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Data Characteristics

White noise data, represented by equation (2.5), simulates random fluctuations that are uni-
form across time. Environmental noise, represented by equation (2.8), reflects external factors
such as environmental disruptions. Demographic noise, represented by equation (2.9), cap-
tures temporal variations within population processes, including births, deaths, immigration,
emigration, and state transitions. While synthetic data allows for controlled experiments and
extensive training sets, real-world data is more complex due to its inherent variability and nu-
merous unpredictable factors. For instance, real COVID-19 data exhibits noise and fluctuations
and to mimic these fluctuations, we added random noise intensity to the synthetic data, incor-
porating different levels of fluctuations. Transition times were randomly chosen between 0 to
1500 in these synthetic time series. Since the exact time of transition in real-world diseases
like COVID-19 is unknown, these random transition points enable the deep learning model to
anticipate critical transitions despite the uncertainty in transition times.

Supplementary figures



Figure S1: Empirical data of COVID-19 in Edmonton and the calculated effective reproduction number using
EpiEstim package. Based on Re < 1, we extracted daily cases until Re = 1. Each sub-series is labeled as
transcritical, representing the cases just before the bifurcation point, i.e., Re = 1.

Figure S2: Probabilities for a transition assigned by the SIDATR-500 DL model based on the subset of observa-
tions of transcritical simulations of the SIR model with additive white noise.
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Figure S3: Probabilities for a transition assigned by the SIDATR-500 DL model based on the subset of observa-
tions of null simulations of the SIR model with additive white noise.

Figure S4: Probabilities for a transition assigned by the SIDATR-500 DL model based on the subset of observa-
tions of transcritical simulations of the SIR model with multiplicative environmental noise.

Figure S5: Probabilities for a transition assigned by the SIDATR-500 DL model based on the subset of observa-
tions of null simulations of the SIR model with multiplicative environmental noise.

3



Figure S6: Probabilities for a transition assigned by the SIDATR-500 DL model based on the subset of observa-
tions of transcritical simulations of the SIR model with demographic noise.

Figure S7: Probabilities for a transition assigned by the SIDATR-500 DL model based on the subset of observa-
tions of null simulations of the SIR model with demographic noise.

Figure S8: Probabilities for a transition assigned by the SIDATR-500 DL model based on the subset of observa-
tions of transcritical simulations of the SEIR model with additive white noise.
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Figure S9: Probabilities for a transition assigned by the SIDATR-500 DL model based on the subset of observa-
tions of null simulations of the SEIR model with additive white noise.

Figure S10: Probabilities for a transition assigned by the SIDATR-100 DL model based on the transcritical time
series of the COVID-19 dataset of Edmonton.
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Figure S11: Probabilities for a transition assigned by the SIDATR-100 DL model based on the null time series of
the COVID-19 dataset of Edmonton.
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