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Abstract

Spacetime—the union of space and time—is both the actor and the stage during physical

processes in our fascinating Universe. In Lorentz invariant local theories, the existence of a

maximum signalling speed (the “speed of light”) determines a notion of causality in spacetime,

distinguishing the past from the future, and the cause from the effect.

This thesis is dedicated to the study of deviations from locality. Focussing on a particular

class of non-local theories that is both Lorentz invariant and free of ghosts, we aim to under-

stand the effects of such non-local physics in both gravity and quantum theory. Non-local

ghost-free theories are accompanied by a parameter ℓ of dimension length that parametrizes

the scale of non-locality, and for that reason we strive to express all effects of non-locality

in terms of this symbol. In the limiting case of ℓ = 0 one recovers the local theory, and the

effects of non-locality vanish.

In order to address these questions we develop the notion of non-local Green functions, study

their causal properties, and demonstrate that non-locality leads to a violation of causality

on small scales but may be recovered at macroscopic distances much larger than the scale of

non-locality. In particular, we utilize non-local Green functions to construct the stationary

gravitational field of point particles and extended bodies in the weak-field limit of non-local

gravity and demonstrate explicitly that non-locality regularizes gravitational singularities at

the linear level. Boosting these solutions to the speed of light in a suitable limit, we obtain

a class of geometries corresponding to non-local regular ultrarelativistic objects.
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In the context of quantum mechanics we demonstrate that non-locality affects the scattering

coefficients of a scalar field in the presence of a δ-shaped potential: for a critical frequency,

the potential becomes completely opaque and reflects 100% of the incoming wave of that

frequency. In the realm of non-local quantum field theory we first illustrate that non-locality

smoothes the vacuum polarization and thermal fluctuations in the vicinity of a δ-shaped

potential and then prove the fluctuation-dissipation theorem in this particular case.

Turning towards quantum field theory in curved spacetime, we construct a non-local ghost-

free generalization of the Polyakov effective action and evaluate the resulting quantum average

of the energy-momentum tensor in the background of a two-dimensional black hole. While

non-locality does not affect the asymptotic flux of Hawking radiation in this model, the

entropy of the black hole is sensitive to the presence of non-locality.

The results presented in this thesis establish several effects of a Lorentz invariant, ghost-free

non-locality in the areas of both gravitational and quantum physics.
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Chapter 1

Introduction

If there is any principle that has guided humanity on its journey to understand the Universe,

it is probably that of cause and effect. The question of why permeates the sciences like ripples

spread in a pond or gravitational waves emanate space and time itself.

In physics, the principle of cause and effect is called causality, and theories that incorporate

this principle are called causal. Causality can be seen as a physical requirement imposed on

theories, and hence—as the cause precedes the effect—causality is deeply interwoven with

our definition of the direction of time, and our understanding of the phrases “before” and

“after.”

A related notion is that of locality. Unlike causality, locality may be viewed as a technical

requirement to be imposed on a theory. An example of a local theory is wave mechanics: the

propagation of a wave in a medium, from the ripples in a pond to gravitational waves in our

Universe, depends solely on the local properties of that medium. In non-local theories this

may not be the case.

Einstein’s principle of relativity [12,13] provides a quantitative tool for relating the concepts

of causality and locality. If events are spacelike separated in spacetime, there cannot be any

causal interaction between them. If they are null or timelike separated, however, then a

causal interaction may take place. While it is possible to extend the principle of relativity

to incorporate gravity [14–18] with great experimental success [19], quantum field theories

in accordance with the principle of relativity have also been remarkably successful [20–24].

It is highly desirable to construct a theory of quantum gravity that unites these theories in

a suitable way [25], wherein it is conceivable that the notions of causality and locality are

drastically different and only attain their experimentally established roles when either gravity
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or quantum physics can be neglected.

Hence, in this thesis we will study the effects of non-locality in both gravity and quantum

theory.

1.1 Why non-locality?

Besides being of general interest for quantum theories of gravity—as argued above—non-

locality also offers interesting avenues for solutions of various long-standing problems in

theoretical physics. Here we would like to address a few of them.

1.1.1 Regularization and singularity resolution

Consider the Poisson equation of Newtonian gravity for a point particle,

△ϕ(r) = 4πGmδ(r) ⇒ ϕ(r) =
−Gm
r

. (1.1)

The resulting gravitational potential is singular at r = 0, leading to an infinite gravitational

force. It is possible to regularize the potential by introducing a heavy mass scale M via

△
(︃

1 − △
M2

)︃
ϕreg(r) = 4πGmδ(r) ⇒ ϕreg(r) =

−Gm
r

(︁
1 − e−Mr

)︁
. (1.2)

The resulting gravitational field ϕreg(r) is finite at r = 0, and if Mr ≫ 1 one recovers the

Newtonian result ϕ(r). In the limiting case of M → ∞ the modification disappears and

and we recover the original Newtonian theory. In this particular example one may show

that ϕ′
reg(0) ̸= 0, which is somewhat unphysical, but this can be ameliorated by introducing

additional mass scales Mi with i = 1, . . . , N . The Green functions of such theories have the

following property:

G(x′, x) ∼ 1

△
N∏︁
i=1

(︂
1 − △

M2
i

)︂ =
1

△
+

N∑︂
i=1

ci
△−M2

i

, 1 +
N∑︂
i=1

ci = 0 . (1.3)

It is important to note that the latter property implies that at least one ci is negative. At

the quantum level such a negative sign can lead to problems, and propagators that appear

with the wrong overall sign are commonly referred to as “ghosts.”

This is where the idea of non-locality comes in: if one considers a modification that involves
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an infinite amount of derivatives one also obtains a regularized potential:

△e−△/M2

ϕGF(r) = 4πGmδ(r) ⇒ ϕGF(r) =
−Gm
r

erf

(︃
Mr

2

)︃
. (1.4)

This potential is finite at r = 0, and for Mr ≫ 1 one again recovers ϕ(r). The notable

difference to the previous case lies in the fact that the propagator of such a theory is ghost-

free at tree level. Classically, this statement is related to the fact that e−△/M2
is never zero

and hence its inverse is a regular function without any poles. Because this modification

involves infinitely many derivatives the theory becomes non-local on a scale ℓ ∼ M−1. To

see why an infinite amount of derivatives corresponds to non-locality recall that the first and

second derivative of a discrete function fi on a lattice with spacing a at a lattice site n are

given by

df

dx

⃓⃓⃓⃓
i=n

≡ fn+1 − fn
a

,
d2f

dx2

⃓⃓⃓⃓
i=n

≡ d

dx

df

dx
=
fn+2 − 2fn+1 + fn

a2
. (1.5)

That is, a derivative of higher order requires information on the function in a larger do-

main. While this provides a somewhat intuitive argument for non-locality we shall make the

statement more precise in the following sections.

It is well known that gravitational singularities plague Einstein’s theory of gravity as they are

prominently featured in the interior of many exact black hole solutions, in cosmological sce-

narios, and under fairly general assumptions [15,26–29]. While it is commonly believed that a

consistent theory of quantum gravity should resolve these singularities [25], perhaps it is also

possible to construct a non-local ghost-free gravitational theory that admits singularity-free

gravitational fields for black holes at the non-linear level.

1.1.2 Black hole information loss problem

Next to their singularities, black holes remain somewhat enigmatic when considering their

interaction with quantum fields. An initially pure quantum state, after the black hole has

fully evaporated, has been argued to evolve into a mixed state. This process would then

violate unitarity and has hence been dubbed the black hole information loss paradox [30–33].

It has recently been pointed out that non-local interactions might play a role in a possible

resolution of the paradox [34, 35], with concrete proposals involving non-local information

transfer [36], for example involving non-local qubits [37]. While we will not address the black

hole information loss paradox any further in this thesis it nevertheless provides yet another

reason to study concrete models involving non-local physics.
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1.1.3 Non-locality in quantum effective actions

Last, we would like to point out that non-locality is not an entirely new ingredient for quan-

tum field theory and has been studied for a long time in the context of effective actions.

The effective action, if evaluated to a certain level of approximation, gives rise to field equa-

tions that already include the quantum corrections up to that order, and these effective field

equations can be viewed as field equations for the quantum average.

Typical expressions appearing in an effective action of a second-order theory include formal

expressions like log(□), which are non-local objects since they are defined via a power series;

for more information see also Barvinsky et al. [38].

1.2 Historical aspects

At this point we would like to give some historical context to the developments of non-local

physics in the context of high energy physics, since many of the key concepts presented in

this thesis have been known for more than 70 years.

We find the first mention of exponential form factors in the work of Wataghin [39] in 1934,

who introduces a factor exp[−(−ω2 + p⃗ 2)/Π2] in a differential cross section and stipulates a

value of Π ≈ 108eV =̂ 10−15m in order to solve “divergence difficulties” in Lorentz invariant

quantum theory, even though the phrase “non-locality” is not used in this work.

Thirteen years later, Yukawa [40–45], in a series of six papers from 1947–1950, introduces the

notion of non-localizable fields that are not mere functions of space and time, but depend

on other coordinates as well. These coordinates are introduced by a modification of the

canonical commutation relations and may be interpreted as giving elementary particles of

zero radius a finite radius instead.

In their seminal work around the same time, Pauli and Villars [46], striving for regularization

methods in the emerging field of quantum field theory, consider higher-order differential

equations that offer an improved short-distance behavior, albeit at the cost of introducing new

propagating degrees of freedom. In what is perhaps the most complete study of regularization

methods up to this date, Pais and Uhlenbeck [47] offer a concise treatment of both higher-

order Pauli–Vilars-type regularization methods as well as exponential form factors, identical

to those treated in this thesis. In fact, many key results on non-local Green functions were

already derived in Ref. [47] and have hence been “rediscovered” by many authors, including

the present one.
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Around the same time from 1950–1952, Bloch, Kristensen, and Møller [48–50] focused con-

siderable efforts on regularizing meson theory, that is, the interaction of spinors with massive

scalar fields. Since the electroweak interaction would not be hypothesized for another ten

years, around this time non-renormalizable interactions such as the the four-fermion con-

tact interaction had to be regularized somehow, and mesons, as hypothesized intermediate

particles, were a promising candidate. There was some intermediate success, expressing the

coupled spinor-scalar field equations as integro-differential equations, but there remained a

point of controversy around conserved energy integrals. This point was addressed by Pauli

in 1953 [51], who proved that there is a well-defined Hamiltonian structure in non-local field

theories, but could only construct it explicitly within first order perturbation theory.

Fourteen years later, Efimov’s work [52–57] shed additional light on non-local quantum field

theory: the role of non-local form factors as UV cutoffs in loop integrals, the perturbative

unitarity of the S-matrix, theory and applications of integral kernel representations, non-

locality in Abelian gauge theories, as well as its observational signatures, for example, the

electron self-energy.

However, these studies, well into the 1970s, merely postulated the existence of non-local form

factors. While they were appealing in their short-scale regulatory faculties without spoiling

causality on a macroscopic level, they yet had to be derived from first principles.

The advent of bosonic string theory around that time should change that. It was soon realized

that vertices of the form e□ appear in string field theory [58] and survive the effective field

theory limit [59]; see also the related discussions on the role of non-locality in string theory

in Refs. [60–64].

After that, non-local theories have been studied in the context of superrenormalizable theories

[65] and have hence found fruitful applications in high energy phenomenology, cosmology,

and black hole physics: It was realized by Biswas et al. that non-local form factors allow

for bouncing universes in cosmology [66,67], Koshelev studied non-local cosmology based on

p-adic string field theory [68], and Modesto et al. considered the regulatory effect of these

factors in the context of black holes [69]. Those studies were then extended to more general

gravitational settings in the seminal papers by Modesto [70] and Biswas, Gerwick, Koivisto,

and Mazumdar [71], pioneering the notion of non-local “infinite-derivative” gravity.

This concludes our brief historical overview and we will address the more recent results in

Sec. 1.7.
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1.3 Non-local form factors and kernel representations

Let us consider a non-local action of the form

S[φ] =

∫︂
dDx

[︃
1

2
φe−ℓ2□□φ− J(x)φ

]︃
, (1.6)

where φ is a non-local field and J is an external current. The object e−ℓ2□ is a simple

example of a non-local form factor , where ℓ denotes the scale of non-locality. In this thesis

we will consider form factors that can be written as functions of the □-operator f(□), to

be understood as a formal power series and hence contain infinitely many derivatives. For

non-local ghost-free form factors we also demand that they are non-zero everywhere and

satisfy f(0) = 1. This latter property guarantees for the above action that in the limiting

case of ℓ = 0 one recovers a standard second-order action, and as we will see in Ch. 2 it

also guarantees the same far-distance asymptotics of non-local fields as encountered in local

theories. If not specified otherwise, all form factors discussed in this thesis are assumed to

be non-local ghost-free form factors, and a particular class is given by

f(□) = e(−ℓ2□)N , N = 1, 2, . . . . (1.7)

We shall refer to these theories as GFN theories. In this introductory section, for simplicity,

we will work with N = 1, but our considerations hold for all N .

Turning our attention back to (1.6), introducing a field redefinition ϕ = e−ℓ2□/2φ yields

S̃[ϕ] =

∫︂
dDx

{︃
1

2
ϕ□ϕ− [eℓ

2□/2J(x)]ϕ

}︃
, (1.8)

where we have integrated by parts assuming the field φ and the external current J decrease

sufficiently fast. Comparing the two actions S[φ] and S̃[ϕ], the effect of the infinite-derivative

non-locality has been shifted from the kinetic term to the interaction term. Utilizing an

integral kernel K(x− y) defined via

eℓ
2□/2δ(x− y) = K(x− y) , (1.9)

we can rewrite the interaction term as follows:

S̃int[ϕ] = −
∫︂

dDx

∫︂
dDyϕ(x)K(x− y)J(y) . (1.10)

In order to develop an intuition for the object K(x − y) it helps to focus our attention



Chapter 1. Introduction 7

temporarily to a purely spatial setting when □ → △. Then the integral kernel K can be

determined analytically in the present case and it is nothing but the (D − 1)-dimensional

heat kernel,

K(x− y) =
1

(
√

2πℓ)(D−1)/2
exp

[︃
−(x− y)2

ℓ2

]︃
. (1.11)

This implies that the interaction of the field ϕ with the external current J is non-local in a

neighbourhood of O(ℓ), and since the typical range of this effective non-local interaction is

determined by the parameter ℓ, it is often called the “scale of non-locality.” In the limiting

case of ℓ→ 0 the effect of non-locality vanishes, and ϕ = φ, and in this limit the heat kernel

becomes the (D − 1)-dimensional delta function,

lim
ℓ→0

K(x− y) = δ(x− y) . (1.12)

So far, we have employed real-space representations of all objects. Sometimes, however, it

is convenient to work with the Fourier representation of non-local form factors in order to

construct Green functions. In the present case, there are two options:

(i) Work with the action (1.8) with the manifestly non-local interaction terms of the form

(1.10). This has the benefit that the kinetic term can be canonically normalized, and

shifts the non-locality into the spatial properties of the integral kernel K(x− y).

(ii) Work with the action (1.6), which has a non-standard kinetic term but otherwise local

interactions. Then, it is possible to study the modification of the Green function for

the infinite-derivative form factor in Fourier space, while the vertices themselves retain

their original form. In this approach, non-locality is described by the properties of the

non-standard Green function, which in turn may be studied in more detail in Fourier

space.

While there are reasons for working with either method, in this thesis we will follow the

second avenue. The reason lies in the fact the study of causal properties is simplified when

one considers only local interactions with a modified Green function, and we will discuss this

in substantial detail in Ch. 2. However, method (i) has one decisive advantage: It proves

that in the absence of interactions there is no effect of non-locality since it can be absorbed

by a field redefinition without leaving any trace. We will revisit this issue in the following

section at the level of the corresponding field equations.
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1.4 On-shell vs. off-shell properties

Let us now focus on the non-local field equations in more detail. Specifically, let us consider

an inhomogeneous non-local field equation for the field φ,

e−ℓ2□□φ = J , (1.13)

where J is an external current. We may invert this relation and write the equivalent expres-

sion

□φ = Jeff , Jeff = e+ℓ2□J , (1.14)

and inverting the ghost-free form factor is always possible since, by construction, it is nowhere

zero. Based on our previous considerations we can interpret this relation as the original, local

equation where the current J has been replaced by an effective current Jeff which is a smeared

version of the original current J .

As is well known, the d’Alembert operator □ is hyperbolic on Lorentzian manifolds such

as Minkowski spacetime or the curved spacetimes of General Relativity. This means that

even on non-compact manifolds there exist normalizable zero mode solutions to this operator

satisfying □χ = 0. In other words: zero mode solutions χ are eigenfunctions of the d’Alembert

operator with vanishing eigenvalue. Let us consider now such a homogeneous equation,

e−ℓ2□□φ = 0 . (1.15)

Since the exponential form factor never vanishes, the only solution to this equation is φ = χ

where □χ = 0 is a zero mode: homogeneous solutions are insensitive to the presence of

non-locality.

The previous considerations hold true for ghost-free form factors f(□), and all of the form

factors considered in this thesis fall into that class. A simple example where this does not

work is given by higher-derivative differential equations of the form

(□−m2)□φ = 0 . (1.16)

The additional operator □−m2 admits new zero mode solutions, and hence φ ̸= χ. But this

operator is not ghost-free since (□−m2)χ = 0 has non-trivial solutions. This is a distinctive

difference between ghost-free theories presented in this thesis and higher-derivative theories.
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Quantities that solve free field equations are often referred to as on-shell, and quantities that

are not solutions to free field equations, conversely, are called off-shell. An interesting case

arises when a ghost-free factor f(□) acts on an on-shell quantity χ, since then

f(□)χ = f(0)χ = χ , (1.17)

and the effect of non-locality disappears.

An example for off-shell quantities are the manifestly off-shell loop momenta one encounters

in perturbative quantum field theory. Yet another case for off-shell quantities are renormal-

ized quantities, since subtraction schemes often take formally infinite on-shell quantities and

transform them into finite off-shell expressions. An example of classical off-shellness is an

interaction term, as we have seen above.

These considerations show that ghost-free non-locality can be difficult to observe experi-

mentally, as off-shell quantities are required to create measurable, non-zero effects, and it

is helpful to keep this in mind for the remainder of this thesis. We will revisit this point

extensively in Chs. 6–7 in the context of homogeneous and inhomogeneous Green functions

in the presence of non-locality.

1.5 Remarks on non-locality and the variational prin-

ciple

In the above we discussed some properties of non-local field equations. As is well known,

in local field theory it is often possible to derive field equations from a variational principle

involving an action functional. In this section we would therefore like to address the role of

actions within non-local field theories, and to that end we shall consider two principles:

1. An action can be viewed as a formal integral that can be utilized to derive the field

equations. We shall call this the “local variational principle.”

2. Within variational calculus, the surface terms obtained during the first variation of the

action provide insights on boundary conditions required for a self-consistent variational

problem. We will refer to this as the “global, self-consistent variational principle.”

In what follows, we will briefly compare and contrast the local and global, self-consistent

variational principle for a scalar field in the absence of non-locality. In a second step we

shall demonstrate that the local variational principle readily extends to the class of non-
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local ghost-free theories discussed in this thesis, whereas the role of a global, self-consistent

variational problem in the presence of non-locality remains somewhat unclear and deserves

more future attention (compare also the remarks on the ghost-free initial value problem in

Sec. 1.6).

Let us consider a local, second-order action for a free scalar field φ inD-dimensional Minkowski

spacetime M for which the action and its first variation take the form

S1[φ] = −1

2

∫︂
M

dDx(∂µφ)(∂µφ) , (1.18)

δS1[φ] =

∫︂
M

dDxδφ□φ−
∫︂

∂M

dΣD−1
µ δφ∂µφ . (1.19)

The variational principle demands that δS = 0, which means that all terms on the right-

hand side need to vanish. The first term yields the expected field equation □φ = 0. If we

assume that the value of φ is fixed on the boundary ∂M, the variation δφ has to vanish

there such that δφ|∂M = 0, rendering the second term zero, and the variational problem is

self-consistent.

In order to contrast these findings, let us consider instead the action

S2[φ] =
1

2

∫︂
M

dDxφ□φ , (1.20)

δS2[φ] =

∫︂
M

dDxδφ□φ+
1

2

∫︂
∂M

dΣD−1
µ (φ∂µδφ− δφ∂µφ) , (1.21)

where the two actions S1[φ] and S2[φ] are related by a surface term,

S1[φ] = S2[φ] − 1

2

∫︂
∂M

dΣD−1
µ φ∂µφ . (1.22)

The field equations are again □φ = 0, but the variational problem for S2[φ] is not self-

consistent. To see this, note that the boundary term includes both δφ and ∂µδφ = δ∂µφ.

Therefore, if the boundary terms are to vanish identically as is required for a self-consistent

variational principle, one needs to fix both the value of φ and its normal derivative nµ∂
µφ

at the boundary and thus δφ|∂M = 0 and δ(nµ∂
µφ)|∂M = 0. Then, however, the equations

of motion □φ = 0 only allow for the trivial solution.

Hilbert and his student Courant (see more details in Courant [72]) developed the notion of
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a global self-consistent variational problem, and the above considerations show the follow-

ing: Partial differential equations, when supplemented with somewhat ad hoc but seemingly

appropriate boundary conditions, can offer much insight into the dynamics of a physical prob-

lem. However, it is not always obvious how to select the appropriate boundary conditions in

a specific case. The self-consistent variational problem solves this by demanding that the sur-

face terms—obtained during the first variation of the action—vanish, and within that context

these boundary conditions are referred to as “natural boundary conditions.” Therefore, as

Courant puts it: the appropriate boundary conditions for a differential equation are obtained

as the natural boundary conditions of the associated self-consistent variational problem [72];

see also the book [18].

For these reasons Eq. (1.20) is an inconsistent action from the global, self-consistent varia-

tional principle. However, one may formally consider only variations δφ of a special kind:

namely, those that decrease in a way that both the variation δφ as well as all its derivatives

vanish identically outside a compact subregion C ⊂ M. Then the first variation of the action

vanishes, albeit only for this special class of variations. Moreover, one has to stipulate the

appropriate boundary conditions for the differential equation at hand.

Do these concepts extend to non-local theories? Let us consider a non-local version of the

action S2[φ] that we shall employ frequently in the rest of this thesis. For brevity we will

omit a potential external current since we are interested in the derivative structure of the

kinetic term. The free action can be written as

Snon-local
2 [φ] =

1

2

∫︂
M

dDxφ□e−ℓ2□φ . (1.23)

Clearly in the limit ℓ → 0 we recover Eq. (1.20), and for this reason we already know that

this action is not self-consistent in the sense of Hilbert and Courant. Performing a somewhat

cavalier variation one still obtains the field equations e−□ℓ2□φ = 0, but the precise form of the

boundary terms is rather complicated: they arise from expressing the exponential function as

a power series, and integrating each individual finite-derivative term by parts. Schematically

one obtains

δSnon-local
2 [φ] =

∫︂
M

dDxδφ□e−ℓ2□φ+ surface terms . (1.24)

The surface terms contain both the variation δφ, the field φ, and derivatives thereof. Utilizing

the local variational principle for a restricted class of variations one readily obtains the field

equations.
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In the present thesis we explicitly demonstrate in all relevant examples how to choose appro-

priate boundary conditions for various non-local ghost-free field equations. For this reason

the local variational principle is sufficient. It would however be interesting to study a possi-

ble non-local self-consistent variational principle and we shall leave this open question for a

future study.

1.6 Initial value problem

With the structure of non-local linear field equations known there is one immediate concern:

since the equations contain infinitely many derivatives they might also require an infinite

amount of initial data, and this is directly connected with the considerations on appropriate

boundary conditions presented in the previous section. It is well known that any second-order

linear differential equation requires both the value of the field φ as well as its derivative ∂tφ

on a t = const. spacelike hypersurface in order to be deterministic. Is an infinite set of initial

data required for infinite-derivative field equations?

Barnaby and Kamran [73] have shown that this is not always the case. They prove that

each pole in the propagator contributes two pieces of initial data. This reproduces the case

of Sturm–Liouville theory, where the differential operator is of second order, and as such

its associated polynomial in Fourier space has two complex roots, corresponding to the two

pieces of initial data required. In the case of ghost-free infinite-derivative field theory, the

number of poles coincides with that of the local theory, as we indicated already above. For

this reason the amount of initial data remains the same.

However, there is a connected problem as to where this initial data needs to be specified.

Clearly, in the presence of non-locality, the notion of a precise t = const. hypersurface is

no longer meaningful. Barnaby [74] has shown that the notion of an infinitely thin Cauchy

surface has to be replaced by a smeared out Cauchy surface of finite thickness of O(ℓ), which

is the scale of non-locality. Hence, a small perturbation induced by a source located before

an initial Cauchy surface will have a non-vanishing influence on the future, even if one keeps

the data fixed on that Cauchy surface. This contradicts strict causality but, as we will see

in Sec. 2.5, may still be compatible with asymptotic causality or macrocausality.

Additional insight might be gained from the following consideration: Suppose we are inter-

ested in the dynamics of a scalar field, subject to the local field equation

□φ = j . (1.25)
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Let us consider a Cauchy surface t = t1 = const., and call it Σt1 . Specify both φ and φ̇

there, and let us assume that the current j has the form j ∼ δ(t − t0) with t0 < t1. This is

a well-defined initial value problem for the future dynamics of φ in the domain t ≥ t1, and

because j = 0 in this domain the dynamics are described by □φ = 0. In other words: the

presence of the current at t = t0 is irrelevant.

Let us now switch on non-locality and track the deviations from the local theory, while

keeping the identical form of the current j. The field equations are

e−ℓ2□□φ = j . (1.26)

We again specify the values of φ and φ̇ on Σt1 , identical to those of the local case. However,

the future dynamics are now susceptible to the presence of the current j in the past. This

can be seen from an equivalent representation of the non-local field equations,

□φ = jeff , jeff = eℓ
2□j ∼ e−(t−t0)2/ℓ2 , (1.27)

where the form of the effective smeared current can be derived in a similar fashion to Sec. 1.4.

Clearly this current is non-zero in the domain t ≥ t1 and its “tail” hence affects the future

dynamics of φ. In ghost-free theories this smeared current can always be found since the

infinite-derivative expressions can be inverted. Moreover, as we will show in more detail later,

these smeared sources decrease on both purely temporal and purely spatial distances scales

that are much larger than the scale of non-locality. We visualize this in Fig. 1.1.

A helpful way to distinguish these situations is the following: if the equations are globally

source-free for all times t, then the initial value problem coincides with that of the local theory.

If the equations are only source-free in a certain domain (t > t0 in the above example), then

the presence of non-locality has observable consequences for the future evolution of the field

φ.

In the present thesis we will study non-locality as modelled by ghost-free infinite-derivative

theories in a variety of situations and construct explicit solutions for non-local physical fields.

We will primarily make use of the notion of non-local Green functions, and our findings are

consistent with the mathematical considerations presented by Barnaby and Kamran. For a

study of initial conditions specifically in the context of non-local ghost-free gravity we refer

to Calcagni et al. [75] as well as Giaccari and Modesto [76].
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Figure 1.1: In the local case (left), the presence of a δ-shaped current j at an earlier time

t0 does not influence the future evolution of a field φ, provided φ and φ̇ are specified on the

Cauchy slice Σt1 . In the non-local case (right) this is no longer true: specifying the same

initial values φ and φ̇ on Σt1 , the future evolution of the scalar field φ will differ from the

local case because the current j is smeared out due to the presence of non-locality, visualized

as jeff in the image above. The difference in the future evolution of the field is highlighted

by the dotted lines. As one tracks the future evolution of φ in over later times t2 and t3,

the influence of the effective current decreases over time due to the notion of asymptotic

causality in ghost-free theories.

1.7 Recent work

In the recent years, non-local physics as mediated by infinite-derivative form factors has

received considerable attention. In this section we would like to attempt to summarize the

main developments while categorizing them into the three groups (i) quantum field theory,

(ii) applications in cosmology, and (iii) applications in black hole physics and gravitational

physics. We hope that this summary is interesting and useful for readers who consider

researching non-locality themselves.

1.7.1 Quantum field theory

There is a growing amount of literature on calculational techniques in non-local quantum

field theory involving loop structure and scattering amplitudes [77,78], perturbative unitarity

[79,80], reflection positivity [81], Green function methods [4,5], and non-local effective actions

[82]; see also the review [83]. For discussions of non-locality in string theory see [84,85]. The

presence of (complex) ghosts has been discussed in [86–89]; for stability analyses we refer

to [90,91]. The concept of non-locality has also been extended to non-local supergravity [92]

and notions of quantum gravity [93], and more general form factors have recently been

considered in [94]. Applications to the Higgs mechanism are presented in [95, 96]. While
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it has been argued that for scattering processes with a large number of external legs the

presence of non-locality leads to a macroscopically accessible non-local region [97], others

argue that violations of macrocausality are unattainable in the laboratory [98].

In the context of quantum mechanics, monochromatic radiation [99] as well as wave packets

[100,101] have been studied, including superradiance effects [102] and potential observational

signatures in the connection with transmission and reflection coefficients [3, 103].

1.7.2 Cosmology

Non-local inflationary models have been developed [104–112], with observational signatures

studied in [113–115]. Non-locality has also been studied in the context of massive gravity

[90, 116]. The resolution of cosmological singularities has been discussed in [66, 67, 117] and

has recently been extended to anisotropic scenarios [118].

1.7.3 Black hole physics and gravitational physics

A significant amount of work has been devoted to the study of non-local gravity. With the

general structure of the non-local gravitational theory known [119–121], a large amount of

exact regular solutions in the weak-field regime has been constructed [122–131], including

rotating solutions [132, 133], electrically charged [134] and conformally flat solutions [135],

relativistic objects [8, 136], as well as extended sources [1, 7, 137].

At the present stage there appears to be some confusion on the fate of the Schwarzschild

singularity: whereas a stability analysis indicates that non-locality might not be enough

to remove the singularity [138], a study of the Ricci-flat field equations shows that the 1/r-

behavior does not present an exact solution [139]. For more non-perturbative results see [140].

In the context of black hole thermodynamics it has been shown that non-locality allows for

a sensible notion of Wald entropy [141], and for an exact result of the entropy correction due

to non-locality we refer to [6]. Steps towards an exact Ricci flat solution have been taken

in [133].

Phenomenologically, the effects of non-locality have been studied in the context of black hole

formation from gravitational collapse [142–145], on the defocusing of null geodesics [146]

and the fate of the compacts objects without event horizons [147], as well as effects on the

bending of light [148, 149], the memory effect [150], and spatial oscillations of the effective

energy density in the vicinity of point particles [2]. A model of non-local stars has been

proposed in Ref. [151].
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The stability of black holes in non-local gravity has been studied in [152,153], and a diffusion

method for non-linear non-local equations as encountered in non-local gravity has been pre-

sented in [154]. More recently, non-local gravity has been extended to include non-vanishing

torsion [155] and has been extended to Galilean theories [156]. A non-local theory with

string-inspired worldline inversion symmetry is presented in [157], and a non-local Hamilto-

nian framework for the scalar sector of non-local gravity has been developed in [158].

1.7.4 Related approaches

Let us also mention two related approaches. First, in the context of non-commutative geom-

etry one may obtain non-local form factors [159–161] with regular spatial propagators of the

form

G(r) = − 1

4π2

1

r2 + ℓ20
, (1.28)

where ℓ0 is an intrinsic length scale of the theory, compare also [162].

In a different approach developed by Mashhoon and Hehl [163–168], non-locality enters via a

non-local constitutive law. In electrodynamics, for example, the constitutive law represents

the relation between the Faraday field strength 2-form F µν (corresponding to the E⃗ and B⃗

field) and the excitation Hµν (which encodes the matter response in the D⃗ and H⃗ fields). The

constitutive tensor χµν
ρσ relates these two quantities, and it if is assumed to be non-local,

Hµν(x) =
1

2

∫︂
dDyχµν

ρσ(x− y)F ρσ(y) , (1.29)

the resulting field equations are non-local, too. At the linear level in vacuum, when it

is possible to write the constitutive tensor in terms of an integral kernel and the totally

antisymmetric symbol, χµν
ρσ ∼ ϵµν

ρσK(x − y), it is possible to relate this approach to the

infinite-derivative formulation of non-local physics, and it would be interesting to explore

this in more detail.

1.8 Overview of thesis

This thesis is the product of roughly three years worth of research on different aspects of non-

local physics. Since a large portion is related to the properties of non-local Green functions,

we devoted Ch. 2 exclusively to that topic. Therein we compare non-local Green functions

to their local counterparts and find their similarities and differences. Moreover, we devote
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some space to the study of static Green functions and find their explicit expressions since

they will be used quite frequently in the remainder of the thesis.

In Ch. 3 we turn towards the weak-field limit of non-local ghost-free gravity and construct

various static and stationary solutions by employing the previously derived Green functions,

and in Ch. 4 we obtain the metric of ultrarelativistic objects by boosting stationary metrics

to the speed of light in a suitable limit.

Changing gears towards quantum physics, we determine the scattering coefficients on a δ-

potential in non-local ghost-free quantum mechanics in Ch. 5, before considering the vacuum

polarization and thermal fluctuations around that δ-potential in Ch. 6 within non-local ghost-

free quantum field theory.

In Ch. 7 we combine the topics of gravity and quantum physics: studying a ghost-free

modification of the Polyakov effective action, we prove that non-locality has no impact on

the flux of Hawking radiation measured at spatial infinity but does affect the entropy of a

two-dimensional dilaton black hole.

Chapter 8 is devoted to a brief summary of our key findings and contains a list of open

problems. See also Fig. 1.2 for a graphical representation of the logical structure of this

thesis.
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Ch. 1: Introduction

Ch. 2: Non-local Green functions

Ch. 3: Static and stationary solutions Ch. 5: Non-local quantum mechanics

Ch. 4: Ultrarelativistic objects Ch. 6: Non-local quantum field theory

Ch. 7: Polyakov action

classical/quantum Green functions • causality from analyticity

• asymptotic causality • static Green functions

point particles • cosmic strings • p-branes • rotating solutions scattering problem • Lippmann–Schwinger equation

• scattering coefficients • δ-potential • quasinormal modes• Friedel oscillations • regularity • curvature invariants

Aichelburg–Sexl metric • Penrose limit • gyratons

• pp-wave spacetimes • gyratonic p-branes

vacuum polarization • Hadamard function • stability

• thermal fluctuations • fluctuation-dissipation theorem

Polyakov action • trace anomaly • Hawking radiation

• two-dimensional dilaton black hole • black hole entropy

Ch. 8: Conclusions

historical remarks (1930s–2010s) • variational principle

• initial value problem • recent work (2010s–today) • overview

summary • concluding remarks • open problems

Figure 1.2: Graphical representation of the structure of this doctoral thesis. Ch. 7 requires

knowledge of all preceding chapters, whereas Chs. 3–4 and Chs. 5–6 can be studied indepen-

dently.
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Chapter 2

Green functions in non-local theories

This chapter serves as a prerequisite for the rest of this thesis. We develop the notion of

Green functions in the presence of non-locality and derive explicit expressions for static Green

functions that will be used throughout the remainder of this thesis. It is based on Refs. [1,3–

5,8].

2.1 Introduction

Green functions are useful for solving linear differential equations exactly. Moreover, they

may be employed in perturbative techniques as well. Developed by British mathematician

George Green [169], see more about the history in Refs. [170, 171], they are ubiquitous in

contemporary physics and are sometimes also referred to as “Green’s functions” or “propa-

gators,” and in the present work we shall use the expression “Green functions” and abstain

from using the possessive. In the context of quantum field theory, see Ch. 6, we may also

employ the term “propagator.”

In the scope of the present work, it is useful to extend the theory of Green functions from local

theories with a finite number of derivatives to non-local theories with an infinite number of

derivatives. There are a number of interesting observations to be made, see also the previous

discussion in Sec. 1.6, and in this chapter we would like to dedicate some space to these

insights. They form the mathematical foundation of a major portion of this thesis and may

provide useful also beyond the scope of this thesis and hence are presented independently

from a concrete application, which will follow in ample detail in Chs. 3–7.
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2.2 Green functions in classical field theory

Consider a linear differential equation of the form

Dφ(X) = σ(X) , (2.1)

where X denotes spacetime coordinates, φ(X) is the physical field under consideration, D is

a differential operator, and σ(X) denotes a source term that may be linear in φ(X) as well.

A Green function G(X ′, X) is defined as a solution of the following equation:

DG(X ′, X) = −δ(D)(X ′ −X) (2.2)

Then, a solution to (2.1) can be written as

φ(X) = φ0(X) +

∫︂
dDY G(X, Y )σ(Y ) , (2.3)

where φ0(X) is a solution of the homogeneous equation whose precise form is fixed by the

appropriate boundary conditions.

We emphasize that there are typically many Green functions for a given differential operator

D, corresponding to different boundary conditions. Some care has to be administered to find

the right Green function for a physical problem under consideration, and we will address this

in more detail in Ch. 3.

2.3 Green functions in quantum field theory

As is well known, in quantum field theory the notion of classical fields is abandoned in

favor of operator-valued fields or “field operators.” These operators are defined on a Fock

space, which in turn is the direct sum of many-particle Hilbert spaces, and for that reason this

procedure is also sometimes referred to as “second quantization.” In this quantum framework

there exists a similar notion of Green functions which we would like to address next.

Let us consider a quantum field operator Φ̂(t,x) on D-dimensional Minkowski spacetime

with coordinates (t,x) such that ds2 = −dt2 + dx2. Denoting the quantum expectation

value as ⟨. . . ⟩, which is to be performed in the vacuum state, and writing the commutator

as [Â, B̂] = ÂB̂ − B̂Â, one may define the following Green functions [172]:

retarded: GR(x′,x) ≡ iθ(t′ − t)⟨[Φ̂(x′), Φ̂(x)]⟩ , (2.4)
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advanced: GA(x′,x) ≡ −iθ(t− t′)⟨[Φ̂(x′), Φ̂(x)]⟩ , (2.5)

Feynman: GF(x′,x) ≡ iθ(t′ − t)⟨Φ̂(x′)Φ̂(x)⟩ + iθ(t− t′)⟨Φ̂(x)Φ̂(x′)⟩ . (2.6)

In the context of quantum field theory these objects are also frequently referred to as “prop-

agators.” As expectation values of field operators they are seemingly unrelated to classical

Green functions, but imposing the field equations for the field operator Φ̂ one may show that

they satisfy

DG•(x′,x) = −δ(x− x′) for • = R,A,F . (2.7)

For this reason it makes sense to refer to propagators as “Green functions,” and use the same

symbol to denote them in both classical and quantum theory. In the context of quantum

theory it is also possible to define different expectation values of the field operator via

Hadamard: G(1)(x′,x) ≡ ⟨Φ̂(x′)Φ̂(x) + Φ̂(x)Φ̂(x′)⟩ , (2.8)

Wightman: G+(x′,x) ≡ ⟨Φ̂(x′)Φ̂(x)⟩ , (2.9)

G−(x′,x) ≡ ⟨Φ̂(x)Φ̂(x′)⟩ . (2.10)

These objects are called Hadamard and Wightman functions, and are sometimes also called

Hadamard Green function and Wightman Green function. Imposing the field equation for Φ̂

one may show that

DG•(x′,x) = 0 for • = (1),+,− . (2.11)

For this reason we also refer to the retarded, advanced, and Feynman Green function as

“inhomogeneous Green functions” and to the Hadamard and Wightman functions as the

“homogeneous Green functions.” By construction these Green functions are related via

GF(x′,x) =
1

2

[︁
GR(x′,x) +GA(x′,x) + i G(1)(x′,x)

]︁
, (2.12)

G(1)(x′,x) = G+(x′,x) +G−(x′,x) . (2.13)

This follows by the definition as well as from the identity θ(t) + θ(−t) = 1.

All of the above relations have a well-defined meaning within local quantum field theory.

How do these concepts generalize to the non-local case? This is not always clear because the

presence of non-locality—modelled by infinite-derivative form factors—affects the construc-

tion of a Hilbert space, which poses some difficulty for defining a suitable averaging process
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to obtain the above expectation values. As we will see in Ch. 6, however, it is sometimes

possible to proceed formally and obtain physically well-behaved non-local Green functions

similarly to the local case.

Since the local Green functions solve the inhomogeneous (or homogeneous) field equations,

we may simply define non-local Green functions as the corresponding solutions of the non-

local equations. To that end, let us assume that we can write the differential operator D as

the concatenation

D = Dnon-local ◦ Dlocal . (2.14)

Here, Dnon-local is a non-local operator that, in the context of the present work, is related to

the scale of non-locality and contains infinitely many derivatives, whereas Dlocal is a local

operator that contains a finite amount of derivatives. One possible example could be

D = e−ℓ2□□ , Dnon-local = e−ℓ2□ , Dlocal = □ . (2.15)

As already indicated in Sec. 1.4, ghost-free form factors have an empty kernel. In other

words: the ghost-free operators considered in this work do not allow for non-trivial homoge-

neous solutions. This is important because it implies that the homogeneous Green functions

coincide for local and ghost-free theories since

DG(X ′, X) = 0 ⇔ DlocalG(X ′, X) = 0 . (2.16)

For ghost-free theories the inverse operator D−1
non-local always exists and can be applied to

generate the equivalence in Eq. (2.16). We will examine this property in more detail in the

form of the Hadamard function in Ch. 6.

There is another point to be addressed in the next section: In local quantum field theory, the

causal properties of the various Green functions can be related to analytic properties of their

Fourier transform components in the complex energy plane. Since non-local modification

terms, as they are studied in this thesis, do not possess any new poles (thus justifying their

name “ghost-free”) it seems plausible to us that a definition of non-local Green functions

purely in terms of integration contours in the complex plane may still be valid in non-local

theories of the above class.
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2.4 Causality from analyticity: local case

Let us consider the local case first. In particular, we will focus on the inhomogeneous Green

functions of the d’Alembert operator in flat, two-dimensional spacetime that is spanned by

the coordinates t and x. Let us call solution of

□G(t′ − t, x′ − x) = −δ(t′ − t)δ(x′ − x) (2.17)

a Green function. We are not primarily interested in the exact form of the Green functions,

but rather we would like to focus on the following question: how do the causal properties of

the Green function arise?

Due to the translational symmetry in both the temporal and spatial directions of Minkowski

space let us introduce the momentum vector kµ = (ω, k) and consider the Fourier represen-

tation of the Green function. Inserting □ = −∂2t + ∂2x yields

G(t′ − t, x′ − x) =

∞∫︂
−∞

dω

2π
e−iω(t′−t)

∞∫︂
−∞

dk

2π
e+ik(x′−x)Gω,k , Gω,k =

−1

ω2 − k2
. (2.18)

In order to evaluate integrals of the above type, it is helpful to think of ω as a complex

variable instead, such that the above integration over ω corresponds to a line integral in the

complex plane along the real axis. The function Gω,k has a single pole at ω = ±k, and for

that reason an additional prescription is required to evaluate the integral. In what follows

we will briefly recap how certain prescriptions affect the causal properties of the resulting

Green function. While we will focus on the two-dimensional case, it is clear that these steps

can be repeated for higher dimensions and other differential operators in a similar fashion,

mutatis mutandis.

2.4.1 Retarded Green function

The following choice of prescription, which is sometimes also referred to as iϵ-prescription,

leads to the retarded Green function (which we hence decorate with the superscript “R”):

GR
ω,k =

−1

(ω + iϵ)2 − k2
=

−1

(ω + iϵ+ k)(ω + iϵ− k)
(2.19)

Let us prove this. The poles are located in the complex ω-plane at the values

ω+ = k − iϵ , ω− = −k − iϵ . (2.20)
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ω+

Imω

Reω

C+

C−

ω−

Figure 2.1: This choice of integration contours for the retarded Green function guarantees

that the retarded Green function GR(t′ − t, x′ − x) vanishes if t′ < t, which implements

causality.

Assigning the x-axis the real part of ω and the y-axis to the imaginary part of ω, because

ϵ > 0 one sees that ω± both lie below the x-axis. In order to evaluate the frequency integral in

Eqs. (2.18) we realize that the integrand vanishes for large imaginary values of the frequency:

lim
ω→−i∞

e−iω(t′−t)

ω2 − k2
= 0 if t′ > t , lim

ω→+i∞

e−iω(t′−t)

ω2 − k2
= 0 if t > t′ . (2.21)

We may think now think of the ω-integral in Eq. (2.18) as a line integral in the complex

ω-plane. Provided t′ > t we can close this line integral in the lower half-plane (and call

the resulting contour C−), and if t > t′ instead we can close the line integral in the upper

half-plane and call the contour C+. This is useful because now we can apply the residue

theorem and relate the value of the integral to the poles enclosed by the contour C±; see a

diagram in Fig. 2.1.

For this reason one finds

GR(t′ − t, x′ − x) = 0 if t > t′ . (2.22)

If t′ > t, on the other hand, the retarded Green function does not vanish, and one may

calculate

GR
k (t′ − t) = lim

ϵ→0

∮︂
C−

dω

2π
e−iω(t′−t) −1

(ω + iϵ+ k)(ω + iϵ− k)
=

sin k(t′ − t)

k
, (2.23)
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GR(t′ − t, x′ − x) =

∞∫︂
−∞

dk

2π
eik(x

′−x)GR
k (t′ − t) =

1

2
θ
[︁
(t′ − t)2 − (x′ − x)2

]︁
if t′ > t . (2.24)

For details of this calculation we refer to appendix A.1. The result can be collected as

GR(t′ − t, x′ − x) =
1

2
θ(t′ − t)θ

[︁
(t′ − t)2 − (x′ − x)2

]︁
. (2.25)

It proves two essential properties of the retarded Green function:

(i) GR(t′ − t, x′ − x) = 0 if t′ < t.

(ii) GR(t′ − t, x′ − x) ̸= 0 only inside the future-directed light cone.

Higher-dimensional calculations can be performed in a similar fashion, and one may also

include a mass parameter m. We refer to the textbooks of quantum field theory [20–24,172]

for more details.

The main conclusion of these considerations is that the iϵ-prescription in the momentum-

space representation of the Green function gives rise to causality. The prescription, in turn,

is dictated by the analytic properties of the function Gω,k in the complex ω-plane, and for

this reason one may say that causality stems from analyticity.

2.4.2 Advanced Green function

It is clear that a similar prescription to the retarded Green function gives rise to the advanced

Green function, corresponding to the time-reversed scenario. The regularization is given by

GA
ω,k =

−1

(ω − iϵ)2 − k2
=

−1

(ω − iϵ+ k)(ω − iϵ− k)
, (2.26)

and we use the superscript “A” to denote the advanced Green function. From Eq. (2.26) it

is clear that the change in sign of ϵ can be recast into a sign flip of ω, and by means of (2.18)

that corresponds to an exchange of t and t′. For that reason the advanced Green function,

in two dimensions, takes the form

GA(t′ − t, x′ − x) = −1

2
θ(t− t′)θ

[︁
(t′ − t)2 − (x′ − x)2

]︁
. (2.27)

This, in turn, proves two essential properties of the advanced Green function:

(i) GA(t′ − t, x′ − x) = 0 if t < t′.
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(ii) GA(t′ − t, x′ − x) ̸= 0 only inside the past-directed light cone.

One may also verify the above calculations by making use of the residue theorem. In this

case the poles are located above the x-axis on the complex ω-plane, and hence the contours

give contributions in the opposite cases (with an overall negative sign since the contour now

closes in the counter-clockwise, mathematically positive direction).

2.4.3 Feynman Green function

For completeness we would also like to mention the Feynman Green function, arising from

the following iϵ-prescription:

GF
ω,k =

−1

ω2 − k2 + iϵ
≈ −1

(ω − k + iϵ)(ω + k − iϵ)
, (2.28)

where “F” stands for Feynman. There is also the reversed version, called anti-Feynman Green

function, which arises from ϵ→ −ϵ in the same sense as the advanced Green function arises

from the retarded Green function under a similar substitution,

GF̄
ω,k =

−1

ω2 − k2 − iϵ
≈ −1

(ω − k − iϵ)(ω + k + iϵ)
, (2.29)

where now we decorate it with the superscript “F̄.” Comparing the Feynman Green functions

to the retarded (or advanced) Green functions, it becomes clear that they feature poles in

the complex ω plane both above and below the x-axis. With everything else unchanged,

however, the integrals of the type (2.18) can still be solved using contour integration, and

from that aspect alone it is clear that the Feynman Green function will be non-zero both if

t′ > t and t > t′.

For this reason the Feynman Green function is not useful for classical physics but rather plays

an important role in quantum field theory, which we will discuss in Ch. 6 in more detail.

2.4.4 Physical interpretations

These considerations allow for the following interpretation of the Green function G(t′ −
t, x′ − x), where we assume that the correct boundary conditions for the physical problem

under consideration have been specified: if an event (t, x) describes the location of a small

perturbation, then the event (t′, x′) corresponds to a possible observation of this perturbation,

if and only if G(t′ − t, x′ − x) is non-zero. There are of course different Green functions,

depending on the iϵ-prescription employed in the complex ω-plane, and we visualize this
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t

x

(t, x)

(t′1, x
′
1)

(t′2, x
′
2)

(t′3, x
′
3)

Figure 2.2: Consider the free Green function G(t′ − t, x′ − x) and let us suppose that there

exists a field fluctuation at (t, x). The Green function then lets us determine how this fluc-

tuation, to linear order, propagates through empty spacetime. The retarded Green function

is non-vanishing if and only if (t′1, x
′
1) lies in the causal future of (t, x). The advanced Green

function, however, will be non-vanishing if and only if (t′3, x
′
3) lies in the causal past of (t, x).

All causal Green functions vanish identically for spacelike separated events, such as (t, x) and

(t′2, x
′
2).

principle for the retarded and advanced Green function in Fig. 2.2.

Sometimes it is also useful to consider the purely temporal Fourier transformation of a Green

function, and for the sake of this example we will consider the two-dimensional case:

Gω(x′ − x) =

∞∫︂
−∞

dk

2π
e+ik(x′−x)Gω,k . (2.30)

This is useful because it allows us to discuss a mode decomposition of the Green function into

frequencies. For this reason we may understand the Green function as a kind of superposition

of propagating plane waves. In this case it is more useful to think of k as a complex variable

instead of ω, and to perform the contour integration in the complex k-plane. In order not to

derail the discussion too much we refer to appendix A.2 for the calculational details. Then,

the temporal Fourier transforms of the retarded, advanced, and Feynman Green function are

GR
ω (x′ − x) = +

i

2ω
e+iω|x′−x| , (2.31)

GA
ω (x′ − x) = − i

2ω
e−iω|x′−x| , (2.32)
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GF
ω(x′ − x) = +

i

2|ω|
e+i|ω(x′−x)| . (2.33)

Let us understand why the above expression for GR
ω (x′ − x) is indeed the retarded Green

function. To that end, recall that each Fourier mode of the retarded Green function in

spacetime, GR(t′ − t, x′ − x), modulo normalization, is given by the plane wave

e−iω(t′−t)e+iω|x′−x| = e−iω(t′−t−|x′−x|) . (2.34)

Identifying t and x as the spacetime location of a perturbation, we can consider them fixed,

say, for a δ-shaped perturbation ∼ δ(t− t0)δ(x− x0). Only t′ and x′ are variables, and they

describe the directions in which the perturbations travel. Surfaces of constant phase are

hence given by

const. = −iω(t′ − t0 − |x′ − x0|) ⇒

⎧⎪⎪⎨⎪⎪⎩
x′ > x0 :

dx′

dt′
= +1 > 0 ,

x′ < x0 :
dx′

dt′
= −1 < 0 .

(2.35)

This means that the perturbation, while travelling forward in time, moves away from the

source at x0 in both directions. For the advanced Green function the only difference (besides

the sign in the normalization factor) lies in the sign of the exponent. Going through a similar

calculation one finds that for the advanced Green function the perturbations travel towards

the initial perturbation, corresponding to the time reversal that one may apply to the free

retarded Green function to arrive at the advanced Green function.

The Feynman Green function, on the other hand, behaves the same as the retarded Green

function for positive frequencies. Because the Feynman Green function only depends on

the modulus of the frequency there is one important distinction: negative frequencies are

propagated forwards in time as well, whereas the retarded Green function, by construction,

propagates them backwards in time.

2.4.5 Homogeneous Green functions

For completeness let us also address the temporal Fourier transform of the homogeneous

Green functions which play an important role in quantum theory. They may also be evaluated

using contour integration, but unlike in the case of the inhomogeneous Green functions their
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contours are compact; see appendix A.2.2 for more details. They take the form

G(1)
ω (x′ − x) =

cos(ωx)

|ω|
θ(ω2) , (2.36)

G+
ω (x′ − x) =

cos(ωx)

|ω|
θ(+ω) , (2.37)

G−
ω (x′ − x) =

cos(ωx)

|ω|
θ(−ω) . (2.38)

The Wightman functions G+
ω and G−

ω propagate positive and negative frequencies, and their

sum is the Hadamard function. One may verify that the Hadamard function can be derived

from the Feynman Green function via

G(1)
ω (x′ − x) = 2ℑ

[︁
GF
ω (x′ − x)

]︁
. (2.39)

Let us emphasize again that in the free, non-local case these Green functions remain un-

changed because they are solutions to homogeneous equations.

2.5 Asymptotic causality condition on Green functions

As we will see in the remainder of this thesis, in non-local theories it is very difficult to define

causality in a local sense. If non-local effects are present in a spacetime region, a local light

cone may not have physical significance. This of course directly affects the understanding of

Green functions in non-local theories.

In his book “Dynamical Theory of Groups and Fields” [172], DeWitt briefly addresses this

issue. He defines a notion of asymptotic causality that any physical Green function should

satisfy. In the later sections we will see that the Green functions of ghost-free theories fall

under this category.

As a reminder, in the above we have shown that a free causal Green function encountered in

a local theory should satisfy

G(t′ − t, x′ − x) = 0 if t > t′ . (2.40)

In a non-local theory, DeWitt generalizes this condition to

G(t′ − t, x′ − x) → 0 as t′ − t→ ∞ . (2.41)



2.6. Causality from analyticity: non-local case 30

One may think of this relation as a necessary consistency condition to recover macroscopic

causality at some length scale. We will demonstrate later that the Green functions encoun-

tered in ghost-free, infinite-derivative theories do indeed satisfy this condition, both in the

free and interacting case. We refer to Chs. 5 and 6 for a detailed treatise with explicit

examples.

2.6 Causality from analyticity: non-local case

Let us now consider again a two-dimensional example, but this time with a non-local, infinite-

derivative operator. Let us call solutions of the equation

f(□)□G(t′ − t, x′ − x) = −δ(t′ − t)δ(x′ − x) , f(0) = 1 , (2.42)

non-local Green functions. The function f(□) is non-polynomial and features a convergent

series expansion subject to the constraint f(0) = 1. In the remainder of this thesis we will

focus on functions of the form

f(□) = exp
[︁
(−ℓ2□)N

]︁
, ℓ > 0 , N ∈ N , (2.43)

and let us, for simplicity, in this section focus on the case of N = 1. The Green function can

again be represented as a double Fourier transform,

G(t′ − t, x′ − x) =

∞∫︂
−∞

dω

2π
e−iω(t′−t)

∞∫︂
−∞

dk

2π
e+ik(x′−x)Gω,k , Gω,k = (−1)

exp [(ω2 − k2)ℓ2]

ω2 − k2

(2.44)

Clearly, the function Gω,k has poles in the complex plane at ω = ±k, which coincide with the

local theory as the absence of new poles is what gave rise to “ghost-free” attribute to those

theories.

That being said, due to the exponential factor it is impossible to perform a contour integration

in the complex k-plane to evaluate the full integral since the exponential diverges in the

directions k → ±i∞. In the cases of higher N , these directions can also be at an angle in

the complex plane. These divergences are essential singularities and not mere poles, and for

that reason one cannot employ contour integration to solve the above integral. Moreover, the

presence of these essential singularities poses an enormous obstacle towards Wick rotation

methods in the full non-local theory.
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However, there is a simple way to solve this problem. Let us define

Gω,k = Gω,k + ∆Gω,k , Gω,k =
−1

ω2 − k2
, ∆Gω,k =

1 − exp [(ω2 − k2)ℓ2]

ω2 − k2
. (2.45)

Then, the double Fourier transform ofGω,k can be performed identical to the local theory. The

term ∆Gω,k should be understood as a non-local modification. Its double Fourier transform

is given by the following integral:

∆G(t′ − t, x′ − x) =

∞∫︂
−∞

dω

2π
e−iω(t′−t)

∞∫︂
−∞

dk

2π
e+ik(x′−x)∆Gω,k (2.46)

The integrand ∆Gω,k does not have any poles: the two simple poles are absent for any function

that satisfies f(0) = 1, which is guaranteed in the class of non-local field theories studied

here.

Does this integral always exist? The answer is: it depends. In the above case we inserted

the choice N = 1, and in this case the temporal part of the Fourier transform is unbounded.

However, in purely static and some stationary situations when the temporal part of the Green

function can be discarded, these integrals exist and provide interesting insights. We will make

use of these static Green functions extensively in Chs. 3–5. Whenever the temporal part is

required, or a summation over frequency modes needs to be performed (see, e.g., the case of

quantum field theory in Ch. 6), only the case of even N is permissible.

Because integration is performed over a Lorentz-invariant integrand that is purely a func-

tion of ω2 − k2 one can employ a transformation to hyperbolic coordinates to simplify these

integrals substantially, not dissimilar to the case of spherical coordinates in Euclidean ge-

ometries. However, due to the non-compactness of the Lorentz group one needs more than

one coordinate patch to cover the entirety of Minkowski space. We refer the reader to the

work of DeWitt–Morette et al. [173] for explicit representations of these integrals in two and

higher dimensions.

Let us rewrite the above integration (and include a mass m > 0 as a two-dimensional regu-

lator)

∆G(t, x) =

∫︂
R1,1

d2q

(2π)2
eiqµx

µ

A(q2) , A(q2) = −
1 − exp

[︁
−ℓ2N(q2 +m2)N

]︁
q2 +m2

, (2.47)



2.6. Causality from analyticity: non-local case 32

where we defined qµ = (ω, k) and q2 = −ω2 + k2. Then, using the results of [173] one finds

∆G(t, 0) = − 1

2π

∞∫︂
0

dsA(−s2)sY0(st) +
1

π2

∞∫︂
0

dsA(s2)sK0(st) , (2.48)

∆G(0, x) =
1

π2

∞∫︂
0

dsA(−s2)sK0(sx) − 1

2π

∞∫︂
0

dsA(s2)sY0(sx) . (2.49)

For t > 0, x > 0, and even N the above integrals can be evaluated numerically since the

integrands are regular everywhere in the integration domain and approach zero as s → ±∞
sufficiently fast. One can also show that

∆G(0, u) = −∆G(u, 0) . (2.50)

  
Figure 2.3: We evaluate the non-local modification ∆G(t, x) numerically for GF2 theory (mass

parameter mℓ = 10−3). Equation (2.50) implies that the spacelike and timelike directions

behave similarly. The diagram shows that ∆G(t, 0) decreases rapidly in time, and hence a

similar property holds for the decrease of ∆G(0, x) in space. We will address the null direction

separately below.

See Fig. 2.3 for a plot of the non-local modification in GF2 theory for N = 2. Evidently, the

non-local modification decrease equally fast in both temporal and spatial distances. However,

it is manifestly non-zero outside the light cone, thereby violating microcausality; see Fig. 2.4

for a visualization. DeWitt’s condition of asymptotic causality, however, is satisfied. In

particular, this class of non-local field theories comes with a length scale ℓ, such that we can
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t

x

(t, x)

(t′1, x
′
1)

(t′2, x
′
2)

(t′3, x
′
3)

Figure 2.4: Consider the non-local free Green function G(t′ − t, x′ − x) and let us suppose

that there exists a field fluctuation at (t, x). At large distances, the non-local Green function

mimics the causal behavior of the local Green function. At “small scales,” however, where

| − (t′ − t)2 + (x′ − x)2| ∼ ℓ2, non-causal effects may appear. Note that this “small scale,”

highlighted as the shaded hyperboloid in the above figure, in fact has infinite extension in the

null directions and is only a small scale in the purely timelike or spacelike directions. At this

point, this is only to be understood as a qualitative picture, and we will devote a substantial

part of this thesis to understanding this better.

write (for even N)

∆G(t, 0) = 0 if t≫ ℓ , ∆G(0, x) = 0 if x≫ ℓ . (2.51)

We should point out that in the framework of special relativity there is no such thing as

a “small spacetime volume” on which non-locality becomes important. This is due to the

indefinite signature of the spacetime metric: If one restricts an area by demanding

| − (t′ − t)2 + (x′ − x)2| ∼ ℓ2 (2.52)

it corresponds to spatial and temporal distance of O(ℓ), but corresponds to infinite extension

in spacetime along the null directions. In this thesis we will primarily deal with static

situations, where we can always effectively ignore the temporal direction, and hence the

notion of “small scales” is sensible.

For the remainder of this section we will collect a few analytical results we were able to find.
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2.6.1 Explicit expressions

Let us now consider the purely temporal Fourier transform of the non-local modification term

in one spatial dimension,

∆Gω(x) =

∞∫︂
−∞

dq

2π
cos(qx)Aω(q) , Aω(q) =

1 − exp
[︁
−ℓ2N(q2 − ω2)N

]︁
ω2 − q2

. (2.53)

In the case of N = 1 this can be evaluated explicitly by expressing the above as a double

integral:

∆Gω(x) =

∞∫︂
−∞

dq

2π
eiqx

e−ℓ2(q2−ω2) − 1

q2 − ω2
= −

ℓ2∫︂
0

ds

∞∫︂
−∞

dk

2π
eiqxe−s(q2−ω2) . (2.54)

By commuting the integrals and evaluating the Gaussian s-integral first one arrives at

GR
ω (x) =

i

4ω

[︁
eiωxY (x) + e−iωxY (−x)

]︁
, Y (x) = 1 + erf

(︂
iωℓ+

x

2ℓ

)︂
, (2.55)

∆Gω(x) = − 1

2ω
erfi(ωℓ) , (2.56)

where erfi(x) = −ierf(ix) denotes the imaginary error function [174]. One may verify that

in the limit of x/ℓ → ∞ one has Y (x) = 1 + sgn(x), which implies GR
ω (x) → GR

ω (x). This

guarantees that in the limit of vanishing non-locality we recover the local theory, as well as the

identical asymptotic behavior of the non-local retarded Green function. This is consistent

with our previous considerations where we showed that the causal properties of a Green

function stem from the analytic behavior of its local part because its non-local modification

term does not have any poles in the complex plane at finite radius.

For N = 2 such a general expression cannot be found, but instead we are able to compute

∆Gω(0) explicitly. Since this discussion is a bit more technical we refer to appendix A.4.1 for

the calculational details. The result for N = 2 in one spatial dimension is

∆Gω(0) =

√
2ω2ℓ3

6Γ
(︁
3
4

)︁ 2F 2

(︁
3
4
, 5
4
; 3

2
, 7
4
; −ω4ℓ4

)︁
−

Γ
(︁
3
4

)︁
ℓ

π
2F 2

(︁
1
4
, 3
4
; 1

2
, 5
4
; −ω4ℓ4

)︁
. (2.57)
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2.6.2 General asymptotics

At this point, there is one additional insight that can be taken for general N . One may

integrate by parts to obtain

∆Gω(x) = −1

x

∞∫︂
−∞

dq

2π
sin(qx)

dAω(q)

dq
, (2.58)

where the boundary terms vanish both for even N and odd N , since the spatial part is always

decreasing. These integrations by part can be repeated ad infinitum, yielding another factor

of 1/x each time, and for that reason prove that the non-local modification ∆Gω(x) decreases

faster than any power in x for each given Fourier mode ω.

The important insight of this section is the following: macroscopic causality is dictated purely

by the analytic properties of the local Green function in Fourier space; the analytic properties

of the non-local modification do not play any role. At length scales comparable to the scale of

non-locality ℓ, however, non-local Green functions violate the causality conditions, since they

are non-vanishing outside the future light cone. Let us note that this property is intricately

connected with f(0) = 1, which in turn guarantees that asymptotically one recovers the local

theory.

2.7 Non-local Green function contributions: some re-

sults

An analytic treatment of the non-local modification term ∆G(t, x) is difficult. While the

case N = 1 is easier to treat due to its effectively Gaussian appearance, the convergence is

not guaranteed because of the divergence in the temporal Fourier transform. The closest

alternative, N = 2, is numerically well-behaved, but analytically more challenging due to the

quartic exponential expression. Here we would like to present some intermediate results that

may prove helpful in the future to understand the case N = 2 better.

Let us start again with the representation of the non-local modification for d spatial dimen-

sions,

∆G(t,x) =

∞∫︂
0

dω

π
cos(ωt)

∫︂
Rd

ddk

(2π)d
eik·x

1 − e−ℓ4(k2−ω2)2

ω2 − k2 (2.59)
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=
1

2π2x

∞∫︂
0

dω cos(ωt)

∞∫︂
0

dkkd−2 sin(kx)
1 − e−ℓ4(k2−ω2)2

ω2 − k2
, (2.60)

where we denote x = |x| and k = |k|. There is the following identity:

1 − e−ℓ4p2

p
=

1√
πℓ2

∞∫︂
0

dye−y2/(4ℓ2)

y∫︂
0

dz sin(pz) , p ∈ R . (2.61)

Inserting this into (2.60) one finds

∆G(t, x) =
1

2π5/2ℓ2x

∞∫︂
0

dye−y2/(4ℓ2)

y∫︂
0

I(t, x, z) , (2.62)

I(t, x, z) = I1I2 − I3I4 , (2.63)

where we defined the following regularized integrals:

I1 = lim
α→0

∞∫︂
0

dω e−αω cos(ωt) sin(ω2z) , I3 = lim
α→0

∞∫︂
0

dω e−αω cos(ωt) cos(ω2z) , (2.64)

I2 = lim
α→0

∞∫︂
0

dk e−αkkd−2 sin(kx) cos(k2z) , I4 = lim
α→0

∞∫︂
0

dk e−αkkd−2 sin(kx) sin(k2z) .

(2.65)

2.7.1 Four-dimensional case

In the case of d = 3 one can show

∆G(t, x) =
−1

16π3/2ℓ2

∞∫︂
0

dye−y2/(4ℓ2)

y∫︂
0

dz

z2
cos

(︃
t2 − x2

4z

)︃
, (2.66)

where one now has to evaluate

y∫︂
0

dz

z2
cos

(︃
t2 − x2

4z

)︃
=

4

x2 − t2

[︃
sin

(︃
t2 − x2

4y

)︃
− S0

]︃
, S0 = lim

z→0
sin

(︃
t2 − x2

4z

)︃
. (2.67)
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Leaving aside the limiting procedure for S0 one can calculate

∆G(t, x) =
1

4π3/2ℓ2(t2 − x2)

∞∫︂
0

dye−y2/(4ℓ4)

[︃
sin

(︃
t2 − x2

4y

)︃
− S0

]︃
(2.68)

=
1

64πℓ2
G20

03

(︄
(t2 − x2)2

256ℓ4

⃓⃓⃓⃓
⃓0, 0,−1

2

)︄
− S0

4π(t2 − x2)
,

where G denotes the Meijer G-function with the parameters n = 0, p = 0, m = 2, q = 3 as

well as

b1 = b2 = 0 , b3 = −1

2
. (2.69)

The asymptotics of the Meijer G-function with the above values are [174]

G20
03(x) ≈

⎧⎪⎪⎨⎪⎪⎩
− 2√

π

(︁
2γ − Ψ

(︁
3
2

)︁
+ log x

)︁
for x≪ 1 ,

− 2√
3x

ℑ exp
[︁
−3eiπ/3x1/3

]︁
for x≫ 1 ,

γ ≈ 0.57722 . . . , Ψ
(︁
3
2

)︁
≈ 0.03649 . . . . (2.70)

From these asymptotics it is clear that for large distances, that is, either t/ℓ ≫ 1 or x/ℓ ≫
1, the non-local modification decreases, in accordance with DeWitt’s notion of asymptotic

causality.

2.7.2 Two-dimensional case

Also the two-dimensional case can be treated to some extent. In this case one finds

∆G(t, x) =
1√
πℓ2

∞∫︂
0

dye−y2/(4ℓ2)

y∫︂
0

dz(Ĩ1Ĩ2 − Ĩ3Ĩ4) (2.71)

=
1

4π3/2ℓ2

∞∫︂
0

dye−y2/(4ℓ2)

y∫︂
0

dz

z
sin

(︃
t2 − x2

4z
+m2z

)︃
, (2.72)

where we used

Ĩ1 =

∞∫︂
0

dω

π
cos(ωt) cos(ω2z) =

cos[t2/(4z)] + sin[t2/(4z)]

2
√

2πz
, (2.73)
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Ĩ2 =

∞∫︂
0

dq

π
cos(qx) sin[(q2 +m2)z] =

cos[x2/(4z) −m2z] − sin[x2/(4z) −m2z]

2
√

2πz
, (2.74)

Ĩ3 =

∞∫︂
0

dω

π
cos(ωt) sin(ω2z) =

cos[t2/(4z)] − sin[t2/(4z)]

2
√

2πz
, (2.75)

Ĩ4 =

∞∫︂
0

dq

π
cos(qx) cos[(q2 +m2)z] =

cos[x2/(4z) −m2z] + sin[x2/(4z) −m2z]

2
√

2πz
. (2.76)

Again, we introduced the mass m > 0 as a two-dimensional infrared regulator. On the light

cone (and hence, by Poincaré invariance, in the coincidence limit) one can calculate

∆G(0, 0) =
1

4π
√
πℓ2

∞∫︂
0

dye−y2/(4ℓ4)

y∫︂
0

dz
sinm2z

z
=

1

4π
√
πℓ2

∞∫︂
0

dye−y2/(4ℓ4) Si(m2y) (2.77)

=
m2ℓ2

2π
√
π

2F 2

(︁
1
2
, 1; 3

2
, 3
2
;−m4ℓ4

)︁
(2.78)

In particular, for m = 0 we find that ∆G(0, 0) = 0. The shape of the generalized hypergeo-

metric function with the above values behaves roughly like e−mℓ/2.

In the massless case, m = 0, we can calculate the non-local modification analytically. Defining

the spacelike distance τ 2 := t2 − x2 for convenience, we make use of the identity

y∫︂
0

dz

z
sin

(︃
τ 2

4z

)︃
= sgn

(︁
τ 2
)︁ π

2
− Si

(︃
τ 2

4y

)︃
, τ 2 ̸= 0 . (2.79)

Then, one arrives at

∆G(t, x) = sgn(τ 2)

[︄
1

8
− τ 2

128πℓ2
G21

14

(︄
+

τ 4

256ℓ4

⃓⃓⃓⃓
1
2

0, 0,−1
2
,−1

2

)︄]︄
. (2.80)

On the light cone one can calculate directly, also in the massless limit,

∆G(0, 0) = 0 . (2.81)

Even though these partial results only allow us an incomplete study of the non-local modifi-

cation term of the Green function, we list them here in the hope that they will prove useful

in the future. For similar expressions, also involving the Meijer G-function, we refer to the

review article on ghost-free infinite-derivative quantum field theory by Buoninfante et al. [83].
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2.8 Static Green functions

Let us now leave spacetime and focus on purely spatial Green functions. As we will see in the

next chapter, spatial Green functions are entirely sufficient to discuss static and stationary

situations where retardation effects are absent. While the use of these Green functions is

quite straightforward, their derivation involves a few useful techniques which we would like

to present in this section, before turning to applications in the next chapter.

To be more concrete, we will focus on spatial Green functions of the Laplace operator △
and functions thereof, f(△). The fundamental difference of treating spatial Green functions

of the Laplace operator △ as compared to spacetime Green functions of the d’Alembert

operator □ lies in the fact that the Laplace operator is elliptical, whereas the d’Alembert

operator is hyperbolic. This means that zero mode solutions of the form □ϕ = 0 and △ψ = 0

have very different behavior. While ϕ may be a propagating wave, harmonic functions ψ,

on a non-compact manifold, can often be excluded straightforwardly by fixing appropriate

boundary conditions (since they are polynomial functions in flat space, for example).

In a mathematical language one could say that the kernel of the Laplace operator is empty,

provided one forbids polynomially increasing or decreasing harmonic solutions by fixing the

boundary conditions. This is very convenient because it implies that the Fourier representa-

tions for the Green functions do not need to be regulated: they can be calculated straight-

forwardly. This fact has become apparent already in the previous sections, because the

convergence for the Fourier representation of spatial Green functions is always guaranteed.

For these reasons, spatial Green functions are easier to treat than the time-dependent space-

time Green functions. Let us now focus on the class of GFN theories where

f(△) = exp[(−ℓ2△)N ] , ℓ > 0 , N ∈ N . (2.82)

Clearly this choice satisfies f(0) = 1. A spatial Green function satisfies this relation:

f(△)△Gd(x
′ − x) = −δ(d)(x′ − x) (2.83)

Here and in what follows we shall work in d-dimensional flat space, and x denotes the

collection of all spatial coordinates. The Green function is only a function of the difference

of x and x′ due to the translational symmetry of empty flat space, and we introduced the

subscript “d” to keep track of the dimensions. The Fourier representation of this Green
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function takes the form

Gd(x
′ − x) =

∫︂
ddk

(2π)d
e+ik·(x′−x)Gd,k , Gd,k =

e−(k2ℓ2)N

k2
, (2.84)

where k = |k|. It is now useful to perform this Fourier transformation in spherical momentum

coordinates instead, wherein one may choose

k · (x′ − x) = kr cos θ , r = |x′ − x| . (2.85)

From the above consideration it is also clear that the Green function can be expressed as a

function of r alone, which follows from the spherical symmetry of empty flat space around

the origin. Here and in what follows, in order to keep the notation somewhat manageable, we

shall use Gd(r) and Gd(x
′−x) interchangeably, that is, we will use the same symbol both for

the Green function with a d-dimensional vectorial argument as well as for the Green function

with the radial argument. Because the distance x′ − x only enters the free Green function

Gd via the absolute value this abbreviation is unique.

Introducing d-dimensional spherical momentum coordinates {k, θ, φ1, . . . , φd−2} one finds

Gd(r) =
Ad−2

(2π)d

∞∫︂
0

dkkd−3e−(k2ℓ2)N

π∫︂
0

dθ sind−2 θeikr cos θ (2.86)

=
Ad−2

(2π)d

∞∫︂
0

dkkd−3e−(k2ℓ2)N

π∫︂
0

dθ sind−2 θ cos(kr cos θ) , (2.87)

where Ad−2 is the surface of the (d− 2)-sphere,

Ad−2 = 2
π(d−1)/2

Γ
(︁
d−1
2

)︁ . (2.88)

Using now the following representation of the Bessel function (Eq. (10.9.4) in Ref. [174]),

Jν(z) =

(︁
z
2

)︁ν
√
πΓ
(︁
ν + 1

2

)︁ π∫︂
0

dθ sin2ν θ cos(z cos θ) , (2.89)

identifying d− 2 = 2ν, and performing a variable substitution ζ = kr, we finally arrive at

Gd(r) =
1

(2π)d/2rd−2

∞∫︂
0

dζζ
d−4
2 e−(zℓ/r)2NJ d

2
−1(ζ) . (2.90)
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This integral can be evaluated analytically for a wide range of d ≥ 3 and N ≥ 1. For other

functions f(△) the integral representation takes the more general form

Gd(r) =
1

(2π)d/2rd−2

∞∫︂
0

dζζ
d−4
2

1

f(−ζ2/r2)
J d

2
−1(ζ) . (2.91)

There are some interesting observations which we want to address next.

2.8.1 Higher and lower dimensions

First, one may wonder what happens in the case d = 2? To that end, note that the Green

function Gd(r) satisfies the following recursion relations:

Gd(r) = −2π

r∫︂
r0

dr̃ r̃Gd+2(r̃) , Gd+2(r) = − 1

2πr

∂Gd(r)

∂r
. (2.92)

This happens because of spherical symmetry: the surfaces of the (d − 2)-sphere and the d-

sphere are related recursively as well. There is an ambiguity in the above formulas regarding

the lower integration bound r0. While in the cases d ≥ 3 one may set r0 = ∞ because the

Green functions vanish asymptotically, in the case of d = 2 this is not permissible. This

problem is well known and stems from the fact that the two-dimensional Green function is

dimensionless and hence requires an ad hoc reference scale. This will become more clear in

explicit examples, such as the gravitational field of a cosmic string in Ch. 3. With that caveat

out of the way, the recursion relations (2.92) can be used to determine the Green functions

in arbitrarily high dimensions with only two “seed Green functions.”

2.8.2 Local limit

Second, one may wonder what happens in the case of ℓ→ 0, that is, in the local case. From

the condition f(0) = 1 it follows immediately that

Gd(r) =
1

(2π)d/2rd−2

∞∫︂
0

dζζ
d−4
2 J d

2
−1(ζ) . (2.93)

This integral, while being just a dimension-dependent factor in the local limit, is only well-

defined for d = 3, 4. In higher dimensions it needs to be regulated and one finds for all d ≥ 3
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the following result:

lim
ϵ→0

∞∫︂
0

dζe−ϵζζ
d−4
2 Jd

2
−1

(ζ) = 2d/2−2Γ
(︁
d
2
− 1
)︁
. (2.94)

Interestingly, for ℓ > 0 the scale of non-locality automatically regularizes this integral, and

one may simply calculate it for any d ≥ 3 with ℓ > 0 and then take the limit ℓ → 0. One

may wonder what the origin of this divergence is. The integrand is perfectly regular at ζ = 0

and d ≥ 3 because

ζ
d−4
2 Jd

2
−1

(ζ) =
21−d/2

Γ
(︁
d
2

)︁ ζd−3 + O(ζd−1) for ζ ≪ 1 . (2.95)

Conversely, for large arguments ζ the Bessel function exhibits oscillatory behavior, and to-

gether with the polynomially growing prefactor these oscillations are no longer decreasing as

ζ → ∞ and d ≥ 5. Since ζ = kr, and the divergence occurs for any radius variable r, we

conclude that the divergence in d ≥ 5 must stem from large momenta k.

The local limit then takes the following form for any d ≥ 3:

Gd(r) = lim
ℓ→0

Gd(r) =
Γ
(︁
d
2
− 1
)︁

4πd/2

1

rd−2
. (2.96)

Because f(0) = 1 the local limit also corresponds to the large-distance limit, and hence we

see that the non-local modification ℓ > 0 is not relevant at length scales much larger than

ℓ, giving yet another argument in favour of DeWitt’s asymptotic causality condition already

mentioned in Sec. 2.5. Without time it is of course difficult to speak of causality, but what

we have proven here is that the influence of the non-local modification decreases rapidly with

distance.

2.8.3 Coincidence limit

Third, after discussing the local limit and the asymptotics r/ℓ→ ∞, let us also take a look at

the coincidence limit r → 0. Inserting the transformation η = z2/r2 into Eq. (2.90) one finds

yet another representation of the static Green function in terms of the Bessel function [144],

Gd(r) =
1

4π

∞∫︂
0

dη
1

f(−η)η

(︃√
η

2πr

)︃ d
2
−1

Jd
2
−1

(
√
ηr) . (2.97)
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Using again the expansion for small arguments r → 0 one finds

Gd(r → 0) ≈ c0 + c2r
2 + O

(︁
r4
)︁
, (2.98)

c0 =
1

(4π)d/2Γ
(︁
d
2

)︁ ∞∫︂
0

dη η
d
2
−2 1

f(−η)
, (2.99)

c2 = − 1

4(4π)d/2Γ
(︁
d
2

+ 1
)︁ ∞∫︂

0

dη η
d
2
−1 1

f(−η)
. (2.100)

It is clear that in the local theory when f ≡ 1 both c0 and c2 diverge, explaining the standard

divergence of fields at the origin of a δ-distributional source. Note, however, that all non-

zero f that also have sufficiently decreasing asymptotics for large arguments regularize this

integral and hence regularize the physical fields at the origin!

Let us focus again on the GFN case when

f(−η) = exp
[︁
(ηℓ2)N

]︁
. (2.101)

Then one obtains, for any N ≥ 1 and d ≥ 3, the following finite coefficients:

c0 =
Γ
(︁
d−2
2N

)︁
(4π)d/2NΓ

(︁
d
2

)︁
ℓd−2

, c2 = −
Γ
(︁

d
2N

)︁
4(4π)d/2NΓ

(︁
d
2

+ 1
)︁
ℓd
. (2.102)

This constitutes a fairly general proof of the regularity of the static Green functions at the

origin for any GFN theory. It is clear that similar properties hold for other non-local theories

with similar asymptotic in the function f .

Even though it is not the main focus of this thesis we would like to remark that certain

higher-derivative theories, where, for example, f(△) = 1 + (−ℓ2△)N , share this property.

However, in this case the regularity only holds if one chooses a suitably high N given a

dimension d due to the merely polynomial falloff behavior.

Last, we would like to comment on the absence of the linear c1-term in the r-expansion (2.98):

it implies that the first derivative is differentiable at r = 0, which is important because r is

a radius variable; compare also the considerations in Ref. [143] in this context.

2.8.4 Explicit expressions

It will be useful for the rest of this thesis to have exact expressions for these static Green

functions at our disposal. In this subsection, for notational compactness, let us denote the
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static Green functions of GFN theory in d-dimensional Euclidean space as GN
d (r), and their

local counterparts as Gd(r). We find the following expressions:

G1(r) = −r
2
, (2.103)

G1
1(r) = −r

2
erf
(︂ r

2ℓ

)︂
− ℓ

exp [−r2/(4ℓ2)] − 1√
π

, (2.104)

G2
1(r) = − ℓ

π

{︂
2Γ(1

4
)y 1F3

(︁
1
4
; 3

4
, 5
4
, 3
2
; y2

)︁
+ Γ(3

4
)
[︂
1F3

(︁
−1

4
; 1

4
, 1
2
, 3
4
; y2

)︁
− 1
]︂}︂

(2.105)

G2(r) = − 1

2π
log

(︃
r

r0

)︃
, (2.106)

G1
2(r) =

1

4π

[︃
Ei

(︃
− r2

4ℓ2

)︃
− 2 log

(︃
r

r0

)︃]︃
, (2.107)

G2
2(r) = − y

2π

[︂ √
π 1F3

(︁
1
2
; 1, 3

2
, 3
2
; y2

)︁
− y 2F4

(︁
1, 1; 3

2
, 3
2
, 2, 2; y2

)︁ ]︂
, (2.108)

G3(r) =
1

4πr
, (2.109)

G1
3(r) =

erf[r/(2ℓ)]

4πr
, (2.110)

G2
3(r) =

1

6π2ℓ

[︂
3Γ
(︁
5
4

)︁
1F3

(︁
1
4
; 1

2
, 3
4
, 5
4
; y2

)︁
− 2yΓ

(︁
3
4

)︁
1F3

(︁
3
4
; 5

4
, 3
2
, 7
4
; y2

)︁ ]︂
, (2.111)

G4(r) =
1

4π2r2
, (2.112)

G1
4(r) =

1 − exp [−r2/(4ℓ2)]
4π2r2

, (2.113)

G2
4(r) =

1

64π2yℓ2

[︂
1 − 0F2

(︁
1
2
, 1
2
; y2

)︁
+ 2

√
πy 0F2

(︁
1, 3

2
; y2

)︁ ]︂
, (2.114)

where we used the abbreviation y = (r/4ℓ)2, γ = 0.577 . . . is the Euler–Mascheroni constant,1

and aFb denotes the hypergeometric function [174]. Moreover, erf(x) is the error function,

and Ei(x) denotes the exponential integral,

erf(x) =
2√
π

x∫︂
0

dze−z2 , Ei(−x) = −E1(x) = −
∞∫︂
x

dz
e−z

z
for x > 0 . (2.115)

1At the time of writing this thesis the author is not sure whether there already exists a Don Page mnemonic
for this quantity to a precision of at least six digits. Addendum: It is possible to approximate γ ≈ 228/395
to one part in 1,200,000 while simultaneously endowing it with a suitable mnemonic [175].
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Let us also comment that in the cases N = 1 and N = 2 it is possible to give the static

Green functions GN
d (r) in a closed form [144] for d ≥ 3,

G1
d(r) =

γ
(︂

d
2
− 1, r2

4ℓ2

)︂
4πd/2rd−2

, (2.116)

G2
d(r) =

22−3d
2 π

1−d
2

d(d− 2)ℓd−2

[︂ d

Γ
(︁
d
4

)︁1F3

(︁
d
4
− 1

2
; 1

2
, d
4
, d
4

+ 1
2
; y2

)︁
− 2(d− 2)y

Γ
(︁
d
4

+ 1
2

)︁1F3

(︁
d
4
; 3

2
, d
4

+ 1, d
4

+ 1
2
; y2

)︁ ]︂
,

where γ(s, x) denotes the lower incomplete gamma function [174],

γ(s, x) :=

x∫︂
0

zs−1e−zdz . (2.117)

We chose to display these quantities in the middle of the thesis over banishing them to the

appendix since they play a central role for many of the forthcoming results to be presented in

the following chapters. We display the dimensionless Green functions ℓd−2Gd(r) as a function

of dimensionless distance r/ℓ in Fig. 2.5, showing that they are manifestly regular at r = 0

and coincide with the local expressions for r ≫ ℓ.

2.8.5 Heat kernel representation of static Green functions

Last, we would like to mention a useful representation of non-local static Green functions in

terms of the heat kernel in imaginary time. This heat kernel satisfies

△Kd(x|τ) = −i∂τKd(x|τ) , lim
τ→0

Kd(x|τ) = δ(d)(x) , lim
τ→±∞

Kd(x|τ) = 0 . (2.118)

The explicit representation in d spatial dimensions is

Kd(x|τ) =
1

(4πiτ)d/2
exp

(︃
ix2

4τ

)︃
. (2.119)

We will now prove that one can write the static d-dimensional Green function as

Gd(r) =
1

2π

∞∫︂
−∞

dη

f(−ηℓ2)η

∞∫︂
−∞

dτKd(r|τ)eiητ . (2.120)

To prove this result, let us define an object Kd(x|τ) as a solution of

f(△)Kd(x|τ) = iKd(x|τ) . (2.121)
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Figure 2.5: We plot the dimensionless Green functions ℓd−2 Gd(r) for the local case of lin-

earized General Relativity as well as for the non-local cases of linearized GF1 and GF2 theory

for the dimensions d = 1, 2, 3, 4. At scales much larger than the scale of non-locality, r/ℓ≫ 1,

all three functions agree. At short distances, r/ℓ ≪ 1, they differ quite strongly: while the

local Green functions are singular at r = 0 for d > 1, all non-local Green functions are finite

and well-behaved.

Then the Green function Gd(x) can be written as

Gd(x) =

∞∫︂
0

dτKd(x|τ) . (2.122)

To see this, simply insert the above representation into the definition of the non-local Green

function (2.83), make use of (2.118), integrate by parts, and again use (2.118). Let us now

introduce the imaginary-time Fourier transform of the object Kd(x|τ) such that

˜︁Kd(x|ω) =

∞∫︂
−∞

dτeiωτKd(x|τ) , Kd(x|τ) =

∞∫︂
−∞

dω

2π
e−iωτ ˜︁K(x|ω) . (2.123)
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Then we can write

Gd(x) =

∞∫︂
0

dτ

∞∫︂
−∞

dω

2π

∞∫︂
−∞

dτ ′e−iω(τ−τ ′)Kd(x|τ ′) (2.124)

=

∞∫︂
0

dτ

∞∫︂
−∞

dω

2π

∞∫︂
−∞

dτ ′e−iω(τ−τ ′) i

f(△)
Kd(x|τ ′) (2.125)

=

∞∫︂
0

dτ

∞∫︂
−∞

dω

2π

∞∫︂
−∞

dτ ′e−iω(τ−τ ′) i

f(−i∂τ )
Kd(x|τ ′) (2.126)

=

∞∫︂
0

dτ

∞∫︂
−∞

dω

2π

∞∫︂
−∞

dτ ′e−iω(τ−τ ′) i

f(−ω)
Kd(x|τ ′) . (2.127)

First we used the definition (2.121), then made use of the heat equations (2.118), and inte-

grated by parts. The boundary contributions vanish due to (2.118). The remaining integral

over τ can be regulated via

∞∫︂
0

dτe−iωτ ≡ lim
ϵ→0

∞∫︂
0

dτe−i(ω−iϵ)τ =
−i
ω
. (2.128)

We then finally obtain the desired representation

Gd(x) =

∞∫︂
−∞

dω

2π

∞∫︂
−∞

dτ ′eiωτ
′ 1

ωf(−ω)
Kd(x|τ ′) . (2.129)

As we will see later, this representation is very useful because it isolates the spatial dependence

into the d-dimensional heat kernel, which has a Gaussian form. For this reason, all spatial

coordinates appear as symmetric factors.

2.9 Concluding remarks

In this chapter we have developed the idea of non-local Green functions, both in spacetime

and in the Fourier domain. In general, non-local Green functions violate causality inside a

non-local hyperbolic region, and it is useful to define the non-local modification of a Green

function as the difference between the non-local version and the local version. We have shown

that this difference is regular in the Fourier domain and does not introduce any new poles.

For this reason the global causal properties of the Green functions are predicted by their
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local part alone, and we demonstrate explicitly that ghost-free non-local Green functions

obey DeWitt’s asymptotic causality condition.

While the region where non-locality becomes important is indeed compact in purely timelike

and spacelike directions, it may extend infinitely far along the null directions. For this reason

it is instructive to evaluate the non-local modification term on the light cone, and we were

able to show in some examples that its value on the light cone is proportional to the mass

parameter of the theory under consideration.

If the situation is time-independent, the considerations simplify drastically. The effects of

non-locality become confined to a compact region in space alone, and it is possible to construct

corresponding spatial Green functions explicitly in a wide range of theories. They have two

important properties. First, they are finite and regular in the coincidence limit, unlike in

the local case, where they diverge. And second, they asymptotically coincide with their local

counterparts, which guarantees that non-local modifications tend to decrease with spatial

distance.
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Chapter 3

Static and stationary solutions in

weak-field gravity

Using the previous results on static Green functions we will demonstrate in this chapter

how we can utilize them to construct the gravitational field of static and stationary mass

distributions in the weak-field limit of non-local ghost-free gravity. This chapter is based on

Refs. [1, 2, 7, 8].

3.1 Weak-field limit of non-local gravity

We are interested in the dynamics of weak-field non-local gravity around a flat Minkowski

background. Considering metrics of the form gµν = ηµν + ϵhµν , where ηµν is the Minkowski

metric in Cartesian coordinates, hµν describes the weak gravitational field, and ϵ ≪ 1, it is

sufficient to consider an action that is at most quadratic in the perturbation and hence of

O(ϵ2). This guarantees that after the variation the field equations are of linear order in the

perturbation hµν .

A suitable parity-even and torsion-free action for non-local infinite-derivative gravity is at

most quadratic in curvature [71] and can be written in terms of a non-local operator Oµνρσ
αβγδ

in the form

S[gµν ] =
1

2κ

∫︂ √
−gdDx

(︃
R +

1

2
RµνρσOµνρσ

αβγδR
αβγδ

)︃
. (3.1)

As is well known, see [176], there only exist three quadratic curvature invariants proportional

to CµνρσC
µνρσ, RµνR

µν and R2, where Cµνρσ is the Weyl tensor, Rµν is the Ricci tensor,
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and R is the Ricci scalar, in which case the operator Oµνρσ
αβγδ can be constructed purely from

the metric gµν and the Kronecker symbol δµν . In non-local theories, however, the operator

may also include an arbitrary amount of covariant derivatives, either as “free indices” ∇µ

or contracted into covariant d’Alembert operators gµν∇µ∇ν . For studies including non-

vanishing torsion we refer to Ref. [155].

It is important to stress that not all possible derivative terms are physically relevant at

leading order (that is, quadratic in ϵ at the level of the action, or linear in ϵ at the level of the

field equations). For example, is it possible to commute two covariant derivatives between

the two curvature tensors, since the correction term is proportional to the Riemann curvature

(or a contraction thereof), which generates a higher-order term in curvature that leaves the

linearized field equations invariant. Moreover one may always employ the Bianchi identities

Rµν[ρσ;λ] = 0.

For a detailed consideration of all possible quadratic terms we refer to Ref. [71], where it

is proven that the operator Oµνρσ
αβγδ can be written in terms of covariant derivatives and six

independent functions of the d’Alembert operator, which, after applying the aforementioned

commutator of covariant derivatives, reduces the amount of free functions to only three.

During the derivations it is helpful to keep the covariant formalism for a general metric gµν

and only at the end, when the action is at the final form, expand to quadratic order in ϵ

using gµν = ηµν +ϵhµν . Then, one can demonstrate that the number of independent functions

reduces even more to only two [144], and the final weak-field action takes the form [71]

S [hµν ] =
1

2κ

∫︂
dDx

(︂ 1

2
hµν a(□)□hµν − hµν a(□)∂µ∂α h

α
ν + hµν c(□)∂µ∂νh− 1

2
h c(□)□h

+
1

2
hµν

a(□) − c(□)

□
∂µ∂ν∂α∂β h

αβ
)︂
, (3.2)

where from now on we shall drop the coefficient ϵ and assume hµν ≪ 1. This action may

be seen as a non-local generalization of the quadratic action proposed by van Nieuwenhuizen

[177]. The two expressions a(□) and c(□) are non-zero functions of the d’Alembert operator

(“form factors”) that satisfy

a(0) = c(0) = 1 . (3.3)

As we have already seen in Ch. 2, and will see in more detail in this chapter as well, this

constraint guarantees that one recovers linearized General Relativity at large distances. The
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resulting field equations are

a(□)
[︁
□hµν − ∂σ

(︁
∂ν hµ

σ + ∂µhν
σ
)︁]︁

+ c(□)
[︁
ηµν
(︁
∂ρ∂σh

ρσ −□h
)︁

+ ∂µ∂νh
]︁

+
a(□) − c(□)

□
∂µ∂ν∂ρ∂σh

ρσ = −2κTµν ,
(3.4)

where T µν is the energy-momentum tensor. Note that the energy-momentum tensor con-

servation, ∂µT µν = 0, is consistent with the field equations, as it should be. In the time-

independent case one obtains

a(△)
[︁
△hµν − ∂σ

(︁
∂ν hµ

σ + ∂µhν
σ
)︁]︁

+ c(△)
[︁
ηµν
(︁
∂ρ∂σh

ρσ −△h
)︁

+ ∂µ∂νh
]︁

+
a(△) − c(△)

△
∂µ∂ν∂ρ∂σh

ρσ = −2κTµν ,
(3.5)

where we replaced □ → △, and we shall employ this equation in the following sections in

order to find static or stationary solutions.

3.1.1 Gauge freedom

The action of non-local ghost-free gravity is generally covariant because the non-local modi-

fication enters via a scalar form factor containing the d’Alembert operator “□” sandwiched

between curvature tensors. After the linearization this general covariance becomes a gauge

freedom in hµν that takes the form (see also the related discussion in DeWitt [178])

hµν → h′µν = hµν + δhµν , δhµν = ∂µϵν + ∂νϵµ ,

h→ h′ = h+ δh , δh = 2∂µϵ
µ .

(3.6)

Here, ϵµ is a vector field that parametrizes an infinitesimal diffeomorphism. The linearized

Riemann tensor as the “field strength tensor” is invariant under this transformation,

δRµνρσ = ∂ν∂[ρδhσ]µ − ∂µ∂[ρδhσ]ν = 0 . (3.7)

One may also check that the transformation (3.6) leaves the left-hand side of the field equa-

tions (3.4) invariant, which is another reason we may think of ϵµ as a gauge parameter.

Sometimes, however, it is useful to fix the gauge in order to simplify the field equations,

which in turn have then lost their gauge invariance. For this reason, gauge-fixing conditions

manifestly break gauge invariance. In the present context, let us consider the expression

Xν(λ) = ∂µhµν − λ∂νh , λ ∈ R . (3.8)
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Let us now demand that we perform a gauge transformation that sets this expression to zero,

Xν(λ) → X ′
ν(λ) = ∂µhµν − λ∂νh+ □ϵν + (1 − 2λ)∂ν∂

µϵµ = 0 . (3.9)

We may interpret this as a differential equation for ϵµ, where the h-dependent terms appear

as sources. Since we are interested in perturbations around flat Minkowski spacetime we may

utilize the Fourier representations

ϵ̃µ(k) =

∫︂
dDxe−ik·xϵµ(x) , j̃ν(k) =

∫︂
dDxe−ik·x (∂µhµν − λ∂νh) , (3.10)

such that the gauge fixing condition (3.9) becomes an algebraic relation in momentum space,

[︁
k2ηµν + (1 − 2λ)kµkν

]︁
ϵ̃ν(k) = j̃µ(k)

λ̸=1⇒ ϵ̃µ(k) =
1

k2

[︃
ηµν − 1 − 2λ

2(1 − λ)

kµkν

k2

]︃
j̃ν(k) .

(3.11)

This expression is well-defined for λ ̸= 1. Suppose, for the sake of the argument, that this

Fourier transform exists and we can hence find an ϵµ that solves Eq. (3.9), given a choice

λ ̸= 1 and a field configuration hµν . Then, the field equations (3.4) become

a(□)□hµν − (1 − λ)ηµνc(□)□h+
[︂
(1 − λ)c(□) − λa(□)

]︂
∂µ∂νh

∗
= −2κT µν , (3.12)

where we have denoted the equality as “
∗
=” since it only holds true in the specific λ-gauge.

Let us now introduce

ĥµν = hµν − λhηµν , hµν = ĥµν −
λ

λD − 1
ĥηµν , h =

1

1 − λD
ĥ , (3.13)

such that ∂µĥµν
∗
= 0. Then, the field equations take the simplified form

a(□)□ĥµν +
(1 − λ)c(□) − λa(□)

λD − 1

(︂
ηµν□− ∂µ∂ν

)︂
ĥ = −2κT µν . (3.14)

In the case of a(□) = c(□) they simplify even further and become

a(□)

[︃
□ĥµν +

1 − 2λ

λD − 1

(︂
ηµν□− ∂µ∂ν

)︂
ĥ

]︃
= −2κT µν . (3.15)

From these considerations, purely at the level of the field equations, it becomes clear that the
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choice λ = 1
2

is preferable. The differential equation for the suitable ϵµ then also simplifies:

Xν

(︁
1
2

)︁
= ∂µhµν −

1

2
∂νh+ □ϵν = 0 . (3.16)

In fact, this partial differential equation is formally equivalent to the Maxwell equations for

a “vector potential” ϵµ in the “Lorenz gauge” ∂µϵµ = 0 for the current jν ∼ ∂µhµν − 1
2
∂νh.

This current, by means of the Lorenz condition, is conserved. In other words, we can be

confident that for any given hµν we can find a function ϵµ that guarantees Eq. (3.16), which

is sometimes also referred to as a “De Donder gauge condition.”

The final equations, in the case a(□) = c(□) then take the form

a(□)□ĥµν = −2κT µν , (3.17)

where the energy-momentum conservation emerges as a consequence of the gauge choice

∂µĥµν = 0. This representation has the advantage that the solution can be given immediately

as

ĥµν(x) = ĥ0µν(x) + 2κ

∫︂
ddy Gd(x− y)T µν(y) , (3.18)

provided the situation allows for a scalar Green function acting trivially on the tensorial

structure, and where ĥ0µν is the homogeneous solution consistent with the imposed boundary

conditions.

3.2 Staticity and stationarity

In this chapter we will be interested purely in static and stationary situations. A geometry

gµν is said to be stationary if it possesses a timelike Killing vector ξ such that [17,18]

Lξgµν = ξρ∂ρgµν + (∂µξ
ρ)gρν + (∂νξ

ρ)gµρ = 0 . (3.19)

In the present case we are interested in the special geometry gµν = ηµν + hµν , where hµν

is a gravitational perturbation and ηµν is the Minkowski metric in Cartesian coordinates

{t,x}. Let us parametrize the timelike Killing vector as ξ = ξ0 + ζ, where ξ0 = ∂t is the

timelike Killing vector of Minkowski space, and ζ describes a possible deviation due to the

gravitational perturbation hµν . Then, to linear order in the perturbations, we obtain

Lξgµν = Lξ0hµν + ζ(µ,ν) . (3.20)
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Provided the gravitational perturbations satisfy Lξ0hµν = 0 we may then choose ζ = 0,

rendering ξ0 a Killing vector of the perturbed geometry as well. Inserting ξµ0 = δµt one

obtains

Lξ0hµν = ∂thµν = 0 . (3.21)

For this reason any time-independent perturbation hµν yields a stationary geometry. If the

timelike Killing vector is also hypersurface orthogonal, the geometry is static [17, 18]:

ξ[µ;νξρ] = 0 , (3.22)

where the semicolon denotes the covariant derivative. Introducing the 1-form ξ = ξµdxµ,

and using the fact that in Riemannian geometries with vanishing torsion the Levi–Civita

connection is symmetric in a coordinate frame, Γµ
νρ = Γµ

ρν , the above condition is equivalent

to

dξ ∧ ξ = 0 , (3.23)

where “d” denotes the exterior derivative. Let us now substitute the timelike Killing vector

ξµ0 = δµt such that ξ = ξ0 = ξµ0 (ηµν + hµν)dxν , and parametrize htt = ϕ as well as A =

htαdxα = Aαdxα, where α is a spatial index. Then, to linear order, we find

dξ0 ∧ ξ0 = −dA ∧ dt . (3.24)

This implies that geometries with A = 0 are static to leading order in the perturbation.

3.2.1 Overview of the rest of the chapter

In what follows, we will discuss the gravitational field of point particles, extended brane-like

objects, rotating objects in general, as well as rotating point particles, rotating strings, and

rotating p-branes as specific examples. When deriving these solutions we will make heavy use

of the previously derived Green functions, see Ch. 2, and will focus on three major aspects:

(i) Regularity of the solutions.

(ii) Asymptotics of the solutions at large distances, and relation to linearized solutions

obtained within General Relativity. In particular, how does the choice of the functions

a(□) and c(□) influence the asymptotics?
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(iii) Whenever possible, we will provide solutions that are valid in any number of spacetime

dimensions.

Instead of starting with the most general ansatz (which, by linearity, is just a superposition

of separate solutions), we shall discuss first the simplest case of an isolated point particle

and discuss the resulting spherically symmetric and static gravitational field. Then, we shall

move on to extended brane-like objects which are still static but feature a reduced spatial

symmetry that includes rotational symmetry inside the brane and translational symmetry

along the brane. The cosmic string is a special example of that. After that, we will move

on to the stationary case and discuss rotating objects, first in some generality, and then we

shall focus on the examples of the rotating point particle and the rotating cosmic string. And

finally, we will provide the expressions for rotating p-branes in any number of dimensions.

3.3 Gravitational sources

Before addressing the gravitational field let us briefly discuss the matter sources of the gravi-

tational field. In order to properly distinguish between spacetime indices and spatial indices,

let us introduce the following notation (see also the list of symbols on p. xiv):

� Greek letters from the beginning of the alphabet (α, β, γ, . . . ) denote purely spatial

indices.

� D-dimensional Cartesian spacetime coordinates can be written as xµ = (t, xα).

� When the index structure is not important we will denote xα = x for brevity.

In this chapter, we will talk about the sources of a stationary gravitational field that have

the energy-momentum tensor

T µν = ρ(x)δtµδ
t
ν + δt(µδ

α
ν)

∂

∂xβ
jα

β(x) . (3.25)

The function ρ(x) describes the matter density, and the antisymmetric tensor field jαβ(x) =

−jβα(x) parametrizes the angular momentum density. We shall assume that jαβ(x) →
0 sufficiently fast for |x| → ∞, but leave ρ(x) unrestricted. Moreover, as demanded by

stationarity, we assume that both of these functions are independent of time. Then it is

straightforward to check that this energy-momentum tensor is indeed conserved,

∂µT µν = δtν

[︃
∂ρ(x)

∂t
+

1

2

∂2

∂xα∂xβ
jαβ(x)

]︃
+

1

2
δαν

∂2

∂xβ∂t
jα

β(x) = 0 . (3.26)
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The timelike component vanishes due to the time-independence of ρ(x) and the antisymmetry

of jαβ(x), and the spacelike component vanishes due to the time-independence of jαβ(x).

Let us now relate the components of the energy-momentum tensor to conserved charges

consistent with the isometries of underlying spacetime. We denote the generators of spacetime

translations and spatial rotations as

ξ(µ) = ξν(µ)∂ν
∗
= ∂µ , ζ(αβ) = ζν(αβ)∂ν

∗
= xα∂β − xβ∂α , (3.27)

where in the equality “
∗
=” we have inserted the real-space representation of the generators

ξν(µ) = δνµ , ζν(αβ) = 2δν[βxα] . (3.28)

Let us now fix an observer u = ∂t and calculate the conserved charges associated to the

spacetime isometries {ξ(µ), ζ(αβ)} on the congruence u. They take the form

Pµ =

∫︂
ddxTρνu

ρξν(µ) =

∫︂
ddxT tµ , (3.29)

Jαβ =

∫︂
ddxT ρνu

ρξν(αβ) =

∫︂
ddx (xαTtβ − xβTtα) (3.30)

For the energy-momentum tensor (3.25) one finds

P µ = δtµ

∫︂
ddxρ(x) , (3.31)

Jαβ =

∫︂
ddxjαβ(x) +

1

2

∫︂
ddx

∂

∂xγ
(xαjβ

γ − xβjα
γ) =

∫︂
ddxjαβ(x) . (3.32)

In the second equality we have integrated by parts and in the third equality we made have

assumed that jαβ(x) → 0 sufficiently fast for |x| → ∞. Moreover, Pt admits the physical

interpretation as the total mass m of the physical system. Last, the fact that Pα = 0 implies

that we study the gravitational field in the center of mass frame.

3.4 Point particles

A point particle of mass m in d spatial dimensions has the energy-momentum tensor

T µν = mδtµδ
t
νδ

(d)(r) , (3.33)
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where r = (x1, . . . , xd) denotes the collection of spatial Cartesian coordinates in d dimensions.

In accordance with the spherical symmetry of the energy-momentum we make the following

ansatz:

ds2 = −[1 + ϕ(r)]dt2 + [1 + ψ(r)]dr2 , dr2 =
d∑︂

α=1

(dxα)2 , r2 =
d∑︂

α=1

(xα)2 . (3.34)

Inserting this metric into the field equations (3.4) and replacing □ → △ yields

(c− a)△ϕ+ (d− 1)c△ψ = −2κmδ(d)(r) , (3.35)

(δij△− ∂i∂j) {[a− (d− 1)c]ψ − cϕ} = 0 , (3.36)

where we have suppressed the arguments of the functions for better readability. In order to

solve the homogeneous equation, let us assume that

c(△) = (1 + α)a(△) , α ̸= −1 , ψ =
1 + α

1 − (d− 1)(1 + α)
ϕ . (3.37)

Then, the inhomogeneous equation becomes

a(△)△ϕ(r) = −2
d− 2 + α(d− 1)

1 − d(1 + α)
κmδ(d)(r) . (3.38)

We recognize that this equation is solved by a static Green function Gd(r) solving in turn

a(△)△Gd(r) = −δ(d)(r) , (3.39)

which we already discussed in Ch. 2. The gravitational field of a point particle is hence

ϕ(r) = 2
d− 2 + α(d− 1)

1 − d(1 + α)
κmGd(r) , ψ(r) = 2

1 + α

−1 + d(1 + α)
κmGd(r) . (3.40)

From Sec. 2.8.4 we know the explicit expressions for these Green functions for the choice

a(△) = exp[(−ℓ2△)N ] , N = 1, 2 , (3.41)

which correspond to GF1 and GF2 theory, respectively.
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3.4.1 Regularity

From the considerations presented in Sec. 2.8.3 it is clear that the resulting metric (3.34)

together with the solutions (3.40) is completely regular at r = 0, in stark contrast to the

metric obtained in linearized General Relativity. This is the first of many examples where

non-locality regularizes gravitational singularities at the linear level. Moreover, as we have

shown in Sec. 2.8.3, since the Green functions behave as

Gd(r → 0) = c0 + c2r
2 + O(r4) , c2 < 0 , (3.42)

there is also no conical singularity at r = 0; rather, the behavior is similar to that of non-

singular black hole metrics [179,180] in what is also referred to as a “de Sitter core.” A more

rigorous proof of the regularity of the metric (3.40) involves the calculation of curvature

invariants. We will postpone that until the next section, when we will discuss extended,

brane-like objects.

3.4.2 Asymptotics

On perturbed Minkowski spacetime with a timelike Killing vector ξ = ∂t one can define the

Newtonian potential as

ΦN = −1

2
(1 + ξ · ξ) =

ϕ

2
, (3.43)

which for d = 3 dimensions, for small values of α, and in the local limit reduces to

Φd=3
N = −κm

2

1 + 2α

1 + 3
2
α
G3(r) ≈ −Gm

r

(︂
1 +

α

2

)︂
, (3.44)

which is only the correct Newtonian limit if α = 0, provided we do not want to change the

value of the gravitational constant.

One possible interpretation of this fact is that α ̸= 0 introduces new gravitational degrees of

freedom, which can be made rigorous at the level of the propagator around Minkowski space,

and we refer to Biswas et al. [71] for these calculations. That being said, from now on we

shall set α = 0 in our future considerations.
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3.5 Friedel oscillations around point particles

Before moving on to extended objects we would like to study the properties of the gravita-

tional field of point particles in a bit more detail. Utilizing the timelike Killing vector ξ = ∂t

we may construct an effective energy density by projecting out the purely timelike direction

of the linearized field equations (3.17), giving rise to the following expression:

ρeff(r) ≡ κT eff
µνξ

µξν ≡ 1

a(△)
κT µνξ

µξν = − △ϕ
2(d− 2)

. (3.45)

The interpretation of this quantity as an effective energy density is completely analogous to

the considerations presented in Sec. 1.4. In fact, since the energy density of a point particle is

proportional to the d-dimensional δ-function, the effective energy density is just the rescaled

integral kernel of the non-local ghost-free form factor,

ρeff(r) =
κm

a(△)
δ(d)(r) ≡ κmKd(r) , (3.46)

which follows immediately from Eq. (3.38); compare also Sec. 1.3. With the explicit form of

the solution ϕ(r) available via the Green functions from Sec. 2.8.4, it is straightforward to

evaluate the above expressions using the identity

△ϕ(r) =
1

rd−1
∂r
[︁
rd−1∂rϕ(r)

]︁
. (3.47)

For simplicity we will focus on the four-dimensional case d = 3 and the ghost-free theories

GF1, GF2, and GF3.
1 Displayed in a logarithmic plot, see Fig. 3.1a, it becomes apparent

that the effective energy density oscillates in the cases of GF2 and GF3 theory, and does not

fluctuate in the case of GF1 theory. It should be noted that fluctuations to negative values do

occur as well. In the local case, by means of the local Einstein equations, the energy density

is just a δ-function.

3.5.1 Oscillations in higher-derivative gravity

Typically, these oscillations are observed in higher-derivative theories of gravity [125, 181–

183]. Let us understand how they come about there by truncating our non-local form factors

at first order. This way, we can introduce a new class of higher-derivative theories that we

1We do not list the exact expressions for the relevant GF3 Green function here and refer instead to Ref. [2].
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shall dub HDN theories, in close resemblance to our non-local ghost-free GFN theories:

HDN : f(△) = 1 + (−ℓ2△)N , N ∈ N , (3.48)

GFN : f(△) = exp
[︁
(−ℓ2△)N

]︁
, N ∈ N . (3.49)

While we leave aside the physical relevancy of these higher-derivative theories, which is an

interesting topic of its own, we merely would like to demonstrate at this point that these

oscillations also occur in higher-derivative theories. This is rather straightforward and can be

done quickly making use of the Green function representation (2.90) subject to the higher-

derivative form factors. After employing (3.40) one finds the following potentials for linearized

higher-derivative gravity:

HD1 : ϕ(r) = −2Gm

r

(︁
1 − e−r/ℓ

)︁
, (3.50)

HD2 : ϕ(r) = −2Gm

r

{︂
1 − e−r/(

√
2ℓ) cos

[︂
r/(

√
2ℓ)
]︂}︂

, (3.51)

HD3 : ϕ(r) = −2Gm

r

{︂
1 − 1

3
e−r/ℓ − 2

3
e−r/(2ℓ) cos

[︂√
3r/(2ℓ)

]︂}︂
. (3.52)

Then, one can calculate the energy density (3.45) and compare it to the non-local case. The

result can be seen in Fig. 3.1b. Similar to the non-local case, the higher-derivative theories

also produce oscillations. For the cases HD2 and HD3 these oscillations are even visible at

the level of the potentials since they include manifestly oscillatory terms via trigonometric

functions.

The higher-derivative form factors, while satisfying f(0) = 1 and thereby reproducing the

correct asymptotic behavior, are non-zero for imaginary values of momentum:

1 + (k2ℓ2)N = 0 if k2ℓ2 = N
√
−1 . (3.53)

These complex roots are thought to cause the observed oscillations. Our conclusions cast

some doubt on that because the oscillations, albeit in a slightly different magnitude, still

occur in the case of exponential form factors that are non-local and everywhere manifestly

non-zero.

Some numerical investigations into the oscillation wavelengths in the non-local theories GF2

and GF2 can be found in Fig. 3.2, which reveals a spatial dependence of the oscillations that

roughly follow simple power laws,

GF2 :
δ2
ℓ
∼ 9.68

(︂r
ℓ

)︂−0.28

, GF3 :
δ3
ℓ
∼ 8.28

(︂r
ℓ

)︂−0.16

, (3.54)
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where we denote the dimensionless wavelength for GFN theory as δN/ℓ. At this point we

are unable to provide a physical explanation for this behavior, but hope to revisit this phe-

nomenon at some time.

  
(a) Higher-derivative theories N = 1, 2, 3.

  
(b) Infinite-derivative theories N = 1, 2, 3.

Figure 3.1: Absolute value of the effective energy densities ρeff(r) in higher-derivative theories

(left) as well as non-local theories (right), plotted in arbitrary units on a logarithmic vertical

axis over the dimensionless distance r/ℓ. Both undergo periodic spatial oscillations for N ≥ 2

and change their signs periodically. In this logarithmic plot the sign change corresponds to

a vertical slope.

3.5.2 Physical interpretation: an attempt

In the context of condensed matter physics one encounters the following phenomenon: place

an electron, an electric impurity, inside a cold metal. Then one can calculate the effective

potential around the electron, and one finds that the resulting potential oscillates in space,

related to screening and anti-screening effects of the surrounding electrons [184], and these

oscillations are called Friedel oscillations [185–187]. We cannot help but notice the similarity

in the present context: placing a gravitational impurity (point particle) in the Minkowski

vacuum, the effective potential is not of the standard Newtonian form but involves spatial

oscillations.

We may interpret the local energy density as an effective density for the following reason: we

take it to be to timelike component of the Einstein tensor, which can be interpreted as the

energy density of a smeared matter distribution. Hence the local energy density is an effective

energy density that knows about the spreading of sharp, δ-shaped matter distributions due

to the presence of non-locality. Moreover, the framework of non-local ghost-free gravity may

be viewed as an effective field theory obtained from integrating out UV degrees of freedom.
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r/ℓ δ2/(2ℓ) r/ℓ δ3/(2ℓ)

4.59 3.16 4.65 3.23

7.75 2.76 7.88 3.02

10.51 2.53 10.90 2.86

13.04 2.38 13.76 2.75

15.42 2.26 16.51 2.66

17.68 2.17 19.17 2.58

19.85 — 21.75 —

  

Figure 3.2: Evaluating the zeros of the energy density it is possible to read off half the

corresponding wavelength δN . These wavelength are not constant but depend on the position:

they decrease with increasing distance r/ℓ, and to first approximation this can be described

by simple power laws (even though there still exist subleading oscillations around those power

laws, as the above plot shows).

It would be rewarding to perform a detailed quantum-field-theoretical calculation that also

results in visible oscillations in the effective potential. While we will not entertain these

calculations further in this thesis, there is a potential similarity to the oscillations encountered

in the vacuum polarization around a δ-shaped potential in non-local ghost-free quantum field

theory that we will discuss later in Ch. 6, where we show that the difference between the local

and non-local vacuum polarization fluctuates from negative to positive values with increasing

distance.

3.6 Extended objects: p-branes

Having demonstrated that the gravitational field of point particles is regularized due to the

presence of non-locality, a natural extension is now to look at static mass distributions with

a finite extension. Since the divergences stem from infinitely thin δ-sources, we are interested

in calculating the gravitational field of p-branes, that is, p-dimensional infinitely thin sheets

of matter.

A point particle is a special case of a p-brane, namely, p = 0. For a string (which is, spatially,

a one-dimensional object), one has instead p = 1. In general, D spacetime dimensions can

be written as

D = p+m+ 1 . (3.55)



Chapter 3. Static and stationary solutions in weak-field gravity 63

Let us adopt the coordinates in Minkowski space to this notation write

xµ = (t, xα) = (t, za, yi) , a = 1, . . . , p, i = 1, . . . ,m . (3.56)

The Minkowski metric then takes the form

ds2 = −dt2 +

p∑︂
a=1

(dza)2 +
m∑︂
i=1

(dyi)2 , (3.57)

where Latin indices from the beginning of the alphabet label the brane coordinates za, and

Latin indices from the middle of the alphabet label the ambient coordinates yi. One may

think of p as the spatial extension of the brane, and of m as the spatial codimension of the

brane. In other words, the brane will be located at {yi = 0} for i = 1, . . . ,m.

We parametrize energy-momentum tensor of a p-brane with a surface tension ϵ > 0 as

T µν = ϵ

(︄
δtµδ

t
ν −

p∑︂
a=1

δaµδ
a
ν

)︄
m∏︂
i=1

δ
(︁
yi
)︁
. (3.58)

The physical dimensions of ϵ are

[ϵ] =
M

Lp , (3.59)

and hence it is clear that for a particle, p = 0, ϵ corresponds to its mass, and that for a

string, p = 1, ϵ is a line density, and so on. Let us briefly comment on the total mass of such

a system. It is given by

m =

∫︂
ddz ϵ

m∏︂
i=1

δ
(︁
yi
)︁

=

∫︂
dpz ϵ = ∞ . (3.60)

Clearly this expression diverges for p > 0, but this is to be expected since we introduced an

infinitely extended object as a source. As we will see, however, the gravitational field does

not depend on that quantity and only the “line density” ϵ enters.

The metric describing p-branes is often called a warped geometry of the form [188,189]

ds2 = f(yi)dσ2(t, za) + dγ2(yi) . (3.61)
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In the context of our linearized weak-field ansatz, we re-parametrize this metric as

ds2 = [1 + u(r)]

[︄
−dt2 +

p∑︂
a=1

(dza)2

]︄
+ [1 + v(r)]

m∑︂
i=1

(dyi)2 , r2 =
m∑︂
i=1

(yi)2 . (3.62)

This geometry, as we will explain now, is consistent with the isometries encoded in the

tensorial structure of the energy-momentum tensor:

� The Poincaré symmetry P (1, p) in the tza-sector is an invariance “inside” the p-brane.

Boosts and rotations inside the brane do not change the geometry, since it is a static,

homogeneous object that extends to both spacelike and timelike infinity. In the case

of a point particle, p = 0, the Poincaré symmetry just becomes temporal translation

invariance corresponding to staticity.

� The rotationalO(m) symmetry in the yi-sector reflects the rotational invariance “around”

the brane in the ambient space. For a particle it corresponds to the usual spherical sym-

metry around it. For a cosmic string, however, this captures the axisymmetry around

it in four spacetime dimensions. In the case of m = 1 it becomes a discrete reflection

symmetry from one side of the brane to the other, in any number of dimensions.

Inserting the warped geometry (3.62) into the time-independent, linearized field equations

(3.5) gives the following set of equations:

[︁
(p+ 1)c(△) − a(△)

]︁
△u+ (m− 1)c(△)△v = −2κϵ

m∏︂
i=1

δ(yi) , (3.63)

(δij△− ∂i∂j)
{︁[︁
a(△) − (m− 1)c(△)

]︁
v − (p+ 1)c(△)u

}︁
= 0 . (3.64)

While they can be solved for the case of c = (1 + α)a, see Ref. [1], here we will focus on the

simpler case a = c that produces the same Newtonian limit as General Relativity. Then, the

equations simplify and become

a(△)△ [pu+ (m− 1)v] = −2κϵ
m∏︂
i=1

δ(yi) , (3.65)

a(△) (δij△− ∂i∂j) [(2 −m)v − (p+ 1)u] = 0 . (3.66)

The homogeneous equation is solved by

v =
p+ 1

2 −m
u , (3.67)
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such that the remaining, inhomogeneous equation takes the final form

a(△)△u = − 2 −m

p+m− 1
2κϵ

m∏︂
i=1

δ(yi) . (3.68)

In the limiting case of p = 0 and m = d one recovers the field equation for a point particle,

compare to Eq. (3.38), as it should be. The solution of this equation is given by the m-

dimensional static Green function Gm and takes the form

u(r) =
2 −m

p+m− 1
2κϵGm(r) , v(r) =

p+ 1

p+m− 1
2κϵGm(r) . (3.69)

Observe that the radial dependence of both u(r) and v(r) is universal, in the sense that it

does not depend on the dimension d = m + p of space. Rather, it depends solely on the

codimension m, or, in other words, on the dimensionality of the transverse space.

3.6.1 Regularity

As already demonstrated earlier in Sec. 2.8, the static non-local Green functions are mani-

festly regular at r = 0. For this reason, the resulting metric (3.62) with the functions (3.69)

is also a regular metric at r = 0.

3.6.2 Curvature expressions

Let us now turn towards a more detailed analysis of the curvature. To leading order in the

metric perturbation hµν the Riemann curvature tensor, the Ricci tensor, and the Ricci scalar

are given by

Rµ
νρσ = ∂ν∂[ρhσ]

µ − ∂µ∂[ρhσ]ν , (3.70)

Rµν = Rρ
µρν = ∂ρ∂(µhν)

ρ − 1

2
(∂µ∂νh+ □hµν) , (3.71)

R = Rρ
ρ = ∂ρ∂σh

ρσ −□h . (3.72)

As in the case of the point particle, it can be useful to consider the quantity

−κρeff =

(︃
Rµν −

1

2
Rgµν

)︃
ξµξν =

m+ p− 1

2(1 + p)
R , ξ = ∂t , (3.73)

which justifies the interpretation of the Ricci scalar as some sort of rescaled effective energy

density. With that in mind, let us introduce new indices that are tailored to the warped

geometry (3.62). Collecting the coordinates from the tza-sector in one index a such that
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a = 0, 1, . . . , p, let us denote the Minkowski metric on this sector as ηab, and keep the Latin

indices from the middle of the alphabet for the yi-sector. We will denote derivatives as

∂i = ∂/∂yi and ∂a = ∂/∂za for brevity. Then, substituting the on-shell condition (3.67), we

can write the curvature tensor components as

Rabcd = 0 , Raibj =
m− 2

2(1 + p)
ηab∂i∂jv , Rijkl = 2∂[iδj][k∂l]v . (3.74)

The Ricci tensor and Ricci scalar take the form

Rab =
m− 2

2(1 + p)
ηab△v , Rij = −1

2
δij△v , R = −△v . (3.75)

The Weyl tensor can be written as

Cµνρσ = Rµνρσ −
2

D − 2

(︁
ηµ[ρRσ]ν − ην[ρRσ]µ

)︁
+

2

(D − 1)(D − 2)
Rηµ[ρησ]ν . (3.76)

Its components are

Cabcd =
1 −m

(1 + p)(m+ p)
2ηa[cηd]b△v , (3.77)

Caibj =
m− 2

2(1 + p)
ηab∂i∂jv +

2 −m+ p

2(1 + p)(m+ p)
ηabδij△v , (3.78)

Cijkl = 2∂[iδj][k∂l]v +
2

m+ p
δi[kδl]j△v . (3.79)

We are also interested in quadratic curvature invariants, and, as is well known [176], the

above expression for the Weyl tensor is not the most convenient form. This is because the

tensorial Ricci term and the scalar Ricci term are not orthogonal in the sense of an irreducible

decomposition. It is more convenient, for that reason, to introduce the tracefree Ricci tensor

��Rµν = Rµν −
1

D
Rηµν , ��R

ρ
ρ = 0 , D = m+ p+ 1 . (3.80)

Its non-vanishing components are

��Rab =
m(m+ p− 1)

2(1 + p)(m+ p+ 1)
ηab△v , ��R ij =

1 −m− p

2(m+ p+ 1)
δij△v . (3.81)

The Weyl tensor can then be written as

Cµνρσ = Rµνρσ −
2

D − 2

(︁
ηµ[ρ��Rσ]ν − ην[ρ��Rσ]µ

)︁
− 2

D(D − 1)
Rηµ[ρησ]ν . (3.82)
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The square of the Weyl tensor is then the square of each individual piece, which follows

from the tracelessness of the Weyl tensor, as well as the tracelessness of the tracefree Ricci

tensor [176,190].

Then, the “orthogonal” quadratic curvature invariants are

C2 = CµνρσC
µνρσ =

p2 −m2 + 3m+ p− 2

(1 + p)(m+ p)
(△v)2 +

(m− 2)(m+ p− 1)

1 + p
(∂i∂jv)(∂i∂jv) ,

(3.83)

��R
2 = ��Rµν��R

µν =
m(m+ p− 1)2

(1 + p)(m+ p+ 1)
(△v)2 . (3.84)

Another quadratic invariant is the four-dimensional Chern–Pontryagin pseudoscalar which

however vanishes for the warped geometry (3.62),

P =
1

2
ϵµναβC

αβ
ρσC

ρσ
µν = 0 . (3.85)

Let us notice that there are essentially only two types of expressions in the curvature in-

variants: a square of the Laplace operator, (△v)2, and a square of the double divergence,

(∂i∂jv)(∂i∂jv). For this reason let us define the dimensionless invariants

Im ≡ −ℓm△Gm(r) , Jm ≡ ℓ2m (∂i∂jGm(r))
(︁
∂i∂jGm(r)

)︁
. (3.86)

Im is directly proportional to the Ricci scalar, and Jm can be expressed as a linear combination

of the two “orthogonal” quadratic curvature invariants. Due to the O(m) symmetry around

the p-brane, the metric function v is a function of the radius alone, v = v(r). Making use of

the m-dimensional spherical identities for any function f = f(r),

△f = f ′′ + (m− 1)
f ′

r
, (∂i∂jf)(∂i∂jf) = (f ′′)2 + (m− 1)

(︃
f ′

r

)︃2

, (3.87)

we can now employ the recursion relations for static Green functions (2.92) and rewrite (3.86)

as

Im = 2πℓm
[︂
mGm+2(r) − 2πr2Gm+4(r)

]︂
, (3.88)

Jm = 4π2ℓ2m
{︂
m [Gm+2(r)]

2 − 4πr2Gm+2(r)Gm+4(r) + 4π2r4 [Gm+4(r)]
2
}︂
. (3.89)

Since each Green function Gm(r) is finite at r = 0, the above relations prove that also the

linear and quadratic curvature invariants are finite at the origin. See Figs. 3.3 and 3.4 for
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plots of the linear and quadratic curvature invariants for GF1 and GF2 theory in the cases

of m = 1, 2, 3, 4.

    

    

Figure 3.3: Dimensionless linear curvature invariant Im evaluated for GF1 and GF2 theory

in the cases m = 1, 2, 3, 4. It is finite and regular at r/ℓ = 0.

3.6.3 Concrete examples

Having the general expressions for both the metric and the curvature invariants readily

available, we would now like to focus on four important subclasses:

� The point particle (p = 0 and m = D − 1).

� A cosmic string (p = 1 and m = D − 2) in D = 4.

� A domain wall (m = 1 and p = D − 2).

� “Angle deficit configurations” (m = 2, p = D − 3).

3.6.3.1 The point particle, revisited

It has been observed that the Weyl tensor vanishes at the location of a point particle in four

spacetime dimensions in non-local gravity [127]. Here we can generalize this result to any

number of dimensions, and, in fact, any ghost-free theory that belongs to the GFN class. In
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Figure 3.4: Dimensionless quadratic curvature invariant Jm evaluated for GF1 and GF2

theory in the cases m = 1, 2, 3, 4. It is finite and regular at r/ℓ = 0.

the present context, a point particle corresponds to p = 0 and hence the metric functions

describing a point particle in d dimensions are

u(r) =
2 − d

d− 1
2κϵGd(r) , v(r) =

1

d− 1
2κϵGd(r) . (3.90)

Note that we have proven in Sec. 2.8 that the non-local, static Green functions behave as

Gd(r → 0) ≈ c0 + c2r
2 + O

(︁
r4
)︁
. (3.91)

The absence of the linear term should be noted. Consequently, since the metric function v(r)

is a multiple of the static Green function, a similar identity holds for the metric function v(r)

itself. Then one can calculate, to leading order,

∂i∂jv(r) =
1

d
δij△v + O(r2) . (3.92)

Spherical symmetry and smoothness of the metric at the center r = 0 (mathematically, the

smoothness is encoded in the absence of the linear term, which is sometimes also referred to

as “regularity”) imply the absence of a tensorial structure in the curvature in proximity to
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r = 0. Let us verify this explicitly by inserting (3.92) into the Weyl tensor:

Cabcd(r → 0) ≈ 0 , (3.93)

Caibj(r → 0) ≈ (m− 1)p

(m+ p)(1 + p)m
ηabδij△v , (3.94)

Cijkl(r → 0) ≈ −p
m(m+ p)

2δi[kδl]j△v . (3.95)

The above relations imply that Cµνρσ = 0 at r = 0 if p = 0. In other words, as long as

point particles have a regular gravitational field (meaning the absence of a linear term close

to r = 0) their Weyl tensor vanishes at r = 0 for any GFN theory. For the special case

p = D− 2 (“domain walls”) the Weyl tensor also vanishes at r = 0: If one inserts p = D− 2

(which implies m = 1) then Cāib̄j = 0. But Cijkl = 0 as well in this case because the transverse

space is one-dimensional. In fact, for p = D− 2 the Weyl tensor vanishes everywhere due to

conformal flatness, see Sec. 3.6.3.3

In the case of a static, regular geometry and p = 0 one may also argue from a different

perspective.2 Let us focus on the case d = 3 and denote the Riemann normal coordinates

at r = 0 as {t, x, y, z}, such that ds2 = −dt2 + dx2 + dy2 + dz2 at r = 0 with deviations

of order O(r2) due to the assumed regularity. Then, by rotational symmetry around r = 0

one has Ctxtx = Ctyty = Ctztz. Since the Weyl tensor is tracefree and Ctttt = 0 by symmetry,

this implies that Ctxtx = 0 at r = 0. A similar argument follows from the xx-component of

the tracefree condition, Cxyxy = Cxzxz = 0, and so on. Last, the rotational symmetry forbids

non-vanishing components where a spatial index appears only once, Ctxty, which hence have

to vanish as well. Consequently, for a smooth geometry at r = 0, the Weyl tensor has to

vanish at r = 0. Similar considerations hold true in higher-dimensional spacetimes, but only

for p = 0 since the argument employs spherical symmetry.

We cannot help to notice the conceptual similarity to fixed points in quantum field theory,

where order parameters diverge and the physical situation no longer has a scale: since a zero

Weyl tensor implies conformal invariance, this also seems to be the case as one approaches

non-local gravitational objects. However, one should be careful with taking this result all too

seriously: It may very well be that close to the gravitational object, although regular and

well-behaved, the linear theory is no longer sufficient. It remains to be seen what happens

to these properties in the full, non-linear theory.

2We thank Don Page for pointing this out to us.
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3.6.3.2 A cosmic string

Let us focus on the cosmic string of four-dimensional spacetime, D = 4. Hence we have

m = 2 and p = 1, and the metric functions take the form

u(r) = 0 , v(r) = 2κϵG2(r) . (3.96)

Defining the Newtonian gravitational potential as

ΦN := −1

2
(gµνξ

µξν + 1) =
1

2
u , ξ = ∂t , (3.97)

we see that it vanishes for a cosmic string where u = 0. Because cosmic strings are interesting

objects [191–193] of some hypothetical physical significance in cosmology, we will devote an

entire section to the study of their gravitational field in linearized, non-local gravity after

these more general examples for p-branes.

3.6.3.3 A domain wall

Domain walls, per definition, have only one orthogonal direction, m = 1, such that p =

D − 2 = d− 1 and the metric functions are

u(r) =
2κϵ

d− 1
G1(r) , v(r) =

2dκϵ

d− 1
G1(r) . (3.98)

The resulting metric, irrespective of the underlying gravitational theory, is conformally flat

because the introduction of a new radial variable y′ according to√︁
1 + v(y)dy =

√︁
1 + u(y′)dy′ (3.99)

transforms the metric into gµν = (1+u)ηµν . This can also be seen at the level of the vanishing

of the Weyl tensor by inserting the one-dimensional identity

∂i∂jv = δij△v (3.100)

together with m = 1 into the expressions (3.77)–(3.79). In the context of General Relativity

the vanishing of the Weyl tensor has far-reaching implications: since the Ricci tensor is alge-

braically linked to the energy-momentum tensor by means of the field equations, spacetime

outside of the domain wall is locally flat. This is not true in non-local ghost-free gravity,

where the Ricci curvature is non-zero in the domain wall’s vicinity, before decreasing at large

radial distances and approaching the zero value encountered in linearized General Relativity
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asymptotically.

3.6.3.4 “Angle deficit configurations”

As we saw in the section on the cosmic string, whenever m = 2 the Newtonian gravitational

potential vanishes, ΦN = 0. In higher dimensions we may still have m = 2, but the brane itself

may be higher-dimensional and no longer correspond to a string because p = D− 3 = d− 2.

The metric functions take the form

u(r) = 0 , v(r) = 2κϵG2(r) . (3.101)

The metric functions are identical with that of a cosmic string, but the resulting metric is

not due to the presence of a different dimensionality of the brane. As is well known, cosmic

strings produce an angle deficit [191–193]. We may introduce higher-dimensional equivalents

of this scenario and refer to them as “angle deficit configurations,” and we define them as

spacetimes with m = 2.

Then, looking at the y1y2-sector alone (that is, imagine you are on the brane and keep your

position fixed), the transverse geometry is two-dimensional. That geometry possesses an

angle deficit around the point y1 = y2 = 0, except that {y1 = y2 = 0} no longer describes a

line in space (or a sheet in spacetime) as in the case with the cosmic string, but a (D − 3)-

brane.

3.7 Geometry of a cosmic string in non-local gravity

Using the results of Sec. 3.6.3.2, the metric of a cosmic string in four dimensions, in the linear

approximation, may be written as (compare also Ref. [7] and Kolar & Mazumdar [137])

ds2 = −dt2 + dz2 + v(ρ)(dx2 + dy2) = −dt2 + dz2 + [1 + v(ρ)]
(︁
dρ2 + ρ2dφ2

)︁
, (3.102)

v(ρ) = 2κµG2(ρ) . (3.103)

where the string extends along the z-axis, and we introduced polar coordinates {ρ, φ} such

that x = ρ cosφ and y = ρ sinφ. We have also replaced ϵ by µ, which is the symbol more

frequently employed to denote the string line density (or string tension). Concretely, using

Sec. 2.8, we find in linearized General Relativity and linearized GF1 theory

GR : v(ρ) = −8Gµ ln

(︃
ρ

ρ0

)︃
, (3.104)
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GF1 : v(ρ) = +4Gµ

[︃
Ei

(︃
− ρ2

4ℓ2

)︃
− 2 ln

(︃
ρ

ρ0

)︃]︃
. (3.105)

Here, “Ei” denotes the exponential integral [174]

Ei(−x) = −E1(x) = −
∞∫︂
x

dz
e−z

z
, x > 0 . (3.106)

3.7.1 No distributional curvature

The Ricci scalar of this geometry is

R = −△v = −2κµ△G2(ρ) = 4κµK2(ρ|ℓ) , K2(ρ|ℓ) =
1

4πℓ2
e−

ρ2

4ℓ2 , (3.107)

where K2(ρ|ℓ) is heat kernel of two dimensional space, satisfying K2(ρ|ℓ → 0) = δ(ρ)/2πρ.

Unlike in General Relativity, the Ricci curvature is not distributional, but smoothly dis-

tributed around the z-axis. Only in the limiting case ℓ→ 0 it becomes sharply concentrated.

The Ricci tensor and Weyl tensor are also non-vanishing in the non-local case, with the

quadratic curvature invariants taking the form

C2 =
1

3
(△v)2 + 0 × (∂i∂jv)

(︁
∂i∂jv

)︁
, ��R

2 = (△v)2 . (3.108)

The tensorial part does not contribute in the case m = 2, and hence the only relevant

functions describing the curvature are the two-dimensional heat kernel and its square.

At far distances, however, when ρ/ℓ→ ∞, the heat kernel approaches zero and one recovers

the standard locally flat spacetime describing a cosmic string as already found in General

Relativity. This does not come as a surprise but is an expected result that is inherited from

the properties of static, non-local Green functions as discussed in Sec. 2.8.

3.7.2 Angle deficit

At the linear level, let us now prove that cosmic strings indeed mediate an angle deficit

around the z-axis (for positive µ). Defining the angle deficit as

δφ = 2π − C(ρ)

R(ρ)
, (3.109)
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where C(ρ) is the proper circumference of a circle with coordinate radius ρ, and R(ρ) is the

proper radius. At linear order in µ they take the form

C(ρ) =

[︃
1 +

v(ρ)

2

]︃
2πρ , R(ρ) =

ρ∫︂
0

dρ′
[︃
1 +

v(ρ′)

2

]︃
(3.110)

The integral can be taken analytically for GF1 theory and at leading order one finds

δφ(ρ) = 8πGµ

[︄
1 −

√
πℓerf

(︁
ρ
2ℓ

)︁
ρ

]︄
(3.111)

Unlike in linearized General Relativity, the angle deficit is now a function of the radial

distance ρ. At large distances or vanishing scale of non-locality, ρ/ℓ → ∞, one recovers the

standard result from linearized General Relativity, δφ = 8πGµ. For small distances, however,

the behavior is very different, and at ρ = 0 the angle deficit even vanishes,

lim
ρ→0

δφ(ρ) = 0 . (3.112)

Because the angle deficit grows quadratically at the origin, and not linearly, there is some

hope that the resulting geometry will be regular at the origin ρ = 0. In order to understand

that better, let us isometrically embed the spacelike surface described by dt = dz = 0.

3.7.3 A tale of two cones

The two-dimensional spacelike surface {dt = dz = 0}, call it Σ, is parametrized by the line

element

dΣ2 = [1 + v(ρ)]
(︁
dρ2 + ρ2dφ2

)︁
, (3.113)

and it is rotationally symmetric. This means, provided dv/dρ ≤ 0, it is possible to find a

coordinate z = z(ρ′) such that this line element can be embedded in R3,

dΣ2
3D = dz2 + dρ′2 + ρ′2dφ2 . (3.114)

To find the appropriate transformation one can fix the φ-sector by requiring

ρ′2 = [1 + v(ρ)] ρ2 , (3.115)
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which is an implicit equation that gives ρ = ρ(ρ′). At the linear level one may approximate

ρ′ =

[︃
1 +

v(ρ)

2

]︃
ρ . (3.116)

Then we fix the function z(ρ′) by identifying

[1 + v(ρ)] dρ2 =

[︄
1 +

(︃
dz

dρ′

)︃2
]︄

dρ′2 = dρ′2 + dz2 . (3.117)

Integrating this relation and using the intermediate formula

[1 + v(ρ)] dρ2 = [1 − v′(ρ)ρ] dρ′2 (3.118)

we obtain, to leading order in v,

z(ρ′) =

ρ′∫︂
0

dρ̃′

√︄
−dv(ρ)

dρ
ρ =

√︁
8µG

ρ′∫︂
0

dρ̃′
√︁

4π2G4(ρ)ρ2 . (3.119)

where we have made use of the recursion formula (2.92), and ρ = ρ(ρ̃′) by means of (3.115).

For GF1 theory one obtains the explicit expression

z(ρ′) =
√︁

8µG

ρ′∫︂
0

dρ̃′

√︄
1 − exp

[︃
− ρ2

4ℓ2

]︃
. (3.120)

This integral is very difficult to treat analytically due to the implicit dependence of the

integrand on ρ̃′, which is why we implemented a numerical method. First, it given a value

ρ′ a numerical root solver finds the appropriate ρ. In a second step, during the numerical

integration, this function is called at every point of the integration. Since ρ/ℓ ≪ 1 in our

example the effect is very small and we trust our numerics.

In the limiting case of ℓ → 0 the entire situation becomes much simpler: one may simply

perform a coordinate transformation ρ→ ρ′′ [192],

(1 − 8µG)ρ′′2 =

[︃
1 − 8Gµ ln

(︃
ρ

ρ0

)︃]︃
ρ2 , (3.121)

that renders the geometry, at leading order in µG, to be flat space with a conical deficit:

ds2 = dρ′′2 + ρ′′2(1 − 8µG)dφ2 ≈ dρ′′2 + ρ′′2 [(1 − 4µG)dφ]2 . (3.122)
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The embedding function z(ρ′′) can be found by elementary trigonometry and for small δφ≪ 1

is

z(ρ′′) =

√︃
δφ

π
ρ′′ =

√︁
8µGρ′′ . (3.123)

We visualize these two geometries in Fig. 3.5, along with the “unrolled” geometry that is

either a plane with a wedge cut out (General Relativity) or a plane with a slowly growing

angle deficit (GF1 theory). The resulting geometry in non-local GF1 theory is that of a cone

with smoothed tip, with a curvature radius of O(ℓ).

(a) Linearized General Relativity. (b) Linearized non-local gravity.

Figure 3.5: We display an isometric embedding of the transverse geometry of a cosmic string

in three-dimensional Euclidean space for (a) General Relativity and (b) non-local GF1 theory.

Whereas this geometry is a cone for General Relativity, it becomes a smoothed cone in the

ghost-free theory. Below, we show the “unrolled geometry,” which, in the case of General

Relativity, is simply a plane with a constant angle deficit. In case of GF1 theory it is instead

a plane with a growing angle deficit that asymptotically becomes constant. We used the

parameters 8µG = 0.7, ℓ = 0.3ρ0, and the circle’s coordinate radius is chosen to be 2ρ0.
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3.8 Stationary rotating objects (general solution)

Let us now move on to stationary rotating objects. As already mentioned in Sec. 3.3, the

form of the energy-momentum tensor is

T µν = ρ(x)δtµδ
t
ν + δt(µδ

α
ν)

∂

∂xβ
jα

β(x) , (3.25)

where ρ(x) is the time-independent matter density, and jαβ(x) = −jβα(x) is the time-

independent angular momentum density. Its indices are purely spatial, meaning that in the

D-dimensional language one may write

jµν(x) =

⎛⎜⎜⎜⎜⎝
0 0 . . . 0

0
... jαβ(x)

0

⎞⎟⎟⎟⎟⎠ . (3.124)

This form implies the absence of boost charges, consistent with the stationarity of the physical

scenario. As a metric ansatz we parametrize

ds2 = − [1 + ϕ(x)] dt2 + [1 + ψ(x)] dx2 + 2Aα(x)dxαdt (3.125)

Here, ϕ(x) and ψ(x) are two static potentials, and Aα(x) is a gravitomagnetic potential that

encompasses the stationary rotation. Inserting this ansatz into the stationary field equations

(3.5) for the choice a(□) = c(□) yields

(d− 1)a(△)△ψ = −2κρ(x) , (3.126)

(δij△− ∂i∂j)a(△) [(2 − d)ψ − ϕ] = 0 , (3.127)

a(△)
(︁
△Aα − ∂α∂

βAβ

)︁
= −κ∂βjαβ(x) . (3.128)

At the linear level it is helpful to perform the infinitesimal coordinate transformation t →
t+ f(x) which induces the transformation

Aα → Aα − ∂αf(x) . (3.129)

We can find a suitable function f to impose the Lorenz gauge condition ∂αAα = 0 such that

the field equations become

(d− 1)a(△)△ψ = −2κρ(x) , (3.130)
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(δij△− ∂i∂j)a(△) [(2 − d)ψ − ϕ] = 0 , (3.131)

a(△)△Aα = −κ∂βjαβ(x) . (3.132)

Invoking the Lorenz gauge condition has the substantial advantage that we may also utilize

the static Green function method to find a solution for Aα(x). The homogeneous equation,

as in the case of the point particle already discussed above, is solved by

ψ(x) =
1

2 − d
ϕ(x) . (3.133)

Then, the remaining inhomogeneous equations have the solutions

ϕ(x) = −2κ
d− 2

d− 1

∫︂
ddy ρ(y)Gd(x− y) , Aα(x) = κ

∫︂
ddy jα

β(y)
∂Gd(x− y)

∂xβ
. (3.134)

Recall that the static Green function Gd(x) is only a function of the absolute value of its argu-

ment, Gd(|x|). While the expression is straightforward for ϕ(x), let us derive the expression

for Aα(x) explicitly by formally inverting the differential equation:

Aα(x) = − κ

a(△)△
∂

∂xβ
jα

β(x) = −κ ∂

∂xβ
1

a(△)△
jα

β(x) (3.135)

= −κ
∫︂

ddy jα
β(y)

∂

∂xβ

[︃
1

a(△)△
δ(x− y)

]︃
(3.136)

= +κ

∫︂
ddy jα

β(y)
∂Gd(x− y)

∂xβ
(3.137)

At this point it is also straightforward to verify that Aα indeed satisfies the Lorenz gauge

condition,

∂αAα(x) = κ

∫︂
ddy jαβ(y)

∂2Gd(x− y)

∂xα∂xβ
= 0 , (3.138)

where the last identity follows from the antisymmetry of jαβ(x).

Making use of the recursion formula (2.92) we can rewrite the expression of the gravitomag-

netic potential in terms of a higher-dimensional static Green function,

Aα(x) = −2πκ

∫︂
ddy jαβ(y)(xβ − yβ)Gd+2(x− y) . (3.139)

It is sometimes also useful to work with the gravitomagnetic potential 1-form defined via

A(x) = Aα(x)dxα . (3.140)
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With these expressions given in a general form we may now construct stationary rotating

gravitational fields in the weak-field limit of non-local ghost-free gravity.

3.9 Angular momentum in higher dimensions

Let us briefly discuss the properties of the angular momentum tensor density jαβ(x) =

−jβα(x). As a purely spatial antisymmetric tensor of rank 2 we can also think of it as a

2-form

j =
1

2
jαβ(x)dxα ∧ dxβ . (3.141)

Only in three spatial dimensions 2-forms are dual to 1-forms, which in turn are equivalent

to vectors if a metric is present. For this reason a 2-form is the appropriate generalization of

the angular momentum pseudo-vector to higher dimensions.

Any antisymmetric matrix can be brought to its so-called Darboux form and for more details

one may consult the literature; see e.g. [194,195] and references therein. Here we will sketch

the main idea of the Darboux decomposition as applied to the antisymmetric matrix jαβ =

−jβα, where α, β are spatial indices and may be raised and lowered at will using a flat metric.

In even dimensions, that is, when d = 2k with k ∈ N, the Darboux theorem states that for

this matrix there exist pairs of vectors {mα
A, m̂

α
A} with A = 1, . . . , k such that

jαβm
β
A = +jAm̂

α
A , jαβm̂

β
A = −jAmα

A , jA ≥ 0 . (3.142)

In odd dimensions, d = 2k + ϵ, there exists one additional vector nα such that

jαβn
β = 0 . (3.143)

We can show that these vectors {mα
A, m̂

α
A, ϵn

α} are orthogonal. To that end, introduce a

symmetric matrix Q = jTj such that

Qα
β = jβ

γjαγ , (3.144)

jαβm
β
A = −jA jαγm̂γ

A = j2Am
α
A , (3.145)

jαβm̂
β
A = +jA j

α
γm

γ
A = j2Am̂

α
A . (3.146)

That is, for each A the vectors {mα
A, m̂

α
A} are eigenvectors of Q with the same eigenvalue.

Moreover, the above relations imply that mα
A and m̂α

A are orthogonal for the same A (provided
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that jA ̸= 0):

mα
Am̂Aα = − 1

j2A
jαβm̂

β
Ajα

γmAγ = − 1

j2A
Qγ

βm̂
β
AmAγ = −m̂γ

AmAγ = −mα
Am̂Aα . (3.147)

The overlap between nα and any of the {mα
A, m̂

α
A} also vanishes if jA ̸= 0. As a result, the

antisymmetric matrix jαβ can always be brought to the form

j =̂

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 j1 . . . 0

−j1 0

0 j2

−j2 0
...

. . .

0 jk

−jk 0

0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (3.148)

where the last line, entirely composed of zeros, only exists in odd dimensions when ϵ = 1.

Given any such matrix jαβ there exists a coordinate system in which the matrix takes the

above form, and our previous considerations show that this coordinate system is indeed

spanned by the vectors {mα
A, m̂

α
A, ϵn

α}. Let us define coordinates {yA, ŷA, ϵz} such that

mα
A∂α = ∂yA , m̂α

A∂α = ∂ŷA nα∂α = ∂z . (3.149)

Moreover, we define a Darboux plane ΠA to be the two-dimensional surface spanned by two

vectors {mα
A, m̂

α
A} such that

ΠA = span
{︁
∂yA , ∂ŷA

}︁
. (3.150)

It is clear that Darboux planes are only defined up to an orthogonal transformation (that

is, a rotation or a reflection) inside that plane. Provided we choose the orientation in a

right-handed fashion, the volume element in each Darboux plane is

ϵAαβ = 2δA[αδ
Â
β] ,

(︁
ϵAαβ
)︁

=

(︄
0 1

−1 0

)︄
. (3.151)
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Figure 3.6: In the Darboux decomposition of d-dimensional Euclidean space there are k

orthogonal Darboux planes ΠA labelled by A = 1, . . . , k where d = 2k + ϵ. The additional

z-direction only exists if d is odd, or, equivalently, when ϵ = 1. In the above diagram we

visualize the Darboux planes by wedges and the z-axis by a dashed line.

Collecting these results we can write the antisymmetric matrix jαβ as

jαβ =
k∑︂

A=1

jAϵ
A
αβ . (3.152)

For a convenient visual depiction of Darboux planes in d-dimensional space see Fig. 3.6.

To make the rotational ambiguity in each of the Darboux planes manifest, we may also

introduce polar coordinates {ρA, φA} in each plane such that

yA = ρA cosφA , ŷA = ρA sinφA . (3.153)

It is important to emphasize that these discussions concern an antisymmetric matrix with

constant coefficients. If we are instead interested in an antisymmetric tensor field of rank 2,

we may of course still perform the same Darboux decomposition, but there is no guarantee

that the notion of Darboux planes remains the same as one moves through space. In other

words: a general treatise of an angular momentum density would be very interesting, but

must necessarily involve additional assumptions on the spatial behavior of that density and

can therefore not be purely algebraic in nature. In the context of symplectic mechanics this

is usually phrased as “Darboux theorem.” We will revisit this issue in Ch. 4 when discussing

extended “pencils” of matter, but for now we shall restrict ourselves to a simpler case of

specially aligned angular momentum densities where the tensorial structure decouples from

the spatial dependence.
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3.10 Spinning point particles

If the tensorial and spatial structures factorize, the angular momentum density takes the

form

jαβ(x) = jαβf(x) , (3.154)

where f(x) is a dimensionless function proportional to the matter density and jαβ is a

constant matrix that describes the angular momentum density. While we may not be able

to describe all rotating matter with the above factorized angular momentum density it is

general enough to construct the gravitational field of point particles with intrinsic angular

momentum as well as strings and higher-dimensional p-branes. In the case of localized “thin”

objects the matter density ρ(x) becomes a δ-function which leads to further simplifications

because then, as we will see, the solutions are directly proportional to the relevant static

Green functions.

Let us finish this introduction by introducing a few helpful definitions. First, it is useful to

introduce a d-dimensional radial variable according to

r2 = εz2 +
k∑︂

A=1

ρ2A . (3.155)

The gravitomagnetic potential includes terms of the form jαβx
αdxβ, which, in the Darboux

formalism combined with polar Darboux coordinates, take a rather simple form:

jαβx
αdxβ =

k∑︂
A=1

jAϵ
A
αβx

αdxβ =
k∑︂

A=1

jAρ
2
AdφA . (3.156)

We are now fully equipped to study concrete examples of rotating objects in linearized,

non-local ghost-free gravity.

3.10.1 Spinning point particle in four spacetime dimensions

Let us begin with the simplest example: a point particle in four spacetime dimensions. In

d = 3 spatial dimensions one has k = 1 and ε = 1, which means that there exists one

Darboux plane for the angular momentum and one independent z-axis. Because there exists

only one Darboux plane we shall suppress the Darboux plane index in what follows, use the

coordinates x and y inside the Darboux plane, and call the angular momentum eigenvalue j.
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Then, the angular momentum density takes the simple form

jαβ(x) = 2jδx[αδ
y
β]δ

(3)(x) (3.157)

Inserting this expression into (3.134) as well as (3.140) one finds

ds2 = − [1 + ϕ(r)] dt2 + [1 + ψ(r)] dx2 + 2A(x)dt , (3.158)

ϕ(r) = −κmG3(r) , ψ(r) = κmG3(r) , A(x) = 2πκG5(r)jρ
2dφ . (3.159)

The geometry of a slowly-rotating point particle in four-dimensional General Relativity, also

called Thirring–Lense metric [196–200], arises in the limit ℓ→ 0 from this expression,

ϕ(r) = −2Gm

r
, ψ(r) =

2Gm

r
, A(x) =

2Gj

r
sin2 θdφ . (3.160)

where we inserted ρ = r sin θ, and θ is the standard polar angle. This metric also corresponds

to the linearized limit of the well-known Kerr metric describing a rotating black hole [18,28].

3.10.2 Spinning point particle in higher dimensions

As seen above, a particle in d = 2k+ ϵ spatial dimensions has k independent Darboux planes

ΠA and hence k independent angular momentum eigenvalues jk. Its energy-momentum tensor

is (3.25) with the angular momentum density

jαβ(x) = δ(d)(x)
k∑︂

A=1

jAϵ
A
αβ (3.161)

and as per Eqs. (3.134) and (3.140) the resulting metric is

ds2 = − [1 + ϕ(r)] dt2 + [1 + ψ(r)] dx2 + 2A(x)dt , (3.162)

ϕ(r) = −2κm
d− 2

d− 1
Gd(r) , ψ(r) =

2κm

d− 1
Gd(r) , A(x) = 2πκGd+2(r)

k∑︂
A=1

jAρ
2
AdφA .

(3.163)

At large distances where the non-local modification no longer plays a role one recovers the

linearized form of the Myers–Perry solution [201] for d ≥ 3:

ϕ(r) ∼
Γ
(︁
d
2

)︁
(d− 1)π

d
2

κm

rd−2
, ψ(r) ∼ − ϕ(r)

d− 2
, A(x) ∼ −

Γ
(︁
d
2

)︁
2π

d
2

κ

rd

k∑︂
A=1

jAρ
2
AdφA . (3.164)
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3.11 Spinning strings and p-branes

Before we discuss extended spinning objects, let us briefly clarify the nature of rotation

treated in this section in order to avoid possible confusion. The angular momentum density

jαβ can, in principle, be used to describe both orbital and intrinsic angular momentum.

Orbital angular momentum is well known in classical mechanics, and a point particle at a

position r = rαdxα and a linear momentum of p = pαdxα has the orbital angular momentum

j = r ∧ p . (3.165)

In three spatial dimensions the above may be recast into the perhaps more familiar vectorial

expression j⃗ = r⃗ × p⃗. At any rate, if one considers extended, rotating objects that have

non-vanishing orbital angular momentum one encounters the problem that at some point the

local angular velocity will exceed the speed of light. Moreover, the translational symmetry

parallel to that extended object will be broken due to the existence of a preferred “center”

where the rotation axes pierce the object.

In these sections we are interested in purely intrinsic angular momentum. One may think of

the classical analogue of spin, or perhaps of a Weyssenhoff-type fluid with non-vanishing spin

density [202]. This type of angular momentum does not require the definition of a rotational

center, consistent with our linearized weak-field ansatz.

There is another potential issue that arose when we integrated by parts in Sec. 3.3 while

discussing the form of the stationary energy-momentum tensor in Eq. (3.25). In particular,

we required that the following surface integral S vanishes:

S =
1

2

∫︂
ddx

∂

∂xγ
(xαjβ

γ − xβjα
γ) . (3.166)

For compact point particles this is satisfied trivially since jαβ ∼ δ(d)(x). For extended

objects, however, it may no longer be the case. Consider, for example, a cosmic string along

the z-axis: its angular momentum density certainly does not vanish as z → ±∞.

Let us briefly recall the notation employed in the description of p-branes. In d = m + p

spatial dimensions, a spatial coordinate xα is split into p directions za along the p-brane and

m directions yi transverse to the brane, xα = (za, yi). In what follows we will assume that

the angular momentum is aligned with the p-brane such that jab = 0 and jij ̸= 0. In other



Chapter 3. Static and stationary solutions in weak-field gravity 85

words, we assume that the spatial part of the angular momentum density is block diagonal,

jαβ(x) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 . . . 0 0 . . . 0
...

. . .
...

0 . . . 0
... jij(x)

0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
. (3.167)

For this reason the above surface term becomes

S =
1

2

∫︂
ddx

∂

∂yk
(︁
yijj

k − yjji
k
)︁

= 0 . (3.168)

The potentially diverging contributions stem from yi → ∞, that is, away from the p-brane

which is located at yi = 0. But away from the p-brane the angular momentum density

vanishes, and hence S = 0. What if we instead had non-vanishing angular momentum

density components jab ̸= 0? Then, looking at Eq. (3.166), there would also be contributions

from za → ±∞ irrespective of the values of yi, leading to possible divergences. For these

reasons we can still think of jij as the proper angular momentum density such that for

p-branes we find

J ij =

∫︂
dpz jij . (3.169)

We can also perform a Darboux decomposition of jij in higher dimensions. Let us define

d− p = m = 2kp + ϵ , (3.170)

and see Fig. 3.7 for a visual representation. In other words: one may perform a Darboux

decomposition purely in transverse space. Again, one may label the the individual planes as

ΠA with A = 1, . . . , kp and call their angular momentum eigenvalues jA. The total angular

momentum is

J ij =

∫︂
dpz

kp∑︂
A=1

ϵAijjA . (3.171)

In this case, the physical dimension of jA is of course dimension-dependent as it corresponds

to an angular momentum line density in the case of p = 1 and to its higher-dimensional

generalization for p > 1. In our case jA = const. such that the total angular momentum

diverges, but this is to be expected since the object itself is infinitely large. In that sense it



3.11. Spinning strings and p-branes 86

  

....

Figure 3.7: In the presence of a p-brane one may perform a Darboux decomposition of the

(d− p)-dimensional transverse Euclidean space. Given a p, there are kp orthogonal Darboux

planes ΠA labelled by A = 1, . . . , kp where d− p = 2kp + ϵ. The additional z-direction only

exists if d − p is odd, or, equivalently, when ϵ = 1. In the above diagram we visualize the

Darboux planes by wedges, the z-axis by a dashed line, and the p-brane by a curved line.

mimics the divergence of the total mass m in the context of the static p-branes discussed in

Sec. 3.6, and just as before, we will see that the total angular momentum does not appear

in the resulting gravitational field.

We are now ready to construct the gravitational field of rotating p-branes in higher dimen-

sions. The energy-momentum tensor is that of a static p-brane (3.58) combined with a purely

transverse angular momentum density,

T µν =

[︄
ϵ

(︄
δtµδ

t
ν −

p∑︂
a=1

δaµδ
a
ν

)︄
+ δt(µδ

i
ν)ji

k∂k

]︄
m∏︂
i=1

δ(yi) , (3.172)

where the shorthand ∂i denotes partial differentiation with respect to yi. Our ansatz is the

superposition of a warped geometry with a gravitomagnetic potential A = Aidy
i,

ds2 = [1 + u(r)]

[︄
−dt2 +

p∑︂
a=1

(dza)2

]︄
+ [1 + v(r)]

m∑︂
i=1

(dyi)2 + 2A(y)dt , r2 =
m∑︂
i=1

(yi)2 ,

(3.173)

where y = (yi) collects all transverse coordinates. Let us again focus on the case a(□) = c(□)

such that the equations of motion take the simple form

a(□)□ĥµν = −2κT µν , (3.17)
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where we impose the De Donder gauge ∂µĥµν = 0. After inserting our ansatz (3.173) the field

equations reduce to

a(△)△
(︃
p− 1

2
u+

m

2
v

)︃
= −2κϵ

m∏︂
i=1

δ(yi) , (3.174)

a(△)△
(︃

2 −m

2
v − p+ 1

2
u

)︃
= 0 , (3.175)

a(△)△Ai = −κjik∂k
m∏︂
i=1

δ(yi) . (3.176)

One may verify that the ansatz (3.173) together with the above field equations is indeed

consistent with the De Donder gauge. As before, the homogeneous equation implies

v(r) =
p+ 1

2 −m
u(r) , (3.177)

such that the solution for u(r) and A(y) becomes

u(r) =
2 −m

p+m− 1
2κϵGm(r) , A(y) = 2πκjijy

idyjGm+2(r) . (3.178)

In the limit p = 0 one has m = d and we recover the rotating point particle already discussed

in Sec. 3.10.2. Moreover, we may again introduce polar coordinates {ρA, φA} in each Darboux

plane such that

A(y) = 2πκGm+2(r)
∑︂

jAρ
2
AdφA , (3.179)

with the additional relations

r2 = ϵz2 +

kp∑︂
A=1

ρ2A ,
m∑︂
i=1

(dyi)2 = ϵdz2 +

kp∑︂
A=1

(︁
dρ2A + ρ2Adφ2

A

)︁
. (3.180)

These expressions are quite general and describe a p-brane in any number of spacetime

dimensions, endowed with a purely transverse angular momentum density.

As we mentioned above, in the case p = 0 one recovers the rotating point particle. If one sets

instead jA = 0 one recovers the static p-brane solutions discussed earlier. In that sense the

above expressions present the most general solution constructed in the context of this thesis.

In some cases, however, it is not possible to construct transversely-rotating solutions. For

example the case of a domain wall in four spacetime dimensions (d = 3 and p = 2). In that
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case d− p = 1 such that kp = 0 and ϵ = 1: there are not enough spatial dimensions left for

the p-brane to have intrinsic angular momentum perpendicular to itself.

3.11.1 Cosmic string in four dimensions

Let us focus on the only case that is relevant to our four-dimensional Universe: a cosmic string

(p = 1, d = 3,m = 2). In that case there is only one Darboux plane, kp = 1, and no additional

z-axis. Let us call the angular momentum eigenvalue j and denote the polar coordinates in

the Darboux plane as {ρ, φ}, and—to be more in line with traditional notation—denote the

string surface tension as µ instead of ϵ. The gravitational field of a rotating cosmic string is

then

ds2 = −dt2 + dz2 + [1 + v(ρ)](dρ2 + ρ2dφ2) + 2A(y)dt , (3.181)

u(ρ) = 0 , v(ρ) = 2κµG2(ρ) , A(y) = 2πκG2(ρ)jρdφ . (3.182)

In the above we did not make any distinction between the variable ρ and r since for kp = 1

and ϵ = 0 they coincide. Let us comment on a possible source of confusion: we identified the

direction of the cosmic string with the z-direction, but this z-axis is completely independent

of that z-axis encountered in the Darboux decomposition. If anything, this constitutes an

informal proof of the hypothesis that the number of symbols in the Greek and Latin alphabet

are saturated roughly half-way through a typical doctoral thesis.

3.11.2 Angle deficit configurations

“Angle deficit configurations” in higher dimensions, as we defined them above, are solutions

where m = 2 such that the Newtonian potential vanishes. In the static case the metric

function v(r) coincides with the geometry of a cosmic string and the only difference lies in

the appearance of additional spatial directions. This remains true for rotating angle deficit

configurations in higher dimensions since the gravitomagnetic potential A(y) still only has

one angular momentum eigenvalue due to m = 2. The metric is

ds2 = −dt2 +
d−2∑︂
a=1

(dza)2 + [1 + v(ρ)](dρ2 + ρ2dφ2) + 2A(y)dt , (3.183)

u(ρ) = 0 , v(ρ) = 2κϵG2(ρ) , A(y) = 2πκG2(ρ)jρdφ . (3.184)
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3.11.3 Curvature expressions

With the curvature expressions for a static p-brane well known, see Sec. 3.6.2, one may

wonder how the presence of the gravitomagnetic potential Ai(y) affects the curvature. Due

to linearity, at this point we do not have to reproduce the previous results but merely list

the newly arising terms. The Riemann tensor and Ricci tensor pick up the new components

Rtijk = ∂i∂[jAk] , Rti =
1

2

(︁
∂i∂

kAk −△Ai

)︁ ∗
= −1

2
△Ai , (3.185)

where in the last equality we have invoked the Lorenz gauge condition ∂kAk = 0. Because

the new components of the Ricci tensor are off-diagonal the Ricci scalar and therefore the

tracefree Ricci tensor are unaffected. The Weyl tensor, however, has two new non-vanishing

components:

Ctabi =
1

d− 1
ηabRti

∗
=

1

2(1 − d)
ηab△Ai , (3.186)

Ctijk = ∂i∂[jAk] +
1

d− 1
(ηijRtk − ηikRtj)

∗
= ∂i∂[jAk] +

1

2(1 − d)
(ηij△Ak − ηik△Aj) .

(3.187)

The quadratic invariants then take the form

C2 = CµνρσC
µνρσ =

p2 −m2 + 3m+ p− 2

(1 + p)(m+ p)
(△v)2 +

(m− 2)(m+ p− 1)

1 + p
(∂i∂jv)(∂i∂jv)

(3.188)

+ 4
(︁
∂i∂[jAk]

)︁ (︁
∂i∂[jAk]

)︁
− 2m+ 3p

2(m+ p+ 1)2
(△Ak)(△Ak) , (3.189)

��R
2 = ��Rµν��R

µν =
m(m+ p− 1)2

(1 + p)(m+ p+ 1)
(△v)2 . (3.190)

This expression could be further simplified by utilizing the explicit representations for v and

Ai in terms of the static Green functions, and then making use of the recursion relations that

express the derivatives in terms of higher-dimensional Green functions, but we will omit this

rather lengthy study here.

In four dimensions (d = 3) the one may also consider the Chern–Pontryagin pseudoscalar

P =
1

2
ϵµναβC

αβ
ρσC

ρσ
µν . (3.191)
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For p = 0 this invariant takes the form (in the Lorenz gauge ∂iAi = 0)

P = 2ϵtijkC
jk

lmC
lm

ti = 2ϵtijk

[︃
2∂[jδk][l∂m]v +

2

3
δj[lδm]k△v

]︃ [︃
∂i∂[lAm] −

ηil△Am − ηim△Al

4

]︃
= 2ϵtijk(∂i∂lA

j)(∂k∂lv) . (3.192)

The form of this invariant could have been guessed from first principles, except for the

prefactor. It is the only combination that can be formed that is quadratic in the second

derivatives of the gravitational potentials that also includes the ϵ-symbol. We could in

principle also evaluate this expression by similar methods as presented above in the non-

rotating case, but we shall omit these studies at this point and perhaps revisit them some

other time.

For p = 1 the Chern–Pontryagin pseudoscalar vanishes identically since both possible terms

vanish: ϵtctaC
ta

biC
bi
tc = 0 because t appears twice in the ϵ-symbol, and ϵcjbiC

bi
taC

ta
cj = 0

because the indices a, b are one-dimensional and hence the ϵ-symbol vanishes. In the case of

p = 2 we cannot define orthogonal rotation since the transverse space is one-dimensional in

d = 2, and hence A = 0.

3.12 Concluding remarks

In this chapter we have constructed a fairly general class of stationary geometries that are

supported by brane-like objects in any number of dimensions. For simplicity we have assumed

a particular form of the angular momentum density, even though, by linearity, the methods

presented in this chapter should be sufficient to generate the metrics for more complicated

objects.

All gravitational fields were expressed in terms of static non-local Green functions. These

Green functions have the property that they are finite in the coincidence limit, as well as

regular (in the sense that there is no conical deficit; see the discussions in Ch. 2). Moreover,

these Green functions asymptotically coincide with those encountered in linearized General

Relativity, which guarantees that in the large-distance limit all solutions described in this

chapter coincide with their corresponding solutions from linearized General Relativity.

As already indicated in Ch. 1, the reason for this behavior is simple: on may think of these

solutions in two equivalent ways: As solutions of linearized non-local ghost-free gravity with

δ-shaped matter sources, or as solutions of linearized General Relativity, where the δ-shaped

matter sources have been smoothed out.
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For this reason it is important to move beyond the linear description, which unfortunately

is connected with considerable calculational complications. Only when a fully non-linear

solution to the non-local ghost-free gravity equations has been found we can truly evaluate

the role of the linearized solutions described in the present chapter. Nevertheless we hope

that the considerations presented here prove useful for that purpose.
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Chapter 4

Ultrarelativistic objects

Aichelburg and Sexl constructed the gravitational field of ultrarelativistic objects from lin-

earized solutions in General Relativity. In this chapter we will generalize this method to

the linearized solutions of non-local ghost-free gravity and obtain the gravitational field of

ultrarelativistic, rotating particles (gyratons) as well as their higher-dimensional generations

(rotating particles and rotating branes in arbitrary dimensions). This chapter is based on

Ref. [8] whereas the material in Sec. 4.3 has not yet been submitted.

4.1 The Aichelburg–Sexl metric and the Penrose limit

The gravitational field of ultrarelativistic objects has been studied for a rather long time.

Tolman, Ehrenfest, and Podolski have shown that the gravitational force between a beam

of light and a massless particle moving in the same direction vanishes [203]. Later, Bonnor

studied extensively the gravitational field of null fluids and spinning pencils of light [204–206],

see also Refs. [207–209]. These studies have been generalized to higher dimensions [210,

211], to incldue electric charge [212], in other asymptotic geometries [213, 214] as well as in

supergravity [215]. For more information on gyratons and their geometric classifications see

Refs. [216–219].

Instead of solving the Einstein–Maxwell equations to obtain the gravitational field of light

it is also possible to consider instead an initial “seed” metric, such as the Schwarzschild

black hole, and then perform a Lorentz boost, and this method goes back to Aichelburg and

Sexl [220]. In a second step one may then take the limit of the boost velocity approaching

the speed of light. Since a Lorentz transformation does not remain regular in this limit, the

limit has to be extended by additional assumptions that can counteract this pathology. As
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Penrose demonstrated a few years later [221], this limit may be defined much more generally,

and hence we shall refer to the limiting procedure as the Penrose limit.

In four spacetime dimensions there exists another avenue: instead of starting with the full,

non-linear solution of Einstein’s equations one may utilize the weak-field approximation

of that solution as well. For example, it may be verified (see below) that the linearized

Schwarzschild metric, when boosted to the speed of light in the correct Penrose limit, co-

incides with the Aichelburg–Sexl metric. This prescription is particularly fruitful in the

context of mini black hole formation from the collision of ultrarelativistic particles [222–227];

for applications in non-local ghost-free gravity see Refs. [143,144].

Näıvely this fact can be understood as follows: to leading order, the spacetime curvature of a

point particle has the form R ∼ m/r3. In the Penrose limit the product mγ is kept fixed while

γ → ∞, which in turn implies that the parameter m is very small. This justifies that only

leading order contributions in both the curvature, the metric, and the Levi–Civita connection

need to be taken into account, since all higher order terms vanish in the limit γ → ∞. For

this reason one may hope that the same features remain true if one extends the studies to

non-local gravity as described by infinite-derivative form factors: it may be possible that the

gyratons obtained from performing the Penrose limit on a linearized weak-field solution of

infinite-derivative gravity are in fact also exact solutions of the full, non-linear field equations

of infinite-derivative gravity.

However, perhaps surprisingly, it has been shown that within General Relativity this mech-

anism only works in four spacetime dimensions [18,210,211]. In higher-dimensional General

Relativity, exact gyraton solutions may contain terms quadratic in the angular momentum,

which vanish in their linear approximation. In other words: Boosted weak-field solutions in

spacetime dimensions higher than four may no longer solve the full, non-linear field equations.

In the following sections we will proceed as follows. First we will boost a rotating weak-

field “seed metric” as obtained in linearized infinite-derivative gravity to a velocity β. In a

second step we will perform the suitable Penrose limit which involves criteria on its mass m

and its angular momentum j and demonstrate that in the limiting case of vanishing non-

locality and vanishing angular momentum we recover the Aichelburg–Sexl metric. In a third

step, we will examine the properties of the resulting rotating ultrarelativistic gyraton metrics

in four and higher dimensions, and also discuss a possible generalization towards spinning

ultrarelativistic p-branes.
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4.2 Gyratons

Let us now focus on the spinning solutions we obtained in Ch. 3. In particular, for later

convenience, we are interested in the gravitational field of a “pencil,” that is, an object with

finite extension L in one spatial direction, while being infinitely thin in all other spatial

directions. We shall assume that the pencil lives in d-dimensional Euclidean space.

4.2.1 Geometrical setup

It is helpful to consider two frames in this scenario, and we shall call these frames S̄ and S.

In the S̄-frame the pencil is at rest, and in the S-frame it moves with a constant velocity β

along the direction of its spatial extension. These two frames are related by a Lorentz boost,

and the coordinates in each frame are

X̄µ = (t̄, ξ̄, xi⊥) , Xµ = (t, ξ, xi⊥) . (4.1)

While t̄ and t denote the time coordinates in the frames S̄ and S, respectively, ξ̄ denotes the

direction of the spatial extension of the pencil in its own rest frame, and ξ is the corresponding

coordinate after the boost. There are also i = 1, . . . , d−1 transverse coordinates xi⊥ for which

we choose the same symbol in both frames since their values are unaffected by the boost in

the ξ̄-direction. The Minkowski line element, in both frames, takes the form

ds2 = −dt̄2 + dξ̄
2

+ dx2
⊥ = −dt2 + dξ2 + dx2

⊥ , dx2
⊥ =

d−1∑︂
i=1

(dxi⊥)2 = δijdx
i
⊥dxj⊥ . (4.2)

In what follows, we shall denote all quantities associated with the rest frame S̄ with a bar,

and all quantities related to the S-frame in which the pencil is moving without a bar. Let us

now briefly specify the orthogonal coordinates in S̄ further. We write

xi⊥ = (yA, ŷA, ϵz) , A = 1, . . . , n , n =

⌊︃
d− 1

2

⌋︃
, d = 2n+ 1 + ϵ . (4.3)

This means that the transverse, (d − 1)-dimensional space is split into n Darboux planes

ΠA, each plane spanned by a pair of coordinates {yA, ŷA} with A = 1, . . . , n labelling the

independent planes. If (d−1) is odd, there is also an additional z-axis. This is quite similar to

our previous considerations in Ch. 3 and we visualize this Darboux decomposition in Fig. 4.1

for the present case. In other words: the Darboux decomposition performed in this section

is identical to that of the previous chapter, provided we ignore the ξ̄-direction.
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Let us now specify the energy-momentum tensor for the pencil in the S̄-frame:

Tµν =

[︄
δt̄µδ

t̄
νλ̄(ξ̄) +

n∑︂
A=1

(︄
j̄A(ξ̄)δt̄(µϵ

A j
ν)

∂

∂xj⊥

)︄]︄
δ(d−1)(x⊥) , (4.4)

In the above, λ̄(ξ̄) denotes the line density of the gravitational pencil along the ξ̄-direction and

has dimensions of mass per length, and j̄A(ξ̄) denotes the line density of angular momentum

for a given Darboux plane ΠA with dimensions of angular momentum per length. The

quantity ϵAij denotes the surface element for the Darboux plane ΠA, as already employed in

Ch. 3, such that

j̄ij(ξ̄) =
n∑︂

A=1

j̄A(ξ̄)ϵAij . (4.5)

The total energy-momentum tensor is proportional to the transverse δ-function δ(d−1)(x⊥)

since the pencil has zero width in the transverse direction.

We assume that the pencil has a finite length L̄ such that both λ̄(ξ̄) = 0 and j̄A(ξ̄) = 0 for

ξ̄ ̸∈ (0, L̄). The mass and the angular momentum of such a pencil are

m̄ =

∞∫︂
−∞

dξ̄ λ̄(ξ̄) , J̄ ij =

∞∫︂
−∞

dξ̄ j̄ij(ξ̄) , j̄ij(ξ̄) =
n∑︂

A=1

ϵAij j̄A(ξ̄) , (4.6)

Note that the above energy-momentum tensor implies that the angular momentum is trans-

verse to the ξ̄ direction since jαβδ
α
ξ̄

= jβαδ
α
ξ̄

= 0. In other words, the angular momentum

density tensor jαβ is trivial in the t̄ξ̄-sector. In four dimensions this is easier to visualize,

and the above conditions correspond to the angular momentum pseudovector being aligned

with the boost direction ξ̄ of the pencil. Expressed as a 2-form this implies that the angular

momentum density 2-form is perpendicular to the ξ̄-direction.

While it may be possible to consider the gravitational field of spinning ultrarelativistic objects

with angular momentum components in the direction of motion, this choice of only transverse

angular momentum density is convenient because it implies that the tensorial structure of the

angular momentum 2-form jαβ transforms trivially under the Lorentz boost in the ξ̄-direction.

That being said, we may now use Eqs. (3.134)–(3.140) of the previous chapter to find the

gravitational field of the pencil-shaped energy-momentum of Eq. (4.4). The transverse δ-



4.2. Gyratons 96

  

....

Figure 4.1: Ignoring the ξ̄-direction, one may perform a Darboux decomposition of the

remaining (d− 1)-dimensional Euclidean space. There are n orthogonal Darboux planes ΠA

labelled by A = 1, . . . , n where d− 1 = 2n+ ϵ. The additional z-direction only exists if d− 1

is odd, or, equivalently, when ϵ = 1. In the above diagram we visualize the Darboux planes

by wedges, the z-axis by a dashed line, and the boost direction ξ̄ by a straight line.

function collapses most integrals and one finds

hµνdX̄
µ
dX̄

ν
= ϕ̄

[︃
dt̄2 +

1

d− 2
(dξ̄

2
+ dx2

⊥)

]︃
+ 2Āidx

i
⊥dt̄ , (4.7)

ϕ̄(ξ̄, xi⊥) = 2κ
d− 2

d− 1

∞∫︂
−∞

dξ̄
′
λ̄(ξ̄

′
)Gd(r̄) , (4.8)

Āi(ξ̄, x
i
⊥) = −2πκ

∞∫︂
−∞

dξ̄
′
j̄ij(ξ̄

′
)xj⊥Gd+2(r̄) , (4.9)

where we defined the auxiliary expression

r̄2 =
(︂
ξ̄ − ξ̄

′
)︂2

+ δijx
i
⊥x

j
⊥ . (4.10)

This gravitational field is the starting point for constructing a rotating gyraton solution in

infinite-derivative gravity, and the free parameters are given by the line densities λ̄(ξ̄) and

j̄A(ξ̄). Sometimes it is also useful to write

j̄ij(ξ̄)dx
i
⊥x

j
⊥ = −

n∑︂
A=1

j̄A(ξ̄)ρ2AdφA , (4.11)

where {ρA, φA} are polar coordinates in the Darboux plane ΠA as already introduced in

Ch. 3.
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4.2.2 Boost and Penrose limit

We have found the gravitational field of a pencil in an arbitrary number of dimensions for a

wide range of linearized infinite-derivative gravity theories, and we can now proceed to boost

the solution to a velocity β, before taking the limit β → 1 in a suitable Penrose limit.

During this limit we assume that m̄γ and L̄/γ remain constant, where

γ =
1√︁

1 − β2
. (4.12)

Let us first remark on the scaling behavior of the mass and angular momentum line densities

as given in Eq. (4.6) which imply

λ̄ =
dm̄

dξ̄
, j̄ij =

dJ̄ ij

dξ̄
. (4.13)

The Penrose limit consists of two assumptions during the limiting process of β → 1: first, we

assume that the energy γm̄ remains constant. Second, we assume that the ratio L̄/γ remains

constant as well. Then, Eq. (4.13) implies the following scaling behavior during the Penrose

limit:

λ ∼ γ2λ̄ , jij ∼ γj̄ij . (4.14)

The scaling weights are different because the angular momentum is transverse to the boost

direction and hence it is not required to demand a similar condition to the energy. To move

forward, let us now parametrize the boost in the ξ̄-direction as

t = γ (t− βξ) , ξ = γ (ξ − βt) . (4.15)

For fixed ξ in the new frame S one has ξ̄ = −γβt+const., which implies that the pencil moves

into the positive ξ-direction. Let us now introduce retarded and advanced null coordinates,

u =
t− ξ√

2
, v =

t+ ξ√
2
. (4.16)

In terms of the S̄-coordinates one has

t =
γ√
2

[(1 + β)u+ (1 − β)v] , ξ =
γ√
2

[−(1 + β)u+ (1 − β)v] , (4.17)
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Figure 4.2: A pencil of length L moving with the speed of light. Its energy density, viewed

as a function of retarded time u, is non-zero in the interval u ∈ [−L/
√

2, 0].

and in the ultrarelativistic limit, β → 1, this becomes

t→
√

2γu , ξ → −
√

2γu , (4.18)

which in turn implies that the matter distribution has a finite duration u ∈ [−L/
√

2, 0]; we

visualize this in Fig. 4.2. Based on the scaling properties (4.14) we define the mass and

angular momentum line densities in the S frame as

λ(u) = lim
γ→∞

√
2γ2 λ(−

√
2γu) , (4.19)

jij(u) = lim
γ→∞

√
2γ jij(−

√
2γu) , jA(u) = lim

γ→∞

√
2γ j̄A(−

√
2γu) . (4.20)

These precise scaling relations imply that the following expressions for the total mass m and

the total angular momentum Jij remain constant,

m = γ m = γ

∞∫︂
−∞

dξ λ(ξ) =

∞∫︂
−∞

duλ(u) = const , (4.21)

Jij = J̄ ij =

∞∫︂
−∞

dξ jij(ξ) =

∞∫︂
−∞

dujij(u) = const . (4.22)

Applying the coordinate transformation (4.15) to the metric (4.7) under the scaling assump-

tions (4.19)–(4.20) then gives the gyraton metric

g = (ηµν + hµν) dXµdXν = −2dudv + ϕdu2 + 2Aidx
i
⊥du+ dx2

⊥ , (4.23)
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ϕ = lim
γ→∞

2γ2
d− 1

d− 2
ϕ̄ , Ai = lim

γ→∞

√
2γĀi . (4.24)

Here, ϕ and Ai denote the gravitational potentials in the frame S after the Penrose limit.

Their precise form can be derived conveniently by using Eqs. (4.8)–(4.9) in conjunction with

the following Green function representation derived in Sec. 2.8.5,

Gd(r) =
1

2π

∞∫︂
−∞

dη

a(−ηℓ2)η

∞∫︂
−∞

dτ Kd(r|τ) eiητ , Kd(r|τ) =
1

(4πiτ)
d
2

ei
r2

4τ , a(z) = e(−z)N ,

(4.25)

which is valid for linearized GFN theories with N = 1, 2, . . . (in the case of linearized General

Relativity one sets ℓ = 0 and hence a = 1). The above representation is useful because radial

distance enters quadratically in the exponent of the d-dimensional heat kernel Kd(r̄|τ), where

r̄2 = (ξ̄ − ξ̄
′
)2 + r2⊥ = 2γ2(u− u′)2 + r2⊥ , r2⊥ = δijx

i
⊥x

j
⊥ . (4.26)

Then one can make use of the identity (see [228])

δ(u) = lim
ϵ→0

1√
2πiϵ

ei
u2

2ϵ , (4.27)

where we identify ϵ = τ/γ2, yielding the universal relation

lim
γ→∞

γ Gd(r̄) =
1√
2
Gd−1(r⊥)δ(u− u′) . (4.28)

This relation is true for any linearized non-local ghost-free theory as well as linearized General

Relativity, and is valid in any number of dimensions. It is an interesting relation because

it relates the static d-dimensional Green function to the (d − 1)-dimensional static Green

function, multiplied by a δ-function in the retarded time that collapses the u′-integral in

Eqs. (4.8)–(4.9). We find

ϕ(u, r⊥) = 2
√

2κλ(u)Gd−1(r⊥) , Ai(u, x
i
⊥) = −2πκjij(u)xj⊥Gd+1(r⊥) . (4.29)

Again, one may employ the Darboux decomposition of the angular momentum density such

that

Ai(x⊥)dxi⊥ = 2πκGd+1(r⊥)
n∑︂

A=1

jA(u)ρ2AdφA . (4.30)
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The gyraton metric of a rotating pencil in an arbitrary number of dimensions in linearized

ghost-free gravity is hence given by (4.23) in conjunction with Eqs. (4.29)–(4.30).

Let us now study some explicit examples under the knowledge of the static Green functions

presented in great detail in Sec. 2.8. We have already argued there that all non-local static

Green functions Gd(r) are regular as r → 0 and for that reason the gyratons presented in

this chapter are regular as well. Let us note, however, that were it not for the rescaling in

the ξ̄-direction during the Penrose limit the resulting metric would be singular as it would

contain a δ-function in retarded time, corresponding to a relativistic shock wave. This can

be shown from setting λ̄(ξ̄) = m̄δ(ξ̄) in the above considerations. The importance of these

results lies in the fact that the metric is now also regular in the transverse space as r⊥ → 0,

which is an effect generated by the presence of non-locality.

In order to study these metrics in a bit more detail it is useful to introduce the gravitomagnetic

charge Q that is related to the gravitomagnetic potential A as follows:

Q =

∫︂
A

F =

∮︂
∂A

A = 4π2κGd+1(r⊥)
n∑︂

A=1

jA(u)ρ2A , (4.31)

where A denotes an area of radii ρA = const. Let us now turn to some concrete examples.

4.2.3 Gyraton solutions in d = 3

As a warm-up, let us reproduce well-known results from (3+1)-dimensional General Relativity

[204,205,210,211,220]. Here d = 3 and hence the transverse space is two-dimensional, n = 1

and ϵ = 0. For this reason there is only one Darboux plane. Calling the angular momentum

eigenfunction j(u) and introducing the polar coordinates {ρ, φ} we may identify r2⊥ = ρ2.

4.2.3.1 General Relativity

In General Relativity ℓ = 0 and the relevant static Green functions take the form

G2(r) = − 1

2π
log(r) , G4(r) =

1

4π2r2
. (4.32)

Then, the gravitational potential and the gravitomagnetic potential are

ϕ(u, ρ) = −
√

2κλ(u)

2π
log(ρ) , A(u) =

κj(u)

2π
dφ . (4.33)
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In the limiting case of j(u) = 0 we reproduce the Aichelburg–Sexl metric [18, 220]. For

j(u) ̸= 0, on a u = const. slice, the gravitomagnetic potential is an exact form in transverse

space such that

F = dA = 0 for ρ > 0 and u = const. . (4.34)

This implies that the gravitomagnetic charge is just a function of time,

Q0 = κj(u) . (4.35)

4.2.3.2 Ghost-free infinite-derivative gravity

Even though our general expressions hold for arbitrary ghost-free GFN theories, for simplicity

we will focus on N = 1 and N = 2. In GF1 theory one finds

G2(r) = − 1

4π
Ein

(︃
r2

4ℓ2

)︃
, (4.36)

which results in

ϕ(u, ρ) = −
√

2κλ(u)

2π
Ein

(︃
ρ2

4ℓ2

)︃
, A(u,x⊥) =

κj(u)

2π

[︃
1 − exp

(︃
− r2⊥

4ℓ2

)︃]︃
dφ . (4.37)

The gravitomagnetic charge now depends on the transverse distance,

Q1(ρ) = κj(u)

[︃
1 − exp

(︃
− ρ2

4ℓ2

)︃]︃
, (4.38)

It is clear that in the limiting case of ℓ = 0 one recovers the results for General Relativity.

Similarly, for GF2 theory we obtain

G2(r) = − y

2π

[︂ √
π 1F3

(︁
1
2
; 1, 3

2
, 3
2
; y2

)︁
− y 2F4

(︁
1, 1; 3

2
, 3
2
, 2, 2; y2

)︁ ]︂
, (4.39)

where y = ρ2/(16ℓ2). The gravitomagnetic charge is

Q2(ρ) = κj(u)
[︂
1 − 0F 2

(︁
1
2
, 1
2
; y2
)︁
− 2

√
πy0F 2

(︁
1, 3

2
; y2
)︁ ]︂
. (4.40)

For a visualization of the charges see Fig. 4.3.
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Figure 4.3: For a fixed retarded time u the gravitomagnetic charge of a rotating gyraton in

four dimensional spacetime for General Relativity is constant in space; in the non-local GF1

and GF2 theories, however, the gravitomagnetic charge is a function of transverse distance ρ.

In this plot we have normalized all charges to the constant expression encountered in General

Relativity at any given fixed time u = const. It is interesting to note that in GF2 theory the

charge oscillates, whereas it approaches the constant asymptotic value much more smoothly

in GF1 theory.
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4.2.4 Curvature

Given the fact that the gyraton metric is regular one might wonder whether that fact is

reflected in the curvature invariants as well. For the sake of simplicity, let us focus again

on the four-dimensional case and use Cartesian coordinates in the Darboux plane such that

x = ρ cosφ and y = ρ sinφ and the metric takes the form

g = −2dudv + ϕ(u, x, y)du2 + dx2 + dy2 + 2 [Ax(u, x, y)dx+ Ay(u, x, y)dy] du . (4.41)

Let us treat this as a full, non-linear metric. One may show that the null vector field k = ∂v

is covariantly constant,

∇νk
µ = 0 . (4.42)

which implies that the metric (4.41) corresponds to a pp-wave [176]. This is true irrespective

of the form of the functions ϕ, Ax and Ay, provided one does not change their functional

dependence. This is of course not unexpected expected since already Aichelburg and Sexl

proved this in their original paper [220] in the non-rotating case of A = 0, where they

moreover prove that the resulting metric is of Petrov type N, as opposed to Petrov type

D for the initial, unboosted metric. This fact in itself is also interesting since a coordinate

transformation does not change the Petrov type. The Penrose limit, however, is of course

singular in the limit of β → 1 and for that reason the change in the algebraic type is possible.

One may also show that all polynomial curvature invariants vanish, as is typical for pp-waves,

R = RµνR
µν = RµνρσR

µνρσ = 0 . (4.43)

This fact is interesting since it may imply that the gyraton metric (4.41) might be a solution

of the full, non-linear non-local field equations, and hence it would be interesting to study

this further in the future; see also Ref. [136] in this context.

4.2.5 Gyraton solutions in d ≥ 4

Last, let us demonstrate how to construct gyraton solutions in higher dimensions. First, in

the case of d = 4 one finds again one Darboux plane, but now ϵ = 1 such that there is also

an additional z-coordinate. The metric functions then take the form

ϕ = 2
√

2κλ(u)G3(r⊥) , Aidx
i
⊥ = − κ

r⊥

d

dr⊥
G3(r⊥)j(u)ρ2dφ , r2⊥ = ρ2 + z2 . (4.44)
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For higher dimensions we omit exact expressions but rather specify an algorithmic procedure

of how to generate them. It consists of three steps.

First, after specifying the number of spatial dimensions d, one may determine the number of

Darboux planes n, and whenever d− 1 is odd there exists an additional z-axis. Because the

original, unboosted metric is axisymmetric around the ξ̄-direction it is useful to introduce at

this point the polar coordinates {ρA, φA} for each Darboux plane. Moreover, this construction

is unique if one chooses the direction of the polar angles φA to be right-handed with respect

to the ξ̄-direction.

Second, one may introduce the transverse radial variable r⊥ such that

r2⊥ =
n∑︂

A=1

ρ2A + ϵz2 . (4.45)

Substituting this radius variable into Eqs. (4.29) and (4.30) in the metric (4.23), one now

specifies the functional form of the static Green functions Gd−1(r⊥) and Gd+1(r⊥), which

can be derived from the expressions provided in Sec. 2.8 in any number of dimensions in

conjunction with the recursion relations (2.92).

Last, one may want to consider a specific mass line density λ̄(ξ̄) and angular momentum

line density j̄ij(ξ̄) in the original rest frame S̄, in which case Eqs. (4.19)–(4.20) provide the

correct prescriptions to find the line densities λ(u) and jij(u) in retarded time in the frame

S.

Realistic gyratons are not infinitely thin in the transverse direction, but by linearity one may

modify the “pencil” energy-momentum tensor (4.4) to include a transverse density profile as

well, mutatis mutandis. In that case, however, it is necessary to to impose certain rigidity

conditions on the Darboux form of the angular momentum tensor, and for that reason we

won’t discuss this more complicated case in more detail at this point.

4.3 Gyratonic p-branes

With the gyraton metrics derived from a rotating pencil readily available, a natural extension

is to consider higher-dimensional, extended objects as gravitational sources: p-branes. In

this concluding section we will construct the gravitational field of rotating ultrarelativistic

(“gyratonic”) p-branes in close similarity to that of the gyratons discussed in the previous

section.
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To begin with, the energy momentum tensor now takes the form

Tµν =

{︄
ϵ̄(ξ̄)

[︄
δt̄µδ

t̄
ν −

p∑︂
a=1

δaµδ
a
ν

]︄
+

n∑︂
A=1

(︃
j̄A(ξ̄)δt̄(µϵ

A j
ν)

∂

∂yj

)︃}︄ m∏︂
i=1

δ
(︁
yi
)︁
, (4.46)

which is a combination of the p-brane energy-momentum tensor (3.58) endowed with an

additional transverse angular momentum density (4.4). This deserves some explanation.

First, we denote the coordinates in the pre-boost reference system S̄ as

X̄µ = (t̄, ξ̄, za, yi) , a = 1, . . . , p , i = 1, . . . ,m = d− p− 1 . (4.47)

The considerations are otherwise identical to those of Sec. 3.11, with the exception that we

single out one preferred ξ̄-direction. The remaining space is split between the m-dimensional

transverse space and the p-dimensional space along the brane; see Fig. 4.4 for a visualization.

The main conceptual difference lies in the fact that the transverse space is now (d− p− 1)-

dimensional, since we also subtract the ξ̄-direction in which the p-brane will be boosted. We

call the number of Darboux planes np such that

d− p− 1 = 2np + ϵ . (4.48)

Moreover, we assume that the angular momentum lies entirely in the transverse space, that

is, there are no components in either the ξ̄-direction or the za-direction,

j ξ̄µ = jµξ̄ = jaµ = jµa = 0 . (4.49)

And last, the line density ϵ̄(ξ̄) is assumed to be non-zero only inside an interval ξ̄ ∈ [0, L̄]. In

this sense this corresponds to the generalization of a “pencil” to the case of a p-brane: it is a

p-brane that has a finite thickness in the boost direction ξ̄. This assumption is made in order

to define a proper Penrose limit by keeping the resulting boosted p-brane of finite width, in

complete analogy to the Penrose limit of the pencil discussed in the previous section.

4.3.1 p-brane metric

By linearity, we choose the corresponding metric ansatz to be similar to the rotating p-brane

ansatz (3.173) and stipulate

ds2 =
[︁
1 + ϕ̄(r̄)

]︁ [︄
−dt̄2 +

p∑︂
a=1

(dza)2

]︄
+
[︁
1 + ψ̄(r̄)

]︁ [︄ m∑︂
i=1

(dyi)2 + dξ̄
2

]︄
+ 2Ā(y)dt̄ , (4.50)
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r̄2 = r2⊥ + ξ̄
2
, r2⊥ =

m∑︂
i=1

(yi)2 , Ā(y) = Āi(y)dyi . (4.51)

The solution is given by

ψ̄(r̄) =
p+ 1

2 −m
ϕ̄(r̄) , ϕ̄(r̄) =

2 −m

p+m− 1
2κ

∞∫︂
−∞

dξ̄
′
ϵ̄(ξ̄

′
)Gm+1(r̄

′) , (4.52)

Āi(r̄) = −2πκ

∞∫︂
−∞

dξ̄
′
j̄ij(ξ̄

′
)yjGm+3(r̄

′) , r̄′2 =
(︂
ξ̄ − ξ̄

′
)︂2

+ r2⊥ , (4.53)

where the static Green function in (m+1) dimensions appears in the gravitoelectric potential

ϕ̄ because d− p = m+ 1. In this notation we can also introduce the Darboux planes

r2⊥ = ϵz2 +

np∑︂
A=1

ρ2A ,
m∑︂
i=1

(dyi)2 = ϵdz2 +

np∑︂
A=1

(︁
dρ2A + ρ2Adφ2

A

)︁
. (4.54)

4.3.2 Boost and Penrose limit

We can now again perform the boost from the S̄ frame to the S frame such that

t =
γ√
2

[(1 + β)u+ (1 − β)v] , ξ =
γ√
2

[−(1 + β)u+ (1 − β)v] . (4.55)

The scaling relations for the p-brane’s energy density and angular momentum density are

generalized from the pencil-shaped gyraton as follows:

ϵ(u) = lim
γ→∞

√
2γ2 ϵ(−

√
2γu) , (4.56)

jij(u) = lim
γ→∞

√
2γ jij(−

√
2γu) , jA(u) = lim

γ→∞

√
2γ j̄A(−

√
2γu) . (4.57)

This constitutes a physically sensible generalization of the Penrose limit to p-branes since the

boost is again performed along the ξ̄-direction, as we assume that the p-brane has a finite

thickness L̄ along that direction. The only change in these calculations is the form of the

original metric, which is that of a warped geometry. After the boost one obtains

g = (ηµν + hµν) dXµdXν = −2dudv + ϕdu2 + 2Aidy
idu+

p∑︂
a=1

(dza)2 +
m∑︂
i=1

(dyi)2 , (4.58)

ϕ = lim
γ→∞

2γ2
m+ p− 1

2 −m
ϕ̄ , Ai = lim

γ→∞

√
2γĀi . (4.59)
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We may again perform the limiting case of γ → ∞ using the universal relation (4.28) such

that

ϕ(u, r⊥) = 2
√

2κϵ(u)Gm(r⊥) , Ai(u, y
i) = −2πκjij(u)yjGm+2(r⊥) , r2⊥ =

m∑︂
i=1

(yi)2 . (4.60)

Using the np independent Darboux planes we can also rewrite the gravitomagnetic potential

as

Ai(r⊥)dyi = 2πκGm+2(r⊥)

np∑︂
A=1

jA(u)ρ2AdφA , r2⊥ =

np∑︂
A=1

ρ2A + ϵz2 . (4.61)

This result is quite interesting, since it implies that the presence of the p-brane does not

affect the functional form of the metric since Eq. (4.58) is functionally identical to (4.23).

The reason is that the za-sector remains unaffected by the boost in the ξ̄-section, and for

this reason the corresponding metric components tend to zero in the ultrarelativistic limit.

This is mathematically identical to the yi-sector as well as to the entire transverse xi⊥-sector

in the case of the pencil-shaped gyratons described in the previous section, which also vanish

asymptotically in the Penrose limit.

The difference between the gyratonic p-brane metric and the gyraton metric lies in the

functional dependence of the metric functions, as well as in the precise metric functions.

Whereas in the case of a pencil gyraton the transverse distance is a (d − 1)-dimensional

distance (because only the ξ-direction does not play a role), for a gyratonic p-brane the

transverse direction is (d− 1 − p)-dimensional since not only the ξ-direction disappears but

also the p spatial directions along the brane do not enter due to the translational isometry

of the original p-brane metric in that direction. For that reason the metric functions for the

pencil are Gd−1(r⊥) and Gd+1(r⊥), whereas for the gyratonic p-brane one has instead Gm(r⊥)

and Gm+2(r⊥). In the limiting case of p = 0 the za-sector collapses and one has m = d − 1,

thereby recovering the results of the pencil-shaped gyraton.

4.3.3 Examples in d = 3?

Let us consider the simplest example of a p-brane, that is, a cosmic string with p = 1 in

(3 + 1)-dimensional spacetime. As it turns out, it is impossible to construct a rotating string

in d = 3 subject to (4.49) because kp = 0 and ϵ = 1 as per Eq. (4.48). This implies that

m = 1 and hence the example is quite degenerate: there is not a single Darboux plane,

and hence we cannot define a rotation parameter. Moreover, the transverse space is only
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one-dimensional, and hence

g = −2dudv + ϕdu2 + (dz1)2 + dz2 , ϕ(u, z) = 2
√

2κϵ(u)G1(z) . (4.62)

Here z1 is the direction along the brane and z is the only transverse coordinate.

4.3.4 Example in d = 4

Instead, let us focus on the simplest non-trivial case: a cosmic string (p = 1) in (4 + 1)-

dimensional spacetime. Indeed, for d = 4 the transverse space of such a string is two-

dimensional such that there is one Darboux plane with an angular momentum profile j(u)

and coordinates {ρ, φ}. The metric and the gravitational potentials are then

g = −2dudv + ϕdu2 + 2Adu+ (dz1)2 + dρ2 + ρ2dφ2 , (4.63)

ϕ(u, ρ) = 2
√

2κϵ(u)G2(ρ) , Ai(r⊥)dyi = 2πκG4(ρ)j(u)ρ2dφ . (4.64)

In this case the z1-direction denotes the direction along the 1-brane and should not be

confused with the additional z-coordinate that may exist if the transverse space is odd-

dimensional.

4.3.5 Higher dimensions

Similar to what we elucidated in Sec. 4.2.5, with Eqs. (4.58)–(4.61) one can algorithmically

generate rotating gyratonic p-branes in an arbitrary number of dimensions for linearized

General Relativity as well as a wide range of linearized non-local ghost-free gravity theories.

4.4 Concluding remarks

In this chapter we have constructed the gravitational field of ultrarelativistic objects by

performing a suitable Penrose limit for weak-field solutions found in Ch. 3. While the obtained

solutions have the same asymptotic behavior the gyraton solutions encountered in General

Relativity, a striking difference is their regularity: the gravitational field is finite at the

location of the infinitely thin matter source. Moreover, the gyraton metrics include the well

known Aichelburg–Sexl metric as a special limiting case. In a last step, we have applied a

generalized Penrose limit to rotating p-branes and thereby constructed objects that we refer

to as gyratonic p-branes.

An interesting questions remains: are the obtained metrics also solutions to the full non-
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....

Figure 4.4: Ignoring the ξ̄-direction, one may perform a Darboux decomposition of the

(d − p − 1)-dimensional transverse Euclidean space. Given a p, there are np orthogonal

Darboux planes ΠA labelled by A = 1, . . . , np where d − p − 1 = 2np + ϵ. The additional

z-direction only exists if d− p− 1 is odd, or, equivalently, when ϵ = 1. In the above diagram

we visualize the Darboux planes by wedges, the ξ̄-axis by a solid line, the z-axis by a dashed

line, and the p-brane by a curved line.

linear non-local field equations? It seems possible since in the Penrose limit the effective

mass is scaled with the inverse of the Lorentz boost parameter, making it arbitrarily small.

We hope to address this question in more detail inside our future light cone.
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Chapter 5

Quantum-mechanical scattering

Turning towards quantum aspects of non-locality, we will focus on the quantum-mechanical

scattering on a δ-shaped potential. Using asymptotic properties of the non-local modification

terms we will extract the scattering coefficients and analyze how the presence of non-locality

affects their properties. This chapter is based on Ref. [3].

5.1 Introduction

Scattering experiments are fascinating probes for the quantum aspects of Nature, with ap-

plications ranging to state-of-the-art particle colliders searching for new physics beyond the

Standard Model. In this chapter we will focus on the quantum-mechanical scattering problem

of a plane wave in the presence of a δ-shaped potential.

While it is straightforward in local quantum mechanics to solve this problem using the stan-

dard language of scattering states in a Hilbert space, in non-local quantum theory this is

not so simple: the main problem lies in the fact that the Hilbert space is difficult to define

since the Hamiltonian operator contains infinitely many derivatives. For this reason we will

follow a different avenue. Namely, if we are only interested in asymptotic properties of the

scattering problem (such as the scattering coefficients) we may use the fact that in a static

situation the effects of non-locality are limited to a finite spatial domain of O(ℓ), where ℓ > 0

is the scale of non-locality; see also the relevant discussions on the initial value problem in

Sec. 1.6 as well as the asymptotic causality criterion in Sec. 2.5. Asymptotically we therefore

need to recover the same scattering states as the ones encountered in local quantum theory,

with their amplitudes possibly depending on the presence of non-locality. In what follows we

will describe how we can use this property to extract the non-local scattering coefficients.
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5.2 A non-local scalar field in quantum mechanics

We begin with a non-local modification of the Klein–Gordon equation describing the dynam-

ics of a real scalar field ϕ in presence of a potential V ,

[︁
D − V (x)

]︁
φ(t,x) = 0 . (5.1)

Here, D is a differential operator given by

D = exp
[︁
(−ℓ2□)N

]︁
□ , ℓ > 0 , N ∈ N . (5.2)

In the local limit ℓ→ 0 one has D = □ and hence recovers the local Klein–Gordon equation.

Since we assume the potential to be time-independent we give up Lorentz invariance and will

limit our considerations to the frame where the situation is static. Then, we may perform a

temporal Fourier decomposition of the field φ such that

φ(t, x) =

∞∫︂
−∞

dω

2π
e−iωtφω(x) . (5.3)

Since φ is a real-valued field, the complex Fourier components satisfy φ−ω = φ∗
ω. Inserting

the decomposition (5.3) into (5.1) yields a differential equation for each Fourier mode,

[︁
Dω − V (x)

]︁
φω(x) = 0 , (5.4)

where the differential operator Dω is given by

Dω = exp
[︁
(−ℓ2△− ω2ℓ2)N

]︁
(△ + ω2) . (5.5)

It is our goal to find the scattering coefficients for each Fourier mode off of the potential

V (x), and we will demonstrate how to find them exactly for the simple case of a δ-shaped

potential

V (x) = λδ(x) . (5.6)

In what follows, we will first discuss the Lippmann–Schwinger method for solving scattering

problems of the above form. Then, we will apply this method to find the scattering coefficients

for each Fourier mode in the local case where ℓ = 0 and we may check our results against

the literature. In a last step, we will generalize the calculations to the non-local case, and for
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calculational simplicity we will focus on the case of N = 1. As argued in Sec. 2.6, the case of

N = 1 is well-defined as long as no summation over ω is performed. For this reason we will

restrict ourselves to the analysis of the scattering coefficients for each Fourier mode, but it

should be noted that our methods can also be used to derive the full, real-space scattering

coefficients for any wave packet, albeit in the mathematically more involved non-local GF2

theory with N = 2.

5.3 Lippmann–Schwinger method

Suppose the operator Dω has a Green function Gω(x′ − x) such that

DωGω(x′ − x) = −δ(x′ − x) . (5.7)

We will later assume that Gω(x′−x) is the retarded Green function, but this formalism works

for any Green function that solves the above equation. Moreover, let φ0
ω(x) be a solution of

the free equation

Dωφ
0
ω(x) = 0 . (5.8)

The physical interpretation of the mode φ0
ω(x) is that of a freely moving plane wave that

parametrizes the incoming part of the scattering problem. Then, the exact solution for φω(x)

is

φω(x) = φ0
ω(x) −

∫︂
dyGω(y − x)V (y)φω(y) , (5.9)

which is sometimes called the Lippmann–Schwinger equation [229]. Indeed, the above solves

the Klein–Gordon equation (5.4):

Dωφω(x) = Dωφ
0
ω(x) −

∫︂
dyDωGω(y − x)V (y)φω(y)

= 0 +

∫︂
dyδ(y − x)V (y)φω(y) = V (x)φω(x) .

(5.10)

However, the above Lippmann–Schwinger integral is just a representation of the solution

since it is an integral equation for φω(x) that can only be solved if the integral kernel can

be inverted. In general this may not always be possible, but then one may instead use the
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Lippmann–Schwinger representation for an iterative approximation scheme where

φ(1)
ω (x) = φ0

ω(x) −
∫︂

dyGω(y − x)V (y)φ0
ω(y) , (5.11)

φ(2)
ω (x) = φ0

ω(x) −
∫︂

dyGω(y − x)V (y)φ(1)
ω (y) , (5.12)

φ(3)
ω (x) = φ0

ω(x) −
∫︂

dyGω(y − x)V (y)φ(2)
ω (y) , . . . , (5.13)

which is known as the Born series. However, it is not always clear if and under which

conditions this method is accurate, and in what follows we shall not follow this avenue.

Instead, we will focus on a simple potential that allows for substantial simplifications.

5.4 Transmission and reflection coefficients for a δ-potential

In the simple case of V (x) = λδ(x) with λ > 0 it is possible to extract an exact solution

from the Lippmann–Schwinger representation as the integral collapses,

φω(x) = φ0
ω(x) − λGω(x)φω(0) . (5.14)

Provided 1 + λGω(0) ̸= 0 we find the exact result

φω(x) = φ0
ω(x) − λφ0

ω(0)

1 + λGω(0)
Gω(x) . (5.15)

5.4.1 Local case

At this point we may choose our initial conditions and appropriate Green function. Let

us study the well-known local case first [228, 230–234]. For simplicity we will also restrict

ourselves to the one-dimensional case such that the differential equation becomes

[︁
Dω − λδ(x)

]︁
φω(x) = 0 , Dω = ∂2x + ω2 . (5.16)

The Green function to the homogeneous equation with λ = 0 is

(∂2x + ω2)Gω(x′ − x) = −δ(x′ − x) , (5.17)

where Gω(x) is the partial Fourier transform of the free Green function of a scalar field we

already discussed previously in Sec. 2.4.4. Choosing the free solution φ0
ω(x) to be a right-
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moving plane wave we have

φ0
ω(x) = eiωx , Gω(x) = GR

ω (x) =
i

2ω
eiω|x| , ω > 0 , (5.18)

where, as per our previous discussions in Sec. 2, the choice of Gω(x) corresponds to the re-

tarded Green function. Without loss of generality we restrict ourselves to a positive frequency

Fourier mode. Inserting these choices into (5.15) yields

φω(x) = eiωx − 1

1 − 2iγ
eiω|x| =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−2iγ

1 − 2iγ
eiωx for x > 0 ,

eiωx − 1

1 − 2iγ
e−iωx for x < 0 ,

γ =
ω

λ
. (5.19)

For x > 0 the solution is purely given by transmitted, right-moving solution. For x < 0,

however, there solution consists of a superposition of both the original, right-moving plane

wave as well as a left-moving reflected part. If we had chosen instead a left-moving ingoing

wave, the situation would be mirrored, but it is clear by the symmetry of the situation that

the results are identical under the transformation x→ −x.

We can now use these expressions to read off the transmission and reflection coefficients, see

also Fig. 5.1 for a visualization. The coefficients are

tω = − 2iγ

1 − 2iγ
, rω = − 1

1 − 2iγ
(5.20)

Then, we can define Tω and Rω such that

Tω = |tω|2 =
4γ2

1 + 4γ2
, Rω = |rω|2 =

1

1 + 4γ2
, Tω +Rω = 1 . (5.21)

It is now our goal to extend these computations to the non-local case of GF1 theory.

5.4.2 Non-local case

Let us now switch non-locality on, ℓ > 0, and consider the non-local Klein–Gordon equation

[︁
Dω − λδ(x)

]︁
φω(x) = 0 , Dω = exp

[︁
(−ℓ2∂2x − ω2ℓ2)N

]︁
(∂2x + ω2) . (5.22)

Formally we can again introduce a Green function

exp
[︁
(−ℓ2∂2x − ω2ℓ2)N

]︁
(∂2x + ω2)GR

ω (x′ − x) = −δ(x′ − x) . (5.23)
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e−iω(t−x)

∼ B e−iω(t+x)
∼ Ae−iω(t−x)

V (x)

ingoing

reflected transmitted

Figure 5.1: In a time-independent setting, the quantum-mechanical scattering coefficients

can be conveniently derived by studying plane waves of a fixed frequency ω > 0. A free,

ingoing wave ∼ e−iω(t−x), after scattering at the linear level off of the static potential V (x),

can be decomposed into a reflected part ∼ Be−iω(t+x) and a transmitted part ∼ Ae−iω(t−x),

where A and B are complex numbers that depend on the properties of the potential V (x).

The transmission coefficient T is given by |A|2 and the reflection coefficient is |B|2 with

|A|2 + |B|2 = 1 due to unitarity. Note that these coefficients depend on the frequency of the

Fourier mode for which they are calculated.

From now on we will choose this Green function as the retarded Green function. As our

previous considerations have shown, this criterion implies that its local part corresponds to

the retarded Green function of the local theory. Decomposing this Green function as

GR
ω (x′ − x) = GR

ω (x′ − x) + ∆Gω(x′ − x) , (5.24)

see also the relevant discussion in Sec. 2.6, we have

∆Gω(x) =

∞∫︂
−∞

dq

2π
cos(qx)Aω(q) , Aω(q) =

1 − exp
[︁
−ℓ2N(q2 − ω2)N

]︁
ω2 − q2

. (5.25)

As we have shown previously in Sec. 2.6 this expression can be solved explicitly for N = 1

but is difficult to treat analytically for higher values of N . However, as we will show now,

the scattering coefficients can be determined without knowing the exact form of ∆Gω(x).

Provided 1 + λGω(0) ̸= 0 the full solution for φω(x) takes the form

φω(x) = φ0
ω(x) − ΛωGR

ω (x) , Λω =
λφ0

ω(0)

1 + λGω(0)
. (5.26)

For the determination of the scattering coefficients the full form of φω(x) is not required:

its asymptotic form is sufficient. As we have previously shown in great detail that at large
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distances x→ ∞ we have GR
ω (x) → GR

ω (x) we can write asymptotically

φω(x→ ∞) = φ0
ω(x) − ΛωG

R
ω (x) , Λω =

λφ0
ω(0)

1 + λ
[︁
GR

ω (0) + ∆Gω(0)
]︁ . (5.27)

As discussed in Sec. 1.4, homogeneous differential equations are insensitive to a non-local

modification term. For this reason we may again choose the same free, right-moving plane

wave φ0
ω(x) = eiωx for the non-local scattering problem. Since the local Green function is an

outgoing plane wave, GR
ω (x) = i

2ω
eiω|x|, the scattering coefficients can be read off and can be

recast purely in terms of the non-local contribution ∆Gω(0):

Tω = |tω|2 =
4γ2

1 + 4γ2
, Rω = |rω|2 =

1

1 + 4γ2
, γ = ω

(︃
1

λ
+ ∆Gω(0)

)︃
. (5.28)

These general expressions holds true for a wide range of non-local theories discussed in this

thesis.

5.4.3 Properties of the scattering coefficients

With the scattering coefficients available for both the local and non-local theory we are now

ready to discuss their properties and isolate the effects that non-locality brings about.

The scattering coefficients depend solely on the value of the non-local modification at the

location of the δ-potential. This is not too surprising since the class of non-local ghost-free

theories discussed in this thesis are constructed precisely in such a way that their asymptotic

behavior coincides with that of the local theory.

Let us make some general remarks before moving on to concrete, analytical examples. It

is well known that in the local case the scattering coefficients are invariant under λ → −λ.

Evidently, non-locality spoils that behavior and the two cases are now distinct. Second, in the

non-local case the transmission coefficient may become zero at a finite frequency ω⋆ leading

to a complete reflection of any Fourier mode with that frequency,

λ = − 1

∆Gω⋆(0)
. (5.29)

We will address this unexpected feature in more detail below. Third, in the limit of λ→ ∞,

the transmission coefficient no longer vanishes. And last, the condition 1 + λGω(0) ̸= 0 has

been employed to find the exact representation of φω(x), but there may be frequencies for

which this inequality is violated. We will revisit these frequencies in a later section and

motivate their interpretation as quasinormal modes of non-local quantum theory.
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For the sake of brevity, in what follows let us focus solely on GF1 theory with N = 1. Since

the analysis is restricted to Fourier modes of a fixed frequency ω, the situation is effectively

static and therefore not subject to the temporal instabilities of GF1 theory. As it turns

out, similar results as the ones presented in the following also hold for GF2 theory, but the

analytical expressions become much more involved.

Using the results from Sec. 2.6 for ∆Gω(0) one has

GR
ω (0) =

i

2ω
[1 + erf(iωℓ)] , γ =

ω

λ
− 1

2
erfi(ωℓ) , (5.30)

where erfi(x) = −ierf(ix) is the imaginary error function [174], which is real-valued for x ∈ R.

In the case of ℓ→ 0 we recover the local theory, γ = ω/λ. Inserting this representation into

Eq. (5.28) we can calculate the scattering coefficients for GF1 theory for arbitrary values

of λ, ω, and ℓ. For visualization purposes it is useful to consider instead the dimensionless

parameters λℓ and ωℓ, where ℓ > 0 takes on the role of a normalization parameter, not

dissimilar to the Planck length frequently employed in such considerations.

In the local case, where ℓ = 0, this normalization does not appear to make much sense.

However, in that case we may still use this constant as an ad hoc normalization. For that

reason, in what follows, the local case corresponds to the case ∆Gω(0) = 0 and cannot simply

be obtained by ℓ → 0. We hope that it is clear that this just corresponds to a particular

choice of normalization. Find a graphical representation of the transmission coefficient T ω

as a function of the dimensionless frequency ωℓ in Fig. 5.2. Let us now address a number of

interesting observations.

With a concrete form of the scattering coefficients at our disposal, we can now plot, say,

the transmission coefficient as a function of the dimensionless frequency ωℓ, see Fig. 5.2. As

already mentioned above, non-locality lifts the λ → −λ degeneracy such that these cases

have now distinct scattering coefficients.

We can now determine the critical frequency at which the transmission amplitude vanishes,

ω⋆

λ
− 1

2
erfi(ω⋆ℓ) = 0 . (5.31)

This equation is transcendent and, to the best of our knowledge, cannot be inverted analyt-

ically. However, it is possible to determine when such a solution ω⋆ exists. To that end, we

introduce the dimensionless quantities ω⋆ℓ and λℓ such that

ω⋆ℓ =
λℓ

2
erfi(ω⋆ℓ) . (5.32)
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Figure 5.2: We visualize the dimensionless transmission coefficient Tω as a function of the

dimensionless parameter ωℓ. Left: If the dimensionless coupling λℓ is in the critical regime,

0 < λℓ <
√
π, the transmission coefficient goes to zero at a critical frequency ω⋆ > 0.

Note that for a δ-potential well (λ < 0) this minimum does not exist. In the local case the

transmission coefficient does not vanish anywhere except at zero frequency, and in this case

ℓ just plays the role of a normalization parameter. Right: At the critical coupling λℓ =
√
π,

all frequencies ωℓ ≲ 1 are strongly suppressed. Again, for a δ-potential well with λ = −
√
π,

nothing special happens.

Given λℓ, the above relation can be considered as a criterion for a straight line ωℓ to meet

with the imaginary error function. As it turns out, this is not always possible because the

imaginary error function is convex. It is sufficient to consider the expansion of the imaginary

error function at ωℓ = 0,

erfi(ω⋆ℓ) ≈
2ω⋆ℓ√
π

+ O
[︁
(ω⋆ℓ)

2
]︁
. (5.33)

For this reason, a critical frequency ω⋆ only exists provided

0 < λℓ <
√
π . (5.34)

In fact, one may show that if λℓ >
√
π the only solution of (5.31) is purely imaginary. Since

it is difficult to find an analytical expression for ω⋆ as a function of λ we simply plotted λ as a

function of ω⋆ and swapped the axes (“graphical inversion”); see Fig. 5.3. Thus, for a fixed λ

in this range, there always exists a critical frequency ω⋆ for which the transmission amplitude

is exactly zero, and hence the reflection coefficient exactly equals 1. This is an unexpected

effect that arises purely due to the presence of non-locality. There is the following scaling
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Figure 5.3: These plots shows the dimensionless frequency ω⋆ℓ as a function of λℓ. For λ→ 0

the critical frequency diverges, but for λℓ ≈ O(1) the frequency ω⋆ℓ is finite. If λℓ >
√
π, see

the dashed line in the right diagram, the critical frequency becomes imaginary.

relation:

(ω⋆ − ω)ℓ =
√

3(1 − λℓ/
√
π)1/2 . (5.35)

That being said, let us try to understand this “resonant reflection” of a critical frequency ω⋆.

Employing the previously derived asymptotics in the non-local scattering problem we may

write in the far-field regime

φω(x≫ 1) = eiωx −Bωe
iω|x| , B = 1 − i

[︃
2ω

λ
− erfi(ωℓ)

]︃
. (5.36)

The wave consists of the ingoing plane wave in addition to two “ringing” modes that move

away from the location of the potential barrier at x = 0 with the asymptotic amplitude

proportional to Bω. In the critical case one has Bω⋆ = 1, which means that the ingoing wave

and the transmitted wave cancel exactly. At the same time we need to recall that this is

an asymptotic expansion, and hence the field φω⋆ penetrates the potential barrier a finite

amount.

We cannot help but remark that this somewhat resembles high-reflection coatings in optics,

where an enhanced reflection of a specific frequency can be generated via special coatings

exhibiting a special index of refraction. In this sense this non-local scattering brings about

new physics, at wavelengths comparable to the scale of non-locality, ω⋆ℓ ∼ 1.
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5.5 Quasinormal modes

In our previous discussion we limited our consideration to scattering states that asymptoti-

cally correspond to plane waves. A necessary criterion to express the full solution in terms

of plane waves was that the expression 1 + λGω(0) ̸= 0. While scattering states have a

continuous frequency ω, let us now focus on bound states which have discrete frequencies.

In order to discuss bound states we may again use the Lippmann–Schwinger method for a

δ-shaped potential,

φω(x) = φ0
ω(x) − λφω(0)Gω(x) . (5.37)

At this time, however, we assume that φω(x) describes a bound state, and we may parametrize

this by choosing the free solution to be vanishing, φ0
ω(x) ≡ 0. Then one obtains

φω(x) = −λφω(0)Gω(x) . (5.38)

Clearly, the consistency condition at x = 0 can only be satisfied if

1 + λGω(0) = 0 . (5.39)

For a fixed potential strength λ we may interpret the above condition as a condition on the

frequency ω, and because Gω(0) takes values in C, the corresponding frequency is generally

also complex. At this point we need to specify our definition of what constitutes a bound

state. To that end, note that asymptotically when x/ℓ→ ∞ the solution takes the form

φω(x→ ∞) = −iλφω(0)

2ω
eiω|x| . (5.40)

It is clear that only frequencies with a positive imaginary part are normalizable, and for that

reason we define bound states to satisfy

φω(x) = −λφω(0)Gω(x) , 1 + λGω(0) = 0 , Im(ω) ≥ 0 . (5.41)

We refer to modes with frequencies subject to the above conditions as quasinormal modes ;

for an in-depth review of quasinormal modes see [235] and references therein. In general, the

condition 1 + λGω(0) = 0 takes the form

1 + λ

[︃
i

2ω
+ ∆Gω(0)

]︃
= 0 . (5.42)
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In what follows, we will study the quasinormal modes both for the local theory and the

non-local GF1 theory. Again, as in the calculation of the scattering coefficients, only the

non-local modification term evaluated at the location of the potential (here at x = 0) enters

the results.

5.5.1 Local case

In the local case when ∆Gω(0) = 0 there is only one quasinormal mode,

ω = −iλ
2
. (5.43)

The imaginary part of this frequency is positive if and only if λ < 0. This corresponds to the

well known fact that only an attractive δ-potential (λ < 0) has a normalizable bound state

in local quantum theory, whereas a repulsive δ-potential with λ > 0 does not admit any such

states.

5.5.2 Non-local case

The situation is drastically different in the non-local theory. For GF1 theory, the bound state

frequency criterion becomes

ω

λ
+
i

2
− 1

2
erfi(ωℓ) = 0 . (5.44)

This is a transcendental equation and we decided to study its properties numerically. In

particular, parametrizing ω = ωr + iωi one may interpret this as two real-valued constraint

equations on the two variables ωr and ωi such that it is possible to find the contour lines of this

constraint in the ωrωi-plane. We may use the scale of non-locality ℓ > 0 as a normalization

parameter such that we measure both the frequency and potential strength in units of ℓ−1.

Then, the only variable is the dimensionless potential strength λℓ. In Fig. 5.4 we plot the

resulting contour lines of the following two real-valued equations:

Re

{︃
ωr + iωy

λ
+
i

2
− 1

2
erfi
[︁
(ωr + iωi)ℓ

]︁}︃
=
ωr

λ
− 1

2
Re
{︂

erfi
[︁
(ωr + iωi)ℓ

]︁}︂
= 0 , (5.45)

Im

{︃
ωr + iωi

λ
+
i

2
− 1

2
erfi
[︁
(ωr + iωi)ℓ

]︁}︃
=
ωi

λ
+

1

2
− 1

2
Im
{︁

erfi
[︁
(ωr + iωi)ℓ

]︁}︁
= 0 . (5.46)

Wherever the contours intersect lies a solution {ωr, ωi}. There are a number of interesting

observations: First, there exist normalizable bound states both for λ > 0 and λ < 0, in

contrast to the local theory where there is only one bound state for λ < 0. Second, the bound
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state of the local theory is shifted towards smaller imaginary arguments due to the presence

of non-locality. And third, there is an entirely new set of quasinormal modes which are

reflection-symmetric along the imaginary axis (that is, they feature equal, positive imaginary

parts, but with real parts that are the negative of each other). They correspond to ingoing

and outgoing modes, decreasing in amplitude as e−ωi|x|, ωi > 0, thereby justifying their

designation as “quasinormal modes.”

However, there are also several unnormalizable modes; in Fig. 5.4 these are contained in the

shaded regions. Their physical interpretation remains unclear, and we consider this study as

a formal demonstration rather than physical fact. They might indicate an instability in this

particular class of non-local theories (see also the discussion on instabilities in GF1 theories

in quantum field theory in Sec. 6.4). On the other hand, their presence could also be an

artefact of the insufficiency of a linear theory. Similar quasinormal modes have also been

reported on in Ref. [103] in the context of a δ-comb potential, which we would like to address

next.

5.6 Multiple δ-potentials

The above methods can be readily extended to δ-comb potentials of the form

V (x) =
n∑︂

a=1

λaδ(x− xa) , (5.47)

where λn is the strength and xa is the location of the a-th δ-potential. A simple example is the

double-barrier potential, but one may also think of extended lattice structures encountered

in condensed matter physics where n≫ 1. In that case the function φω(x) must satisfy

φω(x) = φ0
ω(x) −

n∑︂
a=1

λaφω(xa)Gω(x− xa) . (5.48)

In order to find the n parameters φω(xa) one inserts x = xa for all δ-barrier locations and

solves the resulting system of equations, which may prove cumbersome for larger values of n,

φ0
ω(xb) =

n∑︂
a=1

[δab + λaGω(xb − xa)]φω(xa) =
n∑︂

a=1

Mabφω(xa) . (5.49)
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Figure 5.4: We study the transcendental equation 1+λGω(0) = 0 graphically for both negative

(left) and positive (right) dimensionless couplings λℓ. Each intersection point corresponds

to a complex quasinormal mode ωℓ, where we employ ℓ > 0 as a normalization factor. The

shaded area contains un-normalizable modes with negative imaginary part. The central,

purely imaginary mode corresponds to the well-known bound state ω = −iλ/2 that is only

bounded for λ < 0, just as in the local theory. All other intersection points correspond to

novel quasinormal modes that only exist in the non-local theory.
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Formally, one then has

φω(x) = φ0
ω(x) −

n∑︂
a,b=1

λaM
−1
ab φ

0
ω(xb)Gω(x− xa) , (5.50)

where of course the challenge lies in finding the matrix M−1
ab . For a specific choice of finite n

this can be done in a wide range of cases; for the explicit case of n = 2, λ1 = λ2 = λ, and

x1 = −x2 = a we refer to Buoninfante et al. [103].

5.6.1 Quasinormal modes

In the case of bound states the matrix Mab is not invertible such that each singular matrix

Mab corresponds to a complex frequency ω that encodes a bound state (where, again, the

sign of the imaginary part determines if that state is normalizable). This can be seen from

choosing φ0
ω(x) = 0 and setting x = xb such that

φω(xb) = −
n∑︂

a=1

λaφω(xa)Gω(xb − xa) ⇔
n∑︂

a=1

Mabφω(xb) = 0 . (5.51)

For non-trivial bound state solutions we hence require detMab = 0. In the limiting case of

n = 1 this reproduces our previous condition 1 + λGω(0) = 0.

In principle we can use these techniques to study excitations in one-dimensional systems

whose structure may be modelled by δ-comb potentials. Certain simplifications are to be

expected when all λa coincide and xa = a × L for some lattice spacing L > 0. It also

seems possible to extend these studies to higher-dimensional systems whose potentials can

be written as a product of δ-functions. Last, it might also be interesting to study compact

systems with periodic boundary conditions, φω(xn) = φω(x1), and take the continuum limit

n→ ∞ while keeping the size of the system n×L fixed. It would be interesting to study the

quasinormal modes (and scattering coefficients) for extended bodies to further understand

the role of non-locality in mesoscopic systems.

5.7 Concluding remarks

Using the asymptotic properties of non-local ghost-free quantum mechanics we were able to

extract the scattering coefficients for a plane wave in the presence of a δ-shaped potential.

Moreover, using the Lippmann–Schwinger approach we demonstrated explicitly how the pres-

ence of non-locality enters these coefficients, with surprising consequences: the transmission
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vanishes for a critical frequency, implying complete reflection, provided the potential barrier

is not too high. Moreover, non-locality destroys the symmetry of λ→ −λ which is predicted

by the local theory.

Since all our considerations were limited to a single Fourier mode of fixed energy, it would be

interesting to extend these studies to wave packets. Since the non-local modification of the

scattering coefficients depends on the dimensionless product of non-locality and energy ωℓ it

is conceivable that the presence of non-locality will lead to a potentially observable difference

in the dispersion relations for wave packets. It would also be interesting to study the effects

of non-locality in periodic structures, such as crystals, and determine whether there are novel

interactions between non-locality and phonons and hence observable consequences for lattice

vibrations.
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Chapter 6

Vacuum polarization and the

fluctuation-dissipation theorem

We further develop the concept of interacting non-local Green functions and utilize them to

determine the vacuum polarization of a non-local scalar quantum field around a δ-shaped

potential; we also address non-local thermal fluctuations and prove that they are compatible

with the fluctuation-dissipation theorem. This chapter is based on Refs. [4, 5].

6.1 Introduction

The observation of zero-point fluctuations or “vacuum polarization” represents one of the

key differences between classical fields and quantum fields. They are typically defined in

terms of a subtraction scheme such that they vanish identically for a free field in empty

spacetime. Around matter sources, conversely, they are non-vanishing. A well known example

is the Casimir effect [236–238], which has a long history [239, 240]. Due to the presence of

vacuum fluctuations in the vicinity of thin, conducting plates there is a net macroscopic

force acting on them. Modeling the plates as δ-shaped potentials, it is possible to extract

the renormalized expectation value of the energy-momentum tensor and determine the forces

explicitly [241–243].

In the present chapter we would like to determine the vacuum polarization around a δ-like

potential in ghost-free quantum field theory. Having demonstrated that non-local ghost-free

quantum mechanics admits physically sensible interpretations and scenarios we would now

like to move on to non-local ghost-free quantum field theory. In particular, on a technical

side, this involves the summation over temporal Fourier modes in order to generate real-space
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observables. Instead of relying on techniques from second quantization that in turn introduce

creation and annihilation operators on a suitable Fock space, we will utilize the method of

Green functions to extract physical predictions. In that context an important role is played

not only by the causal propagators and their generalization to non-local ghost-free theories,

but also by the Hadamard and Wightman functions in the presence of non-locality: while

in the free case they coincide with their local counterparts, their interacting expressions are

sensitive to the presence of non-locality which will lead to new observational signatures of

non-locality.

6.2 A model of a non-local scalar quantum field

Even though the previous years have seen progress on general non-local quantum field theory,

see Ref. [83] and references therein, we would like to examine a particular example for the

sake of concreteness. To that end, in this chapter we will describe some properties of a

non-local, massive real scalar quantum field in two-dimensional Minkowski spacetime. Since

we will work in the Lorentzian setting we will not resort to path integral methods but rather

employ the previously developed method of non-local Green functions.

In particular, we would like to understand the vacuum polarization of a non-local quantum

field φ in the presence of a δ-shaped potential. The action for such a non-local scalar field φ

can be written as

S[φ] =
1

2

∫︂
d2X

(︁
φDφ− V (X)φ2

)︁
, (6.1)

where Xµ = (t, x) describe the two-dimensional coordinates in Minkowski spacetime ds2 =

−dt2 + dx2, V (X) represents a potential term, and D is a differential operator of the form

D = exp
[︁
ℓ2N(−□ +m2)N

]︁
(□−m2) , □ = −∂2t + ∂2x . (6.2)

We refer to Sec. 1.5 for some considerations regarding non-local action principles as employed

in this thesis. Here, ℓ > 0 is the scale of non-locality such that in the limiting case ℓ → 0

one reproduces the local theory, and N = 1, 2, . . . is a positive integer. We call non-local

ghost-free theories of the above type GFN theories. It should be noted that for much of the

following discussion the precise form of D is irrelevant since we shall express our findings

purely in terms of the relevant Green function, but we decided to display the precise form of

D at this point as well to provide some context.

In quantum field theory the field φ is promoted to a field operator φ̂, which in flat space
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can be expanded in Fourier modes consisting of creation and annihilation operators on a

suitable Fock space, which is sometimes referred to as “second quantization.” Defining these

concepts in a non-local theory is difficult because the kinetic term in the action contains

infinitely many derivatives, thereby leading to substantial differences of the Hamiltonian

formulation as compared to the local theory which only features second derivatives at the

most.

Instead, we shall focus on the Green function method. To that end, the classical field equa-

tions take the form

[D − V (X)]φ(X) = 0 . (6.3)

We define a causal Green function G•(X ′, X) as a solution of

[D − V (X)]G•(X ′, X) = −δ(2)(X ′ −X) , (6.4)

and shall refer to these Green functions in the presence of the potential term V (X) as

“interacting Green functions,” whereas we also define a free causal Green function G•(X ′−X)

as a solution of

DG•(X ′ −X) = −δ(2)(X ′ −X) . (6.5)

Free Green functions, due to the translational invariance of Minkowski space, depend only

on the difference of the arguments X ′ −X. The symbol “•” denotes the fact that there are

several choices for causal Green functions, corresponding to their analytic definition in the

complex plane and their corresponding causal properties, see Ch. 2 for more details. In the

local case, that is, when ℓ = 0 and hence D = □−m2 we define the separate symbols

[D − V (X)]G•(X ′, X) = −δ(2)(X ′ −X) , (6.6)

DG•(X ′ −X) = −δ(2)(X ′ −X) . (6.7)

To summarize, we denote Green functions with a bold face symbol when they solve the

corresponding equation with V ̸= 0, that is, in the presence of the potential term. Conversely,

the regular font is reserved for the free Green functions in the case V = 0. In order to

distinguish local and non-local Green functions we reserve the regular font for the local

Green functions and employ the calligraphic font for non-local Green functions.
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6.3 Vacuum fluctuations around a δ-potential

Let us now focus on a particular potential that allows us to extract some physical insight. As

in the case of quantum scattering discussed in Ch. 5 we shall focus on a δ-shaped potential,

which, simple as it may be, can be used to model the plate potentials one encounters in the

Casimir effect [242,243].

V (X) = V (x) = λδ(x) , (6.8)

where λ > 0 has dimensions of an inverse length (or a mass) and parametrizes the strength of

the repulsive potential. Since V (X) is spacetime-dependent, the effective Lorentz invariance

of the theory is spoiled. In this case, however, the potential is static in the tx-reference frame,

and from now on we shall limit our considerations to that preferred reference frame.

Moreover, due to the staticity of the situation, we may now perform a temporal Fourier

decomposition of both the Green functions and the field φ itself. Note that due to staticity

both the free and interacting Green functions must be a function of the time difference t′− t,

and for this reason one may perform a temporal Fourier transform in the time coordinate

t′ − t directly. We write

φω(x) =

∞∫︂
−∞

dt eiωtφ(t, x) , φ(t, x) =

∞∫︂
−∞

dω

2π
e−iωtφω(x) . (6.9)

Similarly, the Fourier transform of the operator D can be performed such that □ = ω2 + ∂2x

and

Dω = exp
[︁
ℓ2N(−∂2x −ϖ2)N

]︁
(∂2x +ϖ2) , ϖ =

√
ω2 −m2 . (6.10)

We denote the temporal Fourier transforms of the interacting Green functions and free Green

functions as

G•
ω(x′, x) =

∞∫︂
∞

dt eiωtG•(t, x′, x) , G•
ω(x′ − x) =

∞∫︂
∞

dt eiωtG•(t, x′ − x) , (6.11)

respectively, and similarly for the local Green functions Gω(x′, x) and Gω(x′ − x). The

physical situation in the presence of the δ-potential is invariant under spatial reflections



6.3. Vacuum fluctuations around a δ-potential 130

x→ −x which implies

G•
ω(x′, x) = G•

ω(−x′,−x) , G•
ω(x′, x) = G•

ω(−x′,−x) . (6.12)

6.3.1 Free Green functions

Even though already presented in Ch. 2, let us briefly recall the exact expressions and defi-

nitions for the free Green functions in the temporal Fourier domain, paying special attention

to the appearance of the mass term m as well as to the non-local modification ∆Gω(x). It is

useful to define the two auxiliary quantities

ϖ =
√
ω2 −m2 , κ =

√
m2 − ω2 . (6.13)

Then, the relevant free Green functions take the form

GF
ω(x) =

⎧⎨⎩ i
2ϖ
eiϖ|x| for |ω| ≥ m ;

1
2κe

−κ|x| for |ω| < m ,
(6.14)

GR
ω (x) =

⎧⎨⎩
isgn(ω)
2ϖ

eisgn(ω)ϖ|x| for |ω| ≥ m ;

1
2κe

−κ|x| for |ω| < m ,
(6.15)

G(1)
ω (x) =

cosϖx

ϖ
θ(|ω| −m) . (6.16)

The non-local causal Green functions (that is, the retarded Green function and the Feynman

Green function) pick up a non-local modification term as compared to the local case,

GF,R
ω (x) = GF,R

ω (x) + ∆Gω(x) , (6.17)

∆Gω(x) =

∞∫︂
−∞

dq

2π
cos(qx)

1 − α(ϖ2 − q2)

ϖ2 − q2
, α(z) = e−(−zℓ2)N . (6.18)

Since the Hadamard function is a solution to a homogeneous equation, and the ghost-free

non-local operator does not introduce any new poles in the propagator, the free non-local

Hadamard function coincides with the free local Hadamard function,

G(1)
ω (x) = G(1)

ω (x) =
cosϖx

ϖ
θ(|ω| −m) . (6.19)

For more details on the free Green functions we refer to Ch. 2 as well as appendix A.2.
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6.3.2 Interacting Green functions

Let us now find the interacting Green functions, which can be done analytically in the case

of a δ-shaped potential. In particular, we will present two independent methods and prove

that they yield the same result. Once the interacting Green functions are known we can

construct the Hadamard function and, after a suitable renormalization, extract the vacuum

fluctuations around the δ-potential in both the local and non-local case. We shall perform all

calculations in temporal Fourier space, and only in the very end perform an inverse temporal

Fourier transformation to obtain the vacuum fluctuations in spacetime.

6.3.2.1 Hadamard prescription

Recall from Ch. 5 that an exact solution for the Fourier mode φω(x) can be given in terms of

the free retarded Green function GR
ω (x) and a free solution φ0

ω(x) via the Lippmann–Schwinger

equation [229],

φω(x) = φ0
ω(x) −

∫︂
dx′GR

ω (x− x′)V (x′)φω(x′) . (6.20)

In the case of V (x) = λδ(x) we can rewrite

φω(x) = φ0
ω(x) − Λωφ

0
ω(0)GR

ω (x) , Λω =
λ

1 + λGR
ω (0)

, (6.21)

where we have assumed that the condition 1 + λGR
ω (0) ̸= 0 is satisfied. Formally one may

also employ the advanced Green function for these considerations since the situation is static,

and we shall comment on that further below again. We can now construct the interacting

Hadamard function G(1)
ω (x′, x), whose real-space expression is

G(1)(X ′, X) = ⟨φ̂(X ′)φ̂(X) + φ̂(X)φ̂(X ′)⟩ , G(1)(X ′, X) = G(1)(X,X ′) . (6.22)

After a temporal Fourier transform one finds for each mode

G(1)
ω (x′, x) = ⟨φ̂ω(x′)φ̂−ω(x) + φ̂−ω(x)φ̂ω(x′)⟩ , (6.23)

where the symmetry in X ↔ X ′ implies that

G(1)
−ω(x′, x) = G(1)

ω (x, x′) . (6.24)
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These are of course formal expressions since we have not defined the non-local vacuum expec-

tation value, and the fields are field operators. However, see the considerations in Ch. 2, the

non-local free Hadamard function coincides with the local free Hadamard function. For that

reason, using Eq. (6.21), we can provide a unique prescription for the non-local interacting

Hadamard function by requiring

G(1)
ω (x′, x) = G(1)

ω (x′, x) = ⟨φ̂0
ω(x′)φ̂0

−ω(x) + φ̂0
−ω(x)φ̂0

ω(x′)⟩ (6.25)

such that

G(1)
ω (x′, x) = G(1)

ω (x′ − x) − ΛωGR
ω (x′)G

(1)
−ω(x) − Λ−ωGR

−ω(x)G(1)
ω (x′)

+G(1)
ω (0)ΛωGω(x′)Λ−ωG−ω(x) .

(6.26)

This relation is of central importance for our following considerations since it expresses the

non-local interacting Hadamard function in terms of the free, local Hadamard function and

additional λ-terms, which in turn are different in the local and non-local case, respectively.

Let us close by remarking on some properties of (6.26). First, it is proportional to free

Hadamard functions, and for that reason it is proportional to θ(|ω| −m). Let us also notice

that

G(1)
−ω(x′, x) = G(1)

ω (x′, x) . (6.27)

Together with (6.24) this implies

G(1)
ω (x′, x) = G(1)

|ω|(x
′, x) . (6.28)

This property reflects the staticity of the situation: it is also possible to invert the direction

of time and work exclusively with advanced Green functions. To that end we can define the

advanced Green function as well as the corresponding Λω-coefficient

GA
ω (x) = GR

−ω(x) , ΛA
ω = Λ−ω =

λ

1 + λGA
ω (0)

. (6.29)

We can then define

G(1)
ω (x′, x)A = G(1)

ω (x′ − x) − ΛA
ωGA

ω (x′)G
(1)
−ω(x) − ΛA

−ωGA
−ω(x)G(1)

ω (x′)

+G(1)
ω (0)ΛA

ωGA
ω (x′)ΛA

−ωGA
−ω(x) ,

(6.30)

but due to Eqs. (6.29) as well as (6.27) this expression coincides with Eq. (6.26) obtained



Chapter 6. Vacuum polarization and the fluctuation-dissipation theorem 133

from the retarded Green function,

G(1)
ω (x′, x) = G(1)

ω (x′, x)A . (6.31)

This property is expected but represents a consistency check of our methods.

6.3.2.2 Lippmann–Schwinger method for Green functions

One might wonder whether the previous construction of the interacting, non-local Hadamard

function is unique, and for that reason we will present here an alternative derivation of the

causal Green functions, which in turn can be used to extract an equivalent representation

of the Hadamard function. Since the following considerations apply for all causal Green

functions (that is, for the retarded, advanced, and Feynman Green function) we shall denote

the relevant interacting Green function as GC
ω(x′, x) and the free Green function as GC

ω (x′, x).

Moreover, let us decompose the interacting Green function as

GC
ω(x′, x) = GC

ω (x′, x) + Aω(x′, x) , (6.32)

where the function Aω(x′, x) is an auxiliary quantity satisfying

[︁
Dω − V (x)

]︁
Aω(x, x′) = V (x)GC

ω (x− x′) . (6.33)

One may verify by inspection that the solution for Aω(x′, x) has the form

Aω(x′, x) = −
∞∫︂

−∞

dx′′GC
ω(x′, x′′)V (x′′)GC

ω (x′′ − x) . (6.34)

In some sense the above relation can be interpreted as the Lippmann–Schwinger representa-

tion of the interacting causal Green function. In the simple case V (x) = λδ(x) the integral

can be taken and one finds

Aω(x′, x) = −λGC
ω(x′, 0)GC

ω (x) . (6.35)

Inserting this into Eq. (6.32) yields

GC
ω(x′, x) = GC

ω (x′ − x) − λGC
ω(x′, 0)GC

ω (x) . (6.36)
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For x = 0 the above reduces to a consistency relation,

GC
ω(x′, 0) = GC

ω (x′) − λGC
ω(x′, 0)GC

ω (0) , (6.37)

which—provided that 1 + λGC
ω (0) ̸= 0—amounts to the condition

GC
ω(x′, 0) =

GC
ω (x′)

1 + λGC
ω (0)

. (6.38)

Finally, we arrive at the explicit representation for all causal propagators,

GC
ω(x′, x) = GC

ω (x′ − x) − λ
GC
ω (x′)GC

ω (x)

1 + λGC
ω (0)

. (6.39)

Using the properties of the free Feynman Green function implies that the interacting Feynman

Green function satisfies

GF
ω(x′, x) = GF

ω(x, x′) , GF
−ω(x′, x) = GF

ω(x′, x) = GF
|ω|(x

′, x) , (6.40)

as well as

ℑ
[︁
GF

ω(x′, x)
]︁

= 0 for |ω| < m . (6.41)

The retarded propagator, on the other hand, satisfies

GR
ω (x′, x) = GR

ω (x, x′) , GR
−ω(x′, x) = GR

ω (x′, x) , (6.42)

where the bar denotes complex conjugation.

6.3.2.3 Equivalence of both methods

It follows from basic definitions, see Sec. 2.3, that all free Green functions are related via

GF(X ′ −X) =
1

2

(︁
GR(X ′ −X) + GA(X ′ −X) + iG(1)(X ′ −X)

)︁
, (6.43)

In the static case this also holds true for each Fourier mode,

GF
ω (x′ − x) =

1

2

(︁
GR
ω (x′ − x) + GA

ω (x′ − x) + iG(1)
ω (x′ − x)

)︁
, (6.44)
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where GA
ω (x′ − x) is the advanced Green function that we can define as the time reversed

retarded Green function,

GA
ω (x′ − x) = GR

−ω(x′ − x) . (6.45)

Having the representation (6.39) for all causal propagators at our disposal one may also verify

that the above relation remains true in the interacting case,

GF
ω(x′, x) =

1

2

(︂
GR

ω (x′, x) + GA
ω (x′, x) + iG(1)

ω (x′, x)
)︂
. (6.46)

In particular, this implies that the Hadamard function can be written as

G(1)
ω (x′, x) = 2ℑ

[︁
GF

ω(x′, x)
]︁

= 2ℑ
[︃
GF
ω (x′ − x) − λ

GF
ω (x′)GF

ω (x)

1 + λGF
ω (0)

]︃
. (6.47)

Evidently, similar relations to the above hold in the absence of the potential for λ = 0 as

well as in the local theory. On the other hand, in Sec. 6.3.2.1 we have shown

G(1)
ω (x′, x) = G(1)

ω (x′ − x) − ΛωGR
ω (x′)G

(1)
−ω(x) − Λ−ωGR

−ω(x)G(1)
ω (x′)

+G(1)
ω (0)ΛωGω(x′)Λ−ωG−ω(x) .

(6.26)

As different as these two representations may appear, they are in fact equivalent. One

can prove this by inserting the direct expressions for the free non-local Green functions as

delineated in Sec. 6.3.1, but the calculations are lengthy and we hence present them in

appendix A.3.

6.3.3 Vacuum polarization

We can now define the vacuum polarization as follows:

⟨φ2(x)⟩ren = lim
X′→X

[︂
⟨φ̂(X ′)φ̂(X)⟩λ ̸=0 − ⟨φ̂(X ′)φ̂(X)⟩λ=0

]︂
=

1

2
lim

X′→X

[︂
G(1)(X ′, X) − G(1)(X ′, X)

]︂
=

1

2
lim

X′→X

[︂
G(1)(X ′, X) −G(1)(X ′, X)

]︂
.

(6.48)

In two dimensions this quantity is dimensionless. We subtract the vacuum contribution

such that the polarization vanishes in the absence of the potential. Moreover, in the last

equality we used the fact that the free Hadamard functions coincide in the local and non-

local case. Employing our exact representation (6.26) for the interacting Hadamard function,
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and determining the real-space expression via (6.11) in combination with (6.28) yields

⟨φ2(x)⟩ren = −
∞∫︂

m

dω

2π

[︂
2ΛωGR

ω (x)G
(1)
−ω(x) −G(1)

ω (0)
⃓⃓
ΛωGR

ω (x)
⃓⃓2 ]︂

. (6.49)

Alternatively, inserting (6.39) into (6.48) as well as making use of the interrelation (6.47)

yields

⟨φ2(x)⟩ren = −ℑ

⎡⎣ ∞∫︂
m

dω

2π
λ

[︁
GF
ω (x)

]︁2
1 + λGF

ω (0)

⎤⎦ . (6.50)

The integration limits follow directly from (6.41). As guaranteed by our proof in appendix

(A.3) these two rather difficult expression are indeed equivalent. Moreover, it is clear that

in the limiting case of λ = 0 they reduce to zero.

In what follows, we would like to evaluate (6.48) for the local theory as well as for the non-

local theories GF1 and GF2. It is convenient to perform a variable transformation from ω to

ϖ such that we can rewrite both (6.49) and (6.50) as

⟨φ2(x)⟩ren =

∞∫︂
0

dϖ

4π

Φω(x)√
ϖ2 +m2

, Φω(x) =
B2 − cos2(ϖx) − 2 cos(ϖx)BC

1 + C2
, (6.51)

where we introduced the abbreviations

B = 2gω(x) − sin(ϖ|x|) , C = 2gω(0) + 2ϖ/λ , gω(x) = ϖ∆Gω(x) . (6.52)

In the following sections we will evaluate (6.51) using both analytical and numerical tools.

The effects of non-locality are captured solely by the dimensionless function gω(x). Unlike

the quantum scattering case in Ch. 5, the results now depend on the precise form of gω(x)

everywhere, for all values of x. Note that the appearance of the factor C renders λ an

effective, ω-dependent coupling:

C =
2ϖ˜︁λω , ˜︁λω =

λ

1 + λ∆Gω(0)
(6.53)

As shown previously in Ch. 2, the function gω(x) vanishes as x → ∞ and its contribution

towards ⟨φ2(x)⟩ren disappears. The C-term, however, is still present and may affect the

asymptotic behavior since it is related to effects of non-locality at the location of the potential

at x = 0.



Chapter 6. Vacuum polarization and the fluctuation-dissipation theorem 137

The effective ω-dependent coupling can become quite large if λ∆Gω(0) ∼ −1, and one can

show that this is possible for some frequency ω⋆ provided the potential strength surpasses a

critical value,

λℓ ≥ λ⋆ℓ =
Γ
(︁
1
4

)︁
√

2
≈ 2.56369 . . . . (6.54)

As we have shown in Ch. 5, for such a frequency ω⋆ the δ-barrier becomes completely opaque

with the transmission coefficient vanishing identically. Similarly, the coefficient C vanishes

for such a frequency, but numerical investigations (see below) reveal that this property does

not affect the vacuum polarization significantly. The effective ω-dependence of the coupling

λ, however, does indeed influence the vacuum polarization in regions where x > ℓ.

6.3.3.1 Local theory

For now, let us establish a baseline and consider purely the local case where gω(x) ≡ 0. This

case has been studied earlier, see Refs. [241,242] and references therein. In that case we have

B = − sin(ϖ|x|) , C =
2ϖ

λ
, (6.55)

and the vacuum polarization (6.51) can be written as

⟨φ2(x)⟩loc.ren = λ

∞∫︂
0

dϖ

4π

2ϖ sin(2ϖ|x|) − λ cos(2ϖx)√
ϖ2 +m2(4ϖ2 + λ2)

. (6.56)

Provided the mass is non-vanishing, m > 0, the integral converges. For x = 0 the integrand

simplifies, however, and allows for an analytical treatment:

⟨φ2(0)⟩loc.ren = −
∞∫︂
0

dϖ

4π

1√︁
ϖ2 + µ2

1

1 + 4ϖ2
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−
arcosh

(︂
1
2µ

)︂
4π
√︁

1 − 4µ2
for µ < 1

2
,

− 1

4π
for µ = 1

2
,

−
arccos

(︂
1
2µ

)︂
4π
√︁

4µ2 − 1
for µ > 1

2
.

(6.57)
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where we have defined the dimensionless parameter µ := m/λ. Note that ⟨φ2(0)⟩loc.ren is always

negative, and asymptotically one has

⟨φ2(0)⟩loc.ren → −∞ for µ→ 0 , (6.58)

⟨φ2(0)⟩loc.ren → 0 for µ→ ∞ . (6.59)

The divergence in the limit m → 0 is well known in two-dimensional quantum field theory

and corresponds to an infrared divergence, which is one way to realize that the mass m plays

the role of a regulator in the present context.

For x ̸= 0 we have to resort to numerical evaluation of ⟨φ2(x)⟩loc.ren which is rather straightfor-

ward due to the ∼ 1/ϖ2 asymptotics. See Fig. 6.1 for a plot of the local vacuum polarization

for various values of the dimensionless coupling λℓ. For later convenience we choose to nor-

malize all dimensionful quantities with respect to the scale of non-locality ℓ. The numerical

evaluations imply that ⟨φ2(x)⟩loc.ren is not differentiable at x = 0, which in turn implies that

quantities of the sort ⟨φ∂xφ⟩ are not well-defined at the location of the potential at x = 0,

and it will be interesting to track this property in non-local theories.

6.3.3.2 Non-local GF1 theory

Let us now turn towards the non-local GF1 theory with the differential operator

Dω = exp
[︁
ℓ2(−∂2x −ϖ2)

]︁
(∂2x +ϖ2) . (6.60)

Even though originally evaluated for the case of vanishing mass m = 0 in Ch. 5, we can find

∆Gω(x) analytically also for m > 0 in a straightforward fashion. For ω > m we obtain

∆Gω(x) =
1

2ϖ

{︁
sin(ϖ|x|) −ℑ

[︁
eiϖ|x|erf (x+)

]︁}︁
, x± =

|x|
2ℓ

± iωℓ . (6.61)

The asymptotics of the error function in the complex plane, for ℜ(z) = const. and ℑ(z)±∞
are

erf(z) ∼ − e−z2

√
πz

. (6.62)

This implies that the coefficients B and C take the form

B = −ℑ
[︁
eiϖ|x|erf (x+)

]︁
, C =

2ϖ

λ
− erfi(ϖℓ) , (6.63)
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Figure 6.1: The local vacuum polarization ⟨φ2(x)⟩loc.ren as a function of the dimensionless

distance x/ℓ for a fixed potential parameter (λℓ = 0.5) and for various values of the dimen-

sionless mass parameter mℓ. Because it is reflection symmetric, ⟨φ2(−x)⟩loc.ren = ⟨φ2(x)⟩loc.ren , we

only plotted it for positive x. The numerical evaluations imply that the vacuum polarization

is not differentiable at x = 0. The above is plotted as a function of x/ℓ in order to facilitate

a future comparison with various non-local theories.

where erfi(x) is the imaginary error function, whose asymptotics for a real argument z → ∞
are

erfi(z) ∼ ez
2

√
πz

. (6.64)

This implies (for finite λ > 0) the following asymptotics in large frequencies for ϖ → ∞:

B ∼ − 1√
πϖℓ

eϖ
2ℓ2−x2/(4ℓ2) , C ∼ 1√

πϖℓ
eϖ

2ℓ2 ,
B

C
∼ −e−x2/(4ℓ2) , (6.65)

that is, while both of these coefficients diverge, the ratio B/C remains finite. This yields

Φω(x) ∼ e−x2/(2ℓ2) − 2 cos(ϖx)e−x2/(4ℓ2) . (6.66)

Studying the frequency integral representation of ⟨φ2(x)⟩ren in Eq. (6.51) we realize that the

first term leads to a logarithmic divergence that needs to be manually subtracted in order to

obtain a physically meaningful result. This is already the first indication that GF1 theory is
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not always well-defined, and we will revisit this issue in Sec. 6.4.

Let us parametrize this divergent integral by introducing a UV cutoff Ω such that

Z0 =

Ω∫︂
0

dϖ

4π

1√
ϖ2 +m2

=
1

4π
ln

(︄
Ω +

√
Ω2 +m2

m

)︄
. (6.67)

In a similar fashion we may define

Z1 = −
∞∫︂
0

dϖ

4π

2 cos(ϖx)√
ϖ2 +m2

= − 1

2π
K0(m|x|) , (6.68)

where K0(x) is the modified Bessel function, such that the total expression for ⟨φ2(x)⟩GF1
ren

can be recast as

⟨φ2(x)⟩GF1
ren = e−x2/(2ℓ2)Z0 + e−x2/(4ℓ2)Z1 + Ψ(x) , (6.69)

Ψ(x) =

∞∫︂
0

dϖ

4π

˜︁Φω(x)√
ϖ2 +m2

, ˜︁Φω(x) = Φω(x) − e−x2/(2ℓ2) + 2 cos(ϖx)e−x2/(4ℓ2) . (6.70)

Since the term containing Z0 diverges we may subtract it manually and define the remain-

der as the “renormalized vacuum polarization” that we can compare to the expression for

⟨φ2(x)⟩loc.ren , leaving aside for now the questions about physical motivation for that procedure.

Moreover, as a technical aside, the numerical evaluation of Ψ(x) is greatly simplified by

subtracting the convergent subleading asymptotics analytically, since the sub-subleading re-

mainder is a fast-decreasing function of ϖ. We will see in the next section on GF2 theory

again that this is a very useful technique for optimizing numerical convergence of integrals.

That being said, see Fig. 6.2 for a graphical representation of the non-local vacuum po-

larization in GF1 theory as compared to the local case. While it undergoes rather strong

oscillations in the vicinity of the δ-potential at x = 0, its asymptotics seem to agree with

the local results. This is interesting and gives perhaps some credibility to the subtraction

of the divergent Z0-term. It would also be interesting to compare these oscillations to those

encountered in linearized gravity around a point particle [2], compare also Sec. 3.5.

On the other hand, the numerical results imply that the renormalized vacuum polarization

⟨φ2(x)⟩GF1
ren is still not differentiable at x = 0, which is unexpected since non-locality is

expected to smear sharp features at a characteristic length scale ℓ. For this reason we have
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some remaining doubts about our ad hoc Z0-subtraction scheme and do not take the results

obtained in the present context very seriously. As has been shown previously [99], and as

we will revisit in Sec. 6.4, GF1 theory is known for instabilities in the time domain, and

the present difficulties related to the divergence in the temporal Fourier transform are one

manifestation of that fact.

  
Figure 6.2: The non-local vacuum polarization in GF1 theory as compared to the local

vacuum polarization plotted as a function of the dimensionless distance x/ℓ.

6.3.3.3 Non-local GF2 theory

While it is expected that GF2 theory is well-behaved both in the spatial and temporal Fourier

domain, its analytical treatment is somewhat more involved due to the quartic exponential

in the differential operator,

Dω = exp
[︁
ℓ4(∂2x +ϖ2)2

]︁
(∂2x +ϖ2) . (6.71)

That being said, it is possible to determine ∆Gω(0) analytically,

∆Gω(0) =

√
2ϖ2ℓ3

6Γ
(︁
3
4

)︁ 2F2

[︁
3
4
, 5
4
; 3
2
, 7
4
;−(ϖℓ)4

]︁
− Γ

(︁
3
4

)︁ ℓ
π

2F2

[︁
1
4
, 3
4
; 1
2
, 5
4
;−(ϖℓ)4

]︁
, (6.72)

see appendix A.4.1 for more details. Moreover, ∆Gω(x) for x ̸= 0 needs to be evaluated

numerically, which is involved and hence presented in detail in appendix A.4.2. However,
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Figure 6.3: The shape of the function fω(ξ) which enters the integral (6.73) depends quite

strongly on the value of ϖℓ: For small values it is a smooth function which is numerically

small (solid line in the above plot, scaled by a factor of 5 to increase visibility). If ϖℓ >
√

2a2 ≈ 1.058 . . . , however, there is a rather strong feature at ξ ∼ 1 that fundamentally

affects the Fourier transform (dashed line). For this reason it is useful to approximate the

function fω by two different analytical functions in both cases.

it is possible to study the overall behavior of the function gω(x) = ϖ∆Gω(x) in a bit more

detail. It is given by

gω(x) =

∞∫︂
0

dξ

π
cos(ξx̃)fω(ξ) , fω(ξ) =

1 − e−(ϖℓ)4(1−ξ2)2

1 − ξ2
, x̃ = ϖx . (6.73)

For small values of ωℓ the function fω(ξ) is a smooth function with a slowly-decaying tail,

whereas for larger values of ωℓ beyond a critical value there exists a sharp feature. We

visualize this behavior in Fig. 6.3.

For large values of ϖℓ we are able to extract the following asymptotics (see appendix A.4.3

for details) for the dimensionless gω(x) = ϖ∆Gω(x):

gω(0) = − 1

4
√
πϖ2ℓ2

+ O
(︁
ϖ−6

)︁
, (6.74)
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gω(x) =
sin(ϖ|x|)

2
− a2

3π

(︂
2 + e−4a22

)︂ x sin(ϖx)

ϖℓ2
− a2

2π

(︂
3 − e−4a22

)︂ cos(ϖx)

ϖ2ℓ2
+ O

(︁
ϖ−4

)︁
.

(6.75)

Here a2 is a parameter that appears frequently in our numerical approximation scheme,1

a2 ≈ 0.5604532115 . . . . (6.76)

This implies the following large-ϖ behavior for the coefficients B and C in ⟨φ2(x)⟩GF2
ren ,

B ∼ −2a2
3π

(︂
2 + e−4a22

)︂ x sin(ϖx)

ϖℓ2
, C ∼ 2ϖ

λ
− 1

4
√
πϖ2ℓ2

. (6.77)

Observe that unlike in GF1 theory the non-local contributions are decreasing with larger

values of ϖ, which was expected from the different non-local form factor in GF2 theory as

compared to GF1 theory. One obtains the following asymptotic behavior for the integrand,

Φω(x) ∼− λ2 cos2(ϖx)

4ϖ2 + λ2
+

8a2λ

3πℓ2

(︂
1 − e−4a22

)︂ x cos(ϖx) sin(ϖx)

4ϖ2 + λ2
. (6.78)

Together with the leading factor of 1/
√
ϖ2 +m2 the integral for ⟨φ2(x)⟩GF2

ren is convergent,

see Eq. (6.51), although an analytic evaluation is impossible since not even ∆Gω(x) is known

analytically. We present our numerical methods in great detail in appendix A.4.

With the numerical methods under control, we can now plot ⟨φ2(x)⟩GF2
ren for a rather wide

range of x and λ and compare it to the local result ⟨φ2(x)⟩loc.ren , see Fig. 6.4. Interestingly, the

behavior at x = 0 is very different from the local case: it is numerically smooth, implying

that ⟨φ∂xφ⟩ is finite.

There are a few features in the non-local vacuum polarization as compared to the local case:

(i) Asymptotics: As expected, the non-local vacuum polarization approaches the local

expressions for large values x ≫ ℓ. As this is theoretically built in to the theory of

ghost-free non-locality this demonstrates that our numerical methods are reliable.

(ii) Smoothing: At small distance scales x ∼ ℓ the shape of the vacuum polarization is

drastically different in the non-local theory and approaches a constant value with van-

ishing slope, whereas the slope is non-zero in the local theory. This implies that in the

non-local theory expressions ∼ ∂xφ
2 are well-behaved at the location of the potential.

1We thank Don Page for providing the approximation α2 ≈ 445/794, which also admits a suitable
mnemonic [244].
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(iv) Overshoot: For a large range of mass and potential parameters (quite possibly for all

choices) the numerical value of the vacuum polarization at the location of the potential

at x = 0 is numerically larger in the non-local case than in the local case. We call this

“overshoot” and attempt to capture this behavior in Fig. 6.5.

(iv) Crossing: In intermediate distance scales, x ∼ ℓ, the vacuum polarizations in the local

theory and non-local theory cross, which implies that the difference between the local

and non-local vacuum polarization can be both positive and negative. In GF1 theory

this feature is even more pronounced, see also Fig. 6.2. These crossings, or oscillations,

appear to be a generic feature of non-local theories as opposed to local theories, see

also [2] and Sec. 3.5.

  
Figure 6.4: The non-local vacuum polarization in GF2 theory as compared to the local

vacuum polarization plotted as a function of the dimensionless distance x/ℓ for two different

dimensionless couplings.

6.4 Stability properties of non-local QFT

As shown before, in a non-local GFN theory the non-local modification term to the free Green

functions can be written as

∆Gω(x) =

∞∫︂
−∞

dq

2π
cos(qx)

1 − α(ϖ2 − q2)

ϖ2 − q2
, α(z) = e−(−zℓ2)N , N ∈ N . (6.79)
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Figure 6.5: The difference of the vacuum polarization at the location of the potential, x = 0,

as a function of the potential strength λℓ. The difference scales with the dimensionless mass

parameter mℓ, leaving the shape of the curve almost unchanged. In the limiting case λ→ 0

the renormalized vacuum polarization vanishes as expected.

Whereas the above integral converges for any value of N , applying a Fourier transform to

the above integral is not always possible since the large-ω asymptotics of the integrand are

1 − α(ϖ2 − q2)

ϖ2 − q2
∼ − 1

ϖ2
e−(−ϖℓ2)N , (6.80)

which diverges for odd N = 2n − 1 and converges for even N = 2n with n = 1, 2, . . . .

This divergence can be exemplified analytically in the case of GF1 theory, see Ch. 2 where

we present an analytical expression for Gω(x) that asymptotically grows exponentially in ω.

The origin of this divergence stems from the Lorentzian signature and, hence, the hyperbolic

nature of the □-operator. For purely spatial problems where □ is an elliptic operator there

is no such problem.

The argument presented above is formal in some sense, since the non-local modification by

itself is not a physical observable. However, it has been shown explicitly in [99] that time-

dependent sources of radiation lead to divergences in the near-field oscillation amplitudes

around that source. In the present context of the previous chapter we have demonstrated

explicitly that another observable diverges for GF1 theories: the vacuum polarization. This

constitutes a physical divergence in non-local GF1 quantum field theory. This is somewhat
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surprising since our scenario, unlike that presented in Ref. [99], is manifestly static and hence

time-independent.

For these reasons great care should be administered whenever studying GF2n−1 theories in a

Lorentzian setting.

6.5 Thermal fluctuations around a δ-potential

With the methods introduced above it is also possible to study the fluctuations around a

δ-potential at finite temperature see [245–248]. Recall that the Hadamard function is defined

as

G(1)
• (x′,x) = ⟨φ̂(x′)φ̂(x) + φ̂(x)φ̂(x′)⟩• , (6.81)

where “•” denotes the quantum state in which the quantum expectation value is performed.

Similarly, in case of a static potential, one may consider the temporal Fourier representation

G(1)
ω,•(x

′, x) = ⟨φ̂ω(x′)φ̂−ω(x) + φ̂−ω(x)φ̂ω(x′)⟩• , (6.82)

where the quantum average is again taken over the state “•.” In the local theory the thermal

Hadamard function is given by

G
(1)
ω,β(x′, x) = coth

(︃
β|ω|

2

)︃
cos[ϖ(x′ − x)]

ϖ
θ(ω2 −m2) , ϖ =

√
ω2 −m2 , (6.83)

where we denoted the thermal state by β = 1/(kBT ), kB is the Boltzmann constant, and T

denotes the temperature. One can rewrite the hyperbolic cotangent in terms of the Bose–

Einstein distribution,

coth

(︃
β|ω|

2

)︃
= 1 + 2n|ω|,β , nω,β =

1

eβω − 1
. (6.84)

In the limiting case T → 0, that is, β → ∞, one finds

G
(1)
ω,β→∞(x′, x) = G(1)

ω (x′, x) , (6.85)

thereby recovering the vacuum expression employed in our previous considerations in this

chapter. We posit that in the non-local theory this thermal Hadamard function remains
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identical to the local expression,

G(1)
ω,β(x′, x) = G

(1)
ω,β(x′, x) , (6.86)

since the considerations that led us to the vacuum relation G(1)
ω (x′, x) = G

(1)
ω (x′, x) did not

depend on the quantum state, and, rather, followed directly from the fact that the Hadamard

function is a solution of the homogeneous equation

DωG(1)
ω,β(x′, x) = 0 , (6.87)

which is insensitive to the non-local form factors considered in this thesis.

Recall now that the interacting Hadamard function is linear in the free Hadamard function,

and hence we find in complete analogy to Eq. (6.26) the thermal interacting Hadamard

function

G(1)
ω,β(x′, x) = G

(1)
ω,β(x′ − x) − ΛωGR

ω (x′)G
(1)
−ω,β(x) − Λ−ωGR

−ω(x)G
(1)
ω,β(x′)

+G
(1)
ω,β(0)ΛωGω(x′)Λ−ωG−ω(x) .

(6.88)

We are now ready to define the renormalized thermal fluctuations around a δ-shaped potential

in both local and non-local theories, where we again subtract the vacuum contributions in

the case λ = 0 but keep the vacuum contributions at λ > 0:

⟨φ2(x)⟩λ,βren =

∞∫︂
m

dω

2π

[︃
G(1)

ω,β(x, x) − 1√
ω2 −m2

]︃
= Ψ(x, β,m, λ, ℓ) + Π(βm)

Ψ(x, β,m, λ, ℓ) =

∞∫︂
0

dϖ

4π

Φω(x, β,m, λ, ℓ)√
ϖ2 +m2

,

Φω(x, β,m, λ, ℓ) =
B2 − cos2(ϖx) − 2 cos(ϖx)BC

1 + C2
D ,

B = 2ϖ∆Gω(x) − sin(ϖ|x|) , C = 2ϖ/˜︁λω D = coth

(︄
β
√
ϖ2 +m2

2

)︄
,

˜︁λω =
λ

1 + λ∆Gω(0)
.

(6.89)

This should be compared with Eqs. (6.51) and (6.52), which is readily reproduced in the

limiting case of β → ∞ and hence D = 1.
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The expression Π(βm) = ⟨φ2(x)⟩λ=0,β
ren is a universal, λ-independent expression that solely de-

scribes the thermal fluctuations of the vacuum case. Moreover, due to translation invariance

Π does not depend on x and it is given by the following expression:

Π(βm) =

∞∫︂
0

dϖ

π
√
ϖ2 +m2

1

exp(β
√
ϖ2 +m2) − 1

. (6.90)

We plot this function in Fig. 6.6, together with its asymptotics

Π(βm) ≈

⎧⎪⎪⎨⎪⎪⎩
1

2βm
for βm≪ 1 ,

1

π
K0(βm) for βm≫ 1 .

(6.91)

The λ-dependent expression is captured by the function Ψ, which is identical to the vacuum

case except for the linear appearance of the thermal D-factor acting as a density function

determining how much each frequency ω contributes to the total fluctuations given the inverse

temperature β. At large frequencies and fixed and finite β this density factor regularizes the

frequency integral exponentially. In principle we may now evaluate (6.89) for a choice of

the parameters {x, β,m, λ, ℓ}, but before doing so it is sensible to discuss a few physical

conditions on these parameters.

First, in a thermal bath of temperature T the number density of massive scalar quanta is

highly suppressed if the rest mass m is much larger than T . For this reason we demand

m

T
= mβ < 1 . (6.92)

Second, the temperature may also not be too large, because then the influence of the potential

will be almost negligible, whence we also demand

λ

T
= λβ > 1 . (6.93)

With these choices, let us discuss the local case first and then move on to the non-local

GF2 case. One may also be interested in considering the non-local GF1 case since at finite

temperature the Boltzmann distribution for large frequencies regularizes the ω-integration,

but due to the doubts expressed in the previous section we shall limit our considerations to

GF2 theory.
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Figure 6.6: The thermal background Π(βm) plotted as a function of the dimensionless combi-

nation mβ, together with the two analytic approximations for small and large temperatures.

6.5.1 Local theory

In the local case one has ∆Gω(x) ≡ 0 and ℓ = 0, which implies that the function Ψ depends

on the dimensionless variables βm, λ/m, and xm. For the convenience of comparing the

local results no the non-local results we shall instead use ℓ > 0 as a normalization parameter,

as we have done in several instances in this thesis before. The numerical evaluation of Ψ is

nearly identical to those required in the vacuum case presented in Sec. 6.3 since the thermal

factor D does not exacerbate the convergence properties of the frequency integral (6.89)—if

anything, for finite β it enhances the convergence properties at large ω.

Given a physically sensible choice of mass and potential parameters, see Fig. 6.7 for a plot of

the function Ψ for a range of temperatures, where we also included the zero-temperature case

as a reference. These thermal fluctuations, much like in the vacuum case, exhibit a sharp

peak at the location of the potential at x = 0, and the primary effect of the thermal state

appears to be an effective negative shift of the fluctuations while leaving the overall shape

mostly intact.

6.5.2 Non-local GF2 theory

Similarly to the local case, the non-local GF2 case is affected solely by the appearance of the

thermal factor D in the main integral (6.89), but of course now the non-local modification
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Figure 6.7: Local thermal fluctuations, plotted for various values of the inverse temperature

and for the vacuum case, subject to conditions (6.92) and (6.93), against the dimensionless

distance x/ℓ. The scale of non-locality ℓ is employed purely as a reference scale to facilitate

the comparison to the non-local theory.

term ∆Gω(x) ̸= 0. We have devoted considerable efforts into evaluating this contribution

numerically and have detailed our steps in Sec. 6.3 such that we can now focus solely on

the effects of the finite temperature; see a plot of the thermal fluctuations for GF2 theory,

compared to the local case, in Fig. 6.8.

The overall result is again quite similar to the local case. While the presence of a thermal

bath appears to shift the thermal fluctuations to smaller, more negative values, the overall

shape is still similar to the vacuum case of GF2 theory. Moreover, GF2 theory removes the

sharp peak at x = 0 and it appears that the quantity ⟨φ∂xφ⟩ remains differentiable also in

the case of finite temperature in the presence of non-locality. At large distances, x/ℓ ≫ 1,

the local and non-local expressions approach each other.

One may wonder what happened to the influence of the ω-dependent coupling ˜︁λω, but our

numerical investigations have shown that even though the factor ˜︁λω becomes large at some

intermediate frequency ω⋆ the overall effect averages out and does not seem to survive the

ω-integration.2

2Our numerical plots are taken for a potential barrier λ < λ⋆, where λ > λ⋆ is required for the effective
coupling to diverge. Because it did not affect the overall shape of the thermal fluctuations we decided to
generate the plots for smaller values of λ which are numerically faster to evaluate.
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The decisive property of well-behaved non-local GF2n theories seems to lie in its short-scale

regulatory influence on the thermal fluctuations, while leaving the asymptotic, large-distance

behavior numerically unchanged. In this sense these considerations present an explicit UV

improvement due to non-locality as modelled by GF2 theory.

  
Figure 6.8: Comparison of the local and GF2 thermal fluctuations for a physically sensible

value of temperature (βℓ = 200), plotted as a function of the dimensionless distance x/ℓ.

Mass and potential parameters are chosen in accordance with Eqs. (6.92) and (6.93).

6.6 Fluctuation-dissipation theorem

The fluctuation-dissipation theorem [249–252] is a powerful concept that relates fluctuations

in a physical observable (such as the vacuum polarization) to properties of a susceptibility.

For the local theory the fluctuation-dissipation theorem has the form [251,252]

⟨φ2(x)⟩λ,β = coth

(︃
βω

2

)︃
2ℑ
[︁
GR

ω (x, x)
]︁
. (6.94)

Note that this is a relation between the unrenormalized vacuum fluctuations evaluated in

Fourier space on the one side, and the interacting Green function on the other side. Similarly,

it is possible to find a relation between the interacting, point-split Hadamard function and

the interacting, point-split Green function,

G(1)
ω (x′, x) = 2 sgn (ω)ℑ

[︁
GR

ω (x′, x)
]︁
. (6.95)
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Note that this is a relation between non-local Green functions, which can be checked for the

exact solutions presented in these sections. One may then take the limit x→ x′ which yields

⟨φ2(x)⟩λ,β = coth

(︃
βω

2

)︃
2ℑ
[︁
GR

ω (x, x)
]︁
, (6.96)

which we dub the “non-local fluctuation-dissipation theorem.” This constitutes a somewhat

non-trivial consistency check of the interaction of thermal fluctuations with non-local physics,

and while we have only proven the above relation in the somewhat special case of a δ-potential

we expect it to hold true in more general cases as well.

6.7 Concluding remarks

In this chapter we have studied the vacuum polarization and thermal fluctuations around a

δ-potential in quite some detail. Paying careful attention to DeWitt’s asymptotic causality

conditions, see Ch. 2 for more details, we were also able to explicitly prove the validity of

the fluctuation-dissipation theorem. While the presence of non-locality affects the vacuum

polarization and thermal fluctuations at large distances as well, this effect turned out to be

numerically very small. It is interesting to note that the necessary subtraction of divergent

vacuum contributions in non-local ghost-free quantum theory remains identical to the local

case. The most significant impact of non-locality appears in the vicinity of the potential:

while in local quantum field theory the fluctuations are finite at the location of the potential,

they are not differentiable. Non-locality smoothes the polarization such that quantities like

⟨φ∂xφ⟩ are now regular everywhere.

An interesting subject of future study should involve a non-linear interacting, non-local ghost-

free quantum theory. With this chapter we have put the notion of non-local Green functions

on a stronger foundation, and we hope that these results provide useful in this line of inves-

tigations.
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Chapter 7

Black holes, generalized Polyakov

action, and Hawking radiation

In this final chapter we will investigate implications of non-locality for quantum field theories

in curved spacetime. We will introduce a non-local generalization of Polyakov’s effective

action and show that while it does not affect a black hole’s Hawking temperature there is a

non-vanishing effect on the black hole’s entropy and on the conformal anomaly. This chapter

is based on Ref. [6].

7.1 Introduction

Black holes are not only a fascinating prediction of Einstein’s theory of gravity, they may very

well provide us with insights into the quantum nature of gravity. A famous example is the

prediction of Hawking radiation [25, 253–257] that emerges in semiclassical gravity wherein

the black hole background is treated as classical but the matter field on that background is

described by quantum field theoretical creation and annihilation operators. It can be shown

that the early-time and late-time vacuum states of that quantum field do not coincide: they

are related by a Bogoliubov transformation, where the specific coefficients are related to a

thermal distribution. As a result, black holes are thought to emit thermal radiation of a

characteristic temperature which has hence been dubbed Hawking temperature.

In the context of the present thesis one might wonder whether and how the presence of

non-locality at a small length scale ℓ affects that Hawking temperature. Näıvely, since non-

local infinite-derivative gravity was constructed as the effective field theory for a UV-complete

description of gravity, one would expect that it should leave some imprints in the semiclassical
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description of gravity. However, there are some underlying arguments we wish to elucidate

first.

As already presented in Ch. 6, it is indeed possible to define a well-behaved concept of temper-

ature in non-local field theories in terms of the free Hadamard and free Wightman functions.

These functions, viewed as Green functions, are solutions to a homogeneous equation of the

form

DG(X ′, X) = 0 , (7.1)

where D is the differential operator of the theory under consideration. As argued in Sec. 1.4

and revisited in more detail in the previous chapter, the class of non-local theories studied

in this thesis does not yield additional solutions for homogeneous equations. For this reason

this class of non-local theories is also referred to as “ghost-free:” it does not introduce new

propagating modes. This directly implies that the free local theory and free non-local theory

have the identical Hadamard and Wightman functions. In case there exists an interaction

with other fields, however, this statement is no longer valid, as we exemplified in Sec. 6.5 of

the previous chapter.

In the context of black holes it is of central importance to extend the studies from flat

Minkowski spacetime to curved spacetimes. A good approximation for the near-horizon

geometry of a Schwarzschild black hole are Rindler coordinates, where the acceleration pa-

rameter is directly related to the surface gravity of the black hole. A natural question to ask

is how the presence of non-locality would impact the temperature measured by an Unruh–

DeWitt detector. There has been some controversy in the recent literature [258–261], and in

this thesis we take the following point of view:

Frolov and Zelnikov [18] propose a rather straightforward method for measuring the tem-

perature in a non-local field theory using an Unruh–DeWitt detector. In particular, they

parametrize the Unruh–DeWitt detector as a local quantum system following the usual local

laws of quantum mechanics, and assume that it is in thermal contact with a non-local quan-

tum field. Assuming that the Hilbert space factorizes they are able to relate the measured

temperature to the Wightman functions of the non-local scalar field. If this process takes

place in vacuum the Wightman functions are insensitive to non-locality, as argued above,

and the presence of non-locality does not affect the measurement of the temperature.

In the case of Hawking radiation, however, it has been shown that the flux as measured by

an observer at infinity is described by the retarded Green function [262,263]. For this reason
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it seems plausible to us that the asymptotic flux may depend on the presence of non-locality,

albeit the effects might be too small to detect. It is hence our goal to determine the vacuum

expectation value of the energy momentum tensor of a non-local scalar field on a given black

hole background, and study whether and how these expressions depend on the presence of

non-locality.

It should be emphasized that the studies presented in this chapter correspond to a test of

non-local physics in the strong field regime in proximity of a black hole. In particular, we

will focus on a two-dimensional example because then it is possible to extract the quantum

average of the stress energy tensor by means of the Polyakov action1 [265], which in turn can

be derived after quantizing a conformal scalar field on a given background and performing a

functional integral over the conformal anomaly [264,266,267].

In what follows we will first discuss the relevant details for the local case and establish our

notation. In a second step we introduce a modification of the Polyakov action by inserting

a non-local form factor and then analyze how this affects the effective action as well as the

energy momentum tensor. Then, we will focus on two applications: first we determine the

contribution of the non-local terms to the entropy of a black hole in two dimensions, and

secondly we use the conformal anomaly to derive the Hawking flux at spatial infinity for a

static, two-dimensional black hole [273]. In a third step, we focus on a concrete black hole

solution from two-dimensional dilaton gravity and develop semi-analytical methods to deter-

mine both the non-local entropy corrections as well as the effects on the energy momentum

tensor.

Before delving into the calculational details, the main idea can be summarized like this:

suppose the total action for a theory involving a classical gravitational field gµν and a quantum

scalar field ψ̂ takes the form

S[gµν , ψ̂] = Sg[gµν ] + Sm[gµν , ψ̂] . (7.2)

The dynamics of the classical gravitational field are given by the corresponding field equa-

tions, but the quantum scalar field’s dynamics are given by the path integral over all possible

configurations. It is possible to rewrite this theory in terms of a so-called effective action

for the scalar field ψ̂ such that the classical equations of motion yield the same result as the

path integral approach. This effective action, substituting the classical solution for ψ̂, then

1In what follows, “Polyakov action” shall refer to the effective action of a scalar field in two-dimensional
curved spacetime and should not be confused with the Polyakov action encountered when describing string
worldsheets.



7.2. 2D conformal anomaly and the Polyakov action 156

takes the form

W [gµν ] = Sg[gµν ] +Wm[gµν ] . (7.3)

The quantum field ψ̂ no longer appears and has hence been “integrated out” of the theory.

One may now treat the resulting effective action W [gµν ] as the effective action that describes

how the gravitational dynamics are changed due to the presence of a quantum scalar field.

In what follows, we will follow this approach.

7.2 2D conformal anomaly and the Polyakov action

From now on we shall work in a two-dimensional spacetime2 of signature (−,+) with a metric

gµν , and ψ̂ is a conformally invariant quantum field on that background. The classical trace of

the field’s energy momentum tensor vanishes due to conformal invariance, but the quantum

average does not. This is called the conformal anomaly and stems from the fact that the two

operations of renormalization and taking the trace do not commute [268]. One may write

⟨T̂
µν
⟩gµν = 2bR , (7.4)

where R is the two-dimensional Ricci scalar, and b = 1/(48π) for a conformal massless

real scalar field. Polyakov [265] demonstrated that this non-vanishing trace of the energy-

momentum tensor can be derived from the following effective action at one-loop (which, for

this reason, is often referred to as Polyakov action; see also Lüscher et al. [264]):

WPol[gµν ] = − b
2

∫︂
d2x

√
−g R 1

□
R . (7.5)

The trace turns out to be

T = T µνgµν =
2√
−g

δWPol

δgµν
gµν = 2bR . (7.6)

At this point it is helpful to notice that the Polyakov action (7.5) can be rewritten using an

auxiliary, non-minimally coupled classical scalar field φ such that

WPol[gµν , φ] = b

∫︂
d2x

√
−g
[︃

1

2
φ□φ−Rφ

]︃
. (7.7)

2In this chapter, all Greek indices are spacetime indices, and we reserve Greek letters from the beginning
of the alphabet (α, β, γ, . . . ) for repeated indices.
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The scalar field equation is

□φ = R (7.8)

and hence, on-shell, imposing this relation, one recovers (7.5). Let us remark that the action

(7.7) is a functional of both the metric gµν and the classical field φ. It reproduces the

Polyakov action on-shell, but the action itself is not conformally invariant, and the auxiliary

scalar field φ is not to be confused with the original quantum field ψ̂ that has physical

significance.

Using the effective action, the components of the effective energy-momentum tensor are [262]

T µν =
2√
−g

δWPol

δgµν
= b
[︂
φ;µφ;ν − 2φ;µν − gµν

(︂1

2
φ;αφ;α − 2□φ

)︂]︂
, (7.9)

where we understand φ = 1/□R and denote covariant differentiation by the semicolon, φ;µν =

∇ν∇µφ. One may verify that this energy-momentum tensor is indeed conserved, T µα
;α = 0.

Moreover, the expression 1/□ is to be taken as the appropriate causal Green function in

accordance with the physical boundary conditions of the problem under consideration, and

we will revisit this point in much detail below. For no incoming fluxes from the past, for

example, one would identify 1/□ with the retarded Green function.

Let us now turn our attention towards two-dimensional black holes. As we detail in appendix

B.1, a two-dimensional static black hole geometry can be written as

ds2 = −f dt2 +
dr2

f
, (7.10)

where f = −ξαξα and ξ = ∂t is the timelike Killing vector. A solution of Eq. (7.8) is

φ = Φ0 + χ , Φ0 = − ln f , (7.11)

where □Φ0 = R and □χ = 0, that is, χ is a homogeneous solution constructed from zero

modes of the d’Alembert operator □. In our case we choose χ such that the resulting energy-

momentum tensor is stationary (see more details in appendix B.2),

χ = wt+ kr∗ , r∗ =

∫︂
dr

f
, (7.12)

where w and k are two constants and r∗ is a tortoise coordinate. Both of these fields, Φ0 and

χ, contribute to the effective energy-momentum tensor. Substituting (7.11) into (7.9) we can
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define these two contributions as

T µν = T µν
(Φ0)

+ T µν
(χ) . (7.13)

The Φ0-contributions take the form

T µν
(Φ0)

= b
[︂
Φ;µ

0 Φ;ν
0 − 2Φ;µν

0 − gµν
(︂1

2
Φ;α

0 Φ0;α − 2□Φ0

)︂]︂
, (7.14)

T(Φ0)
µ
ν = b

(︄
−2f ′′ + f ′2

2f
0

0 −f ′2

2f

)︄
, (7.15)

whereas the χ zero-mode contributions are

T(χ)
µ
ν = b

(︄
−k2+w2

2f
wk

−wk
f2

k2+w2

2f

)︄
. (7.16)

The two constants w and k encode the quantum state of the field χ: when either w or k

vanish, the off-diagonal components of T(χ)
µ
ν vanish as well, implying the absence of any

fluxes. A different choice where w = 0 and k = κ, where here κ denotes the surface gravity,

κ =
1

2
f ′|r=rg , (7.17)

corresponds to the Hartle–Hawking state. Last, w = κ and k = −κ define the Unruh vacuum

state, and for more details we refer to appendix B.2.

7.3 Ghost-free modification of the Polyakov action

Let us now, with these considerations in mind, extend the description to non-local field theory.

To that end, we begin by considering a non-local modification of the auxiliary Polyakov

effective action (7.7) where

WGF[gµν , φ] =
1

48π

∫︂
d2x

√
−g
[︃

1

2
φAφ−Rφ

]︃
, A = □ eP (□) , P (z) = (−ℓ2z)N . (7.18)

Here, ℓ > 0 denotes the scale of non-locality, N = 1, 2, . . . is a positive integer, and for

a given N we refer to the above non-local theory as GFN. Now, however, the scalar field

equation takes the form

□eP (□)φ = R , (7.19)
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where again the scalar curvature R acts as a source for the now non-local field φ. Note that

in the limiting case ℓ → 0 we recover the previous results. Inserting this relation back into

(7.18) we obtain the ghost-free modification of the Polyakov action,

WGF[gµν ] = − 1

96π

∫︂
d2x

√
−gRA−1R = − 1

96π

∫︂
d2x

√
−gRe

−(−ℓ2□)N

□
R . (7.20)

In the limiting case ℓ → 0 we recover the Polyakov action encountered in local field theory

(7.5). For this reason the above relation constitutes a possible ghost-free modification of the

Polyakov action. Our aim is to study how this effective action, as a starting point, affects

physical observables.

In the simplest case of GF1 theory the action can be written as the parametric integral

WGF = WPol +Wℓ , Wℓ =

ℓ2∫︂
0

ds˜︂W (s) , ˜︂W (s) = − 1

96π

∫︂
d2x

√
−g R es□R . (7.21)

This formulation is convenient because it captures the operator 1/□ as a parametric integral,

but in the cases of N ≥ 2 this method does not apply directly. Again, in the case of ℓ → 0

the integral collapses and we recover the previous result (7.5).

7.3.1 Effective energy-momentum tensor

We will now use the ghost-free modification of the Polyakov action (7.20) to derive the trace

as well as the tensorial components of the energy-momentum tensor.

7.3.1.1 Trace

For this calculation it is useful to work in the conformal gauge where the two-dimensional

metric takes the form

gµν = e2σηµν ,
√
−g = e2σ . (7.22)

In this representation the d’Alembert operator and the scalar curvature are given by

□ = e−2σ□ , R = −2□σ , (7.23)
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where □̄ = ηαβ∂α∂β is the flat d’Alembertian, and we can recast the ghost-free Polyakov

action into a functional of σ:

WGF[σ] = − 1

24π

∫︂
d2x e2σσe−(−ℓ2□)N□σ . (7.24)

Then, the trace can be written as a variational derivative with respect to the conformal

factor,

T = gµνT
µν =

2gµν√
−g

δWGF

δgµν
= e−2σ δWGF

δσ
. (7.25)

In order to perform the variational derivative we need to integrate by parts, as is common

with most variational procedures, see also the relevant discussion in Sec. 1.5. While this is

straightforward for any differential operator of finite order, the infinite-derivative operator

P (□) requires special treatment. Variations of such operators have been studied in the

literature [269, 270], and one may express them in terms of a parametric integral according

to

δ
[︁
eB̂
]︁

=

1∫︂
0

dξe(1−ξ)B̂
[︁
δB̂
]︁
eξB̂ , (7.26)

where B̂ denotes a finite-order, self-adjoint differential operator, in our case B̂ = □. More-

over, in the conformal gauge one has

δ(
√
−g□) = δ□ = 0 , δ□ = −2δσ□ . (7.27)

With these relations, and limiting our considerations to GF1 theory, the trace now takes the

form

T =
1

24π
eℓ

2□R +
ℓ2

48π

1∫︂
0

dξ
[︂
e(1−ξ)ℓ2□R

]︂ [︂
eξℓ

2□R
]︂
. (7.28)

In the limiting case of ℓ → 0 we again recover the well known conformal anomaly of the

scalar field of Eq. (7.4), T = R/(24π).
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7.3.1.2 Tensorial components

We may also perform a direct variation of (7.20) with respect to the metric gµν , yielding the

non-local counterpart to Eq. (7.9). We find

T µν =
1

48π

[︂
φ;µ(e−ℓ2□φ);ν − 1

2
gµνφ;α(e−ℓ2□φ);α − 2φ;µν + 2gµν□φ

]︂
− ℓ2

48π

1∫︂
0

dξ
{︂(︂
e−(1−ξ)ℓ2□□φ

)︂;µ(︂
e−ξℓ2□φ

)︂;ν
(7.29)

− 1

2
gµν
(︂
e−(1−ξ)ℓ2□□φ

)︂;α(︂
e−ξℓ2□φ

)︂
;α
− 1

2
gµν
(︂
e−(1−ξ)ℓ2□□φ

)︂(︂
e−ξℓ2□□φ

)︂}︂
.

Indeed, inserting ℓ = 0 reproduces Eq. (7.9). Moreover, taking the trace of (7.29) correctly

reproduces (7.28). The scalar field is subject to the on-shell condition

φ = A−1R =
eℓ

2□

□
R , (7.30)

where the precise form of φ depends on the quantum state that is to be chosen, and we will

discuss that in the next section. While our considerations were limited to the relatively simple

case of GF1 theory they can in principle be extended to higher N = 2, 3, . . . by choosing a

different B̂ and applying the variational chain rule.

7.3.2 State dependence

As in the local case, the solution to Eq. (7.30) consists of a homogeneous “zero mode” solution

χ and an inhomogeneous solution Φ such that

φ = Φ + χ . (7.31)

Since the operator P (□) is invertible we can express Φ in terms of the local solution,

Φ = eℓ
2□Φ0 , Φ0 = − ln f , (7.32)

For the same reason the homogeneous solution is the same as in the local case, see also

Sec. 1.4, which corresponds to a significant difference between ghost-free non-local theories

and higher-derivative theories, in the latter of which the last statement is not true. Again,

we may insert the solution (7.31) into (7.29) and obtain two contributions,

T µν = T µν
(Φ) + T µν

(χ) . (7.33)
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The inhomogeneous contribution amounts to replacing φ by Φ in Eq. (7.29) such that

T µν
(Φ) =

1

48π

[︂
Φ;µ(e−ℓ2□Φ);ν − 1

2
gµνΦ;α(e−ℓ2□Φ);α − 2Φ;µν + 2gµν□Φ

]︂
− ℓ2

48π

1∫︂
0

dξ
{︂(︂
e−(1−ξ)ℓ2□□Φ

)︂;µ(︂
e−ξℓ2□Φ

)︂;ν
(7.34)

− 1

2
gµν
(︂
e−(1−ξ)ℓ2□□Φ

)︂;α(︂
e−ξℓ2□Φ

)︂
;α
− 1

2
gµν
(︂
e−(1−ξ)ℓ2□□Φ

)︂(︂
e−ξℓ2□□Φ

)︂}︂
.

The homogeneous contributions, however, take the form

T µν
(χ) =

1

48π

[︂
χ;µχ;ν − 1

2
gµνχ;αχ;α − 2χ;µν + Φ;µ

0 χ
;ν + χ;µΦ;ν

0 − gµν χ;αΦα
0

]︂
. (7.35)

This part of the energy-momentum tensor is of central importance to our considerations.

First, imposing the on-shell condition □χ = 0 one may show that gµνT
µν
(χ) = 0. And second,

note that this expression is entirely independent of the non-local scale ℓ and hence coincides

with the corresponding expression found earlier in Eq. (7.16).

Recall that the Hawking flux at spatial infinity is proportional to the off-diagonal components

of the energy-momentum tensor. Moreover, it is possible to show that these contributions

stem entirely from T µν
(χ). This implies that the Hawking flux at spatial infinity, in the non-local

case and provided one ignores backreaction effects onto the metric, perfectly agrees with the

local results, confirming similar claims in Ref. [261].

The diagonal components of T µν
(Φ), however, do depend on the presence of non-locality and

it is conceivable that the backreaction of these terms will affect the parameters of the black

hole. We will leave this question for a future study.

7.4 Black hole entropy

Leaving aside the effective energy-momentum tensor for now, it is also of interest to determine

the impact of non-locality on the entropy of a black hole in two dimensions. To that end,

the representation of the ghost-free modification of the Polyakov action in Eq. (7.18) proves

useful.

After Wald’s seminal discovery of the Noether charge technique [271], Myers proved that

these methods can be applied to non-local theories as well [272]. Since the total action

of our gravitational theory is the sum of the standard, local gravitational action and the

effective action given by the Polyakov expression, the entropy is also given by a sum of two
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contributions. Since this standard Wald entropy is well known for almost all (if not all) black

hole solutions, we will focus on the contributions to the black hole entropy generated by the

presence of non-locality.

Following Ref. [272] and making use of the representation (7.18) it is possible to show that

the ghost-free, non-local contribution to the entropy is given by3

SGF =
1

12
φ
⃓⃓
r=rg

. (7.36)

Since the scalar field φ is subject to the field equations (7.30), and in what follows we will

restrict our attention again to GF1 theory, we obtain the on-shell relation

SGF =
1

12

eℓ
2□

□
R
⃓⃓⃓
r=rg

. (7.37)

It is clear that in the limit ℓ→ 0 this reduces to

SPol =
1

12

1

□
R
⃓⃓⃓
r=rg

, (7.38)

which is the standard contribution to the black hole entropy due to the scalar hair ψ̂. At

this point it is important to emphasize that both the function φ as well as the propagator

exp(ℓ2□)/□ depend on the quantum state. For the Hartle–Hawking state the scalar field φ

is finite on the bifurcation horizon (which is a point in two-dimensional spacetime; for more

information on bifurcation horizons we refer to the original work by Boyer [274]) and is given

by

φ = Φ + r∗ + c , (7.39)

where c is a constant and Φ is given in Eq. (7.32). In the local case one has instead

φ = Φ + r∗ + c , Φ0 = − ln f , (7.40)

where the constant c is the same in both cases since the zero modes coincide. The absolute

value of this constant can be fixed, see Myers [272]. In our case we are interested in the

difference of the local case and the non-local case,

∆S = SGF − SPol =
Φ + ln f

12
, (7.41)

3We will use the letter “S” for black hole entropy in this section and hope that it does not lead to possible
confusion with the action which, unfortunately, traditionally is denoted by the same letter.



7.5. Hawking flux 164

which does not depend on the state.

7.5 Hawking flux

While studying the effective energy-momentum tensor in Sec. 7.3.1 we already saw that the

off-diagonal components do not depend on the presence of non-locality. In this section we

would like to re-derive this result by employing a method developed by Christensen and

Fulling [273] that employs a general representation of a stationary energy-momentum tensor

in two dimensions.

Let us adopt the coordinates {t, r} wherein the stationary energy-momentum tensor conser-

vation yields

∂rT
r
t = 0 , ∂r(fT

r
r) =

1

2
f ′Tα

α . (7.42)

The Hawking flux at spatial infinity is then given by

dE

dt
=

1

2

∞∫︂
rg

drf ′(r)Tα
α(r) . (7.43)

Here, r = rg is the coordinate location of the black hole horizon where grr = (∇r)2 =

f(rg) = 0. Integrating by parts, the conservation law (7.42) implies that the contributions to

the Hawking radiation stem from the product fT r
r evaluated at the horizon and at spatial

infinity. At the horizon one has f(rg) = 0, and for that reason the T r
r-component must be

singular if there is to be any non-zero contribution from the horizon. Conversely, if T r
r is

a regular function at the horizon there will not be any contribution to the Hawking flux as

measured at infinity.

Since the ghost-free modification of the Polyakov effective action can be written as the sum

of a local piece for ℓ = 0 and a non-local piece containing ℓ, see Eq. (7.21), the effective

energy momentum trace T and its tensor component T r
r also consist of two pieces,

T = T(Pol) +

s∫︂
0

ds ˜︁T , T r
r = T(Pol)

r
r +

s∫︂
0

ds̃ ˜︁T r
r , ˜︁T µν =

2√
−g

δ˜︂W (s)

δgµν
. (7.44)

In what follows let us delineate a method for determining the ˜︁T µν tensor components for a
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given metric of the form (7.10). First, the general variation of ˜︂W (s) takes the form

δ˜︂W (s) =

∫︂
d2x

√
−g ˜︁T µνδgµν . (7.45)

It is important to first perform the variation and only then substitute a given metric, in our

case the one specified in Eq. (7.10). Restricting ourselves to spatial and static variations,

δ(ds2) = −
[︃
dt2 +

dr2

f 2

]︃
δf = δgµνdxµdxν , (7.46)

we obtain

2f
δ˜︂W (s)

δf
= ˜︁T r

r − ˜︁T t
t . (7.47)

We can combine these results and express ˜︁T as well as ˜︁T r
r purely in terms of non-local

infinite-derivative operators as well as the curvature scalar,

˜︁T =
1

48π

[︂
2fes□R′′ + 2f ′ (︁es□R)︁′ +Res□R + sf

1∫︂
0

dξ
(︁
e(1−ξ)s□R

)︁′ (︁
eξs□R

)︁′ ]︂
, (7.48)

˜︁T r
r =

1

96π

[︂
4f
(︁
es□R

)︁′′
+ 2f ′ (︁es□R

)︁′
+Res□R + s∂r

1∫︂
0

dξf
(︁
e(1−ξ)s□R

)︁ (︁
eξs□R

)︁′ ]︂
, (7.49)

where we abbreviated (. . . )′ = ∂r(. . . ). Recall that these expressions are parametric functions

of s that enter the definition of the full contributions in Eq. (7.44).

We can now consider these expressions in two spatial regimes: at the horizon, where f(rg) = 0,

and at spatial infinity, where f = 1 and due to asymptotic flatness the scalar curvature

vanishes, R = 0. In the latter case the above contributions vanish. At the horizon, however,

both ˜︁T and ˜︁T r
r are non-zero, albeit well-behaved. This regularity at the horizon, as explained

already above, implies

lim
r→rg

f ˜︁T r
r = 0 . (7.50)

This constitutes our proof that the presence of non-locality does not affect the flux of Hawking

radiation at infinity. We will discuss this (and the previous discussions) in more detail in a

concrete example in the following section.
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7.6 Example: two-dimensional dilaton black hole

For the sake of concreteness we would like to demonstrate the developed tools and techniques

in a “real life” example of a static black hole encountered in two-dimensional dilaton gravity

whose gravitational action takes the form

S[gµν ] =
1

2

∫︂
d2x

√
−g e−2ϕ[R + 4(∇ϕ)2 + 4λ2] . (7.51)

In the above, R is the scalar curvature, ϕ is the dilaton field, and λ is a constant. The action

arises in string theory [275,276] and it admits black hole solutions [277–280]. There are also

solutions featuring additional matter fields in the framework of what has been called the

CGHS model [281]; see also Refs. [282,283].

7.6.1 Black hole metric

For our purposes we will study a black hole solution given by

ds2 = fdt2 +
dr2

f
, f = 1 − M

λ
e−2λr , ϕ = −λr , rg =

1

2λ
ln

(︃
M

λ

)︃
, (7.52)

where M is the mass parameter of the black hole, and the horizon is located at f(rg) = 0.

Before delving into the detailed study of effective energy-momentum tensors let us reduce

the number of physical parameters by singling out λ as a physical scale. To that end, we

introduce the new, dimensionless coordinates {τ, x} and define a “physical” metric ds̄2 such

that

τ = 2λt , x = 2λ(r − rg) , ds̄2 =
1

4λ2
ds2 , ds2 = −f dτ 2 +

dx2

f
, f = 1 − e−x .

(7.53)

In the following we will perform all calculations in the rescaled “physical” metric and restore

the correct dimensionality whenever required. One example is the surface gravity: for the

dimensionful metric it takes the value κ̄ = λ whereas in the dimensionless case it is simply

κ = 1/2. As the dimensionless curvature scalar is of remarkably simple form,

R = e−x , (7.54)
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it is convenient to introduce the Ricci curvature as a radius variable. Expressed in the

coordinates {τ, R} the metric (7.53) takes the form

ds2 = −(1 −R)dτ 2 +
dR2

R2(1 −R)
. (7.55)

The horizon is located at R = 1 and spatial infinity corresponds to R = 0. The static

d’Alembert operator, expressed in these coordinates, takes the form

□ = R∂R [(1 −R)R∂R] . (7.56)

7.6.2 Analytical considerations

We are interested in evaluating the non-local corrections to the trace anomaly as well as its

impact on the black hole entropy, and for the simplest case of GF1 theory in both cases the

following expression appears (we defined s = ℓ2 for convenience):

F (s, R) = es□R , (∂s −□)F (s, R) = 0 , F (0, R) = 1 . (7.57)

Because the effective action can be written as a sum of the Polyakov contribution and an

integral over non-local modification directly involving the function F (s, R), see Eq. (7.21),

the corrections to the trace anomaly and black hole entropy can also be expressed in terms of

parametric s-integrals over this function F (s, R). Finding this function is possible in terms

of a spectral representation method. The calculations are a bit involved and for this reason

we refer to appendix B.3.

Using these methods, the function F (s, R) can be represented as the following integral:

F (s, R) =

∞∫︂
0

dp ρp e
−p2sΨp(R), (7.58)

where we defined the following auxiliary quantities:

Ψp(R) =

√︄
2

p tanh(πp)

[︂
ℜ(cp)ℑ(Zp(R)) −ℑ(cp)ℜ(Zp(R))

]︂
,

Zp(R) = Rip
2F1 (ip, ip+ 1; 2ip+ 1;R) , cp = −

4ipΓ
(︁
ip+ 1

2

)︁
√
πΓ(ip)

, p ∈ R , (7.59)

ρp =

√︁
p sinh(2πp)√

2π3/2(1 + p2)
ℜ
[︃
i+ p

4ip
Γ(ip)Γ

(︁
1
2
− ip

)︁
3F 2(1 + ip, 1 + ip, ip; 2 + ip, 1 + 2ip; 1)

]︃
.
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As we prove in appendix (B.3), the mode functions Ψp(R) are real-valued and orthonormal,

correspond to plane waves at spatial infinity (R = 0) and are finite at the horizon (R = 1).

The density measure ρp is chosen such that F (0, R) = R. While we have been unable to

evaluate the integral (7.58) analytically, it is quite well behaved due to the exponential factor

e−p2s and numerical evaluations for a wide range of values s can be easily performed.

7.6.3 Quasilocal approximation

While the previous analytic results are promising we also developed a quasilocal approach

that utilizes the series expansion of the exponential operator. This is useful because it allows

us to systematically compare the two approaches for calculating F (s, R). To that end we

express F (s, R) as follows:

F (s, R) = es□R =
∞∑︂
n=0

sn□n

n!
R

≈
N∑︂

n=0

sn□n

n!
= R + s∂rf∂rR +

1

2
s2(∂rf∂r)

2R + · · · + O
(︁
sN+1

)︁
.

(7.60)

Note that the boundary condition F (0, R) = R is trivially satisfied. It seems reasonable

to expect that for small parameters sR ≪ 1 the above approximation scheme converges

sufficiently fast, and we will show that this is indeed correct. We dub this approximation

method “quasilocal” because each order of the expansion contains more derivatives, becoming

fully non-local in the limit N → ∞.

7.6.4 Non-local corrections to the trace anomaly

With the an explicit representation of F (s, R) available we can insert (7.59) into Eq. (7.28)

for the for the trace anomaly and we obtain

T = TPol + ∆T , TPol =
1

24π
R , (7.61)

∆T =
1

24π
[F (s, R) −R] +

s

48π

1∫︂
0

dξF [(1 − ξ)s, R]F [ξs, R], (7.62)

Since the integral (7.58) converges reliably, we are able to permute the integration procedures.

First integrating over ξ and then performing the numerical integration over p allows us to

keep the number of numerical steps to 1.
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Utilizing instead the quasilocal approximation we may write

T =
∞∑︂
n=0

sn

n!
Tn(R) , Tn(R) =

1

48π

[︄
2□nR +

n−1∑︂
p=0

(□pR)(□n−p−1R)

]︄
. (7.63)

The terms Tn with n ≥ 1 parametrize the quasilocal corrections to the trace anomaly, and

for n = 0 one recovers T0 = TPol(R) = R/(24π) which is the Polyakov result in the absence

of non-locality.

With these two methods available we may plot the non-local corrections ∆T = T − TPol for

each method, see Fig. 7.1. These results imply that the trace anomaly is reduced at the

black hole horizon, and then picks up the majority of the modifications at x ∼ 1, before

rapidly decreasing to zero as x → ∞. For small values of non-locality, s = (2λℓ)2 < 1,

the quasilocal expressions agree remarkably well with our numerical method, which instils

some confidence into the numerical methods. For values s ≳ 1 we need to rely solely on our

numerical methods, and Fig. 7.1 suggests that while the contributions have the overall similar

shape for larger values of non-locality their magnitude increases. Interestingly, there appears

to be a critical distance x0 ∼ 1
2

where all non-local modifications of the trace anomaly vanish

identically.

7.6.5 Non-local corrections to black hole entropy

Let us now move on to the modifications of the black hole entropy due to the presence of

non-locality. The total entropy can be written as

SGF = SPol + ∆S , (7.64)

where ∆S captures the impact of non-locality, and SPol is the standard Polyakov contribution

which takes the form [272]

SPol = −1

6
ϕ = −1

6
λrg = − 1

12
ln

(︃
M

λ

)︃
. (7.65)

Recall that ϕ is the classical dilaton field and has nothing to do with the auxiliary scalar

fields employed earlier in the context of the local Polyakov action. Utilizing Eqs. (7.37) and

(7.57) we can write the non-local entropy modification as

∆S =
1

12

eℓ
2□ − 1

□
R
⃓⃓⃓
r=rg

=
1

12

s∫︂
0

ds̃F (s̃, 1) =
1

12

∞∫︂
0

dp ρpΨp(1)
1 − e−sp2

p2
, (7.66)
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where in the last step we performed the integration of s̃. Evaluating F (s, R) at the horizon is

well-defined since great care was taken to define the modes Ψp(R) to be regular everywhere,

see also the details presented in appendix B.3. Note that in the limiting case ℓ→ 0 we have

s = (2λℓ)2 → 0 and hence ∆S = 0, as it must.

Due to the complicated dependence of the final expression on p we are not able to find an

analytic expression for the entropy corrections, but one may show that the integration still

converges reliably. This is not obvious since the integrand is no longer proportional to e−sp2

but follows from the properties of both Ψp and ρp as functions of p. We plot the entropy

corrections in Fig. (7.2) as a function of dimensionless non-locality (2λℓ)2.

Our results indicate that the entropy corrections are increasing with non-locality ℓ, and

numerical investigations suggest that for smaller values of ℓ they can even be captured by a

power law,

∆S[ℓ < (2λ)−1] ∼ const × s3.4 . (7.67)

For ℓ = 0 the corrections vanish, as they must. For larger values of non-locality the above

power law no longer applies, but we were not able to find a closed form expression.

This change of entropy due to the presence of non-locality implies that there exists a non-

trivial backreaction of non-locality onto the black hole geometry. As we have shown above,

if these backreaction effects are ignored the flux of Hawking radiation at spatial infinity

remains unchanged. These results seem to imply that if backreaction effects are taken into

account the parameters of the black hole would change, and hence there would be an impact

of non-locality on the asymptotic flux of Hawking radiation.

7.7 Concluding remarks

In this chapter we have analysed the impact of non-locality on quantum field theory in curved

spacetime. In order to address this question we defined a non-local ghost-free modification

of the well-known Polyakov action by replacing □ → □ exp[(−ℓ2□)N ],

WPol[gµν ] = − 1

96π

∫︂
d2x

√
−gR 1

□
R , WGF[gµν ] = − 1

96π

∫︂
d2x

√
−gRe

−(−ℓ2□)N

□
R . (7.68)

While the former action can be derived from first principles, see Ref. [268] and references

therein, the latter is merely postulated. However, we were able to construct it by generalizing

the local derivation of the Polyakov action with the aid of a non-minimally coupled auxiliary
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field φ. An important difference that we could not resolve lies in the fact that form factors

exp(−ℓ2□) manifestly break conformal invariance, and for that reason it might be worthwhile

to study whether it is possible to introduce non-locality in a conformally invariant fashion.

It is well known that the d’Alembert operator transforms as a conformal density in two

dimension [284], and for that reason it seems possible that another scalar field χ that itself

transforms as a density of the opposite weight might ameliorate that fact via a dilaton-type

interaction of the form exp(−ℓ2□χ).

We have demonstrated that while the presence of non-locality, in the given framework, does

not affect the flux of Hawking radiation at spatial infinity, it does affect the black hole

entropy and the trace anomaly. For that reason it is conceivable that non-locality—once

backreaction effects are taken into account–will affect black hole parameters, such as its

mass, surface gravity, and Hawking temperature. We will leave these considerations for a

future study.
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Figure 7.1: Top: We plot the non-local contributions to the trace anomaly as a function of the

dimensionless distance x for s = (2λℓ)2 = 0.1, where 1/(2λ) is a characteristic length scale

of the background black hole, and ℓ > 0 denotes the scale of non-locality. The two different

calculational methods are labelled as “numerical” and “Approx.,” and they agree well. (The

approximation is performed only to linear level in s.) Bottom: Having gained some trust in

the numerical methods, we plot the non-local contributions to the trace anomaly for another

few values of non-locality s.
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Figure 7.2: Non-local corrections to the black hole entropy, ∆S, plotted as a function of

the dimensionless non-locality s = (2λℓ)2. For small values numerical investigations indicate

that it is possible to capture the essence in a power law.
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Chapter 8

Conclusions

In this thesis we explored the effects of non-locality as mediated by infinite-derivative form

factors f(□) in both gravity and quantum theory and demonstrated its implications in several

explicit examples. The cornerstone of our considerations is the notion of non-local Green

functions whose properties we studied in some detail. The non-locality studied in this thesis

is of a special kind: it preserves Lorentz invariance and is ghost-free. While it is convenient

to maintain Lorentz invariance, the ghost-free criterion has rather far reaching consequences.

Namely, it singles out those non-local theories whose propagator does not pick up new poles.

We have shown in this thesis that this very property has interesting consequences: first, since

there are no new poles in the propagator, homogeneous solutions in the local and non-local

theories coincide. And second, the property f(0) = 1 guarantees that at far distances away

from the sources, one typically recovers the local solutions. Let us now briefly summarize

our key findings:

8.1 Summary of key results

� Asymptotic causality is determined by analytical properties of local Green functions.

Ghost-free non-local modifications decrease in timelike and spatial directions on char-

acteristic scale r/ℓ≫ 1, consistent with DeWitt’s principle of asymptotic causality.

� Static Green functions of non-local ghost-free theories asymptotically approach those

of local theories, and are manifestly regular in the coincidence limit. They can be

determined analytically in many cases.

� In weak-field non-local gravity, static Green functions can be used to construct static



Chapter 8. Conclusions 175

and stationary solutions that asymptotically agree with General Relativity. But unlike

in General Relativity, the solutions are manifestly regular at the location of δ-shaped

matter sources.

� Based on these stationary solutions one can generate the metric of ultrarelativistic

objects in a suitable Penrose limit, which are regular at the location of the δ-shaped

matter sources.

� The scattering coefficients of a non-local quantum field are susceptible to the presence of

non-locality. In particular, there exists a critical frequency that is completely reflected.

� The vacuum polarization and thermal fluctuations around a δ-shaped potential in non-

local quantum field theory are smoothed by the presence of non-locality.

� The thermal fluctuations around the δ-potential obey the fluctuation-dissipation theo-

rem.

� One can define a non-local ghost-free modification of the Polyakov effective action.

The presence of non-locality enters the trace anomaly and the expectation value of the

energy-momentum tensor components. In two dimensions this does not influence the

asymptotic flux of Hawking radiation but can modify a black hole’s entropy.

8.2 Open problems

There are several interesting open problems in the field of non-local ghost-free physics. Here

we would like to mention a few of them:

� Since most of this thesis has been devoted to the study of linear non-local equations,

which can be solved exactly via non-local Green functions, a natural step consists of

advancing beyond the linear regime. This could perhaps be achieved perturbatively,

employing our developed non-local Green functions.

� Second, it would be worthwhile to construct a self-consistent non-local variational prob-

lem and thereby place the non-local action on a firmer footing.

� Last, it would be very interesting to find more exact solutions of the full, non-linear

field equations of ghost-free gravity. Then it would be possible to finally address the

fate of gravitational singularities as well as the role of the event horizon, with possible

ramifications in many areas of theoretical and mathematical physics.
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The area of non-local ghost-free physics remains a fascinating field of study, with many

unexpected results that challenge the way we think about space and time. We enjoyed our

journey and eagerly anticipate new insights, waiting to be discovered at the non-local horizon.
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Appendix A

Calculational details

A.1 Retarded Green function two dimensions

Here we would like to show

GR(t′ − t, x′ − x) =

∞∫︂
−∞

dk

2π
eik(x

′−x)GR
k (t′ − t) =

1

2
θ
[︁
(t− t′)2 − (x− x′)2

]︁
if t′ > t , (A.1)

GR
k (t′ − t) =

sin k(t′ − t)

k
. (A.2)

Abbreviating t′ − t = ∆t > 0 and x′ − x = ∆x we begin by rewriting the k-integral,

GR(t′ − t, x′ − x) =

∞∫︂
−∞

dk

2π
eik∆x sin k∆t

k
=

∞∫︂
−∞

dk

4πik
eik∆x

(︁
eik∆t − e−ik∆t

)︁
(A.3)

=

∞∫︂
−∞

dk

4πik

(︁
eik(∆x+∆t) − eik(∆x−∆t)

)︁
=

∞∫︂
−∞

dk

4πik
eik(∆x+∆t) −

∞∫︂
−∞

dk

4πik
eik(∆x−∆t) .

Defining now v = ∆x+ ∆t and u = ∆x− ∆t we may rewrite this as

GR(t′ − t, x′ − x) =

∞∫︂
−∞

dk

4πik
eikv −

∞∫︂
−∞

dk

4πik
eiku (A.4)

=
1

2

v∫︂
−∞

dṽ

∞∫︂
−∞

dk

2π
eikṽ − 1

2

u∫︂
−∞

dũ

∞∫︂
−∞

dk

2π
eikũ =

1

2

v∫︂
−∞

dṽδ(ṽ) − 1

2

u∫︂
−∞

dũδ(ũ)

(A.5)
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=
1

2
[θ(v) − θ(u)] =

1

2
[θ(∆x+ ∆t) − θ(∆x− ∆t)] . (A.6)

The integration over ũ and ṽ has to be performed with a suitable regulator k → k ± iα and

α > 0, after which the limit α = 0 is to be taken. Since by assumption ∆t > 0 we may use

the identity

θ(∆x+ ∆t) + θ(∆x− ∆t) = θ
[︁
(∆t)2 − (∆x)2

]︁
, (A.7)

which is non-zero only for timelike directions.

A.2 Two-dimensional massive Green functions

We are interested in the temporal Fourier transform

Gω(x′ − x) =

∞∫︂
−∞

dk

2π
eik(x

′−x)Gω,k , (A.8)

where Gω,k denote the Fourier coefficients of the free Green function for a massive scalar field

in two dimensions,

Gω,k =
−1

ω2 − k2 −m2
=

1

k2 +m2 − ω2
. (A.9)

For convenience let us define

ϖ =
√
ω2 −m2 , κ =

√
m2 − ω2 . (A.10)

It is our goal to evaluate the one-dimensional temporal Fourier transform (A.8). For ω2−m2 <

0 one can integrate directly,

Gω(x′ − x) =
1

2κ
e−κ|x′−x| . (A.11)

Let us now focus on the case ω2−m2 > 0. Then, the integrand has simple poles at k± = ±ϖ.

Regularizing these poles via a suitable iϵ-prescription gives rise to the retarded, advanced,

Feynman, and anti-Feynman Green functions. The prescriptions are as follows:

GR
ω,k =

−1

(ω + iϵ)2 − k2 −m2
, (A.12)

GA
ω,k =

−1

(ω − iϵ)2 − k2 −m2
, (A.13)
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GF
ω,k =

−1

ω2 − k2 −m2 + iϵ
, (A.14)

GF
ω,k =

−1

ω2 − k2 −m2 − iϵ
. (A.15)

Due to the different pole structure for each regularization we need to evaluate Eq. (A.8)

separately for each case. Moreover, since the integrand in Eq. (A.8) vanishes for k → ±∞,

depending on the sign of x, we can evaluate these integrals using contour integration. In what

follows we will detail the required calculations; we visualize the chosen contours in Fig. A.1.

A.2.1 Inhomogeneous Green functions

A.2.1.1 Retarded Green function

The poles of GR
ω,k in the complex k-plane are located at

k± = ±
√︁

(ω + iϵ)2 −m2 ≈ ±
[︃
ϖ +

iϵω

ϖ

]︃
=̂ ± [ϖ + iϵsgn(ω)] . (A.16)

In the last step we have rescaled ϵ by ϖ > 0. Note that the sign of ω appears, which is

crucial for the following configurations. Let us now evaluate (A.8) using contour integration.

There are four different cases we need to treat separately:

(i) ω > 0 and x > 0

(ii) ω > 0 and x < 0

(iii) ω < 0 and x > 0

(iv) ω < 0 and x < 0

In cases (i) and (iii) we may close the contour in the upper half-plane in a counter-clockwise

curve C+, whereas in the cases (ii) and (iv) we need to close it in the lower half-plane in

a clockwise curve C−. Note that for clockwise (mathematically negative) orientations the

residue theorem of contour integration picks up an additional minus sign. Moreover, the sign

of ω shifts the poles above or below the Re k-axis; see Fig. A.1a for ω > 0 and Fig. A.1b for

ω < 0. We obtain

GR
ω (x) =

∞∫︂
−∞

dk

2π

eikx

(k − k+)(k − k−)
(A.17)

(i)
= (+2πi) Res

[︃
eikx

2π(k − k+)(k − k−)
, k = k+

]︃
= +

i

2ϖ
eiϖx (A.18)
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(ii)
= (−2πi) Res

[︃
eikx

2π(k − k+)(k − k−)
, k = k−

]︃
= +

i

2ϖ
e−iϖx (A.19)

(iii)
= (+2πi) Res

[︃
eikx

2π(k − k+)(k − k−)
, k = k−

]︃
= − i

2ϖ
e−iϖx (A.20)

(iv)
= (−2πi) Res

[︃
eikx

2π(k − k+)(k − k−)
, k = k+

]︃
= − i

2ϖ
e+iϖx . (A.21)

This may be summarized as

GR
ω (x) =

isgn(ω)

2ϖ
exp

[︁
iϖsgn(ω)|x|

]︁
. (A.22)

In Sec. 2.4.4 of the main body of this thesis we prove that this function is indeed the retarded

Green function. In the massless limit m→ 0 one has ϖ → |ω| such that

lim
m→0

GR
ω (x) =

i

2ω
eiω|x| . (A.23)

A.2.1.2 Advanced Green function

The poles of GA
ω,k in the complex k-plane are located at

k± = ±
√︁

(ω − iϵ)2 −m2 ≈ ±
[︃
ϖ − iϵω

ϖ

]︃
=̂ ± [ϖ − iϵsgn(ω)] . (A.24)

Again, there are four different cases we need to treat separately:

(i) ω > 0 and x > 0

(ii) ω > 0 and x < 0

(iii) ω < 0 and x > 0

(iv) ω < 0 and x < 0

See Fig. A.1c for ω > 0 and Fig. A.1d for ω < 0 for the choice of contours. We obtain

GA
ω (x) =

∞∫︂
−∞

dk

2π

eikx

(k − k+)(k − k−)
(A.25)

(i)
= (+2πi) Res

[︃
eikx

2π(k − k+)(k − k−)
, k = k−

]︃
= − i

2ϖ
e−iϖx (A.26)

(ii)
= (−2πi) Res

[︃
eikx

2π(k − k+)(k − k−)
, k = k+

]︃
= − i

2ϖ
e+iϖx (A.27)

(iii)
= (+2πi) Res

[︃
eikx

2π(k − k+)(k − k−)
, k = k+

]︃
= +

i

2ϖ
e+iϖx (A.28)
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(iv)
= (−2πi) Res

[︃
eikx

2π(k − k+)(k − k+)
, k = k−

]︃
= +

i

2ϖ
e−iϖx . (A.29)

This may be summarized as

GA
ω (x) = −isgn(ω)

2ϖ
exp

[︁
− iϖsgn(ω)|x|

]︁
. (A.30)

In the massless limit m→ 0 one has ϖ → |ω| such that

lim
m→0

GA
ω (x) = − i

2ω
e−iω|x| . (A.31)

A.2.1.3 Feynman Green function

The poles of GF
ω,k in the complex k-plane are located at

k± = ±
√
ϖ2 + iϵ ≈ ±

[︃
ϖ +

iϵ

2ϖ

]︃
=̂ ± [ϖ + iϵ] , (A.32)

where in the last equality we rescaled ϵ by the positive factor 2ϖ. Here, unlike in the retarded

and advanced case, the sign of ω does not enter. For this reason there are only two cases to

treat:

(i) x > 0

(ii) x < 0

See Fig. A.1e for the choice of contours. We obtain

GF
ω(x) =

∞∫︂
−∞

dk

2π

eikx

(k − k+)(k − k−)
(A.33)

(i)
= (+2πi) Res

[︃
eikx

2π(k − k+)(k − k−)
, k = k+

]︃
= +

i

2ϖ
e+iϖx (A.34)

(ii)
= (−2πi) Res

[︃
eikx

2π(k − k+)(k − k−)
, k = k−

]︃
= +

i

2ϖ
e−iϖx . (A.35)

This may be summarized as

GF
ω(x) =

i

2ϖ
exp

[︁
iϖ|x|

]︁
. (A.36)
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In the massless limit m→ 0 one has ϖ → |ω| such that

lim
m→0

GF
ω(x) =

i

2|ω|
ei|ωx| . (A.37)

A.2.1.4 Anti-Feynman Green function

The time-reverse version of the Feynman Green function is sometimes called anti-Feynman

Green function, and we mention it here for completeness. The poles of GF̄
ω,k in the complex

k-plane are located at

k± = ±
√
ϖ2 − iϵ ≈ ±

[︃
ϖ − iϵ

2ϖ

]︃
=̂ ± [ϖ − iϵ] , (A.38)

where again there are only two cases to treat:

(i) x > 0

(ii) x < 0

See Fig. A.1f for the choice of contours. We obtain

GF̄
ω(x) =

∞∫︂
−∞

dk

2π

eikx

(k − k+)(k − k−)
(A.39)

(i)
= (+2πi) Res

[︃
eikx

2π(k − k+)(k − k−)
, k = k−

]︃
= − i

2ϖ
e−iϖx (A.40)

(ii)
= (−2πi) Res

[︃
eikx

2π(k − k+)(k − k−)
, k = k+

]︃
= − i

2ϖ
e+iϖx . (A.41)

This may be summarized as

GF̄
ω(x) = − i

2ϖ
exp

[︁
− iϖ|x|

]︁
. (A.42)

In the massless limit m→ 0 one has ϖ → |ω| such that

lim
m→0

GF̄
ω(x) = − i

2|ω|
e−i|ωx| . (A.43)
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A.2.2 Homogeneous Green functions

The homogeneous Green functions in Fourier space are solutions to the equation

(︁
∂2x + ω2

)︁
G•

ω(x) = 0 , (A.44)

where • = (1),+,− for the Hadamard and Wightman functions, respectively. They are given

by

G(1)
ω (x) =

cos
(︁
ϖx
)︁

ϖ
θ(ω2 −m2) , (A.45)

G+
ω (x) =

cos
(︁
ϖx
)︁

ϖ
θ(ω −m) , (A.46)

G−
ω (x) =

cos
(︁
ϖx
)︁

ϖ
θ(−ω −m) , (A.47)

where the Hadamard function can be conveniently written as a summation of the two positive

and negative energy Wightman functions. Moreover, there is also another solution, called

the Pauli–Jordan function G̃ω(x), which is the other linearly independent solution

G̃ω(x) =
sin
(︁
ϖx
)︁

ϖ
θ(ω2 −m2) . (A.48)

We will not use this function in the present thesis and just mention it here for completeness.

The homogeneous Green functions can also be derived from contour integration,

G(1)
ω (x) = (−i)

∮︂
C∞

dk

2π

eiωx

k2 − ω2
, G̃ω(x) = −

∮︂
Co

dk

2π

eiωx

k2 − ω2
. (A.49)

Unlike the contours for the inhomogeneous functions, these contours are finite-sized. The

functions automatically evaluate to zero for ω < m because then the integrand is a regular

function. See Fig. A.2 for the integration contours, and see DeWitt [172] (in particular,

pp. 29–32) for beautiful explanations and depictions of the contours. Caveat: DeWitt uses a

different notation for the Green functions compared to the one employed in this thesis.

A.3 Proof of Eq. (6.46)

Let us prove the central relation between the temporal Fourier components of the Feynman

Green function on the one side, and the retarded, advanced and Hadamard Green function
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on the other side,

GF
ω(x′, x) =

1

2

(︁
GR

ω (x′, x) + GA
ω (x′, x) + iG(1)

ω (x′, x)
)︁
. (6.46)

Because GF
ω(x′, x) = GF

−ω(x′, x) we can restrict the proof to the case of ω > 0. This is

just a reflection of the staticity of the interacting Green function under consideration, since

ω → −ω corresponds to a time reversal transformation.

Let us begin by expressing each free Green function in terms of the local expression and its

possible non-local modification (except for the Hadamard function, which is the same in the

free case for both the local and non-local theory). We have

GR
ω (x) = GF

ω(x) = GF
ω(x) + ∆Gω(x) ,

GA
ω (x) = GR

−ω(x) = GF
ω(x) + ∆Gω(x) ,

G(1)
ω (x) = G(1)

ω (x) = −i
[︂
GF

ω(x) −GF
ω(x)

]︂
.

(A.50)

Note that ∆Gω(x) ∈ R as well as ∆G−ω(x) = ∆Gω(x). Let us also define (for ω > 0)

Λω :=
λ

1 + λGF
ω(0) + λ∆GF

ω (0)
, ΛR

ω = Λω , ΛR
−ω = Λω , (A.51)

where the bar denotes complex conjugation. In a second step we may insert these relations

into the interacting Green functions to obtain

GF
ω(x, x′) = GF

ω(x− x′) + ∆Gω(x− x′) − Λω

[︁
GF

ω(x) + ∆Gω(x)
]︁ [︁
GF

ω(x′) + ∆Gω(x′)
]︁
,

(A.52)

GR
ω (x, x′) = GF

ω(x− x′) + ∆Gω(x− x′) − Λω

[︁
GF

ω(x) + ∆Gω(x)
]︁ [︁
GF

ω(x′) + ∆Gω(x′)
]︁
,

(A.53)

GA
ω (x, x′) = GF

ω(x− x′) + ∆Gω(x− x′) − Λω

[︂
GF

ω(x) + ∆Gω(x)
]︂ [︂
GF

ω(x′) + ∆Gω(x′)
]︂
,

(A.54)

iG(1)
ω (x, x′) = GF

ω(x− x′) −GF
ω(x− x′)

− Λω

[︁
GF

ω(x) + ∆Gω(x)
]︁ [︂
GF

ω(x′) −GF
ω(x′)

]︂
− Λω

[︂
GF

ω(x′) + ∆Gω(x′)
]︂ [︂
GF

ω(x) −GF
ω(x)

]︂
+ Λω

[︁
GF

ω(x) + ∆Gω(x)
]︁

Λω

[︂
GF

ω(x′) + ∆Gω(x′)
]︂ [︂
GF

ω(0) −GF
ω(0)

]︂
. (A.55)
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In the last line we can recast the term proportional to ΛωΛω as follows:

ΛωΛω

[︂
GF

ω(0) −GF
ω(0)

]︂
= Λω − Λω . (A.56)

Inserting these expressions into (6.46) and comparing the terms independent of Λω as well

as linear terms in Λω then yields the identity. In that step, Eq. (A.56) is crucial since it

relates expressions quadratic in Λω into a linear combination thereof. Utilizing the fact that

GR
ω (x, x′) + GA

ω (x, x′) is real-valued, taking the imaginary part of (6.46) yields

G(1)
ω (x, x′) = 2ℑ

[︁
GF

ω(x, x′)
]︁
. (A.57)

Using the expressions (A.52)–(A.55) this last equality can be verified explicitly. Note that the

above considerations hold true for any choice of form factor since the only assumptions made

lie in the properties of the local propagators as well as the real-valuedness of ∆Gω(x, x′).

A.4 ∆Gω in GF2 theory

This section is devoted to both analytical and numerical considerations of the non-local

modification term ∆Gω(x) in GF2 theory. It will be useful to consider the dimensionless

non-local modification gω(x) = ϖ∆Gω(x) given by the integral

gω(x) =

∞∫︂
0

dξ

π
cos(ξx̃)fb(ξ) , fb(ξ) :=

1 − e−b2(1−ξ2)2

1 − ξ2
, x̃ = ϖx , b = (ϖℓ)2 .

(A.58)

For notational convenience in this section we use the dimensionless parameter b and denote

the integrand as fb(ξ), whereas in the main body of the text we denoted it as fω(ξ). They

are the same object.

A.4.1 Analytical evaluation of ∆Gω(0)

The function fb(ξ) can be written as a double integral,

fb(ξ) =
1

2b
√
π

∞∫︂
−∞

dy e−
y2

4b2
1 − cos[(1 − ξ2)y]

1 − ξ2
=

1

2b
√
π

∞∫︂
−∞

dy e−
y2

4b2

y∫︂
0

dz sin[(1 − ξ2)z] .

(A.59)
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Inserting this back into (A.58) gives

πgω(x̃) =

∞∫︂
0

dξ cos(ξx̃)fb(ξ) =
1

2b
√
π

∞∫︂
−∞

dy e−
y2

4b2

y∫︂
0

dzP (z, x̃) , (A.60)

P (z, x̃) =

∞∫︂
0

dξ cos(ξx̃) sin[(1 − ξ2)z] = −
√
π

2
√
z

cos

(︃
x̃2

4z
+ z +

π

4

)︃
. (A.61)

At x̃ = 0 we can proceed further,

y∫︂
0

dzP (z, 0) = −π
2

[︃
C

(︃√︂
2y
π

)︃
− S

(︃√︂
2y
π

)︃]︃
, (A.62)

where C and S are the Fresnel integrals [174]. Then the y-integral can be performed analyt-

ically as well and we obtain the final result,

πgω(0) =
√
b

[︄ √
2πb

6Γ
(︁
3
4

)︁ 2F2

(︁
3
4
, 5
4
; 3
2
, 7
4
;−b2

)︁
− Γ

(︁
3
4

)︁
2F2

(︁
1
4
, 3
4
; 1
2
, 5
4
;−b2

)︁]︄
. (A.63)

The asymptotics are given by

gω(0) ∼

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−

Γ
(︁
3
4

)︁
π

√
b+ O

(︁
b3/2
)︁

for b≪ 1 ,

− 1

4
√
π b

+ O
(︁
b−3
)︁

for b≫ 1 .

(A.64)

For a plot of this function we refer to Fig. A.4.

A.4.2 Numerical evaluation of ∆Gω(x)

For x̃ ̸= 0 an analytic evaluation, while desirable, is not possible to the best of our knowledge.

Performing a direct numerical calculation, while in principle possible, is not the most ideal

solution because the integrand is oscillatory and the shape of the function fb(ξ) changes

drastically depending on the value of b = (ϖℓ)2. For this reason it makes sense to approximate

the function fb(ξ) by an approximative function which can be integrated analytically, and

then integrate the remainder numerically.

The function fb(ξ) has a local maximum at ξ = 0 and a minimum at ξ = ξ+. If b is large
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enough, there is another local maximum at ξ = ξ−. The locations are given by

ξ± =

√︃
1 ± 2a2

b
≈ 1 ± a2

b
, a2 =

1

2
√

2

√︄
−1 − 2W−1

(︃
− 1

2
√
e

)︃
= 0.5604532115 . . . ,

(A.65)

where Wk(x) denotes the Lambert W function. The maximum ξ− only appears if b > 2a2,

and for this reason it makes sense to develop two approximation schemes for b < b0 and

b > b0 where we fix b0 = 3a2. Specifically, for b < b0 we can approximate

b < b0 : g ≈ −e
−|x̃|

2
+

ξ∞∫︂
0

dξ

π
cos(ξx̃)

[︄
1 − e−b2(1−ξ2)2

1 − ξ2
+

1

1 + ξ2

]︄
+ E<

b0,ξ∞
(x̃) , (A.66)

E<
b0,ξ∞

(x̃) =

∞∫︂
ξ∞

dξ

π
cos(ξx̃)

[︄
1 − e−b2(1−ξ2)2

1 − ξ2
+

1

1 + ξ2

]︄
, (A.67)

where E<
b0,ξ∞

(x̃) denotes the error of this approximation. For b > b0, on the other hand, we

need to capture the maximum at ξ−, and the following approximation works well:

fb(ξ) ≈ f≈
b (ξ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f 1
b (ξ) =

1 − c1e
−b2(1−ξ)

1 − ξ2
for ξ ≤ ξ− ,

f 2
b (ξ) = mξ + n for ξ− < ξ < ξ+ ,

f 3
b (ξ) =

1 − c3e
−b2(ξ−1)

1 − ξ2
for ξ > ξ+ .

(A.68)

The parameters c1, c3, m, and n are chosen such that the jump at ξ = ξ± is of order O(b−2),

and a suitable choice is

c1 = exp

[︄
−4a22 − b2

(︄
1 −

√︃
1 +

2a2
b

)︄]︄
, c3 = exp

[︄
−4a22 + b2

(︄
1 −

√︃
1 − 2a2

b

)︄]︄
,

(A.69)

m =
1

2

(︂
1 − e−4a22

)︂(︃1

2
− b2

a22

)︃
, n =

1

2

(︂
1 − e−4a22

)︂(︃ b2
a22

− 1

)︃
. (A.70)

The benefit of the approximation (A.68) is not that it captures the function fb(ξ) as precisely

as possible. Rather, it allows for an analytical integration. For x̃ = 0 (which will be a useful

test of our numerics, since we also have the analytic solution available) one finds for the
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indefinite integral∫︂
dξ

π
f 1,3
b (ξ) =

1

2π
ln

(︃
1 + ξ

1 − ξ

)︃
+
c1,3
2π

{︂
Ei[∓b2(1 − ξ)] − e∓2b2Ei[±b2(1 + ξ)]

}︂
, (A.71)

whereas for x̃ ̸= 0 we find∫︂
dξ

π
cos(ξx̃)f 1,3

b (ξ) =
cos x̃

2π
{Ci[x̃(1 + ξ)] − Ci[x̃(1 − ξ)]} +

sin x̃

2π
{Si[x̃(1 + ξ)] − Si[x̃(1 − ξ)]}

+
c1,3
2π

ℜ
{︂
e±ix̃Ei[∓(b2 + ix̃)(1 − ξ)] − e∓2b2e−ix̃Ei[±(b2 + ix̃)(1 + ξ)]

}︂
.

(A.72)

Here, Si(x), Ci(x), and Ei(x) denote the sine integral, cosine integral, and exponential inte-

gral, respectively [174]:

Si(x) :=

x∫︂
0

dt
sin t

t
, Ci(x) := γ + lnx+

x∫︂
0

dt
cos t− 1

t
, (A.73)

Ei(x) := γ + lnx+

0∫︂
−x

dt
1 − e−t

t
. (A.74)

We can collect these results and write the numerical integration as the sum of an analytical,

approximative expression on the one hand, and a numerical contribution of the remainder

on the other hand:

b > b0 : g ≈
∞∫︂
0

dξ

π
cos(ξx̃)f≈

b (ξ) +

ξ∞∫︂
0

dξ

π
cos(ξx̃)

[︄
1 − e−b2(1−ξ2)2

1 − ξ2
− f≈

b (ξ)

]︄
+ E>

b0,ξ∞
(x̃) ,

(A.75)

E>
b0,ξ∞

(x̃) =

∞∫︂
ξ∞

dξ

π
cos(ξx̃)

[︄
1 − e−b2(1−ξ2)2

1 − ξ2
− f≈

b (ξ)

]︄
, (A.76)

where again E>
b0,ξ∞

(x̃) denotes the error of the approximation. See Fig. A.3 for a graphical

visualization of the numerical integration scheme, which works quite well in practice. When

performing the analytical calculations there is a small subtlety regarding branch cuts in the

cosine integral Ci(x) and the exponential integral Ei(x), and for that reason we would like

to give the full expressions for the definite integrals. They are rather lengthy and take the
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form (x̃ = 0)

∞∫︂
0

dξ

π
f≈
b (ξ) =

ξ−∫︂
0

dξ

π
f 1
b (ξ) +

ξ+∫︂
ξ−

dξ

π
f 2
b (ξ) +

∞∫︂
ξ+

dξ

π
f 3
b (ξ)

=
1

π

{︂m
2

(ξ2+ − ξ2−) + n(ξ+ − ξ−)
}︂
− 1

2π

{︃
ln

(︃
ξ+ − 1

ξ+ + 1

)︃
− ln

(︃
1 − ξ−
1 + ξ−

)︃}︃
+
c1
π

{︂
Ei
[︁
−b2(1 − ξ−)

]︁
− e−2b2Ei

[︁
b2(1 + ξ−)

]︁
− Ei

(︁
−b2

)︁
+ e−2b2Ei

(︁
b2
)︁}︂

− c3
π

{︂
Ei
[︁
b2(1 − ξ+)

]︁
− e2b

2

Ei
[︁
−b2(1 + ξ+)

]︁ }︂
,

(A.77)

as well as (x̃ ̸= 0)

∞∫︂
0

dξ

π
cos(ξx̃)f≈

b (ξ) =

ξ−∫︂
0

dξ

π
cos(ξx̃)f 1

b (ξ) +

ξ+∫︂
ξ−

dξ

π
cos(ξx̃)f 2

b (ξ) +

∞∫︂
ξ+

dξ

π
cos(ξx̃)f 3

b (ξ)

=
cos x̃

2π

{︂
Ci [x̃ (1 + ξ−)] − Ci [x̃ (1 − ξ−)] − Ci [x̃ (1 + ξ+)] + Ci [x̃ (ξ+ − 1)]

}︂
+

sin x̃

2π

{︂
π + Si [x̃ (1 + ξ−)] − Si [x̃ (1 − ξ−)] − Si [x̃ (1 + ξ+)] + Si [x̃ (1 − ξ+)]

}︂
+

1

πx̃2

{︂
m [cos (x̃ξ+) − cos (x̃ξ−)] + (mξ+ + n)x̃ sin (x̃ξ+) − (mξ− + n)x̃ sin (x̃ξ−)

}︂
+
c1
2π

ℜ
{︂
eix̃Ei

[︁
(−b2 − ix̃)(1 − ξ−)

]︁
− e−ix̃−2b2Ei

[︁
(b2 + ix̃)(1 + ξ−)

]︁ }︂
− c1

2π
ℜ
{︂
eix̃Ei

(︁
−b2 − ix̃

)︁
− e−ix̃−2b2Ei

(︁
b2 + ix̃

)︁}︂
− c3

2π
ℜ
{︂
e−ix̃ ˜︁Ei

[︁
(b2 + ix̃)(1 − ξ+)

]︁
− e−ix̃+2b2 ˜︁Ei

[︁
−(b2 + ix̃)(1 + ξ+)

]︁ }︂
,

(A.78)

where we defined

˜︁Ei(z) :=

⎧⎨⎩Ei(z) for ℜ(z) ≥ 0 ,

Ei(z) + iπ for ℜ(z) < 0 ,
(A.79)

which implements the branch cut of the exponential integral for arguments with negative

real part.
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A.4.3 Asymptotics of ∆Gω(x)

The approximation (A.68) works well for for b ≫ 1 such that we may use it to extract the

large-ϖ asymptotics of gω(x) using this method. For large b and fixed x̃ = ϖx we find

gω(x) ≈ sin x̃

2
− a

2πb

(︂
3 − e−4a22

)︂
cos(x̃) − a

3πb

(︂
2 + e−4a22

)︂
x̃ sin(x̃) + O

(︁
b−2
)︁
, (A.80)

which implies that for large ϖ the function gω(x) behaves like an oscillatory term of amplitude
1
2
. To obtain the above asymptotics we employed

Si(x→ 0) ≈ x , Si(x± ϵ) ≈ Si(x) ± sinx

x
ϵ , Ci(x± ϵ) ≈ Ci(x) +

cosx

x
ϵ ,

Si(x→ ∞) ≈ π

2
− cosx

x
, Ei(x→ ±∞) ≈ ±e

±x

x
.

(A.81)

See Fig. A.4 for a graphic confirmation of these asymptotics, which are rather accurate.

A.4.4 Remarks on ⟨φ2(x)⟩ren in GF2n theories for larger n

It is possible to consider the large-ϖ asymptotics of gω(0) for any GF2n theory by using the

approximation method of “steepest descent.” Let us elaborate and begin again with

gω(0) =

∞∫︂
−∞

dξ

2π
fβ(ξ) =

1

2π
g(β) , fβ(ξ) =

1 − e−β(1−ξ2)2n

1 − ξ2
, β = (ϖℓ)4n . (A.82)

Let us differentiate the integral with respect to β to obtain the simpler expression

∂βg(β) =

∞∫︂
−∞

dξ(1 − ξ2)2n−1e−β(1−ξ2)2n ≈ h− + h+ , (A.83)

which we approximated by the largest contributions around the maxima at ξ± = ±1 which

appear at large values of β. We introduce new variables y± := ξ ∓ 1 and find

h± =

∞∫︂
−∞

dy±(−y2± ∓ 2y±)2n−1 exp
[︁
−β(−y2± ∓ 2y±)2n

]︁
(A.84)

=

∞∫︂
−∞

dz±(1 + z±)(2z±)2n−1e−β(2z±)2n (A.85)
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≈
∞∫︂

−∞

dz±z±(2z±)2n−1e−β(2z±)2n =
22n−1

α
2n+1
2n

Γ
(︁
2n+1
2n

)︁
n

, α := 22nβ = [2(ϖℓ)2]2n , (A.86)

where z± := ∓y± − 1
2
y2±. Now we may readily integrate over β to arrive at the original

expression,

gω(0) ≈ 1

4πn
Γ

(︃
2n+ 1

2n

)︃(︃
c− 2n

ϖ2ℓ2

)︃
. (A.87)

The constant c is undetermined, but we can fix it by comparing the above results with the

previous exact results for GF2 theory, which, in this case, corresponds to n = 1. Inserting

n = 1 into the above one has in the limit ϖℓ≫ 1

gω(0) ≈ 1

4π
Γ

(︃
3

2

)︃(︃
c− 2

ϖ2ℓ2

)︃
=

1

8
√
π

(︃
c− 2

ϖ2ℓ2

)︃
. (A.88)

Setting c = 0 readily reproduces the asymptotics already encountered in (A.64), which instils

some hope into this approximate scheme for higher values of n.
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(b) Retarded Green function, ω < 0.
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(c) Advanced Green function, ω > 0.
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(d) Advanced Green function, ω < 0.
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(f) Anti-Feynman Green function.

Figure A.1: Integration contours for the temporal Fourier transform of the local, causal Green

functions. Note that under a time reversal transformation ω → −ω the location of the poles

are reflected along the real axis.
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−ω

Im k

Re k

C∞

Co

+ω

Figure A.2: Closed integration contours for the temporal Fourier transform of the homoge-

neous Green functions. While C∞ gives rise to the Hadamard function, Co gives rise to its

complement, which is sometimes called Pauli–Jordan function.
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Figure A.3: Numerical integration scheme: the subtraction of the approximative function

f≈
b (ξ) (dashed line) from the exact expression (solid line) improves the falloff behavior of

the integrand drastically, enabling us to perform numerical integration over a finite range of

ξ. The contributions to the numerical integrals are visualized as the shaded area under the

curves, implying that the range of contributions to the numerical integral is finite for x̃ = 0

as well as for x̃ ̸= 0.

    

Figure A.4: The non-local modification term gω(x) of GF2 theory for various values of x. Left:

Analytic result for x = 0, including the asymptotics. Right: Numerical results for various

values of the dimensionless distance x/ℓ, where we subtracted the leading-order oscillating

terms sin(ϖx). The remainder is a decreasing function of ϖℓ.
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Appendix B

Two-dimensional ghost-free

modification of the Polyakov action

B.1 General relations for static geometries

We discuss here the geometric properties of an asymptotically flat two-dimensional metric

gµν that admits a timelike Killing vector ξ such that ξ(µ;ν) = 0. Denoting the negative norm

of the Killing vector as f = −ξ · ξ, and we assume that ξ is normalized such that f = 1 at

spatial infinity (which we assume to be flat). If gµν describes a black hole, then f = 0 at the

event horizon. In the following section we will focus on the region where f ≥ 0. Let us now

also define the 1-form ξ = ξαdxα. Denoting the coderivative as δ = ⋆d⋆, the trace of the

Killing equation for ξ can be written as δξ = 0 where “⋆” denotes the Hodge dual and “d”

is the exterior derivative. Then

d ⋆ ξ = 0 ⇒ ⋆ξ = η = dr , (B.1)

where we introduced a new scalar function r. Recall that in two dimensions the dual of a

1-form is again a 1-form. Observe that another two-dimensional identity is

ξ ∧ dξ = 0 ⇒ ξ = −βdt . (B.2)

Here, t and β are scalar functions and we chose the negative sign for later convenience. The

Killing vector ξ alone hence allows us to define the coordinates {t, r} such that in these
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coordinates

gtr = gαβt,αr,β = − f

β2
, grr = gαβr,αr,β = (∇r)2 = (⋆ξ, ⋆ξ) = f . (B.3)

Hence the metric can be written as

ds2 = −β
2

f
dt2 +

dr2

f
. (B.4)

We may now use the relation ξα∇αξ · ξ = 0 to show that f = f(r). The relation ξ(t;r) = 0

for the above metric gives the additional relation

β′f − f ′β = 0 ⇒ β = β0(t)f , (B.5)

where the primes denote differentiation with respect to the radial coordinate r. By rescaling

the time coordinate one may set β0(t) = 1, whence the metric takes the final form

ds2 = −fdt2 +
dr2

f
= eσ

(︁
−dt2 + dr2∗

)︁
, (B.6)

where σ = 1
2

ln f and r∗ denotes a tortoise coordinate.

We can use the above representation of the metric to find the zero modes of the d’Alembert

operator. Note that there is the general identity

□σ = −Rαβ
ξαξβ

ξ · ξ
. (B.7)

Inserting the two-dimensional identity Rµν = 1
2
Rgµν this yields

□σ = −1

2
R . (B.8)

This implies that the equation □φ = R is solved by

φ = −2σ + χ = − ln f + χ , □χ = 0 . (B.9)

As it turns out, we can proceed to show that the functions t and r∗ are both zero mode

solutions:

□t = δ(dt) = −δ
(︃
ξ

f

)︃
= − ⋆ d ⋆

(︃
ξ

f

)︃
= − ⋆

(︃
d
⋆ξ

f

)︃
= −δξ

f
+

1

f 2
⋆ (⋆ξ ∧ df) = 0 ,

(B.10)
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□r∗ = δ

(︃
dr

f

)︃
= ⋆d

(︃
⋆dr

f

)︃
= ⋆d

(︃
ξ

f

)︃
= ⋆d2t = 0 , (B.11)

where we used δξ = 0 and that both ⋆ξ and df are proportional to dr. Hence a general

solution will be a superposition of t and r∗ with constant coefficients. We discard the constant

solution since it is irrelevant in the present context. Due to the linearity of the problem we

may also consider the two functions

u = t− r∗ , v = t+ r∗ , (B.12)

which are the retarded and advanced time coordinates. For an eternal black hole the retarded

(or outgoing) coordinate u is regular at the past horizon, and the advanced (or ingoing)

coordinate v is regular at the future horizon.

Let us conclude this section by deriving useful relations for the mass function and the surface

gravity of static two-dimensional black holes, largely based on Ref. [280]. To that end,

assume that there exists a conserved energy-momentum tensor T µν . Defining the Killing

current Jµ = T µαξ
α we can introduce the 1-form J = Jαdxα, and one has

d ⋆ J = ⋆δJ = 0 . (B.13)

This implies that ⋆J is closed and hence locally exact,

dm = − ⋆ J . (B.14)

Here, m is the mass function, and for a stationary energy-momentum tensor one has

m = −
∫︂

drT t
t . (B.15)

This expression is useful for calculating the influence of an energy density onto the black hole

mass that is sourced by a test field propagating on the black hole background. One can also

prove the following relation for the black hole’s surface gravity [280],

κ =
1

2

∫︂
Σ

RξαdΣα , (B.16)

where Σ is a line between the horizon and spatial infinity, and dΣµ is the surface element of
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that line. In the {t, r} coordinates we can rewrite this as

κ =
1

2

∞∫︂
rg

drR =
1

2
f
⃓⃓
r=rg

. (B.17)

B.2 Energy-momentum tensor

The zero mode solutions described in the previous section play an important role in the ten-

sorial structure of the effective energy-momentum tensor. In this section we will demonstrate

what choices for χ correspond to which quantum state. For convenience we define

tµν =
1

b
T µ

ν , (B.18)

where b is the model-dependent prefactor of the conformal anomaly.

B.2.1 Boulware vacuum

Let us set φ = − ln f , which corresponds to χ = 0. The calculations give

tµν = diag

(︃
f ′2

2f
− 2f ′′,−f

′2

2f

)︃
, tαα = −2f ′′ = 2R . (B.19)

This vanishes at I + and I − and is singular at both the future and past horizon, and it

therefore reproduces the quantum average of the energy-momentum tensor in the Boulware

vacuum state.

B.2.2 Hartle–Hawking vacuum

Let us set φ = − ln f + kr∗, which corresponds to χ = kr∗. Then one has

tµν = diag

(︃
f ′2 − k2

2f
− 2f ′′,−f

′2 − k2

2f

)︃
. (B.20)

For a general value of k this energy-momentum tensor diverges at the horizons where f = 0.

However, one may choose k to be related to the surface gravity κ to render it finite, k =

f ′|rg = 2κ. Then at infinity

tµν ∼ diag(−2κ2, 2κ2) . (B.21)
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The corresponding state in this case is the Hartle–Hawking vacuum.

B.2.3 Unruh vacuum

Putting φ = − ln f + κu, which corresponds to χ = κu, in {t, r} coordinates one has

tµ
ν =

(︄
−2f ′′ + f ′−2κ2

2f
−κ2

κ2

f2 −f ′−2κ2

2f

)︄
. (B.22)

Let us denote by uµ = (−f, 1) a null covector which is regular at infinity. Then, at large

distances r, one can show tµ
ν ∼ κ2uµu

ν . For this reason the corresponding energy-momentum

tensor describes an outgoing (ur > 0) flux of null radiation at I +.

Finally, let us demonstrate that this energy-momentum tensor is regular at the future horizon,

and in this context it is useful to work with an ingoing null coordinate v = t + r⋆ that is

regular at the future horizon. One may calculate in {v, r}-coordinates

tµν =

(︄
2ff ′′ − 1

2
f ′2 + κ2 −4f ′′ + f ′2−4κ2

2f

−4f ′′ + f ′2−4κ2

2f
2f ′′

f
− f ′2−4κ2

f2

)︄
. (B.23)

Near the horizon, r = rg, one may approximate

f(r) = 2κ(r − rg) +
1

2
f2(r − rg)

2 +
1

6
f3(r − rg)

3 + O[(r − rg)
4] . (B.24)

The energy-momentum tensor therefore behaves as

tµν ∼

(︄
−κ2 −f2
−f2 f3

κ

)︄
+ O(r − rg) , (B.25)

which is manifestly regular, and for this reason this choice of χ leads to the correct boundary

conditions consistent with the Unruh vacuum state. One may also show that the negative

energy flux through the horizon, tvv|rg = −κ2 coincides with the negative of the outgoing

energy flux at I +, tuu|I + = κ2.

B.3 Spectral representation of F (s, R)

This section is devoted to finding an integral representation for the operator

F (s, R) = es□R , (∂s −□)F (s, R) = 0 , F (0, R) = 1 . (7.57)
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In the coordinates employed in this context the d’Alembert operator takes the form

□ = R∂R [(1 −R)R∂R] . (B.26)

As a first step, let us consider the following eigenvalue problem:

□Ψ(R) = λΨ(R) , (B.27)

where Ψ is real-valued and finite at the horizon (R = 1) and at spatial infinity (R = 0),

where R = e−x in terms of the dimensionless distance coordinate x. Inserting R = 1 and

R = 0 into (B.27) it is straightforward to show that

Ψ(R → 1) ∼ a−1 ln(1 −R) + a0 , Ψ(R → 0) ∼ a+R
√
λ + a−R

−
√
λ . (B.28)

We can now prove that only λ < 0 allows for finite solutions both at the horizon and at

infinity, and we shall prove it by contradiction. We begin by defining a new radial coordinate

R∗ = − ln

(︃
R

1 −R

)︃
. (B.29)

The eigenvalue equation (B.27) then takes the simple form

d2Ψ

dR2
∗

= λ(1 −R)Ψ , (B.30)

where R∗ increases monotonically from −∞ (at the horizon) to +∞ (at spatial infinity), like

a tortoise coordinate. Because we assume that Ψ is finite at the horizon, Eq. (B.28) implies

that a−1 = 0, which in turn implies to leading order

lim
R∗→−∞

Ψ = a0 , lim
R∗→−∞

dΨ

dR∗
= 0 . (B.31)

Note that while a0 depends on the normalization of Ψ we can always chose it to be positive.

Integrating the eigenvalue relation (B.27) we may now write

dΨ

dR∗
= λ

R∗∫︂
−∞

(1 −R)ΨdR∗ = λ

R∫︂
0

dR

R
Ψ > 0 , (B.32)

which implies that dΨ/dR∗ is a growing function in R∗. This means that Ψ cannot be

bounded at infinity, indicating that λ cannot be positive. For this reason λ < 0 and we will
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from now on parametrize λ = −p2 for p ∈ R. Equation (B.27) then takes the form

□Ψp(R) = −p2Ψp(R) , (B.33)

where we label the eigenfunctions with the parameter p for later convenience. Note that for

p ∈ R the asymptotics at infinity (R = 0) are finite, R±ip = e±ipx, which in turn implies

that the eigenvalue problem (B.33) has a continuous spectrum. For this reason a solution of

Eq. (7.57) can be written in the form

F̃ (s, R) =

∫︂
dp ρp e

−p2sΨp(R) , (B.34)

where ρp is the spectral density that we will determine later, and the factor e−p2s solves

Eq. (B.33). Let us now focus on the eigenfunctions Ψp(R), as they can be found analytically

in this case. To that end, the complex-valued function

Zp(R) = Rip
2F1 (ip, ip+ 1; 2ip+ 1;R) , p ∈ R , (B.35)

solves Eq. (B.33), and one has Z−p(R) = Zp(R). Using this property one may construct real-

valued solutions such as ℜ[Zp(R)] = 1/2[Zp(R) + Z−p(R)] and ℑ[Zp(R)] = (1/2i)[Zp(R) −
Z−p(R)], and for that reason for each value p ∈ R there exist two real-valued solutions. As

we will demonstrate now, demanding the finiteness of the mode function Ψp at the horizon

lifts this degeneracy. Expanding Zp(R) at the horizon (R = 1) gives

Zp(R) ≈ bp + cp log(1 −R) + O (1 −R) , (B.36)

bp = −
4ipΓ

(︁
ip+ 1

2

)︁
p
√
πΓ(ip)

[︁
− i+ 2pγ + 2pψ(ip)

]︁
, (B.37)

cp = −
4ipΓ

(︁
ip+ 1

2

)︁
√
πΓ(ip)

, (B.38)

where Ψ(ip) denotes the digamma function [174]. In order to cancel the divergent cp-term

one can construct the unique, real-valued expression

Ψp(R) = fp

{︂
ℜ(cp)ℑ[Zp(R)] −ℑ(cp)ℜ[Zp(R)]

}︂
. (B.39)

The degeneracy is lifted, and the above solution, for a given p ≥ 0 is a real-valued solution

of (B.33) that is also finite at the horizon and behaves like a plane wave at spatial infinity.

The coefficient fp is a normalization factor we will discuss below.
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B.3.1 Orthogonality and normalization of eigenfunctions

Having derived a set of physically well-behaved eigenfunctions Ψp(R) we may now study their

properties in more detail. The Wronskian of these functions takes the form

W [Ψp,Ψq] = R(1 −R)
[︂
Ψp(R)

↔
∂RΨq(R)

]︂
, (B.40)

where f
↔
∂Rg = f∂Rg−g∂Rf . Because the solutions Ψp are finite both at the horizon (R = 1)

and at infinity (R = 0) the Wronskian vanishes there, too, and we may write

0 =

1∫︂
0

dR∂RW [Ψp,Ψq] = (q2 − p2)⟨Ψp,Ψq⟩ , ⟨Ψp,Ψq⟩ =

1∫︂
0

dR

R
Ψp(R)Ψq(R) . (B.41)

This shows that eigenfunctions with different eigenvalues p ̸= q are indeed orthogonal, and

with a proper normalization fp (see below) these functions are even orthonormal,

1∫︂
0

dR

R
Ψp(R)Ψq(R) = δ(p− q) . (B.42)

Now that this is only true for the eigenfunctions Ψp that are finite at the horizon; the above

considerations do not hold for the complex-valued functions Zp since they typically diverge

at the horizon.

In order to find the correct normalization fp we follow Refs. [231, 285]. The asymptotics

Zp(R → 0) ≈ Rip = eipx imply

Ψp(R → 0) ≈ −fp
[︂
ℜ(cp) sin(px) + ℑ(cp) cos(px)

]︂
. (B.43)

Let us consider now two functions Ψp and Ψk at spatial infinity, R ≈ 0, where k is very close

to p. This is always possible since p and k belong to the continuous spectrum. Then we find

ΨpΨk≈p ∼
1

2
|cp|2f 2

p cos[(p− k)x] + oscillating terms , (B.44)

where oscillating terms are sine and cosine functions that depend on the sum (p+k) ≈ 2p≫ 0.

Performing a similar calculation for plane waves φp(R) instead one finds φpφk≈p ∼ 1/(2π).

Since our eigenfunctions Ψp asymptotically behave like plane waves it is useful to demand



Appendix B. Two-dimensional ghost-free modification of the Polyakov action 225

the same coefficient, and that implies

fp =

√︄
2

π|cp|2
=

√︄
2

p tanh(πp)
. (B.45)

Note that there is an additional factor of
√

2 that appears due to the normalization of cosines

(as opposed to that of exponentials),

∞∫︂
−∞

dx cos(px) cos(kx) = πδ(p+ k) + πδ(p− k) . (B.46)

We can now evaluate Ψp at the horizon explicitly, R = 1, and find the manifestly finite value

Ψp(1) =
√︁

2p coth(πp) . (B.47)

With all these considerations completed, we arrive at a regular, real-valued integral repre-

sentation

F (s, R) =

∞∫︂
0

dp ρp e
−p2sΨp(R), (B.48)

and this representation will be at the center of our following considerations.

B.3.2 Spectral measure

We still need to determine the form of the spectral measure ρp, and it is related to the

property F (0, R) = R. Inserting this relation into (B.48) yields

1 =

∞∫︂
0

dp ρp
Ψp(R)

R
, (B.49)

where we may now multiply on both sides with another eigenfunction Ψq and integrate over

R in order to exploit the orthonormality relation (B.42),

1∫︂
0

dRΨq(R) =

1∫︂
0

dR

∞∫︂
0

dp ρp Ψq(R)
Ψp(R)

R
=

∞∫︂
0

dpρp

1∫︂
0

dR

R
Ψp(R)Ψq(R)

=

∞∫︂
0

dpρpδ(p− q) = ρq .

(B.50)
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Fortunately, the integral in the very first expression on the left can be evaluated analytically:

dp =

1∫︂
0

dR Zp(R) =
1

1 + ip
3F 2(1 + ip, 1 + ip, ip; 2 + ip, 1 + 2ip; 1) ,

ρp = fp [ℜ(cp)ℑ(dp) −ℑ(cp)ℜ(dp)]

=

√︁
p sinh(2πp)√

2π3/2(1 + p2)
ℜ
[︃
i+ p

4ip
Γ(ip)Γ

(︁
1
2
− ip

)︁
3F 2(1 + ip, 1 + ip, ip; 2 + ip, 1 + 2ip; 1)

]︃
.

(B.51)

Numerically one may verify that

∞∫︂
0

dp ρ2p =
1

2
. (B.52)
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