
University of Alberta

Simulation-Based Scheduling of Module Assembly Yards with Logical and

Physical Constraints

By (§)

Luis Francisco Davila Borrego

A thesis submitted to the faculty of Graduate Studies in partial fulfillment of the

requirements for the degree of Master of Science

in

Construction Engineering and Management

The Department of Civil and Environmental Engineering

Edmonton, Alberta

Fall 2004

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

1*1 Library and
Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A 0N4
Canada

Bibliotheque et
Archives Canada

Direction du
Patrimoine de I'edition

395, rue Wellington
Ottawa ON K1A 0N4
Canada

Your file Votre reference
ISBN: 0-612-95730-6
Our file Notre reference
ISBN: 0-612-95730-6

The author has granted a non
exclusive license allowing the
Library and Archives Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur a accorde une licence non
exclusive permettant a la
Bibliotheque et Archives Canada de
reproduire, preter, distribuer ou
vendre des copies de cette these sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
electronique.

L'auteur conserve la propriete du
droit d'auteur qui protege cette these.
Ni la these ni des extraits substantiels
de celle-ci ne doivent etre imprimes
ou aturement reproduits sans son
autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

Conformement a la loi canadienne
sur la protection de la vie privee,
quelques formulaires secondaires
ont ete enleves de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Canada
R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Acknowledgement

The author wishes to express his sincere thanks to his two academic advisors, Dr. S.

M. AbouRizk, and Dr. M. Al-Hussein for their guidance and encouragement in the

preparation of this thesis.

Special thanks are due to my sponsors, “Becas Magdalena O. Vda. De Brockmann, A.

C.,” and to the NSERC / Alberta Construction Industry Research Chair for their

generosity and confidence towards me, as well as to my family, specially my wife

Clara for her decisive support and understanding during the years of this research.

R eproduced with perm ission o f the copyright owner. Further reproduction prohibited without perm ission.

Table of Contents

Chapter 1. Introduction.... 1

1.1 Motivation 1

1.2 Research Objectives.... 3

1.3 Research Methodology.... 3

1.4 Organization of Thesis.................. 4

Chapter 2. Overview of Modularization, Scheduling, Site Layout Optimization, and
Simulation 5

2.1 Overview of Modularization 5

2.2 Scheduling and Site Layout Optimization............... 8

2.3 Simulation 10

Chapter 3. Proposed Methodology 15

3.1 Introduction 15

3.2 Proposed Methodology Main Process.. 16

3.3 Conclusion 31

Chapter 4. Implementation 32

4.1 Introduction.................... 32

4.2 Special Requirements of Module Assembly Scheduling Process.................32

4.3 Database 34

4.4 Modifications to Simphony's Common Template.................. 37

4.5 Simulation Model 39

Chapter 5. Case Study Analysis 50

5.1 Introduction.. 50

5.2 Validation of Basic Model 51

5.3 Experimentation with the Model (improving scheduling heuristic rules). 57

5.4 Summary and Conclusions.... 71

5.5 Limitations 72

Chapter 6. Conclusion...... 73

6.1 Summary of Research 73

6.2 Research Contributions 74

6.3 Recommendations for Future Research 74

References. 77

Appendix 1: Simphony’s Common Template Modifications 80

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

List of Tables

Table 1 -N um ber o f Bays per Area. 20

Table 2 - Module size Types per Bay and Yard Capacity by Module Size.................21

Table 3 - Module Type Classification.. 21

Table 4 - Units of Resources per Size Type...23

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

List of Figures

Figure 1 - System Integration................... 4

Figure 2 - System Process....................... 17

FigureS - System Components..... 18

Figure 4 - PCL Module Yard Layout.... 20

Figure 5 - Auxiliary Attributes Used When Processing Modules on a Bay 28

Figure 6 - Model Description.. 31

Figure 7 - Query Ordered by EarlyStartDate................... 35

Figure 8 - Legend (Simphony's elements used for this model)............................ 40

Figure 9 - Simphony's Simulation Model... 41

Figure 10 - Simulation Model Flow Chart.............. 46

Figure 11 - Simphony's Resources and Waiting Files Window...................................47

Figure 12 - Child Window of the Capture Element when Modules are Routed to Bay

Area “A”............................... 48

Figure 13 - Child Window of the Release Element (bay space and ship per day) 49

Figure 14 - PCL’s Module Assembly Yard in Nisku, Alberta 50

Figure 15 - Results in a Tabular Format............................ 52

Figure 16 - CPM Schedule vs. Simulation Schedule (shipping dates) 53

Figure 17 - Primavera Project Schedule vs. Simulation Schedule........................ 54

Figure 18 - Workload................ 56

Figure 19 - Auto-generated Layout... 57

Figure 20 - PCL Module Yard Layout (bay area “A” only).............................. 59

Figure 21 - CPM Schedule vs. Simulation Schedule (bay area “A” only).................. 60

Figure 22 - PCL Module Yard Layout (bay area “C” and “D” only)...........................61

Figure 23 - CPM Schedule vs. Simulation Schedule (bay area “C” and “D” only)... 62

Figure 24 - PCL Module Yard Layout (bay area “A” and “B” only).......................... 63

Figure 25 - CPM Schedule vs. Simulation Schedule (bay area “A” and “B” only)... 64

Figure 26 - PCL Module Yard (module “A” and module “B”)65

Figure 27 - CPM Schedule vs. Simulation Schedule (Modules are Shipped Even

Though the Space in front is not Empty) 66

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Figure 28 - CPM Schedule vs. Simulation Schedule (Varying the Number of

Shipments per Day from Two to Six) 67

Figure 29 - CPM Schedule vs. Simulation Schedule (One Shipment per Day) 68

Figure 30 - CPM Schedule vs. Simulation Schedule (Shipping Modules Immediately

After Assembly) ...69

Figure 31 - CPM Schedule vs. Simulation Schedule (Routing Modules Based on Size

Rather than Type)... 70

Figure 32 - CPM Schedule vs. Simulation Schedule (A Distribution Range is Given to

the Durations).. 71

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

List of Abbreviations

NSERC - Natural Sciences and Engineering Research Council of Canada

CPM - Critical Path Method

FLP - Facilities Layout Planning

SPS - Special Purpose Simulation

VBA - Visual Basic Applications

N/A - Not Applicable

ACT - Activity ID

ESA - Indicates the status of a module in terms of in progress or not in progress yet

EFA - Indicates the status of a module in terms of finished or not finished yet

P - Priority

F - Float

PSD - Planned Ship Date

ESD - Early Start Date

D - Duration

TD - Today (day when the simulation is performed)

CT - Cable Tray

EM - Equipment

M - Miscellaneous

PM - Pipe Rack

S - Structural

EHT - Electrical Heat Tracing

SimTime - Simulation Time

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Chapter L Introduction

1.1 Motivation

Scheduling a module assembly yard is a difficult task, involving a number of factors,

which govern the ultimate decision of module allocation. Those factors comprise

physical and logical constraints imposed by the module yard as well as heuristic,

experience-based scheduling rules used by superintendents. The module fabrication

industry needs advanced tools and techniques for planning scheduling module

assembly yards effectively. Allocating modules within a yard is a time-consuming

task that must be improved. Module allocation must manage the constantly changing

delivery dates and definite shipping dates by performing regular and weekly updates.

In a module assembly yard, the type of scheduling problem is mainly determined by

the allocation of each module within the yard (a module yard is divided into “bays”

and each module occupies a fraction of a bay), the start and finish times of each

module, and by ensuring that no constraints are violated. In addition, finish times

need to be minimized since module shipping dates depend on them and likewise the

yard usage must be maximized. Therefore, there is a need to develop a method that

will assist the scheduler in distributing the modules in the assembly yard, improve the

maintenance of the project schedule, perform regular (weekly) updates, and maximize

yard utilization.

Two approaches can be used for solving scheduling problems: optimization or

approximation. Optimization methods, which aim to find precise solutions using

mathematical algorithms, are often unable to achieve feasible solutions to large

problems due to the excessive computing requirements (Chong et al. 2003).

Approximation algorithms do not always give an optimal solution; however, the

solutions provided do improve results. Priority dispatch rules are perhaps the first

approximation techniques used (Panwalkar and Iskander 1977). A dispatching rule is

simply a rule of thumb giving priority to a particular order selected from among the

many available orders at any stage. Simulation-based approaches are derived from

1

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

dispatching rule-based approaches. Simulation-based scenarios employ resources to

make decisions. When one of these resources becomes available, one or more

dispatching rules may be used to make a decision (Banks 1998). Banks (1998)

showed that scheduling problems generally must include restrictive assumptions in

order to be solvable. When scheduling module assembly yards the following

restrictive assumptions are applied:

1. Each module is an entity; no more than one module can be processed at the

same time and in the same space.

2. There may be no preemption; once the fabrication of a module has started, it

must be completed before another module can begin its fabrication in the

same space.

3. There may be no cancellations; the assembly of modules must be brought to

completion.

4. The fabrication of modules must be continuous.

5. A specific space may not be assigned to more than one module at a time.

6. A particular bay’s space is available throughout the scheduling period.

7. The technological constraints behind the assembly process are known in

advance and are immutable.

8. There is no randomness in the following items, however randomness may be

incorporated to test if/then scenarios:

a. The number of modules to assemble is known and fixed.

b. The number of bays is known and fixed.

c. The fabrication times are known and fixed.

d. All other quantities needed to define a particular problem are known

and fixed.

An operation’s start and finish times for each job waiting to be processed must

respond to the technological constraints approximating to a good solution but not

always ensuring optimality. Each job is defined by its operations, processing times,

and due dates. In a deterministic scheduling problem, numeric quantities such as

2

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

processing times and due dates are assumed to be known in advance. However, most

numerical quantities are not known in advance in real life; therefore, they are

stochastic (subject to randomness). When facing deterministic-static problems with

known data in advance, optimization-based approaches are more convenient.

Nevertheless, simulation-based approaches are more useful when the data in not

known in advance.

1.2 Research Objectives

The main objective of this research is to provide both a solution and improvements

for the module yard scheduling practices. This goal will be accomplished through the

development of a simulation model that contractors can use for finding appropriate

solutions for module distribution and project schedule maintenance, and to maximize

yard utilization.

The solutions will provide:

• A tabular format providing start date, finish date, ship date, location of

module within yard, and location of module within bay.

® An auto-generate layout, which is a useful tool for the scheduler since the

location and starting time of each module will be provided.

1.3 Research Methodology

To achieve the objectives a simulation-based technique has been developed. The

problem is suitable for a simulation-based technique because:

• Physical and logical constraints as well as heuristic scheduling rules that

superintendents use in real life can be implemented within the model,

• The process is based on the availability o f resources, and

• Many different scenarios can be tested in order to obtain the one providing the

best performance based on the accomplishment of delivery dates.

The new methodology provides a simple and easy-to-operate tool for module

allocation and scheduling. This methodology has been incorporated into a computer

system integrating the given information in a database format, through data

processing using Visual Basic Application in Excel, and by means of the simulation

3

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

model developed using Simphonv (AbouRizk and Hajjar 1998). The system

integration is illustrated in Figure 1.

Existing Data
mm Database

Data Processing
► VBA

Simulation
Simphonv ! " S im p h d .^

VBA Analysis of Results
• VBA

Figure 1 - System Integration

1.4 Organization of Thesis

In Chapter 2, a brief introduction to modularization (scheduling), the optimization of

site layout, and simulation is presented. In Chapter 3, the design and development of

the simulation-based technique for the module allocation problem is presented. In

Chapter 4, a plan for implementation is presented followed by a case study approach

in Chapter 5. Finally, Chapter 6 highlights the conclusions and recommends areas for

future research.

4

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Chapter 2. Overview of Modularization, Scheduling, Site Layout

Optimization, and Simulation

2.1 Overview of Modularization

In conventional construction methods, building components, such as equipment,

piping, valves, and platforms, are fabricated at each vendor's factory and then

individually transported and installed in accordance with the installation plan.

Customers are demanding cost reductions and shorter construction time, in order to

meet this demand, modularization technology is required (Maru and Kawahata 2002).

Modularization nowadays is viewed as an enhancement of projects including

construction, industrial, and governmental. Maru and Kawahata (2002) have

described modularization as a plant construction technique that simplifies installation

work by using modules. A module is made up of pre-assembled components, such as

equipment, piping, valves, and platforms. Those modules are then transported by rail,

by ship, or by ground to their final location. The benefits of using modularization are

numerous: opportunities for shorter schedules, lower cost, less risk, increased quality

and greater construction flexibility for engineering, procurement, and construction

(Burke, G. and Miller, R. 1998). Modularization is widely chosen due to the

improvement this provides on schedule, quality, cost, and safety. However,

customization cannot be completely eliminated from modularized design. There will

always be site-specific issues necessitating modifications to reflect site-specific and

client-specific requirements. The objective of modularization is to minimize the

amount of time and effort devoted to customization on-site, and to reduce overall

project cost (Schimmoller 1998). Preassembly and prefabrication is the wave of the

future in industrial construction. Contractors and engineers around the world are

realizing the benefits of cost savings, time savings, increases in work safety and

equipment quality, and the increased production that may be achieved with

modularization. Maru and Kawahata (2002) have identified four main areas as

advantages of modularization:

5

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

1) Shorter construction duration: Having modules arriving to the construction site

ready to be installed instead of performing the whole construction on-site has greatly

improved construction duration. This improvement has been achieved due to the

advantage of having modules under fabrication and assembly at the same time that

on-site construction occurs.

2) Reduction o f the number o f workers at sites: Workers are divided into two job

sites: the construction site and the module assembly site. Therefore, there is no longer

the problem of having a large amount of workers on one site; each site is now less

congested and the work conditions are more suitable for higher performances.

3) Improvement o f safety and quality: Safety improvement is achieved due to the

well-established safety controls that fabrication shops possess. Fabrication shops have

a controlled environment; repetitive work allows workers to do the work faster and

more safely. The module units are constructed in tight conditions. Therefore, a poor

quality finish and the overall waste are minimized while savings are achieved. Having

an efficiently designed and clean environment with good visibility permits workers to

perform at their best level. Quality control is best executed in a fabrication shop

ensuring that modules are finished correctly every time. Durability and reliability of

modular construction is a reassuring factor for any owner.

4) Reduction o f construction cost: Modular construction greatly reduces construction

cost. The cost of labor off-site is lowered as is the total number of labor hours. These

reductions are achieved by having fewer days working on a remote location, thereby

lowering on-site administration costs. Performing hot work in the fabrication shop

saves money since it is a type of work that can be costly in some locations. Finally,

weather is a factor that influences the cost dramatically. Building the modules and

having them shipped to the remote and rough weather location saves money as well

as time.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Modular Construction in Northern Alberta

The Alberta oil sands are the world’s largest producers of crude oil from sands and

are the largest source producer in Canada. The oil sands are located near the city of

Fort McMurray, Alberta and their operations are based on the Athabasca Oil Sands

Deposit. The products depend strongly on modular construction facilities to meet its

industrial needs. Maximizing the relocation of construction work hours away from

Fort McMurray lowers costs, relieves the impact on base plant operations and on the

community, and enhances construction safety. This relocation has been accomplished

through an extensive modularization and preassembly program away from the

worksite. A full module program results in significant direct and indirect cost savings.

Labor outside of Fort McMurray is cheaper, compensation cost is reduced by

increasing safety, savings in time reduce overall project costs, earlier market entrance,

and savings in quality control, among others, assure direct and indirect cost savings.

A formal Modular Design and Fabrication specification assure consistency of design

on the project.

The Edmonton area has been the focus for module assembly and material marshalling

due to its vast labor and transportation capabilities for northern Alberta. Module sub-

assemblies fabricated outside the Edmonton area are shipped to Edmonton for

installation in modules. The industrial sector of PCL is devoted to module

construction in the Edmonton area. PCL’s Pipe Fabrication and Module Assembly

Yard are located in Nisku, Alberta. The Nisku PCL facility can produce up to 1000

tons of fabrication per month. Pipe and equipment racks, process skids, and building

units are some of the modules assembled in PCL’s module assembly yard (PCL

2003). PCL built over 300 modules in 2003 and expect its fair share of the upcoming

large oil sands projects. The modules fabricated in 2003 are 100% complete, fully

tested, insulated, fireproofed, and signed-off by Quality Assurance and Quality

Control prior to shipment from Edmonton to Fort McMurray. All modules are road

transportable. Their dimensional window is 24ft (7.32-m) wide, 29ft (8.84-m) high

(loaded height), and multiples of 20ft (6.10-m) long. Weight limitations for highway

transport are determined based on bridge capacities, transporter configurations, and

7

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

seasonal highway load restrictions. These projects are an example of achievement and

success within the modularization industry.

2.2 Scheduling and Site Layout Optimization

Scheduling Uncertainty Simulation and Optimization: Many subcontractors believe

that real savings in time and money are found only in actual construction rather than

through the application structured procedures for construction project management

such as cost estimation, planning, scheduling, and/or control (Hegazy and Ersahin

2001). One of the most important tasks of a project manager is to optimize the

construction schedule even when the total duration has already been determined. To

achieve this goal, the project manager must consider a mathematical model in which

the constraints and limitations may be more fully considered (Li 1996). All the

projects have a certain degree of uncertainty in their executions. It is impossible to

know with certainty and in advance which factors will play a roll in determining the

duration of a project. Therefore, uncertainty is a huge factor influencing the

performance of a project and its final success (Laufer 1996). Contingency plans are

commonly done to take into account the reality of the uncertainty, the execution of

these plans depends on several conditions. In spite of the diverse factors that

influence a project, formal techniques for incorporating indeterministic conditions

into scheduling have been recently developed, although they have not proved a

popular choice. The interpretation of scheduling results as being a function of the

project’s probability and the need to use computers for certain of the available

techniques have contributed to the overall lack of dissemination in scheduling

research. For several reasons effective schedule optimization has not been achieved

due to the complexity of projects, the difficulties associated with modeling all aspects

combined, and the inability of traditional optimization tools to solve large-size

construction schedule problems (Hegazy and Ersahin 2001a).

Site Layout Optimization: Yeh (1995) defined construction site layout as the design

problem of arranging a set of predetermined facilities on a set of predetermined sites,

while satisfying a set of layout constraints and optimizing layout objectives.

8

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Construction site layout is essential to any project and has a significant impact on the

economy, safety, and other aspects of a project (Mawdesley et al. 2002). Efficient

layout planning of a construction site is fundamental to any successful project

undertaking. The project manager or planner usually performs the task of preparing

the site layout based on his or her own knowledge and expertise (Osman et al. 2003).

Site layout planning is a complex problem that researchers have attempted to solve

using a variety of optimization-based and heuristic-based techniques (Hegazy and

Elbeltagi 1999). The task of site layout has a very dynamic relationship with the other

preplanning tasks such as schedule development, selection of construction methods,

procurement planning, workforce planning, material planning, equipment planning,

and financial analysis (Cheng and O’Connor 1996). According to Hegazy and

Elbeltagi (1999), the basic consideration in an effective site layout plan is the smooth

and low-cost flow of materials, labor, and equipment within the site, in addition to

satisfying the various work constraints and safety requirements. Hegazy and Elbeltagi

(2001) suggested that layout planning could be viewed as a complex optimization

problem resulting in many engineering applications ranging from the layout of

manufacturing plants to the design of computer chips. They also pointed out that early

models were based solely on mathematical optimization techniques and were

successful in laying out only a single or a limited number of facilities due to the

complexity of problem formulation.

Tan and Leung (2002) indicate that the layout planning of construction site facilities

has a significant impact upon productivity, costs, and duration of construction. They

also mentioned that although facilities layout planning (FLP) is such a critical process

in construction planning, a systematic analysis of construction site layout is always

difficult because of the presence of a vast number of trades and inter related planning

constraints. The authors also noticed that practitioners of the construction industry

lack a well-defined approach in construction site layout planning. For these reasons,

the practitioners stated that FLP optimization using the scientific approach is nearly

impossible to achieve. The FLP of construction sites has been carried out mainly

through human judgment. Because of this human involvement, there are no

9

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

conditions present that will lead consistently to the same result. To overcome the

above problems, researchers have used mathematical and computing techniques in an

attempt to arrive at an optimal solution (Tam and Leung 2002).

2.3 Simulation

Simulation can be simply defined as building a mathematically logical model of a

system and using the model for experimentation using a computer. However,

simulation in its broadest sense means imitating or representing reality (generating

events before they occur) (Oglesby et al. 1989). The ideal objective of computer

simulation is to optimize system performance. Creating a simulation involves the

following steps (Web 1, 2004):

• Defining the system (well-defined boundaries)

• Modeling the system (system of equations, graphical modeling)

• Input and output analysis

• V alidation/verification

Computer simulation is a valuable experimentation tool well suited to the study of

resource-driven processes. It gives the analyst insight into resource interaction and

may assist in identifying those significant factors in problematic domains. Simulation

allows the modeler to experiment with and evaluate a variety of scenarios. Normally,

such experimentation and study would be too costly to be carried out in the real

world.

When dealing with the construction of facilities such as highways and buildings,

construction engineers confront certain aspects of production that an industrial

engineer faces daily. Industrial production can be done repetitively due to the

characteristics of the products and of course to its production volume. Construction

engineers are involved in developing and efficiently designing productive

construction methods and processes. The uniqueness of the construction projects

involved and the apparent lack of repetition throughout are perhaps reasons why the

concept of studying work processes did not receive much attention until the late

10

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

1960s. At this moment it was recognized that although projects are typically unique,

many construction processes such as earth moving, dewatering, and tunneling are

repetitive and amenable to closer investigation. With the emergence of computer

technology, the application of more sophisticated analytical methods has become

increasingly accessible. Simulation of construction processes for establishing the

anticipated levels of production and to solve certain problems related to the

randomness of construction operations has become more widely accepted as a tool

available for use in planning and estimating (Web 1, 2004). Simulation has the great

advantage of predicting levels of production and of solving the randomness of

construction operations.

Adapted by Teicholz in 1963, the "link node" model was the first method used.Au et

al. (1969) suggested a construction bidding game in the late 1960s. This application is

among the very first random number method related to gaming. It is still used at

several universities for teaching purposes. Halpin developed the CYCLONE format

at the University o f Illinois (1973). CYCLONE is now the basis for numerous

construction simulation systems. CYCLONE simplified the simulation modeling

process and became accessible to people without a construction simulation

background (Web 1, 2004). In 1973, Halpin and Woodhead developed at the

University of Illinois the CONSTRUCTO project management game integrating the

effects of weather and labor productivity into the management of projects in a

network format (Halpin and Woodhead 1973). Another simulation tool (Cost Control

Simulation - CCS) was developed by Borcherding (1977) at the University of Texas.

CCS’s objective was to develop a computer model for analyzing the financial aspects

of a construction project. More recently, the concepts of the bidding game and the

project management format have been integrated into an educational game, Superbid.

at the University o f Alberta (AbouRizk 1992). One of the most recent simulation

tools is Simphonv developed by AbouRizk and Hajjar (1998).

Simphonv: The effective use of simulation within the industry is best done through

the specialization and customization of models. Special Purpose Simulation (SPS) is a

11

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

proven principle that can lead to the effective transfer of simulation knowledge to the

construction industry. Simphonv simplifies the SPS tool development process and

standardizes the simulation, modeling, analysis, and integration features of such tools.

It provides an environment that tailors to the needs of both novice and advanced

simulation tool developers and users (Hajjar and AbouRizk 1999). Simphonv is a

Microsoft Windows-based computer system developed with the objective of

providing a standard, consistent, and intelligent environment for both the

development as well as the utilization of construction SPS tools. Developers can use

Simphonv to implement highly flexible simulation tools, which support graphical,

hierarchical, modular and integrated modeling. Users have access to a single program,

which allows them to build simulation models in an intuitive and user-friendly

manner (Hajjar and AbouRizk 2002). Results can be viewed as part of the graphical

user interface or exported for use by external systems such as estimating and

scheduling programs. Simphonv is characterized by the following functions:

1. Modular and hierarchical modeling for the representation of complex and

large construction projects,

2. Both general purpose modeling constructs as well as specialized templates

for specific construction methods,

3. Extension of SPS tools through the construction of models based on

several templates,

4. Generation of custom output results in tabular and graphical formats,

5. Automated generation of externally accessible project planning data in a

standard format,

6. Script-based modeling for accommodating advanced users wishing to

bypass the graphical user interface, and

7. Storage and retrieval of commonly-used simulation model structures in the

User Model Library.

12

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Simphonv Overview and Basic Features: (Simphony's User Guide AbouRizk 2000)

Simphonv represents an evolution in computer simulation and its integration into the

construction industry. It is the result of over five years of research in the application

of simulation-based planning techniques in the industry. Simphonv consists of a

foundation library, as well as specialized computer programs that allow for the

development of new construction simulation tools in an efficient manner. Simphony's

promise is that, as a user, there is no need to posses any simulation background in

order to take advantage of the benefits of simulation. When building models, there is

access to a domain-specific set of building blocks, denoted “Modeling Elements”.

This means that the creation of a simulation model is done using a library of

modeling elements with names to relate. There is a large library of modeling elements

that are available with the base distribution of Simphonv. If any of the existing

modeling elements are not flexible enough to meet certain modeling needs, or if new

modeling elements are needed to be developed for different construction operations,

then a developer can extend the library.

Modular and Hierarchical Modeling: The main model building block in Simphonv is

the Modeling Element. The user builds a simulation model in Simphonv by creating

instances of modeling elements that resemble real components of a construction

system, and linking them together in ways similar to those that exist in a real system.

For representation of complex and large construction projects, Simphonv provides a

hierarchical modeling feature. A project can be represented by an abstracted model at

the higher level that contains a limited number of modeling elements and relations. At

a lower level, each of these elements can have its own child model, which represent

the sub-system working inside that element. The number of these hierarchical levels

is only limited by the computer system’s resources.

General Purpose vs. Special Purpose Simulation (SPS): Simphonv supports both

general purpose modeling constructs (e.g. CYCLONE) which can be used to model

different construction processes, as well as specialized templates for specific

construction methods (e.g. Earth-moving and aggregate production) which are

suitable for users with little simulation background.

13

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Integration o f SPS tools: Simphonv allows the extension of specialized SPS tools

through the construction of models based on several templates.

Custom Output Results: Simphonv modeling elements can generate custom output

results in the form of tables and graphs.

Automated Generation o f Project Planning Data: Project planning data regarding

costs and time can be automatically generated by Simphonv during simulation and

presented to the user in a standard format.

Script Based Modeling: Script based modeling allows advanced users wishing to

bypass the graphical user interface to write a script to be processed by Simphonv to

handle advanced simulation behaviors.

User Elements: Simphonv allows storage and retrieval of commonly used simulation

model structures, known as “User Elements”, in the User Elements’ Library. These

elements represent certain modeling elements with complex internal structures or

special parameter settings that are commonly used.

The application o f simulation: Senior (1995) proposed an algorithm built on the

Cyclic Operation Network Technique (CYCLONE) (Halpin 1973; Halpin and Riggs

1992), a discrete-event simulation method oriented to construction applications, to

compute task late-time and float information. Since late-time information has been

used in the critical-path method (CPM), the availability of this information in a

simulation technique could make the application of simulation more commonplace in

construction practice. AbouRizk and Hajjar (1998) presented an approach to facilitate

the adoption of simulation by the industry as they recognized the limited use of

simulation by construction industry. This approach was based on special purpose

simulation. They defined SPS as a computer-based environment built to enable a

practitioner who is knowledgeable in a given domain, although not necessarily in

simulation, to model a project within that domain in such a way that symbolic

representations, navigation schemes within the framework, the creation of model

specifications, and reporting functions are completed in a format native to the domain

itself. The basic philosophy of special purpose simulation is that systems should be

built for a specific target group. This philosophy obviously produces relatively

restrictive tools, which can only be used within the intended application domain.

14

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Chapter 3. Proposed Methodology

3.1 Introduction

Based on the review of modularization, scheduling, site layout optimization, and

simulation, it is evident that an automation methodology is required to solve the

module assembly yard scheduling-layout problem. A simulation model seems to be

an appropriate approach. The approach involves the following physical and logical

constraints as well as the heuristic rules that superintendents use in actual practice.

Physical and logical constraints:

• Module yard layout is fixed,

• Number of workers is fixed,

• Modules may only be shipped when the space in front of them is totally

empty, and

• Maximum number of shipments per day is fixed.

Heuristic rules:

• After completion, modules may wait a maximum of “n” days for shipment,

• Module routing for allocation follows certain preferences including the type or

the size,

• Once a module has been routed to a specific area, the work flow will be front

to back (starting from bay # 1 to bay # n),

• Duration and dates are fixed, and

• Priority logic is employed - module with least amount of float will be given

higher priority for assembly.

General purpose simulation constructs are used to model these constraints and

heuristic rules.

15

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

3.2 Proposed Methodology Main Process

System process: Simphonv (Hajjar and AbouRizk 2002), a SPS computer-based

environment, was used to create the simulation model for this Module Assembly

Schedule. This approach introduces a newly developed methodology, which utilizes a

simulation technique for module scheduling and for optimizing the assembly yard

utilization. The model integrates a database, simulation (Simphonv), and Excel’s

built-in visual basic applications (VBA). The raw data provided by the company is

stored in the database. This raw data contains those inputs used by the simulation:

yard size, yard layout, yard capacity, number of bays, module types, module sizes,

durations, early starts, and planned shipping dates. The priority for each module is

calculated based on planned shipping dates, early start, and the actual date when the

simulation takes place. The criteria ruling the allocation of the modules (physical and

logical constraints, and heuristic rules) is incorporated with the simulation. The

results include a tabular format containing start, finish, and shipping dates, a

comparison chart between the previously planned schedule and the simulation

schedule, and a module allocation layout chart. The system process is illustrated in

Figure 2.

16

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Inputs System Process C rite r ia

Yard size Priority logic
Existing Data
(Database)Yard layout Shipment when

Yard capacity Data Processing
(VBA)

the space in
front is empty

Number of bays
Simulation

(Simphony)

No. of maximum
Module type waiting days

after completion
Module size Analysis of Results
Durations (VBA)

u n m ea no. or
shipments per day

Early starts Charts & Layout
creation (VBA)

Routing preference
Planned ship Work flow pathOutputs^

Assembly schedule]
in a tabular format
(start, finish, ship)]

Comparison Charts
(Original vs Simulated’

T Layout (time and
1 bay to allocate
Jmodules within yard)

Figure 2 - System Process

System Components: The database functions as the mediator for the proposed system.

Simphonv reads the inputs provided by the database (inputs are both provided directly

by the company and calculated using Excel-VBA), the list of results are then shown

in the Simphonv model itself and back in the database, and the comparisons charts

and layout are auto-generated using Excel-VBA. The system components are

illustrated in Figure 3.

17

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Raw Data

Calculated Data

Queries

„ Tabular ,
ResultsLayout Tables of Results

Comparison Charts
& Layouts

Figure 3 - System Components

System limitations: Banks (1998) showed that scheduling problems generally require

restrictive assumptions in order to be solved. The following seven assumptions are

adapted when scheduling module assembly yards:

1. Each module is an entity. Only one module may be processed at a time in a

specific space.

2. There may be no cancellations. Once the fabrication of a module has started, it

has to be completed before another module can start its fabrication on the

same space.

3. The fabrication of modules must be continuous.

4. A specific space within a bay may not fabricate more than one module at a

time.

5. Bay’s space is available throughout the scheduling period.

6. The technological constraints are known in advance and are immutable.

7. The following four items are known and fixed:

a. Number of modules to assemble

b. Number of bays

c. The fabrication times are known and fixed.

18

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

d. All other quantities needed for defining a particular problem.

An operation’s start and finish times for each job waiting to be processed must satisfy

certain technological constraints, and must accomplish optimality. Each job is defined

by its operations, processing times, and due dates. In a deterministic scheduling

problem, numeric quantities such as processing times and due dates are assumed to be

known in advance. However, unknown (stochastic) parameters are inherently subject

to randomness. Scheduling a module assembly yard is a difficult task, which involves

a number of key factors governing the decision of module allocation including the

type, the size, the start date, the duration, and the planned ship date o f the modules.

Currently this process is carried out manually and based solely on the experience of

the foremen. The proposed methodology presented in this thesis was applied to a PCL

module yard located in Nisku, Alberta.

Yard characteristics: As shown in Figure 4, the PCL Module Facility is divided into

4 areas (i.e. A, B, C, and D). Each area contains between 4 and 14 bays (see Table 1).

In total there are 36 full bays and 3 half bays. Each full bay is 260-feet (79.25-m)

long where Half Bays are 130-feet (39.62-m) long.

19

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

GATE B

PARKI NG
LaJ

& # « r # ' # .v?'& &<& < r <

' ‘̂ WSi-v

W % \ %
Y% \ \ \ \

I<rMAIN GATE

Figure 4 - PCL Module Yard Layout

Table 1 - Number of Bays per Area

No. of Bays Bay Number

Bay Area “A” 14 Full Bays Bay A1 to A14

Bay Area “B” 12 Full Bays Bay A1 to A14

Bay Area “C”
8 Full Bays Bay Cl to 04 Bay C6 to C9

1 Half Bay Bay C5

Bay Area “D”
2 Full Bays Bay D1 to D2

2 Half Bays Bay D3 to D4

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

The number of modules in a bay is a function of the available sizes and types of

modules present; Table 2 lists the quantity of modules that each bay can contain. In

addition, Table 2 lists the module yard capacity ranging from 75 to 186 modules,

which is also a function of the module types and sizes.

Table 2 - Module size Types per Bay and Yard Capacity by Module Size

Module Size Class
Module Size

(Feet)

Quantity Capacity of

YardFull Bay Half Bay

A O’ - 2 0 ’ 10 4 372

B 21’ - 4 0 ’ 5 2 186

C 41’ - 6 0 ’ 3 1 111

D 61’ - 8 0 ’ 3 1 111

E

oo100 2 1 75

F 101’ -1 2 0 ’ 2 1 75

G 121’ -1 4 0 ’ 1 N/A 72

H 141’ -1 6 0 ’ 1 N/A 36

Module Classification Procedure

To simplify the process of module assignment, modules are categorized into five

classes based on their type (see Table 3).

Table 3 - Module Type Classification

Type Class Module Type

“CT” Cable Tray

“EM” Equipment

“M” Miscellaneous

“PM” Pipe Rack
«S” Structural Only

The specifics of the case were analyzed as invariable constraints for the project

schedule. Those constraints need to be determined by a group of experts such as the

scheduler and the project manager. The simulation allows us to test different

21

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

scenarios in which the constraints assumed at the beginning of the project are

changed and proper evaluation of each of those scenarios is undertaken to determine a

better combination of constraints to be used once it is possible for the company to

make those changes. The following assumptions apply to the first scenario:

• Module yard layout is fixed,

• Resources (man-hours) not taken into account,

• Modules may only be shipped when the space in front of them is completely

empty,

• Maximum number of shipments per day is six,

• After completion, modules may wait a maximum of five days for shipment,

• Module routing for allocation follows certain preferences; in this case they are

routed according to their type,

• Once a module has been routed to a specific area, the work flow will be front

to back (starting from bay # 1 to bay # n),

• Duration and dates are fixed, and

• Priority logic is employed; that is the module with the least amount of float

will be given higher priority for assembly

Simulation Model Development.

1) Setting the database to integrate with the simulation module

The database contains the information necessary for the simulation model. It consists

of fields (columns), which will be expressed as “attributes” in Simphony, and records

(rows) representing modules, which will be expressed as “entities” in Simvhonv. The

first fields contain the data needed for the simulation: ACT (Module ID), durations

(each subtasks has a different duration), TypeClass, UnitsRequested (attribute derived

from the size type and the number of modules that each bays could contain), number

of workers (each subtask has a different number of workers), EarlyStartDate, ESA

(attribute that specifies whether the module has begun or not), PlannedShipDate, EFA

(attribute to specify whether the module has finished or not), WaitingDays (attribute

that specifies the maximum allowable number of waiting days that a module can wait

22

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

for shipment), and priority (attribute that define the priority of each module at the

time of fabrication). The information contained in these attributes is known almost

completely in advance. However, the attribute “UnitsRequested” was derived from

the size type and the number of modules that each bay could contain. Space is

represented as resources. To standardize all the bays, a fixed number of resources

(space) is calculated. This fixed number is calculated based on the quantity of

modules that a bay can contain depending on the module type sizes. The number of

modules that a hay can contain ranges from ten of the smallest modules, size type “A”

(O’ - 20’), to only one of the largest modules, size type “H” (141’ - 160’). Based on

the number of modules that a bay can contain (quantity) depending on their size

types, the minimum number of virtual resources needed to simplify the simulation

process has been identified. This number has been found to be 30. A module size type

“H” requires 30 units (resources) for fabrication, which means that it requires the

whole bay, and a module size type “A” requires only 3 units (resources) for

fabrication, meaning that it only requires 1/10 of a bay. Those virtual resources do not

represent exact units such as feet or meters, etc. Table 4 shows the number of virtual

resource units (“UnitsRequested”) that a size type needs based on the number of

resources that a bay can contain:

Table 4 - Units of Resources per Size Type

Size Type Quantity Units Requested
No. Resources per Bay

(30)

A (O’ - 20’) Modules 10 3 10*3 = 30

B (21’ - 4 0 ’) Modules 5 6 5 * 6 = 30

C (41’ - 6 0 ’) Modules 3 10 3 * 10 = 30

D (61’ - 8 0 ’) Modules 3 10

1

o it UJ o

E (81’ -1 0 0 ’) Modules 2 15 2 * 15 = 30

F (101’ -1 2 0 ’) Modules 2 15 2 * 15 = 30

G (121’ -1 4 0 ’) Modules 1 30 1 * 30 = 30

H (141’ -1 6 0 ’) Modules 1 30 1 * 30 = 30

2 3

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Finally, the attribute, “priority,” is calculated based on whether or not the module has

already started. If the module has not started yet then the priority is equal to “P.” “P”

is equal to 500 - (Float “F” + Absolute Value of the minimum of the floats, abs (min

(F)). “F” is equal to (PlannedShipDate “PSD” - EarlyStartDate “ESD” - Duration

“D”). If the module has already started, then a calculation must be performed to

ensure that its priority is higher than the priorities of the modules that have not yet

started. The calculation by adds the difference between the day when the simulation is

performed, “TD,” and the EarlyStartDate, “ESD,” to the maximum of the “P” among

the modules that have not started their fabrication yet, max (P). This equation will

assign the highest priorities to those modules that started at the earliest time. “500”

has been chosen as an arbitrary number to ensure that “P” remains positive. The

calculation of the priorities is expressed in the following equations:

Calculation of priority (PI for modules that have not started fabrication vet:

P = 500 - (F + abs (min (F)))

Where:

F - PSD - ESD - D

F = Float

PSD = PlannedShipDate

ESD = EarlyStartDate

D = Duration

Calculation of priority (P) for modules that have already started fabrication:

P = (ESD - TD) + max (P)

Where:

ESD = EarlyStartDate

TD = Today (day when the simulation is performed)

Max (P) = Maximum “P” among the modules that have not yet started fabrication

All these calculations are done in Excel and exported automatically to the database.

There are other seven fields needed to perform schedule updates. These fields are:

24

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Bay (attribute that specifies in which bay where is the module being built), BaySize

(number of total space units that the bay where the module is being fabricated has),

Task (subtask in which the module is currently in progress),

NoOfDays AlreadyOnT ask (number of days since the subtask started),

NoOfDaysSinceStart (number of days since the fabrication process started),

No_of_Modules_Behind (number of modules behind the current module in the same

bay), and No_of_Units_Occupied_Behind (number of space units occupied by the

module or modules behind the current module). Since the simulation is intended to be

capable of performing regularly updates in these seven fields the user must enter the

information regarding the modules that are under fabrication at the time of the

schedule update. The rest of the fields only have the attribute name but no data at the

beginning of the simulation. Once the simulation has run, those fields will use the

new processed data. These fields include Space in frontr (attribute determining the

space available for hosting more modules), Start (the expected start date for the

process and the starting time of each subtask), Finish (the expected finishing date for

the process and the finishing time of each subtask), and Shipping (the expected

shipping date of the module).

2) Identifying Finished Modules

The first step within the simulation is to identify the modules that have started and

also finished fabrication by the date when the simulation takes place. The modules

that finished their fabrication process before the simulation started simply record the

starting time and finishing time since there is no need to process them again.

3) Identifying Started Modules (Modules that are already under fabrication)

The modules that have already started their fabrication process need to be placed on

their respective bays where they are been fabricated. With the information about Bay,

Task, NoOfDaysAlreadyOnTask, NoOfDaysSinceStart, No_of_Modules_Behind, and

No_of_Units_Occupied_Behind the correct placement of each module is done. These

modules will now be placed on their respective bays, ensuring that the simulation will

start placing modules only where bays have empty assembly space. The modules that

25

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

have started their assembly process previously to the simulation will join the

simulated fabrication process at the subtask in which they are currently under

fabrication.

4) Identifying Type Class

The modules that have not yet started fabrication are routed to a particular area,

which will depend on the Type Class. In this case, it was assumed that the TypeClass

“PM” are preferably routed to Bay area “A”, TypeClass (“EM”) will be routed

preferably to bay area “B,” while TypeClass “CT” is preferably routed to bay area

“C,” TypeClasses “M” and “S” are both preferably routed to bay area “D.” In

addition, routing could also be a function of “UnitsRequested” (size).

5) Looking for Space to Assemble

Once a module has been routed to a specific area it is necessary to check whether

there is a bay that could contain the module during its assembly process as well as the

availability of labor to perform the first subtask of the assembly process. More than

one module may arrive and request resources for assembly at the same time; in such a

case, the assembly priority for these modules is based on the value of each module’s

attributed “Priority.” The modules request resources based on the highest priority.

Modules request an available bay for assembly and “Manhours” for the first subtask

of workers. The space is assigned to that module, which possesses the highest priority

and that will satisfy all the assembly constraints. This location will be the closest

empty space available for assembly within a bay area starting from the number 1 to

the last number; (a module routed to Bay Area “A” will be assigned to the closest

empty available space among A1 to A14 starting by A l, see Figure 5). The number of

resources (space) that each module requests is determined by its attribute

“UnitsRequested.” Four auxiliary resources types are needed in order to keep track of

vital information used during the assembly process such as the finishing times of the

modules behind in the same bay, the number of modules already in the bay, and the

amount of space available for more modules in that bay. These new resources types

are “EndBackModule,” “FinishCurrentModule,” “ModuleCounter,” and

26

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

“SpacelnFront.” “EndBackModule” keeps track of the module’s finishing time in the

back of a bay. “FinishCurrentModule” keeps track of the module with the latest

finishing time in a bay. “ModuleCounter” records the number o f modules in one bay.

“SpacelnFront” tracks whether there is available space in front of the current module

to fabricate more modules. “EndBackModule” and “FinishCurrentModule” have to be

initialized at the beginning of the simulation with a very high value to ensure that

when the bay is empty it frees up resources for assembly. This high number, normally

set at 1000, ensures that no matter which module arrives to a bay, its finishing time

will be shorter than the finishing time of the virtual module in the back of the bay.

This association only occurs when the bay is empty, that is, when the bay has at least

one module, then the values given are those expected finishing times. Once a module

is assigned to a bay, those values will be updated with the simulated finishing time.

At this point, each module requesting space for assembly will also check the finishing

time of the module to ensure that it does not exceed the finishing time recorded for

the module in the back of the bay and for the module with the highest finishing time

in that bay. When a bay is completely empty again, the values for “EndBackModule”

and “FinishCurrentModule” will take the high initial value that they had at the

beginning of the simulation. “ModuleCounter” is initialized with a value of zero since

the bays are empty at the beginning of the simulation. Each time a module is placed

in a bay, the “ModuleCounter” increases by one unit and every time a module leaves

the bay the “ModuleCounter” is decreased by one unit. “SpacelnFront” takes the

initial value of one (1), representing the empty space available for modules in a bay.

The initial value is zero (0) when all the resources in the bay are occupied and there is

no more available space to host more modules (see Figure 5).

2 7

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Bw-kof tfeeBay Frontal

VistealMcrfste

;

Empty Bay (at to 9)
^ BacfeoftfceBay Fro»t<rfft«Bay

£»lyStar©a**« 5
Daatiua~55

< fiS S c

u o ^ c ^ - x OtrnM em emme-M y
Bac&of &eBaor F ro t te f f te B a y

ID® *

SjacelriFrtnsi** T m

£arfvStarfDs&<*10
Xterafcm«49

Modules on tkeB*y
Fraatdff& oB ay

J EadBaefeMafefe* 10&0

| im K

£nl5S<arfi>«l»«* 10

:H ^ a c
ZmtCvrcwMvM* C

Ea^y&an&ass * 10
Bnrrik«tw49
F^Sfe«sgTj®e**50
EnftttdtMoftfe - S0 <

£^}SS&r€>sJ«*s 15
Biara&sst3* 30
Fgashaig * 41

Three M&ditf£S m the Bay
B t tb o f f t • Bay F m * «T ft® Bay

; i m y

&$S®CSlfJFrOHSa' a

Figure 5 - Auxiliary Attributes Used When Processing Modules on a Bay

6) Assembly Process

At this point four more auxiliary attributes are used. The “Assembly” attribute keeps

track of the number of space units for assembly expressed as resources that have been

utilized for each module. “Space” records the number of space units expressed as

resources left in front of the module in the bay in which each module is assembled at

the time of assigning the resources for assembly. This amount o f resources must be

available before shipping a module once it finished assembling (ensuring that all the

required space in front of the module for shipment is empty). The “Total” attribute

represents the space units as resources to be released once a module has been shipped.

The total amount is the sum of “Assembly” plus “Space,” which is not necessarily

equal to the initial total amount of resources in the bay. This discrepancy is due to the

possibility of having other modules in process behind the last module assigned in the

same bay. The “Bay” attribute takes the name of the bay in which the module has

28

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

been processed. When the module is supplied with the resources requested and space

for assembly, the module continues with the simulation process and the “Start”

attribute is assigned the value of “Simulation Time” that represents the time at which

that module will actually begin its assembly process. To simulate the assembly, the

main task has been divided into six subtasks (structure, piping, cable tray, electrical

heat tracing (EHT), insulation, and fireproof) integrating all the assembly process.

The durations of those subtasks were given as a fixed value; however, the subtasks

could also use random values generated through a probabilistic distribution based on

statistical data. Once the module simulation has begun the auxiliary attribute will

assume the initial value of zero (0) takes the value of one (1). The starting time of the

first subtask is also recorded. Once the subtask is completed, the finish time of that

subtask is recorded.

7) Subtask Process

Once the first subtask has been completed the finishing time of that subtask is

recorded and the workers needed to perform the task are released and ready to be

assigned to other modules. The module may proceed onto the second subtask. The

number of workers needed to perform the second task is checked. If sufficient

workers are available the second subtask may begin. At this point the subtask start

time is recorded. When the subtask is completed, the finishing time of that subtask is

recorded and the workers needed to perform it are released and ready to be assigned

to other modules. This process is the same for all subsequent subtasks; however, at

the end of the last subtask the finish time of the module assembly process is also

recorded.

8) Checking Space Available for Shipping

Once the assembly process has been completed the module is ready to be shipped. In

order to satisfy the condition that a module will only be shipped if there are no other

modules being fabricated in front of it within the same bay, the model has to look for

available empty space in front of the module in that bay. This condition is satisfied

through a comparison of the number of resources available in that bay with the value

29

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

of the “Space” attribute. If both values are equal, then the module will go on with the

simulation process, such an action means that there are no other modules under

fabrication or waiting for shipment in front of this module.

9) Requesting Shipment

Since it was assumed that only a limited number of shipments could occur on the

same day, another resource named “Ship per Day” is required, which would hold the

number of available resources. A module is ready to request for shipment once it has

finished its assembly process and has no other modules in front of it. The request of

one resource out of those available for shipping takes place. If the resource is

available; then the module will finish its process; if there are no resources available,

then the module will wait until there is a resource available for it.

10) Shipped Modules

When a module is shipped, the “Shipping” attribute records its shipping time. The

number of available resources of the bay where the module was processed is set to be

equal to the value of the attribute “Total” (“Assembly” + “Space”). At this point a

task with a duration equal to one (1) is processed; resources can be released

thereafter. This process is undertaken because it is assumed that the shipping of a

module will last one day and no modules will start assembly on that bay until the next

day.

11) Results

As the simulation takes place, attributes are being input into a table. At the end of the

simulation the information is sent back to the database. The database applies a query

to change the dates into a date format. These results are plotted against the previously

planned CPM schedule with which they are compared. An auto-generated layout

chart is also created.

3 0

R eproduced with perm ission o f the copyright owner. Further reproduction prohibited without perm ission.

Based on reading the data provided, data processing, and simulation process to

storing the results in a database, Figure 6 summarizes the process used by the model

from.

Tfe -tim m nm s
imsswtp jisfwte kk-'i "Tm fl&n 'ik

Pooi ■> <r each
iwxfese a otfoinwl)

The sis »<«'» starts

; if liw e is net *x»gh spice walMsie to fetfsrieattoc

M«W» it»l im» |
swsi«®i1 |

fsfewaSw'.ysst.or 1
t a t hews t a r * ! j iwt las# set teefi » OOmpltM yst Z '1

W«0(ylnBfW>h«Ns yes
ofctong* theme** %> .tmwMed'fj • /

/ *»rwiX TI10 start,
tta fw»itod

M'jw.'t'j pros*
' t iho

¥$«n 3» fabrication»
,' asrapte*3«l»«*sp*»i(i
\ t e s i ofshstw*** »mpiy?

S H them enough etnjty
V stpscs toaistJateicsSm?

\ r If »» space in

fccsfti is wpsy•J If iWiasgft s#sc« it aval*!#
1 tor fa&fieaiwi

Figure 6 - Model Description

3.3 Conclusion

The proposed methodology, a simulation-based technique, is a reliable approach to

solve the module assembly yard scheduling-layout problem since it provides the

industry with an automated methodology.

31

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Chapter 4. Implementation

4.1 Introduction

This newly developed simulation technique for module scheduling and optimization

of the assembly yard utilization described in this thesis will be implemented using

Simphonv (AbouRizk and Hajjar 1998). The implementation retrieves the information

from the database, computes the necessary inputs for the simulation, builds the

simulation model, and reports results.

4.2 Special Requirements of Module Assembly Scheduling Process

The assembly of pipe spool modules involves many uncertain factors, which

complicate its scheduling process. These factors also pose a challenge for the

scheduler in producing an efficient schedule, which optimizes the use of the space

(module yard) as well as the human resources involved in the assembly process while

meeting clients’ delivery dates. Given the relatively fast production cycle of module

assembly, the scheduling process must be carried out frequently and requires

advanced automated tools to perform this modularization task. Modularization is

carried out in module yards and once the modules are completed they are shipped to

the industry plants. Without a proper scheduling system, it is very difficult to

maximize yard usage and to improve delivery dates. Since module assembly in a yard

depends on physical and logical constraints, a method in which these constraints are

built-in during the scheduling process would be beneficial to the industry in so far as

it saved time while panning the schedule. It is also beneficial in so far as it avoided

mistakes while placing modules in the yard.

The scheduling technique developed in this thesis was considered to be a prime

candidate for a simulation model. The following seven main challenges were

identified:

1. Integrating the Database with Simphonv: The number of records for this

simulation is vast and the simulation records must be updated frequently. As

32

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

there was a need to have the simulation linked to the database file in order to

simplify the procedure, two new elements were added to the common

template in Simphonv (AbouRizk and Hajjar 1998). These two new elements

are called the “Database Link Element” and the “Results Element”.

2. Determination o f the Priority Logic: Modules are processed based on the

priority. The calculation of module priority has been previously explained in

Chapter 3.

3. Representation o f the bays: Bays are represented by resources and the number

of resources forming a bay is based on the size and the total number of

modules that may fit in a bay.

4. Placing modules that are already under fabrication when the simulation starts

in the exactly same bay where they are being assembled in real life, and being

able to join the simulated fabrication process at the subtask in which they are

currently under fabrication.

5. Keeping track o f the finishing times o f the modules under fabrication in the

same bay. Before a module starts its assembly process it has to be guaranteed

that it will not delay the modules that are currently under fabrication in that

same bay (if any). To accomplish that, two attributes were added as resources.

These two attributes keep track of the finishing time of the module in the back

of the bay and the finishing time of the module with the latest finishing time

on that bay. The expected finishing time (starting time + duration) of the

module to be built is compared to those attributes.

6. Keeping track o f the modules that are under fabrication in the same bay. In

order to know in which part of the bay a module is being fabricated and if

more space will still be available to fabricate more modules in that bay, two

attributes were also added as resources where they are expressed as resources

previously taken from that bay and resources still available in that bay.

7. Ensuring that there are no modules in front o f any module at the time o f

shipment. When a module starts its assembly process it request resources for

assembly, the number of resources left on that bay represent the space in front

of it. This space is required to be empty at the time of shipment for that

33

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

specific module. Therefore, those resources are recorded as an attribute also

expressed as a resource called “space”. When a module is ready to be shipped

its attribute “space” is compared to the number of resources available on that

bay.

4.3 Database

Reading data from the database: In order to have the information available in

Simphonv, database file was necessary. Simphonv is a Visual Basic-based program; it

has the flexibility, therefore, to create new elements, which are capable of using both

the Visual Basic Code and Library. Two new elements called the “Database Link

Element” and the “Results Element” were created. These elements are able to read

information contained in tables and queries within a database file and import/export

the information to and from Simphonv with the same order and format. Once those

elements are pasted into the Simphonv Design Window, the user can employ the

parameters window to specify the path and the name of the database file as well as the

tables or queries name from/to which to import/export the data. The data must be

ordered from the earliest date to the latest date based on EarlyStartDate rules. A query

has been built to prioritize the information used for importing the data. The query lists

the modules in an ascending order based on their EarlyStartDate. Figure 7 illustrates

the query (data format), which contains the attributes for the input as well as those

attributes in which the output will be recorded after the simulation; the records

representing one module each ordered by the EarlyStartDate (column 5) are also

illustrated.

3 4

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

I
■M * m * * W e fgrrrsat. rccfe ĵrsdow Heh

1 ■ , —

J S jx ?
IN a n p & t i i i

fcSA jPkmitS'dSMpGaisj EFXfPriACT jOwstioRl TypeCiassiOrstts&s or tty I Bay 1Say Size T Task flsOiOayt ““I
84 1 . 10 . V 36: i 834

21QGPM24S • 82: " 1 '• 10 V 84 i : 834.
21O0Pb1239 . 8T 1 . 10 V 85 1. 834
21GGPM215 89 1 10 1 91- 1 m
2100PM237 : £4 1 10 t 88 1: m
21CQPM241 ' 8? 1 10 V 84 1: 834
2100PM239 m 1 10 t 87: -1 834
210DPM229 = 85; 1 : 10 1 87 834'
2100PMZ28 m t 10 1- 89: 1 834
21G0P1422? 88; 1 10 1: 90: 1 834.
21QQPM226 m 1 10 b SO: 1 834
2100PM216 SO- 1 10 I 91: 1. 834
21GQPM238 83: 1 : 10 : 1 85 1 834
rn o cm ? - m 3 10 m 143; 0 736 BayA1 30 :1
Q83QP?<4022 : 70 1 15 105 166 0 730 8ayA3 30 1
083QPM031 78 1 . 15 106 0 730. BsyA2 30 2
064OPMO3S 77 1 19 105 m - 0 730 8ayA4 30 1
864CCTM? 25 3 6 : 110 I4j; a. 725- BayA6 30 •1
m m t m 76 1 15 110 1€S; u 725 BsyAS 30
0830PM016 : 71 1 15 113 143. 0 7228ayB5 30 1
GS30CT021 39 3 16 118. 143 0 710 BayA? 30 1
QS40CT063 27 3 : jo 120 162 0: 715 SayAlO 30 1
Q83QPM002 87: 1 >6 120 163; 0‘ 715 BayAS 30 1
0830PMG23 m 1 15 128. 185 8 715;83yA8 30 1
21GQPMG1S 4T 1 15 124 195- 0 711 BayA.11 30
210OPM435 38- 1 : 16 12* 210 0 ?H:8ayAl2 30 i
21DQPM022 : 53: 1 10 125 200: 0 719 BayAl2 •38 1
21Q0PM01S 44 1 15 126 135 t) 710.8sry82 39 1
2100PM021 48 1 15 125 195 0 710 8ayAl3 30 1
21G0PM018 i 48' 1 : IS 125' 196 0 7188ayA14 30 1
0S40CTS62 22: 3 10 125. 182 0 710:8ay81 30 1
m m s m 5?' 1 10 129 175 Q 70S; 8ay84 30 1
2100PM017 44- ' 1 16 120 m 0 706:8ayA1 30 1 + 'i

: Record: M } 4, J f~ - ‘“ “45 p | of J&j 4 I j t T

Figure 7 - Query Ordered by EarlyStartDate

New Elements Creation: The “Database Link Element” requires the parameters of the

Data Source and of the query/table to be specified. Also, it will display the number of

records, the number of attributes, and the entire query/table as an output. The element

is formed using four functions: OnCreate, OnSimulationlnitialize,

OnSimulationlnitializeRun, and OnSimulationProcessEvent. The first function of the

element is the OnCreate function in which all the necessary attributes of the element

are declared and the element itself is defined. In the OnCreate function, the database

name is specified as well as its path. The table or the query from which to retrieve the

information is also specified. The matrix to store the information from the table or

query is also declared.

The OnSimulationlnitialize subroutine is where the simulation first opens the

database to set the table. The number of records, the number of attributes, and the

names of the attributes are read. The table is completely emptied at this point. In the

OnSimulationlnitialize subroutine the attributes’ names are read beginning with the

35

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

first attribute. This process is undertaken with each module (record). Once the

subroutine is finished, a table of “n” rows and “m” columns is created; however, the

attributes’ values are still empty.

The OnSimulationlnitializeRun subroutine launches the first module; which fills the

first record of the table with the values of the attributes contained in that module. The

OnSimulationlnitializeRun begins the simulation process at its EarlyStartTime firing

the first module.

During the OnSimulationProcessEvent subroutine; the simulation will fill the rest of

the table with the attribute values of each module. Similar to the

OnSimulationlnitializeRun, the modules initialize the simulation process based on its

recorded EarlyStartTime.

The “Results Element” also requires that the parameters of the data source and the

query/table are specified. Also, it will display the number of records, the number of

attributes, and the entire query or table as output. Similar to the “Database Link

Element” the OnCreate function declares the necessary attributes of the element and

essentially defines the element itself. The OnSimulationlnitialize subroutine first

opens the database in order to establish the results table. The number of records,

number of attributes, and the names of the attributes are read. The table is completely

emptied at this point. The two additional subroutines are OnSimulationTransferln and

OnSimulationPostRun. The OnSimulationTransferln subroutine records the results in

the “Results Element” table.

OnSimulationPostRun exports the results to table the “Results” table of the

previously identified database file.

3 6

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

4.4 Modifications to Simphonv’s Common Template

Three elements from the existing common template were modified to suit the special

requirements of this simulation. These three elements are: “Declare Resources”,

“Waiting File”, and “Release Resouces”.

Declare Resources Element: Two subroutines from the Declare Resources element

were modified. The OnCreate function of the Declare Resources element was

modified to add the EndBackModule, FinishCurrentModule, ModuleCounter, and

SpacelnFront attributes. The EndBackModule attribute tracks the finishing time of

the module in the back of a bay. “FinishCurrentModule” keeps track of the module

with the latest finishing time for each bay. “ModuleCounter” records the number of

modules in one bay. “SpacelnFront” tracks the available space preceding the current

module in order to fabricate more modules. The OnSimulationlnitializeRun

subroutine was also modified by initializing the new attributes at 1000,1000,0, and 1.

“EndB ackModule” and “FinishCurrentModule” attributes, must be associated with a

high value (larger than all of the modules durations) to ensure that when the bay is

empty it grants resources for assembly. For this reason, the attributes have been given

a value of 1000, ensuring that regardless of the order in which modules arrive to a

bay, that module’s finishing time will be shorter than the virtual module in the back

of the bay. The “ModuleCounter” attribute is initialized with a value of zero since the

bays are empty at the beginning of the simulation. “SpacelnFront” takes the initial

value of one (1), which represents the empty space available for modules in a bay.

Waiting File Element: The Waiting File element encompasses the process of granting

resources. The module assembly schedule is restricted by those physical and logical

constraints mentioned previously as well as heuristic rules. These constraints and

heuristic rules have been added to the Waiting File element. This addition allows the

waiting file to grant resources only when all criteria have been met. The changes have

been made within the Case “ANY”; when a module arrives to the Capture element

and request resources for assembly, the module will request “ANY” of the resources

(bays) available. The five request types must first be differentiated. In order to

37

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

differentiate between the modules requesting for the space that they are currently

occupying (for modules that started the fabrication process previously to the

simulation), those requesting space for assembly, those requesting labor, those

requesting space available for shipment, and those requesting a resource for shipment,

an auxiliary attribute ranging from zero (0) to eight (8) is checked every time a

request is placed. If the auxiliary attribute is zero (0), then the module is requesting

space for assembly (modules that have not started their fabrication process), if the

value is two (2), then the module is requesting the space that they are currently

occupying (modules that started the fabrication process previous to the simulation), if

the value is three (3), then the module is requesting workers for the structure subtask,

if the auxiliary attribute is four (4), then the module is requesting workers for the

piping subtask, if the auxiliary attribute is five (5), then the module is requesting

workers for the cable tray subtask, if the auxiliary attribute is six (6), then the module

is requesting workers for the EHT subtask, if the auxiliary attribute is seven (7), then

the module is requesting workers for the insulation subtask, if the auxiliary attribute is

eight (8) then the module is requesting workers for the fireproof subtask; if the value

is one (1), then the module is requesting for another type of resource. In this latter

situation, the process is exactly the same as a normal request processed by the

Simphonv Common Template. The resource request must then be fixed, which will

enable resources to be requested based on an entity attribute (formula) rather than

specifying a keyed number within the Capture element. If the module in the back

(EndBackModule) and the module with the latest finishing time (EndCurrentModule)

on a bay plus the maximum allowable number of waiting days for shipment

(WaitingDays) finish later than the module requesting resources (the finishing time of

the module requesting resources is calculated by adding all the subtasks’ durations to

the current simulation time, which represents the start time, then the module is

granted the resources and the assembly, space, total, and bay attributes are updated.

The EndBackmodule attribute changes its value from 1000 to the expected finish time

if the module requesting resources is placed at the back of the bay. The

EndCurrentModule attribute also updates its value to the expected finish time of that

module requesting resources. ModuleCounter and SpacelnFront are the remaining

38

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

attributes. ModuleCounter is increased by one unit every time a module is granted

resources while SpacelnFront checks that the space available is greater than zero (0).

Release Resources Element: The OnSimulationProcessEvent of the “Release

Resources” element was modified to update the EndBackModule,

FinishCurrentModule, and ModuleCounter attribute every time a module has finished

its assembly process and the space resources are released. The auxiliary attribute used

on the Waiting File to differentiate the requesting of space for assembly is given a

value of two (2) in order to accomplish this process at the end of the assembly. The

attributes revert to their original value representing an empty bay (EndBackModule =

1000, FinishCurrentModule = 1000, and ModuleCounter = 0).

4.5 Simulation Model

The simulation model has been built mainly using Simphonv's Common Template

with two new elements mentioned before and with the modifications made to three of

the existing elements. The counter-element from Simphonv's CYCLONE II was also

used in this model. See Figure 9 for a legend of the elements used in this model.

3 9

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Pafcatoas® l-is& E l& m n t

8 * s u l t s g le s s & i i s t o r a s th e r e s u l t s gmd s e M fc&aa2 £mc% t o t h e d a ta b a se }

C cadlfcisft& l B rm cM & g Sle& e& t, chsc& s . is a c m t& itio a i s t im e o r f a l s a

5®t A t t r i b u t e s B ie& en t, a t t r i b u t e s a s d v a lu e s t o r « m t i t i a s a r e added

S x a e u te Cede Siassanfc., coda v i t a f*r®xtU.s c m b e b u i l t i a s i d e

Task Ile ssess i f d e ls y s th e estfciiy by th e d u r a t i o n s js s c if te & j

P a c le r e Sksssmrce g lese e a t. th e najae a m auafcer o f restore® * a r e s p e c i f ie d

W a it in g f i l e S ia seea t, a naata t o b e •a s s o c ia te d w i th i n t h e C a p tu re SXeaient i s sx se c if ie d

C apture E lem ent, t i e W a itin g F i le a n t i s s p e c if ie d and fcbsa resources are arranged in i t s c h i ld viadem

Sa^uast S isson t> the rescues t ulm&zit i s l i s t e d to a resource

Release Sleaaent, the type o f resourcea to re lea se a re i& i t s c h i ld w inder

Bttleaae tlm ^ x t , the rel««se eleweut i s l i s t e d t o the resource t o be re lease

Counter Bless&nt, counts tfce naft*? o f e n t i t ie s passing tyj

Figure 8 - Legend (Simphonv's elements used for this model)

The model was built following that simulation model development process explained

in Chapter 3 and summarized in Figure 6. Figure 9 shows the main window

containing Simphonv's simulation model built for module assembly scheduling. The

twenty-five points following Figure 9 are the explanation of the simulation model.

Also, Figure 10 shows the flow chart explaining the model.

4 0

0 E » ~ <

fiJrm

o

o

o v*»>mlrfcmKS 0

O

0

< A

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

<3.0, ’ ’j y x s

u pi*- r ; i x v ' ■>! [f, t ' f ’ 'i 1 1 ' »* <-"• inv} f _ n <1 ' y.st* U r-^ * w j . i «>"*

♦j =?e frfcf ê> »eu I&rts £&•■«», ties*
□ ^ ■ ,* . v' ► *f
Cowman >■!; j ;CEM_CYdONE 11

% « « A f I 1 it 8 « e n s T* M, A & *8 - g? ® Q □ □ S 0 8 f * '
‘2 2 2 Q Q ! i;

ISM x j

r ii* - SUd-r.iz-g Say fcr.' U

fwr StrMtiK 0«r: iFofK itli}Z$?T>J2£: KZf
flLs: U»i':ir-5 i* j P r.: 14 / .

Uficoostfsiflwt
•|XC*tekTr»y

M ptsm sraaigajg 0Uf; penrntt I
F a lse

s k sf s sa i m s ?«?»W: «»
F tU - BsiaSnc Sev Sr .; i i> v True

:%EHT
y 'u n tan strtfn w S

F ile; 5«V f i l e t SSff X*r Cur jfom afs}

IsmumSw*\̂,F'«praor
‘ "" U nssnyrajiw a® U<wo»8ira«»

Dur fFarau;*)]

^ X T £ « i«5J »L ' UnsoflirtfgiwScm'&i : a r

r tl* - Huistop j»y s r , ; *m «H r -**• •»»#»»*{ D u r .i

^ 4 !
*u—J WCYVTst

22 23
ÎvV2

k ' -'om traim ’JCaFF-SI; S®7
p*l*t ?*%

m e f a ls e

^ 12/ E T HiPCL Module Yard Simulation'
>y_ ■ j

g

® [i z !

Figure 9 - Simphonv'% Simulation Model

[1] Simulation start (reads data from database)

[2] Differentiating finished modules and counting the number of finished and

unfinished modules.

“EFA” (Attribute to differentiate if the module has finished its assembly process or

not)

If “EFA” = 0, the module has not completed its assembly process yet.

If “EFA” - 1, the module has already completed its assembly process.

[3] “EFA” =1. The starting time, finishing time, and shipping time of the finished

modules are recorded.

“Start’ “EarlyStartDate”

“Finish” = “EarlyStartDate” + “Duration”

“Shipping” = “PlannedShipDate”

[4] The Auxiliary attribute to differentiate types of request and release is set to zero

(0).

“Auxiliary” - 0

41

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

[5] Task is undertaken with a delay of 0.0001 days to ensure that no modules request

resources at the exactly same time. Modules having the same “EarlyStartDate” will

request resources at the same time; this small delay will form a queue when granting

resources. Since the dates are based on integer numbers, the delay of fractions of a

second will not alter the dates.

[6] Differentiating started modules from modules not yet started and counting them.

“ESA” (Attribute to differentiate if the module has started its assembly process or

not)

If “ESA” = 0, the module has not started its assembly process yet.

If “ESA” = 1, the module has already started its assembly process.

[7] Based on the information provided regarding the modules already in progress, the

attributes assembly, space, and total are recorded.

Assembly = “UnitsRequested”

“Space” = “BaySize” - “Assembly” - “No_of_Units_Occupied_Behind”

“Total” = “Assembly” + “Space”

[8] The auxiliary attribute takes the value of two (2), symbolizing a module that

started previously to the simulation. It is also determined that the bay in which that

module is been assembled still has available space for other assembly.

“Auxiliary” = 2

If (“BaySize” - “UnitsRequested” - “No of_Units_Occupied_Behind”) = 0

“Space_in_front” = No

Else

“SpaceJnJifont” =Yes

[9] The module requests the space currently occupying in the bay in which it is been

assembled in real life.

Bat to request resources from = “Bay”

Number of resources to request from “Bay” = “UnitsRequested”

[10] The starting time of the module is recorded. Also, the auxiliary attribute takes the

value of (1) symbolizing that the module has been assigned to a bay.

“Auxiliary” = 1

“Start” - SimTime

42

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

[11] Modules that started their assembly process previously to the simulation are

currently under assembly in a specific subtask. These series of conditional branching

differentiates the subtask in which the module is at the simulation starting time.

Depending on the subtasks the auxiliary attribute could take the value of (3) for

structure, (4) for piping, (5), for cable tray, (6) for EHT, and (7) for insulation.

If “Task” = 1 (structure)

“Auxiliary” = 3

If “Task” = 2 (piping)

“Auxiliary” = 4

If “Task” = 3 (cable tray)

“Auxiliary” = 5

If “Task” = 4 (EHT)

“Auxiliary” = 6

If “Task” = 5 (insulation)

“Auxiliary” = 7

[12] When the last of those conditional branching is false, the auxiliary attribute takes

the value of (8) for fireproof.

“Auxiliary” = 8

[13] Routing modules to different bay areas

If “TypeClass” = 1 the module is preferably routed to bay area “A”

If “TypeClass” = 2 the module is preferably routed to bay area “B”

If “TypeClass” = 3 the module is preferably routed to bay area “C”

If “TypeClass” = 4 the module is preferably routed to bay area “D”

If “TypeClass” = 5 the module is preferably routed to bay area “D”

[14] Looking for empty space on a bay to start fabrication

Number of resources to request from any of the available bays = “UnitsRequested”

[15] Once the module has been assigned to an empty space, the Assembly, Space,

Total, and Bay attribute are updated. The auxiliary attribute is associated with the

value of one (3), symbolizing that the module is ready to requested workers for the

first subtask.

“Assembly” = “UnitsRequested”

43

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

“Space” = “Current” (Current number o f available resources in the bay)

“Total” = “Assembly” + “Current”

“Bay” = Name of the bay from where the resources have been assigned

“Auxiliary” = 3

[16] Request labor in order to begin the module fabrication process

Number of workers to request = “Manhours_Struct”

[17] The first subtask (structure) is processed and the starting time of the subtask is

recorded.

Task duration = “Duration Override Struct”

“A ctualStartStruct” = SimTime

[18] Release of the labor used in the first subtask (structure), the finishing time of the

subtask is recorded, and the auxiliary attribute takes the value of four (4),

symbolizing that the module is ready to requested workers for the second subtask.

Number of workers to release = “Manhours_Struct”

“A ctualFinishStruct” = SimTime

“Auxiliary” = 4

[19] Request for available shipment space (empty space in front of the completed

module)

Number of resources to request symbolizing the empty space needed for shipping =

“Space”

[20] Request shipment

Number of resources to request = 1 (one shipment is requested)

[21] The shipping time is recorded and the auxiliary attribute takes the value of two

(2), symbolizing that the module is ready to be shipped.

“Shipping” = SimTime

“Auxiliary” = 2

[22] Shipment occurs during one whole day; therefore, resources should be released

after the completion of the shipment process

Task duration = 1

[23] Release resources (space and shipment)

Number of space resources to release = “Total”

44

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Number of shipment resources to release = 1

[24] Differentiating modules according to their type and counting them.

If “TypeClass” = 1 pass counter No. 1

If “TypeClass” = 2 pass counter No. 2

If “TypeClass” = 3 pass counter No. 3

I f ‘TypeClass” = 4 pass counter No. 4

If “TypeClass” = 5 pass counter No. 4

[25] Simulation ends (send results back to the database)

Note: Between steps [18] and [19], the five (5) other subtasks are also performed.

They request labor, process the task, and release the labor used in a similar manner to

steps [16], [17], and [18].

“Manhours_Struct” changes for “Manhours Piping”, “Manhours Cable Tray”,

“ManhoursJEHT”, “Manhours lnsulation”, and “Manhours Fireproff’ depending on

the task. In a similar way “Duration Override Struct” and “Actual Start Struct”

change depending on the task. Also, the “Auxiliary” attribute takes the value of five

(5) to symbolize that the module is ready to requested workers for the third subtask,

the value of six (6) to symbolize that the module is ready to requested workers for the

fourth subtask, the value of seven (7) to symbolize that the module is ready to

requested workers for the fifth subtask, and the value of eight (8) to symbolize that

the module is ready to requested workers for the sixth subtask.

4 5

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

m n mtftrSsJ w* fifei|§%f tm k t 4i$k%$ » pM?mm 111 || Mtwkwy atfttiute *C
ll

fm.$m<6

WmW§mm

mo&i&m (has ^||
^ms&M s
lllli^

PI
$$mM M’4acoftlsd 11

_ L J

38ftsb4i!& * ̂
***# . Pf:p|TN ht*d’f£ s "•liaô ’ >

WmWit'M p̂xm&&4 r> *<&$> M%mM AukKaom m&m*
'1 1

M
4mi$k&skzi* itf lyp* rjsmt

I T
f lm* u î^* [

I rafts*:! $??i&rti% i f <m tw*? |!| I fepe) II

m
r W a

'121 All'fta? atU&J'S -4 fe GSX'V-i
P&xMmy far csbi# &sy

hmW-wy vs «0 -fcr B HT
V > > 4 - 5o-j ‘8 » tf(T ^ s MU*"f'r

i f i u p SMBBSwbbw^

pw
ii i i f

fr&v&mim f0S:\ » 5 J? .. w§.m
UZ'IQ* i i& j 1 A ’ ? v

|1T|
Tftfe t o msfeftisk is

i'4l
SsS-ve w irtr.

ffpPI * |pg

h

(221

J bas
I <**.. iii Hf̂ sti The ■sl'wŝsjns ■I Sterna l&kM 4, / ,
; I -. j» m 4 1
1 i s i "“"“ I

1*5) n i
*
J19J

Wwjoeatirg spss
sw*aH*fcf sMwsra

J & X i i

Figure 10 - Simulation Model Flow Chart

The main window of the simulation also contains the resource declaration. The bays

in every area, the availability of shipments per day, and the skill workers available for

each subtask are declared. The parameters of each of these resources can be edited,

after which the total number of resources is set. The waiting files are also declared at

this point. There is only one waiting file for all the bays instead of one per bay area

46

R eproduced with perm ission o f the copyright owner. Further reproduction prohibited without perm ission.

because bays arrive and request for space from the preferred area previously chosen

except when that area is full. In that case, the module will be assigned to a bay in a

different area. Shipment and subtasks each have a waiting file since those tasks are

independent from the rest of the resource requests. Figure 11 shows the resource

declaration and the waiting files.

..Canrnon

% *»«■* a * | j i $ is js»
«2 32 2 L3 U f Resources representing

Bay Area “A”

¥Tir¥TT?nr?TT¥TT¥A > -A J>a ..A...N ..A-l*-8 .a ..p J Lts&i is i A Its
Eapit’5 jjXrj'AS jf9s£&$

S E E K
Sey&U

flUT
B r a H n s r a t54 |_ A J3*
5si-Sl |8tyE2 fSajiiB jBa&SS

U K
Resources representing
Bay Area “B”

f j p f i C lass 3 {C}

i 5 E E m r a iB I I E l [5SajSS y®ev5t j|s«?c5

Tipe CXU> 4 S i ® 4 ss Resources representing
Bay Area “D”

Resources representing
Bay Area “C”

S h i e l i n g p e r D w

Resource representing
number of shipments

M® S*rs

Labor fc<r sac& o f tbe #&taaY*
Resources representing
available workers

Figure 11 - Simphony’s Resources and Waiting Files Window

Child windows are built beneath the Capture and the Release elements. Figure 12

shows the Capture element window in which the resources are arranged in an

imitation of the module yard layout. These resources must be created based on the

planned sequence for filling bays. The Capture element’s child window modules are

preferably routed to bay area “A”. In this case, the resources were created starting

with bay area “A” (from A1 to A14), then bay area “B” (from B1 to B12), then bay

area “C” (from Cl to C9), and finally bay area “D” (from D1 to D4).

4 7

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

W..xg» g j t o IPsh W-w* tg®
®. Si. ’ / ? X

#» f % t* it.
3 S Z J J

Figure 12 - Child Window of the Capture Element when Modules are Routed to Bay Area “A”

Figure 13 shows the Release element window in which those resources scheduled for

release are built. One resource for every resource type to be released must be built.

Two releases take place simultaneously when a module is shipped: 1) the ship per day

resource is released and ready to ship more modules and 2) the space occupied by that

module in a bay is now released and ready to host other modules. The number of bay

space resources to be released is specified in each entity by its “Total” and “Bay”

attribute.

4 8

R eproduced with perm ission o f the copyright owner. Further reproduction prohibited without perm ission.

wmm

Figure 13 - Child Window of the Release Element (bay space and ship per day)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4 9

Chapter 5. Case Study Analysis

5.1 Introduction

The module assembly yard schedule described in this thesis will be implemented in

PCL’s module assembly yard in Nisku, Alberta (see Figure 14 for an aerial view of

the yard). PCL’s module assembly project consists of the assembly of 268 piperack

modules, 40 equipment modules, and 21 cable tray modules for the one of the

projects in the oil sands located in Fort McMurray, Alberta. Pipe spools are produced

in PCL's Nisku pipe fabrication facility and transported to the module assembly yard

for inclusion in a wide variety of structural modules. The scope of the work

comprises of the erection of structural steel and the installation of pipe spools,

insulation, cable tray installation, heat tracing, equipment, and fireproofing. Once

installed in the steel module frames, the spools are seamed, heat traced, and insulated

in order to complete the assemblies. Electrical cable tray installation, and fireproofing

are also completed prior loading and delivering the module for installation on-site.

Figure 14 - PCL’s Module Assembly Yard in Nisku, Alberta

5 0

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The specifics of the case were analyzed and treated as invariable constraints to the

project schedule. Those constraints need to be determined by a group of experts

including the scheduler and the project manager. The simulation enables the testing of

different scenarios in which the constraints assumed at the beginning are modified

and a proper evaluation of each scenario is undertaken. This exercise will ensure a

better combination of constraints. This section presents the results of nine scenarios.

In each scenario, one constraint was changed, while all other constraints were left

fixed. The following assumptions apply to the first scenario:

• Module yard layout is fixed (see Figure 5, Chapter 3),

• Resources (man-hours) not taken into account,

• Modules may only be shipped when the space in front of them is completely

empty,

• Maximum number of shipments per day is six,

• After completion, modules may wait a maximum of five days for shipment,

• Module allocation routing follows certain preferences; in this case they are

routed according to their type,

• Once a module has been routed to a specific area, the work will flow front to

back (starting with bay #1 to bay #n),

• Duration and dates are fixed (duration varied from 21 days to 92 days), and

• Priority logic is employed; that is the module with the least amount of float

will be given higher priority for assembly

5.2 Validation of Basic Model

Results are organized in a tabular format providing Activity ID (ACT), durations,

class type, units requested (size), early start date, the module’s start status at the

beginning of the simulation (ESA), the planned shipping date, the module’s

completion status (EFA), priority, location of module within the yard (bay in which

the module was processed), location of the module within the bay (number of

modules behind in the bay), space in front (in the bay), simulated start dates (process

and subtasks), simulated finish date (process and subtasks), and simulated ship date.

Each simulation run provides results for 329 modules (see Figure 15).

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

9
■’ACT- i&wa&fi ASmCm* Iesa 1 r 03 & YXojtfJ* odw«J*Wftd iSpJKSt <0 Wsl
Q83OPG070830CTC21

iso rr
•>9

!10
'15

>$S
ms

>1
>1

>143
1143 8 46 SsyC1 50>Q |Y«

iY*»A
=»eoo?
m&asot

224 ifiiT
7&900"

13S >1 J15 1124 51 >210 G •713 8 ^ Ti......... |lSlo 1124,0031 /̂ flOOl
m n m n® >1 1205 >707 i •:Y«* t)W L\ -* m i

~2OTM437 i28 jl no >133 11 >205 ?G i?D5 8^3 ;0 ;T@S I132B001 ' 0001
0€40CT055 127' 13 le 1134 [152 m <w» IT.... :r«s [134.G232 2̂ G(«2

1® 13 110 >131 : 1 1182 To.. ?706 =S«vC4 >0 if®* 1 11/01 2%oom
21Q9FMHB 144 n H5 >125 >1 1195 0 >712 1 ŜAS A *Mc 1̂ 6001 4̂4oroi
2100PM815 ii f it its 5124 : f 5135 r* I'm"''" ■>0 tYes 1124.0002 >240.0802 !.
m s m m t 7® si 115 >138 >0 >186 to""' T443.. =BasAl3 it i Ho iMtSoor 24600m
2518PMKK >3? >1 115 >134 >0 >387 10"" = 234 18̂ 10 n ;f“io 1 iA ObOj 46 ora:
251QPM106 >37 it Its >134 •:o 533? to""' 1234 *> vktt >1 m o 51340004 "*46 0SXi4
2 \ m u m 32 115 >137 1195 a ‘434 8twA 3 >0 ■ re f - \ v m \ m m
2 v m * m >22 11 115 1150 0 >218 3 5422 e?86 ■'it... IHg :15G«501 ’47 oooi
210GPWQ1? m 51 ? 15 \ m it i m io 08 58̂ 7 n i.?©3 >129,0001 .480001
2103PM023 >48 !l 115 non '1 1208 0 5704 iBqiAlO :0 5 res 1310001 248 &3D
2 \ m w m >48 »1 115 1125 it i m JjlI 1712 >8«*A6 >1 iNG 125 row £460004
2tOCWl8 ?48 n he 5125 it 5196 . 0 >712 =8«ft̂ •0 syes t̂ flOU 24800̂
21S0FM42? m u 115 1145 >0 TM 1:0 8 3̂ <1 ?Yes Hr0GCL 250 0002
QSWPMm m n 115 1105 51 1185 If"" ■732 ibhsaz *0 >Yes >105.0003 2500081
21G0FW436 22 1 its >155 3 t205 0 432 a.i-M A ifto 1̂ 0003 252{Xi»5
2100PM441 >22 ;1 115 ItSS >D i 718 10 A - >8̂CS <0 >r<M >155.001
21O0B4022 *53 n m 1125 n =200 '0 >712 I84JA7 ■0 • Yes- 11250005 " O0/>
2lGQTMt3b >25 it tl5 USD >0 >180 »3 S4W BwB8 10 .’Ye* •.1350002 ■503002
21Q3PM4261S10PMQG2

>40 n 115 1140 m 1205 1 4 ~ >8̂ 14“rf........ jyes twooc* TPOOifl
>40 n m TTsf........ n n® >0 >447 84* 4 '■0 :<Yes 1-VIC02

* 2100PM04S I® n 115 >147 >0 >180 1 462 >8av®6 ;0 ?Ye$ >147.0302 r̂cu02
2KBPMQ24 >40 it 115 5142 >0 = 200 JO = 442 18*5*2 If''................. •No n*2GG03 :25?.SS»3 >:
t m m r n - 1 >15 nos i it® u 7732.. >8<$ftt =1 rre* 11050002 2® >oir

_osm$is 115 >113 >1 1143 10 2̂4 i8*£3 Tt................... 1113,0001 j 2*3.0001
21£SPM426 'h < 15 >134 >0 =210 Is >434 50 :Ye® 1134,0001 ?258.8O01 i-
37lQGMflm >39 \2 no >145 >0 5252 63 382 *0 re 1145.0001 259 ffiSH
G6«0Ffcffi39 177 51 510 1105 ;1 >187 9 >0 ires : 105.0001 H7GTC1
1810FMC03 >48 *1 no >136 *0 it 88 3 [456 >8̂S.12 >2 ;Mg >13S.0®2 259 00G2
0830PMCG3 >75 11 ns 5110 !1 1165 to ... >727 >B«iA3 >0 jres natrd m m \
1810PWG01 !48 11 no >138 >0 1180 3 5454 8 IT [Yes :t®.0001
2100PMG4S >40 n 515 >145 10 •5200 ,U =445 >8ay84 iNo ; 145000* 2SO0O04
m m t m

535 11
I® n

ns
no

it SB
1155

UJ
:o

1175,
>210

0
3

470
4-ft

>8̂*89
18̂ 612

>1Tj.. 5Nc>Yes 11550004>155.0004
m m *
m o m

ISO n no 1134 >3 =190 5454 8*A’2 >Q lYes >134.0005 "-̂ 3.0005
O83OPMC04 >57 n ho 1123 :t 1175 ;0 [708 =8̂ 8 >0 !!«$ \ m . m z 261 DCTJ2
21Q0PM044 >45 11 [15 >142 >0 ft® 0 \ m *IT7” ' ̂'"7")No ;t4za®i J h J tx n

■A<\ n 1=; >1*7 >0 ■ im m u*?> T» Sfcu ;U7«vn Jl :•

T o ta l-329 Modules

Figure 15 - Results in a Tabular Format

This information is plotted in comparison with the project schedule (see Figure 16),

which is based on module shipping dates. Figure 16 also lists the shipping date

obtained by applying the simulation and the shipping date previously planned by the

contractor using the CPM within the highlighted period.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1-Aug-04

23-Apr-04

14-Jan-04
■ Simulation-based

■ CPM-based

1
~ 20-Mar-03if)

10-Dec-02

1-Sep-02

24-May-02

Module No

Note: The data used to obtain this graphs has been altered trom the
original data used by the company for confidentiality

Simulation Based CPM Based Simulation Based CPM Based Simulation Based CPM Based Simulation Based CPM Based
17-Sep-03 6-Oct-03 1-Oct-Q3 15-Oct-03 1-Oct-03 13-Nov-03 27-Nov-03 12-Dec-03
17-Sep-03 7-Od-03 1-Oct-03 15-Oct-03 30-0ct-03 14-Nov-03 26-NOV-03 22-Deo-03
17-Sep-03 7-Oct-03 7-Oct-03 17-Oct-03 13-NOV-03 14-Nov-03 26-NOV-03 22-Dec-03
17-Sep-03 8-Oct-03 7-Oct-03 17-Oct-03 4-Nov-03 17-Nov-03 28-Nov-03 22-Dec-03
18-Sep-03 8-Oct-03 7-Oct-03 20-0ct-03 4-Nov-03 18-Nov-03 26-NOV-03 23-Dec-03
18-Sep-03 9-Oct-03 7-Oct-03 20-0ct-03 4-NOV-03 20-NOV-03 3-Dec-03 23-Dec-03
24~Sep-03 9-Oct-03 19-Auq-03 21-Oct-03 4-NOV-03 21-Nov-03 3-Dec-03 23-Dec-03
24-Sep-03 9-Oct-03 7-Oct-03 21-Oct-03 4-Nov-03 21-Nov-03 3-Dec-03 23-Dec-03
24-Sep-03 10-0ct-03 19-Aug-03 22-Oct-03 7-NOV-03 25-NOV-03 4-Dec-03 23-Dec-03
24-Sep-03 10-Oct-03 7-Oct-03 22-Oct-03 12-Nov-03 28-NOV-03 4-Dec-03 23-Dec-03
24-Sep-03 10-Oct-03 15-Oct-03 30-0ct-03 12-Nov-03 1-Dec-03 5-Dec-03 23-Dec-03
24-Sep-03 10-Oct-03 6-Nov-03 31-Oct-03 12-Nov-03 2-Dec-03 5-Deo-03 23-Dec-03
25-Sep-03 1D-Oct-03 22-Oct-03 4-NOV-03 19-Nov-03 2-Dec-03 9-Dec-03 23-Dec-03
26-Sep-03 IO-Oct-03 22-Oct-03 5-Nov-03 19-Nov-03 3-Dec-03 g-Dec-03 23-Dec-03
30-Sep-03 10-Oct-03 22-Oct-03 6-Nov-Q3 19-NOV-03 5-Deo-03 9-Dec-03 23-Dec-03
30-Sep-03 14-Oct-03 30-0ct-03 6-NOV-03 19-Nov-03 5-Dec-03 28-Aug-03 7-Jan-04
30-Sep-03 14-Oct-03 28-Gct-03 7-NOV-03 19-NOV-03 5-Deo03 27-Aug-03 9-Jan-04
30-Sep-03 14-Oct-03 28-Oct-03 10-Nov-03 19-NOV-03 5-Dec-03 9-Dec-03 13-Jan-04
30-Sep-03 14-Oct-03 28-Oct-03 12-Nov-03 26-NOV-03 12-Dec-03 28-Aug-03 14-Jan-04
30-Sep-03 14-Oct-03 5-NOV-03 12-Nov-03 26-Nov-03 12-Dec-03 10-Dec-03 14-Jan-04

Figure 16 - CPM Schedule vs. Simulation Schedule (shipping dates)

Since the plot is ranked using shipping dates, the simulation schedule (simulation

based) seems to indicate overall that the shipping dates were accomplished sooner

than planned (CPM based).

This graph shows improvement in the schedule. This improvement is especially

evident during in the latter part of the project where module allocation was more

flexible due to the completion of modules filling the bays at the beginning of the

project.

•53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The following Primavera Project Planning Gant chart (see Figure 17) illustrates in the

first bar the expected schedule without using the simulation model, and in the second

bar, the expected schedule using the simulation model.

i*

» .

mmmm

m m m

It. ■

ittaoMKft

|tt39VMBUr

KvjiT>a

p 5 i S « ^

p i 5 ^ i s 3

[U x r-& r

|S l|f

im m s m
v i

IIImmi j
J

fe iiS ilj
1 J

f
Ml,'i

p m

-■

Figure 17 - Primavera Project Schedule vs. Simulation Schedule

5 4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The following Primavera Project Planning work load Primavera graph (see Figure

18), which integrates the expected amount of work per week, shows how the

simulation schedule (light grey bar) proposes an increase in fabrication at the middle

of the project, which leads to reduce production at the end of the project, ensuring an

earlier project completion date. The schedule proposed without using simulation is

represented by the dark grey bar. The selected period (September 2003 to November

2003) shows that the schedule proposed previous to the simulation does not utilize the

yard at its maximum capacity. The yard was under utilized for this period having less

than 70 modules in production during a week. When the simulation approximates to

an optimal schedule the yard is utilized to a greater capacity having more than 80

modules in production during a week.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5 5

R
eproduced

with
perm

ission
of the

copyright
ow

ner.
Further

reproduction
prohibited

w
ithout

perm
ission.

M o < f u le Ya.i;<3 X*oa<i
Simulation

Simulation

CPM Schedule
CPM Schedule

Note: The data used to obtain this graphs has been altered from the original data used by the company for confidentiality.

Figure 18 - Workload

ON

Finally, an auto-generated layout is produced (see Figure 19). This layout is a useful

graph for the scheduler, since it shows the location of each module at a specific time.

The scheduler can plan in advance by checking the distribution of modules in the yard

on any date required:

£&!! jMert Fsrnat
A * » . * • ® * ■ » * « i H

PCL Module Assemble Layout

3sas».»3sn ss-swaas-

i f r

•4 , . ^ ..i8«y>sssi resfeffii:

;c;

■2* Ljtei
I; .,.m

tSitfKHSi’. *503»L#S{;

V5#5m:SL '

M:

t : Ml ss.-

.«: ..ill

...si

Js*j

H * «\VB...

Figure 19 - Auto-generated Layout

5.3 Experimentation with the Model (improving scheduling heuristic rules)

As already discussed, the constraints assumed to perform this simulation may be

changed by presenting differing scenarios that may or may not further improve the

actual module assembly schedule. Nine different scenarios were obtained by testing

the change made in the following constraints:

• Changing module yard layout (3 scenarios): The purpose of these three

scenarios is to provide the manager with the flexibility to apply risk analysis

and to be prepared for schedule crashing.

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• Modules are shipped regardless that the space in front o f the current module

is not empty: The purpose of this scenario is to ensure that, should the

schedule be improved the manager will analyze the additional cost involved in

removing a module.

• Varying the number o f shipments per day (two scenarios): The purpose of

these scenarios is to determine the less possible number of shipments per day

to minimize the equipment needed for shipments.

• Varying the number or waiting days for finished modules to be shipped: The

purpose of this scenario is to determine the maximum number of waiting days

for a module before shipment.

• Routing modules according to a different characteristic such as size instead o f

type: The purpose of this scenario is to provide the manager with the

flexibility to compare if varying modules based on size instead of type

influence the schedule.

• Test different durations with randomness instead o f just fixed durations: This

scenario provides the manager with a non-deterministic schedule that allows

for the application of risk analysis to a module’s completion time.

For this module assembly yard scheduling-layout problem, schedule quality has been

defined through a comparison between the planned project schedule using Primavera

Project Planner and each of the schedules obtained after each simulation run. The

objective of this optimization is to minimize the delivery dates and to maximize yard

usage.

5 8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Scenario 1: Module yard layout (bay area “A ” only): The number of modules in a

bay is a function of the sizes and the types of the modules. Each bay can contain

between 1 and 10 modules, depending on their size. In addition, the module yard

capacity, which is also a function of the module types and sizes, ranges from 75 to

186 modules, depending on their combination. Changing the module yard layout has

a great impact on the improvement or deterioration of the schedule. If only bay area

“A” is considered as the only layout available (see Figure 20) and all other constraints

are left fixed, the simulation schedule in comparison to the project schedule,

deteriorated (see Figure 21). The whole yard consists of 36 full bays and 3 half bays.

Bay area “A” consists of 14 full bays only. As a result, 329 modules are fabricated in

a space smaller than 40% of the whole yard capacity.

GATE 8

PARKING

MAIN GATE

Note: The yard layout has
been altered from the

original layout for
confidentiality.

STORAGE
7

v v x

\ ..

Figure 20 - PCL Module Yard Layout (bay area “A” only)

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

For this reason, the schedule proposed by the simulation shows a delay on shipping

dates illustrated by the dramatic jumps on Figure 20. The manager may have the

option to distribute the modules to bays in bay area “A” only while the remaining

areas are kept empty for use when needed. Bay area “A”, however, is not a good

layout for the yard and further combinations should be explored to find the best

layout.

1-Aug-04

23-Apr-04

6-Oct-03

28-Jun-03

£ 20-Mar-03
Simulation-based

CRM-based10-Dec-02

1-Sep-02

13-Feb-02

Module No,

Note: The data used to obtain this graphs has been altered from the
original data used by the company for confidentiality.

Figure 21 - CPM Schedule vs. Simulation Schedule (bay area “A” only)

6 0

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Scenario 2: Module Yard Layout (bay areas “C ” and “D ” only): Similar to Scenario

1, this scenario provides the manager with the option of utilizing bay areas “C” and

“D” only and leaving the remaining areas for use when needed. When only bay areas

“C” and “D” are considered together (see Figure 22), the simulation schedule did not

improve in comparison with the project schedule (see Figure 23). The whole yard

consists of 36 full bays and 3 half bays. Bay areas “C” and “D” combined have only

10 full bays and 3 half bays. As a result, 329 modules are fabricated in a space of

about 30% of the whole yard capacity. Similar to Scenario 1, the schedule proposed

by the simulation shows a delay on shipping dates illustrated by the dramatic jumps

on Figure 22.

GATE B !

PARKING

MAIN GATE

c a
< <

\ \ \ \ \ \
 \ \ ...

A,T.y.RAGE

Figure 22 - PCL Module Yard Layout (bay area “C” and “D” only)

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Therefore, bay areas “C” and “D” alone are not a good layout for the yard and further

combinations should be sought to determine the best layout.

1-Aug-04

23-Apr-04

14-Jan-04

6-Oct-03

1

Simulation-based

CPM-based10-Dec-02

1-Sep-02

13-Feb-02
•*- CO in
CM CM

i n r-~ cn t-
N CO O
CM CM CO

co m N-
T- CM CO

T- CO
CM CO

CO CD
CM
CM

CD

Module No.

Note: The data used to obtain this graphs has been altered from the
original data used by the company for confidentiality.

Figure 23 - CPM Schedule vs. Simulation Schedule (bay area “C” and “D” only)

6 2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Scenario 3: Module yard layout (bay areas “A ” and “B ” only): Similar to the two

previous scenarios, this scenario provides the manager with the option of utilizing bay

areas “A” and “B” only and leaving the remaining areas for use when needed. If only

bay areas “A” and “B” are considered together (see Figure 24), then the schedule

proposed by the simulation will be similar to the schedule proposed when all four bay

areas “A”, “B”, “C”, and “D” were considered together (see Figure 25). The whole

yard consists of 36 full bays and 3 half bays. Bay area “A” and bay area “B”

combined have only of 26 full bays and 1 half bay. As a result, 329 modules are

fabricated in a space of about 70% of the whole yard capacity.

C C

GATE B

P AR KI NG

a

MAIN GATE

id
<t

Figure 24 - PCL Module Yard Layout (bay area “A” and “B” only)

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Therefore, bay areas “A” and “B” only are sufficient for accomplishing the

fabrication of these 329 modules, which will leave approximately 30% of the yard

space (bay areas “C” and “D”) available for other usage.

1-Aug-04 -i

14-Jan-04 - -

5-Oct-03

28-Jun-03

Simulation-based
CPM-based

1-Sep-02 - -

P) ifl s oi
05 O T- ~ '

CM CM

T - COo «“
CO CO

iO
CM
CO

(O i f i N Ol
r - CM CO cm -sr

CM CM

Module No.

Note: The data used to obtain this graphs has been altered from the
original data used by the company for confidentiality.

Figure 25 - CPM Schedule vs. Simulation Schedule (bay area “A” and “B” only)

6 4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Scenario 4: Modules are shipped although the space in front is not empty: Module

“A” has the potential of finishing its assembly process prior to module “B”, which is

located ahead of “A” in the same bay (see Figure 26).

Module

Module

Figure 26 - PCL Module Yard (module “A” and module “B”)

This scenario provides the manager with the option of employing larger cranes and

more equipment in order to ship modules regardless of their position in the bay.

When the simulation was performed without the constraint that modules could only

be shipped when all the space in front of them is empty, it was found that the new

proposed schedule is similar to the schedule proposed when the simulation followed

the constraint about empty space (see Figure 27).

6 5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1-Aug-04

14-Jan-04

6-Oct-Q3

1 28-Jun-03

Simulation-based

— CPM-based

1-Sep-02

to<N
CO

8 N- 05
to CO

-r- COco cnT- CO
CM CO

05
CM
CM

Module No.

Note: The data used to obtain this graphs has been altered from the
original data used by the company for confidentiality.

Figure 27 - CPM Schedule vs. Simulation Schedule (Modules are Shipped Even Though the
Space in front is not Empty)

This scenario supports the assumption that when the simulation follows the constraint

about space in front is truly looking for the best places where to start the fabrication

of each module. When no empty space is required to ship a module, the module can

begin its process of fabrication anywhere within the yard and be shipped as soon as

the process is complete. Since it is impossible to accomplish this in real life due to

space limitations, it is better to employ a real life scenario in which modules wait

until the space in front of them is completely empty for shipment. This process is

engineered to obtain a schedule similar to the schedule that gives modules the ability

to commence fabrication anywhere within the yard. The real life scenario schedule,

however, will have the advantage of not using larger cranes or additional equipment

to empty the bay, which will ultimately save money.

6 6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Scenario 5: Varying the number o f shipments per day (from two to six): The number

of shipments per day may affect the schedule. The main scenario allows six

shipments per day; when this number was increased from seven to ten, no

improvement was obtained. On the other hand, when the number of shipments per

day was decreased, the scheduled appeared to remain in a consistent form regardless

of the number of shipments varying between two to six per day (see Figure 28). In

this case, two shipments per day seems to be the right choice; however, the scenario

with only one shipment per day (Scenario 6) must be analyzed before arriving at this

conclusion.

1-Aug-04

14-Jan-04

I

Simulation-based

CPM-based

13-Feb-02 co to a> o
t- CM

N. O) t-
w N - CO O
CM CM CM CO

to m
t - CM
CO CO8 h - 05

CM
CM CM $

Module No.

Note: The data used to obtain this graphs has been altered from the
original data used by the company for confidentiality.

Figure 28 - CPM Schedule vs. Simulation Schedule (Varying the Number of Shipments per Day
from Two to Six)

6 7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Scenario 6: Varying the number o f shipments per day to one shipment per day:

Scenario 5 demonstrated that two shipments per day deliver modules is as sufficient

as six shipments per day. When only one shipment was tested, the schedule showed a

loss as compared to the project schedule (see Figure 29).

1-Aug-04

23-Apr-04

28-Jun-03

Simulation-based

CPM-based10-Dec-02

1-Sep-02

24-May-02

13-Feb-02

Module No.

Note: The data used to obtain this graphs has been altered from the
original data used by the company for confidentiality.

Figure 29 - CPM Schedule vs. Simulation Schedule (One Shipment per Day)

It can be concluded that under the particular workload and circumstances, the

schedule can be improved with only enough shipping equipment to perform two

shipments per day lowering the actual cost of shipping.

6 8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Scenario 7: Modules are shipped immediately after assembly: The main scenario

assumes that a module will wait for a maximum of five days before shipping once it

has been completed. No significant change occurred by varying the number until this

number was set to zero, that is, the module is shipped on the same day that it has been

completed (see Figure 30).

I-Aug-04

23-Apr-04

14-Jan-04

6-Oct-03

& 28-Jun-Q3

- Simulation-based

- CPM-based

1-Sep-02

24-May-02

Module No.

Note: The data used to obtain this graphs has been altered from the
original data used by the company for confidentiality.

Figure 30 - CPM Schedule vs. Simulation Schedule (Shipping Modules Immediately After
Assembly)

Based on these findings, a module may only begin the fabrication process if its

finishing date does not fall after the finishing date of a module already in fabrication

within that same bay. When no tolerance is permitted, the model does not

approximates to an optimize schedule in order to satisfy the constraint. Therefore, it is

necessary to factor in the need for modules to wait for short periods of time before

shipping in order to obtain the best results since the simulation will be more available

for bay combinations.

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Scenario 8: Modules are routed according to particular characteristics such as size

rather than type: All the bays are able to handle any type or size of module. Based on

the simulation, routing modules based on their size instead of on their type did not

affect the schedule at all (see Figure 31).

1-Aug-04

14-Jan-04

28-Jun-03

Simulation-based
— CPM-based10-Dec-02

1-Sep-02

13-Feb-02

Module No.

Note: The data used to obtain this graphs has been altered from the
original data used by the company for confidentiality.

Figure 31 - CPM Schedule vs. Simulation Schedule (Routing Modules Based on Size Rather than
Type)

Therefore, the choice to route depending on a certain characteristic should be made

based on what is more convenient for the company: to have all the modules that

require the same type of equipment or material in close proximity to one another or to

have modules close to one another based on their size.

7 0

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Scenario 9: A distribution range is giving to the durations: The main scenario was

run assuming fixed durations; however, in reality the durations may vary due to

unpredictable circumstances. Scenario 9 in which durations were randomly given was

tested (see Figure 32). Randomness has been created following standard input

modeling techniques provided by PCL experts, based on min, max, and most likely

values.

1-Aug-04 -

14-Jan-04

6-Oct-03

Simulation-based

CPM-based10-Dec-02

13-Feb-02

Module No.

Note: The data used to obtain this graphs has been altered from the
original data used by the company for confidentiality.

Figure 32 - CPM Schedule vs. Simulation Schedule (A Distribution Range is Given to the
Durations)

The results show schedule improvement, albeit an improvement that varies due to the

numerous duration changes, which occur as a result of the model’s randomness. The

simulation does provide a better schedule overall than the actual project schedule

used thus far.

5.4 Summary and Conclusions

The results obtained from these scenarios indicate that the appropriate combination

and determination of constraints will lead to better results in terms of schedule and

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

budget. However, not all constraints can be altered in reality. For example, the yard

layout depends on the yard size and may not be increased in a significant way due to

physical limits; in this case, however, the layout can be reduced, meaning that the rest

of the yard may be allocated for use elsewhere. An increase of the capability of

shipping more modules per day was determined to be unnecessary since shipping

only two modules per day already improved the schedule significantly. It is not

necessary to determine a different way of removing a finished module even though

the module in front in the bay is still under fabrication because it was proven that the

schedule will not be more improved than it was when constrained by this

requirement. It is recommended that modules having to wait a certain number of days

before shipping rather than being shipped right away in order to obtain the best

results, be modeled with a degree of flexibility. Finally, having a range in durations

rather than fixed durations is a more realistic scenario.

5.5 Limitations

The development of the simulation model was limited by the data provided by PCL as

well as the short-term needs that PCL prioritized for this stage of the research as the

most important outputs. Also, the modeling of different crews and their interactions

when performing the subtasks has not been evaluated due to the previously mentioned

prioritization for short-term needs. Randomness has been created from the

information provided. However, no additional information was available since this

research was performed at the same time that the modules were being fabricated for

the first time under the circumstances mentioned before regarding the logical and

physical constraints.

7 2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6. Conclusion

6.1 Summary of Research

This thesis presented a simulation-based technique to improve schedules of module

assembly yards. The technique deals with the challenge of meeting the delivery dates

set by the client and performing regular schedule updates. Developing a simulation-

based scheduling process for use in the modularization industry has much potential as

there is a substantial need to distribute modules in the yard more efficiently and

effectively. The simulation-based technique provides a convenient and easy-to-use

tool for allocating modules. The implementation of this research concept for

generating a constrained schedule for use in the modularization industry was made

possible using Simvhonv (AbouRizk and Hajjar 1998), a general purpose simulation

tool that, among other functions, provides flexibility for module allocation. The

simulation-based schedule integrates the given information into a database format,

which processed the data using Visual Basic Application in Excel and the simulation

model developed using Simvhonv.

There are a number of advantages in using the simulation-based scheduling.

Simulation-based scheduling contributes to decision-making by providing an

instrument to evaluate various scenarios of interest and provides perspective. Actual

physical and logical constraints as well as the logical and heuristic rules used by yard

superintendents were analyzed and incorporated into this approach. The scheduling

rules employed in this research create a feasible schedule. The approach begins by

identifying and prioritizing the modules to be processed. The resource availability is

checked and modules are scheduled one by one in order of priority until all the

modules are scheduled. The model allows experimentation with the rules. This

experimentation then provides scenarios out of which the best schedule is obtained

based on actual yard and resource limitations. The experimentation presented in this

thesis was done through a case study undertaken in cooperation with PCL in

Edmonton, Canada. The results obtained demonstrated significant improvements in

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the module assembly schedule when compared to traditional scheduling techniques

using CPM. It has been estimated that obtaining the schedule and performing the

allocation of modules using the simulation-based technique rather than manually

allocating modules using Primavera could save up to $12,500 per year. These savings

correspond to the employ of less effort while updating the schedule (less man-hours

spent during the update process). Cost savings due to earlier delivery times may vary

depending on the total time saved per module.

6.2 Research Contributions

The research contributions are as follow:

• Development of an integrated approach for optimizing the scheduling process

of a module yard, and

• Automation of this approach and implementation with the industry.

These contributions have been achieved by:

• Developing a simulation model for a module assembly yard.

• Integrating simulation with schedule for instant evaluation of yard utilization

and schedule updates.

• Integrating the simulation model with uncertainty in the schedule.

• Integrating the simulation with the database, as a result two new Simphonv

elements have been created and added to the simulation model to automate

this process.

• Incorporating graphics for yard layout and yard utilization.

• Automating the schedule using VBA when updating the inputs and obtaining

the results.

6.3 Recommendations for Future Research

The simulation-based technique demonstrates the feasibility of managing a module

assembly yard. Using the approach described in this thesis, future work can be

undertaken to study the effects of incorporating different calendars and shifts into

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

modules when scheduling their assembly process as well as to provide the auto-

generate layout graphical interface in AutoCAD.

The following areas are available for future research:

• Scheduling based on calendars: The changes in schedules using a different

calendar for each module, allows for various shift configurations to require

examination as this will provide better perception into the proper selection of

scheduling calendars depending on module characteristics and conditions.

• User interface enhancement: Data input, simulation running, and the auto-

generate layout graphical interface can be further enhanced to provide a more

‘user-friendly’ interface. The data input interface can be enhanced to include

database forms that display calendars in which dates ate chosen by the user by

clicking on the desired date rather than manually typing the date. The

simulation can be run using the database or the VBA instead of actually

opening Simphonv and performing the run manually. The auto-generate layout

graphical interface can be improved by using an actual AutoCAD module

yard layout.

• 3D model: The 3D model may be front-loaded with module assembly yard

information as well as information and characteristics for each module.

• 4D model: Including the element of time to the 3D model where the dates

obtained during the simulation would, therefore, add an extra dimension.

• Shipping: The model provides the manager with the necessary information to

schedule shipping dates. However, the model does not consider the delivery

method nor the delivery times from Nisku, Alberta to Fort McMurray,

Alberta. A further investigation into these issues may improve the overall

modularization process.

• Lean theory: Since a module assembly yard schedule is based on the

appropriate utilization of resources, the effect of lean theory is an available

avenue of investigation.

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• Resource utilization and leveling: Resources play an important role in a

module assembly yard. Making the model capable of performing resource

leveling can further improve the results.

• Capacity and productivity studies: A method of computing the complexities

of the work based on a set of features can be taken up; a neural network-based

approach can be utilized to obtain expected durations for each of the subtasks

that can be used for scheduling.

• Weather effects: Located in an open area in Nisku, Alberta, the module

assembly yard can face the effects of the weather to which module fabrication

is exposed. A study of the fabrication of modules under extreme weather

conditions can be carefully analyzed to improve productivity during winter.

• Genetic algorithms: The development of a module assembly yard schedule,

which includes genetic algorithms for enhancing the simulation-based

technique is another available future research.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7 6

References

AbouRizk, S. M. (1992). "A Stochastic Bidding Game for Construction

Management." In Second Canadian Conference on Computing in Civil

Engineering, CSCE, Ottawa, Ontario, 576-587.

AbouRizk, S. M. (2000). Simphony's User Guide, NSERC/Alberta Construction

Industry Research Chair, Edmonton, Canada.

Au, Y., Bostleman, R., and Parti, E. (1969). "Construction Management Game -

Deterministic Model." In ASCE Journal o f Construction Division. Vol. 95, 25-38.

Banks, J. (1998). Handbook o f simulation. John Wiley and Sons, New York, N.Y.

Borcherding, John D. (1977). "Cost Control Simulation and Decision Making." In

Journal o f the Construction Division. Vol. 103, No. 4: 577-591.

Burke, G., and Miller, R. (1998). "Modularization speeds construction." In Power

Engineering, Vol. 102. No. 1: 20-22.

Cheng, M. Y., and O’Connor, J. T. (1996). "ArcSite: Enhanced GIS for Construction

Site Layout." In Journal o f Construction Engineering and Management, Vol. 122,

No. 4: 329-336.

Chong, C. S., A. I. Sivakumar, and Gay, R. (2003). "Simulation Based Scheduling

Using a Two-Pass Approach." In Proceedings o f the 2003 Winter Simulation

Conference, S. Chick, P. J. Sanchez, D. Ferrin, and D. J. Morrice (eds.), 1433-

1439.

Hajjar, D., and AbouRizk, S. M. (1998). "A framework for applying simulation in

construction." In Canadian Journal o f Civil Engineering. 25(3): 604—617.

Hajjar, D., and AbouRizk, S. M. (1999). "Simphony. An Environment for Building

Special Purpose Construction Simulation Tools." In Proceedings o f the Winter

Simulation Conference. IEEE, Piscataway, N.J: 998-1006.

Hajjar, D., and AbouRizk, S. M. (2002). "Unified Modeling Methodology for

Construction Simulation." In Journal o f Construction Engineering and

Management, Vol. 128, No. 2: 174—185.

77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Halpin, D. W. (1973). An investigation o f the use o f simulation networks for modeling

construction operations. PhD thesis, University of Illinois, at Urbana-Champaign,

111.

Halpin, D. W., and Woodhead, R. W. (1973). Constructo - A Heuristic Game for

Construction Management, University of Illinois Press, Champaign, Illinois, pp.

195.

Hegazy, T., and Elbeltagi, E. (1999). "EVOSITE: Evolution-Based Model for Site

Layout Planning." In Journal o f Computer in Civil Engineering, Vol. 13, No. 3:

198-206.

Hegazy, T., and Elbeltagi, E. (2001). "A Hybrid AI-Based System for Site Layout

Planning in Construction." In Computer-Aided Civil and Infrastructure

Engineering, Vol. 16: 79-93.

Hegazy, T., and Ersahin, T. (2001). "Simplified Spreadsheet Solutions. I:

Subcontractor Information System." In Journal o f Construction Engineering and

Management, ASCE. Vol. 127, No. 6: 461-468.

Hegazy, T., and Ersahin, T. (2001a). "Simplified Spreadsheet Solutions. II: Overall

Schedule Optimization." In Journal o f Construction Engineering and

Management, ASCE. Vol. 127, No. 6: 469-475.

Laufer, A. (1996). Simultaneous management: managing projects in a dynamic

environment. AMA-COM, American Management Association.

Li, S. (1996). "New Approach for Optimization of Overall Construction Schedule." In

Journal o f Construction Engineering and Management, ASCE. Vol. 122, No. 1:

7-13.

Maru, A., and Kawahata, J. (2002). "Hitachi Modularization Technology." In Nuclear

Plant Journal, Vol. 20, No. 5: 39-42.

Mawdesley, M. J., Al-jibouri, S. H., and Yang, H. (2002). "Genetic Algorithms for

Construction Site Layout in Project Planning." In Journal o f Construction

Engineering and Management, Vol. 128, No. 5: 418-426.

Oglesby, C. H., Parker, H. W., and Howell, G. A. (1989). Productivity Improvement

in Construction. McGraw-Hill (Series in Engineering and Project Management),

New York, N.Y.

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Osman, H. M., Georgy, M. E., and Ibrahim, M. E. (2003). "A hybrid CAD-based

construction site layout planning system using genetic algorithms." In Automation

in Construction, Vol. 12: 749-764.

Panwalkar, S. S., and Iskander, W. (1977). "A Survey of Scheduling Rules." In

International Journal o f Operations Research, Vol. 25, No. 1: 45-61.

PCL (2003). "Pipe Fabrication and Module Construction Pamphlet." PCL Industrial

Constructors, Nisku, Alberta.

Schimmoller, B. (1998). "Power plants go modular." In Power Engineering, Vol. 102.

No. 1: 14-18.

Tam, C. M., and Leung A. W . T. (2002). "Genetic Algorithm Modeling Aided with

3D Visualization in Optimizing Construction Site Facility Layout." In

Proceedings o f the International Council fo r Research and Innovation in Building

and Construction Conference. Aarhus, Denmark: 1-9.

Teicholz, P. M. (1963). A simulation approach to the selection o f construction

equipment. PhD thesis, Stanford University, Stanford, CA.

Web 1 - Simulation in Construction Using CYCLONE and MicroCYCLONE. <

http://bridge.ecn.purdue.edu/CEM/Sim/> (June 2004).

Yeh, I.-C., (1995). "Construction-Site Layout Using Annealed Neural Network." In

Journal o f Computer in Civil Engineering, Vol. 9, No. 3: 201—208.

7 9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://bridge.ecn.purdue.edu/CEM/Sim/

Appendix 1: Simphonv’s Common Template Modifications

In Chapter 4, the creation of two new elements and the modification of three existing

elements from Simphony’s Common Template were explained. In this appendix, the

code written to create and modify those elements is listed.

Creation of the New Elements

Database Link Element:

Public Function DatabaseLink_OnCreate(ob As

CFCSimJVfodelingElementlnstance, x As Single, y As Single) As Boolean

ob.OnCreate x,y,True

DatabaseLink_OnCreate=T rue

Dim myDB As Database

Dim myRS As Recordset

Dim numAttr As Integer

Dim i As Integer

Dim j As Integer

Dim k As Integer

ob.AddAttribute "Fired","Entites CreateEntd so far",CFC_Numeric,

CFC_Single,CFC Hidden

ob.AddAttribute "Database","Database

Source",CF C_T ext,CF C_Single,CF CReadW rite

ob.AddAttribute "Tablel", "Table/Query for Product Definition",CFCT ext,

CF C_Single,CF CReadW rite

ob.AddAttribute "NumRows", "Number of Rows in the Table",CFCJSfumeric,

CFCSingle, CFC_ReadOnly

ob.AddAttribute "NumColumns","Number of Columns in the T able" ,CF CNumeric,

CFC Single, CFC ReadOnly

80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ob("Name")="Name"

ob("Database")="C:\"

ob("Tablel ")="Query"

ob.AddAttribute "CAttr", "”,CFC_Array, CFC_Table, CFC_ReadOnly

ob.AddAttribute "NumAttr", "Number of Attributes" ,CF CNumeric,

CFC_Single,CFC_Hidden

ob.AddAttribute "NumCom","Number of Components" ,CF CNumeric,

CFC_Single,CFC_Hidden

ob.SetNumCoordinates 2

ob. CoordinatesX(0)=x

ob.CoordinatesY (0)=y

ob.CoordinatesX(1)=x+90

ob.CoordinatesY (1)=y+5 0

ob.AddConnectionPoint "Out",x+l00,y+25,COutput,5

End Function

Public Sub DatabaseLink_OnSimulationInitialize(ob As

CFCSimModelingElementlnstance)

Dim numAttr As Integer

Dim i As Integer

Dimj As Integer

Dim myDB As Database

Dim myRS As Recordset

'Setup database connection

Set myDB = OpenDatabase(ob! Database)

Set myRS = myDB.OpenRecordset(ob!Table!, dbOpenDynaset)

numAttr=CInt(myRS.Fields.Count)

ob("NumAttr")=numAttr

myRS .MoveLast

ob("NumCom")=myRS.RecordCount

ob("NumColumns")=ob("NumAttr")

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ob("NumRows")=ob("NumCom")

ob("CAttr").SetRC(ob("NumCom"),ob("NumAttr"))

'Read attribute names

For i=0 To ob("NumAttr")-l

ob("CAttr").ColumnLabel(CInt(i))= CStr(myRS.Fields(CInt(i)).Name)

ob.AddAttribute "Attr" & i & "Name",CStr(myRS.Fields(CInt(i)).Name),CFC_Text,

CFC Single, CFC Hidden

Next I

'Clean the Table

With ob("CAttr")

For i=0 To ob("NumCom")-l

For j=0 To ob("NumAttr")-l

.ValueRC(i,j)=""

Next j

Next i

End With

ob.AddEvent "FireEntity"

End Sub

Public Sub DatabaseLink_OnSimulationInitializeRun(ob As

CFCSimModelingElementlnstance, RunNum As Integer)

Dim newEntity As CFCSim Entity

Dim myDB As Database

Dim myRS As Recordset

Dim i As Integer

Set myDB = OpenDatabase(ob! Database)

Set myRS = myDB.OpenRecordset(ob! Table 1, dbOpenDynaset)

myRS.MoveFirst

Set newEntity = ob.AddEntity

ob("Fired")=0

With ob("CAttr")

82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

For i=0 To ob("NumAttr")-l

If IsNull(myRS.Fields(i).Value) Or IsEmpty(myRS.Fields(i).Value) Then

. ValueRC(ob("Fired"), CInt(i))=""

Else

. ValueRC(ob("Fired"),CInt(i)):=:myRS .Fields(i). Value

newEntity("NumColumns")=ob("NumAttr")

newEntity("NumRows")=ob("NumCom")

newEntity(ob("CAttr").ColumnLabel(CInt(i)))=myRS.Fields(i).Value

Tracer.Trace " E n t i ty :& newEntity.Id & has been assigned a value of'" &

newEntity(ob("CAttr").ColumnLabel(CInt(i))) & For a t t r ib u te :&

ob("CAttr").ColumnLabel(CInt(i)) & "Simulation"

End If

Next i

End With

ob.ScheduleEvent ob.AddEntity/'FireEntity", myRS.Fields(4).Value '(4) represents

the fifth column on the database query where the EarlyStartDate is stored

ob("Fired")=0

End Sub

Public Sub DatabaseLink_OnSimulationProcessEvent(ob As

CFCSim ModelingElementlnstance, MyEvent As String, Entity As CFCSimEntity)

Dim newEntity As CFCSim Entity

Dim myDB As Database

Dim myRS As Recordset

Dim myProcess As Recordset

Dim numAttr As Integer

Dim i, j, k As Integer

i=0

j= 0

Set myDB = OpenDatabase(ob! Database)

Set myRS = myDB.OpenRecordset(ob! Table 1, dbOpenDynaset)

83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

num Attr=CInt(myRS .Fields. Count)

ob("NumAttr")=numAttr

myRS .MoveLast

ob("NumCom")=myRS .RecordCount

ob("CAttr").SetRC(ob("NumCom"),ob("NumAttr"))

Tracer.Trace "Number of attributes: " & ob("NumAttr")

Tracer.Trace "Number of components:" & ob("NumCom")

myRS.MoveFirst

'Read attribute values

If ob("Fired")> ob("NumCom")-l Then Exit Sub

ob("fired")=:ob("fired")+l

Set newEntity - ob.AddEntity

If ob("fired")>l Then

For j=2 To ob("fired") 'j=2 to start from the second entity

myRS.MoveNext

Next j

End If

With ob("CAttr")

For i=0 To ob("NumAttr")-l

'Read component attributes

If IsNull(myRS.Fields(i).Value) Or IsEmpty(myRS.Fields(i).Value) Then

.ValueRC(ob("Fired")-l,CInt(i))=""

Else

.ValueRC(ob("Fired")-l,CInt(i))=myRS.Fields(i).Value

newEntity("NumColumns")=ob("NumAttr")

newEntity("NumRows")=ob("NumCom")

newEntity(ob("CAttr"). ColumnLabel(CInt(i)))=myRS. Fields(i) .Value

Tracer.Trace "Entity:'" & newEntity. Id & '" has been assigned a value of'" &

newEntity(ob("CAttr").ColumnLabel(CInt(i))) & '" For attribute:'" &

ob("CAttr").ColumnLabel(CInt(i)) & "Simulation"

End If

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Next i

End With

ob.TransferOut newEntity

If ob("fired")<ob("NumCom") Then

myRS .MoveNext

End If

ob.ScheduleEvent Entity, "FireEntity", myRS.Fields(4).Value - SimTime '(4)

represents the fifth column on the database query where the EarlyStartDate is stored

Tracer.Trace "Entity: " & newEntity.Id & " Created","Simulation"

End Sub

Results Element: There are basically two different subroutines from the Database

Link Element: OnSimulationTransferln, and OnSimulationPostRun.

Public Sub Results_OnSimulationTransferIn(ob As

CFCSim ModelingElementlnstance, Entity As CFCSim Entity, SrcCp As

CFCSimConnectionPoint, DstCp As CFCSimConnectionPoint)

Dim numAttr As Integer

Dim i As Integer

Dim j As Integer

numAttr=ob.CurrentEntity.Attr("NumColumns")

ob("NumColumns")=numAttr

ob("NumRows ")=ob. CurrentEntity. Attx("NumRows")

With ob("CAttr")

For i=0 To ob("NumRows")-i

If .ValueRC(i,0)="" Then

For j=0 To ob("NumColumns")-l

If IsNull(ob.CurrentEntity.Attr(ob("CAttr").ColumnLabel(CInt(j)))) Or

IsEmpty(ob.CurrentEntity.Attr(ob("CAttr").ColumnLabel(CInt(j)))) Then

.ValueRC(i,j)="0"

Else

85

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

.ValueRC(ij)=ob.CurrentEntity.Attr(ob("CAttr").ColumnLabel(CInt(j)))

End If

Next j

Exit Sub

End If

Next i

End With

End Sub

Public Sub Results_OnSimulationPostRun(ob As

CFC SimModelingElementlnstance, RunNum As Integer)

Dim numAttr As Integer

Dim i As Integer

Dim j As Integer

Dim sql As String

Dim myDB As Database

Dim myRS As Recordset

'Setup database connection

Set myDB = OpenDatabase(ob!Database)

'Clean the Results Table

If RunNum=T Then

sql="Delete * From " & CStr(ob! Table 1 _Results)

myDB.Execute sql

End If

Set myRS = myDB. OpenRecordset(ob!Table 1 Results, dbOpenDynaset,

dbAppendOnly)

numAttr=ob.CurrentEntity.Attr("NumColumns")

ob("NumColumns")=numAttr

ob("NumRows")=ob.CurrentEntity.Attr("NumRows")

With ob("CAttr")

For i=0 To ob("NumRows")-1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

myRS.AddNew

For j=0 To ob("NumColuxrms")-1

myRS(CStr(ob("CAttr").ColumnLabel(CInt(j))))= ob("CAttr").ValueRC(ij)

Next j

myRS .Update

Nexti

End With

End Sub

Simvhonv Common Template Modifications

Three of the elements found in the existing common template were modified to suit

the special requirements of this simulation. The modifications to those elements are

written in bold font in the following Simvhonv code.

Declare Resources Element:

Public Function Resource_OnCreate(ob As CFCSim ModelingElementlnstance, x

As Single, y As Single) As Boolean

Resource_OnCreate=T rue

ob.OnCreate x,y,True

ob.AddAttribute "ResName","Resource Description",CFC_Text,

CFC_Single,CFC_ReadWrite

ob.AddAttribute "Total","Total Number of Resources" ,CF C_Numeric,CFC_Single,

CFC_ReadWrite,0,1000000

ob.AddAttribute "Current", "Current Number of Available Resources",CFC_Numeric,

CFC Single, CFC ReadOnly

'This attribute will keep track of the finishing date of the module in the back of the

bay

ob.AddAttribute "EndBackModule","End of Module in the Back of the

Bay",CFC_Numeric, CFC_Single,CFC_ReadOnly

87

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

'This attribute will keep track of the finishing date of the module to be built

ob.AddAttribute "FinishCurrentModule'7'End of Module to be

built",CF CNumeric, CF C_S ingle, CF CReadOnly

ob.AddAttribute "ModuleCounter","Number of Modules in the Bay",CFC_Numeric,

CFC_Single,CFC Readonly

ob.AddAttribute "SpacelnFront","Space in front for more Modules",CFCNumeric,

CFC_Single,CFC_ReadOnly

ob("ResName")= "Res"

ob("Total")=l

ob("Current")=l

ob.AddStatistic "Utilization","Resource Utilization",True,False

End Function

Public Sub Resource_OnSimulationInitializeRun(ob As

CFCSim ModelingElementlnstance, RunNum As Integer)

ob("Current")=ob("total")

ob(" EndBackModule ")=1000

ob("FinishCurrentModule")=1000

ob("ModuleCounter")=0

ob("SpaceInFront")=l

If ob!Total<>0 Then ob.stat("Utilization").Collect 100 * (1-

(ob("Current")/ob("Total")))

End Sub

Waiting File Element:

Public Sub WaitingJFfle_OnSimulationProcessEvent(ob As

CFCSim ModelingElementlnstance, MyEvent As String, Entity As CFCSim Entity

Select Case MyEvent

' TO DO:

88

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

' To optimize the processing time, a check of all the entities in the file should NOT be

done

' unless a change in the number of available resource in any of the declared resources

has happened

' if the check is triggered by an entity added to the file, it should only check the

availability of resources

' for that entity

Case "Check"

Dim SrvEnt As CFCSim Entity

Dim RqstElmnt As CFCSim_ModelingElementInstance

Dim Rqst As CFCSim ModelingElementlnstance

Dim ResElmnt As CFCSim ModelingElementlnstance

Dim ResAvailable As Boolean

'To request resources if the module will finish on time

'Dim RqstEnd As CFCSimModelingElementlnstance

ob.DeleteEntity Entity

Tracer.Trace "*******File Check Started *******","res","File"

With ob.File("WaitingJFile")

If .Length= 0 Then Exit Sub

.MoveFirst

'*** Check the waiting entities one by one

While (.EOF^False And .Length>0)

ResAvailable=T rue

Set SrvEnt=.entity

Set RqstElmnt = SrvEnt("CEM_Common_RqstElmnt")

Tracer.Trace "File Length-' & .Length & " and EQF= "& .EOF & " and Current Ent

is # " & SrvEnt.Id,"res","File"

'*** If the request element from where the entity came is satisfied

' for all the single requests inside it Then

'*** grant the request for that element

89

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Select Case RqstElmntf'RqstType")

Case "ALL" '*** All resources are required

'*** First check if all the resources are available

For Each Rqst In RqstElmnt. ChildElements

'The following line is tTo allow linking the required number of resources

' to entity attributes

'Rqst.OnSimulationTransferln SrvEnt,Nothing,Nothing

If Rqst("ResName")o"**Linked to Entity Attribute**" Then '*** Case not linked

Set ResElmnt=Rqst("ResOb").Reference

Else ***** Case linked

For Each ResElmnt In Elements

'ob.Parent.ChildElements

If ResElmnt.ElementType="Resource" Then

If ResElmnt("ResName")-SrvEnt(Rqst("EntAttr")) Then Exit

For

End If

Next

End If

If ResElmnt("Current")<Rqst("NumRes") Then

Res Available=F alse

Exit For

End If

Next

If ResAvailable Then

'*** If all are available then decrease each's availabe number by the requested number

For Each Rqst In RqstElmnt. ChildElements

'The following line is tTo allow linking the required number of resources

' to entity attributes

'Rqst.OnSimulationTransferIn SrvEnt,Nothing,Nothing

If Rqst("ResName")<>"**Linked to Entity Attribute**" Then '*** Case not linked

Set ResElmnt=Rqst("ResOb").Reference

90

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Else '**** caise linked

For Each ResElmnt In Elements 'ob.Parent.ChildElements

If ResElmnt.ElementType="Resource" Then

If ResElmnt("ResName")=SrvEnt(Rqst("EntAttr")) Then Exit For

End If

Next

End If

ResElmnt("Current")=ResElmnt("Current")-Rqst("NumRes")

If ResElmnt("Total")oO Then

ResElmnt.stat("Utilization").Collect 100 * (1-

(ResElmnt("Cnrrent")/ResElmnt("Total")))

Next

'*** Then remove the entity from the file and schedule a Granted Request event in its

original capture element

.Remove SrvEnt

RqstElmnt.ScheduleEvent SrvEnt,"RqstGmtd",0

Tracer.Trace " » » » > R q s t . of ALL res. GRANTED for Entity #"&

SrvEnt.Id,"res”,"File","Granted"

'*** If no resources are available for this entity move to the next one

Else

Tracer.Trace "Reqst ALL denied and moving to the next ent","res","File","Denied"

.MoveNext

End If

Case "ANY" '*** Any of the requesed resources is enough

'*** First check if any of the resources is available

For Each Rqst In RqstElmnt. ChildElements

If Rqst("ResName")o"**Linked to Entity Attribute**" Then '*** Case not linked

Set ResElmnt=Rqst("ResOb").Reference

Else '**** Case linked

91

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

For Each ResElmnt In Elements

'ob.Parent. ChildElements

If ResEhnnt.ElementType-’Resource" Then

If ResElmnt("ResName")-SrvEnt(Rqst("EntAttr"))

Then Exit For

End If

Next

End If

'Quick fix for resource request problem

'to enable requesting # of resources based on entity attribute (formula)

Dim numRes As Integer

If SrvEnt("Auxiliary")<l Then

If Rqst.Attr("NumRes").Calculation=CFC_Formula Then

If Not IsNumeric(Rqst("NumRes")) Then

numRes=SrvEnt(Rqst("NumRes"»

Else

numRes=SrvEnt("UnitsRequested")

End If

Else

numRes=Rqst("NumRes")

End If

Else

If SrvEnt("Auxiliary")=l Then "' to capture space and resources for shipping

If Not IsNumeric(Rqst("NumRes")) Then

numRes=SrvEnt(Rqst("NumRes"))

Else

numRes=Rqst("NumRes")

End If

End If

If SrvEnt("AuxiIary")=3 Then "' to capture Manhours Struct

92

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

If Rqst.Attr("NumRes',).Calculation=CFC_Formula Then

If Not IsNumeric(Rqst(?’NumRes")) Then

numRes=SrvEnt(Rqst("Manhours_Struct"))

Else

numRes=Rqst("NumRes")

End If

End If

End If

If SrvEnt(”Auxiliary?,)=4 Then to capture ManhoursPiping

If Rqst. Attr("NumRes ").C alculation=CFC_F ormula Then

If Not IsNumeric(Rqst("NumRes")) Then

numRes=SrvEnt(Rqst("Manhours_Piping"))

Else

numRes=Rqst("NumRes")

End If

End If

End If

If SrvEnt("AuxiliaryH)=5 Then to capture Manhours_Cable_Tray

If Rqst.Attr("NumRes").Calculation=CFC_Formula Then

If Not IsNumeric(Rqst(" NumRes ")) Then

numRes=SrvEnt(Rqst("Manhours_Cable_Tray"»

Else

numRes=Rqst(MNumRes")

End If

End If

End If

If SrvEnt("Auxiliary")=6 Then to capture Manhours EHT

If Rqst.Attr("NumRes").Calculation=CFC_Forniula Then

If Not IsNumeric(Rqst("NumRes’’)) Then

numRes=SrvEnt(Rqst("Manhours_EHT "))

Else

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

numRes=Rqst("NumRes")

End If

End If

End If

If SrvEnt("Auxiliary")=7 Then to capture Manhourslnsulation

If Rqst.Attr(”NumRes").Calculation=CFC_Formula Then

If Not IsNumeric(Rqst(”NuinRes")) Then

numRes=SrvEnt(Rqst("Manhours_Insulation”))

Else

numRes=Rqst(,,NumRes ")

End If

End If

End If

If SrvEnt("Auxiliary”)=8 Then to capture Manhours_Fireproof

If Rqst.Attr("NumRes”).Calculation=CFC_Formula Then

If Not IsNumeric(Rqst(,,NumRes")) Then

numRes=SrvEnt(Rqst(" M anhoursFireproof'))

Else

numRes=Rqst("NumRes")

End If

End If

End If

'Then change ["Rqst("NumRes")] in the statements marked with » to

[numRes]
?---

f

If ResElnmt(" Current”)>=numRes Then

If SrvEnt("Auxiliary")= 0 Then

If (ResElmnt("EndBackModule")+SrvEnt(“WaitingDays))>=

(SrvEnt("Duration_Override_Struct")+

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

SrvEnt("Duration_Override_Piping")+

SrvEnt(,'Duration_Override_Cable_Tray")+

SrvEnt("Duration_Override_EHT")+

SrvEnt("Duration_Override_Insulation’')+

SrvEnt("Duration_Override_Fireproo)+SimTime) Then

If (ResElmnt("FinishCurrentModule")+

SrvEnt(“W aitingDays))>=

(SrvEnt(M Duration_Override_Struct")+

SrvEnt("Duration_Override_Piping'’)+

SrvEnt("Duration_Override_Cable_Tray")+

SrvEnt("Duration_Override_EHT")+

SrvEnt("Duration_Override_Insulation ")+

SrvEnt("Duration_Override_Fireproof')+SimTime) Then

ResAvailable=True

***** Record the requested resource for automatic release

Set SrvEnt("CEM_Common_RqstdRes")=ResElmnt

SrvEnt("CEM_Common_NumRqstdRes”)=numRes

ResElnrnt("Current,,)=ResElmnt("Current")-numRes

SrvEnt(" Assembly ")=numRes

SrvEnt("Space")=ResElmnt("Current")

SrvEnt(,'Total")=SrvEnt(”Assembly")+SrvEnt("Space")

SrvEnt(" Bay ")=ResElmnt(" ResN ame ")

If ResElmnt(,,EndBackModuIe")=1000 Then

ResEhnnt(’'EndBackModule")=(SrvEnt(,’Duration_OYerride_Struct,,)+

SrvEnt("Duration_Override_Piping")+

SrvEnt("Duratlon_Override_CaMe_Tray")+

SrvEnt(HDuratton_Override_EHT")+SrvEnt("Duration_Override_Insiilation")

+SrvEnt("Duration_Override_FireprooP')+SimTime)

ResElnmt("ModuleConnter"):=0

End If

95

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ResEhnnt("ModuIeCounter")=ResElmnt("ModuleCounter")+l

SrvEnt("No_of_Modulesbehind")==ResElmnt("ModuleCounter")-l

If CInt(ResElmnt(" Current"))>0 Then

SrvEnt(" Space_in_front")=" Y es"

Else

If CInt(ResElmnt(" Current"))=0 Then

SrvEnt(" Space_in_front")="No"

End If

End If

If

ResElmnt("FinishCurrentModule")>(SrvEnt("Duration_Override_Struct")+

SrvEnt("Duration_Override_Piping")+

SrvEnt(" DurationOverrideC able__T ray")+

SrvEnt(" DurationOverrideEHT ")+

SrvEnt("Duration_Override_Insulation")+

SrvEnt("Duration_Override_Fireproof')+SimTime) Then

ResEImnt("FinishCurrentModule")=(SrvEnt("Duration_Override_Struct")+

SrvEnt("Duration_Override_Piping")+

SrvEnt("Duration_Override_Cable_Tray")+

SrvEnt("Duration_Override_EHT")+

SrvEnt(" Duration_Override_Insulation ")+

SrvEnt("Duration_Override_FireprooP')+SimTime)

End If

If ResElmnt("Total")oO Then ResElmnt.stat("Utilization").Collect 100 * (1-

(ResElmnt("Current")/ResElmnt("Total")))

'*** Then remove the entity from the file and schedule a Granted Request event in its

original capture element

.Remove SrvEnt

RqstElmnt.ScheduleEvent SrvEnt,"RqstGmtd",0

Tracer.Trace " » » » > R q s t . for ONE of the res. is GRANTED for Entity #"&

SrvEntJd,"res","File","Granted"

96

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Exit For

Else

Res Available=F alse

End If

Else

Res Available=F alse

End If

Else

If SrvEnt("Auxiliary")= 1 Or SrvEnt("Auxiliary")> 2 Then to grant

resources in other captures besides capturing assembly space

Res Available=T rue

'**** Record the requested resource for automatic release

Set SrvEnt("CEM_Common_RqstdRes")=ResElmnt

SrvEnt(" CEM_Common_NumRqstdRes ")=numRes

ResElmnt("Current")=ResElmnt("Current")~numRes

If ResElmnt("Total")oO Then ResElmnt.stat("Utilization").Collect 100 * (1-

(ResElmnt("Current")/ResElmnt("Total")))

'*** Then remove the entity from the file and schedule a Granted Request event in its

original capture element

.Remove SrvEnt

RqstElmnt. ScheduleEvent SrvEnt, "RqstGmtd",0

Tracer.Trace " » » » > R q s t . for ONE of the res. is GRANTED for Entity #"&

SrvEnt.Id, "res","File","Granted"

Exit For

Else

Res Available=F alse

End If

End If

Else

If SrvEnt("Auxiliary")=2 Then to capture assembly space for modules that

have already started their fabrication process
97

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

If Rqst.Attr("NumRes,').CalcuIation=CFC_FormuIa Then

If Not IsNumeric(Rqst(?!NumRes")) Then

numRes=SrvEnt(Rqst("NumRes"))

Else

numRes=SrvEnt("UnitsRequested")

End If

Else

numRes=Rqst("NumRes")

End If

Res Available=T rue

***** Record the requested resource for automatic release

Set SrvEnt(" CEMCommonRqstdRes")=ResElmnt

SrvEnt(" CEM_Common_NumRqstdRes")=numRes

ResElmnt("Current")=ResElmnt("Current")-numRes

SrvEnt("Assembly")=numRes

SrvEnt("Space")=ResElmnt("Current")

SrvEnt("Total")=SrvEnt(,,AssemblyM)+SrvEnt("Space")

SrvEnt(',Bay,’)=ResElmnt(,'ResName")

If SrvEnt("Task")=l Then

ResElmnt("EndBackModule")=(SrvEnt("NoOfDaysSinceStart',)-

SrvEnt("NoOfDaysAlreadyOnTask")+SrvEnt("Duration_Override_Struct")+S

rvEnt("Duration_Override_Piping")+SrvEnt("Duration_Override_Cable_Tray

")+SrvEnt(,,Duration_Override_EHT,,)+SrvEnt(”Duration_Override_Insulatio

u")+SrvEnt("Duration_Override_FireprooF')+SimTime)

ResElnmt("FlnishCurrentModule,,)=(SrvEnt("NoOfDaysSliiceStart”)-

SrvEnt("NoOfDaysAlreadyOnTaskf')+SrvEnt('’Duration_Override_Struct,?)+S

rvEnt("Duration_Override_Piping")+SrvEnt("Duration_Override_Cable_Tray

")+SrvEnt("Duration_Override_EHT")+SrvEnt(uDuration_Override_Insulatio

n ")+SrvEnt(” Duration_Override_Fireproof’)+SimT ime)

End If

98

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

IfSrvEnt("Task”)=2 Then

ResElnmt(”EndBackModule”)=(SrvEnt("NoOfDaysSinceStart")-

SrvEnt("NoOfDaysAlreadyOnTask")+SrvEnt("Duration_Override_Piping”)+S

rvEnt("Duration_Override_Cable_Tray")+SrvEnt("Duration_Override_EHT")

+SrvEnt(" DurationOverridelnsulation ")+SrvEnt(" DurationOverrideFirep

roof")+SimTime)

ResElmnt(,!FinIshCiirreiitModule,,)=(SrvEnt("NoOfDaysSliiceStartn)-

SrvEnt("NoOfDaysAlreadyOnTask")+SrvEnt("Duration_OveiTide_Piping”)+S

rvEnt("Duratioii_Override_Cable_Tray!,)+SrvEiit("Duratioii_Override_EHTn)

+SrvEnt(,'Duration_Override_Insulation")+SrvEnt(,'Duration_Override_Firep

roof’)+SimTime)

End If

If SrvEnt(”Task")=3 Then

ResElmnt(”EndBackModule")=(SrvEnt("NoOfDaysSinceStart")~

SrvEnt(,'NoOfDaysAIreadyOnTaskn)+SrvEnt(nDuration_OverrIde_Cable_Tra

y”)+SrvEnt("Duration_Override_EHT")+SrvEnt(”Duration_Override_Insulati

on")+SrvEnt("Duration_Override_Fireproof')+SimTime)

ResEknnt(”FinishCurrentModule")=(SrvEnt(”NoOfDaysSinceStart")-

SrvEnt("N oOfDaysAlreadyOnT ask”)+SrvEnt("Duration_Override_C able_T ra

y")+SrvEnt("Duration_Override_EHT")+SrvEnt(”Duration_Override_Insulati

on ")+SrvEnt(” Dur ation_0 verride_Fireproof')+SimTime)

End If

If SrvEnt(”Task”)=4 Then

ResElmnt("EndBackModnle”)=(SrvEnt("NoOfDaysSinceStart”)-

SrvEnt("NoOfDaysAlreadyOnTask")+SrvEnt("Duration_Override_EHT")+Sr

vEnt(”Duration_Override_Insulatlon")+SrvEnt(”Duration_Override_Fireproof

”)+SimTime)

ResElmnt("FinishCurrentModule")=(SrvEnt("NoOfDaysSinceStart")-

SrvEnt("NoOfDaysAlreadyOnTask")+SrvEnt("Duration_Override_EHT")+Sr

vEnt(”Duration_Override_Insulation")+SrvEnt(”Duration_Override_Fireproof

”)+SimTime)

99

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

End If

If SrvEnt("Task")=5 Then

ResElmnt("EndBackModule")=(SrvEnt("NoOfDaysSinceStart")-

SrvEnt("NoOfDaysAlreadyOnTask")+SrvEnt("Duration_Override_Insulation"

)+SrvEnt("Duration_Override_Fireproof')+SimTime)

ResElnmt("FinishCurrentModule")=(SrvEnt("NoOfDaysSineeStart")-

SrvEnt("NoOfDaysAlreadyOnTask")+SrvEnt("Duration_Override_Insulation"

)+SrvEnt("Duration_Override_Fireproof")+SimTime)

End If

If SrvEnt("Task")=6 Then

ResElmnt("EndBackModule")=(SrvEnt("NoOfDaysSinceStart")-

SrvEnt(nNoOfDaysAlreadyOnTask")+SrvEnt(nDuration_Override_Fireproof")

+SimTime)

ResElmnt("FinishCurrentModule")=(SrvEnt("NoOfDaysSinceStart")-

SrvEnt("NoOfDaysAlreadyOnTask")+SrvEnt("Duration_Override_Fireproof")

+SimTime)

End If

If ResElmnt(" Total")<>0 Then

ResElmnt.stat("Utilization").Collect 100 * (1-

(ResElnmt("Current")/ResEhnnt("Total")))

'*** Then remove the entity from the file and schedule a Granted Request event

in its original capture element

.Remove SrvEnt

RqstEImntScheduleEvent SrvEnt,"RqstG rutd”,0

Tracer.Trace ,l» » » > R q s t . for ONE of the res. is GRANTED for Entity #"&

SrvEntJd,"res","File","G ranted"

Exit For

Else

ResAvailable=F alse

End If

End If

100

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

End If

Else

Res Available=F alse

End If

Next

If Not ResAvailable Then

Tracer.Trace "Reqst ANY denied and moving to the next ent","res","File","Denied"

.MoveNext

End If

End Select

Wend

End With

Tracer.Trace "AAAAAAA File Check Ended AAAAAAA","reS","File"

End Select

End Sub

Release Resources Element:

Public Sub Release_OnSimulationProcessEvent(ob As

CFCSimModelingElementlnstance, MyEvent As String, Entity As CFCSim Entity)

Dim RelRes As CFCSim ModelingElementlnstance

Dim ResElmnt As CFCSim_ModelingElementInstance

Dim File As CFCSim ModelingElementlnstance

Dim ResID

Select Case MyEvent

Case "AutoRelease"

If Entity("CEM_Common_RqstElmnt")("RqstType")="ALL" Then

For Each RelRes In Entity("CEM_Common_RqstElmnt").ChildElements

If RelRes("ResName")o"**Linked to Entity Attribute**" Then '*** Case not

linked

101

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Set ResElmnt=RelRes("ResOb").Reference

Else <**** Case linked

For Each ResElmnt In Elements 'ob.Parent.ChildElements

If ResElmntElementType-'Resource" Then

If ResElmnt("ResName")=Entity(RelRes("EntAttr")) Then Exit For

End If

Next

End If

ResElmnt("Current")=ResElmnt("Current")+RelRes("NumRes")

'If the bay is empty again, the finishing date available should be large again

If ob.CurrentEntity("Auxiliary")=9 Then

If ResElmnt("Current")=ResElmnt("Total") Then

ResEImnt("EndBackModule")=1000

ResElmnt("FinishCurrentModule")=1000

ResElmnt("ModuleCounter")=0

End If

End If

If ResElmnt("Total")<>0 Then ResElmnt.stat("Utilization").Collect 100 * (1-

(ResElmnt("Current")/ResElmnt("Total")))

Next

Else

Entity("CEM_Common_RqstdRes")("Current")=Entity("CEM_Common_RqstdRes")

("Current")+Entity("CEM_Common_NumRqstdRes")

'If the bay is empty again, the finishing date available should be large again

If ob.CurrentEntity(”Auxiliary”)=9 Then

If Entity("CEM_Common_RqstdRes")("Current") =

Entity("CEM_Common_RqstdRes'')("Total") Then

Entity("CEM_Common_RqstdRes")("EndBackModule,')=1000

Entity("CEM_Common_RqstdRes")("FinishCurrentModule")=1000

Entity("CEM_Common_RqstdRes'')("ModuleCounter")=0

102

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

End If

End If

Entity("CEM_Common_RqstdRes").stat("Utilization").Collect 100 * (1-

(Entity("CEM_Common_RqstdRes")("Current")/Entity("CEM_Common_RqstdRes")

("Total")))

End If

Case "Release"

***** Increase the number of resources by the number defined in each single-Res-

Release

For Each RelRes In ob.ChildElements

'Make the current entity of the single releases same as parent

'RelRes.OnSimulationTransferln Entity,Nothing,Nothing

If RelRes("ResName")o"**Linked to Entity Attribute**" Then '*** Case not

linked

Set ResElmnt-RelRes("ResOb").Reference

Else ***** Case linked

For Each ResElmnt In Elements 'ob.Parent.ChildElements

If ResElmnt.ElementType="Resource" Then

If ResElmnt("ResName")=Entity(RelRes("EntAttr")) Then Exit For

End If

Next

End If

ResElmnt("Current")=ResElmnt("Current")+RelRes("NumRes")

'If the bay is empty again, the finishing date available should be large again

If ob.CurrentEntity("AuxiIiary")=9 Then

If ResElmnt("Current")=ResElmnt("Total") Then

ResElnmt("EndBackModule")=1000

ResElmnt("FinishCurrentModule")=1000

ResElmnt("ModuleCounter")=0

End If

End If

103

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

If ResElmnt("Total")<>0 Then ResElmnt.stat("Utilization").Collect 100 * (1-

(ResElnmt("Current")/ResElmnt("Total")))

Next

End Select

'**** Schedule a check event for all the files in the model

For Each File In Elements 'ob.Parent.ChildElements

If File.ElementType = "WaitingFile" Then

File.ScheduleEvent ob. AddEntity, "Check" ,0

End If

Next

Tracer.Trace "Entity "& Entity.Id &"Released the resources","res","Release"

ob.TransferOut Entity

End Sub

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1 0 4

