased.

The code for state methods depends on the kind. An accessing state method returns the value of the
specified variable (or the size, in the case of an indexed size access state method). An assignment state
method assigns a new value to the specified variable (or changes the size of the variable in the case of an
indexed size assignment state method), and return the new value.

For ablock method, afunction is generated that executes the code generated by each statement of the
method and then returns aresult. Before any statements are executed, two local variables are declared.
The result variable stores the return value of the method. The subBlockResult variable stores the results of
message sends within the method, and will be described later. A new context is created and pushed onto
the dynamic context stack. The first element in the context is self, the next numArg elements of this
context areinitialized with the values of the args variable, and the next numTemp elements areinitialized to
the distinguished MS object nil. A block method's static link is set to the context of the module that
definesit (aliteral block's static link is set to its containing block whenit is created). After the new context
has been initialized and placed on the context stack, code for each statement is generated.

Code Generation for Variables and Self and Literals

All MS variable references (including class references) are mapped to level-offset pairs, where the
level isthe distance on the static link chain, relative to the current context (the top of the dynamic context
stack). Note that most variable references have alevel of zero and are in the current context, so no static
links need to be followed. Self istreated as the zeroth argument of ablock and is stored always stored in

-20- Modular Smalltalk Technical Report 93-07

the current context. Literals are created when the program begins execution, so the code generated for a
literal issimply areference to a particular index of the initialized literal array.

Code Generation for Message Sends

An M SMessageSend generates C-code that uses C-subblocks which can be nested arbitrarily deep,
with variable definitions allowed within any sub-block. Such a structure isideal for implementing not
nested message sends and imbedded literal block statements (but not literal blocks which are argumentsto
message sends).

Each message send is delimited by a pair of macros. The message start macro, MESS SEND,
creates a subblock and defines two local variables, args and rec while the message end macro,
MESS END, smply endsthe subblock. Between this macro pair, the argument array argsis dynamically
allocated to be of size numArgs, the number of arguments expected by the message. The argument array
and the receiver are assigned the appropriate values by generating one assignment line per argument. The
left hand side of the assignment is a macro that references one of the arguments or the receiver and the
right hand side is the macro needed to represent the object in question. For example, the macros for
variables, self and literals have already been described. The other possibilities are: assignment, return and
message send. Assignments and returns are described in the next two sub-sections. The macro for a
message send generates an entireimbedded MESS _SEND, MESS END macro specification.

After the assignments to the receiver and arguments, the execute function isinvoked and the result is
assigned to the variable, subBlockResullt.

Code Generation for Assignments and Returns

Since the left hand side of an assignment is always a variable reference, it will always be represented
in C as a context reference. The right hand side will be represented by one of the macros already
described. An assignment cannot have an MSCReturn as its expression since the compiler would have
generated an error.

An M SReturn, must generate code that immediately returns its contents as the value of the entire
method. It generates an assignment of its contentsto the result variable and areturn statement.

6.4 Optimizations

At the time that C-Code generation occurs, the ST-80 M S Environment knows which selectors are
uniquely defined. These are the selectors whose divisions are specific or whose receiver isaliteral or self.
In these cases, message sends can be optimized - the execute function does not need to be called to obtain
the function. Instead, where the execute would have occurred, a direct call to the appropriate function can
be made. That is, a macro can be generated that pushes the appropriate arguments onto the stack and
performs this direct call.

-21- Modular Smalltalk Technical Report 93-07

This optimization can be extended in the case of state accessing methods if self isthe receiver. In
this case, no function call is needed at all - the code to access the desired variable can be placed in-line
where the message is called.

If static typing is added to the language, it is possible for many selector to be uniquely defined, in
which case method look-up would not be needed. These are the selectors that are separate or determined
(a special case of redefined in which there are no non-dependents in the division). These results will be
discussed in aforthcoming paper.

7. Conclusions

We have presented a "first" implementation of Modular Smalltalk that validates two of the language
design goals: consistent execution semantics and efficient code execution We intend to use this
implementation to validate the other three design goals: increased programmer productivity through code
reuse and code re-definition, design and implementation efficiency for multiple programmer applications
and ssimplicity for new users.

The implementation is an object-oriented one and illustrates the use of an object-oriented approach to:
parsing, program representation and code generation. The code generation is modular and based on
macros so it can be easily modified to support a variety of target languages including C and assembly
language. The efficient implementation includes a cache table approach to method dispatch that uses
extensions to the André-Royer incremental coloring algorithm. The new coloring agorithm includes
support for optional static typing and we are currently studying the effects of typing and multiple cache
tables on dispatch efficiency. Currently, we have only implemented a simple reference-counting storage
manager. We intend to incorporate a more efficient scavenging approach [UJ38] [WM89]. Our
implementation will be available by anonymous ftp when the documentation is complete.

Acknowledgements

We areindebted to Brent Knight for his preliminary work on the internal representation of MS and to
Brian Wilkerson and Daniel Lanovaz for the many comments they made throughout the project.

References

[AR92] P. André and J. Royer. Optimizing Method Search with Lookup Caches and Incremental
Coloring. In OOPSLA '92 Conference Proceedings, pp.110-126, October 1992.

[Co092] W. Cook. Interfaces and Specifications for the Smalltalk-80 Collection Classes. In OOPSLA
'92 Conference Proceedings, pp.1-15, October 1992.

[CU91] C. Chambers and D. Unger. Making Pure Object-Oriented Languages Practical. In OOPS_A
'91 Conference Proceedings, pp.1-15, October 1991.

-22- Modular Smalltalk Technical Report 93-07

[DMSV89] R. Dixon et. al. A Fast Method Dispatcher for Compiled Languages with Multiple
Inheritance. In OOPSLA '89 Conference Proceedings, pp.211-214, October 1989.

[GR89] A. Goldberg and D. Robson. ST-80, The Language, Addison-Wesley, Reading Mass,
1989.

[Tek89] Tektronix. Modular Smalltalk Language Proposal, Technical Report CRL-89-03, 1989.

[UJ88] D. Unger and F. Jackson. Tenuring Policies for Generation-Based Storage Reclamation. In
OOPSLA '88 Conference Proceedings, pp.1-17, September 1988.

[WBWS88] A. Wirfs-Brock and B. Wilkerson. An Overview of MS. In OOPSLA '88 Conference
Proceedings, pp.123-134, September 1988.

[WM89] P. Wilson and T. Moher. Design of the Opportunistic Garbage Collector. In OOPSLA '89
Conference Proceedings, pp.23-35, October 1989.

Appendix A.

Sample code generated for a program:

include "cgen_lib.h"
include "test2 all _nodul es. h"

DECLARE_GLOBALS() ;

PROGRAM_MAI N()
PROGRAM I NI T("test2");
EXECUTE_MODULE(Ker nel Modul e, 0);
EXECUTE_MODULE(test2Mdule, 1);
PROGRAM_ENI() ;

I NI T_DEF()
| NSTCOLORS()

9 ,8 ,5

1,2 ,3

2,3 ,7
END_COLORS() ;

oOhrhO
— O
=
- .;\)..
w
= OoOhM
=

CLASSCOLORS()
0
END_COLORS() ;

CLASSNAMES()
" Cr eat abl e(bj ect ", /*
"I nteger", [*
"Array", /*
"Character", *
"Cd osure", *
"Fl oat", *
"Message", *
"Met hodSel ect or ", /*
*
*

*/
*/
*/
*/
*/
*/
*/
*/
"String", */
"Undefi nedObj ect ",
" A

END_NAMES() ;

POO~NOUITA_WNEO

0 */

-23- Modular Smalltalk Technical Report 93-07

I NI T_ENV_NAVES() ;
I NI T_ENV_COLORS() ;

TABLE_NEW | NST_TABLE, 11);

TABLE_NEWAT(| NST_TABLE, 0, 0);
TABLE_NEWAT(| NST_TABLE, 1, 5);
TABLE _ATPUT(| NST_TABLE, 1,0,9, Integer _binary K/* + */, "Integer_binary K ");

TABLE_ATPUT(| NST_TABLE,
TABLE_NEWAT(| NST_TABLE,

I 13, Integer_toK doK, "Integer_ toK doK");
I
TABLE_ATPUT(| NST_TABLE,
I
I

);
14, Array_size, "Array_size");

15, Array_sizeK, "Array_sizeK');

, 16, Array_atK, "Array_atK"');

, 17, Array_atK putK, "Array_atK putK"');

TABLE_ATPUT(| NST_TABLE,
TABLE_ATPUT(| NST_TABLE,
TABLE_ATPUT(| NST_TABLE,

WNFPOR~A

TABLE_NEW CLASS TABLE, 11);

TABLE_NEWAT(CLASS TABLE, 0, 1);

TABLE_ATPUT(CLASS TABLE, 0, 0, 0, Creatable(hject _class_new,
"Creat abl ebj ect _cl ass_new');

LI TERAL_ASSI GN_SPACE(4);
LI TERAL_SET_I NDEX(O,

ASSI GN_NEW S| MPLE_LI TERAL(LI TERAL_TMP, GO CLASS | NTEGER, 0))
LI TERAL_SET | NDEX(1,

ASSI GN_NEW S| MPLE_LI TERAL(LI TERAL_TMP, GO CLASS I NTEGER, 1));
LI TERAL_SET I NDEX(2,

ASSI GN_NEW S| MPLE_LI TERAL(LI TERAL_TMP, GO CLASS | NTEGER 892));
LI TERAL_SET | NDEX(3,

ASSI GN_NEW S| MPLE_LI TERAL(LI TERAL_TMP, GO CLASS | NTEGER, 298));

INIT_END();

Sampl e code generated for amodule:

M S source code was read from a file and parsed into the environment. The C-code generation aso
used the decompiler to provide the MS Source code listing that is included in the following generated C-
code to document it.

/* This file inmplenents the creation of all classes in the
test2 nodule, as well as the test2 nodule itself. */

include "test2. h"
include "cgen_lib.h"

/*** A***/
/-k
class { refines Array }
i nst ance
{ behavi or
initialize:iterations: -> nethod
[:sz :iter |
sel f size: sz.
1 to: iter do:
[o0]
0 to: sz - 1 do:
[5] |
(self at: j put: j.
1.1.1.
}

-24 - Modular Smalltalk Technical Report 93-07

*/
CLASSDEF HEADER(Ad ass)
CLASSDEF VARS("Ad ass", 1, 0);
i fdef LOOKUP_DI SPATCH
CLASSDEF I NIT_HASH(1, 0, 1);
CLASSDEF_ADD_SUPERCLASS(2);
CLASSDEF SET INST(0, 29, AinitializeK iterationsK, VIS PUBLIC);
endi f
CLASSDEF MAKE(0, 1, 0O, 0, 0, 0O, 10);
CLASSDEF _ENIX) ;

BLOCKDEF HEADER(A initializeK iterationsK block 1 1)
BLOCKDEF VARS("A initializeK iterationsK block 1 1",1,0,1, BLOCK |I S LI TERAL);
MESS SEND(2);
MESS ARG 0) = CNTXT_OFFSET(CC, 0); [* CNTXT
MESS ARG 1) = CNTXT_COFFSET(CC, 0); /* CNTXT
MESS REC() = CNTXT_OFFSET(CN(CN(CC)), 0); /
SEND_MESSAGE(2, 17, -1); /* at:put: */
MESS END(O);
BLOCKDEF_DEFAULTRETURN(MESS_RESULT());
BLOCKDEF_END() ;

(0, 0) */
(0, 0) */
* ONTXT (2, 0) */

BLOCKDEF_HEADER(A initializeK iterationsK block 1)
BLOCKDEF_VARS("A_ initializeK iterationsK block_1",1,0,1, BLOCK_IS LI TERAL);
MESS_SEND(2);
VESS_SEND(1);
MESS ARG 0) = LITERAL_AT_INDEX(1); [* 1 *]/
MESS REC() = CNTXT_OFFSET(CN(CC), 1); [* CONTXT (1, 1) */
SEND_MESSAGE(1, 10, -1); [* - %
MESS _END(O);
MESS AR 0) = MESS RESULT();
ASSI GN_NEW CLOSURE(MESS_ AR 1), AlinitializeK iterationsK block_1_1,1,CC);
MESS_REC() = LI TERAL_AT_I NDEX(0); [* 0 */
SEND_MESSAGE(2, 13, -1); /* to:do: */
MESS END(O);
BLOCKDEF_DEFAULTRETURN(MESS_RESULT());
BLOCKDEF_ENIX) ;

BLOCKDEF_HEADER(A initializeK iterationsK)
BLOCKDEF_VARS("A initializeK iterationskK', 2, 0, 1, BLOCK | S METHOD);
MESS SEND(1);
MESS ARG 0) = CNTXT_OFFSET(CC, 1); /* CNTXT (0, 1) =/
MESS _REC() = CNTXT_OFFSET(CC, 0); /* CNTXT (0, 0) */
SEND MESSAGE(1, 15, -1); [* size: */
MESS END(1);
MESS SEND(2);
MESS ARG 0) = CNTXT_OFFSET(CC, 2); /* CNTXT (0, 2) */
ASSI GN NEW CLOSURE(MESS ARG 1), AinitializeK iterationsK block 1,1,CC);
MESS REC() = LITERAL_AT_INDEX(1); [* 1%/
SEND MESSAGE(2, 13, -1); /* to:do: */
MESS END(1);
BLOCKDEF_DEFAULTRETURN(MESS RESULT());
BLOCKDEF_ENIX) ;

[*** test2Modul e_anA ***/

/* anA -> { expression anA new initialize: 892 iterations: 298 } */

-25- Modular Smalltalk Technical Report 93-07

MODBLOCK _HEADER(test 2Modul e_anA)
MODBLOCK _VARS("t est 2Modul e_anA") ;
MESS _SEND(2);

MESS ARG 0)
MESS ARG 1)
VESS_SEND(O);
MESS_REC() = CNTXT_OFFSET(CC, 1); [* CNTXT (0, 1) */
SEND MESSAGE(0, -1, 0); /* new */
MESS END(1);
MESS REC() = MESS RESULT();
SEND_MESSAGE(2, 29, -1); /* initialize:iterations: */
MESS END(1);
BLOCK_RESULT() = MESS_RESULT();
MODBLOCK_ENIX) ;

LI TERAL_AT_I NDEX(2); [* 892 */
LI TERAL_AT_I NDEX(3); [* 298 */

[*** test2Mdul e ***/

MODULE_DEF(test2Modul e)

ASSI GN_MODULE_SPACE(3, "test2Module");

ASSI GN_MODULE | MPORT(0, 0, 2);

ASSI GN_MODULE _CLASS(1, Ad ass);

ASSI GN_MODULE_EXPRESSI ON(2, test2Mbdul e_anA);
MODULE_END() ;

Appendix B.

Method Dispatch Algorithms
The following definitions extend the definitions given in the ICP agorithm discussion:

execut eMet hod(D) return the result of execute the nethod for division D
divisionAt[T,C L] entry in table T at class index of C and color index L
i sC ass(O object Ois a class.

di vi si onEnpt y(D) [not division isKindO: MSEnmptyDi vision]

cl assMet hods(Q) hash table of all class nethods (as divisions)

i nst anceMet hods(Q) hash table of all instance nethods (as divisions)

sel ectorPrivatel nC ass(C, S) [if selector Sis private in class C, true else false]
maxCol or St oredFor Cl ass(C, T) maxi mum col or index stored for class Cin table T.
col or St oredFord ass(L,C T) [L <= maxCol orStoredForClass(C, T)]

Method Dispatch Algorithm For Modular Smalltalk using Two Cache Tables

execute(receiver : Cbject; args : hject; size : Integer; instSelector,
cl assSel ector : Selector) : Object

begi n
if isClass(receiver) then

set S = cl assSel ector

set T = class table
el se

set S = instSel ector

set T = inst table
endi f

set D = divisionAt[T, class(receiver), color(S)]

if ((colorStoredFord ass(color(S), class(receiver), T) and

- 26 - Modular Smalltalk Technical Report 93-07

(divisionSelector(D) == S)) then
set result = executeMethod(D)
el se
gener at e nessageNot Under st ood error.
endi f
return result
end

Class Look-up Dispatch Algorithm for Multiple Inheritance

execute(receiver : Object; args : (bject; size : Integer)
i nst Sel ector, classSelector : Selector) : Object
begi n
set D = | ookup_di spatch(receiver, class(receiver), instSelector, classSel ector)

if (not divisionEmty(D))
set result = executeMethod(D)
el se
gener at e nessageNot Under st ood error.
endi f
return result
end
| ookup_di spatch(recei ver: Object; class: Object; instSelector, classSelector
Selector) : Division

begi n
if isClass(receiver) then
set selector = classSel ector
set met hodDictionary = cl assMet hods(cl ass)

el se

set selector = instSelector

set nethodDictionary = instanceMet hods(cl ass)
endi f

find bucket K for selector S in nethodDictionary hash.
if Kincludes S,
set D= division stored for Sin K
if (selectorPrivatelnd ass(class(receiver), S)) then

if (class(receiver) != class) then
set D = enptyDivision
endi f
endi f
el se
set D = entpyDivision
endi f

if (divisionEnpty(D)) then
| oop over supercl asses(C

set D = | ookup_di spatch(receiver, newd ass)
until ((not divisionEnpty(D)))
endi f
return D

end

- 27 - Modular Smalltalk Technical Report 93-07

