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Abstract

The timely detection of disease outbreaks through reliable early warning signals (EWSs)

is indispensable for effective public health mitigation strategies. Nevertheless, the intricate

dynamics of real-world disease spread, often influenced by diverse sources of noise and

limited data in the early stages of outbreaks, pose a significant challenge in developing

reliable EWSs, as the performance of existing indicators varies with extrinsic and intrinsic

noises. Here, we address the challenge of modeling disease when the measurements are

corrupted by additive white noise, multiplicative environmental noise, and demographic

noise into a standard epidemic mathematical model. To navigate the complexities intro-

duced by these noise sources, we employ a deep learning algorithm that provides EWS in

infectious disease outbreak by training on noise-induced disease-spreading models. The

indicator’s effectiveness is demonstrated through its application to real-world COVID-19

cases in Edmonton and simulated time series derived from diverse disease spread models

affected by noise. Notably, the indicator captures an impending transition in a time series

of disease outbreaks and outperforms existing indicators. This study contributes to advanc-

ing early warning capabilities by addressing the intricate dynamics inherent in real-world

disease spread, presenting a promising avenue for enhancing public health preparedness

and response efforts.

Keywords— infectious disease, epidemiological model, stochastic differential equations, early warn-

ing signals, machine learning, critical transitions
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1 Introduction

Infectious diseases have imposed significant burdens on societies, and their impact has intensi-
fied in recent decades [1,2]. While public health measures have made considerable progress in
eradicating certain diseases, the continuous emergence of new diseases and the re-emergence
of some older ones have resulted in substantial loss of life and economic hardship [3]. Over
the past two decades, more than ten severe infectious diseases have (re-)emerged, resulting
in approximately 7.3 million global deaths [1, 4–7]. With infectious diseases persistently on
the rise at a global level, the necessity for an effective early warning signal (EWS) becomes
increasingly imperative [8].

An EWS is a model-independent tool that anticipates an impending critical transition of a
disease outbreak before it escalates to an epidemic level, without relying on empirically fitted
mathematical models. [3]. This allows for the early identification of outbreaks, which, in turn,
can potentially help in reducing the spread of the disease and minimizing its impact through
targeted interventions [9–11]. Several authors have explored EWSs for different diseases us-
ing time series-based machine learning models. For example, Brett et al. [12] investigated
EWSs for dengue and plague outbreaks and mumps re-emergence, Yang et al. [13] focused
on influenza, Li et al. [14] studied COVID-19, and Gao et al. [15] predicted mortality risk for
COVID-19. Although an effective EWS has the potential to save millions of lives from fu-
ture diseases, designing an efficient early warning system that can adapt to the complex and
uncertain patterns often exhibited by real-world disease dynamics remains a significant chal-
lenge [16].

EWSs are diverse and can be generated using a wide range of detection methods, including
wastewater-based epidemiology, search engine trends, and human bio-monitoring [17]. While
these methods are increasingly popular, their implementation may require additional resources
and can differ greatly from one country to another [17]. For instance, wastewater-based epi-
demiology necessitates the selection of appropriate biomarkers, search engine trends require
internet access with precise keyword configurations, and human bio-monitoring demands the
careful selection of a control group [17].

Critical slowing down (CSD) serves as the fundamental basis for EWSs to anticipate critical
transitions [3]. As a system approaches a critical threshold or undergoes a significant change,
such as a phase transition, its ability to recover from perturbations decreases [18]. This slowing
down results in an increase in recovery time and a decrease in the recovery rate from small
perturbations [19, 20]. Mathematically, CSD occurs due to the diminishing real part of the
dominant eigenvalue as a system approaches the bifurcation point, reaching zero precisely at
the bifurcation point [18], where bifurcation refers to qualitative changes in the behavior of a
dynamical system’s steady state as its parameters are varied [21]. Detection of critical slowing
down in a system can be achieved by measuring temporal trends in statistics, such as increased
autocorrelation (AC), variance, and the magnitude of fluctuations [3, 19].
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The reliability of CSD as an indicator of an EWS is not guaranteed when a system involves
stochasticity [19, 22]. In highly stochastic scenarios, the dynamics of a system can accelerate
rather than slow down near a bifurcation point [23], and a transition often occurs far away
from the local bifurcation point [19, 23, 24]. The leading statistical measures, such as variance
and AC, are differentially affected due to the external and internal effects of noise, and ex-
hibit different trends for different types of noises [23]. Traditional eigenvalue-based analyses
in dynamical systems are also ineffective in predicting state changes in stochastic systems, as
unpredictable fluctuations can significantly distort signals generated by linear terms [24]. As
stochasticity leads to unforeseen system behavior, the deterministic framework of the underly-
ing mechanisms becomes obscured, potentially resulting in false alarms or delayed responses.

The impact of noise is a critical consideration when generating EWS for disease outbreaks,
as the data observed from real-world systems is convoluted with different types of noises [24].
Various forms of randomness can be introduced in a system by both intrinsic and extrinsic
noises [25]. Two common forms of noise used when modeling disease are environmental
and demographic noise. Environmental noise, also known as extrinsic noise, arises due to
the changes in environmental factors outside of population [26, 27]. It plays a crucial role in
zoonotic, vector-borne, and waterborne diseases, particularly in Ebola, avian influenza, malaria,
and cholera transmission [28, 29]. On the other hand, demographic noise, referred to as intrin-
sic noise, is associated with temporal variation within the population process, including births,
deaths, immigration, emigration, and state transitions [26, 30]. In addition to these two types
of noise, additive white noise represents the interplay between deterministic structures and ran-
dom fluctuations with consistent intensity, possessing the potential to trigger an epidemic in
circumstances where there was no initial spread of infection in the absence of this specific
noise [31]. Since EWSs arise from the interaction of the dynamics and the noise, the type of
noise will affect the nature and intensity of an EWS.

To study the data-driven approach of EWS in infectious diseases, many use generic early
warning indicators (EWIs), such as variance and AC [16, 25, 32–39], and machine learning
models [12–15,20,40,41]. While generic EWIs offer a computationally efficient method, their
pattern can fluctuate, depending on system behavior and noise levels. Moreover, the perfor-
mance of generic EWIs is sensitive to the data sampling, quantitative and objective measures,
length of the time series, and the size of window and bandwidth [40]. This introduces un-
certainty regarding their universal applicability or potential influence by specific dynamic fea-
tures [3, 16, 22]. In addition to these challenges, generic EWIs can not accurately predict the
type of bifurcation that is going to happen [20]. Machine learning models, in contrast to generic
EWIs, can not only identify the impending change in the system but also categorize the type of
bifurcation expected according to the training labels [20]. These models possess the capacity
to recognize and learn patterns, allowing them to capture the statistical features inherent in the
data [40]. Nevertheless, machine learners, particularly deep learners (DL), demand substantial
amounts of training data to produce effective models and are computationally intensive.
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Training machine learning models with synthetic data is a fundamental strategy, especially
valuable when collecting and labeling extensive real datasets is challenging, time-consuming,
resource-intensive, and restricted due to privacy concerns [42]. Synthetic data generation in-
volves the creation of artificial datasets that closely mimic real-world data, which can produce
better models as it involves greater data diversity [42]. One of the key advantages of synthetic
data lies in the control it provides over data characteristics [42, 43]. This control is invalu-
able for researchers and practitioners, enabling the exploration of a wide array of scenarios,
data distributions, and complexities [43]. Moreover, synthetic data facilitates model training
on edge cases and rare events, which may occur in the real world but only rarely [44]. This be-
comes particularly crucial in applications where the consequences of failure are substantial or
the process is highly intricate, such as in medical diagnostics or disease spread [43]. Synthetic
scenarios capturing these exceptional cases empower models to make more informed decisions
when confronted with unusual situations, ultimately enhancing the model’s robustness and re-
liability.

A recent study conducted by Bury et al. [20] demonstrated that a machine learning model
can outperform generic EWIs, providing more accurate EWS by analyzing the pre-transition
time series of a system. They employed a DL algorithm trained on a synthetic dataset gener-
ated from two-dimensional random dynamical systems comprising a general polynomial of up
to third order. The parameter values of the random dynamical system were adjusted to achieve
fold, Hopf, and transcritical bifurcations, and the stochastic simulations with additive white
noise were then conducted to generate training data. Their study suggested that by training
the DL algorithm on a diverse range of datasets, it could capture fundamental features shared
by various systems, thus enabling it to provide EWS for systems not explicitly included in the
training data. The model was tested on time series from ecology, thermoacoustics, climatology,
and epidemiology, which were not part of the training datasets, and successfully anticipated
critical transitions in both simulated models and empirical data. Moreover, it accurately identi-
fied the specific types of bifurcations, that were occurring within these systems. Nevertheless,
when applied to a disease-spreading model, both the DL model and generic EWIs did not per-
form better than random chance. This motivated us to investigate the performance of EWIs in
the context of a disease model.

Our objective is to enhance EWSs for infectious diseases. To achieve this, we evaluate the
effectiveness of a DL algorithm, alongside variance and lag-1 AC, in disease-spreading models.
To comprehensively analyze the interaction between disease dynamics and noise, we consider
a standard epidemic model with additive white noise, multiplicative environmental noise, and
demographic noise. Our hypothesis posits that by training the DL algorithm on noise-induced
models, the algorithm can outperform other EWIs and demonstrate higher accuracy in pro-
viding EWSs for disease outbreaks. We use the time series of the number of infected cases
to generate EWSs. We specifically focus on the transcritical form of bifurcation in disease
models, identifying the bifurcation point by observing the basic reproduction number (R0)–a
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dimensionless number that denotes the average number of secondary infections arising from a
single infected case in a fully susceptible population. A disease model can exhibit other types
of bifurcation [45], which are not in our consideration.

2 Mathematical models and the impacts of noises

We consider the susceptible–infectious–recovered (SIR) model [46], which serves as a founda-
tion for most disease-spreading models. The SIR model divides the population into susceptible
(S), infectious (I), and recovered (R) compartments and uses a system of ordinary differential
equations to describe how individuals move between them over time. The model equations are
given by 

dS(t)
dt

= Λ − β(t)S(t)I(t) − µS(t),

dI(t)
dt

= β(t)S(t)I(t) − αI(t) − µI(t),

dR(t)
dt

= αI(t) − µR(t),

(2.1)

where Λ is the recruitment rate of susceptible populations, β(t) is the time-dependent disease
transmission rate, µ is the natural death rate, and α is the recovery rate from the disease. When
β is treated as a constant parameter, the disease-free equilibrium point of the model (2.1) is
(Λ, 0, 0), the endemic equilibrium point is (µ+α

β
, Λ

µ+α
− µ

β
, αΛ

µ(µ+α)
− α

β
), and the basic repro-

duction number, R0, is βΛ
µ(α+µ)

. A disease goes extinct if R0 < 1 and persists if R0 > 1, and a
transcritical bifurcation occurs when R0 = 1, where both equilibrium meet and exchange their
stability [3, 16, 45, 47]. The bifurcation value, corresponding to R0 = 1, arises from the model
with a constant β which is regarded as a bifurcation parameter. The first two equations of (2.1)
are independent of R, and the reduced system is given by

dS(t)
dt

= Λ − β(t)S(t)I(t) − µS(t),

dI(t)
dt

= β(t)S(t)I(t) − αI(t) − µI(t).
(2.2)

To model the spread of an infectious disease by an exposed individual, the SIR-type model
is commonly expanded by including an exposed compartment, leading to the susceptible–exposed-
infectious–recovered (SEIR) model [48]. The model equations are given by

dS(t)
dt

= Λ − β(t)S(t)I(t) − dS(t),

dE(t)
dt

= β(t)S(t)I(t) − (d+ κ)E(t),

dI(t)
dt

= κE(t) − (d+ γ)I(t),

dR(t)
dt

= γI(t) − dR(t),

(2.3)

where S(t), E(t), I(t), and R(t) denote the susceptible, exposed, infectious, and recovered
individuals, respectively, at time t. Moreover, Λ is the recruitment rate of the susceptible popu-
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lation, β(t) is the disease transmission rate, d is the natural death rate, 1/γ is the mean infectious
period, and 1/κ is the mean exposed period. The basic reproduction number of the SEIR model
is κβΛ

d(d+κ)(d+ γ)
, and the bifurcation point is βc =

d(d+κ)(d+ γ)
κΛ

.

2.1 Noise-induced models

Deterministic models provide useful insights into disease dynamics under idealized conditions.
However, the dynamics of infectious diseases are inherently complex and subject to random
fluctuations, thus necessitating the careful consideration of noise in disease models. Noise dis-
rupts the deterministic structure and influences the dynamics of the population compartments.
These noises can arise from various sources, including diversity in population behavior, en-
vironmental factors, and even the stochastic nature of disease transmission. A noise-induced
model is commonly defined through a set of stochastic differential equations.

2.1.1 SIR and SEIR models with additive white noise

The most common noise model is the additive noise model, wherein a perturbed observed
compartment is construed as the sum of unaltered deterministic dynamics and an additive noise
component [49]. This noise model serves as a means to simulate the inherent stochasticity
of natural processes and reproduce their consequential impact on a system [50]. To model
additive white noise, we add a white noise term into each equation of the deterministic model,
encompassing the continuous intensity of fluctuation associated with the dynamics of individual
compartments. A stochastic differential equation with additive white noise is given by

dX(t) = f(X(t), t)dt + σdW (t), (2.4)

where X(t) is a state variable, σ is noise intensity, and W (t) is a Wiener process. Following
this, the SIR model (2.2) with additive white noise has the formdS(t) = Λdt − β(t)S(t)I(t)dt − µS(t)dt + σ1dW1(t),

dI(t) = β(t)S(t)I(t)dt − αI(t)dt − µI(t)dt + σ2dW2(t),
(2.5)

where σi, i = 1, 2, are the intensities of white noise and Wi(t), i = 1, 2, are independent
Wiener processes. Similarly, the SEIR model (2.3) with additive white noise is given by

dS(t) = Λdt − β(t)S(t)I(t)dt − dS(t)dt + σ1dW1(t),

dE(t) = β(t)S(t)I(t)dt − (d+ κ)E(t)dt + σ2dW2(t),

dI(t) = κE(t)dt − (d+ γ)I(t)dt + σ3dW3(t),

dR(t) = γI(t)dt − dR(t)dt + σ4dW4(t),

(2.6)
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where σi, i = 1, 2, 3, 4, are the intensities of white noise and Wi(t), i = 1, 2, 3, 4, are indepen-
dent Wiener processes.

2.1.2 SIR model with multiplicative environmental noise

Substantial environmental noise can trigger abrupt transitions in disease dynamics even before
reaching a critical threshold; nevertheless, in certain instances, environmental fluctuations can
alter the stability landscape and promote resilience [51]. Environmental variability introduces
multiplicative noise into the modeling process that depends on the system’s current state [52].
To model the multiplicative environmental noise, we consider that the fluctuations exhibit a
direct correlation with the size of the population compartment. Consequently, we incorporate a
multiplication by the population compartment in the noise-induced terms within the dynamics
of the respective compartments. A stochastic differential equation with multiplicative environ-
mental noise is given by

dX(t) = f(X(t), t)dt + σX(t)dW (t). (2.7)

Therefore, following (2.2), the SIR model with multiplicative environmental noise is given bydS(t) = Λdt − β(t)S(t)I(t)dt − µS(t)dt + σ1S(t)dW1(t),

dI(t) = β(t)S(t)I(t)dt − αI(t)dt − µI(t)dt + σ2I(t)dW2(t).
(2.8)

2.1.3 SIR model with demographic noise

Demographic noise can either mitigate abrupt transitions or promote alternative stable states
and abrupt transitions [51]. Moreover, demographic noise has some other epidemiological out-
comes such as early decrease of infection, epidemic outbreaks with the collapse of population,
and either the extinction of infection or an endemic situation [53]. To characterize demographic
stochasticity, we use a system of stochastic differential equations that is based on a diffusion
process where both the time and the state variables are continuous. Following the derivation
procedure in [26, 28], we incorporate demographic noise into the model (2.2). Examining the
interactions within the SIR model (2.2), we identify the list of five possible changes along with
their respective probabilities, as presented in Table 1. To incorporate demographic stochas-

Table 1: Transition probabilities associated with changes in model 2.2

i Description Change (∆X)i Probability, pi
1 Recruitment of S (1, 0)tr Λ∆t
2 Transmission from S to I (-1, 1)tr βSI∆t
3 Death of S (-1, 0)tr µS∆t
4 Death of I (0, -1)tr µI∆t
5 Recovery of I (0, -1)tr αI∆t
6 No change (0, 0)tr 1 − (Λ+βSI+µS+µI+αI)∆t
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ticity, we need to calculate the expectation E(∆X) and the covariance Σ(∆X) for the time
interval ∆t. The expectation is given by

E(∆X) =
6∑

i=1

pi(∆X)i =

(
Λ − βSI − µS

βSI − αI − µI

)
∆t = µ∆t.

The covariance is given by

Σ(∆X) = E((∆X)(∆X)tr) =
6∑

i=1

pi(∆X)i(∆X)tri =

(
Λ + βSI + µS −βSI

−βSI βSI + αI + µI

)
∆t

=

(
v11 v12

v21 v22

)
∆t = V∆t.

Letting ∆t → 0, then the stochastic SIR model with demographic noise has the form

dX = µdt + GdW (t),

where X = (S, I)tr, and G is the square root of V defined by

G =
√
V =

1

e

(
v11 + d v12

v21 v22 + d

)
,

where v12 = v21, d =
√

v11v22 − v212, and e =
√
v11 + v22 + 2d. Choosing, v11 = a,

v12 = v21 = b, v22 = c, and substituting d and e in the G matrix, we get the following
stochastic SIR model with demographic noise
dS(t) = Λdt − β(t)S(t)I(t)dt − µS(t)dt +

a(t) + d(t)

e(t)
dW1(t) +

b(t)

e(t)
dW2(t),

dI(t) = β(t)S(t)I(t)dt − αI(t)dt − µI(t)dt +
b(t)

e(t)
dW1(t) +

c(t) + d(t)

e(t)
dW2(t),

(2.9)

where a(t) = Λ + β(t)S(t)I(t) + µS(t), b(t) = −β(t)S(t)I(t), c(t) = β(t)S(t)I(t) +

αI(t) + µI(t), d(t) =
√

a(t)c(t) − b2(t), e(t) =
√

a(t) + c(t) + 2d(t), and Wi(t), i =

1, 2, is the Wiener process.

3 Methods

3.1 Simulated training data

To train the DL algorithm, we generated the training data from the noise-induced SIR models,
i.e., from equations (2.5), (2.8), and (2.9). The training data comprises two types of simula-
tions: transcritical and null. In transcritical simulations, bifurcation occurs within a specified
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time length, while in null simulations there is no bifurcation within the same time frame. The
maximum time series length is set to 1500, and we assume that the transition time for the
noise-induced models aligns with the deterministic model (2.2). Specifically, the transition
in the noise-induced models is the time t when the value of R0 becomes equal to 1. There-
fore, when we use data, we obtain the critical value of the disease transmission rate, βc, at the
bifurcation point by setting R0 = 1, resulting in βc =

µ(α+µ)
Λ

.
We specify the parameters Λ = 100, α = 1, and µ = 1, and randomly choose other parame-

ters to incorporate variability into the training data, ensuring that the DL algorithm is trained on
a wide range of scenarios. The disease transmission rate, β, is assumed to be time-dependent,
following a linear increasing pattern: β(t) = β0 + β1t, where β0 and β1 are chosen from tri-
angular distributions. For β0, the lower and upper limits are set to 0 and βc

2
respectively. The

choice of β1 determines whether a simulation is transcritical or null. For null simulations, β1

ranges from 0 (lower limit) to βc −β0

1500
(upper limit), whereas for transcritical simulations, β1

ranges from βc −β0

1500
(lower limit) to 2×βc −β0

1500
(upper limit). The modes of these distributions

are set at half of their respective upper limits. These parameters result in a random transition
between time 0 and 1500 for transcritical simulations and no transition for null simulations
(Figure 1). Random transition times are chosen for transcritical simulations to account for the
uncertain nature of transition times in real-world scenarios. These parameter choices collec-
tively contribute to the model’s robustness by exposing it to a wide range of conditions, foster-
ing adaptability, and enhancing its potential to generalize effectively across different scenarios
and uncertainties.

The Wiener process is sampled from a normal distribution, dWi ∼ N (0,
√
dt), i = 1, 2,

and the noise intensity, σi, i = 1, 2, is sampled from a triangular distribution with a lower limit
of 0, a mode of 0.5, and an upper limit of 1, and is randomized for each simulation. The ran-
dom choice of noise intensity introduces different levels of stochasticity into the simulations,
making them more adaptable to real-world scenarios where accurately measuring all parame-
ters and noises is often impractical. These variations provide a broader spectrum of possible
phenomena.

We set the initial values of susceptible and infected to 500 and 7 respectively, with a burn-in
period of 100 time units. The Euler–Maruyama method is employed for numerical simulations
with dt = 0.01. For the transcritical simulations, simulation lengths extend up to the transition
points, whereas for the null simulations, the length extends up to time 1500. We generated
30,000 simulations from each of the equations (2.5), (2.8) and (2.9), and an additional 10,000
simulations from equation (2.5) by doubling the noise intensity. Thus, a total of 0.1 million
simulations were used to train the DL algorithm.

The training data was generated in multiple batches using the Compute Canada server. Time
series residuals were computed using the ewstools Python package [54], utilizing Lowess
(Locally Weighted Scatterplot Smoothing) smoothing [55] with a span of 0.2. Additionally,
lag-1 AC and variance of the simulations were computed with a rolling window of 0.25 using
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(a) (b) (c)

Figure 1: (a) Linear increase samples of β(t) for null (green) and transcritical (purple) simulations. A transition
occurs when β crosses the critical value βc (brown horizontal line), with the transition time marked by the inter-
section of the two lines (red dotted vertical lines). In transcritical simulations, β crosses βc randomly between
time 0 and 1500, while in null simulations, β does not cross βc before time 1500. (b) If a transition occurs between
time 0 and 1500, the number of infected of the preceding 500 (100) points leading up to the bifurcation point are
utilized as training data for transcritical simulations. (c) In the absence of a transition during the period from time
0 to 1500, the number of infected of the most recent 500 (100) time points are selected as training data for null
simulations.

the same package.

3.2 Deep learning algorithm and training

We assume that the occurrence or absence of an upcoming transition can be reliably determined
by examining recent time points within the time series and we define two subsets of observa-
tions of each time series: one is 100 time points, and another is 500 time points. Therefore,
for transcritical simulations, a subset of observations consists of the preceding 500 (100) time
points before a bifurcation point, and for null simulations, it consists of the last 500 (100) time
points (Figure 1). If a transition occurs before the 500th (100th) time point, the values be-
yond the transition point are padded with zeros. This ensures that the transition point is always
included in the dataset for transcritical simulations.

We followed the same DL algorithm, training process, and hyperparameters as outlined
in [20]. The neural network architecture combined Convolutional Neural Networks (CNNs) and
Long Short-Term Memory (LSTM) layers [20,56,57]. Since we have a two-class classification
problem, we modified the output (dense) layer of the neural network to 2 units with a softmax
activation function.

The DL algorithm was trained on two subsets of observations, i.e., lengths of 500 and
100 points. The residuals of the time series were used to train the algorithm, normalized by
dividing each individual value of a time point by the mean absolute value of the entire residuals.
The algorithm underwent 1500 epochs of training, and the learning rate was set at 0.0005.
Hyperparameters underwent tuning through a series of grid searches, and the training, test, and
validation split was 95%, 1%, and 4%, respectively. The F1 score, precision, and recall for
an ensemble of two models for the 500-length trained were all 97.6%, and for the 100-length
trained were all 91.0 %. The average prediction at each data point was taken from two trained
models of each length (either 500 or 100) and an ensemble was formed.
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3.3 Testing

To assess the performance of the DL model, we conducted tests using four noise-induced
disease-spreading mathematical models: three corresponding to the models used during train-
ing, and the fourth model featuring higher dimensionality compared to our trained models.
Additionally, real-world empirical data on COVID-19 cases in Edmonton was included in the
test.

3.3.1 Mathematical models

To test the SIR model with additive white noise (2.5), multiplicative environmental noise (2.8),
and demographic noise (2.9), we simulated time series using the same parameters and con-
figurations employed during the training phase. Due to the inherent randomness of certain
parameters, these time series may exhibit variations compared to the training simulations. Our
objective is to determine whether the DL model can accurately classify the transition regardless
of these random variations.

To evaluate the predictive performance of the DL model for a higher dimensional model
than the trained model, we test the SEIR model with additive white noise (2.6). We use param-
eter values Λ = 100, d = 0.75, κ = 2, γ = 1, and initial conditions S0 = 500, E0 = 1, I0 = 2,
R0 = 2, to simulate the model. The disease transmission rate and other parameters remain the
same as those chosen for generating the training data discussed in section 3.1.

We generated 20 time series from each test model, comprising 10 transcritical simulations
and 10 null simulations. In each transcritical simulation, the time series extended up to the
bifurcation point between time 0 and 1500, while each null simulation extended up to time
1500. These simulated time series served as input for trained models to identify the presence
of a bifurcation, thereby facilitating the evaluation of the DL model’s performance.

3.3.2 Empirical data

We used the COVID-19 dataset of Edmonton sourced from [58], covering daily cases from
March 2020 to July 2023. Employing the EpiEstim package [59, 60] in the R programming
language, we computed the effective reproduction number (Re) from the reported incidence
cases in biweekly sliding windows. This package requires an estimated serial interval distribu-
tion of the disease and we considered the mean of the serial interval of COVID-19 to be 6.3,
with a standard deviation of 4.2 [60].

We extracted consecutive daily case data from the entire time series based on periods where
the mean Re was less than 1, up to the point where Re reached 1 (Supplementary Figure S1).
This process resulted in obtaining sub-series of varying lengths. To ensure consistency, we
selected sub-series with a minimum length of eight weeks. Following this criterion, we derived
a total of 7 sliced time series immediately preceding the bifurcation point, which we labeled as
transcritical time series. For null time series, we adjusted the length of each transcritical time
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series by shortening it by four weeks. This adjustment makes the null time series data up to
four weeks before the bifurcation point. Our objective is to assess the capability of the trained
DL model to detect the impending transition based on these pre-transition time series.

3.4 Prediction and ROC curve

We employed the DL algorithm trained on two distinct types of data to generate EWSs for
both simulated noise-induced time series datasets and empirical data of COVID-19. First, we
utilized the 500-classifier DL algorithm from Bury et al. [20], which was trained on data gener-
ated from random dynamical systems with polynomial terms, which we will call the PODATR
model. Secondly, we employed the DL algorithm trained on data from noise-induced SIR mod-
els of time lengths 100 and 500 which we will call the SIDATR-100 and SIDATR-500 models
respectively. Of course, we want an accurate classification of both the occurrence and non-
occurrence of a transition. Consequently, the trained models assign probabilities for each type
of bifurcation in the training set. Thus, based on inputs of the number of infected from a subset
of observations, the SIDATR-100 and SIDATR-500 models assign probabilities for both trans-
critical and null bifurcations, while the PODATR model assigns probabilities for each of fold,
Hopf, transcritical, and null bifurcations. A type of bifurcation with the highest probability
assigned at the end of the input observation period is considered as a predictive signal for the
occurrence of that bifurcation type.

Our prediction process follows the methodology outlined in Bury et al. [20]. We used
an expanding window of ten time points for predictions, resulting in a maximum of 50 (10)
predictions from a time series spanning up to 500 (100) points. We extracted a set of the last
5 predictions from each of the time series, allowing for a comprehensive assessment of model
performance when it reaches the bifurcation point. Thus, for each type of simulation from the
mathematical models, we generated a maximum of 50 (10) predictions to ensure a robust and
well-balanced analysis.

We compared the performance of the DL models to the lag-1 AC and variance, using the
area under the receiver operating characteristic (ROC) curve. The ROC curve illustrates the
relationship between sensitivity (true positive rate) and 1 – specificity (false positive rate) across
varying discrimination thresholds, offering a comprehensive view of the classifier’s overall
performance. An ideal warning system would detect all thresholds without any false alarms,
resulting in an area under the ROC curve equal to one. Conversely, an ineffective system would
struggle to differentiate between false and true signals.

To assess generic EWIs, variance and lag-1 AC, we use the Kendall τ value using scipy.stats
package in Python. This statistic serves as an indicator of either an increasing or decreasing
trend, where higher and positive values indicate a more strongly increasing trend [20]. Con-
sequently, we employed these indicators to make predictions for a specific outcome when the
Kendall τ statistic surpassed a designated discrimination threshold [20].
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4 Results

4.1 Performance on mathematical models

The area under the ROC curve (AUC) for lag-1 AC exceeded 0.85 in the simulations of the SIR
model with white noise, the demographic noise, and the SEIR model, outperforming variance
(Figure 2). However, a contrasting trend emerged in the simulations of SIR model with envi-
ronmental noise, where variance achieved an AUC of 0.82, exceeding the predictive accuracy
of lag-1 AC (Figure 2).

The PODATR model demonstrated strong performance in certain scenarios, achieving an
AUC exceeding 0.95 in the simulations of the SIR models with white noise and environmental
noise, surpassing both variance and lag-1 AC (Figure 2). However, its performance decreased
in SEIR model, where it achieved an AUC of approximately 0.80 (Figure 2). The model out-
performed only variance in the demographic noise model, achieving an AUC of 0.73 (Figure
2).

The AUC for the SIDATR-500 model consistently reached around one across all test model
simulations, illustrating its exceptional predictive capability and robustness. This performance
surpassed not only that of the PODATR model but also measures of variance and lag-1 AC,
indicating its superiority in capturing the underlying dynamics of the systems under study (Fig-
ure 2). On the other hand, the SIDATR-100 model outperformed the variance and PODATR
model in the SIR model with demographic noise (Figure 2). Additionally, it outperformed both
variance and lag-1 AC in the SIR model with environmental noise (Figure 2).

Figure 2: Area under the ROC curve of the generic EWIs–variance, and lag-1 AC–in addition to the PODATR,
SIDATR-500 and SIDATR-100 DL model. Performance was assessed on the last five predictions of transcritical
and null simulations of the SIR model with white noise (yellow), SIR model with multiplicative environmental
noise (green), SIR model with demographic noise (cyan), SEIR model with white noise (brown), and COVID-19
dataset of Edmonton (blue).

In transcritical simulations of the SIR model with white noise, both the SIDATR-100 and
SIDATR-500 models successfully identified 48 out of 50 frequencies (Figure 3). However, dur-
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ing null simulations, the SIDATR-100 model detected only 29 frequencies, while the SIDATR-
500 model captured all frequencies (Figure 3).

In both types of simulations of SIR model with environmental noise, the SIDATR-500
model successfully identified all frequencies, whereas the SIDATR-100 model identified all
frequencies in transcritical simulations and 48 out of 50 frequencies in null simulations (Figure
3).

Interestingly, in transcritical simulations of both the SIR model with demographic noise
and SEIR models, the SIDATR-100 models identified slightly more frequencies compared to
the SIDATR-500 models, whereas in null simulations, the SIDATR-500 model exhibited better
frequency detection than the SIDATR-100 model (Figure 3).

The PODATR model consistently identified impending transitions in transcritical simula-
tions across all test models, demonstrating its effectiveness in recognizing critical changes in
the system. However, it encountered challenges in accurately classifying most of the null sim-
ulations within the test models. Despite its success in identifying impending transitions in tran-
scritical simulations, the PODATR model occasionally misclassified bifurcation types among
frequencies (Figure 3).

Overall, the SIDATR-500 model consistently exhibited superior frequency performance in
the last five predictions across the simulated test models compared to both the PODATR and
SIDATR-100 models (Figure 3). However, in most simulations, particularly during shorter
time spans and farther from the bifurcation point, the SIDATR-500 model displayed variations
in probability assignments (Supplementary Figures S2, S4, S6, and S8). Despite this, as the
simulations progressed toward the bifurcation point, the model’s predictions significantly im-
proved, showcasing precise probability assignments for the correct bifurcation type.

4.2 Performance on empirical data

We employed seven transcritical and null time series from the COVID-19 dataset of Edmon-
ton as inputs for the generic EWIs and the trained DL models and investigated the EWSs of
the outbreak. The AUC values for variance, lag-1 AC, the PODATR model, and the SIDATR-
500 model were all found below 0.50 (Figure 2). Notably, the SIDATR-500 model showed
an improvement in AUC compared to other indicators, yet overall performance remained be-
low random chance. Intriguingly, the SIDATR-100 model demonstrated superior performance
within the COVID-19 dataset, achieving an AUC of 0.71 and outperforming other indicators
(Figure 2).

Each set of transcritical and null simulations yielded 35 frequencies derived from the seven
time series. The PODATR model successfully predicted transitions in over half of the frequen-
cies within transcritical simulations (Figure 3). However, in null simulations, most frequen-
cies were inaccurately identified (Figure 3). Among the accurately identified frequencies in
transcritical simulations, the majority corresponded to the Hopf bifurcation type (Figure 3).
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(a)

(b)

(c)

Figure 3: Frequency distribution of the favored probability among transcritical (blue) and null (orange) simulations
generated by the (a) SIDATR-100, (b) SIDATR-500, and (b) PODATR model. In each input simulation, SIDATR-
100 and SIDATR-500 models assign probabilities for transcritical and null bifurcations, while PODATR assigns
probabilities for fold, Hopf, transcritical, and null bifurcations. Based on the last five favored probabilities in each
simulation, a total of 50 frequencies from the transcritical simulations and another 50 frequencies from the null
simulations were extracted from each mathematical model. Additionally, for the COVID-19 data, a total of 35
frequencies of each type were extracted.

In contrast, the SIDATR-500 model successfully predicted all frequencies within transcritical
simulations but struggled to accurately identify most frequencies in null simulations (Figure
3). The SIDATR-100 model exhibited a superior frequency distribution compared to the other
models, accurately capturing all frequencies within transcritical simulations and approximately
half of the frequencies within null simulations (Figure 3). These findings suggest that the DL
algorithm, trained by the noise-induced model, provides enhanced EWSs for impending tran-
sitions of a disease outbreak.

5 Discussion

We investigated EWSs in the context of noise-induced disease-spreading models, incorporating
additive white noise, multiplicative environmental noise, and demographic noise. We analyzed
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these signals by employing a DL algorithm alongside two standard EWIs: variance and lag-1
AC. To effectively train the DL algorithm, we introduced a training dataset originating from
noise-induced SIR models. We tested both the trained DL algorithm and generic EWIs over
the noise-induced disease models, scrutinizing their EWSs in scenarios with and without crit-
ical transitions. We also assessed a pre-trained DL algorithm from Bury et al. [20], trained
on simulated data from randomly generated dynamical systems characterized by general poly-
nomial terms. For a comprehensive evaluation, we compared the area under the ROC curve
of all the indicators. In assessing the DL algorithm’s performance on real-world disease out-
breaks, we employed an empirical COVID-19 cases dataset. Remarkably, the DL algorithm
demonstrated significant improvement across all test models and empirical data when trained
on noise-induced disease model data, outperforming other EWIs.

The performance of the classifiers, except for SIDATR-100, fell below random chance when
evaluated on the empirical COVID-19 dataset from Edmonton. While the SIDATR-500 model
demonstrated superior performance in transcritical simulations of empirical data, it performed
poorly in null simulations. This inconsistency is associated with the short length of the em-
pirical dataset, particularly in null simulations. The PODATR and SIDATR-500 models were
trained on 500 time points, whereas the null simulations of COVID-19 consisted of less than
100 time points. Conversely, the performance notably improved with the SIDATR-100 model,
which was trained on a shorter time span of 100 points. Consequently, enhancing the model’s
performance on empirical data can be achieved by training it on shorter time lengths, as demon-
strated by the efficacy of the SIDATR-100 model.

The initial probabilities assigned by the SIDATR-500 model were found to be inaccurate for
a very short time series. However, the model’s predictive performance significantly improved
as the observed time point neared the bifurcation point. This inconsistency can be explained
to the DL model’s enhanced ability to provide more accurate probabilities when it is close
to the transition point [40], whereas the initial predictions may include data points that are
considerably distant from this transition point. This phenomenon aligns with the concept of
critical slowing down in a dynamical system. Critical slowing down typically manifests when
a system approaches a bifurcation point, leading to the emergence of distinctive patterns in the
time series [19, 22]. However, when analyzing a lengthy time series that does not sufficiently
approach the bifurcation point, these characteristic patterns of critical slowing down may not
be readily apparent.

The capability of the SIDATR-500 and SIDATR-100 models to identify bifurcations in a
time series beyond those on which they were specifically trained was assessed using an SEIR
model with additive white noise and real-world COVID-19 cases. The SEIR model, char-
acterized by a higher dimensionality compared to the training models, serves as a versatile
framework for describing the dynamics of various infectious diseases [48], and the COVID-
19 pandemic stands as a recent and significant public health challenge. The performance of
generating EWSs of these DL models can be ascribed to the diverse training data deliberately
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generated with a wide array of random parameters, encompassing all conceivable scenarios
that may manifest in a disease outbreak. Additionally, by incorporating different types of noise
with random intensity, our training data replicated the varying levels of fluctuation, mirroring
the uncertainty inherent in real-world outbreaks [61]. Notably, our training data accounted for
the linear increase in disease transmission rate, reflecting the common trend of initially low
infection levels that intensify over time in infectious diseases [62]. Moreover, we accommo-
dated cases where the rate increased but did not reach the threshold for a full-blown outbreak.
By incorporating all these potential phenomena in the training data, the DL model gained the
necessary adaptability to provide EWSs in models that closely resemble real-world scenarios.

One of the hypotheses examined in [20] was whether the DL algorithm could provide more
effective EWSs compared to generic EWIs. Within the context of our study, the performance
of the PODATR model both supported and contradicted this hypothesis in different test mod-
els. The training data for the PODATR model was derived from a two-dimensional random
dynamical system featuring a general polynomial up to the third order and incorporating addi-
tive white noise in the simulations. The results revealed that the performance of the PODATR
model was less effective than lag-1 AC, SIDATR-100, and SIDATR-500 models for the simu-
lations of SIR with demographic noise. Notably, infectious diseases often involve a range of
noise sources in their dynamics [63], and these noises can significantly impact the robustness
of early warning systems [64]. Beside these noises, mathematical models are generally built
on a set of underlying assumptions, and the dynamics of population compartments are contin-
gent on these assumptions [48, 65]. As a result, certain models may exhibit distinct dynamical
behavior, potentially leading to challenges for the trained model in accurately capturing trends
in those cases. As evidenced by the results, the PODATR model exhibited the lowest accuracy
compared to some other indicators in the SEIR model, even when considering only additive
white noise.

The performance of Lag-1 AC and variance exhibited variations in the SIR model with en-
vironmental and demographic noise. Specifically, variance demonstrated superior performance
in one model, while Lag-1 AC outperformed it in the other. This variability in performance can
be attributed to the differing levels of noise intensities present in the simulations and different
types of noises in the system [24]. The simulations used for performance assessment were
generated by random noise intensity, and it is worth noting that the generic EWIs are sensi-
tive to noise intensity [66] as well as the type of noise [25], underscoring the need to explore
alternative statistical measures for noise-induced models in future research.

The SIR model is a generalized framework for characterizing a wide range of infectious
diseases [48], with additive white noise, multiplicative environmental noise, and demographic
noise representing common types of noise encountered in disease outbreaks [26]. Conse-
quently, the noise-induced SIR models employed in this study serve as fundamental repre-
sentations capable of capturing the dynamics of various infectious disease outbreaks. By amal-
gamating data from a hundred thousand simulations across all three models, we introduced a
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substantial level of variability into the training dataset. This diversity equips the DL model with
the ability to adapt to a spectrum of scenarios. Since DL models typically excel when applied to
data that closely resembles their training dataset [40], the SIDATR-100 and SIDATR-500 mod-
els, having been trained on data closely aligned with these noise-induced models, possess the
adaptability to exhibit heightened sensitivity and specificity in providing EWSs for emerging
and re-emerging infectious disease outbreaks that exhibit similarities with these noise-induced
models.

The training data focused on the transcritical bifurcation from a basic SIR model, where
R0 < 1 serves as the critical threshold for disease elimination. To incorporate other types of
bifurcations, future research should consider more advanced models that account for different
bifurcation scenarios. For example, backward bifurcation occurs when R0 < 1 is insufficient
for disease elimination [67], and Hopf bifurcation is associated with the appearance or disap-
pearance of a limit cycle around the equilibrium point [68].

Our study has several limitations. First, despite having a maximum simulation length of
1500 time points, the DL algorithm was exclusively trained on a subset of observations consist-
ing of 500 and 100 time points. This limited exposure to both shorter and longer time points,
potentially restricting its ability to generalize across a broader range of temporal dynamics.
Second, the trained DL model’s sensitivity to data peaks could lead to misclassification when
applied to null simulations, as these simulations do not exhibit peaks over time. Third, our
training process primarily focused on linear variations in the disease transmission rate, over-
looking other forms of rate variations and potential fluctuations in other parameters within the
SIR model, which may be crucial in real-world scenarios [69, 70]. Fourth, our training data
pertained to three specific types of noise-induced SIR models, which might limit the model’s
suitability for capturing transitions in models with different behaviors. Although we aimed to
closely simulate real-world scenarios, it is essential to note that our model was not specifically
trained on real-world data. Real-world datasets frequently face challenges such as low qual-
ity, variability, and reporting delays [71], which can introduce various types of noise and bias.
Additionally, the intricate dynamics of real-world diseases, shaped by diverse environmental,
social, and biological factors, may not be entirely reflected in our synthetic training data, poten-
tially undermining the accuracy and reliability of the model. As observed, the performance on
the COVID-19 dataset was comparatively lower. Future directions should explore training on
empirical datasets to assess models’ performance in real-world scenarios. Fifth, we explored
only one DL algorithm and did not investigate the capabilities of other DL architectures. This
will be a focus of future research. Sixth, it is important to acknowledge that none of the models
can predict the exact timing of bifurcations, highlighting the need for further investigation in
this area.

For a real-world outbreak, this method can be applied by detrending the time series of in-
fected cases and inputting the residuals into the trained classifier to generate early warning
signals. A higher probability assigned by the classifier to a specific type of bifurcation (tran-
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scritical or null) serves as the signal for that bifurcation type. Therefore, when the classifier
assigns a higher probability to a transcritical bifurcation than to a null bifurcation, it suggests
an imminent outbreak of the disease.

This research has a significant impact on the generation of reliable EWSs for impending
transitions in infectious disease outbreaks. While acknowledging the model’s limitations and
offering suggestions, it opens the door for future research aimed at developing even more ef-
fective early warning systems.

Ethics

This work did not require ethical approval from a human subject or animal welfare committee.

Data accessibility

Training data and codes are available in a Zenodo repository (https://doi.org/10.
5281/zenodo.10841969) [72] under version v1 and v2, respectively. The COVID-19 data
are available at the city of Edmonton’s open data portal (https://data.edmonton.ca/
Community-Services/COVID-19-in-Edmonton-Daily-Active-Cases/qkyj-dqjp)
[58].

Declaration of AI use

We have not used AI-assisted technologies in creating this article.

Authors’ contributions

A.K.C.: conceptualization, formal analysis, investigation, methodology, software, validation,
visualization, writing-original draft, and writing-review; S.G.: conceptualization, methodol-
ogy, and editing; R.M.: conceptualization, methodology, and software; P.R.: conceptualization,
funding acquisition, methodology, and editing; R.G.: conceptualization, funding acquisition,
methodology, software, and editing; M.A.L.: conceptualization, funding acquisition, methodol-
ogy, project administration, supervision, writing-original draft, and editing; H.W.: conceptual-
ization, funding acquisition, methodology, project administration, supervision, writing-original
draft, and editing.

Conflict of interest declaration

We declare we have no competing interests.

19

https://doi.org/10.5281/zenodo.10841969
https://doi.org/10.5281/zenodo.10841969
https://data.edmonton.ca/Community-Services/COVID-19-in-Edmonton-Daily-Active-Cases/qkyj-dqjp
https://data.edmonton.ca/Community-Services/COVID-19-in-Edmonton-Daily-Active-Cases/qkyj-dqjp


Funding

This project (Amit K. Chakraborty, Shan Gao, Reza Miry) was primarily supported by One
Health Modelling Network for Emerging Infections (OMNI), Amii (Alberta Machine Intelli-
gence Institute) matching fund, and the Department of Mathematical and Statistical Sciences
(IUSEP funding) at the University of Alberta. Hao Wang’s research was partially supported by
the Natural Sciences and Engineering Research Council of Canada (Individual Discovery Grant
RGPIN-2020-03911 and Discovery Accelerator Supplement Award RGPAS-2020-00090) and
the Canada Research Chairs program (Tier 1 Canada Research Chair Award). Mark A. Lewis
gratefully acknowledges support from an NSERC Discovery Grant and the Gilbert and Betty
Kennedy Chair in Mathematical Biology. Pouria Ramazi also acknowledges the support from
an NSERC Discovery Grant. Russell Greiner was also partially funded by CIFAR and NSERC.

Acknowledgement

We would like to thank Pijush Panday for the initial discussion and Tianyu Guan for providing
valuable feedback.

References

[1] Rachel E Baker, Ayesha S Mahmud, Ian F Miller, Malavika Rajeev, Fidisoa Rasambainar-
ivo, Benjamin L Rice, Saki Takahashi, Andrew J Tatem, Caroline E Wagner, Lin-Fa
Wang, et al. Infectious disease in an era of global change. Nature Reviews Microbiol-

ogy, 20(4):193–205, 2022.

[2] Waleed M Sweileh. Global research activity on mathematical modeling of transmission
and control of 23 selected infectious disease outbreak. Globalization and Health, 18(1):1–
14, 2022.

[3] Emma Southall, Tobias S Brett, Michael J Tildesley, and Louise Dyson. Early warning
signals of infectious disease transitions: a review. Journal of the Royal Society Interface,
18(182):20210555, 2021.

[4] David E Bloom and Daniel Cadarette. Infectious disease threats in the twenty-first cen-
tury: strengthening the global response. Frontiers in immunology, 10:549, 2019.

[5] Nicholas LePan et al. Visualizing the history of pandemics. Visual Capitalist, 14:00060–
20, 2020.

[6] World Health Organization (WHO). Coronavirus (covid-19) data. https://www.

who.int/data#dashboards, October 2023.

20

https://www.who.int/data#dashboards
https://www.who.int/data#dashboards


[7] World Health Organization. Managing epidemics: key facts about major deadly diseases.
World Health Organization, 2018.

[8] Thushara Kamalrathne, Dilanthi Amaratunga, Richard Haigh, and Lahiru Kodituwakku.
Need for effective detection and early warnings for epidemic and pandemic preparedness
planning in the context of multi-hazards: Lessons from the covid-19 pandemic. Interna-

tional Journal of Disaster Risk Reduction, 92:103724, 2023.

[9] Weizhong Yang. Early warning for infectious disease outbreak: theory and practice.
Academic Press, 2017.

[10] Zuiyuan Guo, Kevin He, and Dan Xiao. Early warning of some notifiable infectious dis-
eases in china by the artificial neural network. Royal Society open science, 7(2):191420,
2020.

[11] Sylvester Languon and Osbourne Quaye. Filovirus disease outbreaks: a chronological
overview. Virology: research and treatment, 10:1178122X19849927, 2019.

[12] Tobias S Brett and Pejman Rohani. Dynamical footprints enable detection of disease
emergence. PLoS biology, 18(5):e3000697, 2020.

[13] Liuyang Yang, Jiao Yang, Yuan He, Mengjiao Zhang, Xuan Han, Xuancheng Hu, Wei Li,
Ting Zhang, and Weizhong Yang. Enhancing infectious diseases early warning: A deep
learning approach for influenza surveillance in china. Preventive Medicine Reports, page
102761, 2024.

[14] Mingzhang Li, Shuo Ma, and Zhengrong Liu. A novel method to detect the early warning
signal of covid-19 transmission. BMC Infectious Diseases, 22(1):626, 2022.

[15] Yue Gao, Guang-Yao Cai, Wei Fang, Hua-Yi Li, Si-Yuan Wang, Lingxi Chen, Yang Yu,
Dan Liu, Sen Xu, Peng-Fei Cui, et al. Machine learning based early warning system en-
ables accurate mortality risk prediction for covid-19. Nature communications, 11(1):5033,
2020.

[16] Daniele Proverbio, Françoise Kemp, Stefano Magni, and Jorge Gonçalves. Performance
of early warning signals for disease re-emergence: A case study on covid-19 data. PLOS

Computational Biology, 18(3):e1009958, 2022.

[17] Natalie Sims and Barbara Kasprzyk-Hordern. Future perspectives of wastewater-based
epidemiology: monitoring infectious disease spread and resistance to the community
level. Environment international, 139:105689, 2020.

[18] Tobias S Brett, John M Drake, and Pejman Rohani. Anticipating the emergence of infec-
tious diseases. Journal of The Royal Society Interface, 14(132):20170115, 2017.

21



[19] Marten Scheffer, Stephen R Carpenter, Timothy M Lenton, Jordi Bascompte, William
Brock, Vasilis Dakos, Johan Van de Koppel, Ingrid A Van de Leemput, Simon A Levin,
Egbert H Van Nes, et al. Anticipating critical transitions. science, 338(6105):344–348,
2012.

[20] Thomas M Bury, RI Sujith, Induja Pavithran, Marten Scheffer, Timothy M Lenton, Mad-
hur Anand, and Chris T Bauch. Deep learning for early warning signals of tipping points.
Proceedings of the National Academy of Sciences, 118(39):e2106140118, 2021.

[21] Steven H Strogatz. Nonlinear dynamics and chaos with student solutions manual: With

applications to physics, biology, chemistry, and engineering. CRC press, 2018.

[22] Carl Boettiger, Noam Ross, and Alan Hastings. Early warning signals: the charted and
uncharted territories. Theoretical ecology, 6:255–264, 2013.

[23] Mathew Titus and James Watson. Critical speeding up as an early warning signal of
stochastic regime shifts. Theoretical Ecology, 13:449–457, 2020.

[24] Rui Liu, Pei Chen, Kazuyuki Aihara, and Luonan Chen. Identifying early-warning signals
of critical transitions with strong noise by dynamical network markers. Scientific reports,
5(1):17501, 2015.

[25] Suzanne M O’Regan and Danielle L Burton. How stochasticity influences leading indi-
cators of critical transitions. Bulletin of mathematical biology, 80(6):1630–1654, 2018.

[26] Linda JS Allen. An introduction to stochastic processes with applications to biology. CRC
press, 2010.

[27] Carl Boettiger. From noise to knowledge: how randomness generates novel phenomena
and reveals information. Ecology letters, 21(8):1255–1267, 2018.

[28] Linda JS Allen. A primer on stochastic epidemic models: Formulation, numerical simu-
lation, and analysis. Infectious Disease Modelling, 2(2):128–142, 2017.

[29] Philippe Carmona and Sylvain Gandon. Winter is coming: Pathogen emergence in sea-
sonal environments. PLoS computational biology, 16(7):e1007954, 2020.

[30] George WA Constable, Tim Rogers, Alan J McKane, and Corina E Tarnita. Demographic
noise can reverse the direction of deterministic selection. Proceedings of the National

Academy of Sciences, 113(32):E4745–E4754, 2016.

[31] Henry C Tuckwell, Laurent Toubiana, and Jean-Francois Vibert. Enhancement of epi-
demic spread by noise and stochastic resonance in spatial network models with viral dy-
namics. Physical Review E, 61(5):5611, 2000.

22



[32] John M Drake, Tobias S Brett, Shiyang Chen, Bogdan I Epureanu, Matthew J Ferrari, Éric
Marty, Paige B Miller, Eamon B O’dea, Suzanne M O’regan, Andrew W Park, et al. The
statistics of epidemic transitions. PLoS computational biology, 15(5):e1006917, 2019.

[33] Adjani Gama Dessavre, Emma Southall, Michael J Tildesley, and Louise Dyson. The
problem of detrending when analysing potential indicators of disease elimination. Journal

of theoretical biology, 481:183–193, 2019.

[34] Suzanne M O’Regan, Jonathan W Lillie, and John M Drake. Leading indicators of
mosquito-borne disease elimination. Theoretical ecology, 9:269–286, 2016.

[35] Emma Southall, Michael J Tildesley, and Louise Dyson. Prospects for detecting early
warning signals in discrete event sequence data: Application to epidemiological incidence
data. PLoS computational biology, 16(9):e1007836, 2020.

[36] Eamon B O’Dea and John M Drake. Disentangling reporting and disease transmission.
Theoretical Ecology, 12:89–98, 2019.

[37] Tobias Brett, Marco Ajelli, Quan-Hui Liu, Mary G Krauland, John J Grefenstette,
Willem G van Panhuis, Alessandro Vespignani, John M Drake, and Pejman Rohani. De-
tecting critical slowing down in high-dimensional epidemiological systems. PLoS com-

putational biology, 16(3):e1007679, 2020.

[38] Suzanne M O’Regan and John M Drake. Theory of early warning signals of disease
emergenceand leading indicators of elimination. Theoretical Ecology, 6:333–357, 2013.

[39] Tobias S Brett, Eamon B O’Dea, Éric Marty, Paige B Miller, Andrew W Park, John M
Drake, and Pejman Rohani. Anticipating epidemic transitions with imperfect data. PLoS

computational biology, 14(6):e1006204, 2018.

[40] Smita Deb, Sahil Sidheekh, Christopher F Clements, Narayanan C Krishnan, and Partha S
Dutta. Machine learning methods trained on simple models can predict critical transitions
in complex natural systems. Royal Society Open Science, 9(2):211475, 2022.

[41] Daniel Dylewsky, Timothy M Lenton, Marten Scheffer, Thomas M Bury, Christopher G
Fletcher, Madhur Anand, and Chris T Bauch. Universal early warning signals of phase
transitions in climate systems. Journal of the Royal Society Interface, 20(201):20220562,
2023.

[42] Sergey I Nikolenko. Synthetic data for deep learning, volume 174. Springer, 2021.

[43] Debbie Rankin, Michaela Black, Raymond Bond, Jonathan Wallace, Maurice Mulvenna,
Gorka Epelde, et al. Reliability of supervised machine learning using synthetic data
in health care: Model to preserve privacy for data sharing. JMIR medical informatics,
8(7):e18910, 2020.

23



[44] Benjamin N Jacobsen. Machine learning and the politics of synthetic data. Big Data &

Society, 10(1):20539517221145372, 2023.

[45] Abba B Gumel. Causes of backward bifurcations in some epidemiological models. Jour-

nal of Mathematical Analysis and Applications, 395(1):355–365, 2012.

[46] William Ogilvy Kermack and Anderson G McKendrick. A contribution to the mathemat-
ical theory of epidemics. Proceedings of the royal society of london. Series A, Containing

papers of a mathematical and physical character, 115(772):700–721, 1927.

[47] Md Aminul Haque, Amit Kumar Chakraborty, and Md Anowarul Islam. Mathematical
modeling and analysis of the dynamics of chikungunya in bangladesh. Matematika, pages
91–108, 2021.

[48] Fred Brauer, Pauline Van den Driessche, Jianhong Wu, and Linda JS Allen. Mathematical

epidemiology, volume 1945. Springer, 2008.

[49] Alan C Bovik. Basic gray level image processing. In The essential guide to image pro-

cessing, pages 43–68. Elsevier, 2009.

[50] Axel Hutt. Additive noise-induced system evolution (anise). Frontiers in Applied Mathe-

matics and Statistics, 8:879866, 2022.

[51] Sabiha Majumder, Ayan Das, Appilineni Kushal, Sumithra Sankaran, and Vishwesha Gut-
tal. Finite-size effects, demographic noise, and ecosystem dynamics. The European Phys-

ical Journal Special Topics, 230(16):3389–3401, 2021.

[52] Qun Liu, Daqing Jiang, Ningzhong Shi, Tasawar Hayat, and Ahmed Alsaedi. Stationary
distribution and extinction of a stochastic sirs epidemic model with standard incidence.
Physica A: Statistical Mechanics and its Applications, 469:510–517, 2017.

[53] Sébastien Lambert, Pauline Ezanno, Mathieu Garel, and Emmanuelle Gilot-Fromont. De-
mographic stochasticity drives epidemiological patterns in wildlife with implications for
diseases and population management. Scientific Reports, 8(1):16846, 2018.

[54] Thomas M Bury. ewstools: A python package for early warning signals of bifurcations in
time series data. Journal of Open Source Software, 8(82):5038, 2023.

[55] William S Cleveland. Robust locally weighted regression and smoothing scatterplots.
Journal of the American statistical association, 74(368):829–836, 1979.

[56] Ronald Mutegeki and Dong Seog Han. A cnn-lstm approach to human activity recogni-
tion. In 2020 international conference on artificial intelligence in information and com-

munication (ICAIIC), pages 362–366. IEEE, 2020.

24



[57] Andrés Vidal and Werner Kristjanpoller. Gold volatility prediction using a cnn-lstm ap-
proach. Expert Systems with Applications, 157:113481, 2020.

[58] City of Edmonton’s Open Data Portal. Covid-19 in edmonton: Daily ac-
tive cases. https://data.edmonton.ca/Community-Services/

COVID-19-in-Edmonton-Daily-Active-Cases/qkyj-dqjp, 2024.

[59] Anne Cori, Simon Cauchemez, Neil M Ferguson, Christophe Fraser, Elisabeth Dahlqwist,
P Alex Demarsh, Thibaut Jombart, Zhian N Kamvar, Justin Lessler, Shikun Li, et al.
Package ‘epiestim’. CRAN: Vienna Austria, 2020.

[60] Rebecca K Nash, Samir Bhatt, Anne Cori, and Pierre Nouvellet. Estimating the epidemic
reproduction number from temporally aggregated incidence data: A statistical modelling
approach and software tool. PLOS Computational Biology, 19(8):e1011439, 2023.

[61] Martin Tobias Huber, Hans Albert Braun, and Jürgen Christian Krieg. Effects of noise on
different disease states of recurrent affective disorders. Biological Psychiatry, 47(7):634–
642, 2000.

[62] Stefan Thurner, Peter Klimek, and Rudolf Hanel. A network-based explanation of why
most covid-19 infection curves are linear. Proceedings of the National Academy of Sci-

ences, 117(37):22684–22689, 2020.

[63] Yassine Sabbar, Driss Kiouach, SP Rajasekar, and Salim El Azami El-Idrissi. The in-
fluence of quadratic lévy noise on the dynamic of an sic contagious illness model: New
framework, critical comparison and an application to covid-19 (sars-cov-2) case. Chaos,

Solitons & Fractals, 159:112110, 2022.

[64] Shanshan Qin and Chao Tang. Early-warning signals of critical transition: Effect of
extrinsic noise. Physical Review E, 97(3):032406, 2018.

[65] Pouria Ramazi, Arezoo Haratian, Maryam Meghdadi, Arash Mari Oriyad, Mark A Lewis,
Zeinab Maleki, Roberto Vega, Hao Wang, David S Wishart, and Russell Greiner. Accurate
long-range forecasting of covid-19 mortality in the usa. Scientific reports, 11(1):13822,
2021.

[66] Daniele Proverbio, Alexander Skupin, and Jorge Gonçalves. Systematic analysis and op-
timization of early warning signals for critical transitions using distribution data. iScience,
2023.

[67] Karl P Hadeler and Pauline Van den Driessche. Backward bifurcation in epidemic control.
Mathematical Biosciences, 146(1):15–35, 1997.

25

https://data.edmonton.ca/Community-Services/COVID-19-in-Edmonton-Daily-Active-Cases/qkyj-dqjp
https://data.edmonton.ca/Community-Services/COVID-19-in-Edmonton-Daily-Active-Cases/qkyj-dqjp


[68] Brian D Hassard, Nicholas D Kazarinoff, and Yieh-Hei Wan. Theory and applications of

Hopf bifurcation, volume 41. CUP Archive, 1981.

[69] Jie Long, AQM Khaliq, and Khaled M Furati. Identification and prediction of time-
varying parameters of covid-19 model: a data-driven deep learning approach. Interna-

tional journal of computer mathematics, 98(8):1617–1632, 2021.

[70] Xiunan Wang, Hao Wang, Pouria Ramazi, Kyeongah Nah, and Mark Lewis. A
hypothesis-free bridging of disease dynamics and non-pharmaceutical policies. Bulletin

of Mathematical Biology, 84(5):57, 2022.

[71] Caroline O Buckee, Maria IE Cardenas, June Corpuz, Arpita Ghosh, Farhana Haque,
Jahirul Karim, Ayesha S Mahmud, Richard J Maude, Keitly Mensah, Nkengafac Villyen
Motaze, et al. Productive disruption: opportunities and challenges for innovation in in-
fectious disease surveillance. BMJ global health, 3(1):e000538, 2018.

[72] Amit K. Chakraborty. Training data and Codes: An early warning indicator trained on
stochastic disease-spreading models with different noises, March 2024. Zenodo, doi:
10.5281/zenodo.10841970, https://doi.org/10.5281/zenodo.10841969.

26

https://doi.org/10.5281/zenodo.10841969

	Introduction
	Mathematical models and the impacts of noises
	Noise-induced models
	SIR and SEIR models with additive white noise
	SIR model with multiplicative environmental noise
	SIR model with demographic noise


	Methods
	Simulated training data
	Deep learning algorithm and training
	Testing
	Mathematical models
	Empirical data

	Prediction and ROC curve

	Results
	Performance on mathematical models
	Performance on empirical data

	Discussion

