University of Alberta

Simulation-Based Scheduling of Module Assembly Yards with Logical and

Physical Constraints

By

Luis Francisco Davila Borrego

A thesis submitted to the faculty of Graduate Studies in partial fulfillment of the

requirements for the degree of Master of Science

in

Construction Engineering and Management

The Department of Civil and Environmental Engineering

Edmonton, Alberta
Fall 2004

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3

Library and
Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A ON4

Canada Canada

The author has granted a non-
exclusive license allowing the
Library and Archives Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

Direction du
Patrimoine de I'édition

Bibliothéque et
Archives Canada

395, rue Wellington
Ottawa ON K1A ON4

Your file Votre référence
ISBN: 0-612-95730-6
Our file Notre référence
ISBN: 0-612-95730-6

L'auteur a accordé une licence non
exclusive permettant a la

Bibliothéque et Archives Canada de
reproduire, préter, distribuer ou
vendre des copies de cette these sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L'auteur conserve la propriété du
droit d'auteur qui protége cette thése.
Ni la thése ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou aturement reproduits sans son
autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

| Lol]

Canada

Conformément a la loi canadienne
sur la protection de la vie privée,
guelques formulaires secondaires
ont été enlevés de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Acknowledgement

The author wishes to express his sincere thanks to his two academic advisors, Dr. S.
M. AbouRizk, and Dr. M. Al-Hussein for their guidance and encouragement in the

preparation of this thesis.

Special thanks are due to my sponsors, “Becas Magdalena O. Vda. De Brockmann, A.
C.,” and to the NSERC / Alberta Construction Industry Research Chair for their
generosity and confidence towards me, as well as to my family, specially my wife

Clara for her decisive support and understanding during the years of this research.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table of Contents

Chapter 1. INtrodUCtiON .co.coviveivciririinicncniii ettt s 1
11 IMIOHIVALION ..ot eeeeeecereereste e e csae s tenraeoneeenatasimes s s e nenssaenanee srssanesnssnsasas 1
1.2 Research ObJECHVES ..cveeiveireirereeerieiee ettt ssaasrcnae s esssn s 3
1.3 Research MethOdOIOgYceveueemeencreiriercciice e 3
1.4 Organization 0f TheSiScccvevereeiiniici et 4

Chapter 2. Overview of Modularization, Scheduling, Site Layout Optimization, and

SIMUIATIONvvererrereeererinere e eere s ee e sceeseeseese st eraesaessnncosssssasesssesnssnsasen 5
2.1 Overview of Modularization...........cccoeeieeniccinicinniiniiinninsicssisnieesecescnnns 5
2.2 Scheduling and Site Layout Optimizationccccevvniininniniccnniciennnnnns 8
2.3 SIMUIATION ..ot et re et et sses e san s s raeconns et ssssesasonseas 10

Chapter 3. Proposed Methodologycccccvnnienncniiiceicieiee e 15
3.1 INEPOAUCHIONeeitieceeee ettt s rne e s b ernes 15
3.2 Proposed Methodology Main Process......cccocovvivnininiinieeniniccennenienienienen, 16
33 CONCIUSION .ovvrieiieieiieeeiiececeresreeseeieecneeesteesenassstesnesassesmnesssnesssesnsessesstos 31

Chapter 4. Implementation ... e ena s 32
4.1 INETOAUCHON .ccvvereseserr ettt st s b s ss e nssan s 32
4.2 Special Requirements of Module Assembly Scheduling Process.............. 32
43 Databaseceeeiieiiiiiierie e e st ene e 34
4.4 Modifications to Simphony’s Common Templatec.coceeevvvvrvcnninnnenne. 37
4.5 Simulation Model.......coviiieeiireerienereeree et 39

Chapter 5. Case Study AnalysiS........cccvurmeiininniiinninencce e 50
5.1 INEEOAUCHION ...eeeiceee ettt cre st s st s e s be s s snesaenees 50
52 Validation of Basic Modelcconivniininiiiiiicirecicicieienne 51
53 Experimentation with the Model (improving scheduling heuristic rules) . 57
5.4 Summary and Conclusions.......coeereiniererierinncerciecieiicnrieesese s 71
5.5 LAMEEALIONS .uveeereeeresreeereecensacesneseneeorenssesssescnsosaseessraesseesstesssacessstsnnenseessosses 72

Chapter 6. CONCIUSION. ...cc.iiieiriicmeriiiiiceeinrirere ettt eeb e saan e 73
6.1 Summary 0f ReS€archcooveeverieriivvvciimniniieniiiciniccc e 73
6.2 Research ContribUtionNscecoveeverrerieirreeeeerieerriceresereeseerresesnesssseecesenes 74
6.3 Recommendations for Future Researchccccovvcvvecceinivicnniniiniiccninnncenn. 74

RETETEIICES 1.t evveeeeeerieeeeie ettt et ae e ceee st et sat et ceesmesateseneosesnseaesases st eeaessncatonsennssnssnes 77

Appendix 1: Simphony’s Common Template Modificationscceeveeevnieininnennnn. 80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Tables

Table 1 — Number 0f Bays Per AT€ac.corvecrreuerciinenreneniieniiieniiiccistsiesc oo seeenee 20
Table 2 - Module size Types per Bay and Yard Capacity by Module Size................ 21
Table 3 - Module Type Classificationccccocevveveerrenmnnnniininnneere s 21
Table 4 - Units of Resources per SiZ€ TYPE ..ooceiveieircenviiiiiniiicii et 23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Figures

Figure 1 - System INtegrationcccooiiviiiiniiiiiiiic et 4
Figure 2 - SyStem ProCeSS....ccovvviiririiiiiiiiiiicnnn et 17
Figure 3 - System Components.......ccccveeveimiiiiniinciniiiiiiieiesiesesssesseeeesesssns 18
Figure 4 - PCL Module Yard Layout.........cccoveviviiiiiiiiniciiinneicceeeen, 20
Figure 5 - Auxiliary Attributes Used When Processing Modules on a Bay 28
Figure 6 - Model Description....c..ccoviiiiiiiininiiiiiinniseeencse s 31
Figure 7 - Query Ordered by EarlyStartDate.........ccoceiviiininnminiicicci 35
Figure 8 - Legend (Simphony’s elements used for this model) ..o, 40
Figure 9 - Simphony's Simulation Model........ccocoeciiviiiiininniiiiices 41
Figure 10 - Simulation Model Flow Chart..........ccocoeviviniininiiiicice 46
Figure 11 — Simphony’s Resources and Waiting Files Window.........cccccocoiinnniee, 47
Figure 12 - Child Window of the Capture Element when Modules are Routed to Bay

ATEA A7 et e ae s 48
Figure 13 - Child Window of the Release Element (bay space and ship per day) 49
Figure 14 - PCL’s Module Assembly Yard in Nisku, Albertaccooevvniinnnnn, 50
Figure 15 - Results in a Tabular Formatcccooviiiiiiniininiiiccnence 52
Figure 16 - CPM Schedule vs. Simulation Schedule (shipping dates) 53
Figure 17 - Primavera Project Schedule vs. Simulation Schedule............cccooeennee. 54
Figure 18 - Workload.....c.cccoereerveerircoenieiciiciiiinitsiscesse bt es s er s 56
Figure 19 - Auto-generated Layout.......c.ccocviiiiiniinininiiicc e 57
Figure 20 - PCL Module Yard Layout (bay area “A” only)cooeeirniiiccnnnnne 59
Figure 21 - CPM Schedule vs. Simulation Schedule (bay area “A” only) 60
Figure 22 - PCL Module Yard Layout (bay area “C” and “D” only)......cccovnveennie 61
Figure 23 - CPM Schedule vs. Simulation Schedule (bay area “C” and “D” only) ... 62
Figure 24 - PCL Module Yard Layout (bay area “A” and “B” only)ccovnrnnnane. 63
Figure 25 - CPM Schedule vs. Simulation Schedule (bay area “A” and “B” only) ... 64
Figure 26 - PCL Module Yard (module “A” and module “B”)....ccoovvininirininennne. 65
Figure 27 - CPM Schedule vs. Simulation Schedule (Modules are Shipped Even

‘Though the Space in front is not Empty) ..o 66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 28 - CPM Schedule vs. Simulation Schedule (Varying the Number of

Shipments per Day from Two t0 SiX)...cccccvivinneriiniiiinenniniieeniienes 67
Figure 29 - CPM Schedule vs. Simulation Schedule (One Shipment per Day) 68
Figure 30 - CPM Schedule vs. Simulation Schedule (Shipping Modules Immediately
AT ASSEMBLY) coeiiiteieriicienniereeeseee ettt st sne s nene e 69
Figure 31 - CPM Schedule vs. Simulation Schedule (Routing Modules Based on Size
Rather than TYPE)....cceveereerrrecin ettt cnnas 70

Figure 32 - CPM Schedule vs. Simulation Schedule (A Distribution Range is Given to
the DULALIONS)..eeeevee e e ertecenie e s e eeser e s sovaesreseeestee e meeasnas s 71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Abbreviations
NSERC — Natural Sciences and Engineering Research Council of Canada
CPM - Critical Path Method
FLP — Facilities Layout Planning
SPS — Special Purpose Simulation
VBA - Visual Basic Applications
N/A — Not Applicable
ACT — Activity ID
ESA — Indicates the status of a module in terms of in progress or not in progress yet
EFA — Indicates the status of a module in terms of finished or not finished yet
P — Priority
F - Float
PSD — Planned Ship Date
ESD — Early Start Date
D — Duration
TD — Today (day when the simulation is performed)
CT — Cable Tray
EM — Equipment
M — Miscellaneous
PM — Pipe Rack
S — Structural
EHT — Electrical Heat Tracing

SimTime — Simulation Time

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 1. Introduction

1.1 Motivation

Scheduling a module assembly yard is a difficult task, involving a number of factors,
which govern the ultimate decision of module allocation. Those factors comprise
physical and logical constraints imposed by the module yard as well as heuristic,
experience-based scheduling rules used by superintendents. The module fabrication
industry needs advanced tools and techniques for planning scheduling module
assembly yards effectively. Allocating modules within a yard is a time-consuming
task that must be improved. Module allocation must manage the constantly changing
delivery dates and definite shipping dates by performing regular and weekly updates.
In a module assembly yard, the type of scheduling problem is mainly determined by
the allocation of each module within the yard (a module yard is divided into “bays”
and each module occupies a fraction of a bay), the start and finish times of each
module, and by ensuring that no constraints are violated. In addition, finish times
need to be minimized since module shipping dates depend on them and likewise the
yard usage must be maximized. Therefore, there is a need to develop a method that
will assist the scheduler in distributing the modules in the assembly yard, improve the
maintenance of the project schedule, perform regular (weekly) updates, and maximize

yard utilization.

Two approaches can be used for solving scheduling problems: optimization or
approximation. Optimization methods, which aim to find precise solutions using
mathematical algorithms, are often unable to achieve feasible solutions to large
problems due to the excessive computing requirements (Chong et al. 2003).
Approximation algorithms do not always give an optimal solution; however, the
solutions provided do improve results. Priority dispatch rules are perhaps the first
approximation techniques used (Panwalkar and Iskander 1977). A dispatching rule is
simply a rule of thumb giving priority to a particular order selected from among the

many available orders at any stage. Simulation-based approaches are derived from

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

dispatching rule-based approaches. Simulation-based scenarios employ resources to
make decisions. When one of these resources becomes available, one or more
dispatching rules may be used to make a decision (Banks 1998). Banks (1998)
showed that scheduling problems generally must include restrictive assumptions in
order to be solvable. When scheduling module assem‘bly yards the following

restrictive assumptions are applied:

1. Each module is an entity; no more than one module can be processed at the
same time and in the same space.

2. There may be no preemption; once the fabrication of a module has started, it
must be completed before another module can begin its fabrication in the
same space.

3. There may be no cancellations; the assembly of modules must be brought to

completion.

The fabrication of modules must be continuous.

A specific space may not be assigned to more than one module at a time.

A particular bay’s space is available throughout the scheduling period.

NS ok

The technological constraints behind the assembly process are known in
advance and are immutable.
8. There is no randomness in the following items, however randomness may be
incorporated to test if/then scenarios:
a. The number of modules to assemble is known and fixed.
b. The number of bays is known and fixed.
The fabrication times are known and fixed.
d. All other quantities needed to define a particular problem are known
and fixed.

An operation’s start and finish times for each job waiting to be processed must
respond to the technological constraints approximating to a good solution but not
always ensuring optimality. Each job is defined by its operations, processing times,

and due dates. In a deterministic scheduling problem, numeric quantities such as

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

processing times and due dates are assumed to be known in advance. However, most
numerical quantities are not known in advance in real life; therefore, they are
stochastic (subject to randomness). When facing deterministic-static problems with
known data in advance, optimization-based approaches are more convenient.
Nevertheless, simulation-based approaches are more useful when the data in not

known in advance.

1.2 Research Objectives

The main objective of this research is to provide both a solution and improvements
for the module yard scheduling practices. This goal will be accomplished through the
development of a simulation model that contractors can use for finding appropriate
solutions for module distribution and project schedule maintenance, and to maximize
yard utilization.
The solutions will provide:

e A tabular format providing start date, finish date, ship date, location of

module within yard, and location of module within bay.
e An auto-generate layout, which is a useful tool for the scheduler since the

location and starting time of each module will be provided.

1.3 Research Methodology

To achieve the objectives a simulation-based technique has been developed. The
problem is suitable for a simulation-based technique because:
e Physical and logical constraints as well as heuristic scheduling rules that
superintendents use in real life can be implemented within the model,
e The process is based on the availability of resources, and
e Many different scenarios can be tested in order to obtain the one providing the
best performance based on the accomplishment of delivery dates.
The new methodology provides a simple and easy-to-operate tool for module
allocation and scheduling. This methodology has been incorporated into a computer
system integrating the given information in a database format, through data

processing using Visual Basic Application in Excel, and by means of the simulation

3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

model developed using Simphony (AbouRizk and Hajjar 1998). The system

integration is illustrated in Figure 1.

Existing Data

@ Database
Data Processing

VBA
Simulation
Simphony
Analysis of Results |
® VvBA

VBA

Figure 1 - System Integration

1.4 Organization of Thesis

In Chapter 2, a brief introduction to modularization (scheduling), the optimization of
site layout, and simulation is presented. In Chapter 3, the design and development of
the simulation-based technique for the module allocation problem is presented. In
Chapter 4, a plan for implementation is presented followed by a case study approach

in Chapter 5. Finally, Chapter 6 highlights the conclusions and recommends areas for

future research.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2. Overview of Modularization, Scheduling, Site Layout

Optimization, and Simulation

2.1 Overview of Modularization

In conventional construction methods, building components, such as equipment,
piping, valves, and platforms, are fabricated at each vendor's factory and then
individually transported and installed in accordance with the installation plan.
Customers are demanding cost reductions and shorter construction time, in order to
meet this demand, modularization technology is required (Maru and Kawahata 2002).
Modularization nowadays is viewed as an enhancement of projects including
construction, industrial, and governmental. Maru and Kawahata (2002) have
described modularization as a plant construction technique that simplifies installation
work by using modules. A module is made up of pre-assembled components, such as
equipment, piping, valves, and platforms. Those modules are then transported by rail,
by ship, or by ground to their final location. The benefits of using modularization are
numerous: opportunities for shorter schedules, lower cost, less risk, increased quality
and greater construction flexibility for engineering, procurement, and construction
(Burke, G. and Miller, R. 1998). Modularization is widely chosen due to the
improvement this provides on schedule, quality, cost, and safety. However,
customization cannot be completely eliminated from modularized design. There will
always be site-specific issues necessitating modifications to reflect site-specific and
client-specific requirements. The objective of modularization is to minimize the
amount of time and effort devoted to customization on-site, and to reduce overall
project cost (Schimmoller 1998). Preassembly and prefabrication is the wave of the
future in industrial construction. Contractors and engineers around the world are
realizing the benefits of cost savings, time savings, increases in work safety and
equipment quality, and the increased production that may be achieved with
modularization. Maru and Kawahata (2002) have identified four main areas as

advantages of modularization:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1) Shorter construction duration: Having modules arriving to the construction site
ready to be installed instead of performing the whole construction on-site has greatly
improved construction duration. This improvement has been achieved due to the
advantage of having modules under fabrication and assembly at the same time that

on-site construction occurs.

2) Reduction of the number of workers at sites: Workers are divided into two job
sites: the construction site and the module assembly site. Therefore, there is no longer
the problem of having a large amount of workers on one site; each site is now less

congested and the work conditions are more suitable for higher performances.

3) Improvement of safety and quality: Safety improvement is achieved due to the
well-established safety controls that fabrication shops possess. Fabrication shops have
a controlled environment; repetitive work allows workers to do the work faster and
more safely. The module units are constructed in tight conditions. Therefore, a poor
quality finish and the overall waste are minimized while savings are achieved. Having
an efficiently designed and clean environment with good visibility permits workers to
perform at their best level. Quality control is best executed in a fabrication shop
ensuring that modules are finished correctly every time. Durability and reliability of
modular construction is a reassuring factor for any owner.

4) Reduction of construction cost: Modular construction greatly reduces construction
cost. The cost of labor off-site is lowered as is the total number of labor hours. These
reductions are achieved by having fewer days working on a remote location, thereby
lowering on-site administration costs. Performing hot work in the fabrication shop
saves money since it is a type of work that can be costly in some locations. Finally,
weather is a factor that influences the cost dramatically. Building the modules and
having them shipped to the remote and rough weather location saves money as well

as time.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Modular Construction in Northern Alberta

The Alberta oil sands are the world’s largest producers of crude oil from sands and
are the largest source producer in Canada. The oil sands are located near the city of
Fort McMurray, Alberta and their operations are based on the Athabasca Oil Sands
Deposit. The products depend strongly on modular construction facilities to meet its
industrial needs. Maximizing the relocation of construction work hours away from
Fort McMurray lowers costs, relieves the impact on base plant operations and on the
community, and enhances construction safety. This relocation has been accomplished
through an extensive modularization and preassembly program away from the
worksite. A full module program results in significant direct and indirect cost savings.
Labor outside of Fort McMurray is cheaper, compensation cost is reduced by
increasing safety, savings in time reduce overall project costs, earlier market entrance,
and savings in quality control, among others, assure direct and indirect cost savings.
A formal Modular Design and Fabrication specification assure consistency of design

on the project.

The Edmonton area has been the focus for module assembly and material marshalling
due to its vast labor and transportation capabilities for northem Alberta. Module sub-
assemblies fabricated outside the Edmonton area are shipped to Edmonton for
installation in modules. The industrial sector of PCL is devoted to module
construction in the Edmonton area. PCL’s Pipe Fabrication and Module Assembly
Yard are located in Nisku, Alberta. The Nisku PCL facility can produce up to 1000
tons of fabrication per month. Pipe and equipment racks, process skids, and building
units are some of the modules assembled in PCL’s module assembly yard (PCL
2003). PCL built over 300 modules in 2003 and expect its fair share of the upcoming
large oil sands projects. The modules fabricated in 2003 are 100% complete, fully
tested, insulated, fireproofed, and signed-off by Quality Assurance and Quality
Control prior to shipment from Edmonton to Fort McMurray. All modules are road
transportable. Their dimensional window is 24ft (7.32-m) wide, 291t (8.84-m) high
(loaded height), and multiples of 20ft (6.10-m) long. Weight limitations for highway

transport are determined based on bridge capacities, transporter configurations, and

7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

seasonal highway load restrictions. These projects are an example of achievement and

success within the modularization industry.

2.2 Scheduling and Site Layout Optimization

Scheduling Uncertainty Simulation and Optimization: Many subcontractors believe
that real savings in time and money are found only in actual construction rather than
through the application structured procedures for construction project management
such as cost estimation, planning, scheduling, and/or control (Hegazy and Ersahin
2001). One of the most important tasks of a project manager is to optimize the
construction schedule even when the total duration has already been determined. To
achieve this goal, the project manager must consider a mathematical model in which
the constraints and limitations may be more fully considered (Li 1996). All the
projects have a certain degree of uncertainty in their executions. It is impossible to
know with certainty and in advance which factors will play a roll in determining the
duration of a project. Therefore, uncertainty is a huge factor influencing the
performance of a project and its final success (Laufer 1996). Contingency plans are
commonly done to take into account the reality of the uncertainty, the execution of
these plans depends on several conditions. In spite of the diverse factors that
influence a project, formal techniques for incorporating indeterministic conditions
into scheduling have been recently developed, although they have not proved a
popular choice. The interpretation of scheduling results as being a function of the
project’s probability and the need to use computers for certain of the available
techniques have contributed to the overall lack of dissemination in scheduling
research. For several reasons effective schedule optimization has not been achieved
due to the complexity of projects, the difficulties associated with modeling all aspects
combined, and the inability of traditional optimization tools to solve large-size

construction schedule problems (Hegazy and Ersahin 2001a).

Site Layout Optimization: Yeh (1995) defined construction site layout as the design
problem of arranging a set of predetermined facilities on a set of predetermined sites,

while satisfying a set of layout constraints and optimizing layout objectives.

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Construction site layout is essential to any project and has a significant impact on the
economy, safety, and other aspects of a project (Mawdesley et al. 2002). Efficient
layout planning of a construction site is fundamental to any successful project
undertaking. The project manager or planner usually performs the task of preparing
the site layout based on his or her own knowledge and expertise (Osman et al. 2003).
Site layout planning is a complex problem that researchers have attempted to solve
using a variety of optimization-based and heuristic-based techniques (Hegazy and
Elbeltagi 1999). The task of site layout has a very dynamic relationship with the other
preplanning tasks such as schedule development, selection of construction methods,
procurement planning, workforce planning, material planning, equipment planning,
and financial analysis (Cheng and O’Connor 1996). According to Hegazy and
Flbeltagi (1999), the basic consideration in an effective site layout plan is the smooth
and low-cost flow of materials, labor, and equipment within the site, in addition to
satisfying the various work constraints and safety requirements. Hegazy and Elbeltagi
(2001) suggested that layout planning could be viewed as a complex optimization
problem resulting in many engineering applications ranging from the layout of
manufacturing plants to the design of computer chips. They also pointed out that early
models were based solely on mathematical optimization techniques and were
successful in laying out only a single or a limited number of facilities due to the

complexity of problem formulation.

Tan and Leung (2002) indicate that the layout planning of construction site facilities
has a significant impact upon productivity, costs, and duration of construction. They
also mentioned that although facilities layout planning (FLP) is such a critical process
in construction planning, a systematic analysis of construction site layout is always
difficult because of the presence of a vast number of trades and inter related planning
constraints. The authors also noticed that practitioners of the construction industry
lack a well-defined approach in construction site layout planning. For these reasons,
the practitioners stated that FLP optimization using the scientific approach is nearly
impossible to achieve. The FLP of construction sites has been carried out mainly

through human judgment. Because of this human involvement, there are no

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

conditions present that will lead consistently to the same resuit. To overcome the
above problems, researchers have used mathematical and computing techniques in an

attempt to arrive at an optimal solution (Tam and Leung 2002).

2.3 Simulation

Simulation can be simply defined as building a mathematically logical model of a
system and using the model for experimentation using a computer. However,
simulation in its broadest sense means imitating or representing reality (generating
events before they occur) (Oglesby et al. 1989). The ideal objective of computer
simulation is to optimize system performance. Creating a simulation involves the
following steps (Web 1, 2004):

e Defining the system (well-defined boundaries)

e Modeling the system (system of equations, graphical modeling)

e Input and output analysis

e Validation/verification

Computer simulation is a valuable experimentation tool well suited to the study of
resource-driven processes. It gives the analyst insight into resource interaction and
may assist in identifying those significant factors in problematic domains. Simulation
allows the modeler to experiment with and evaluate a variety of scenarios. Normally,
such experimentation and study would be too costly to be carried out in the real

world.

When dealing with the construction of facilities such as highways and buildings,
construction engineers confront certain aspects of production that an industrial
engineer faces daily. Industrial production can be done repetitively due to the
characteristics of the products and of course to its production volume. Construction
engineers are involved in developing and efficiently designing productive
construction methods and processes. The uniqueness of the construction projects
involved and the apparent lack of repetition throughout are perhaps reasons why the

concept of studying work processes did not receive much attention until the late

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1960s. At this moment it was recognized that although projects are typically unique,
many construction processes such as earth moving, dewatering, and tunneling are
repetitive and amenable to closer investigation. With the emergence of computer
technology, the application of more sophisticated analytical methods has become
increasingly accessible. Simulation of construction processes for establishing the
anticipated levels of production and to solve certain problems related to the
randomness of construction operations has become more widely accepted as a tool
available for use in planning and estimating (Web 1, 2004). Simulation has the great
advantage of predicting levels of production and of solving the randomness of

construction operations.

Adapted by Teicholz in 1963, the "link node" model was the first method used.Au et
al. (1969) suggested a construction bidding game in the late 1960s. This application is
among the very first random number method related to gaming. It is still used at
several universities for teaching purposes. Halpin developed the CYCLONE format
at the University of Illinois (1973). CYCLONE is now the basis for numerous
construction simulation systems. CYCLONE simplified the simulation modeling
process and became accessible to people without a construction simulation
background (Web 1, 2004). In 1973, Halpin and Woodhead developed at the
University of Hlinois the CONSTRUCTO project management game integrating the
effects of weather and labor productivity into the management of projects in a
network format (Halpin and Woodhead 1973). Another simulation tool (Cost Control
Simulation - CCS) was developed by Borcherding (1977) at the University of Texas.
CCS’s objective was to develop a computer model for analyzing the financial aspects
of a construction project. More recently, the concepts of the bidding game and the
project management format have been integrated into an educational game, Superbid,
at the University of Alberta (AbouRizk 1992). One of the most recent simulation
tools is Simphony developed by AbouRizk and Hajjar (1998).

Simphony: The effective use of simulation within the industry is best done through

the specialization and customization of models. Special Purpose Simulation (SPS) is a

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

proven principle that can lead to the effective transfer of simulation knowledge to the
construction industry. Simphony simplifies the SPS tool development process and
standardizes the simulation, modeling, analysis, and integration features of such tools.
It provides an environment that tailors to the needs of both novice and advanced
simulation tool developers and users (Hajjar and AbouRizk 1999). Simphony is a
Microsoft Windows-based computer system developed with the objective of
providing a standard, consistent, and intelligent environment for both the
development as well as the utilization of construction SPS tools. Developers can use
Simphony to implement highly flexible simulation tools, which support graphical,
hierarchical, modular and integrated modeling. Users have access to a single program,
which allows them to build simulation models in an intuitive and user-friendly
manner (Hajjar and AbouRizk 2002). Results can be viewed as part of the graphical
user interface or exported for use by external systems such as estimating and

scheduling programs. Simphony is characterized by the following functions:

1. Modular and hierarchical modeling for the representation of complex and
large construction projects,

2. Both general purpose modeling constructs as well as specialized templates
for specific construction methods,

3. Extension of SPS tools through the construction of models based on
several templates,

4. Generation of custom output results in tabular and graphical formats,

5. Automated generation of externally accessible project planning data in a
standard format,

6. Script-based modeling for accommodating advanced users wishing to
bypass the graphical user interface, and

7. Storage and retrieval of commonly-used simulation model structures in the

User Model Library.

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Simphony Overview and Basic Features: (Simphony’s User Guide AbouRizk 2000)

Simphony represents an evolution in computer simulation and its integration into the
construction industry. It is the result of over five years of research in the application
of simulation-based planning techniques in the industry. Simphony consists of a
foundation library, as well as specialized computer programs that allow for the
development of new construction simulation tools in an efficient manner. Simphony’s
promise is that, as a user, there is no need to posses any simulation background in
order to take advantage of the benefits of simulation. When building models, there is
access to a domain-specific set of building blocks, denoted “Modeling Elements”.
This means that the creation of a simulation model is done using a library of
modeling elements with names to relate. There is a large library of modeling elements
that are available with the base distribution of Simphony. If any of the existing
modeling elements are not flexible enough to meet certain modeling needs, or if new
modeling elements are needed to be developed for different construction operations,

then a developer can extend the library.

Modular and Hierarchical Modéling: The main model building block in Simphony is
the Modeling Element. The user builds a simulation model in Simphony by creating
instances of modeling elements that resemble real components of a construction
system, and linking them together in ways similar to those that exist in a real system.
For representation of complex and large construction projects, Simphony provides a
hierarchical modeling feature. A project can be represented by an abstracted model at
the higher level that contains a limited number of modeling elements and relations. At
a lower level, each of these elements can have its own child model, which represent
the sub-system working inside that element. The number of these hierarchical levels
is only limited by the computer system’s resources.

General Purpose vs. Special Purpose Simulation (SPS): Simphony supports both
general purpose modeling constructs (e.g. CYCLONE) which can be used to model
different construction processes, as well as specialized templates for specific
construction methods (e.g. Earth-moving and aggregate production) which are

suitable for users with little simulation background.

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Integration of SPS tools: Simphony allows the extension of specialized SPS tools
through the construction of models based on several templates.

Custom Output Results: Simphony modeling elements can generate custom output
results in the form of tables and graphs.

Automated Generation of Project Planning Data: Project planning data regarding
costs and time can be automatically generated by Simphony during simulation and
presented to the user in a standard format.

Script Based Modeling: Script based modeling allows advanced users wishing to
bypass the graphical user interface to write a script to be processed by Simphony to
handle advanced simulation behaviors.

User Elements: Simphony allows storage and retrieval of commonly used simulation
model structures, known as “User Elements”, in the User Elements’ Library. These
elements represent certain modeling elements with complex internal structures or
special parameter settings that are commonly used.

The application of simulation: Senior (1995) proposed an algorithm built on the
Cyclic Operation Network Technique (CYCLONE) (Halpin 1973; Halpin and Riggs
1992), a discrete-event simulation method oriented to construction applications, to
compute task late-time and float information. Since late-time information has been
used in the critical-path method (CPM), the availability of this information in a
simulation technique could make the application of simulation more commonplace in
construction practice. AbouRizk and Hajjar (1998) presented an approach to facilitate
the adoption of simulation by the industry as they recognized the limited use of
simulation by construction industry. This approach was based on special purpose
simulation. They defined SPS as a computer-based environment built to enable a
practitioner who is knowledgeable in a given domain, although not necessarily in
simulation, to model a project within that domain in such a way that symbolic
representations, navigation schemes within the framework, the creation of model
specifications, and reporting functions are completed in a format native to the domain
itself. The basic philosophy of special purpose simulation is that systems should be
built for a specific target group. This philosophy obviously produces relatively

restrictive tools, which can only be used within the intended application domain.

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3. Proposed Methodology

3.1 Introduction

Based on the review of modularization, scheduling, site layout optimization, and
simulation, it is evident that an automation methodology is required to solve the
module assembly yard scheduling-layout problem. A simulation model seems to be
an appropriate approach. The approach involves the following physical and logical

constraints as well as the heuristic rules that superintendents use in actual practice.

Physical and logical constraints:

e Module yard layout is fixed,

e Number of workers is fixed,

e Modules may only be shipped when the space in front of them is totally
empty, and

e Maximum number of shipments per day is fixed.

Heuristic rules:

o After completion, modules may wait a maximum of “n” days for shipment,

e Module routing for allocation follows certain preferences including the type or
the size,

e Once a module has been routed to a specific area, the work flow will be front
to back (starting from bay # 1 to bay # n),

¢ Duration and dates are fixed, and

e Priority logic is employed — module with least amount of float will be given

higher priority for assembly.

General purpose simulation constructs are used to model these constraints and

heuristic rules.
15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.2 Proposed Methodology Main Process

System process: Simphony (Hajjar and AbouRizk 2002), a SPS computer-based
environment, was used to create the simulation model for this Module Assembly
Schedule. This approach introduces a newly developed methodology, which utilizes a
simulation technique for module scheduling and for optimizing the assembly yard
utilization. The model integrates a database, simulation (Simphony), and Excel’s
built-in visual basic applications (VBA). The raw data provided by the company is
stored in the database. This raw data contains those inputs used by the simulation:
yard size, yard layout, yard capacity, number of bays, module types, module sizes,
durations, early starts, and planned shipping dates. The priority for each module is
calculated based on planned shipping dates, early start, and the actual date when the
simulation takes place. The criteria ruling the allocation of the modules (physical and
logical constraints, and heuristic rules) is incorporated with the simulation. The
results include a tabular format containing start, finish, and shipping dates, a
comparison chart between the previously planned schedule and the simulation
schedule, and a module allocation layout chart. The system process is illustrated in

Figure 2.

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Inputs System Process Crterta
E}ésﬁng Data P?‘éog'ity iggiﬁ
Yard layout (Database) Shipment when
. n the space in
. taP
Yard capacity Data (\gsssmg front is empty
Number of bays rm—— No. of maximum
Module type [(Simphony) @i waiting day§
Analysis of Results az:;:: :;et;?
(vBA) shipments per day
Early starts i?:;goi‘ 'i(‘zg%’t Routing preference
Planned ship e— Work flow path
Comparison Charts Lgyout (ti;? e and
o Mg) ay to allocate
(start, finish, ship) O 9inal vs SImulatedR 4. les within yard)

Figure 2 - System Process

System Components: The database functions as the mediator for the proposed system.
Simphony reads the inputs provided by the database (inputs are both provided directly
by the company and calculated using Excel-VBA), the list of results are then shown
in the Simphony model itself and back in the database, and the comparisons charts
and layout are auto-generated using Excel-VBA. The system components are

illustrated in Figure 3.

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

< DATABASE

Raw Data

Calculated Data

A Comparison (Zimrtg

Queries

Tables of Results

& Layouts)

MW

Figure 3 - System Components

System limitations: Banks (1998) showed that scheduling problems generally require

restrictive assumptions in order to be solved. The following seven assumptions are

adapted when scheduling module assembly yards:

1.

Each module is an entity. Only one module may be processed at a time in a
specific space.
There may be no cancellations. Once the fabrication of a module has started, it
has to be completed before another module can start its fabrication on the
same space.
The fabrication of modules must be continuous.
A specific space within a bay may not fabricate more than one module at a
time.
Bay’s space is available throughout the scheduling period.
The technological constraints are known in advance and are immutable.
The following four items are known and fixed:

a. Number of modules to assemble

b. Number of bays

¢. The fabrication times are known and fixed.

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

d. All other quantities needed for defining a particular problem.

An operation’s start and finish times for each job waiting to be processed must satisfy
certain technological constraints, and must accomplish optimality. Each job is defined
by its operations, processing times, and due dates. In a deterministic scheduling
problem, numeric quantities such as processing times and due dates are assumed to be
known in advance. However, unknown (stochastic) parameters are inherently subject
to randomness. Scheduling a module assembly yard is a difficult task, which involves
a number of key factors governing the decision of module allocation including the
type, the size, the start date, the duration, and the planned ship date of the modules.
Currently this process is carried out manually and based solely on the experience of
the foremen. The proposed methodology presented in this thesis was applied to a PCL
module yard located in Nisku, Alberta.

Yard characteristics: As shown in Figure 4, the PCL Module Facility is divided into
4 areas (i.e. A, B, C, and D). Each area contains between 4 and 14 bays (see Table 1).

In total there are 36 full bays and 3 half bays. Each full bay is 260-feet (79.25-m)
long where Half Bays are 130-feet (39.62-m) long.

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

S
%

Figure 4 - PCIL Module Yard Layout

Table 1 — Number of Bays per Area

No. of Bays Bay Number
Bay Area “A” | 14 Full Bays Bay Al to Al4
Bay Area “B” | 12 Full Bays Bay Al to Al4
8 Full Bays Bay C1 to C4 Bay C6 to C9
Bay Area “C”
1 Half Bay Bay C5
2 Full Bays Bay D1 to D2
Bay Area “D”
2 Half Bays Bay D3 to D4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission

20

The number of modules in a bay is a function of the available sizes and types of
modules present; Table 2 lists the quantity of modules that each bay can contain. In
addition, Table 2 lists the module yard capacity ranging from 75 to 186 modules,

which is also a function of the module types and sizes.

Table 2 - Module size Types per Bay and Yard Capacity by Module Size

Module Size Class Module Size Quantity Capacity of
(Feet) Full Bay Half Bay Yard
A 0 -20° 10 p 375
B 217 —40° 5) 136
C 41’ - 60 3 1 111
D 61’ —80° 3 1 11
E 81° — 100’ 2 1 =3
F 101 - 1202 2 1 73
G 1217 - 140° 1 N/A 72
H 141° - 160° 1 N/A 36

Module Classification Procedure

To simplify the process of module assignment, modules are categorized into five

classes based on their type (see Table 3).

Table 3 - Module Type Classification

Type Class | Module Type
“C1T” Cable Tray
“EM” Equipment

“M” Miscellaneous
“PM” Pipe Rack
“S” Structural Only

The specifics of the case were analyzed as invariable constraints for the project
schedule. Those constraints need to be determined by a group of experts such as the

scheduler and the project manager. The simulation allows us to test different

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

scenarios in which the constraints assumed at the beginning of the project are
changed and proper evaluation of each of those scenarios is undertaken to determine a
better combination of constraints to be used once it is possible for the company to
make those changes. The following assumptions apply to the first scenario:
e Module yard layout is fixed,
e Resources (man-hours) not taken into account,
e Modules may only be shipped when the space in front of them is completely
empty,
e Maximum number of shipments per day is six,
e After completion, modules may wait a maximum of five days for shipment,
o Module routing for allocation follows certain preferences; in this case they are
routed according to their type,
e Once a module has been routed to a specific area, the work flow will be front
to back (starting from bay # 1 to bay # n),
e Duration and dates are fixed, and
e Priority logic is employed; that is the module with the least amount of float

will be given higher priority for assembly
Simulation Model Development.

1) Setting the database to integrate with the simulation module

The database contains the information necessary for the simulation model. It consists
of fields (columns), which will be expressed as “attributes” in Simphony, and records
(rows) representing modules, which will be expressed as “entities” in Simphony. The
first fields contain the data needed for the simulation: ACT (Module ID), durations
(each subtasks has a different duration), TypeClass, UnitsRequested (attribute derived
from the size type and the number of modules that each bays could contain), number
of workers (each subtask has a different number of workers), EarlyStartDate, ESA
(attribute that specifies whether the module has begun or not), PlannedShipDate, EFA
(attribute to specify whether the module has finished or not), WaitingDays (attribute

that specifies the maximum allowable number of waiting days that a module can wait

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

for shipment), and priority (attribute that define the priority of each module at the
time of fabrication). The information contained in these attributes is known almost
completely in advance. However, the attribute “UnitsRequested” was derived from
the size type and the number of modules that each bay could contain. Space is
represented as resources. To standardize all the bays, a fixed number of resources
(space) is calculated. This fixed number is calculated based on the quantity of
modules that a bay can contain depending on the module type sizes. The number of
modules that a bay can contain ranges from ten of the smallest modules, size type “A”
(0’ — 20°), to only one of the largest modules, size type “H” (141° — 160’). Based on
the number of modules that a bay can contain (quantity) depending on their size
types, the minimum number of virtual resources needed to simplify the simulation
process has been identified. This number has been found to be 30. A module size type
“H” requires 30 units (resources) for fabrication, which means that it requires the
whole bay, and a module size type “A” requires only 3 units (resources) for
fabrication, meaning that it only requires 1/10 of a bay. Those virtual resources do not
represent exact units such as feet or meters, etc. Table 4 shows the number of virtual
resource units (“UnitsRequested”) that a size type needs based on the number of

resources that a bay can contain:

Table 4 - Units of Resources per Size Type

Size Type Quantity | Units Requested Ne. Reso?;;&;s per Bay

A (0’ —20°) Modules 10 3 10*3=30
B (21’ — 40°) Modules 5 6 5*6=30
C (41" — 60”) Modules 3 10 3%#10=30
D (61’ — 80”) Modules 3 10 3*10=30
E (81’ — 100’) Modules 2 15 2*%15=30
F (101° - 120”) Modules 2 15 2*%15=30
G (121’ — 140’) Modules 1 30 1*30=30
H (141° - 160’) Modules 1 30 1*#30=30

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Finally, the attribute, “priority,” is calculated based on whether or not the module has
already started. If the module has not started yet then the priority is equal to “P.” “P”
is equal to 500 - (Float “F” + Absolute Value of the minimum of the floats, abs (min
(F)). “F” is equal to (PlannedShipDate “PSD” — EarlyStartDate “ESD” — Duration
“D”). If the module has already started, then a calculation must be performed to
ensure that its priority is higher than the priorities of the modules that have not yet
started. The calculation by adds the difference between the day when the simulation is
performed, “TD,” and the EarlyStartDate, “ESD,” to the maximum of the “P” among
the modules that have not started their fabrication yet, max (P). This equation will
assign the highest priorities to those modules that started at the earliest time. “500”
has been chosen as an arbitrary number to ensure that “P” remains positive. The

calculation of the priorities is expressed in the following equations:

Calculation of priority (P) for modules that have not started fabrication vet:
P =500 — (F + abs (min (F)))

Where:
F=PSD-ESD-D
F = Float

PSD = PlannedShipDate
ESD = EarlyStartDate

D = Duration

Calculation of priority (P) for modules that have already started fabrication:
P = (ESD — TD) + max (P)

Where:

ESD = EarlyStartDate

TD = Today (day when the simulation is performed)

Max (P) = Maximum “P” among the modules that have not yet started fabrication

All these calculations are done in Excel and exported automatically to the database.

There are other seven fields needed to perform schedule updates. These fields are:

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Bay (attribute that specifies in which bay where is the module being built), BaySize
(number of total space units that the bay where the module is being fabricated has),
Task (subtask in which the module 1is currently in progress),
NoOfDaysAlreadyOnTask (number of days since the subtask started),
NoOfDaysSinceStart (number of days since the fabrication process started),
No_of Modules Behind (number of modules behind the current module in the same
bay), and No_of Units Occupied Behind (number of space units occupied by the
module or modules behind the current module). Since the simulation is intended to be
capable of performing regularly updates in these seven fields the user must enter the
information regarding the modules that are under fabrication at the time of the
schedule update. The rest of the fields only have the attribute name but no data at the
beginning of the simulation. Once the simulation has run, those fields will use the
new processed data. These fields include Space in frontr (attribute determining the
space available for hosting more modules), Start (the expected start date for the
process and the starting time of each subtask), Finish (the expected finishing date for
the process and the finishing time of each subtask), and Shipping (the expected
shipping date of the module).

2) Identifying Finished Modules

The first step within the simulation is to identify the modules that have started and
also finished fabrication by the date when the simulation takes place. The modules
that finished their fabrication process before the simulation started simply record the

starting time and finishing time since there is no need to process them again.

3) Identifying Started Modules (Modules that are already under fabrication)

The modules that have already started their fabrication process need to be placed on
their respective bays where they are been fabricated. With the information about Bay,
Task, NoOfDaysAlreadyOnTask, NoOfDaysSinceStart, No_of Modules Behind, and
No_of Units Occupied Behind the correct placement of each module is done. These
modules will now be placed on their respective bays, ensuring that the simulation will

start placing modules only where bays have empty assembly space. The modules that

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

have started their assembly process previously to the simulation will join the
simulated fabrication process at the subtask in which they are currently under

fabrication.

4) Identifying Type Class

The modules that have not yet started fabrication are routed to a particular area,
which will depend on the Type Class. In this case, it was assumed that the TypeClass
“PM” are preferably routed to Bay area “A”, TypeClass (“EM”) will be routed
preferably to bay area “B,” while TypeClass “CT” is preferably routed to bay area
“C,” TypeClasses “M” and “S” are both preferably routed to bay area “D.” In

addition, routing could also be a function of “UnitsRequested” (size).

5) Looking for Space to Assemble

Once a module has been routed to a specific area it is necessary to check whether
there is a bay that could contain the module during its assembly process as well as the
availability of labor to perform the first subtask of the assembly process. More than
one module may arrive and request resources for assembly at the same time; in such a
case, the assembly priority for these modules is based on the value of each module’s
attributed “Priority.” The modules request resources based on the highest priority.
Modules request an available bay for assembly and “Manhours” for the first subtask
of workers. The space is assigned to that module, which possesses the highest priority
and that will satisfy all the assembly constraints. This location will be the closest
empty space available for assembly within a bay area starting from the number 1 to
the last number; (a module routed to Bay Area “A” will be assigned to the closest
empty available space among Al to A14 starting by Al, see Figure 5). The number of
resources (space) that each module requests is determined by its attribute
“UnitsRequested.” Four auxiliary resources types are needed in order to keep track of
vital information used during the assembly process such as the finishing times of the
modules behind in the same bay, the number of modules already in the bay, and the
amount of space available for more modules in that bay. These new resources types

are “EndBackModule,” “FinishCurrentModule,” “ModuleCounter,” and

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

“SpacelnFront.” “EndBackModule” keeps track of the module’s finishing time in the
back of a bay. “FinishCurrentModule” keeps track of the module with the latest
finishing time in a bay. “ModuleCounter” records the number of modules in one bay.
“SpaceInFront” tracks whether there is available space in front of the current module
to fabricate more modules. “EndBackModule” and “FinishCurrentModule” have to be
initialized at the beginning of the simulation with a very high value to ensure that
when the bay is empty it frees up resources for assembly. This high number, normally
set at 1000, ensures that no matter which module arrives to a bay, its finishing time
will be shorter than the finishing time of the virtual module in the back of the bay.
This association only occurs when the bay is empty, that is, when the bay has at least
one module, then the values given are those expected finishing times. Once a module
is assigned to a bay, those values will be updated with the simulated finishing time.
At this point, each module requesting space for assembly will also check the finishing
time of the module to ensure that it does not exceed the finishing time recorded for
the module in the back of the bay and for the module with the highest finishing time
in that bay. When a bay is completely empty again, the values for “EndBackModule”
and “FinishCurrentModule” will take the high initial value that they had at the
beginning of the simulation. “ModuleCounter” is initialized with a value of zero since
the bays are empty at the beginning of the simulation. Each time a module is placed
in a bay, the “ModuleCounter” increases by one unit and every time a module leaves
the bay the “ModuleCounter” is decreased by one unit. “SpacelnFront” takes the
initial value of one (1), representing the empty space available for modules in a bay.
The initial value is zero (0) when all the resources in the bay are occupied and there is

no more available space to host more modules (see Figure 5).

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Backof the Bay Frout of the Bay
{ ¥irtnal Medule
i EndBadkModula= H60
} PinishCorendindids = 1060
FEngrly Bay (ut oo oqual o 5)
Baclkof the Bay Frowtof the Bay
| Eavigitmriiste= 3
H Dugwtinn = ¥4
) Finieting Timeo 60
i 3&% e BniBastdlodide
} i wF i dCorentilodula
Cure Bloduie on the Bay
Bock of the Bay Fromt of the Bay
3 Viroast Modulo EabStaate= S
| EndBsckModds - 1000 Deation = 36
: Finpuine Time 50
| FridCureiMosdes 00 [oiiCRMedl i :
e 2 MMMsantkem
Back of the Bay Fromt of the Bay
U e Emivitariyate= 19 EatySacirae = 10 TatRtertoate= 15
D e M o0 | Duiion= 4 Duration = 45 Duration= 30
H Firagting Time= 50 Finighing Time = 3¢ Fag: Thne =43
[- AR sk o = S SuBachMode = 80 o TR oL adB atkiodule
| FridCommaotde <100 [Busfunionter sy dERwOmemiochin T3> o e T T oot
Mﬁf; 3 Three Modiles on the Bay
t Bach of fhe Bay Froutof the Bay
jrneam e e s
< FadBackModcle = 1050 >
| iMoo 1600
e e T
ModiteConrter = & .
Sonestrbront= 1 Euply Bay (of fime sgual to 60)

Figure 5 - Auxiliary Attributes Used When Processing Modules on a Bay

6) Assembly Process

At this point four more auxiliary attributes are used. The “Assembly” attribute keeps
track of the number of space units for assembly expressed as resources that have been
utilized for each module. “Space” records the number of space units expressed as
resources left in front of the module in the bay in which each module is assembled at
the time of assigning the resources for assembly. This amount of resources must be
available before shipping a module once it finished assembling (ensuring that all the
required space in front of the module for shipment is empty). The “Total” attribute
represents the space units as resources to be released once a module has been shipped.
The total amount is the sum of “Assembly” plus “Space,” which is not necessarily
equal to the initial total amount of resources in the bay. This discrepancy is due to the
possibility of having other modules in process behind the last module assigned in the

same bay. The “Bay” attribute takes the name of the bay in which the module has

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

been processed. When the module is supplied with the resources requested and space
for assembly, the module continues with the simulation process and the “Start”
attribute is assigned the value of “Simulation Time” that represents the time at which
that module will actually begin its assembly process. To simulate the assembly, the
main task has been divided into six subtasks (structure, piping, cable tray, electrical
heat tracing (EHT), insulation, and fireproof) integrating all the assembly process.
The durations of those subtasks were given as a fixed value; however, the subtasks
could also use random values generated through a probabilistic distribution based on
statistical data. Once the module simulation has begun the auxiliary attribute will
assume the initial value of zero (0) takes the value of one (1). The starting time of the
first subtask is also recorded. Once the subtask is completed, the finish time of that

subtask is recorded.

7) Subtask Process

Once the first subtask has been completed the finishing time of that subtask is
recorded and the workers needed to perform the task are released and ready to be
assigned to other modules. The module may proceed onto the second subtask. The
number of workers needed to perform the second task is checked. If sufficient
workers are available the second subtask may begin. At this point the subtask start
time is recorded. When the subtask is completed, the finishing time of that subtask is
recorded and the workers needed to perform it are released and ready to be assigned
to other modules. This process is the same for all subsequent subtasks; however, at
the end of the last subtask the finish time of the module assembly process is also

recorded.

8) Checking Space Available for Shipping

Once the assembly process has been completed the module is ready to be shipped. In
order to satisfy the condition that a module will only be shipped if there are no other
modules being fabricated in front of it within the same bay, the model has to look for
available empty space in front of the module in that bay. This condition is satisfied

through a comparison of the number of resources available in that bay with the value

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

of the “Space” attribute. If both values are equal, then the module will go on with the
simulation process, such an action means that there are no other modules under

fabrication or waiting for shipment in front of this module.

9) Requesting Shipment

Since it was assumed that only a limited number of shipments could occur on the
same day, another resource named “Ship per Day” is required, which would hold the
number of available resources. A module is ready to request for shipment once it has
finished its assembly process and has no other modules in front of it. The request of
one resource out of those available for shipping takes place. If the resource is
available; then the module will finish its process; if there are no resources available,

then the module will wait until there is a resource available for it.

10) Shipped Modules

When a module is shipped, the “Shipping” attribute records its shipping time. The
number of available resources of the bay where the module was processed is set to be
equal to the value of the attribute “Total” (“Assembly” + “Space”). At this point a
task with a duration equal to one (1) is processed; resources can be released
thereafter. This process is undertaken because it is assumed that the shipping of a
module will last one day and no modules will start assembly on that bay until the next

day.

11) Results

As the simulation takes place, attributes are being input into a table. At the end of the
simulation the information is sent back to the database. The database applies a query
to change the dates into a date format. These results are plotted against the previously
planned CPM schedule with which they are compared. An auto-generated layout

chart is also created.

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Based on reading the data provided, data processing, and simulation process to

storing the results in a database, Figure 6 summarizes the process used by the model

from.
. / Theidomationis
é;;f,m ﬁ; 4 groceseac in nfat by The &Iﬂumm sharis by
/ kamsation i 4 i{ ,,,,,,,,,,,,,,,,,,,,,,, " gﬂﬁqﬁifﬁmﬁhﬁgqﬁ e &Cm m ot
o Gimat § : ;:§,{1;et§af‘e \ by siadindi 73
e ;’; soslade b cabmdisdy
oo i
vhew I not wnouph srcs ustiable lor iabriution s
O BEROR B3 i Haodiee et
Mdochirie et ave | b Dot
e W e i ol Smed H worgdaen
m arpiugh ety fabbeation s, of § Slisess
i Bpans W Lian et have swaned | peouving e
Fohwitatn 1 et Yo not been ¥ sirydaion
Zigtal —
g /\\ compta! e »/\\\ /
tmntitying tvee /
i ciass Modates e " enaiing sired ™ wmmﬁww‘x yos j' Tom stan, Fideh,
i rentnd difformidly o nadedions thas e@-m 1% e sroeeh e SPgidng Snis oo
: dhpending o Sk \,) . e e
: Ty \,\
i e \\
yos ~
{ Asnpelly process
|) e i He
H N, epseucualr st
d ‘\\ 5 oo / \
N prEdRsy i e
,»/ ™~ Bl slrdslaionn, Hia A7 e B febrostion s S o L o
14 thire enough sty ‘ rmumw?ﬂi f’y o o] inoie vl cormgietod. s the spucs b > i e &
Nm wmmtam:m? WW&WW&? v st T wrﬁm of $16 mdtide arply? AY v &t is enply
T P "N, // ,
p froan Yize okt ., e *,
\\ whhie £ was whse . p
,‘\\ e s Haiedy i yor it spate i jit:&f‘% s o ety
i woun spece is avatabie e Fork s empsy
for fntwlontion ¥
i
&
Lapiting space
aveilalin fw
ahiying
Htwmalss
SONICR i Hhwes ol s
sk 1o o o svaliabie i
A epte (,/ A i e mhodids
7 j' d /
f S
§ Rosuls em o 7 s ——
|rmanisun et ‘ stiprids fudo” i@mﬁag@ e S i) e 5 8
\ me amm is ; wwa mmmg * .yea‘“\\ T DS Bunbathe
\‘,ﬁ , ?\\ !,f‘
v
i H

Figure 6 - Model Deseription

3.3 Conclusion

The proposed methodology, a simulation-based technique, is a reliable approach to
solve the module assembly yard scheduling-layout problem since it provides the

industry with an automated methodology.

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4. Implementation

4.1 Introduction

This newly developed simulation technique for module scheduling and optimization
of the assembly yard utilization described in this thesis will be implemented using
Simphony (AbouRizk and Hajjar 1998). The implementation retrieves the information
from the database, computes the necessary inputs for the simulation, builds the

simulation model, and reports results.

4.2 Special Requirements of Module Assembly Scheduling Process

The assembly of pipe spool modules involves many uncertain factors, which
complicate its scheduling process. These factors also pose a challenge for the
scheduler in producing an efficient schedule, which optimizes the use of the space
(module yard) as well as the human resources involved in the assembly process while
meeting clients’ delivery dates. Given the relatively fast production cycle of module
assembly, the scheduling process must be carried out frequently and requires
advanced automated tools to perform this modularization task. Modularization is
carried out in module yards and once the modules are completed they are shipped to
the industry plants. Without a proper scheduling system, it is very difficult to
maximize yard usage and to improve delivery dates. Since module assembly in a yard
depends on physical and logical constraints, a method in which these constraints are
built-in during the scheduling process would be beneficial to the industry in so far as
it saved time while panning the schedule. It is also beneficial in so far as it avoided

mistakes while placing modules in the yard.

The scheduling technique developed in this thesis was considered to be a prime
candidate for a simulation model. The following seven main challenges were
identified:

1. Integrating the Database with Simphony: The number of records for this

simulation is vast and the simulation records must be updated frequently. As

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

there was a need to have the simulation linked to the database file in order to
simplify the procedure, two new elements were added to the common
template in Simphony (AbouRizk and Hajjar 1998). These two new elements
are called the “Database Link Flement” and the “Results Element”.

2. Determination of the Priority Logic: Modules are processed based on the
priority. The calculation of module priority has been previously explained in
Chapter 3.

3. Representation of the bays: Bays are represented by resources and the number
of resources forming a bay is based on the size and the total number of
modules that may fit in a bay.

4. Placing modules that are already under fabrication when the simulation starts
in the exactly same bay where they are being assembled in real life, and being
able to join the simﬁlated Jfabrication process at the subtask in which they are
currently under fabrication.

5. Keeping track of the finishing times of the modules under fabrication in the
same bay. Before a module starts its assembly process it has to be guaranteed
that it will not delay the modules that are currently under fabrication in that
same bay (if any). To accomplish that, two attributes were added as resources.
These two attributes keep track of the finishing time of the module in the back
of the bay and the finishing time of the module with the latest finishing time
on that bay. The expected finishing time (starting time + duration) of the
rﬁodule to be built is compared to those attributes.

6. Keeping track of the modules that are under fabrication in the same bay. In
order to know in which part of the bay a module is being fabricated and if
more space will still be available to fabricate more modules in that bay, two
attributes were also added as resources where they are expressed as resources
previously taken from that bay and resources still available in that bay.

7. Ensuring that there are no modules in front of any module at the time of
shipment. When a module starts its assembly process it request resources for
assembly, the number of resources left on that bay represent the space in front

of it. This space is required to be empty at the time of shipment for that

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

specific module. Therefore, those resources are recorded as an attribute also
expressed as a resource called “space”. When a module is ready to be shipped
its attribute “space” is compared to the number of resources available on that

bay.

4.3 Database

Reading data from the database: In order to have the information available in
Simphony, database file was necessary. Simphony is a Visual Basic-based program; it
has the flexibility, therefore, to create new elements, which are capable of using both
the Visual Basic Code and Library. Two new elements called the “Database Link
Element” and the “Results Element” were created. These elements are able to read
information contained in tables and queries within a database file and import/export
the information to and from Simphony with the same order and format. Once those
elements are pasted into the Simphony Design Window, the user can employ the
parameters window to specify the path and the name of the database file as well as the
tables or queries name from/to which to import/export the data. The data must be
ordered from the earliest date to the latest date based on EarlyStartDate rules. A query
has been built to prioritize the information used for importing the data. The query lists
the modules in an ascending order based on their EarlyStartDate. Figure 7 illustrates
the query (data format), which contains the attributes for the input as well as those
attributes in which the output will be recorded after the simulation; the records
representing one module each ordered by the EarlyStartDate (column 5) are also

illustrated.

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

e EoR Wew Joeert Faovsl Reeords
B BRY @y B R e B @,
ACT {Dwraticn] TypeClass! diEardySwribawe; £34 1P dbhinbat] CES |Briotty] Bay | BaySize | Task {HnCitiay: »
MRS O 0o . . a6 1 8 i
2M0PH248 . 82 1 10 84 L
Pl .. T 0 L 8 L B3 .
T DAL ST TR - S L B A O
PHIPH2IT 4 3 A} &6 1 5
| J2mornEt | 82 10 1% 84 4 833
] 2100984230 | 85 . ¥ g7 1 M
.| 100P6EY & i ki3 - I O >
jAwoPnzee 871 W0 B . S
jalooemagy . 88 1 s T T S
 _j2ieoPNzes BB i 16 i k] 824
IR i S . S 1% RO U TR~
121009238 8¥ 1 W0 T - R
HRIOCTONY 50 3 i 43 ¥ 736 Baydt 30 B
_jossoemoza . T8 3. L Lo Mgs o T Baged 38 1
| __{EE0PNMAIY 78 A 8 C 330 L 70 Bayd2 i 2
" osanpuns 77 3 K w0 rsameyas 30
o E g 138 mmmaas 3
" ogaoPian 7 1 % 182 0 TS Bayal 3 5
.| 0B30PHIONS 7 1) Wy 6 22 Baybs 36 1
jessactext 3% ® ¥ LR b MeBayR? 36 3
. 10540CTURS 2 AL 1 ez G TiEBapdls 30 1
"l oaacere? 7 3 15 188 071 Bavay 30 i
| _0BIOPI023 B 1.0 15 05 8 T1EBavAl w4
__1ZI00PR015 4% 1 15 135 g 711 BayAtt] k]
Tl ® ' 1§ 2 0 T4iBayAl % 1
o jamopNeza . &3 9 B A 8 MdBaebta L3 1
J100PHIDIE | Ty 15 15 o 3 1
48 3 B L3 ny
3B 15 2 1
P 10 g : 3 3
LB 1 it 75 0 195 Badd 3 A
. 4 T 1§ 188 0 706 Baght 3 ' . .]
HEOEE e s of i -) 2

Figure 7 - Query Ordered by EarlyStartDate

New Elements Creation: The “Database Link Element” requires the parameters of the
Data Source and of the query/table to be specified. Also, it will display the number of
records, the number of attributes, and the entire query/table as an output. The element
is formed using four functions: OnCreate, OnSimulationlnitialize,
OnSimulationinitializeRun, and OnSimulationProcessEvent. The first function of the
element is the OnCreate function in which all the necessary attributes of the element
are declared and the element itself is defined. In the OnCreate function, the database
name is specified as well as its path. The table or the query from which to retrieve the
information is also specified. The matrix to store the information from the table or
query is also declared.

The OnSimulationInitialize subroutine is where the simulation first opens the
database to set the table. The number of records, the number of attributes, and the
names of the attributes are read. The table is completely emptied at this point. In the

OnSimulationInitialize subroutine the attributes’ names are read beginning with the
35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

first attribute. This process is undertaken with each module (record). Once the
subroutine is finished, a table of “n” rows and “m” columns is created; however, the

attributes’ values are still empty.

The OnSimulationInitializeRun subroutine launches the first module; which fills the
first record of the table with the values of the attributes contained in that module. The
OnSimulationInitializeRun begins the simulation process at its EarlyStartTime firing

the first module.

During the OnSimulationProcessEvent subroutine; the simulation will fill the rest of
the table with the attribute values of each module. Similar to the
OnSimulationInitializeRun, the modules initialize the simulation process based on its

recorded EarlyStartTime.

The “Results Element” also requires that the parameters of the data source and the
query/table are specified. Also, it will display the number of records, the number of
attributes, and the entire query or table as output. Similar to the “Database Link
Element” the OnCreate function declares the necessary attributes of the element and
essentially defines the element itself. The OnSimulationInitialize subroutine first
opens the database in order to establish the results table. The number of records,
number of attributes, and the names of the attributes are read. The table is completely
emptied at this point. The two additional subroutines are OnSimulationTransferIn and
OnSimulationPostRun. The OnSimulationTransferln subroutine records the results in

the “Results Element” table.

OnSimulationPostRun exports the results to table the “Results” table of the

previously identified database file.

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.4 Modifications to Simphony’s Commeon Template

Three elements from the existing common template were modified to suit the special
requirements of this simulation. These three elements are: “Declare Resources”,

“Waiting File”, and “Release Resouces”.

Declare Resources Element: Two subroutines from the Declare Resources element
were modified. The OnCreate function of the Declare Resources element was
modified to add the EndBackModule, FinishCurrentModule, ModuleCounter, and
SpacelnFront attributes. The EndBackModule attribute tracks the finishing time of
the module in the back of a bay. “FinishCurrentModule” keeps track of the module
with the latest finishing time for each bay. “ModuleCounter” records the number of
modules in one bay. “SpacelnFront” tracks the available space preceding the current
module in order to fabricate more modules. The OnSimulationlnitializeRun
subroutine was also modified by initializing the new attributes at 1000,1000,0, and 1.
“EndBackModule” and “FinishCurrentModule” attributes, must be associated with a
high value (larger than all of the modules durations) to ensure that when the bay is
empty it grants resources for assembly. For this reason, the attributes have been given
a value of 1000, ensuring that regardless of the order in which modules arrive to a
bay, that module’s finishing time will be shorter than the virtual module in the back
of the bay. The “ModuleCounter” attribute is initialized with a value of zero since the
bays are empty at the beginning of the simulation. “SpacelnFront” takes the initial

value of one (1), which represents the empty space available for modules in a bay.

Waiting File Element: The Waiting File element encompasses the process of granting
resources. The module assembly schedule is restricted by those physical and logical
constraints mentioned previously as well as heuristic rules. These constraints and
heuristic rules have been added to the Waiting File element. This addition allows the
waiting file to grant resources only when all criteria have been met. The changes have
been made within the Case “ANY”; when a module arrives to the Capture element
and request resources for assembly, the module will request “ANY™ of the resources
(bays) available. The five request types must first be differentiated. In order to

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

differentiate between the modules requesting for the space that they are currently
occupying (for modules that started the fabrication process previously to the
simulation), those requesting space for assembly, those requesting labor, those
requesting space available for shipment, and those requesting a resource for shipment,
an auxiliary attribute ranging from zero (0) to eight (8) is checked every time a
request is placed. If the auxiliary attribute is zero (0), then the module is requesting
space for assembly (modules that have not started their fabrication process), if the
value 1s two (2), then the module is requesting the space that they are currently
occupying (modules that started the fabrication process previous to the simulation), if
the value is three (3), then the module is requesting workers for the structure subtask,
if the auxiliary attribute is four (4), then the module is requesting workers for the
piping subtask, if the auxiliary attribute is five (5), then the module is requesting
workers for the cable tray subtask, if the auxiliary attribute is six (6), then the module
is requesting workers for the EHT subtask, if the auxiliary attribute is seven. (7), then
the module is requesting workers for the insulation subtask, if the auxiliary attribute is
eight (8) then the module is requesting workers for the fireproof subtask; if the value
is one (1), then the module is requesting for another type of resource. In this latter
situation, the process is exactly the same as a normal request processed by the
Simphony Common Template. The resource request must then be fixed, which will
enable resources to be requested based on an entity attribute (formula) rather than
specifying a keyed number within the Capture element. If the module in the back
(EndBackModule) and the module with the latest finishing time (EndCurrentModule)
on a bay plus the maximum allowable number of waiting days for shipment
(WaitingDays) finish later than the module requesting resources (the finishing time of
the module requesting resources is calculated by adding all the subtasks’ durations to
the current simulation time, which represents the start time, then the module is
granted the resources and the assembly, space, total, and bay attributes are updated.
The EndBackmodule attribute changes its value from 1000 to the expected finish time
if the module requesting resources is placed at the back of the bay. The
EndCurrentModule attribute also updates its value to the expected finish time of that

module requesting resources. ModuleCounter and SpacelnFront are the remaining

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

attributes. ModuleCounter is increased by one unit every time a module is granted

resources while SpacelnFront checks that the space available is greater than zero (0).

Release Resources Element: The OnSimulationProcessEvent of the ‘“Release
Resources” element was modified to wupdate the EndBackModule,
FinishCurrentModule, and ModuleCounter attribute every time a module has finished
its assembly process and the space resources are released. The auxiliary attribute used
on the Waiting File to differentiate the requesting of space for assembly is given a
value of two (2) in order to accomplish this process at the end of the assembly. The
attributes revert to their original value representing an empty bay (EndBackModule =
1000, FinishCurrentModule = 1000, and ModuleCounter = 0).

4.5 Simulation Model

The simulation model has been built mainly using Simphony’s Common Template
with two new elements mentioned before and with the modifications made to three of
the existing elements. The counter-element from Simphony’s CYCLONE II was also

used in this model. See Figure 9 for a legend of the elements used in this model.

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

} ierde O Patabase Link Blesent
kil
& l Roauiss Results Blement istoves the results and ssnd them back to the database)
Frum .
Conddtional Brenching Blement, chudks i s condibion is true or (Rlse
Faige
o a8y o fat Aitributes Rlexent, mev attributes awl valuss lovr snbitiss ars sdded
Atteibubes
Pec) ;g o Hreeute Sode Blewent, Tode with {owsalssd 2an be kuilt inwide
Eaumgon
o A ;:‘::Mw i ¢ Tesh Blement idelass the enkiiy by ibe duratien specifiedq)

ar: ¥

Leclare Regource flsment, the nowe and muder of resovesy ars spoedfisd

Welting ¥File Dlmmeal, s naws to be assonisted with in the lgpiure Dlewent is specified

(o Capture Rlewent, the Walting Tile maee is sperified and the reenurnes are arvanged in its ohild wiadow

Reguest Slement, the reguest element is liaked Lo & rescuyce

Ol Ry R o Belbnse Blement, D tywpe of respurcs{s! Lo ralease avs in its child window

Relewse Blament, the relesse elawenl is lind¥ed €& the resuurce to L eliease

Cowter Blemest, oounts the mober of entitiss passing by

Figure 8 - Legend (Simphony’s elements used for this model)

The model was built following that simulation model development process explained
in Chapter 3 and summarized in Figure 6. Figure 9 shows the main window
containing Simphony’s simulation model built for module assembly scheduling. The
twenty-five points following Figure 9 are the explanation of the simulation model.

Also, Figure 10 shows the flow chart explaining the model.

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Ble EHC e fon Yot Yirdow e

B OWE, w

*{CEM_CYCLONEN [

Al BIBREAERFONALESE % | QQUONSOOLOG -

CEETET 0

mse Y
/}) » yv*;es: Ry

File: Waiuiog Bay Fr.
gg Faloe 3 %4 8 T

?cam»::m

Tith: Bainsrg Yoy P

izﬁ(%
G

Fumizee

e Mwazizy By Bro

et

o=

@

fide:

S
§3’!§ 3 PR AT }Q

¥
O e
o Unounsirsined &
Madzing €or Yrenane] Our Focirglad

j ‘?; g FELBISN

o
T

AT

&

q e&a'/l;lfe‘)“m;

gy
14

Buss Formuisy

[ERGD: REY
fide: Waising o Snkls 4

-

¥
%>papmg
>
ot F b}

]

,,g‘ :gwm gy

jond

Tito: Faistog Lar Vipkng

£ 3 {

Zg H Fam&% & "
Fatsa % 3§ wmenae pey
i

File; Tmiskeg Bay Ov.

X

e,
=

i ! ; 1} FRERIL:

H

§ THPTIRE B

e Dy]
i o Linconstranes B
ke Dsizivg S OF S [Tur, Forutat |

i; g 3

Eﬁ\’ﬁmar }1
2, Ummnﬂiwﬁ”ﬁ

Dur: Faresda)

3
ngfwm.» : axe Qm Ead

Yide: Wmizdny Tee Pivumen

5P

ls§

3

F¢ 1 cooma: amv L(
Pide: Passing day

i

|

4 CHRPTURS: 2R

Br.; B Pilm Hedring Ser Dipmivy]

| %

Fasmsuia

1
AT |
L "il}ﬂlw:miﬂﬂmeﬁ;‘izg

Dur: $

Baworra

¥

f o TeskabEs
SAFTED: KT g

1 Sovstrabned
Dt BAGEDrs 3

=
P Y

2t
Padu: Taisiey By Fv.r @ Ertvibuted

J G Ck\wkm

PCL Module Yard Simulation

o,

True Faise

Fia takate

Figure 9 - Simphony's Simulation Model
[1] Simulation start (reads data from database)
[2] Differentiating finished modules and counting the number of finished and
unfinished modules.
“EFA” (Attribute to differentiate if the module has finished its assembly process or
not)
If “EFA” = 0, the module has not completed its assembly process yet.
If “EFA” = 1, the module has already completed its assembly process.
[3] “EFA” =1. The starting time, finishing time, and shipping time of the finished
modules are recorded.
“Start”= “EarlyStartDate”
“Finish” = “EarlyStartDate” + “Duration”
“Shipping” = “PlannedShipDate”
[4] The Auxiliary attribute to differentiate types of request and release is set to zero
0).
“Auxiliary” =0

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[5] Task is undertaken with a delay of 0.0001 days to ensure that no modules request
resources at the exactly same time. Modules having the same “EarlyStartDate” will
request resources at the same time; this small delay will form a queue when granting
resources. Since the dates are based on integer numbers, the delay of fractions of a
second will not alter the dates.

[6] Differentiating started modules from modules not yet started and counting them.
“ESA” (Attribute to differentiate if the module has started its assembly process or
not)

If “ESA” = 0, the module has not started its assembly process yet.

If “ESA” = 1, the module has already started its assembly process.

[7] Based on the information provided regarding the modules already in progress, the
attributes assembly, space, and total are recorded.

Assembly = “UnitsRequested”

“Space” = “BaySize” - “Assembly” — “No_of Units Occupied_Behind”

“Total” = “Assembly” + “Space”

[8] The auxiliary attribute takes the value of two (2), symbolizing a module that
started previously to the simulation. It is also determined that the bay in which that
module is been assembled still has available space for other assembly.

“Auxiliary” = 2

If (“BaySize” — “UnitsRequested” — “No_of Units_Occupied Behind”) =0
“Space_in_front” = No

Else

“Space_in_front” =Yes

[9] The module requests the space currently occupying in the bay in which it is been
assembled in real life.

Bat to request resources from = “Bay”

Number of resources to request from “Bay” = “UnitsRequested”

[10] The starting time of the module is recorded. Also, the auxiliary attribute takes the
value of (1) symbolizing that the module has been assigned to a bay.

“Auxiliary” = 1

“Start” = SimTime

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[11] Modules that started their assembly process previously to the simulation are
currently under assembly in a specific subtask. These series of conditional branching
differentiates the subtask in which the module is at the simulation starting time.
Depending on the subtasks the auxiliary attribute could take the value of (3) for
structure, (4) for piping, (5), for cable tray, (6) for EHT, and (7) for insulation.

If “Task™ = 1 (structure)

“Auxiliary” =3

If “Task” = 2 (piping)

“Auxiliary” =4

If “Task” = 3 (cable tray)

“Auxiliary” =5

If “Task” = 4 (EHT)

“Auxiliary” =6

If “Task” = 5 (insulation)

“Auxiliary” =7

[12] When the last of those conditional branching is false, the auxiliary attribute takes
the value of (8) for fireproof.

“Auxiliary” = 8

[13] Routing modules to different bay areas

If “TypeClass” = 1 the module is preferably routed to bay area “A”

If “TypeClass” = 2 the module is preferably routed to bay area “B”

If “TypeClass” = 3 the module is preferably routed to bay area “C”

If “TypeClass” = 4 the module is preferably routed to bay area “D”

If “TypeClass” = 5 the module is preferably routed to bay area “D”

[14] Looking for empty space on a bay to start fabrication

Number of resources to request from any of the available bays = “UnitsRequested”
[15] Once the module has been assigned to an empty space, the Assembly, Space,
Total, and Bay attribute are updated. The auxiliary attribute is associated with the
value of one (3), symbolizing that the module is ready to requested workers for the
first subtask.

“Assembly” = “UnitsRequested”

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

“Space” = “Current” (Current number of available resources in the bay)

“Total” = “Assembly” + “Current”

“Bay” = Name of the bay from where the resources have been assigned

“Auxiliary” = 3

[16] Request labor in order to begin the module fabrication process

Number of workers to request = “Manhours_Struct”

[17] The first subtask (structure) is processed and the starting time of the subtask is
recorded.

Task duration = “Duration_Override Struct”

“Actual Start Struct” = SimTime

[18] Release of the labor used in the first subtask (structure), the finishing time of the
subtask is recorded, and the auxiliary attribute takes the value of four (4),
symbolizing that the module is ready to requested workers for the second subtask.
Number of workers to release = “Manhours _Struct”

“Actual Finish Struct” = SimTime

“Auxiliary” = 4

[19] Request for available shipment space (empty space in front of the completed
module)

Number of resources to request symbolizing the empty space needed for shipping =
“Space”

[20] Request shipment

Number of resources to request = 1 (one shipment is requested)

[21] The shipping time is recorded and the auxiliary attribute takes the value of two
(2), symbolizing that the module is ready to be shipped.

“Shipping” = SimTime

“Auxiliary” =2

[22] Shipment occurs during one whole day; therefore, resources should be released
after the completion of the shipment process

Task duration = 1

[23] Release resources (space and shipment)

Number of space resources to release = “Total”

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Number of shipment resources to release = 1

[24] Differentiating modules according to their type and counting them.

If “TypeClass™ = 1 pass counter No. 1

If “TypeClass™ = 2 pass counter No. 2

If “TypeClass™ = 3 pass counter No. 3

If “TypeClass” = 4 pass counter No. 4

If “TypeClass™ = 5 pass counter No. 4

[25] Simulation ends (send results back to the database)

Note: Between steps [18] and [19], the five (5) other subtasks are also performed.
They request labor, process the task, and release the labor used in a similar manner to
steps [16], [17], and [18].

“Manhours_Struct” changes for “Manhours_Piping”, “Manhours_Cable Tray”,
“Manhours EHT”, “Manhours_Insulation”, and “Manhours_Fireproff” depending on
the task. In a similar way “Duration_Override Struct” and “Actual Start Struct”
change depending on the task. Also, the “Auxiliary” attribute takes the value of five
(5) to symbolize that the module is ready to requested workers for the third subtask,
the value of six (6) to symbolize that the module is ready to requested workers for the
fourth subtask, the value of seven (7) to symbolize that the module is ready to
requested workers for the fifth subtask, and the value of eight (8) to symbolize that

the module is ready to requested workers for the sixth subtask.

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

e —————
{ St i Siaotation

M1
*Eﬁm;maf‘} st droas
detn foen delabised)

ey, gead
shiging daten
e uwaried

K
HhanBhiog slard Axtdburion susembly,
wruineg fas the Syt Aed 059 wig
aeoist

il Sced®

esicason of Wb Uows
T

i
Auilinry piariate =3 B st
Aoty sitien 24 T ool
Pasiiiary eXidnde 5 e coble vay
Aypifiary pihets 8 for §HT
B =¥ for irukath

5] . "
Aatidtes suocebly, 1 e b feki] . :
ne0s, Winl and bay : y i The Sestaebtask is P i

B 48y d ‘ . ; s i §
Py Siitnde 73 § .) ;

s?wipazema

]

) o amins
® o %ﬁfe{%&iﬁtﬂ

RS (SR ’

et Higenerdy

Figure 10 - Simulation Model Flow Chart

The main window of the simulation also contains the resource declaration. The bays
in every area, the availability of shipments per day, and the skill workers available for
each subtask are declared. The parameters of each of these resources can be edited,
after which the total number of resources is set. The waiting files are also declared at
this point. There is only one waiting file for all the bays instead of one per bay area

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

because bays arrive and request for space from the preferred area previously chosen
except when that area is full. In that case, the module will be assigned to a bay in a
different area. Shipment and subtasks each have a waiting file since those tasks are

independent from the rest of the resource requests. Figure 11 shows the resource

declaration and the waiting files.

WemARALEBENERSORAESE-F GUrwAl HRATAEO £B0W -
EEETDONO mEmEON, Resources representing
Tape Llass 1 {89 Bay Area “A” i

R R R R R R T)

et fBeid BBea MPets fEead Dmgst BRagt e faesd Bumsas fmeaan fsests fmests Hredds

Tepe (Razy 2 {8 N
. Resources representing
§ iﬁ\i i LG i 34 Z Lt i LC i i&: g?ﬁ i ;!{ z 38 i i%‘o i L# z iN Bay Area “B“
BoyBl GBacEr HEagSl [Bxd HBwBT {lTedt frey 25y foe®s fsamis feazr feesu
@ Type Clmss 3 {0
| Vi B H H N
e i i i f i_} iL_ i i i I i } i i Resources representing
36 3% 83 £ i) 24 3 25 B e
rovenll el e R T D SR T T Bay Area “C
by Clas 4 5 5 M £ 8 .
£ - Resources representing
i Le i 1:5 pr i Ls Bay Area “D”
[y E a2 Bt

Snipping pev Py

—i— ¢
zm:m Iy i B

ladbor Toy each of the FUTIELE

| T Resources representing
z Lu z l% E} l i Im ms ii’ },{ 1 ‘§: Jss available workers
et sing £ Bresours, Homizing : Ftasng : QRassacy fxfdiers et sang s dmiing devariorous

b

=

Resource representing
number of shipments

& e 2

Figure 11 — Simphony’s Resources and Waiting Files Window

Child windows are built beneath the Capture and the Release elements. Figure 12
shows the Capture element window in which the resources are arranged in an
imitation of the module yard layout. These resources must be created based on the
planned sequence for filling bays. The Capture element’s child window modules are
preferably routed to bay area “A”. In this case, the resources were created starting
with bay area “A” (from Al to Al4), then bay area “B” (from B1 to B12), then bay
area “C” (from C1 to C9), and finally bay area “D” (from D1 to D4).

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Bt Yew Ren fask Yedew dip
D e g2 s AR FIHEH
A FRL LR RSO RLUGE R (WAL AR RER IO R LS E R
[P e B GRmENOD
L g 1T BE T 1 T i§ -
§ Reopunar.) ERCER |- Fr— ¥ sepest P8 Poquust Sacpent sequesy HBIUR Reguess % o Regeaxt e
; Beyks, oy Behs By Baypd Bayke Bayk? Baysi i payse
Bay A§ ¥ P - 7
@ Bruant 2 reduest 4 Vanpoent % Beapungt > Bocpuest
Bayhas Bayais Teyas2 Bah 3 Bayhis
]] B°E B i
3 - Roseast W oaguens (s [E—— i fe P [[Bawsens i 1
Bahl 2 iy BeBe BenRY BBt Boy 7 oy, 20 Baytd
ey By ;)
h0 — ¥ Benumat k i Raguest
By BLE Rl e Bagling
: R 1 ;o] HES 3y £ A ;
Bay O Begnest Amguess W teanest R Reuase et ’ Fu L I— | I SO S Wemsesy o Vaspreny
eyt Henen B dx Byl By mage Bt Be s BagCy
t B g i
ey b Repoest i Reqeest fogrent Fpant
Faglis Baylil Byt BauDt
he|
e 217

Figure 12 - Child Window of the Capture Element when Modules are Routed to Bay Area “A”

Figure 13 shows the Release element window in which those resources scheduled for
release are built. One resource for every resource type to be released must be built.
Two releases take place simultaneously when a module is shipped: 1) the ship per day
resource is released and ready to ship more modules and 2) the space occupied by that
module in a bay is now released and ready to host other modules. The number of bay

space resources to be released is specified in each entity by its “Total” and “Bay”

atiribute.

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

sip

Rt

Meomd DB A KR e |
HEQT .

i L 3 4

L oaed ; ¥ %
g Falwase i Rrlenge
{Swner Bexd by Brdp Pow Pwdii

e

Figure 13 - Child Window of the Release Element (bay space and ship per day)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5. Case Study Analysis

5.1 Introduction

The module assembly yard schedule described in this thesis will be implemented in
PCL’s module assembly yard in Nisku, Alberta (see Figure 14 for an aerial view of
the yard). PCL’s module assembly project consists of the assembly of 268 piperack
modules, 40 equipment modules, and 21 cable tray modules for the one of the
projects in the oil sands located in Fort McMurray, Alberta. Pipe spools are produced
in PCL's Nisku pipe fabrication facility and transported to the module assembly yard
for inclusion in a wide variety of structural modules. The scope of the work
comprises of the erection of structural steel and the installation of pipe spools,
insulation, cable tray installation, heat tracing, equipment, and fireproofing. Once
installed in the steel module frames, the spools are seamed, heat traced, and insulated

in order to complete the assemblies. Electrical cable tray installation, and fireproofing

are also completed prior loading and delivering the module for installation on-site.

Figure 14 - PCL’s Module Assembly Yard in Nisku, Alberta

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The specifics of the case were analyzed and treated as invariable constraints to the
project schedule. Those constraints need to be determined by a group of experts
including the scheduler and the project manager. The simulation enables the testing of
different scenarios in which the constraints assumed at the beginning are modified
and a proper evaluation of each scenario is undertaken. This exercise will ensure a
better combination of constraints. This section presents the results of nine scenarios.
In each scenario, one constraint was changed, while all other constraints were left
fixed. The following assumptions apply to the first scenario:
e Module yard layout is fixed (see Figure 5, Chapter 3),
e Resources (man-hours) not taken into account,
e Modules may only be shipped when the space in front of them is completely
empty,
e Maximum number of shipments per day is six,
e After completion, modules may wait a maximum of five days for shipment,
e Module allocation routing follows certain preferences; in this case they are
routed according to their type,
o Once a module has been routed to a specific area, the work will flow front to
back (starting with bay #1 to bay #n),
e Duration and dates are fixed (duration varied from 21 days to 92 days), and
e Priority logic is employed; that is the module with the least amount of float

will be given higher priority for assembly

8.2 Validation of Basic Model

Results are organized in a tabular format providing Activity ID (ACT), durations,
class type, units requested (size), early start date, the module’s start status at the
beginning of the simulation (ESA), the planned shipping date, the module’s
completion status (EFA), priority, location of module within the yard (bay in which
the module was processed), location of the module within the bay (number of
modules behind in the bay), space in front (in the bay), simulated start dates (process
and subtasks), simulated finish date (process and subtasks), and simulated ship date.
Each simulation run provides results for 329 modules (see Figure 15).

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Jass 1Urﬂﬂﬁggﬁe% iimﬁ(&dﬁ@m FPlarneshinDes giﬁfq So ot Rodiges bebing ;"39663 ket
b9 % T8]] e _
i i I 5 8 San
15 %5 A i Ko
15 5 pjr 1 Yoy
10 1 405 il ex
A € 3 & Ve
u {0 ¥ AL o
4)] 1% Ko
41 3 124 Yoo
33 15 fic] Ho
37 15 14 Hg
a7 15 134 Ha
B 1 15 bk Ve
% 5 15 i
7} ¥ i Yei
¥ g
I 48
i

..... 20
1
3
i 2
1 ki 180 Yoy
il ki EEE < by
H ¢ 1 e et
2 W . Yo
9 1 e ey
i) e Ha
i 5 g8 Ver
q i 5 Vet
1 8 i) Mo
i B i g
1 19 2 Yor
1 g % e
i ki i Ves
i g 18l hie
s hid Rl 3 Rin

Total = 329 Modules

Figure 15 - Results in a Tabular Format

This information is plotted in comparison with the project schedule (see Figure 16),
which is based on module shipping dates. Figure 16 also lists the shipping date
obtained by applying the simulation and the shipping date previously planned by the
contractor using the CPM within the highlighted period.

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1-Aug-04
23-Apr-04 e S
vttanoa -+ Simulation-based r
— CPM-based e
6-0ct-03 |
§ 28-Jun-03
g
g
% 20-Mar-03 +-— / R
10-Dec02 ozt / e
1-Sep-02 / - e
24-May-02 / -
13-Feb-02 e e
Module No.
Note: The data used to obtain this graphs has been altered trom the
original data used by the company for confidentiality.

Simulation Based CPM Based Simulation Based | CPM Baszd Si Based | CPM Based Si ion Based | CPM Based
17-Sep-03 6-Oct-03 1-Oct-03 15-0ct-03 1-Oct-03 13-Nov-03 27-Nov-03 12-Dec-03
7-Sep-03 7-0ct-0! 1-Oct-03 15-Oct-03 30-0ct-03 14-Nov-03 26-Nov-03 22-Dec-03
7-8ep-03 7-Oct-0 7-Oct-03 17-Oct-03 13-Nov-03 14-Nov-03 26-Nov-03 22-Dec-03
7-Sep-03 8-Oct-0: 7-Oct-03 17-Oct-03 4-Nov-03 7-Nov-03 28-Nov-03 22-Dec-03
8-Sep-03 8-Oct-0: 7-0ct-03 20-0Oct-03 4-Mov-03 8-Nov-03 26-Nov-03 23-Dec-03
18-Sep-03 9-Oct-03 7-0ct-03 20-Oct-03 4-Nov-03 20-Nov-03 3-Dec-03 23-Dec-03
24-Sep-03 9-Oct-03 19-Aug-03 21-Oct-03 4-Nov-03 21-Nov-03 3-Dec-03 23-Dec-03
24-Sep-03 S-Oct-03 7-Oct-03 21-Oct-03 4-Nov-03 21-Nov-03 3-Dec-03 23-Dec-03
24-Sep-03 10-Oct-0 19-Aug-03 22-0ct-03 7-Nov-03 25-Nov-03 4-Dec-03 23-Dec-03
24-Sep-03 10-Oct-0! 7-Oct-03 22-0ct-03 2-Nov-03 28-Nov-03 4-Dec-03 3-Dec-03
24-Sep-03 10-Oct-0! 15-Oct-03 30-Oct-03 12-Nov-03 1-Dec-0; 5-Dac03 23-Dec-03
24-5ep-03 10-Oct-03 8-Nov-03 31-0ct-03 12-Nov-03 2-Dec-0 5-Dec-03 23-Dec-03
25-Sep-03 10-Oct-03 22-0ct-03 4-Nav-03 19-Nov-03 2-Dec-03 9-Dec-03 23-Dec-03
26-Sep-03 10-Oct-03 22-Qct-03 5-Nov-03 19-Nov-03 3-Dec-03 9-Dec-03 23-Dec-03
30-Sep-0 10-Oct-03 22-0ct-03 6-Nov-03 19-Nov-03 5-Dec-0! 9-Dec-03 23-Dec-03
30-Sep-0; 14-Oct-03 30-Oct-03 6-Nov-03 19-Nov-03 5-Dec-03 28-Aug-03 7-Jan-04
30-Sep-0: 14-Oct-03 28-Oct-03 7-Nov-03 19-Nov-03 5-Dec-0: 27-Aug-03 9-Jan-04
30-Sep-03 14-Oct-03 28-0ct-03 10-Nov-03 19-Nov-03 5-Dsc-03 9-Dac-03 13-Jan-04
30-Sep-03 14-Oct-03 28-Oct-03 12-Nov-03 26-Nov-03 12-Dec-03 28-Aug-03 14-Jan-04
30-ep-03 14-Oct-03 5-Nov-03 12-Nov-03 26-Nov-03 12-Dec-03 10-Dec-03 14-Jan-04

Figure 16 - CPM Schedule vs. Simulation Schedule (shipping dates)

Since the plot is ranked using shipping dates, the simulation schedule (simulation
based) seems to indicate overall that the shipping dates were accomplished sooner
than planned (CPM based).

This graph shows improvement in the schedule. This improvement is especially
evident during in the latter part of the project where module allocation was more
flexible due to the completion of modules filling the bays at the beginning of the

project.

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The following Primavera Project Planning Gant chart (see Figure 17) illustrates in the
first bar the expected schedule without using the simulation model, and in the second

bar, the expected schedule using the simulation model.

Simans

Figure 17 ~ Primavera Project Schedule vs. Simulation Schedule

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The following Primavera Project Planning work load Primavera graph (see Figure
18), which integrates the expected amount of work per week, shows how the
simulation schedule (light grey bar) proposes an increase in fabrication at the middle
of the project, which leads to reduce production at the end of the project, ensuring an
earlier project completion date. The schedule proposed without using simulation is
represented by the dark grey bar. The selected period (September 2003 to November
2003) shows that the schedule proposed previous to the simulation does not utilize the
yard at its maximum capacity. The yard was under utilized for this period having less
than 70 modules in production during a week. When the simulation approximates to
an optimal schedule the yard is utilized to a greater capacity having more than 80

modules in production during a week.

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

‘uoissiwuad noyum paynqiyold uoonpoidal Jayung “1aumo yBuAdoo ay; Jo uoissiuuad yum paonpoiday

9¢

T C Simulation

J

CPM Schedule

T

Y

R SRk

Note: The data used to obtain this graphs has been altered from the original data used by the company for confidentiality.

Figure 18 - Workload

Finally, an auto-generated layout is produced (see Figure 19). This layout is a useful
graph for the scheduler, since it shows the location of each module at a specific time.

The scheduler can plan in advance by checking the distribution of modules in the yard

on any date required:

e Gt giew nsart Forvet Teds Deie Widow G Ryt e)
N YU S0 0 A O N S O O SN O MO D00 TN MO I RTINS T
 PGL Module Assembl " Jan 20044ia T Tyl fB08E Y
» POL Module Assemble Layou Sun | Hon] Tue | ed] Thu | 41 | 88t)
v 1en e 5. 4% 3 < LR il
s s a7 2 dg hw :
EETIR 20 N EE O I T U Ll Ll
RER L S F B 1 X2
ez ler
i £
. E) »
- 1] FH
k3 2
[
H e) x ®
» R @ b
y ;i
o) H
Pt B E- RS T
3%
33,
i3 i
il |
¥ "
2
e

Figure 19 - Auto-generated Layout

5.3 Experimentation with the Model (improving scheduling heuristic rules)

As already discussed, the constraints assumed to perform this simulation may be
changed by presenting differing scenarios that may or may not further improve the
actual module assembly schedule. Nine different scenarios were obtained by testing
the change made in the following constraints:
e Changing module yard layout (3 scenarios): The purpose of these three
scenarios is to provide the manager with the flexibility to apply risk analysis

and to be prepared for schedule crashing.

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

e Modules are shipped regardless that the space in front of the current module
is not empty: The purpose of this scenario is to ensure that, should the
schedule be improved the manager will analyze the additional cost involved in
removing a module.

o Varying the number of shipments per day (two scenarios): The purpose of
these scenarios is to determine the less possible number of shipments per day
to minimize the equipment needed for shipments.

o Varying the number or waiting days for finished modules to be shipped: The
purpose of this scenario is to determine the maximum number of waiting days
for a module before shipment.

e Routing modules according to a different characteristic such as size instead of
type: The purpose of this scenario is to provide the manager with the
flexibility to compare if varying modules based on size instead of type
influence the schedule.

o Test different durations with randomness instead of just fixed durations: This
scenario provides the manager with a non-deterministic schedule that allows

for the application of risk analysis to a module’s completion time.

For this module assembly yard scheduling-layout problem, schedule quality has been
defined through a comparison between the planned project schedule using Primavera
Project Planner and each of the schedules obtained after each simulation run. The
objective of this optimization is to minimize the delivery dates and to maximize yard

usage.

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Scenario 1: Module yard layout (bay area “A” only): The number of modules in a
bay is a function of the sizes and the types of the modules. Each bay can contain
between 1 and 10 modules, depending on their size. In addition, the module yard
capacity, which is also a function of the module types and sizes, ranges from 75 to
186 modules, depending on their combination. Changing the module yard layout has
a great impact on the improvement or deterioration of the schedule. If only bay area
“A” is considered as the only layout available (see Figure 20) and all other constraints
are left fixed, the simulation schedule in comparison to the project schedule,
deteriorated (see Figure 21). The whole yard consists of 36 full bays and 3 half bays.
Bay area “A” consists of 14 full bays only. As a result, 329 modules are fabricated in

a space smaller than 40% of the whole yard capacity.

e Note: The yard layout has
apt SB — been altered from the
Iy original layout for
& p gy confidentiality.
> s
33 car o
GATE B Bax ¢,
w

MATN @ATE};

S
/‘f’ L%

TTIRACE

i
PARKING i STORAGE
& ;
. .
Lan ,
L , 7 S o
AR “
RN «\
NN\

WAREHIU

IR BOE

Figure 20 - PCL Module Yard Layout (bay area “A” only)

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

For this reason, the schedule proposed by the simulation shows a delay on shipping
dates illustrated by the dramatic jumps on Figure 20. The manager may have the
option to distribute the modules to bays in bay area “A” only while the remaining
areas are kept empty for use when needed. Bay area “A”, however, is not a good

layout for the yard and further combinations should be explored to find the best

layout.
S-Now-04
1-Aug-04 r ,-ﬁrg
’
23-Apr-04 +—— : hﬁ [& o @ tdhe oo
3
14-Jan-04 N
6-Oct-03 ¢ N
CI » -
2
8 28.un03 o lapfedel &
,g 20-Mar-03 - . . —’”__n
& - Simulation-based
1002002 g |~ CPM-based 3
1-Sep-02
24-May-02 -
13-Feb02
5-Nov01
TeRBoRBL5EE8YEBeBE R IBEREEEEE
Module No.
Note: The data used to obtain this graphs has been altered from the
original data used by the company for confidentiality.

Figure 21 - CPM Schedule vs. Simulation Schedule (bay area “A” only)

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Scenario 2: Module Yard Layout (bay areas “C” and “D” only): Similar to Scenario
1, this scenario provides the manager with the option of utilizing bay areas “C” and
“D” only and leaving the remaining areas for use when needed. When only bay areas
“C” and “D” are considered together (see Figure 22), the simulation schedule did not
improve in comparison with the project schedule (see Figure 23). The whole yard
consists of 36 full bays and 3 half bays. Bay areas “C” and “D” combined have only
10 full bays and 3 half bays. As a result, 329 modules are fabricated in a space of
about 30% of the whole yard capacity. Similar to Scenario 1, the schedule proposed

by the simulation shows a delay on shipping dates illustrated by the dramatic jumps

on Figure 22.
,;/«f"' wm""“’“‘«‘c;“ ™ i
H %
‘\m\; \§.
5 2, - C
GATE B
PARKING ﬁ f‘?am
I / / / /
L / / / / Q;/
= é’/ Y ol
"Vi
| j «j @ fgfﬁ/ N
— <L
MAIN GATE /_.._R;i %
}....«
-1 %%% &% %‘%@ %{?S% g
i .
; | 2 k
g
Lo
i:x | S—
g “ N\ \\ \ N \\\ \\‘ \\
= ST am&z
Figure 22 - PCL Module Yard Layout (bay area “C” and “D” only)
61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Therefore, bay areas “C” and “D” alone are not a good layout for the yard and further

combinations should be sought to determine the best layout.

ORISR IS
BRI 17

E 285m0 ’_ff'w
£ 20Marcs |
@ —— Simulation-based
10-Dec-02 ,J - CPM-based — -
1-Sep-02
24-May-02
13-Feb-02

o 1 Is ® N~ @ O~ @ o W~ ® oW~ @
‘—‘—ngEmgmo&mvmwgmo‘-wx\?mgn\w
NN NN o~ N

301

Module No. ° 8
Note: The data used to obtain this graphs has been altered from the
original data used by the company for confidentiality.

Figure 23 - CPM Schedule vs. Simulation Schedule (bay area “C” and “D” only)

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Scenario 3: Module yard layout (bay areas “A” and “B” only): Similar to the two
previous scenarios, this scenario provides the manager with the option of utilizing bay
areas “A” and “B” only and leaving the remaining areas for use when needed. If only
bay areas “A” and “B” are considered together (see Figure 24), then the schedule
proposed by the simulation will be similar to the schedule proposed when all four bay
areas “A”, “B”, “C”, and “D” were considered together (see Figure 25). The whole
yard consists of 36 full bays and 3 half bays. Bay area “A” and bay area “B”
combined have only of 26 full bays and 1 half bay. As a result, 329 modules are
fabricated in a space of about 70% of the whole yard capacity.

Bay N4
Bay N3

GATE B _| Py S

PARKING ‘?Tlf?ﬁ

f’f‘m

— 7

MAIN GATE _ =
/ o

< @;,, %&W o b

\% 'm‘.? & \g

A\ \\ \T; N

fa

5
'hiuﬁﬁu%

WAREHOUSE

Figure 24 - PCL Module Yard Layout (bay area “A” and “B” only)

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Therefore, bay areas “A” and “B” only are sufficient for accomplishing the
fabrication of these 329 modules, which will leave approximately 30% of the yard

space (bay areas “C” and “D”) available for other usage.

1-Aug-04 -~

23-Apr-04

14-Jan-04

6-0Oct-03
§ 28-JUM-03 e
2
-g 20-Mar-03
& - Simulation-based
1006002 — CPM-based
1-8ep-02 +—~—
24-May-02 +—

13-Feb-02

m
MW N O [[>] o~
'wwmvarxmmgﬁm@BmEmoaaiﬁ

Module No.
Note: The data used to obtain this graphs has been altered from the
original data used by the company for confidentiality.

265

P~ ™ M
P~ Q = o
o~ @ m M

289

Figure 25 - CPM Schedule vs. Simulation Schedule (bay area “A” and “B” only)

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Scenario 4: Modules are shipped although the space in front is not empty: Module
“A” has the potential of finishing its assembly process prior to module “B”, which is

located ahead of “A” in the same bay (see Figure 26).
i : o

Module
G‘B”

Module

Figure 26 - PCL Module Yard (module “A” and module “B”)

This scenario provides the manager with the option of employing larger cranes and
more equipment in order to ship modules regardless of their position in the bay.
When the simulation was performed without the constraint that modules could only
be shipped when all the space in front of them is empty, it was found that the new
proposed schedule is similar to the schedule proposed when the simulation followed

the constraint about empty space (see Figure 27).

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1-Aug-04
23-Apr-04 —
14-Jan-04
6-0ct-03 - 4
£
S 28.Jun03
g
£ 20-Mar-03 {4 ik ‘
& 2 ~— Simulation-based ‘
10Dec02 Lo — CPM-based ; S
1-Sep-02 -+
24-May-02
13-Feb-02 - : r -
TPR59r 858588888 IBERBEEE
Module No.
Note: The data used to obtain this graphs has been altered from the
original data used by the company for confidentiality.

Figure 27 - CPM Schedule vs. Simulation Schedule (Modules are Shipped Even Though the
Space in front is not Empty)

This scenario supports the assumption that when the simulation follows the constraint
about space in front is truly looking for the best places where to start the fabrication
of each module. When no empty space is required to ship a module, the module can
begin its process of fabrication anywhere within the yard and be shipped as soon as
the process is complete. Since it is impossible to accomplish this in real life due to
space limitations, it is better to employ a real life scenario in which modules wait
until the space in front of them is completely empty for shipment. This process is
engineered to obtain a schedule similar to the schedule that gives modules the ability
to commence fabrication anywhere within the yard. The real life scenario schedule,
however, will have the advantage of not using larger cranes or additional equipment

to empty the bay, which will ultimately save money.

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Scenario 5: Varying the number of shipments per day (from two to six): The number
of shipments per day may affect the schedule. The main scepario allows six
shipments per day, when this number was increased from seven to ten, no
improvement was obtained. On the other hand, when the number of shipments per
day was decreased, the scheduled appeared to remain in a consistent form regardless
of the number of shipments varying between two to six per day (see Figure 28). In
this case, two shipments per day seems to be the right choice; however, the scenario

with only one shipment per day (Scenario 6) must be analyzed before arriving at this

conclusion.
1-Aug-04
23-Apr-04 +— - .
14-Jan04 +—— B ‘ ﬁ/
6.00t-03 il |
§ 28-Jun03 -
g
g 20-Mar-03 e !]
= ar-03 +——gt EEE— R R
@ # —- Simulation-based |
10-Dec-02 w; - —CPM-based |
1-Sep-02 —
24-May-02 —
13-Feb-02 \
TeRBEIoRB5858Y58588TRERERBREY
Module No.
Note: The data used to obtain this graphs has been altered from the
original data used by the company for confidentiality.

Figure 28 - CPM Schedule vs. Simulation Schedule (Varying the Number of Shipments per Day
from Two to Six)

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Scenario 6: Varying the number of shipments per day to one shipment per day:
Scenario 5 demonstrated that two shipments per day deliver modules is as sufficient
as six shipments per day. When only one shipment was tested, the schedule showed a

loss as compared to the project schedule (see Figure 29).

9-Novw-04

1-Aug-04

23-Apr-04

14-Jan-04

8-0ct-03

28-Jun-03

20-Mar-03 -

Shipping Date

1006602 g e’ e CPM-based

1-Sep-02

24-May-02

13-Feb-02 S ——

S-Nov-01

- @ W o
EE *~

305 3

o
=
«

301 ¢

~
525

85
a7
09
21
33
45
57
69
81
93
05
17
29
41
53
265

N
o N

- Y e e e e e =

Module No.

Note: The data used to obtain this graphs has been altered from the
original data used by the company for confidentiality.

Figure 29 - CPM Schedule vs. Simulation Schedule (One Shipment per Day)

It can be concluded that under the particular workload and circumstances, the
schedule can be improved with only enough shipping equipment to perform two

shipments per day lowering the actual cost of shipping.

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Scenario 7: Modules are shipped immediately after assembly: The main scenario
assumes that a module will wait for a maximum of five days before shipping once it
has been completed. No significant change occurred by varying the number until this
number was set to zero, that is, the module is shipped on the same day that it has been

completed (see Figure 30).

1-Aug-04 -
23-Apr-04 ¢ =
14-Jan-04 —
6-0ct-03 u‘
2
8§ 28-Jun03 |
2
g 20-Mar-03 +—
& —- Simulation-based
10-Dec-02 J - — CPM-based
1-Sep-02
24-May-02
13-Feb-02
TPREYORBEBIBILBEBEENIREREEEE
Module No.
Note: The data used to obtain this graphs has been altered from the
original data used by the company for confidentiality.

Figure 30 - CPM Schedule vs. Simulation Schedule (Shipping Modules Immediately After
Assembly)

Based on these findings, a module may only begin the fabrication process if its
finishing date does not fall after the finishing date of a module already in fabrication
within that same bay. When no tolerance is permitted, the model does not
approximates to an optimize schedule in order to satisfy the constraint. Therefore, it is
necessary to factor in the need for modules to wait for short periods of time before
shipping in order to obtain the best results since the simulation will be more available

for bay combinations.

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Scenario 8: Modules are routed according to particular characteristics such as size
rather than type: All the bays are able to handle any type or size of module. Based on
the simulation, routing modules based on their size instead of on their type did not

affect the schedule at all (see Figure 31).

1-Aug-04
23-Apr-04
14-Jan-04 P i —
B-00t-03 4 e " —d
§ 28-Jun-03 e v o
2 1
£ 20Mar-03 +———giff————=0 o]
» |+ Simulation-based
10-Dec-02 _W.A,v,-,wm,___.,.‘ — CPM-based _ U
1-Sep-02
24-May-02 — -
13Feb-02 SR
TeREYORB585288b 8288 FREREFEE
Module No.
Note: The data used to obtain this graphs has been altered from the
original data used by the company for confidentiality.

Figure 31 - CPM Schedule vs. Simulation Schedule (Routing Modules Based on Size Rather than
Type)

Therefore, the choice to route depending on a certain characteristic should be made
based on what is more convenient for the company: to have all the modules that
require the same type of equipment or material in close proximity to one another or to

have modules close to one another based on their size.

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Scenario 9: A distribution range is giving to the durations: The main scenario was
run assuming fixed durations; however, in reality the durations may vary due to
unpredictable circumstances. Scenario 9 in which durations were randomly given was
tested (see Figure 32). Randomness has been created following standard input

modeling techniques provided by PCL experts, based on min, max, and most likely

values.
1-Aug-04
23-Apr-04
14-Jan-04
6-0ct-03 £ Hﬁ,
ﬁ 28-Jun-03
g
| D s —] 4
» - Simulation-based
10-Dec-02 b - CPM-based
1-Sep-02
24-May-02 —
13-Feb-02
TeRFcRB58588Lb883KRFBEREFES
Module No.
Note: The data used to obtain this graphs has been altered from the
original data used by the company for confidentiality.

Figure 32 - CPM Schedule vs. Simulation Schedule (A Distribution Range is Given to the
Durations})

The results show schedule improvement, albeit an improvement that varies due to the
numerous duration changes, which occur as a result of the model’s randomness. The
simulation does provide a better schedule overall than the actual project schedule

used thus far.

5.4 Summary and Conclusions

The resuits obtained from these scenarios indicate that the appropriate combination

and determination of constraints will lead to better results in terms of schedule and

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

budget. However, not all constraints can be altered in reality. For example, the yard
layout depends on the yard size and may not be increased in a significant way due to
physical limits; in this case, however, the layout can be reduced, meaning that the rest
of the yard may be allocated for use elsewhere. An increase of the capability of
shipping more modules per day was determined to be unnecessary since shipping
only two modules per day already improved the schedule significantly. It is not
necessary to determine a different way of removing a finished module even though
the module in front in the bay is still under fabrication because it was proven that the
schedule will not be more improved than it was when constrained by this
requirement. It is recommended that modules having to wait a certain number of days
before shipping rather than being shipped right away in order to obtain the best
results, be modeled with a degree of flexibility. Finally, having a range in durations

rather than fixed durations is a more realistic scenario.

5.5 Limitations

The development of the simulation model was limited by the data provided by PCL as
well as the short-term needs that PCL prioritized for this stage of the research as the
most important outputs. Also, the modeling of different crews and their interactions
when performing the subtasks has not been evaluated due to the previously mentioned
prioritization for short-term needs. Randomness has been created from the
information provided. However, no additional information was available since this
research was performed at the same time that the modules were being fabricated for
the first time under the circumstances mentioned before regarding the logical and

physical constraints.

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6. Conclusion

6.1 Summary of Research

This thesis presented a simulation-based technique to improve schedules of module
assembly yards. The technique deals with the challenge of meeting the delivery dates
set by the client and performing regular schedule updates. Developing a simulation-
based scheduling process for use in the modularization industry has much potential as
there is a substantial need to distribute modules in the yard more efficiently and
effectively. The simulation-based technique provides a convenient and easy-to-use
tool for allocating modules. The implementation of this research concept for
generating a constrained schedule for use in the modularization industry was made
possible using Simphony (AbouRizk and Hajjar 1998), a general purpose simulation
tool that, among other functions, provides flexibility for module allocation. The
simulation-based schedule integrates the given information into a database format,
which processed the data using Visual Basic Application in Excel and the simulation

model developed using Simphony.

There are a number of advantages in using the simulation-based scheduling.
Simulation-based scheduling contributes to decision-making by providing an
instrument to evaluate various scenarios of interest and provides perspective. Actual
physical and logical constraints as well as the logical and heuristic rules used by yard
superintendents were analyzed and incorporated into this approach. The scheduling
rules employed in this research create a feasible schedule. The approach begins by
identifying and prioritizing the modules to be processed. The resource availability is
checked and modules are scheduled one by one in order of priority until all the
modules are scheduled. The model allows experimentation with the rules. This
experimentation then provides scenarios out of which the best schedule is obtained
based on actual yard and resource limitations. The experimentation presented in this
thesis was done through a case study undertaken in cooperation with PCL in

Edmonton, Canada. The results obtained demonstrated significant improvements in

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the module assembly schedule when compared to traditional scheduling techniques
using CPM. It has been estimated that obtaining the schedule and performing the
allocation of modules using the simulation-based technique rather than manually
allocating modules using Primavera could save up to $12,500 per year. These savings
correspond to the employ of less effort while updating the schedule (less man-hours
spent during the update process). Cost savings due to earlier delivery times may vary

depending on the total time saved per module.

6.2 Research Contributions

The research contributions are as follow:
e Development of an integrated approach for optimizing the scheduling process
of a module yard, and

e Automation of this approach and implementation with the industry.

These contributions have been achieved by:

e Developing a simulation model for a module assembly yard.

e Integrating simulation with schedule for instant evaluation of yard utilization
and schedule updates.

e Integrating the simulation model with uncertainty in the schedule.

e Integrating the simulation with the database, as a result two new Simphony
elements have been created and added to the simulation model to automate
this process.

e Incorporating graphics for yard layout and yard utilization.

e Automating the schedule using VBA when updating the inputs and obtaining

the results.

6.3 Recommendations for Future Research

The simulation-based technique demonstrates the feasibility of managing a module
assembly yard. Using the approach described in this thesis, future work can be
undertaken to study the effects of incorporating different calendars and shifts into

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

modules when scheduling their assembly process as well as to provide the auto-

generate layout graphical interface in AutoCAD.

The following areas are available for future research:

e Scheduling based on calendars: The changes in schedules using a different

calendar for each module, allows for various shift configurations to require
examination as this will provide better perception into the proper selection of
scheduling calendars depending on module characteristics and conditions.

o User interface enhancement: Data input, simulation running, and the auto-

generate layout graphical interface can be further enhanced to provide a more
‘user-friendly’ interface. The data input interface can be enhanced to include
database forms that display calendars in which dates ate chosen by the user by
clicking on the desired date rather than manually typing the date. The
simulation can be run using the database or the VBA instead of actually
opening Simphony and performing the run manually. The auto-generate layout
graphical interface can be improved by using an actual AutoCAD module
yard layout.

e 3D model: The 3D model may be front-loaded with module assembly yard
information as well as information and characteristics for each module.

o 4D model: Including the element of time to the 3D model where the dates
obtained during the simulation would, therefore, add an extra dimension.

e Shipping: The model provides the manager with the necessary information to
schedule shipping dates. However, the model does not consider the delivery
method nor the delivery times from Nisku, Alberta to Fort McMurray,
Alberta. A further investigation into these issues may improve the overall
modularization process.

e Lean theory: Since a module assembly yard schedule is based on the
appropriate utilization of resources, the effect of lean theory is an available

avenue of investigation.

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

e Resource utilization and leveling: Resources play an important role in a

module assembly yard. Making the model capable of performing resource

leveling can further improve the results.

o Capacity and productivity studies: A method of computing the complexities

of the work based on a set of features can be taken up; a neural network-based
approach can be utilized to obtain expected durations for each of the subtasks

that can be used for scheduling.

e Weather effects: Located in an open area in Nisku, Alberta, the module
assembly yard can face the effects of the weather to which module fabrication
is exposed. A study of the fabrication of modules under extreme weather

conditions can be carefully analyzed to improve productivity during winter.

e Genetic algorithms: The development of a module assembly yard schedule,
which includes genetic algorithms for enhancing the simulation-based

technique is another available future research.

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

References

AbouRizk, S. M. (1992). "A Stochastic Bidding Game for Construction

"

Management." In Second Canadian Conference on Computing in Civil
Engineering, CSCE, Ottawa, Ontario, 576-587.

AbouRizk, S. M. (2000). Simphony's User Guide, NSERC/Alberta Construction
Industry Research Chair, Edmonton, Canada.

Au, Y., Bostleman, R., and Parti, E. (1969). "Construction Management Game —
Deterministic Model." In ASCE Journal of Construction Division. Vol. 95, 25-38.

Banks, J. (1998). Handbook of simulation. John Wiley and Sons, New York, N.Y.

Borcherding, John D. (1977). "Cost Control Simulation and Decision Making." In
Journal of the Construction Division. Vol. 103, No. 4: 577-591.

Burke, G., and Miller, R. (1998). "Modularization speeds construction." In Power
Engineering, Vol. 102. No. 1: 20-22.

Cheng, M. Y., and O’Connor, J. T. (1996). "ArcSite: Enhanced GIS for Construction
Site Layout." In Journal of Construction Engineering and Management, Vol. 122,
No. 4: 329-336.

Chong, C. S., A. 1. Sivakumar, and Gay, R. (2003). "Simulation Based Scheduling
Using a Two-Pass Approach." In Proceedings of the 2003 Winter Simulation
Conference, S. Chick, P. J. Sanchez, D. Ferrin, and D. J. Morrice (eds.), 1433-
1439.

Hajjar, D., and AbouRizk, S. M. (1998). "A framework for applying simulation in
construction." In Canadian Journal of Civil Engineering. 25(3): 604—617.

Hajjar, D., and AbouRizk, S. M. (1999). "Simphony: An Environment for Building
Special Purpose Construction Simulation Tools." In Proceedings of the Winter
Simulation Conference. IEEE, Piscataway, N.J: 998-1006.

Hajjar, D., and AbouRizk, S. M. (2002). "Unified Modeling Methodology for
Construction Simulation." In Jouwrnal of Construction Engineering and

Management, Vol. 128, No. 2: 174-185.

77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Halpin, D. W. (1973). An investigation of the use of simulation networks for modeling
construction operations. PhD thesis, University of lllinois, at Urbana-Champaign,
I

Halpin, D. W., and Woodhead, R. W. (1973). Constructo - A Heuristic Game for
Construction Management, University of Illinois Press, Champaign, Illinois. pp.
195.

Hegazy, T., and Elbeltagi, E. (1999). "EVOSITE: Evolution-Based Model for Site
Layout Planning." In Journal of Computer in Civil Engineering, Vol. 13, No. 3:
198-206.

Hegazy, T., and Elbeltagi, E. (2001). "A Hybrid Al-Based System for Site Layout
Planning in Construction." In Computer-Aided Civil and Infrastructure
Engineering, Vol. 16: 79-93.

Hegazy, T., and Ersahin, T. (2001). "Simplified Spreadsheet Solutions. I:
Subcontractor Information System." In Journal of Construction Engineering and
Management, ASCE. Vol. 127, No. 6: 461-468.

Hegazy, T., and Ersahin, T. (2001a). "Simplified Spreadsheet Solutions. II: Overall
Schedule Optimization." In Journal of Construction Engineering and
Management, ASCE. Vol. 127, No. 6: 469-475.

Laufer, A. (1996). Simultaneous management: managing projects in a dynamic
environment. AMA-COM, American Management Association.

Li, S. (1996). "New Approach for Optimization of Overall Construction Schedule." In
Journal of Construction Engineering and Management, ASCE. Vol. 122, No. 1:
7-13.

Maru, A., and Kawahata, J. (2002). "Hitachi Modularization Technology." In Nuclear
Plant Journal, Vol. 20, No. 5: 39-42.

Mawdesley, M. J., Al-jibouri, S. H., and Yang, H. (2002). "Genetic Algorithms for
Construction Site Layout in Project Planning." In Journal of Construction
Engineering and Management, Vol. 128, No. 5: 418-426.

Oglesby, C. H., Parker, H. W., and Howell, G. A. (1989). Productivity Improvement
in Construction. McGraw-Hill (Series in Engineering and Project Management),

New York, N.Y.

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Osman, H. M., Georgy, M. E., and Ibrahim, M. E. (2003). "A hybrid CAD-based
construction site layout planning system using genetic algorithms." In Automation
in Construction, Vol. 12: 749-764.

Panwalkar, S. S., and Iskander, W. (1977). "A Survey of Scheduling Rules." In
International Journal of Operations Research, Vol. 25, No. 1: 45-61.

PCL (2003). "Pipe Fabrication and Module Construction Pamphlet." PCL Industrial
Constructors, Nisku, Alberta.

Schimmoller, B. (1998). "Power plants go modular." In Power Engineering, Vol. 102.
No. 1: 14-18.

Tam, C. M., and Leung A. W . T. (2002). "Genetic Algorithm Modeling Aided with
3D Visualization in Optimizing Construction Site Facility Layout." In
Proceedings of the International Council for Research and Innovation in Building
and Construction Conference. Aarhus, Denmark: 1-9.

Teicholz, P. M. (1963). 4 simulation approach to the selection of construction
equipment. PhD thesis, Stanford University, Stanford, CA.

Web 1 - Simulation in Construction Using CYCLONE and MicroCYCLONE. <
http://bridge.ecn.purdue.edw/CEM/Sim/> (June 2004).

Yeh, L-C., (1995). "Construction-Site Layout Using Annealed Neural Network." In
Journal of Computer in Civil Engineering, Vol. 9, No. 3: 201-208.

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://bridge.ecn.purdue.edu/CEM/Sim/

Appendix 1: Simphony’s Common Template Modifications

In Chapter 4, the creation of two new elements and the modification of three existing
elements from Simphony’s Common Template were explained. In this appendix, the

code written to create and modify those elements is listed.

Creation of the New Elements
Database Link Element:

Public Function DatabaseLink_OnCreate(ob As
CFCSim_ModelingElementInstance, x As Single, y As Single) As Boolean
0b.OnCreate x,y,True
DatabaseLink OnCreate=True

Dim myDB As Database

Dim myRS As Recordset

Dim numAttr As Integer

Dim i As Integer

Dim j As Integer

Dim k As Integer
ob.AddAttribute "Fired","Entites CreateEntd so far",CFC_Numeric,
CFC_Single,CFC_Hidden
ob.AddAttribute "Database","Database
Source",CFC_Text,CFC_Single, CFC ReadWrite
ob.AddAttribute "Tablel","Table/Query for Product Definition",CFC_Text,
CFC_Single,CFC_ReadWrite
ob.AddAttribute "NumRows","Number of Rows in the Table",CFC_Numeric,
CFC_Single, CFC_ReadOnly
ob.AddAttribute "NumColumns","Number of Columns in the Table",CFC_Numeric,
CFC_Single, CFC_ReadOnly

80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ob("Name")="Name"
ob("Database™)="C:\"
ob("Tablel")="Query"
ob.AddAttribute "CAttr", "",CFC_Array, CFC Table, CFC_ReadOnly
ob.AddAttribute "NumAttr","Number of Attributes”,CFC_Numeric,
CFC_Single,CFC Hidden
ob.AddAttribute "NumCom","Number of Components",CFC_Numeric,
CFC _Single,CFC_Hidden
ob.SetNumCoordinates 2
ob.CoordinatesX(0)=x
ob.CoordinatesY(0)=y
ob.CoordinatesX(1)=x+90
ob.CoordinatesY(1)=y+50
ob.AddConnectionPoint "Out",x+100,y+25,COutput,5
End Function

Public Sub DatabaseLink_OnSimulationlInitialize(ob As
CFCSim_ModelingFlementInstance)

Dim numAttr As Integer

Dim 1 As Integer

Dim j As Integer

Dim myDB As Database

Dim myRS As Recordset

‘Setup database connection

Set myDB = OpenDatabase(ob!Database)

Set myRS = myDB.OpenRecordset(ob! Tablel, dbOpenDynaset)
numAttr=Clnt(myRS.Fields.Count)
ob("NumAttr")=numAttr
myRS.MoveLast
ob("NumCom")=myRS.RecordCount

ob("NumColumns")=ob("NumAttr")

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ob("NumRows")=ob("NumCom")
ob("CAttr").SetRC(ob("NumCom"),ob("NumAttr"))
'Read attribute names
For i=0 To ob("NumAttr")-1
ob("CAttr").ColumnLabel(Clnt(i))= CStr(myRS.Fields(Clnt(i)).Name)
ob.AddAttribute "Attr” & i & "Name",CStr(myRS.Fields(CInt(i}).Name),CFC Text,
CFC Single, CFC_Hidden
Next1
'‘Clean the Table
With ob("CAttr")
For i=0 To ob("NumCom")-1
For j=0 To ob("NumAttr")-1
.ValueRC(i,j)=""
Next j
Next i
End With
ob.AddEvent "FireEntity"
End Sub

Public Sub DatabaseLink OnSimulationInitializeRun(ob As
CFCSim_ModelingElementInstance, RunNum As Integer)
Dim newEntity As CFCSim_Entity
Dim myDB As Database
Dim myRS As Recordset
Dim i As Integer
Set myDB = OpenDatabase(ob!Database)
Set myRS = myDB.OpenRecordset(ob! Tablel, dbOpenDynaset)
myRS.MoveFirst
Set newEntity = ob.AddEntity
ob("Fired")=0
With ob("CAttr")
82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

For i=0 To ob("NumAttr")-1
If IsNull(myRS.Fields(i). Value) Or IsEmpty(myRS.Fields(i).Value) Then
.ValueRC(ob("Fired"),CInt(i))=""
Else
ValueRC(ob("Fired"),CInt(i))=myRS.Fields(i). Value
newEntity("NumColumns")=ob("NumAttr")
newEntity("NumRows")=ob("NumCom")
newEntity(ob("CAttr").ColumnLabel(Clnt(i)))=myRS.Fields(i). Value
Tracer.Trace "Entity: " & newEntity.Id & " has been assigned a value of " &
newEntity(ob("CAttr").ColumnLabel(Clnt(i))) & " For attribute: " &
ob("CAttr").ColumnLabel(Clnt(i)) & ", "Simulation”
End If
Next i
End With

ob.ScheduleEvent ob.AddEntity,"FireEntity", myRS.Fields(4).Value '(4) represents

the fifth column on the database query where the EarlyStartDate is stored
ob("Fired")=0
End Sub

Public Sub DatabaseLink OnSimulationProcessEvent(ob As

CFCSim_ModelingElementInstance, MyEvent As String, Entity As CFCSim_Entity)

Dim newEntity As CFCSim_Entity
Dim myDB As Database
Dim myRS As Recordset
Dim myProcess As Recordset
Dim numAttr As Integer
Dim i, j, k As Integer
i=0
j=0
Set myDB = OpenDatabase(ob!Database)
Set myRS = myDB.OpenRecordset(ob! Tablel, dbOpenDynaset)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

&3

numAttr=Clnt(myRS.Fields.Count)
ob("NumAttr")=numAttr
myRS.MoveLast
ob("NumCom")=myRS.RecordCount
ob("CAttr").SetRC(ob("NumCom"),ob("NumAttr"))
Tracer. Trace "Number of attributes: " & ob("NumAttr")
Tracer.Trace "Number of components: " & ob("NumCom")
myRS.MoveFirst
Read attribute values
If ob("Fired")> ob("NumCom")-1 Then Exit Sub
ob("fired")=ob("fired")+1
Set newEntity = ob.AddEntity
If ob("fired")>1 Then
For j=2 To ob("fired") /=2 to start from the second entity
myRS.MoveNext
Next j
End If
With ob("CAttr")
For i=0 To ob("NumAttr")-1
'Read component attributes
If IsNull(myRS.Fields(i). Value) Or IsEmpty(myRS.Fields(i). Value) Then
.ValueRC(ob("Fired")-1,CInt(i))=""
Else
.ValueRC(ob("Fired")-1,CInt(i))=myRS.Fields(i). Value
newEntity("NumColumns")=ob("NumAttr")
newEntity("NumRows")=ob("NumCom")
newEntity(ob("CAttr").ColumnLabel(Clnt(i)))=myRS.Fields(i). Value
Tracer.Trace "Entity: " & newEntity.Id & " has been assigned a value of " &
newEntity(ob("CAttr").ColumnLabel(ClInt(i))) & " For attribute: " &
ob("CAttr").ColumnLabel(Clnt(i)) & "™, "Simulation”
End If

84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Next i

End With

ob.TransferOut newEntity

If ob("fired")<ob("NumCom") Then

myRS.MoveNext

End If
ob.ScheduleEvent Entity, "FireEntity", myRS.Fields(4). Value — SimTime '(4)
represents the fifth column on the database query where the EarlyStartDate is stored
Tracer.Trace "Entity: " & newEntity.Id & " Created","Simulation”
End Sub

Results Element: There are basically two different subroutines from the Database
Link Element: OnSimulationTransferln, and OnSimulationPostRun.

Public Sub Results OnSimulationTransferIn(ob As
CFCSim_ModelingFlementInstance, Entity As CFCSim_Entity, SrcCp As
CFCSim_ConnectionPoint, DstCp As CFCSim_ConnectionPoint)

Dim numAttr As Integer

Dim 1 As Integer

Dim j As Integer
numAttr=ob.CurrentEntity. Attr("NumColumns")
ob("NumColumns")=numAttr
ob("NumRows")=ob.CurrentEntity. Attr("NumRows")

With ob("CAttr")
For i=0 To ob("NumRows"}-1
If .ValueRC(1,0)="" Then
For j=0 To ob("NumColumns")-1
If IsNull{ob.CurrentEntity. Attr(ob("CAtir").ColumnLabel(CInt(j)))) Or
IsEmpty(ob.CurrentEntity. Attr(ob("CAttr").ColumnLabel(CInt(j)))) Then
.ValueRC(,j)="0"

Else

85

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

.ValueRC(i,j)=ob.CurrentEntity. Attr(ob("CAttr").ColumnLabel(ClInt(j)))
End If
Next j
Exit Sub
End If
Next i
End With
End Sub

Public Sub Results OnSimulationPostRun(ob As
CFCSim_ModelingFlementInstance, RunNum As Integer)
Dim numAttr As Integer
Dim 1 As Integer
Dim j As Integer
Dim sql As String
Dim myDB As Database
Dim myRS As Recordset
'Setup database connection
Set myDB = OpenDatabase(ob!Database)
'Clean the Results Table
If RunNum=1 Then
sql="Delete * From " & CStr(ob!Tablel_Results)
myDB.Execute sql
End If

Set myRS = myDB.OpenRecordset(ob!Tablel_Results, dbOpenDynaset,

dbAppendOnly)
numAtir=ob.CurrentEntity. Attr("NumColumns")
ob("NumColumns")=numAttr
ob{"NumRows")=ob.CurrentEntity. Attr("NumRows")
With ob("CAttr")
For i=0 To ob("NumRows")-1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

86

myRS.AddNew
For j=0 To ob("NumColumns")-1
myRS(CStr(ob("CAttr").ColumnLabel(Clnt(j))))= ob("CAtir"). ValueRC(.j)
Next j
myRS.Update
Next i
End With
End Sub

Simphony Common Template Modifications

Three of the elements found in the existing common template were modified to suit
the special requirements of this simulation. The modifications to those elements are

written in bold font in the following Simphony code.

Declare Resources Element:

Public Function Resource_OnCreate(ob As CFCSim ModelingElementInstance, x
As Single, y As Single) As Boolean

Resource_OnCreate=True

ob.OnCreate x,y, TTue

ob.AddAttribute "ResName","Resource Description”,CFC Text,

CFC_Single,CFC ReadWrite

ob.AddAttribute "Total","Total Number of Resources",CFC Numeric,CFC Single,
CFC_ReadWrite,0,1000000

ob.AddAttribute "Current”,"Current Number of Available Resources",CFC Numeric,
CFC_Single, CFC_ReadOnly

"This attribute will keep track of the finishing date of the module in the back of the
bay

ob.AddAttribute "EndBackModule”,"End of Module in the Back of the
Bay",CFC_Numeric, CFC_Single,CFC_ReadOnly

87

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

"This attribute will keep track of the finishing date of the module to be built
ob.AddAttribute "FinishCurrentModule","End of Module to be
built",CFC_Numeric, CFC_Single,CFC ReadOnly
ob.AddAttribute "ModuleCounter","Number of Modules in the Bay",CFC_Numeric,
CFC Single,CFC_ReadOnly
ob.AddAttribute "SpacelnFront","Space in front for more Modules",CFC_Numeric,
CFC _Single,CFC_ReadOnly

ob("ResName")= "Res"

ob("Total")=1

ob("Current")=1
ob.AddStatistic "Utilization","Resource Utilization”, True,False

End Function

Public Sub Resource_OnSimulationInitializeRun(ob As

CFCSim_ModelingElementInstance, RunNum As Integer)
ob("Current")=ob("total")
ob("EndBackModule")=1000
ob("FinishCurrentModule")=1000
ob(""ModuleCounter'')=0
ob("SpacelnFront")=1

If ob!Total<>0 Then ob.stat("Utilization™).Collect 100 * (1-

(ob("Current")/ob("Total")))

End Sub

Waiting File Element:

Public Sub Waiting File OnSimulationProcessEvent(ob As
CFCSim_ModelingElementInstance, MyEvent As String, Entity As CFCSim_Entity
Select Case MyEvent

Pofe s e o sfe sfe sk e she sl sl sk ook

"TO DO:

88

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

' To optimize the processing time, a check of all the entities in the file should NOT be
done
"unless a change in the number of available resource in any of the declared resources
has happened
"if the check is triggered by an entity added to the file, it should only check the
availability of resources
' for that entity
U3k o sfe sk skok skosk e sk sk skdle sk sk
Case "Check"
Dim SrvEnt As CFCSim_Entity
Dim RgstElmnt As CFCSim_ModelingElementInstance
Dim Rgst As CFCSim_ModelingElementInstance
Dim ResElmnt As CFCSim_ModelingElementInstance
Dim ResAvailable As Boolean
"To request resources if the module will finish on time
'Dim RqstEnd As CFCSim_ModelingElementInstance
ob.DeleteEntity Entity
Tracer.Trace "*******File Check Started ***¥***" "reg" "File"
With ob.File("Waiting_File")
If .Length= 0 Then Exit Sub
.MoveFirst
"#*%* Check the waiting entities one by one
While (EOF=False And .Length>0)
ResAvailable=True
Set SrvEnt=.entity
Set RgstElmnt = SrvEnt("CEM_Common_RgstElmnt")
Tracer.Trace "File Length=" & .Length & " and EOF="& .EOF & " and Current Ent
is#" & SrvEnt.Id ,"res","File"
"*** If the request element from where the entity came is satisfied
! for all the single requests inside it Then

"% orant the request for that element

89

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Select Case RgstElmnt("RgstType")
Case "ALL" "** All resources are required
"*#% First check if all the resources are available
For Each Rgst In RgstElmnt.ChildElements
"The following line is tTo allow linking the required number of resources
' to entity attributes
'"Rgst.OnSimulationTransferIn SrvEnt,Nothing,Nothing
If Rgst("ResName")<>"**Linked to Entity Attribute**" Then *** Case not linked
Set ResElmnt=Rgst("ResOb").Reference
Else wdk* Case linked
For Each ResElmnt In Flements
‘ob.Parent.ChildElements
If ResElmnt.FlementType="Resource" Then
If ResElmnt("ResName")=SrvEnt(Rgst("EntAttr")) Then Exit
For
End If
Next
End If
If ResElmnt("Current")<Rgst("NumRes") Then
ResAvailable=False

Exit For
End If
Next
If ResAvailable Then

% If all are available then decrease each's availabe number by the requested number
For Each Rgst In RgstElmnt.ChildElements
"The following line is tTo allow linking the required number of resources
' to entity attributes
"Rgst.OnSimulationTransferIn SrvEnt,Nothing,Nothing
If Rgst("ResName")<>"**Linked to Entity Attribute**" Then "*** Case not linked
Set ResElmnt=Rqgst("ResOb").Reference

90

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Else Exk Case linked
For Each ResElmnt In Elements 'ob.Parent.ChildElements
If ResElmnt.ElementType="Resource” Then
If ResElmnt("ResName")=SrvEnt(Rgst("EntAttr")) Then Exit For
End If
Next |
End If
ResElmnt("Current")=ResElmnt("Current")-Rgst("NumRes")
If ResElmnt("Total")<>0 Then
ResElmnt.stat("Utilization").Collect 100 * (1-
(ResElmnt("Current")/ResElmnt("Total")))
Next
"** Then remove the entity from the file and schedule a Granted Request event in its
original capture element
.Remove SrvEnt

RgstElmnt.ScheduleEvent SrvEnt,"RqstGrmtd",0

Tracer.Trace ">>>>>>>Rgst. of ALL res. GRANTED for Entity #"&
SrvEnt.Id,"res","File","Granted"
¥ Tf no resources are available for this entity move to the next one
Else
Tracer.Trace "Regst ALL denied and moving to the next ent","res","File","Denied"
.MoveNext
End If
Case "ANY" "*** Any of the requesed resources is enough
“kx% First check if any of the resources is available
For Each Rgst In RgstElmnt.ChildElements
If Rgst("ResName")<>"**Linked to Entity Attribute**" Then "** Case not linked
Set ResElmnt=Rgst("ResOb").Reference
Else wk*k Case linked

91

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

For Each ResFElmnt In Flements

‘ob.Parent.ChildElements
If ResElmnt.ElementType="Resource" Then
If ResElmnt("ResName")=SrvEnt(Rqst("EntAttr"))
Then Exit For
End If
Next
End If

'Quick fix for resource request problem

'to enable requesting # of resources based on entity attribute (formula)

¥

Dim numRes As Integer
If SrvEnt(" Auxiliary'')<1 Then
If Rgst. Attr("NumRes").Calculation=CFC_Formula Then
If Not IsNumeric(Rgst("NumRes™)) Then
numRes=SrvEnt(Rqgst("NumRes"))

Else
numRes=SrvEnt(" UnitsRequested’)
End If
Else
numRes=Rgst("NumRes")
End If
Else

If SrvEnt(" Auxiliary")=1 Then '’ to capture space and resources for shipping
If Not IsNumeric(Rgst("NumRes')) Then
numRes=SrvEnt(Rgst("NumRes™))
Else
numRes=Rgst(" NumRes")
End If
End If
If SrvEnt(" Auxiliary")=3 Then '"' to capture Manhours_Struct

92

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

If Rgst. Attr("NumRes").Calculation=CFC_Formula Then
If Not IsNumeric(Rgst("NumRes")) Then
numRes=SrvEnt(Rgst("Manhours_Struct"))
Else
numRes=Rgst("NumRes")
End If
End If
End If
If SrvEnt(" Auxiliary')=4 Then '"' to capture Manhours_Piping
If Rgst. Attr("NumRes").Calculation=CFC_Formula Then
If Not IsNumeric(Rgst("NumRes")) Then
numRes=SrvEnt(Rgst("Manhours_Piping'"))
Else
numRes=Rqgst("NumRes")
End If
End If
End If
If SrvEnt(" Auxiliary")=5 Then '"' to capture Manhours_Cable Tray
If Rgst. Attr("NumRes').Calculation=CFC_Formula Then
If Not IsNumeric(Rgst("NumRes")) Then
numRes=SrvEnt(Rgst("Manhours_Cable _Tray"))
Else
numRes=Rgst("NumRes")
End If
End If
End If
If SrvEnt(" Auxiliary’)=6 Then '"' to capture Manhours EHT
If Rgst.Attr("NumRes").Calculation=CFC_Formula Then
If Not IsNumeric(Rgst("NumRes'")) Then
numRes=SrvEnt(Rgst("Manhecurs_EHT"))
Else

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

numRes=Rgst("NumRes™)
End If
End If
End If
If SrvEnt(" Auxiliary")=7 Then "' to capture Manhours_Insulation
If Rgst.Attr("NumRes").Calculation=CFC_Formula Then
If Not IsNumeric(Rgst("NumRes')) Then
numRes=SrvEnt(Rqst(""Manhours_Insulation'"))
Else
numRes=Rqst("NumRes'")
End If
End If
End If
If SrvEnt(" Auxiliary")=8 Then "' to capture Manhours_Fireproof
If Rgst.Attr("NumRes").Calculation=CFC_Formula Then
If Not IsNumeric(Rqst("NumRes'')) Then
numRes=SrvEnt(Rqgst("Manhours_Fireproof™))
Else
numRes=Rgst("NumRes")
End If
End If
End If

"Then change ["Rgst("NumRes")] in the statements marked with >> to
[mumRes]

¥

$

If ResElmnt(" Current")>=numRes Then
If SrvEnt(" Auxiliary”)= 0 Then
If (ResElmnt("EndBackModule")+SrvEnt(“WaitingDays))>=
(SrvEnt("Duration_Override_Struct™)+

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

94

SrvEnt("Duration_Override_Piping")+

SrvEnt("Duration_Override_Cable_Tray")+

SrvEnt("Duration_Override EHT")+

SrvEnt("Duration_Override_Insulation")+

SrvEnt(" Duration_Override_Fireproo)+SimTime) Then

If (ResElmnt(" FinishCurrentModule")+

SrvEnt(“WaitingDays))>=
(SrvEnt("Duration_Override_Struct”)+
SrvEnt("Duration_Override_ Piping")+
SrvEnt("Duration_Override_Cable Tray")+
SrvEnt("Duration_Override EHT")+
SrvEnt("Duration_Override_Insulation")+
SrvEnt("Duration_Override_Fireproof™)+SimTime) Then

ResAvailable=True
¥% Record the requested resource for automatic release
Set SrvEnt("CEM_Common_RgstdRes")=ResElmnt

SrvEnt("CEM_Common_NumRgqstdRes")=numRes
ResElmnt(" Current)=ResElmnt(*' Current”)-numRes
SrvEnt(" Assembly")=numRes
SrvEnt("Space")=ResElmnt(" Current')
SrvEnt(" Total")=SrvEnt(" Assembly')+SrvEnt(" Space")
SrvEnt("Bay")=ResElmnt(" ResName")

If ResElmnt("EndBackModule")=1000 Then
ResElmnt(" EndBackModule")=(SrvEnt("Duration_Override_Struct”)+
SrvEnt("Duration_Override Piping'')+
SrvEnt("Duration_Override Cable Tray")+
SrvEnt("Duration_Override EHT")+SrvEnt("Duration_Override_Insulation™)
+SrvEnt("Duration_Override Fireproof')+SimTime)

ResElmnt("ModuleCounter”)=0
End If

95

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ResElmnt("ModuleCounter' }=ResElmnt("ModuleCounter”)+1
SrvEnt("No_of Modules behind")=ResElmnt("ModuleCounter")-1
If Clhot(ResElmnt(" Current”))>0 Then
SrvEnt("Space_in_front")="Yes"
Else
If Cint(ResElmnt(" Current"))=0 Then
SrvEnt("Space_in_front")="No"
End If
End If
If
ResElmnt("FinishCurrentModule")>(SrvEnt(" Duration_Override_Struct')+
SrvEnt("Duration_Override_Piping'')+
SrvEnt("Duration_Override_Cable_Tray")+
SrvEnt("Duration_Override EHT")+
SrvEnt("Duration_Override_ Insulation')+
SrvEnt("Duration_Override_Fireproof')+SimTime) Then
ResElmnt(" FinishCurrentModule")=(SrvEnt(" Duration_Override_Struct")+
SrvEnt(" Duration_Override_Piping")+
SrvEnt("Duration_Override_Cable Tray™)+
SrvEnt("Duration_Override EHT")+
SrvEnt("Duration_Override_Insulation')+
SrvEnt("Duration_Override_Fireproof'')+SimTime)
End If
If ResElmnt("Total")<>0 Then ResElmnt.stat("Utilization™).Collect 100 * (1-
(ResElmnt("Current")/ResElmnt("Total"}))
“#% Then remove the entity from the file and schedule a Granted Request event in its
original capture element
.Remove SrvEnt
RgstElmnt.ScheduleEvent SrvEnt,"RgstGrntd”,0
Tracer.Trace ">>>>>>>Rqst. for ONE of the res. is GRANTED for Entity #'&
SrvEnt.Id,"res","File","Granted"

96

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Exat For

Else
ResAvailable=False
End If
Else
ResAvailable=False
End If
Else

If SrvEnt(" Auxiliary")= 1 Or SrvEnt(" Auxiliary")> 2 Then """ to grant
resources in other captures besides capturing assembly space

ResAvailable=True

..

Set SrvEnt("CEM_Common_RgstdRes")=ResElmnt
SrvEnt("CEM_Common_NumRgstdRes')=numRes
ResElmnt(" Current”)=ResElmnt(" Current’')-numRes
If ResElmnt("Total")<>0 Then ResElmnt.stat("Utilization").Collect 100 * (1-
(ResElmnt("Current")/ResElmnt("Total")))
"** Then remove the entity from the file and schedule a Granted Request event in its
original capture element
.Remove SrvEnt
RgstElmnt.ScheduleEvent SrvEnt,"RqstGrntd”,0
Tracer.Trace ">>>>>>>Rgst. for ONE of the res. is GRANTED for Entity #'&
SrvEnt.Id,"res","File","Granted"
Exit For
Flise
ResAvailable=False
End If
End If
Else
If SrvEnt(" Auxiliary”)=2 Then """ to capture assembly space for modules that

have already started their fabrication process
97

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

If Rgst.Attr("NumRes").Calculation=CFC_Formula Then
If Not IsNumeric(Rgst("NumRes')) Then
numRes=SrvEnt(Rqst("NumRes™"))

Else
numRes=SrvEnt(" UnitsRequested")
End If
FElse
numRes=Rgst("NumRes")
End If

ResAvailable=True
1#%%+* Record the requested resource for automatic release

Set SrvEnt("CEM_Commeon_RgstdRes")=ResElmnt
SrvEnt("CEM_Common NumRgstdRes')=numRes
ResElmnt(" Current")=ResElmnt(" Current”)-numRes
SrvEnt(" Assembly")=numRes

SrvEnt("Space")=ResElmnt(" Current')

SrvEnt(" Total")=SrvEnt(" Assembly")+SrvEnt("Space")

SrvEnt(" Bay")=ResElmnt(" ResName'")

If SrvEnt("Task")=1 Then

ResElmnt(" EndBackModule")=(SrvEnt(""NoOfDaysSinceStart")-
SrvEnt("NoOfDaysAlreadyOnTask")+SrvEnt("Duration_Override_Struct")+S
rvEnt("Duration_Override Piping")+SrvEnt("Duration_Override_Cable_Tray
"J+SrvEnt(" Duration_Override EHT")+SrvEnt("Duration_Override_Insulatio
n")+SrvEnt(" Duration_Override_Fireproof')+SimTime)

ResElmnt(" FinishCurrentModule")=(SrvEnt("NoOfDaysSinceStart")-
SrvEnt("NoOfDaysAlreadyOnTask")+SrvEnt(" Duration_Override_Struct')+S
rvEnt("Duration_Override_ Piping")+SrvEnt(" Duration_Override Cable_Tray
"HSrvEnt("Duration_Override EHT")+SrvEnt("'Duration_Override_Insulatio
n'"}+SrvEnt("Duration_Override Fireproof")+SimTime)

End If

98

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

If SrvEnt("Task")=2 Then

ResElmnt("EndBackModule')=(SrvEnt(""NoOfDaysSinceStart')-
SrvEnt("NoOfDaysAlreadyOnTask")+SrvEnt("Duration_Override_ Piping")+S
rvEnt("Duration_Override_Cable Tray")+SrvEnt("Duration_Override EHT")
+SrvEnt(" Duration_Override_Insulation")+SrvEnt(" Duration_Override_Firep
roof")+SimTime)

ResElmnt(" FinishCurrentModule")=(SrvEnt("NoOfDaysSinceStart')-
SrvEnt("NoOfDaysAlreadyOnTask")+SrvEnt(" Duration_Override Piping")+S
rvEnt("Duration_Override_Cable_Tray")+SrvEnt("Duration_Override_EHT")
+SrvEnt("Duration_Override_Insulation”)+SrvEnt("Duration_Override_Firep
roof")+SimTime)

End If

If SrvEnt("Task")=3 Then

ResElmnt(" EndBackModule")=(SrvEnt("NoOfDaysSinceStart")-
SrvEnt("NoOfDaysAlreadyOnTask")+SrvEnt("Duration_Override_Cable_Tra
y'")+SrvEnt("Duration_Override EHT")+SrvEnt("Duration_Override Insulati
on")+SrvEnt("Duration_Override_ Fireproof")+SimTime)

ResElmnt(" FinishCurrentModule")=(SrvEnt("NoOfDaysSinceStart")-
SrvEnt("NoOfDaysAlreadyOnTask")+SrvEnt("Duration_Override_Cable Tra
y'")+SrvEnt("Duration_Override EHT")+SrvEnt("Duration_Override_Insulati
on'")+SrvEnt("Duration_Override_Fireproof'')+SimTime)

End If

If SrvEnt("Task")=4 Then

ResElmnt("EndBackModule")=(SrvEnt("NoOfDaysSinceStart")-
SrvEnt("NoOfDaysAlreadyOnTask") +SrvEnt("Duration_Override EHT")+Sr
vEnt("Duration_Override_Insulation”)+SrvEnt("Duration_Override_ Fireproof
")+SimTime)

ResElmnt(" FinishCurrentModule”)=(SrvEnt("NoOfDaysSinceStart")-
SrvEnt("NoOfDaysAlreadyOnTask)+SrvEnt("Duration_Override_EHT")+Sr
vEnt("Duration_Override_Insulation")+SrvEnt("Duration_Override_Fireproof

")+SimTime)

99

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

End If

If SrvEnt("Task")=5 Then

ResElmnt(" EndBackModule")=(SrvEnt("NoOfDaysSinceStart')-
SrvEnt("NoOfDaysAlreadyOnTask")+SrvEnt(" Duration_Override_Insulation”
W SrvEnt("Duration_Override_Fireproof")+SimTime)

ResElmnt(" FinishCurrentMeodule")=(SrvEnt("NoOfDaysSinceStart’)-
SrvEnt("NoOfDaysAlreadyOnTask")+SrvEnt("Duration_Override_Insulation”
+SrvEnt("Duration_Override_Fireproof')+SimTime)

End If

If SrvEnt("Task")=6 Then

ResElmnt(" EndBackMeodule")=(SrvEnt("NoOfDaysSinceStart")-
SrvEnt("NoOfDaysAlreadyOnTask")+SrvEnt("Duration_Override_Fireproof™)
+SimTime)

ResElmnt(" FinishCurrentModule")=(SrvEnt(""NoOfDaysSinceStart™)-
SrvEnt("NoOfDaysAlreadyOnTask")+SrvEnt("Duration_Override_Fireproof™)

+SimTime)
End If

If ResElmnt("Total")<>0 Then
ResElmnt.stat(" Utilization").Collect 100 * (1-

(ResElmnt(" Current")/ResElmnt(" Total")))
"*%% Then remove the entity from the file and schedule a Granted Request event
im its original capture element
.Remove SrvEnt

RgstEImnt.ScheduleEvent SrvEnt,"RqstGrntd”,0
Tracer.Trace ">>>>>>>Rqst. for ONE of the res. is GRANTED for Entity #"&
SrvEnt.Id,"res"," File"," Granted"

Exit For
Else
ResAvailable=False
End If
End If

100

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

End If
Else
ResAvailable=False

End If
Next
If Not ResAvailable Then
Tracer.Trace "Reqst ANY denied and moving to the next ent" ,"res","File","Denied"
.MoveNext
End If
End Select
Wend
End With
Tracer. Trace """ File Check Ended """ res™"File"
End Select
End Sub

Release Resources Element:

Public Sub Release_OnSimulationProcessEvent(ob As
CFCSim_ModelingFElementInstance, MyEvent As String, Entity As CFCSim_Entity)
Dim RelRes As CFCSim_ModelingElementInstance
Dim ResElmnt As CFCSim_ModelingElementInstance
Dim File As CFCSim_ModelingElementInstance
Dim ResID
Select Case MyEvent
Case "AutoRelease"”
If Entity("CEM_Common_RgstElmnt")("RgstType")="ALL" Then
For Each RelRes In Entity("CEM_Common_RgstElmnt").ChildElements

If RelRes("ResName")<>"**Linked to Entity Attribute**" Then '"*** Case not
linked

101

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Set ResElmnt=RelRes("ResOb").Reference
Else #%%* Case linked
For Each ResElmnt In Elements 'ob.Parent.ChildElements
If ResElmnt.ElementType="Resource” Then
If ResElmnt("ResName")=Entity(RelRes("EntAttr")) Then Exit For
End If
Next
End If
ResElmnt("Current")=ResElmnt("Current")+RelRes("NumRes")
'If the bay is empty again, the finishing date available should be large again
If ob.CurrentEntity(" Auxiliary")=9 Then
If ResElmmt(" Current")=ResElmnt(" Total") Then
ResElmnt("EndBackModule")=1000
ResElmnt(" FinishCurrentModule')=1000
ResElmnt("' ModuleCounter')=0

End If
End If
If ResElmnt("Total")<>0 Then ResElmnt.stat("Utilization").Collect 100 * (1-
(ResElmnt("Current")/ResElmnt("Total")))
Next
Else
Entity("CEM_Common_RgstdRes")("Current")=Entity("CEM_Common_RgstdRes")
("Current")+Entity("CEM_Common_ NumRgstdRes")
'If the bay is empty again, the finishing date available should be large again
If ob.CurrentEntity(" Auxiliary")=9 Then
If Entity("CEM_Common_RgstdRes")(" Current") =
Entity("CEM_Common_RqstdRes")("Total") Then
Entity("CEM_Common_RgstdRes")("EndBackMedule')=1000
Entity("CEM_Common_RgstdRes")("FinishCurrentModule")=1000
Entity("CEM_Common_RgstdRes")("MeoduleCounter')=0

102

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

End If
End If
Entity("CEM_Common_RgstdRes").stat("Utilization").Collect 100 * (1-
(Entity("CEM_Common_RgstdRes")("Current")/Entity("CEM_Common_RgstdRes")
("Total™)))
End If
Case "Release”
wx%k Increase the number of resources by the number defined in each single-Res-
Release
For Each RelRes In ob.ChildElements
'Make the current entity of the single releases same as parent
'RelRes.OnSimulationTransferIn Entity, Nothing,Nothing
If RelRes("ResName")<>"**Linked to Entity Attribute**" Then '*** Case not
linked
Set ResElmnt=RelRes("ResOb").Reference
Else *#%* Case linked
For Each ResElmnt In Elements 'ob.Parent.ChildElements
If ResElmnt.ElementType="Resource" Then
If ResElmnt("ResName")=Entity(RelRes("EntAttr")) Then Exit For
End If
Next
End If
ResElmnt("Current")=ResElmnt("Current”")+RelRes("NumRes")
'If the bay is empty again, the finishing date available should be large again
If ob.CurrentEntity(" Auxiliary")=9 Then
If ResElmnt(" Current")=ResElmnt(" Total") Then
ResElmnt(" EndBackModule')=1000
ResElmnt(" FinishCurrentModule')=1000
ResElmnt("ModuleCounter')=0
End If
End If

103

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

If ResElmnt("Total")<>0 Then ResElmnt.stat("Utilization").Collect 100 * (1-
(ResElmnt("Current")/ResElmnt("Total")))
Next
End Select
"ewksk Schedule a check event for all the files in the model
For Each File In Elements 'ob.Parent.ChildElements
If File. ElementType = "Waiting_File" Then
File.ScheduleEvent ob.AddEntity,"Check",0
End If
Next
Tracer. Trace "Entity "& Entity.Id &"Released the resources”,"res","Release”

ob.TransferOut Entity

End Sub

104

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

