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Abstract 

Encoding the presence of multispecies in a complex system, difficulty in characterizing the 

physical constituents of the products with analytical instruments along with developing the 

causality or modeling between these groups are some major challenges in a complex system such 

as biomass conversion. To overcome these challenges and provide insights into the potential 

chemistry and reaction mechanism of the hydrous pyrolysis (HTL) of biomass and its main 

products (cellulose and lignin), this research employed some machine learning methods such as 

data mining and data fusion techniques. Therefore, Levoglucason, 2-Phenoxyethyl benzene 

(representing cellulose and lignin, respectively), a physical mixture of these model components, 

and Monterey pine whole biomass underwent 108 HTL reactions in the presence of hot water 

and catalysts under different conditions. For characterization of the produced bio-oil two 

spectroscopic techniques were used, Fourier transform-infrared (FTIR) and Proton nuclear 

magnetic resonance (1H NMR). In the process of knowledge discovery from hidden interesting 

patterns in the large data sets provided by these spectroscopic techniques, this research employed 

data fusion. The aim of data fusion is to develop experimentally and computationally sensible 

models from spectroscopic data with the advantages of a consistent combination of absorbance 

across wavenumbers (variables) with demonstrable improvement in the reaction network 

structure for integrating multiple data sets provided by FTIR and 1H NMR. Developed model has 

the advantage of decreasing the error while processing large-scale reactions along with 

increasing the model performance by factoring in complementary information. The final fused 

data set was used for data clustering by using the Bayesian hierarchical clustering (BHC). In a 

large data set, while the traditional hierarchical clustering algorithms have the difficulties of 

deciding which distance metric to choose, BHC has the advantage of computing the marginal 
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likelihoods in order to decide which clusters to merge and to avoid overfitting. After grouping 

the wavenumbers into different clusters, the Bayesian network learning approach (BN) was 

applied to develop the optimal reaction network. To identify the optimal structure of the network, 

three different optimization approaches are applied: two greedy search-and-score algorithms 

called tabu and hill climbing, and a hybrid algorithm called the max-min hill climbing (MMHC).   

In spite of the fact that spectroscopic techniques such as FTIR can provide useful information 

relating to the structure of the compound, it has a weakness of having a high dimensional space 

of wavenumbers which is sometimes difficult to be interpreted or analyzed. To resolve this issue, 

chemometric methods can be applied. In these methods, statistical or mathematical techniques 

have been used to collect the required information regarding the objects of interest in the data. 

Self-modeling multivariate curve resolution (SMCR) is a popular example of a chemometric 

technique. The reason to employ this method is to obtain a set of pseudo-components and their 

spectra and to use them to develop the reaction network. SMCR is a very useful tool for the 

elucidation of the multi-component phenomena in complex chemical systems such as biomass 

conversion. Developed algorithm can be applied for real-time analysis of many complex reacting 

systems and mixtures because it provides quantitative tracking of changes in the process and can 

be used for compositional control. In addition, it also acts as a screening method to propose 

hypotheses about reaction mechanisms in complex reacting mixtures. Moreover, for online 

monitoring of species conversion in these kinds of complex reactions, this research computed the 

concentrations of these pseudocomponents over the number of samples. The application of this 

trace makes it useful in the online monitoring of species conversion by integrating it with a 

suitable control strategy that adjusts process conditions to maximize the yield of the desired 

product. 
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1. INTRODUCTION 

1.1 BACKGROUND 

 

Biomass can be used in several ways for the production of electricity, heat, and steam; and it can 

be converted into synthesis gases and liquid fuels by undergoing biochemical or thermochemical 

processing.1 Any materials from a biological origin with organic components such as agricultural 

crops, trees, and grasses would be considered as biomass.2 Biomass has a lot of availability and 

its renewability makes it a nearly universal feedstock. As far back as the 19th century, biomass 

was the world’s most important  energy supply,3 until oil took over.  In modern times our culture 

is coming full circle for many reasons. The impact of fossil oil on our environment is undeniable 

and biomass is being considered the preferred energy source by many researchers. 4, 5 Using 

biofuels reduces greenhouse gases considerably since its carbon dioxide production compared to 

crude oil is hard to ignore. This is due to the fact that biomass is carbon dioxide neutral, how 

much it accrued during its lifespan is equal to what it puts out.6 The environmental benefits along 

with the increase in demand make biomass in a great place to make a comeback.7 For all 

significant potential benefits of biomass, the US Department of Energy created an outline in 

1998 on using renewable resources like crop plants for future energy suppliers.8 The goal was 

that 10% of the basic chemical building blocks by 2020, and 50 % by 2050 should be provided 

from renewable sources such as biomass (Figure 1-1). This outline proposed the major 

opportunities to increase the use of renewable resources. 

 

Figure 1-1. Renewable targets set by the U.S. Department of Energy.8 
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From the chemical point of view, 99% of biomass is made of cellulose, hemicelluloses and 

lignin. These components are created from the polymerization of monosaccharides such as 

fructose, galactose and glucose (from plant leaves).9  

 

Figure 1-2. Biomass components  (adapted from Wang et al). 2 

 

Among different processes for biomass conversion into fuels, energy, and chemicals, 

thermochemical and biochemical processes are the most important ones (Figure 1-3).10 This 

dissertation investigates a specific kind of thermochemical process which is called hydrothermal 

liquidation (HTL). This process utilizes an aqueous medium (subcritical water at high 

temperature) as both solvent and reactant mostly to overcome the activation energy needed for 

the chemical disintegration of biomass macrostructures. 

Biomass Conversion 

 

            Thermochemical                                                                    Biochemical 

 

Fermentation            Digestion                               Combustion    Gasification      Pyrolysis   HTL   

 

Figure 1-3. Common biomass conversion processes. 
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Generally, the basic process of HTL of biomass consists of the decomposition of biomass’s main 

components, hydrolysis of large molecules, and reformation of produced molecules.2 For the past 

few decades, research has been acquiring a broad knowledge of these processes even though the 

exact mechanism, reaction modeling, and real-time monitoring of these complicated processes 

are still unknown.11, 12  

 

There are usually two classical methods for reaction modeling of a system: Empirical and 

Mechanistic modeling techniques. 13 While these methods can be considered reasonable for a 

simple reaction, their applications in a complex system such as biomass conversion are 

impractical. Empirical models require prior assumption and lots of data while mechanistic 

models are computationally expensive and need comprehensive domain knowledge about the 

process which is difficult to obtain in a complex process. In other words, in biomass conversion, 

there is still a major challenge related to developing an algorithm that could combine expert 

knowledge and experimental data to develop the most likely reaction network.14, 15  

 

Regarding quantitative analysis of chemical species and real-time online monitoring of a system, 

recently, spectroscopy methods such Fourier transform infrared (FTIR) spectroscopy,16 

Ultraviolet (UV) spectroscopy,17 Near-infrared (NIR) spectroscopy,18 and Proton nuclear 

magnetic resonance (1H NMR) spectroscopy 19 have been widely used. In spite of the fact that 

these spectroscopic techniques can provide useful information relating to the structure of the 

compound, they have a weakness of having a high dimensional space of wavenumbers which is 

sometimes difficult to be interpreted or analyzed.20 

 

 

1.2. RESEARCH OBJECTIVES 
 

To overcome the challenge related to develop the reaction modeling and mechanism for biomass 

conversion, this research has employed two powerful machine learning techniques: data fusion 

and data mining. A dataset from a single instrument may be limited in providing a 

comprehensive analysis of the investigated sample. To work with these limitations, data fusion 

based on complementary techniques is a dependable method.21 Integrating or fusing data from 

multiple instruments can provide more accurate information with less error for classification or 

less uncertainty for predictions compared to the results provided from a single technique. 22 

Therefore, the aim of the dissertation is to develop experimentally and computationally sensible 
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models from spectroscopic data with the advantages of developing an algorithm for integrating 

multiple data sets provided by FTIR and 1H NMR.  

 

Moreover, to understand the large and complex data set provided by data fusion, data mining 

was also explored. In general, data mining was employed for prediction and description. 23 The 

first data mining technique used was Bayesian hierarchical clustering (BHC)24 whose application 

was for data clustering of the spectral information. In a large data set, for the traditional 

hierarchical clustering algorithm, difficulties arise when they must decide which distance metric 

to choose. On the other hand, BHC has the advantage of computing the marginal likelihoods in 

order to decide which clusters to merge and to avoid overfitting.25 After grouping the 

wavenumbers into different clusters, the Bayesian network learning approach (BN)26 was applied 

to develop the optimal  reaction network. As indicated by Heckerman, to develop the reaction 

network an increase in the understanding of relationships and patterns between variables is 

essential to predict the future because of which the BN learning approach is the most effective 

method.27 This technique has the advantage of integrating the observed data, even in the case of 

missing data, with the prior knowledge in order to generate the most probable network. 

 

To resolve the issue related to interpretation of high data sets provided by spectroscopy methods, 

chemometric methods seem reasonable. In these methods, statistical or mathematical techniques 

have been used to collect the required information regarding the objects of interest in the data. 

Self-modeling multivariate curve resolution (SMCR) 28 is a popular example of a chemometric 

technique. The reason to employ this method is to obtain a set of pseudo-components and their 

spectra and to use them to develop the reaction network. SMCR is a very useful tool for the 

elucidation of the multi-component phenomena in complex chemical systems such as biomass 

conversion.29 The algorithms developed can be applied for real-time analysis of many complex 

reacting systems and mixtures because it provides quantitative tracking of changes in the process 

and can be used for compositional control.30 In addition, it also acts as a screening method to 

propose hypotheses about reaction mechanisms in complex reacting mixtures. 

 

Along with a deep understanding of a complex reaction chemistry, there are some other 

objectives that this study has tried to achieve. One objective could be beneficial for process 

optimization (by predicting the effect of interaction qualitatively and quantitatively for real time 

analysis of the process), and the next one is applicable for upgrading processes (by focusing on 
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selectivity towards product compounds). As a result, the aim of this research is to provide a 

theoretical basis to handle uncertainty that provides insights into the potential chemistry and 

reaction mechanism of the biomass conversion process.31 

 

 1.3. THESIS OUTLINE 

 

This thesis includes six chapters, and the main goals of chapters 2-5 are the applications of data 

fusion and data mining to develop the most probable reaction networks for bio-oils provided 

from HTL of levoglucosan (chapter 2), 2-Phenoxyethyl benzene (chapter 3), A physical mixture 

of model components representing cellulose and lignin (chapter 4), and Monterey pine whole 

biomass (chapter 5).  Furthermore, these chapters (2-5) will include developed SMCR-ALS 

algorithms in order to acquire the spectral profiles of existing pseudocomponents and their 

concentrations, which can be used to hypothesize a reaction network, and for real time analysis 

of many complex reacting systems and mixtures. Chapter 6 summarizes the finding of the 

research. 
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2. POSTULATING PSEUDO-REACTION NETWORKS FOR THE CONVERSION OF 

LEVOGLUCOSAN IN HYDROUS PYROLYSIS USING SPECTROSCOPIC DATA AND 

SELF-MODELING MULTIVARIATE CURVE RESOLUTION 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A version of this chapter will be submitted as; Fereshteh Sattari, Dereje Tefera, Kaushik 

Sivaramakrishnan, Arno de Klerk and Vinay Prasad, “Postulating Pseudo-reaction Networks for 

the Conversion of Levoglucosan in Hydrous Pyrolysis Using Spectroscopic Data & Self-

Modeling Multivariate Curve Resolution”. 
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2.1. BACKGROUND 

 

While fossil fuels have been the main source of energy for the world,1 concerns about the 

environmental impact of their use,2 including greenhouse gas emissions, has led to an interest in 

renewable resources such as biomass. Biomass conversion is usually pursued through 

thermochemical or biochemical processes.3 The thermochemical route involving pyrolysis 

produces bio-oil, which can potentially be used as fuel after upgrading. Biomass pyrolysis is 

complex and is influenced by many factors,4 and presents challenges for process monitoring and 

optimization. Researchers have represented the conversion of biomass through pyrolysis in terms 

of the conversion of its three major components: hemicellulose, cellulose, and lignin.5 

Depending on the source, cellulose can constitute more than 50% of biomass; therefore, the 

chemistry of its pyrolysis has gained much attention from researchers, with many reaction 

mechanisms and associated kinetic models having been proposed.6,7 Despite these efforts, there 

are still many challenges in developing a clear and complete understanding of the mechanism.8 

Using model compounds such as glucose or levoglucosan can be helpful in the study of cellulose 

pyrolysis mechanisms.9 Note that levoglucosan as a model compound does not represent 

cellulose, but is an important intermediate in one of the pathways of cellulose decomposition.10 

Even using model compounds, however, does not always provide an unambiguous picture of the 

reaction mechanism. Hosoya et al. propose pathways for the pyrolysis of levoglucosan in two 

environments, but do not provide direct evidence to prove these pathways.11 Rass and his 

coworkers also believe that a key challenge for chemists in the twenty-first century is predicting 

a reaction network for the pyrolysis and catalytic conversion of biomass;12 which would enable 

optimal design, online monitoring, optimal dynamic operation and control. While multiple 

analytical techniques are often used to probe the chemistry, developing reaction networks is 

often seen and treated as an art. However, data analytics and machine learning may be able to 

provide a systematic framework to probe reaction chemistry and online monitoring.  

The focus of this research is to explore the ability of machine learning and chemometric methods 

to uncover the reaction chemistry in pyrolysis based purely on spectroscopic data that could 

potentially be obtained in real-time. This would serve two purposes: one, to hypothesize 

meaningful reaction networks to aid understanding of the process, and two, be usable developing 

a real-time monitoring and control scheme for the process. In this work, we outline the 
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development of a reaction network based solely on Fourier Transform Infrared (FTIR) 

spectroscopic data. The development of a systematic approach to accomplish this is the main 

contribution of this work, and the system chosen to demonstrate this is the hydrous pyrolysis of 

levoglucosan. The methods used include principal component analysis (PCA), Bayesian 

hierarchical clustering (BHC), Bayesian networks (BN) and Self-modeling curve resolution 

(SMCR).  

Despite the fact that spectroscopic techniques such as FTIR can provide useful information 

relating to chemical species, the high dimensionality of the data and the presence of overlaps in 

the signatures of different species makes it difficult to be interpreted or analyzed in many cases.13 

Chemometric methods are used to extract information about important features in the data, and 

SMCR is one such technique that we have explored in this work. The advantages of using this 

technique are that it requires a smaller amount of quantitative data to be effective and that it does 

not require vast prior knowledge of the system.14 Therefore, to predict the reaction chemistry of 

converting biomass or related model compounds into products, SMCR can be used to 

characterize the reacting mixture in terms of pseudocomponents. Alternately, BHC can be used 

to identify clusters of peaks (that can be related to specific functional groups) which can also be 

viewed as pseudocomponents. 

After applying BHC and SMCR, the next step is developing a reaction network between clusters 

or pseudocomponents. A Bayesian network (BN) is a directed graph that can be applied to 

develop a model representing the quantitative strength of the connections between clusters or 

functional groups found in the previous steps.15,16 The literature indicates that when the data 

length is short with a small number of samples, the Bayesian method is an effective approach to 

creating a reaction network.17  

 

2.2. MATERIALS  

 

Levoglucosan (LG) was selected as the model compound in this study because it is an important 

intermediate in cellulose conversion, and because it has a similar molecular structure and almost 

the same density. LG’s structure contains a pyranose ring, including one oxygen and five carbon 

atoms. This ring is attached to one extra bridge of the anhydro ring. Many researchers have also 

confirmed that LG is the most abundant product in the primary reaction from cellulose pyrolysis 
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as it undergoes decomposition reactions to produce lighter compounds.7,18 Sulfuric acid (0.05 M) 

and sodium hydroxide (1 M) were used as catalysts in the hydrous pyrolysis process. 

 

2.3. METHODS 

2.3.1. Hydrous Pyrolysis 

 

Pyrolysis of biomass to bio-oil has received significant attention.19,20 Available technologies in 

this field include enzymatic hydrolysis, diluted and concentrated acid pyrolysis, and alkaline 

hydrolysis.21 In the past two decades, several studies and developments have also focused on 

biomass hydrolysis in hot compressed water (HCW) conditions.22,23 HCW can be used as a 

solvent and reactant in many processes for biomass use, including hydrothermal degradation for 

bio-oil and subcritical water hydrolysis.24 We employ this process for the thermal conversion of 

LG, using subcritical water as the solvent and conducting the reactions in a batch micro-reactor. 

In all, twenty-seven different conditions varying temperature, catalyst and reaction time were 

used. 

 

Figure 2-1. Schematic of the batch micro-reactor set-up for the hydrous pyrolysis of LG. 

 

Figure 2-1 presents the experimental setup for the hydrous pyrolysis of LG. The initial pressure 

was kept constant at 0.1 MPa by closing the pressure relieve valve.  The stainless-steel micro 
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batch reactor (24 cm long and 2.1 cm in diameter) was equipped with a thermocouple and heated 

to the requisite temperature; the temperature was maintained for the desired reaction time, after 

which the reactor was allowed to cool to 100°C before quenching to room temperature with 

water. Ranges of temperature and residence time were selected based on the literature, and we 

focused on their effect on obtaining the maximum liquid with the desired characteristics,25 the 

operating conditions used are listed in Table 2-1. The volume ratio of LG to the medium was 

1:10, and the products were measured in a glass beaker and stored in a glass vial for later 

analysis (applying FTIR and 1HNMR techniques).  

Table 2-1. Operating conditions for temperature and residence time for LG conversion in a 

stainless-steel micro batch-reactor. 

Medium T (°c) t1(min) t2(min) t3(min) 

Subcritical water 150 15 35 55 

Subcritical water 200 15 35 55 

Subcritical water 250 15 35 55 

Sulfuric acid 150 10 20 30 

Sulfuric acid 180 10 20 30 

Sulfuric acid 240 10 20  30 

Sodium hydroxide 100 10 60 110 

Sodium hydroxide 150 10 60 110 

Sodium hydroxide 200 10 60 110 

T=Temperature, t=Time, min=minutes. 
 

 

2.3.2. Fourier Transform Infrared Spectroscopy (FTIR)  

 

After the hydrous pyrolysis reaction was completed, samples were collected for characterization. 

The infrared spectra of the product samples were collected using an ABB MB 3000 FTIR 

spectrometer. The spectra were collected at 2 cm-1 resolutions over the spectral range 4000 to 

600 cm-1. The analyses were performed on the neat samples using a Pike MIRacle TM attenuated 

total reflectance attachment, and the spectra for the 27 samples are shown in Figure 2-2. The 

hand book of spectroscopic data was used for preliminary identification of the functional 

groups.26                 
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Figure 2-2. Twenty-seven FTIR spectra of the products of HTL of LG in various conditions. 

 

2.3.3. Proton Nuclear Magnetic Resonance Spectroscopy (1H NMR)  

 

In order to have a better understanding about the composition and structure of the products, another 

spectroscopic method (1H NMR) was used.  NMReady at the frequency of 60MHz with a 

resolution of FWHM<1.0 Hz (20 ppb) was used for all 1H NMR measurements and data 

acquisition. Figure 2-3 reports the spectra for LG conversion in the presence of SCW at nine 

different conditions. Note that the 1H NMR data was not used in the chemometric analysis. 
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Figure 2-3. 1H NMR results for the products of HTL of cellulose and supercritical water. 

 

2.3.4. Bayesian Hierarchical Clustering (BHC) 

 

In a data set, classification or cluster analysis methods that are mostly based on deterministic27,28 

or model-based techniques29,30 can be used to create distinct subgroups in a data set. The BHC 

method, which is based on the Dirichlet process mixture model (DPM), has many advantages 

over other model-based methods. 31This technique increases the quality of clustering by using 

Bayesian model selection rather than an ad hoc distance metric, which is important in dealing 

with high-dimensional data sets such as the data collected with FTIR in this research. 32,33  

The BHC technique, instead of dealing with point estimates and their variances, focuses on 

calculating the posterior distributions of the unknown quantities given data, x, which can be 

interpreted as: 

Posterior ∝ Prior × Likelihood  

Suppose a data allocation K groups all observations into K clusters, and T is the total size of all 

individual clusters T1, T2, …., TK. To determine the Multinomial-Dirichlet distribution, the 

following formula can be considered: 
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𝑓(𝐾) ∝
(𝐾−1)!𝑇1!,….,𝑇𝐾!

T!(T+K−1)!
                                                                                                                  (2-1)                                                                                                                          

Then, the clustering posterior can be represented as: 

𝑓(𝐾|𝑥)=
𝑓(𝑥|𝐾)𝑓(𝐾)

β
                                                                                                                      (2-2) 

Based on this, the individual samples can be grouped into K clusters where the marginal density 

of the data is 𝑓(𝑥|𝐾) with a normalization constant larger than zero with no role in clustering (β).34 

 

2.3.5. Self-Modeling Multivariate Curve Resolution (SMCR) 

 

Spectroscopic techniques that provide high-dimensional data consisting of one spectral and two 

spatial dimensions are usually difficult to interpret and analyze. To resolve this issue, 

chemometric methods can be applied. In these methods, statistical or mathematical techniques 

have been used to collect the required information regarding the objects of interest in the data.35 

Principal component analysis (PCA) is an example of this class of methods.36 Another example 

is SMCR, which was first introduced by Lawton and Sylvester in 1971 35 and has since been 

applied successfully in data analysis of spectroscopic and chromatographic data. The idea behind 

SMCR is to deconvolve unresolved two-way signals into single signals of pseudocomponents by 

applying suitable mathematical techniques.30 The advantages are that it requires a small amount 

of quantitative data to be effective and that it does not require vast prior knowledge of the 

system.14 Many SMCR techniques exist;30,36  however, techniques that deal with two-way 

resolution are usually divided into two groups. In the first group, the mathematical approaches 

are used to define the pure variables to ultimately find a unique resolution. Evolving factor 

analysis (EFA) is an example of a technique used routinely for unique reslolution.37  

The second type of SMCR technique is more applicable when there is not enough prior 

knowledge about multi-mixture systems such as in our case. Orthogonal projection analysis 

(OPA)38 and alternating least squares (ALS)39 are two common approaches for these so-called 

rational resolution techniques; this is the approach adopted in this work. To develop the SMCR-

ALS algorithm, the first step (after denoising and background correction) is calculating the error 

based on the following formula: 
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𝐸𝑟𝑟𝑜𝑟(𝑙) = ∑ ∑ (𝐷𝑎𝑡𝑎 − 𝐷𝑎𝑡𝑎𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑒𝑑 𝑢𝑠𝑖𝑛𝑔 𝑙 𝑃𝐶′𝑠)²
𝑛

𝑗=1

𝑚

𝑖=1
                              (2-3) 

 

Next, the IND function, which is the square root of the reconstructed error variance, is calculated. 

It is representative of the wavenumbers of pseudocomponents whose composition changes in the 

reaction.  

  𝐼𝑁𝐷(𝐿) = √
𝑣𝑎𝑟(𝐸𝑟𝑟𝑜𝑟(1:𝑙))

n−1
                                                                                                                                                               (2-4)                                                        

The ratio of the second and third derivatives (ROD) is calculated to determine the number of 

chemical species changing during the reaction, i.e. the chemical rank: 

ROD=
𝐼𝑁𝐷(𝐿−2)−𝐼𝑁𝐷(𝐿−1)

IND(L−1)−IND(L)
                                                                                                            (2-5)                        

After finding the chemical rank, EFA is used to determine the initial guess for concentration of 

the pseudocomponents as the smallest of the forward and backward singular values.40 

Concentration of pseudocomponents is estimated over each process run. The initial concentration 

estimate is then used in an alternating least squares (ALS) process to decompose the data matrix, 

D, into its resolved components or chemical rank by applying equation 2-5. These initial 

concentrations will be also used later to develop BN.  

D=CST+E                                                                                                                                    (2-6) 

For a mixture with A components, where D is a matrix of m spectra at n various wavelengths, C 

is an m × A matrix of pure concentration profiles, S is an n × A matrix of pure spectral profiles, 

and E is an m × n noise matrix.  

After resolving the spectra, D, the following two equations are solved iteratively to convergence. 

The threshold for the residual is set to 10-4.  

min
𝑠

||𝐷 − 𝐶𝑆𝑇||2 , 𝑆 ≥ 0                                                                                                            (2-7) 

min
𝑐

||𝐷 − 𝐶𝑆𝑇||2 , 𝐶 ≥ 0                                                                                                            (2-8) 
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2.3.6. The Bayesian Network (BN) Approach 

 

After cluster analysis was performed, Bayesian learning networks were used to develop the most 

probable reaction network based on the data. The Bayesian network can represent the 

quantitative strength of the connections between clusters or functional groups found in the 

previous steps. A Bayesian network, B, is a joint probability distribution including a series of 

random variables (V). This network is characterized by a pair B = (G, Ф), in which G presents a 

directed acyclic graph whose nodes X₁, X₂, ….. , X n, and Ф represent random variables, V, and 

edges represent the direct dependencies between these variables. The graph, G, encodes 

independence assumptions by which each variable, Xᵢ, is independent of its non-descendants 

given its parents in G.41  

The Bayesian information criterion (BIC), 42 which is commonly used in the score-based 

approach to develop Bayesian networks, is given by: 

𝐵𝐼𝐶 = ∑ logP xi (Xi |Π xi ) −
𝑑

2
 log (𝑛

𝑛

𝑖=1
)                                                                            (2-9) 

Where d is the number of parameters of the global distribution, n is the number of samples, and 

the last term is introduced to reduce the effect of overfitting. 

Developing a Bayesian network includes two steps: (a) learning the structure of the network or 

graph, and (b) parameter estimation, which determine or estimate the parameters of the global 

distribution provided in the first step.41 More than one learning approach is often used to test for 

optimality. In our work, we consider the solution to be likely to be optimal if the same structure 

is obtained applying two or more learning approaches.68 All the algorithms described above have 

been implemented in MATLAB version 2018b and R version 3.5.1. 

 

2.4. RESULTS AND DISCUSIONS 

2.4.1. Cluster Analysis Using BHC 

 

In this work, the basis for clustering is the similarity of the functional groups and their wave 

numbers. Before cluster analysis, due to the large size of each data set (1764 variables or 
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wavenumbers), principal component analysis (PCA) was applied for dimensionality reduction. 

The first two PCs, which explain 95.5% of the variance in the data, were used. 

The BHC approach was then used for cluster analysis; the dendrogram is presented in Figure 2-4. 

The literature indicates that in the pyrolysis of cellulose and related compounds, the main 

products of this process are mostly acids, aldehydes, ketones, gases, phenols, and alcohols.43,44 

To keep the number of clusters in this range of possible compound classes, the number of 

clusters to be extracted from the dendrogram were chosen to be 3-6. Rather than use a clustering 

metric like the silhouette coefficient to identify the optimal number of clusters, we evaluate the 

most probable number of clusters based on the chemical significance of the BN developed with 

each of the numbers of clusters studied.  Also, handbooks related to spectrometric identification 

of organic compounds were consulted to identify the most likely compounds or functional 

groups in each cluster (Table 2-2).45  

 

Figure 2-4. Dendrogram obtained by applying BHC cluster analysis result (3-cluster). 

 

To develop the dendrogram, we assumed that the algorithm generated cluster probabilities for 

each observation rather than allocating an observation to a cluster based on distance metric. 

Classical clustering methods like k-means, when used to cluster high dimensional data, are 

sensitive to the presence of outliers.46 This is overcome by using the BHC which accounts for the 

outliers while performing the clustering.  
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Table2- 2. The main functional groups from pyrolysis of cellulose (adapted from45). 

Wave number(cm-1) Functional groups Compounds 

3500-3200(s, b) O-H stretch, H-bonded Alcohols, Phenols 

3300-3250(m) O-H stretch Carboxylic acids 

3100-3000(s) C-H stretch Aromatics 

3000-2850 (m) C-H stretch Alkanes 

1760-1665(s) C=O stretch Carbonyls(general) 

1760-1690(s) C=O stretch Carboxylic acids 

1740-1720(s) C=O stretch Aldehydes 

1715((s) C=O stretch Ketones, Saturated aliphatic 

1500-1400(m) C-C stretch(in-ring) Aromatics 

1410-1310 C-O stretch Phenols 

1370-1350(m) C-H rock Alkanes 

1320-1000(s) C-O stretch Alcohols, carboxylic acids, esters, ethers 

1000-650(s) =C-H bend Alkenes 

725-720(m) C-H rock Alkanes 

 

s=strong, m=medium, w=weak, n=narrow, b=broad, sh=sharp  

 

2.4.2. Applying the BN Approaches to Develop a Reaction Network 

 

Three different approaches were applied to the task of learning the structure of a reaction 

network for the hydrous pyrolysis of LG. Two greedy search-and-score algorithms (tabu and hill 

climbing) and a hybrid structure called the max-min hill climbing method (MMHC) were 

applied. While the tabu search starts with a feasible initial solution and picks the next best option 

that can increase the score function, HC starts with an initial guess for a solution and iteratively 

makes local changes to it until two conditions are met: the solution is found, or the heuristic gets 

stuck in a local maximum.47 Unlike the first two methods, the last approach is a hybrid structure 

learning algorithm, which is a combination of constraint and score-based algorithms and includes 

two steps called restriction and maximization.48    

Figures 2-(5& 7-9) depict the proposed reaction networks for hydrous pyrolysis of cellulose with 

3-6 clusters using R programing version 3.5.1. The reaction network with three clusters was the 

only one where all three approaches reported the same network.  

 

2.4.2.1. The BN for Hydrous Pyrolysis of Cellulose (Three Clusters) 
 

The interesting point after application of the BN is that all three methods provided the same 

reaction network when three clusters were chosen, thus providing confidence in the validity of 
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the reaction network. Figure 2-5 shows that in the investigated reaction conditions, the final 

product can be obtained from two pathways: direct conversion of raw material or through an 

intermediate product. Appendices 2(A1-1, A1-2, and A1-3) display the wavenumbers grouped in 

each cluster. Based on this data and identification of the relevant functional groups,49,26 we 

concluded that the first and second clusters consist mostly of alcohols and ethers. The third 

cluster contains carbonyl groups (aldehydes, ketones, and acids), normal alkanes, alkenes, 

alkynes, alcohols, and aromatics. Therefore, we can argue that by moving from cluster 1 to 3, the 

number of compounds with carbonyl groups and aliphatic groups increases. This result has a 

good agreement with the literature.50,51 The implication is that aldehydes/acids can be produced 

directly from cellulose or through an intermediate product, most likely glucose. After we 

performed 1H NMR spectroscopy, the result confirmed that under the investigated conditions, 

there is a singlet peak around 9.60 ppm confirming that the product can be an aldehyde with no 

neighboring carbon. This description has a good agreement with formaldehyde (Figure 2-3). 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-5. Reaction network derived by the tabu, HC, and MMHC Bayesian network. 

Clust 1 

 (LG) 

   Clust 3 

(FF, CH2O) 

Clust 2 

 (GP) 
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Figure 2-6. The proposed chemical pathways for the decomposition of LG. 
0- 

Table 2-3 lists the strength of each arc in the tabu, HC, and MMHC search-based BN. These 

values present the dependency and probable pathways between the clusters in a network (the 

strongest dependency belongs to the highest negative number). Based on this, the highest belief 

is for the arc from cluster 1 to cluster 2 (94.36). 

Table 2-3. Arc strength calculated by tabu, HC, and MMHC search methods. 

From To Arc strength 

Cluster 1 Cluster 2 -94.36 

Cluster 1 Cluster 3 -29.62 

Cluster 2 Cluster 3 -20.14 

 

Figure 2-5 shows that all three methods identify the same proposed reaction network, and the arc 

strengths shown in Table 2-3 are the same for all three methods.  

After developing the BN (DAG Structure) which is responsible for describing the directed causal 

map between clusters, there is a need for parameter learning to quantify the uncertainty about the 

model. This step calculates the quantitative parameters of the model (ϴ) in a way that the 

conditional probability of each child (in a single path or arc, a child is a descendant of its parent 

in the sequence of the ordered nodes) depends only on its parents (Markovian property).17 To do 

so, a scalar value representing the intensity of the cluster has to be estimated by using the 

conditional probability distribution of that group; we choose the RMS (root mean square) value 

of the absorbance intensities. 
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To define ϴ, we can consider Xi the intensity value of the ith variable (i= 1,2,3) and μi the mean 

value of Xi. Considering these conditions, the conditional probability distribution of each group 

has been shown in the pseudokinetic equations 2(10-12), and the model describing mean 

intensity can be found in the pseudokinetic equations 2(13-15). 

 P(X1) ~ N (μ1, 23.7 2)                                                                                                                (2-10) 

 P (X2 |X1) ~ N (μ2, 0.39 2)                                                                                                        (2-11) 

 P (X3 |X1, X2) ~ N (μ3, 0.19 2)                                                                                                 (2-12) 

 μ1 = 13.82                                                                                                                                 (2-13)   

 μ2 =21.32 + 0.58μ1                                                                                                                   (2-14) 

 μ3 =7.81 - 0. 53μ2 + 1.38μ1                                                                                                      (2-15) 
 

Equations 2(13-15) demonstrate to what extent the mean value of the probability distribution of 

each cluster is related to others in the BN. This pseudokinetic information can be useful to 

monitor an online process in real time analysis, since it provides (real-time) estimates of 

(pseudo) reaction rates.     

                                                                                                                                     

2.4.2.2. The BN for Hydrous Pyrolysis of Cellulose (Four Clusters) 
 

 

For the case of four clusters, tabu, HC, and MMHC search algorithms resulted in different 

networks. However, we selected the network provided by tabu search since this technique has the 

advantage of guiding the local search algorithms in search of optimal/near optimal solutions by 

developing or updating a tabu list of forbidden moves of neighboring solutions. In other words, 

tabu search, in opposite with other methods, uses memory to avoid looping or forbidding already 

visited solutions by imposing some tabu to the search.52 

Figure 2-7 provides the Bayesian reaction network using tabu search for the investigated reaction 

with four clusters. According to this reaction network, the first cluster is the raw material, or 

levoglucosan. This compound can be converted to final products (cluster 4) such as acids (3300-

2500 cm-1) or aldehydes (1740-1720 cm-1) in two pathways. First, a dehydration reaction can 

produce furfural (cluster 3, supported by 1H NMR data) and then go through bond breaking to 

produce the final products. Piskorz et al. also confirmed that two important C5-6 ring compounds 

from the cellulose pyrolysis are furfural and 5-hydroxymethyl-furfural (furan derivatives).53 

Secondly, bond breaking produces glucose (cluster 2) as an intermediate product, which can take 

two pathways: dehydration, resulting in furfural, or bond breaking, producing the final products. 
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This reaction network has a good agreement with the ones proposed by Lee. et al.54 and Shen et 

al.51  

 

Figure 2-7. Bayesian network using tabu search (4 clusters). 

 

In pyrolysis of LG, three mechanisms are reported in the literature for the decomposition 

processes. Bond breaking (C-C and C-O) and LG dehydration or desorption of water molecule 

are endothermic reactions. Pouwels et al. showed through gas chromatography-mass 

spectroscopy (GC-MS) analysis that acetaldehyde (AA), 1-pentene3,4-dione (1-P-3,4-D), 2,3-

dihydroxypropanal (2,3-DP), and propanedialdehyde (PD), CO, and H2O are the main products 

of C-O bond breaking.55 Hydroxyacetic acid vinyl ester (HAVE) and 1,2-dihydroxyethene (1,2-

DE) are the main products of C-C bond breaking.7 

Table 2-4. The strength values of each arc in the tabu search-based BN. 

From  To  Arc strength 

Cluster 1 Cluster 2 -91.53 

Cluster 1 Cluster 3 -20.88 

Cluster 2 Cluster 3 -31.30 

Cluster 2 Cluster 4 -49.57 

Cluster 3 Cluster 4 -19.98 
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From Table 2-4 (the arc strength for this reaction network), it can be concluded that between three 

pathways from cluster one to the final products (cluster four), the one directed from LG to glucose 

(cluster two, arc strength -91.53) and then headed to cluster four (arc strength -49.57) has the 

highest dependency. This is in agreement with the BN with three clusters. Equations 2(16-19) 

describe the conditional probability of each group, and equations 2(20-23) are the models for the 

mean intensity of each group for the pseudokinetics associated with this BN structure. 

 

P(X1) ~ N (μ1, 25.76 2)                                                                                                              (2-16)  

P (X2 |X1) ~ N (μ2, 0.44 2)                                                                                                         (2-17)  

P (X3 |X1, X2) ~ N (μ3, 0.18 2)                                                                                                  (2-18) 

P (X4 |X2, X3) ~ N (μ4, 0.30 2)                                                                                                  (2-19) 

μ1 = 9.85                                                                                                                                   (2-20)  

μ2 =24.07 + 0.53μ1                                                                                                                    (2-21) 

μ3 =7.36 - 0. 44 μ1 + 1.30 μ2                                                                                                     (2-22)  

μ4 =10.74 + 2.24 μ2 - 1.45 μ3                                                                                                    (2-23) 

                                                                                                                                                                                                                             

2.4.2.3. The BN for Hydrous Pyrolysis of Cellulose (Five Clusters) 
 

 

The tabu and hill climbing methods provide the same reaction networks for this reaction 

considering 5 clusters (Figure 2-8).  

 

Figure 2-8. Bayesian network using tabu and hill climbing search (5-cluster). 
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Based on the proposed BN, multiple possible chemical pathways exist for primary 

decomposition of levoglucosan (cluster 1) to the final products (gases): (1) LG can undergo bond 

breaking to produce carboxyl groups such as acids/aldehydes (cluster 4), and these compounds 

can be broken to produce gases; (2) cluster 2, which contains glucose, can be broken into 

acids/aldehydes and then converted to the final products; (3) glucose also can be dehydrated to 

produce cluster 3 (furfural), which can be broken to acids/aldehydes; (4) glucose can be 

considered an intermediate compound to be converted to cluster 5. The BN with five clusters 

also finds support in the literature.7 Shafizadeh also proposed such a scheme that through 

cellulose pyrolysis, low molecular weight compounds such as furfural, aldehydes, acetic acid, 

formic acid, and light species can be formed.56  

Table 2-5. The strength values of each arc in the tabu search-based BN. 

From                   To Arc strength 

Cluster 2 Cluster 5 -51.63 

Cluster 1 Cluster 4 -53.68 

Cluster 2 Cluster 3 -32.43 

Cluster 3 Cluster 4 -9.25 

Cluster 4 Cluster 5 -0.36 

Cluster 2 Cluster 4 -94.69 

Cluster 1 Cluster 2 -98.92 
 

 

Noticeable high strength value for arcs (Table 2-5) are the ones from group 1 (LG) to group 2 

(glucose) and group 2 to group 4 (acids/aldehydes). This finding provides another confirmation 

that it is most likely to produce glucose from LG and acids/aldehydes from glucose.   

The conditional probability distribution of each group is described in equations 2(24-28), and the 

model for the groups’ mean intensities is presented in equations 2(29-33). 

P(X1) ~ N (μ1, 13.71 2)                                                                                                             (2-24)   

P (X2 |X1) ~ N (μ2, 0.47 2)                                                                                                        (2-25)  

P (X3 |X2) ~ N (μ3, 0.65 2)                                                                                                        (2-26) 

P (X4 | X1, X2, X3) ~ N (μ4, 0.074 2)                                                                                         (2-27) 

P (X5 |X2, X4) ~ N (μ5, 0.34 2)                                                                                                  (2-28) 

μ1 = 29.31                                                                                                                                  (2-29)   

μ2 =-19.78 + 1.38 μ1                                                                                                                  (2-30) 

μ3 =-9.58 + 1.38 μ2                                                                                                                   (2-31) 

μ4 =9.56 + 1.63 μ1- 069 μ2 – 0.12 μ3                                                                                        (2-32) 

μ5 =-10.06 + 1.4 μ2 – 0.24 μ4                                                                                                    (2-33) 
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2.4.2.4. The BN for Hydrous Pyrolysis of Cellulose (Six Clusters) 
 

 

Tabu search provides the following BN for this reaction considering six clusters (Figure 2-9): 

Although LG can be fragmented and produce gases directly, it can also produce furfural as an 

intermediate compound (cluster 2). Many researchers confirmed that about 90% of total gas 

products by weight from cellulose products are CO and CO2.
57,58   Another pathway for 

converting LG to gases exists through producing glucose (cluster 3) and then converting it to 

aldehydes/acids (cluster 5). Glucose and furfural can also produce phenols (cluster 4) through 

bond breaking and dehydration.43  

  

 

Figure 2-9. Bayesian network using tabu search (6-cluster). 
 

Table 2-6. The strength values of each arc in the tabu search-based BN. 

From                To Arc strength  

Cluster 3 Cluster 4 -87.41 

Cluster 1 Cluster 6 -58.73 

Cluster 1 Cluster 2 -39.85 

Cluster 3 Cluster 6 -39.33 

Cluster 2 Cluster 4 -12.13 

Cluster 2 Cluster 6 -21.01 

Cluster 5 Cluster 6 -11.46 

Cluster 3 Cluster 5 -94.69 

Cluster 1 Cluster 3 -98.92 
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It can be concluded (from Table 2-6) that there is no dependency from group 4 to group 6 

meaning it is not likely to convert the phenolic groups directly to gases. This conclusion has a 

good agreement with the literature.50   

The conditional probability distribution of each group is described in equations 2(34-39), and the 

model for the groups’ mean intensities is presented in equations 2(40-45). 

P(X1) ~ N (μ1, 13.71 2)                                                                                                             (2-34) 

P (X2 |X1) ~ N (μ2, 0.50 2)                                                                                                        (2-35)                                      

P (X3 |X1) ~ N (μ3, 0.47 2)                                                                                                        (2-36) 

P (X4 | X2, X3) ~ N (μ4, 0.23 2)                                                                                                 (2-37) 

P (X5 |X3) ~ N (μ5, 0.65 2)                                                                                                         (2-38) 

P (X6 | X1, X2, X3, X5) ~ N (μ5, 0.083 2)                                                                                   (2-39) 

μ1 = 29.31                                                                                                                                  (2-40) 

μ2 =42.59 + 0.16 μ1                                                                                                                    (2-41) 

μ3 =-19.78 + 1.38 μ1                                                                                                                   (2-42) 

μ4 =6.21 – 0.55 μ2 +1.4 μ3                                                                                                        (2-43) 

μ5 =-9.58 + 1.18 μ3                                                                                                                   (2-44) 

μ6 =10.14 + 2.3 μ1 -0.34 μ2 – 1.0 μ3 -0.16 μ5                                                                            (2-45) 

 

Next, we consider self-modeling multivariate curve resolution (SMCR) as an alternative to 

clustering for creating pseudocomponents for developing the reaction network. 59 

 

2.4.3. Self-Modeling Multivariate Curve Resolution (SMCR-ALS) & Bayesian Network 

 

Figure 2-10 illustrates the denoised and background-corrected signals for the FTIR spectra shown 

in Figure (2-2) by using the Savitsky Golay filtering algorithm, along with the residual noise 

removed by the procedure. 
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Figure 2-10. Raw and smoothed FTIR spectra and removed residual data. 
 

To develop the SMCR-ALS algorithm, after calculating the error (equation 2-3), the sum of 

square of errors over the number of principal components (PCs) was estimated and plotted (Fig. 

2- 11). The result confirms that reconstructing the data from an increasing number of PCs 

decreases appreciably from PC1 to PC3, indicating that most of the variance in the data is 

captured in the first three PCs.  

 

Figure 2-11. Sum of squares of error from the reconstruction of data using principal components. 
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The next important step was to determine the chemical rank. To do this, the ROD was calculated 

(equations 2-4 and 2-5) and is plotted as shown in Figure 2-12. The ROD reaches a maximum 

value of 3, which is the value of the chemical rank. 

 

Figure 2-12. Calculating chemical rank using ROD. 

After finding the chemical rank, in order to develop the BN, the initial concentration was 

calculated by applying EFA (equations 2(6-8)), after which ALS was used to identify 

pseudocomponents (equations 2(7-8)). Figure 2-13 shows the convergence of the ALS algorithm; 

less than 10 iterations lead to acceptable convergence. 

 

Figure 2-13. The rate of convergence of ALS. 
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When we want to have an appropriate interpretation regarding the spectra collected from the 

above algorithm, we should keep in mind that A1, A2, and A3 (representing the first, second, and 

third pseducomponents) contain spectral structures which can represent the actual molecules. 

While Figure 2-14(a) demonstrates the overall resolved spectra for the pseudo components (A1, 

A2, and A3) for the whole region (400-4000 cm-1), Figures 2-14(b-d) illustrate the regions 

containing the major peaks of these pseudocomponents. For the frequency range shown in Figure 

2-14(b), the significant peaks belong to A1 and A2. A2 mostly represents primary and secondary 

alcohols because its major peaks are mainly located in 1075-1010 cm-1, related to primary 

alcohols, and 1120-1100 cm-1, representing secondary alcohols. The spectrum for A1 illustrates 

the presence of monosubstituted alkene (RCH =CH2) at 995-985 cm-1, Alkene (C=C=C) at 1060 

cm-1, and aliphatic ethers (R-O-R) at 1150-1070 cm-1. 26,60 

On the other hand, Figures 2-14 (c-d) show more peaks related to the pseudocomponent A3. The 

paired absorptions at 1640 cm-1 and the broad absorption covering the range 3600-3000 cm-1 are 

typical of (C=O)-CH=(C-OH) (i.e., a ketone and alcohol one carbon apart) where the second pair 

carbons is olefinic (sp2 hybridized). The carbonyl group can be a ketone or an aldehyde because 

the absorption at 1640 cm-1 is due to the conjugation and intramolecular hydrogen bonding.44 In 

other words, the result can be obtained that pseudo components A1 and A2 are willing to convert 

to pseudo component A3 in the regions with higher wave numbers. 
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Figure 2-14. (a) Resolved spectra for the pseudo components after applying SMCR-ALS; and (b, 

c, and d) resolved spectra for A1, A2, and A3 by focusing on the major peaks. 

To develop the reaction network, both greedy research methods (tabu and hill climbing) were 

used, and both methods provided the same results (Figure 2-15). The one explanation could be 

that pseudo compounds having (-OH), (-C=C-), or (R-O-R') groups can be converted to ortho-

hydroxy aryl ketones (C=O)-CH=(C-OH) by alkyl and hydrogen transfer and oxidation 

reactions.26 
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Figure 2-15. tabu and HC Bayesian network structure for the pseudo components 

Table 2-7. The strength values of each arc in the tabu and HC search-based BN. 

From  To Arc strength 

Cluster 1 Cluster 3    -78.31 

Cluster 2 Cluster 3    -46.29 

   
 

 

To better understand the second part of BN, which is parameter learning, equations 2(46-48) 

present each group’s conditional probability, and the models for these groups’ mean intensities 

are shown in equations 2(49-51). This represents the pseudokinetics associated with this BN. 

P(X1) ~ N (μ1, 0.37 2)                                                                                                                 (2-46)  

P (X2) ~ N (μ2, 0.21 s2)                                                                                                              (2-47)  

P (X3 |X1, X2) ~ N (μ3, 0.019 2)                                                                                                (2-48) 

μ1 = 0.45                                                                                                                                    (2-49)  

μ2 =0.26                                                                                                                                     (2-50)                                                                                                                                         

μ3 =1.002 – 0.92μ1 -0.51μ2                                                                                                       (2-51)  

 

2.5. PROPOSED REACTION MECHANISM FOR LG DECOMPOSITION 
 

Developing a reaction network provides the ability to predict and monitor the mechanism and 

pathways of the process. The goal of this research was to determine the most probable reaction 

network for hydrous pyrolysis of levoglucosan at relatively low temperature (< 300 °C). To do 

that, three different Bayesian network approaches and parameter learning were used considering 

three to six clusters due to the fact that the major products which can be established in good 



34 
 

yields (under the investigated conditions) are: levoglucosan, furfural, glucose, acids, aldehydes, 

and gases. 9 Based on the results provided earlier, the most probable pyrolytic pathway for this 

reaction is a causal map with three clusters which can be explained as converting LG to 

formaldehyde directly or by producing an indeterminate compound such as glucose. In other 

words, by applying BHC method and grouping wavenumbers, a BN with three clusters allow us 

to link LG, glucose, and formaldehydes, to clusters 1, 2, and 3, respectively. The findings are in 

good agreement with previously published data. According to Wang et al, the presence of LG 

can be validated by tracing the typical infrared carbohydrate peaks around 3356, 3273, 2906, 

1400, 1131, and 1042 cm-1. 61 In another study done by Nybacka, the fundamental frequencies of 

glucose are: 3350, 2920, 2850, 1450, and 1035 cm-1. 62 Finally, the existence of formaldehyde (a 

major component of the third group) can be confirmed by the existence of peaks around 2785, 

1750, 1485, and 1250 cm-1.63 All these wavenumbers can be found in clusters 1, 2, and 3 

(Appendices 2 (A1- A3)), respectively. As a result, this study proposes the following reaction map 

for LG decomposition.  

Figure 2-16. Proposed pathway for hydrous pyrolysis of LG.64 
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Based on this pathway, the presence of the hexose chain structure is the result of the cleavage of 

pyran-ring. This initial step will cause the production of 5-hydroxymethylfurfural (5-HMF) 

through the dehydration of the hydroxyl groups(C-2). Finally, the formation of formaldehyde 

(CH2O) and furfural (FF) is the result of the dehydroxymethylation reaction of the side chain of 

the furan-ring.  

Both the graphical representation (Figure 2-5) of the causal relationship between the variables 

(which in this case are wavenumbers), and the quantitative strength of the connections between 

these variables (Table 2-3) provided the same results, which are good agreement with the 

literature.43 The arc from group 1 to group 2 has the highest probability (-94.36) representing the 

strongest dependency while the lowest dependency belongs to an arc pointing out from group 2 

to group 3 (-20.14). It should be noted that the associated pseudokinetics developed can be 

valuable for online monitoring, but they assume Gaussian probability distributions and cannot 

represent nonlinearity effectively.  

A remarkable result from all developed BNs is that (regardless of number of clusters) the highest 

strength value for arcs belongs to the one that produce glucose from LG and acids/aldehydes 

from glucose. This outcome is another confirmation that a BN with three clusters is the most 

probable pyrolytic pathway for the investigated reactions.  

Another interesting finding comes from the six-cluster BN (Figure2- 9). This reaction network 

shows no dependency between clusters four and six, confirming no direct conversion of phenols 

to gases between 100°C and 250°C. This temperature range is consistent with other studies done 

by Xu et al.65 and DiLeo et al. 66 which report similar findings at temperatures below 600° C.  

Since high-dimensional data usually provides data with overlapping issues, in the second part of 

this research, a chemometric method such as SMCR was used to predict the number of pseudo 

compounds presenting in these reactions. The result confirmed the presence of three groups of 

changing compounds in these reactions. Later, BN was applied to develop a map or causality 

between these pseudo components. It can be concluded that in hydrous pyrolysis of cellulose 

under the investigated conditions, pseudo components A1 and A2, which can represent molecules 

such as alcohols, akenes and ethers, have a tendency to produce compounds with longer chains 

such as ortho-hydroxy aryl ketones, represented by A3. Developing SMCR algorithms can be 
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applied as a useful technique for monitoring online and controlling of multi-mixture reactions 

such as thermochemical conversion of biomass.  

Figure 2-17 illustrates the concentrations related to A1, A2 and A3 over the number of samples. 

These concentration profiles obtained from SMCR corroborate with the inference made from the 

BN where A1 and A2 are seen to react to give A3, whose concentration is seen to increase at the 

expense of the other pseudocomponents as the processing time is increased. The application of 

this plot makes it useful in the online monitoring of species conversion by integrating it with a 

suitable control strategy that adjusts process conditions to maximize the yield of the desired 

product. 

 

Figure 2-17. Corresponding concentration for pseudo components A1, A2, and A3. 

 

When it comes to comparing the BHC and SMCR to generate nodes among which the Bayesian 

networks are developed; the latter method provides better results. Applying the BHC technique 

groups wavenumbers in a cluster without any background constraints on how chemistry changes 

over different process conditions. On the other hand, SMCR algorithm determines the 

concentration changes of pseduocomponents across different process conditions along with a full 

spectrum for each. This makes it more appropriate for the on-line monitoring of change in 

species during a process. However, in terms of mapping to real chemistry, the results from 

SMCR are more difficult to interpret. 
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2.6. CONCLUSIONS 

 

Since biomass can be considered a potential substitute for fossil fuels, there is a need for better 

understanding of pyrolysis of cellulose as a major component of biomass. In this research, 

levoglucosan was reacted in the presence of hot water and various catalysts (H2SO4 and NaOH) 

at twenty-seven temperatures and reaction times. In all cases, products were analyzed and 

identified by FTIR and 1H NMR spectroscopic methods. LG initially underwent 

depolymerization and dehydration of the larger molecules to produce condensable vapor (liquid) 

such as formaldehyde or volatiles. 

In the first part of this research, BHC was applied for data clustering, and then three different BN 

approaches (tabu, HC, and MMHC) were used to develop a reaction network. All methods 

provided the same result, considering three clusters that can be interpreted as either converting 

levoglucason directly to formaldehyde or producing an intermediate compound such as glucose. 

The result has a high degree of agreement with the literature. In this paper, the other reaction 

networks considering four, five, and six clusters were proposed and interpreted based on expert 

knowledge and literature.  

The high-dimensional data set provided by FTIR spectroscopy method with a relatively small 

number of samples was used to achieve the second goal of this research which was developing a 

SMCR-ALS algorithm for automatic prediction of pseudo components and then resolving the 

concentration and spectra provided from FTIR into its chemical ranks. Demanding a little prior 

knowledge about the system along with requiring a very short time for computational process 

make this algorithm a useful tool for real-time analysis and quantitative tracking of changes in 

the process. 
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3. APPLICATION OF DATA COMBINATION AND DATA MINING TECHNIQUES TO    

INVESTIGATE THE CHEMISTRY OF CELLULOSE AND LIGNIN DERIVATES IN 

HYDROUS PYROLYSIS 
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Prasad, “Application of Data Combination and Data Mining Techniques to Investigate the 

Chemistry of Cellulose and Lignin Derivatives in Hydrous Pyrolysis".  



44 
 

3.1. BACKGROUND 

 

Increasing energy demand as well as concerns regarding climate change related to consuming 

fossil fuels and the depletion of non-renewable resources have increasingly shifted attention 

towards liquid biofuels. Currently, biofuel is not as cost-competitive as compared to crude oil 

refineries. Therefore, one necessary aspect of oil production could be focusing on effective 

cellulose and lignin utilization. 1 

Cellulose and lignin, which are considered the two most important parts of biomass, have many 

applications in industrial processes. While cellulose, in principle, is a major ingredient for 

papers, foods, chemicals, and medicines, 2 lignin is a necessity for the production of many 

chemicals such as benzene, xylene, and toluene, due to its aromatic structure.3 Unlike the 

homogeneity structure of cellulose, which is made of a polysaccharide of glucose, 4 the 

amorphous structure of lignin mostly consists of phenylpropane monomers with methoxy and 

hydroxy groups attached to the rings.5 

Over the past few decades, bio-oil production has been the center of attention for many 

researchers. Malauan focused on the production of different chemicals by pyrolyzing waste 

biomass through non-catalyzed reactions in the presence of near-critical or supercritical water.6 

This process, which was later called hydrous pyrolysis, is a possible thermochemical conversion 

technique for converting the biomass into different products – mostly liquids and gases. This 

process happens at temperatures below 400°C in the presence of water and the absence of 

oxygen. Therefore, designing and optimizing biomass pyrolysis processes requires a clear 

understanding of how cellulose and lignin thermally decompose. In order to investigate the 

behavior of the compositions of these complex processes and monitor the chemical pathways, 

developing the reaction network as an abstraction representing the chemical reaction can be a 

useful technique.7 Concentrations and/or spectral information can provide the data sets required 

to develop a reaction network that can ultimately help demonstrate the elementary reactions and 

their rate coefficients.8 In other words, reaction networks permit the analysis of reaction 

dynamics in complex chemistry without using complicated calculation techniques.9  

 

There are many different approaches to develop a reaction network, but when it comes to a 

smaller number of samples, a graphical structure method, called the Bayesian networks (BNs) 
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approach, representing information or knowledge about an uncertain domain is one of the proper 

techniques.10 This method belongs to the probabilistic model family and uses nodes and arcs or 

edges to represent a random variable and the probabilistic dependencies between these variables. 

To estimate these conditional dependencies, the BNs use the new available evidence to compute 

the posterior.11 

 

Data required for developing the BNs could be provided from different sources. For the past few 

decades, usage of FTIR spectroscopy has been dramatically increased in the areas of oil and fuel 

refining, online and real-time analysis, and modelling because it can provide fast and non-

destructive vibrational data.12 Since crude oil and its products are rich in carbon and hydrogen, 

another useful data analysis technique is 1H NMR spectroscopy.13 

 

Applying different analytical technology processes or multiple spectroscopic methods can 

increase the information and variation found in the data set by bringing forth more reliable 

information. At the same time, it comes with a big challenge related to how to best and 

effectively collect, capture, mine, and extract the available information within these large 

amounts of data sets.  

 

To this end, algorithms and mathematical procedures such as data fusion or data combination, 

with different levels of complexity can offer a method of combining multiple sources of data to 

have the optimal chance of mapping and extracting the information of a data space. In the 1960s, 

data fusion was introduced into the mathematical field for the first time as a way for data 

manipulation, and later, in the 1970s, it was executed in the defense and robotics fields.14 

Currently, data fusion has many applications in different areas, such as mine detection, 

maintenance engineering, and weather prediction.15 

 

Since there is no one-size-fits-all model for all subjects required for the applications of data 

fusion, the first step before starting a data fusion task is establishing a strategy in a robotic and 

organized way, which can help obtain a solution to the problem. Researchers have introduced 

different algorithms for data fusion. In 1988, Luo and Kay16 developed multi-sensor integration 

as a generic structure for data fusion. Based on their proposal, a fusion center in a hierarchical 

manner is required to combine the data provided from different sources, and there is now a 

distinction between data integration and data fusion. Based on their definition, while the former 
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is applied to completing a particular task by using multiple sources of data, the latter can happen 

when there is actual fusion of the data, and it could also be applied during any stage of the 

integration process. In this study, data integration method has been applied to develop the final 

data set for causality detection in a complex reacting system, such as those in petrochemical 

products or the thermochemical conversion of biomass.  

 

3.2. MATERIALS 
 

In this study, levoglucosan (LG) and 2-Phenoxyethyl benzene (PEB) were used as model 

compounds to represent cellulose and lignin. While LG is not a model compound for cellulose, it 

is known that when cellulose undergoes thermal decomposition or pyrolysis, the most abundant 

product in the primary reaction is LG. 17,18 Although LG is insoluble in non-hydroxylic solvents, 

it is soluble in water; and its molecular structure includes a pyranose ring connected to three 

hydroxyl and two ether groups. PEB can be considered a model compound for the dominant 

ether linkage in lignin, 19 with a molecular formula of C14H14 O and an average mass of 198.26 

Da. In this study, LG and PEB underwent the hydrous pyrolysis reactions in non-catalyzed 

conditions as well as in the presence of sulfuric acid (0.05 M) and sodium hydroxide (1 M), 

separately. 

 

3.3. METHODS 

3.3.1. Hydrous Pyrolysis 

 

Among different biomass thermochemical conversion techniques, this research targets hydrous 

pyrolysis in regard to its advantages over other methods. One benefit could be the kind of 

products (mainly pyrolysis oil containing various chemicals) that do not require high 

temperatures to be formed but are easy to store and transport. These high-quality products are 

capable of many added-value applications.20 Hydrous pyrolysis is a thermal decomposition in the 

absence of an oxidizing agent, such as air or oxygen, but in the presence of water. In these kinds 

of reactions, many factors such as time, temperature, and the heating rate have strong effects on 

the proportion of the products. Pyrolysis happens at lower temperatures (less than 400°C) 

compared to other reactions such as gasification; low temperature and long residence times 

promote char formation while high temperature and less residence time are mostly required for 
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gas production. However, the optimal conditions for oil production which is the target of this 

study are medium temperature and short residence time.21 

 

Many studies have targeted the pyrolysis of biomass pyrolysis in the presence of supercritical 

water (SCW). While Boblete and Adchiri focused on the hydrothermal degradation of cellulose 

with hot water 22, 23 and Mok and his colleagues used an acid catalyst for the hydrolysis reaction 

of cellulose in hot compressed water; 24 we manipulated the temperature and residence time to 

obtain the maximum liquid with the desired characteristics (Table 3-1).25 In all conditions, the 

initial pressure was considered constant (0.1 MPa), and the volume ratio of individual LG and 

PEB to the medium was 1:10. 

 

Table 3.1. Variation in ranges of temperature and residence time for LG and PEB in a stainless-

steel micro batch-reactor. 

Medium T (°C) t1(min) t2(min) t3(min) 

Subcritical water 150 15 35 55 

Subcritical water 200 15 35 55 

Subcritical water 250 15 35 55 

Sulfuric acid 150 10 20 30 

Sulfuric acid 180 10 20 30 

Sulfuric acid 240 10 20 30 

Sodium Hydroxide 100 10 60 110 

Sodium Hydroxide 150 10 60 110 

Sodium Hydroxide 200 10 60 110 

T = temperature, t = time, min = minutes  

 

The experimental setup for these reactions has been presented in our previous work.26 The 

stainless-steel batch microreactors (24 cm long and 2.1 cm in diameter) were installed with a 

thermocouple, heated to the temperature and time planned and left to cool down to 100°C before 

quenching to room temperature with water. In all reactions, the initial pressure was kept constant 

at 0.1 MPa by closing the pressure relieve valve.   

 

3.3.2. Spectroscopy Methods 

 

After hydrous pyrolysis, the samples were collected for characterization. FTIR and 1H NMR 

spectroscopy techniques were used for characterization. In this study, the absorbance signal was 

acquired in the 4000–600 cm-1 range, with a 2 cm- 1 acquisition step, using an ABB MB 3000 
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FTIR spectrometer. In total, fifty-four processed samples were considered for both LG and PEB 

(Figure 3-1) and a handbook of spectroscopic data was used to identify the functional groups. 27 

 

Figure 3-1. Fifty-four FTIR spectra of HTL of (a) LG, and (b) PEB in various conditions. 

 

To have a better and more complete understanding about the data acquired from FTIR, another 

spectroscopy technique (1H NMR) was selected and used. For all 1H NMR measurements and 

data acquisition, spectra were acquired using an offline NMReady at the frequency of 60 MHz 

with a resolution of FWHM < 1.0 Hz (20 ppb). The following figure illustrates the spectrum for 

the LG and PEB conversion in the presence of SCW and NaOH across eighteen different 

conditions. 
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Figure 3-2. Eighteen 1H NMR spectra for (left) LG and SCW, and (right) PEB and NaOH. 

 

 

3.3.3. Data Combination Technique 

 

The large amounts of data points obtained from FTIR and 1H NMR carry some useful 

information regarding different features of samples. These data points can provide more accurate 

and reliable information if they are synergistic combined and analyzed. One goal of this research 

was to find a final model presenting how best fuse or combine these data pints to have the 

advantages of increasing the accuracy while reducing the overall uncertainty compared to models 

produced using the individual spectroscopic entities. By using the final model, a user can extract 

all useful and meaningful information from a large number of different data sets. Many research 

studies have confirmed that the potential benefits of applying data fusion or data combination 

could be complementary, redundancy, and cost of information.28, 29 

In this study, data combination method was used, since there is no logical outcome 

corresponding with the input data points. Another aspect considered for developing the final 

algorithm was incorporating data-mining techniques to facilitate this process. In a systematic 

manner, data mining can be applied to search for general relationships within data points 

contained in large amounts of raw data. In other words, data-mining techniques, such as 
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clustering, can help in the positional integration and object-identity processes. Figure 3-3 

illustrates the steps required for this method. 

 

 

Figure 3-3. Proposed steps for data combination. 

 

3.3.4. Cluster Analysis by Applying BHC SMCR-ALS Algorithms 

 

Cluster analysis is a necessary and useful step to organize the spectroscopic data. In this area, 

researchers have proposed many different clustering methods based on their definitions of what a 

cluster actually is. For example, some density methods, such as the density-based algorithm for 

discovering clusters in large spatial databases with application of noise (DBSCAN) 30 and 

ordering points to identify the clustering structure (OPTICS), 31 propose to form a single cluster 

by merging the densest area in the space. In contrast to these methods, there is another method 

called hierarchical clustering. The goal of this method is to determine the various clusters within 

a data set by arranging the data points in a hierarchical manner.32 

 

Since this research needs to deal with a high dimensional data set provided by FTIR and 1H 

NMR, another cluster analysis method based on the Dirichlet process mixture model (DPM) 

seems to be a useful technique. This method, which is called the Bayesian hierarchical clustering 
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algorithm (BHC), uses a Bayesian algorithm to improve the quality of the resulting clusters and 

the structure.33 In this framework, clusters merge based on the probability of their similarity.34  

For a detailed description of the method, we refer readers to our previous work. 35  

 

Since FTIR and 1H NMR provide high dimensional data sets that are difficult to analyze and 

interpret,37 this research also applies a chemometric method called SMCR, which is based on a 

matrix of mixture spectra. the algorithm uses a minimal constraint of non-negativity for 

absorbances and concentrations to bilinearly decompose spectroscopic data into concentration 

profiles and absorbance spectra. The goal of this algorithm was to find the number of species 

involved in the process and to be sensitive to the detector. To do this, the experimental data 

matrices D were decomposed into two new matrices according to Eq. (3-1), and their spectral or 

concentration profiles were estimated: 36 

 

D = CST+E                                                                                                                                 (3-1) 

 

Where C contains information about the concentration and ST represents the absorbance spectral 

profiles of the pseudocomponents involved in the process. E is the noise, which can be described 

as the matrix of the residuals that contains the variance unexplained by CST and can be 

minimized by solving Eq. (3-1) iteratively. Figure 3-4 presents the structure and SMCR -ALS 

treatment for the individual data matrices (DIR is obtained from FTIR spectra recorded from the 

samples). 

 
Figure 3-4. The structure and SMCR-ALS treatment for the experimental data matrices. 
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To compute the number of species in the process, we used an empirical measure of ROD in 

terms of the errors of reconstruction of the data using the k orthogonal vectors obtained from the 

singular value decomposition of the data matrix: 37 

 

D = USVT                                                                                                                                                                                                    (3-2) 
 

Where U and VT represent the left and right singular vectors, respectively, and the diagonal 

values of S are the singular values of D. In this study, singular value decomposition projected k 

sample rows in the orthogonal uncorrelated space of m vectors, creating a 1764 x 27 matrix and a 

27 x 27 matrix of S (1764 refers to the number of wavenumbers resulted from FTIR, and 27 is 

the total number of samples). 

 

After determining the chemical rank, to compute the initial estimation of the spectral profile, the 

interactive self-modelling mixture of the individual data matrices D IR was used, and then it was 

optimized by using the constrained alternating least squares regression procedure.26 Non-

negativity was applied for the constraints of both the concentration and spectral profile, and the 

lack of fit (LOF) and the percentage of explained variance (R2) were applied for the evaluation of 

the quality of the SMCR-ALS: 

  

   LOF (%) =  100 ∗  √((∑ eij  
2   )/( ∑ dij  

2  ))                                                                                         (3-3) 

 

R2(%) = [1 − ((∑ dij  
2 − ∑ eij  

2 )/(∑ dij  
2 )]                                                                                (3-4) 

 

Where eij is the residual (the difference between the experimental and produced data from this 

algorithm), and dij is the data point of the experimental data matrix. Two different data matrixes 

(same number of elements) from the raw experimental data and principal component analysis 

reproduced were considered to compute the R2 and LOF. The data set that produced the values 

closer to zero and hundred, respectively, were better suited for the SMCR-ALS algorithm. In 

another step, the initial concentration was calculated by applying the Evolving Factor Analysis 

(EFA) approach, which was used as the input to SMCR-ALS. The resolved concentration matrix 

C from SMCR-ALS was used to develop the BN (Figures 3-7 and 3-9). All the steps and 

calculations were explained in detail in the previous paper.38 Figures 3-(6 &8) illustrate the 

results of resolving the data (D) by applying SMCR-ALS to the chemical ranks while trying to 

minimize the residual. 
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3.3.5. The Bayesian Networks 

 

 

In the previous step – the cluster analysis – we obtained enough variables to develop the most 

probable reaction network (BNs) representing the investigated chemical reactions. By 

developing the BNs, we wanted to create a graphical comprehensive framework to remodel the 

probabilistic dependencies between these random variables X = {X1, X2, . . . ,Xp}  as a directed 

acyclic graph (DAG), where G = (V,A). Each node vi ∈ V corresponds to a random variable Xi.
39 

 

Two steps are required to complete the task of fitting a BN. The first step, structure learning, is 

completed by identifying the graphical structure of the BN, and the next step, called parameter 

learning, includes the estimation of the parameters of the global distribution obtained from the 

previous step.40 To have an optimal BN, most of the time, more than one learning approach is 

applied. 

 

3.4. RESULTS AND DISCUSSION 

3.4.1. FTIR and 1HNMR Results  

 

After performing the hydrous pyrolysis experiments in the micro-batch reactor, samples were 

analyzed using two different spectroscopy techniques: FTIR and 1H NMR. Figure 3-1 illustrates 

the FTIR spectra representing a functional group compositions analysis of the products of LG 

and PEB pyrolysis, and Table 3-2 presents the main functional groups according to the data 

reported in the literature.41, 42  

 

By comparing the results, it can be seen that the major differences between samples provided 

from the pyrolysis of LG and PEB are those peaks located between 1500-1310 cm-1, which 

represent the presence of aromatics and compounds containing phenolic functional groups in the 

PEB samples. Furthermore, mono, polycyclic, and substituted aromatic groups are presented by 

the absorption peaks between 1500-1400 cm-1. However, in both cases, the other major oxygen-

containing organics could be alcohols, carboxylic acids, ketones, and aldehydes. 
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Table 3-2. The main functional groups from the pyrolysis of LG and PEB. 

Wave number(cm-1) Functional groups Compounds 

3500-3200(s,b) O-H stretch, H-bonded Alcohols, Phenols 

3300-3250(m) O-H stretch Carboxylic acids 

3100-3000(s) C-H stretch Aromatics 

3100-3000(m) =C-H stretch Alkenes 

3000-2850 (m) C-H stretch Alkanes 

1760-1665(s) C=O stretch Carbonyls(general) 

1760-1690(s) C=O stretch Carboxylic acids 

1740-1720(s) C=O stretch Aldehydes 

1715((s) C=O stretch Ketones, Saturated aliphatic 

1680-1640(m) -C=C- stretch Alkenes 

1500-1400(m) C-C stretch(in-ring) Aromatics 

1410-1310 C-O stretch Phenols 

1370-1350(m) C-H rock Alkanes 

1320-1000(s) C-O stretch Alcohols, carboxylic acids, esters, ethers 

1300-1100(w) C=O stretch Ketones 

1000-650(s) =C-H bend Alkenes 

725-720(m) C-H rock Alkanes 

 

s=strong, m=medium, w=weak, n=narrow, b=broad, sh=sharp  

 

Figure 3-2 represents the 1H NMR spectrum, and Table 3-3 shows the hydrogen distribution of 

1H NMR of the products from the hydrous pyrolysis of LG and PEB. Resonances between 9 and 

9.6 ppm were assigned to aldehyde structures. Therefore, the results from the hydrous pyrolysis 

of LG indicated the presence of a singlet peak around 9.60 ppm presenting an aldehyde with no 

neighboring carbon. This description is consistent with formaldehyde.27 Results from the 

pyrolysis of PEB also presented resonances between 7.0 and 8.0 ppm, which were attributed to 

aromatic structures, and resonances between 5 and 7 ppm, which were mainly considered 

phenolic or non-conjugated olefins. 
 

 

Table 3-3.1H NMR results of the products of the pyrolysis of LG and PEB. 

 
Type of hydrogen                                 Chemical shift1 
Aldehyde                         9.0-10.0 
Aromatic                                7.0-8.0 
Phenolic or olefinic proton                         5.0-7.0 

1=ppm  

 

3.4.2. Data Processing (Data Combination) 

 

After signals were produced, the next step was completed by combining the data points (spectra 

and curves) obtained from FTIR and 1H NMR spectrometers to produce a more reliable and 
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comprehensive data set than produced by each individual spectrometer. This step was completed 

using a low-level fusion procedure. Since the 1H NMR spectra were acquired using an offline 

NMReady at the frequency of 60 MHz, there was no need to reduce the magnitude. Signals 

obtained from the two different spectrometer devices had different intensities. Therefore, they 

needed to be normalized. Normalizing to unit length and maximum peak intensity were 

considered, and the latter approach was chosen. Normalization was followed by concatenation of 

the FTIR and 1H NMR signals to form the final fused signal. In the final spectrum, the first 

portion of the spectrum is the FTIR spectrum, and the next portion of the spectrum is the 1H 

NMR spectrum. Figure 3-5 represents the final fused spectrum, which contained 3528 and 3665 

data points from LG and PEB, respectively. All of these steps were implemented in MATLAB 

version 2018b and R version 3.5.1. The fused data were then processed and analyzed using 

standard multivariate processing methods, such as principal component analysis. The application 

of PCA was to assign data points in an order based on their contribution to the total variance of 

the data set. The final fused data sets were applied to develop the SMCR-ALS algorithms and the 

BNs. Finally, these results were compared with the ones provided by using data from only FTIR.  

 

Figure 3-5. The final fused spectra for (a)LG, and (b) PEB. 
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3.4.3. Developing SMCR-ALS algorithm for PEB Decomposition  

3.4.3.1. Data provided by FTIR Spectroscopy 

 

The SMCR-ALS results for LG decomposition based on FTIR data were described in the 

previous paper; 26 therefore, the next part will present the SMCR-ALS algorithm just for PEB. 

Applying Eq. (3-1) helped us achieve the goal of this stage, which was deconvolving the spectra 

obtained from the investigated reactions into the spectral profiles and concentrations of those 

active chemical species (pseudocomponents) with distinct spectra. The novelty of this stage was 

including an optimization method (the alternating least squares regression procedure) to enable 

SMCR to incorporate any data-specific constraints. Figure 3-6 shows the result of developing 

this algorithm by using the data points provided by the FTIR technique, and Figure 3-7 presents 

the reaction network between these pseudo components. 

 
Figure 3-6. SMCR-ALS results for PEB conversion (data from FTIR) representing the resolved 

spectra for A1, A2, A3, and A4 by focusing on the major peaks. 
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Bear in mind that to have an appropriate interpretation regarding the spectra collected from the 

above algorithm; A1, A2, A3, and A4 (representing the first, second, third, and forth 

pseducomponents) should be considered to represent the actual molecules. To develop the 

reaction network, both greedy research methods (tabu and hill climbing) were used for the 

concentrations of A1, A2, A3, and A4, and both methods provided the same results (Figure 3-7). 

The one explanation for this BN could be that the first cluster (A1) represents pseudocomponents 

mostly containing phenolic groups (the absorbance of peaks between 1410 and 1310 cm-1). 

Cluster 2 (A2) can been identified as aromatic compounds by C-C in-ring stretching vibrations 

with absorbance peaks from 1500 to1400 cm-1, or C-H stretching vibrations at 900-675 cm-1. 

Cluster 3 or A3 (indicating compounds with carbonyl groups such as acids, aldehydes, and 

ketones with absorbance peaks around 1320-1000 cm-1) can be produced by the cleavage of C-O-

H and C=C bonds from clusters 1 and 2. Finally, cluster 4 (A4) can represent pseudocomponents 

holding alkene groups (1650-1585 cm-1, and 3100-3000 cm-1) which can be produced by ring 

opening from cluster 2 or bond cleavage from cluster 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-7. The BN obtained from SMCR-ALS for PEB decomposition. 

 

The next Table (3-4) illustrates the strength values of each arc in the tabu and HC search-based 

BN learning approach. These values are valuable for two reasons. First, they show the strength of 

each arc (the highest negative number presents the most probable pathway or dependency). 

      

Clust 1 Clust 2 

Clust 3 

Clust 4 
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Second, they have the benefit of being automatically updated as soon as the process receives the 

new information. According to the data provided by this table, the arcs between clusters 2 and 4(-

24.62), and clusters 3 and 4 (-15.19) have the strongest dependencies or the highest probabilities 

for updating themselves. In other words, by removing these arcs, the overall score of the network 

will be decreased automatically by 24.26 and 15.19, respectively. 

Table 3-4. The strength values of each arc in the tabu and HC search-based BN. 

From To Arc strength 

Cluster 2 Cluster 3 -8.01 

Cluster1 Cluster 3 -7.81 

Cluster 2 Cluster 4 -24.62 

Cluster 3 Cluster 4 -15.19 
 

As mentioned earlier, the second part of developing the BN is parameter learning aiming to 

quantify the uncertainty regarding the model which had been already developed. This step was 

completed based on the Markovian property which explains in a single path, the conditional 

probability of a parent (the ancestor) is the only one who is responsible for its child (the 

descendent). Hence, the conditional probability distribution of each group is used to develop a 

model for the mean value of the intensity. This value is determined by calculating the root mean 

square (RMS) value of the absorbance intensities of the group. To describe ϴ which represents 

the set of parameters of the network, two constraints have been defined: Xi and μi.. The former 

one has been considered as the intensity value of the ith variable (i= 1,2,3), and the latter one as 

the mean value of Xi. Considering these conditions, the conditional probability distribution of 

each group has been shown in the pseudokinetic equations 3-5 to 3-8, and the model describing 

mean intensity can be found in the pseudokinetic equations 3-9 to 3-12. 

P(X1) ~ N (μ1, 0.36 2)                                                                                                                 (3-5)  

P (X2) ~ N (μ2, 0.41 2)                                                                                                                (3-6)  

P (X3 |X1, X2) ~ N (μ3, 0.23 2)                                                                                                     (3-7) 

P (X4 |X1, X3) ~ N (μ4, 0.10 2)                                                                                                    (3-8) 

μ1 = 0.36                                                                                                                                      (3-9) 

μ2 = 0.29                                                                                                                                     (3-10) 

μ3 = 0.90 – 0.64μ1 -0.54μ2                                                                                                         (3-11) 

μ4 = 0.80 – 0.85μ1 -0.50μ3                                                                                                          (3-12) 
 

The last four equations (3-9 to 3-12) not only indicate how much the mean value of the 

probability distribution of each cluster is related to others, but also make it possible to monitor an 
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online process in real time analysis. The latter task can be done by manipulating and controlling 

the process variables. 

 

3.4.3.2. Data Acquired by the Data Combination Method 

 

In the next step, the data set obtained by combination of the FTIR and 1H NMR spectra from the 

PEB process was used to develop the SMCR-ALS algorithm. Figure 3- 8 presents the results. At 

first glance, there are still 4 pseudocomponents. Along with weak C=O stretching vibrations with 

absorbance peaks from 1300 to 1100 cm-1, representing ketones or pseudocomponent one, there 

are three absorbance peaks in different regions presenting A2, A3, and A4. The absorbance peaks 

between 3100 and 3000 cm-1 (=CH str) can represent the presence of alkenes (A2), and the 

confirmation of the presence of compounds containing mostly phenolic groups (A3) can be found 

by the absorbance peaks located between 1410 and 1310 cm-1. Finally, the strong absorbance 

peak located at 2850 cm-1 confirms the species with aldehyde groups (C-H str) or A4.  

 

Figure 3-8. SMCR-ALS results for PEB conversion (data from data combination technique) 

representing the resolved spectra for A1, A2, A3, and A4, focusing on the major peaks. 
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Applying the BN developed the reaction network shown in Figure 3-9 between A1, A2, A3, and 

A4. This reaction network showed that the compounds mostly containing phenolic groups can be 

converted to alkenes and the major oxygen-containing organics, including ketones and aldehydes 

(a detailed explanation is provided with Figure 3-12). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-9. BN obtained for pseudocomponents from SMCR-ALS results for PEB 

decomposition by using fused data points. 

 

According to the Table 3-5, the highest dependency or the most probable pathway (in this BN), 

belongs to the arc showing the conversion of compounds with phenolic functional groups to 

aldehyde groups (-7.67). 

Table 3-5. The strength values of each arc in the tabu and HC search-based BN. 

From To Arc strength  

Cluster 3 Cluster 2 -1.19 

Cluster 3 Cluster 1 -0.86 

Cluster 3 Cluster 4 -7.67 
 

To better understand the second part of BN, which is parameter learning, equations 3-13 to 3-16 

present each group’s conditional probability, and the models for these groups’ mean intensities 

are shown in equations 3-17 to 3-20. 

 

         

Clust 3 

Clust 1 Clust 2 Clust 4 
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P (X1) ~ N (μ1, 0.26 2)                                                                                                               (3-13)               

P (X2 |X1) ~ N (μ2, 0.57 2)                                                                                                         (3-14) 

P (X3 |X1) ~ N (μ3, 0.28 2)                                                                                                         (3-15) 

P (X4 |X1) ~ N (μ4, 0.19 2)                                                                                                         (3-16) 

μ1 = 0.97                                                                                                                                    (3-17) 

μ2 = 0.41 – 0.44μ1                                                                                                                     (3-18)                                                                                                                                      

μ3 = 0.75 – 0.56μ1                                                                                                                     (3-19) 

μ4 = 0.89 + 0.35μ1                                                                                                                     (3-20) 

 
 

3.4.4. Three- cluster Bayesian Network for LG and PEB Decomposition  

 

As mentioned in the previous paper, to develop an ultimate BN, three different methods – 

including two score-based (tabu and hill climbing) and one hybrid structure learning method 

(max–min hill climbing) – were applied.26 All three learning structure methods (using data from 

FTIR) developed the same reaction networks with three clusters for both LG and PEB 

decomposition. Since the interpretation for LG decomposition using FTIR data was explained in 

the previous paper,26 for now, we will mostly focus on PEB decomposition.  

 

The chemical reactions and the physical processes in the thermochemical processes of lignin, 

including pyrolysis, gasification, and hydrothermal carbonization, are very complex and based 

on many factors.21 Among different kinds of links in lignin, which need different energy to 

crack, aromatic units are usually bonded by interunit of C-C and C-O aryl ether bonds, including 

β-O-4 and α-O-4 linkages.43 Between these two linkages, the C-O linkage is easier to break down 

due to its lower bond energy.44     

 

The main products obtained in the pyrolysis of lignin are poly-substituted phenols, mono- 

phenols (phenol, syringol, and catechol), aromatic compounds, gases (H2, CH4, C2H4, C2H6, CO, 

and CO2), and volatile compounds (acetone, acetaldehyde, and methanol).45 Based on several 

research studies, the dissociation of the weakest linkages in lignin (the α-O-4 and β-O-4; BDE = 

50-65 and 60-70 kcal. mol −1, respectively) seemed to be responsible for forming these 

compounds. 46  

 

In this study, PEB, with the bond energy of the β-O4 bond of about 69 kcal.mol-1, was chosen as 

the model compound for the lignin. According to Figure 3-10, at first glance, the phenoxy and 2-

phenethyl radicals are expected to form from PEB decomposition. However, new pathways are 

possible. Britt et al.47 proposed a Maccoll-like pathway involving intramolecular hydrogen 
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transfers via a six- and four-centred transition state, which results in closed-shell species (styrene 

and phenol). On the other hand, a Hoffman or retro-ene mechanism was proposed by Klein and 

Virk,48 which can result in forming styrene and 2,4-cyclohexadienone. However, distinctions 

between these pathways are difficult to determine for two reasons: phenol and styrene can also 

be produced through the elimination or abstraction of phenoxy and phenylethyl radicals (the 

products of radical channel) in a reactor, and 2,4-cyclohexadienone and phenol can undergo 

rapid isomerization. 

 
Figure 3-10. Pathways considered for the unimolecular decomposition of PEB. 

 

According to Figure 3-11, the reaction networks for both LG and PEB are the same. However, it 

needs to be reminded that wavenumbers grouped in each network represent different functional 

groups. 

 

Figure 3-11. The BNs for LG and PEB conversion, data from (a) FTIR and (b) data combination. 



63 
 

According to these reaction networks, apparently by breaking down the β-O4 linkages, phenolic 

dimers such as bibenzyl and 2-benzylphenol can be formed through the hydrous pyrolysis of 

pseudocomponent 1 (PBE). To successfully describe these experimental observations, one 

explanation could be the initiation of a free-radical reaction pathway by the homolysis of the β-

O4 bond.3 Per the proposed reaction network shown in Figure 3-12, cluster 2 (containing mostly 

phenolic groups) can be the result of hydrogen abstraction by the phenoxy radicals from 

homolysis.49 It has to be kept in mind that due to the relatively stable formation of the phenoxy 

and benzyl radicals,  PEB homolysis needs to be energetically favored. An unpaired electron 

could be responsible for resonance stabilization because the π bond is adjacent to single electrons 

in these radicals. Finally, lots of organic compounds, such as aromatics, alcohols, aldehydes, 

ketones, and alkenes – which were identified by absorbance peaks between 1900 and 1000 cm−1 

– could be produced by the cleavage of C-O-C and C-O bonds and classified in cluster 3.  
 

 
Figure 3-12. Proposed reaction network for PEB decomposition. 

From the pyrolysis of the cellulosic biomass, a potential product could be LG (1, 6-anhydro-b-D-

glucopyranose), which was used in this study. Transglycosilation is a common process in this 

reaction, even though there is a disagreement between its homolytic vs. heterolytic mechanisms. 

Through the thermal decomposition of LG, the glycosidic 1, 6-acetal bond can undergo ring 

opening, which can be accelerated in the presence of acidic catalysts in the heterolytic 

mechanism. Under the investigated conditions for the pyrolysis of LG, regardless of which data 

were used, one of the main final products was formaldehyde (cluster 3), which has a consistent 

agreement with the literature. Li and his colleagues used IR spectroscopy to measure the 



64 
 

formation of formaldehyde (CH2O) and some gases, such as carbon monoxide (CO) and carbon 

dioxide (CO2), as the major products of the thermal degradation of biomass, and they confirmed 

that the major precursor of forming formaldehyde was LG.50 Based on Figure 3-11, it also can be 

concluded that glucose can be considered an intermediate product for this reaction. 

 

Table 3-6. The strength values of each arc in the tabu, HC, and MMHC search-based BN (data 

provide by the combination method). 

From To Arc strength 

Cluster 1 Cluster 2 -7.30 

Cluster 2 Cluster 3 -7.15 
 

To complete the second part of the BNs, which is parameter learning, equations 3 (21-23) and 

3(24-26) represent each group’s conditional probabilities and mean intensities, respectively. 

 

P(X1) ~ N (μ1, 0.0028 2)                                                                                                             (3-21)  

P (X2 | X1) ~ N (μ2, 0.003 2)                                                                                                      (3-22)                                                                                                              

P (X3 | X2) ~ N (μ3, 0.003 2)                                                                                                      (3-23) 

μ1 = 0.023                                                                                                                                 (3-24) 

μ2 = 0.064 +1.06 μ1                                                                                                                  (3-25) 

μ3 = 0.14 +0.74μ2                                                                                                                     (3-26)  

 

3.4.5. Six-cluster Bayesian Network for PEB Decomposition 

 

In addition to a reaction network that included three clusters (Figure 3-11), all three BN 

approaches provided the same results while considering six clusters (Figure 3-13). Generally, gas 

hydrocarbons, such as such as CH4, CO2, and CO (cluster 6), are the final products from lignin or 

PEB pyrolysis. Some researchers such as Huang et al.51 have attempted to theoretically 

investigate the mechanism of the formation of these gases during the pyrolysis of lignin by 

applying density functional theory. Based on their proposal, these gases could be the results of 

concerted reactions, decarboxylation of phenyl (p-hydroxyphenyl, guaiacyl, and syringyl) formic 

acid, and decarbonylation of phenyl (p-hydroxyphenyl, guaiacyl, and syringyl) acetaldehyde, 

respectively. Other researchers such as Ferdosian et al. 52 tried to identify the different kinds of 

products in the pyrolysis of PEB. They confirmed that because of the hydrogen-donor/radical 

balance, at low temperature (same as was used in this study), volatile liquids, such as aldehydes 
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(acetaldehyde) and ketones (acetone), could be considered the major products (cluster 4), as 

could alcohols like methanol (cluster 3). Furthermore, cluster two can be represented by 

monophenols (phenol, guaiacol [o-methoxyphenol, G–H], and catechol [o-dihydroxybenzene]) 

and other polysubstituted phenolic compounds. Finally, cluster 5 could be classified as 

carboxylic acids, such as formic acid. 

 

 

 

Figure 3-13. Six-cluster BNs for PEB conversion, data from (a) fusion method, and (b) FTIR. 

Table 3-7. The strength values of each arc in the HC search-based BN (PBE, fused data, and 6 

clusters). 

From                To Arc strength  

Cluster 1 Cluster 2 -1.96 

Cluster 1 Cluster 3 -11.57 

Cluster 1 Cluster 4 -59.41 

Cluster 2 Cluster 4 -3.94 

Cluster 2 Cluster 5 -35.62 

Cluster 3 Cluster 4 -2.01 

Cluster 3 Cluster 6 -0.29 

Cluster 4 Cluster 5 -43.37 

Cluster 5 Cluster 6 -4.45 
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The conditional probability distribution of each group is described in equations 3(27-32), and the 

model for the groups’ mean intensities is presented in equations 3(33-38). 

P(X1) ~ N (μ1, 0.05 2)                                                                                                                (3-27) 

P (X2 |X1) ~ N (μ2, 0.01 2)                                                                                                         (3-28) 

P (X3 |X1) ~ N (μ3, 0.003 2)                                                                                                       (3-29) 

P (X4 | X1, X2, X3) ~ N (μ4, 0.002 2)                                                                                          (3-30) 

P (X5 |X2, X4) ~ N (μ5, 0.009 2)                                                                                                (3-31) 

P (X6 | X3, X5) ~ N (μ5, 0.009 2)                                                                                                (3-32) 

μ1 = 0.087                                                                                                                                  (3-33) 

μ2 = 0.14 + 0.15μ1                                                                                                                     (3-34) 

μ3 = -0.009 + 0.061 μ1                                                                                                               (3-35) 

μ4 = 0.004 + 0.75 μ1 -0.12 μ2 -0.52 μ3                                                                                      (3-36) 

μ5 = -0.014 + 2.32 μ2 – 1.34 μ4                                                                                                 (3-37) 

μ6 = 0.038 – 0.99 μ3 + 0.16 μ5                                                                                                   (3-38) 
 

 

 3.5. DISCUSSION 

 

One of the major goals of this study was to investigate whether data fusion or combination can 

provide better data points as the input for developing the reaction network. After comparing the 

BNs developed from the FTIR and fused method, it can be concluded that the latter presented 

two major improvements. According to Figure 3-13(b), there are two arcs pointing out from 

clusters 2 and 3 to clusters 6 and 5, respectively. These arcs represent the direct conversion of 

compounds mostly containing phenolic groups to liquefied gases and producing carboxylic acids 

from alcohols. While several studies have confirmed the formation of gases, such as CO/CO2, 

from phenolic compounds and acids from compounds with carboxyl groups through high-

temperature and catalysts, such as Rh/Ce0.13Zr0.83La0.04O2 or the ruthenium complex 

[RuCl2(IPr)(p-cymene)], 3,53 there is no direct evidence for these reactions under the investigated 

conditions (low temperatures and in the absence of those catalysts) in this study. Fortunately, the 

BNs provided from data fusion (Figure 3-13(a)) have outweighed these weaknesses and agree 

with the existing literature.54 

 

By comparing the BNs (3 clusters) developed for LG decomposition and applying data from 

FTIR and fused data (Figure 3-11), the latter method provides the result that is more consistent 

with the results provided by the density functional theory (DFT). According to the results 

provided by this technique, since the activation energy required for dehydration is less than ring 
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opening for breaking C-O and C-C, converting LG to glucose through hydration is more 

favorable than converting it directly to the final products. 55 Many studies also confirmed the 

formation of glucose from the degradation of LG.4, 56 These reasons confirm that data 

combination or data fusion can improve the results of reaction networks implemented by the BN. 

 

In terms of generating nodes for the development of the BNs during online monitoring, the 

SMCR technique proves better in tracking chemistry changes across process conditions as 

compared to the BHC; as it resolves the concentration changes of pseudocomponent classes 

alongside returning its spectral signatures. However, BHC which groups the wavenumbers based 

on prior knowledge performs better in offline mapping to real chemistry without any background 

constraints on how chemistry changes over different process conditions. On the other hand, when 

it comes to develop a useful algorithm for monitoring online and controlling of multi-mixture 

reactions such as thermochemical conversion of biomass, SMCR algorithms can be the answer. 

Figure 3-14 shows the concentrations of A1, A2, A3, and A4 over the time of the reactions. 

 

 
Figure 3-14. Corresponding concentration for pseudo components A1, A2, A3, and A4. 
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3.6. CONCLUSION 

For the past few decades, there has been an increased interest in understanding and developing 

the pyrolysis pathways needed to obtain bio-oil. As a result, it seems necessary to have a better 

understanding of the reaction mechanism of biomass pyrolysis. To do this, there is still a 

challenge to elucidating the mechanism due to the high complexity of biomass structure and the 

process involved. This is why this research focused on the decomposition of LG and PEB (due to 

their simple structures and similar pyrolysis products) to better understand the pyrolysis process 

of cellulose and lignin. Hence, LG and PEB were investigated under fifty-four different 

conditions of hydrous pyrolysis reactions, and then the products were analyzed using FTIR and 

1HNMR spectroscopy techniques. Moreover, data mining and data fusion were applied. The 

former method was applied as a tool for data clustering and developing the BNs, and the latter 

was used as a combination of multiple sources to obtain improved or more relevant information 

that could contain the necessary aspects for developing the reaction networks for the investigated 

process. Applying three different Bayesian approaches (data provided by the combination 

method from FTIR and 1HNMR) for both LG and PEB provided the same results considering 

three clusters, which agree strongly with the literature. Under the investigated conditions, LG can 

convert to glucose, which is the precedent for another cluster involving aldehydes/acids (e.g., 

formaldehyde). Regarding PEB decomposition, the final products (aldehydes/acids) can be 

produced from intermediate compounds containing mostly phenolic groups. In addition, an 

SMCR-ALS algorithm was developed for automatic resolution of spectra provided by online 

spectroscopic techniques which could be used for predicting the effect of intervention 

qualitatively and quantitatively. This algorithm resulted in deconvolving the whole spectrum into 

four pseudocomponents for this reaction (ROD=4). Then, the causality map between these 

pseudocomponents were traced and mapped. While interesting, the real value of this work is in 

the perception of the chemistry by applying data mining and data fusion techniques. 
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4.1. BACKGROUND 

 

Different forms of fossils fuels such as coal, natural gas, and petroleum, currently, are the main 

suppliers of energy.1 However, researchers have increasingly been investigating alternative 

renewable energy sources such as hydroelectricity, solar, or biomass. The most important 

reasons behind this are: (a) reducing environmental impacts related to fossil fuels (b) increasing 

and securing the energy sources and (c) preserving and increasing agricultural activities.2 Among 

various kinds of renewable sources, biomass has received lot of attention because it is the 

world’s most abundant such resource.3 

Biomass as an organic compound mostly contains extensive chains of carbon atoms connected to 

macromolecules. The major components of biomass which are cellulose, hemicellulose, and 

lignin, are the results of the chemical linkages between these carbons and other elements such as 

oxygen or sometimes nitrogen or sulfur. Cellulose (40-50%) is a homogeneous polymer that 

consists of dehydrated glucose molecules linked by β-1, 4-glycoside linkages (C6H10O5) n. In 

contrast, hemicellulose (15-30%) with an amorphous and heterogeneous structure consists of a 

group of monomers including glucose, glucuronic acid, arabinose, xylose, mannose and 

galactose. Hemicellulose also acts as a bond between cellulose and lignin. Lastly, lignin with 

different phenylpropane units has a very complex three-dimensional structure. Interestingly, 

these units are linked by (C-C) or (C-O) bonds linked to some side chains like methoxy.4 

Among different methods for biomass conversion, thermo-chemical and bio-chemical have been 

the two most important processes. Hydrous pyrolysis or hydrothermal liquefaction (HTL) is a 

method of the former technique in which air is absent and hot water acts as a medium. Amongst 

different advantages linked to this process, safety, high quality of the products and the maximum 

liquid yield are the most significant ones.5 

In a complex system such as HTL, one of the ultimate goals is to understand how the behavior of 

the system or reaction networks could be affected by the interactions at the molecular level or by 

network topology.6 To this end, an accurate model is required to develop the reaction network 

and reveal essential characteristics of the investigated system.7 However, encoding the presence 

of multispecies in a complex system along with developing the causality between these groups is 

considered a major challenge for researchers.8 This is why for the past few decades, analytical 

https://www-sciencedirect-com.login.ezproxy.library.ualberta.ca/topics/materials-science/coal
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science has focused and made great progress in developing mathematical approaches to trace and 

map the complexity of these systems.  

Currently, Granger and the Bayesian (BNs) causality detections are the two main approaches to 

interpret the causal relationships between elements (genes or chemical species) of a group of 

multispecies in a data set.9, 10 The aim of the former method’s (initially developed by Wiener and 

Granger) is to determine the causal impact of one time series on another by predicting how the 

knowledge of  a time series can be improved with the information of the second one. This 

approach has the benefit of finding the frequencies responsible for interactions of those elements 

by having a corresponding frequency domain decomposition.11 In contrast, the Bayesian network 

(often applied to statistical data) represents the causal relationship among the nodes by using the 

joint probability distribution which is factorized in terms of a Markovian blanket. There are some 

rationalizations why the BN is a more appropriate technique for this study. First, this learning 

method is more useful when it comes to dealing with high dimensional data sets with fewer 

samples (applicable to the conditions of this study, with 1764 wavenumbers or variables and 27 

samples). 12 Second, BNs approach is computationally tractable and general enough to be 

applicable to real processes, such as combustion, petroleum refining and HTL process.13 

In this study, the required data for developing the BNs was collected by either a single 

spectroscopic technique such as Fourier transform infrared spectrometry (FTIR) or multiple 

techniques such as Proton nuclear magnetic resonance (1H NMR) and FTIR combined. Then, a 

low-level data fusion technique was applied to combine data sets collected from FTIR and 1H 

NMR as if they were a single signal. The goal of this step was to utilize, analyze and collect 

more comprehensive measure resulting from different types of sources in order to ultimately 

capture more information and characteristics of the research object.14 In general, multi-sensor 

data fusion offers substantial statistical advantages (via redundant observations) compared to a 

single data source. This can happen by increasing the accuracy while observing and 

characterizing a quantity (or an objective) from different points of view. 15 

In data analyzing field, spectroscopic techniques are considered useful. However, there are some 

concerns about their interpretations due to their high dimensional structure that results in 

overlapping between their data points.16, 17 The second goal of this study was to resolve this 

problem by applying a family of chemometric methods such as multivariate curve resolution 
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techniques called self-modeling multivariate curve resolution (SMCR).18 This approach is a 

mathematical technique to obtain the required necessary information related to the objects of 

interest by resolving the whole spectrum into spectral profile and concentration of pseudo-

components changing during the reaction 19 and it was initially introduced by Lawton and 

Sylvester for multivariate imaging data analysis.20 Resolved spectral profiles and concentrations 

of pseudo-components can be considered as a tool for on-line monitoring in real time analysis 

and developing the most likely reaction network for biomass conversion, respectively.  

 

4.2. MATERIALS  

More than 80% of biomass is made of cellulose and lignin. Therefore, in this study, a physical 

mixture (PM) of levoglucosan (LG) and 2-Phenoxyethyl benzene (PEB) were utilized to represent 

cellulose and lignin in biomass. LG can be considered as an anhydosugar which is the result of the 

thermal decomposition of cellulose (150- 350 °C )21 and its molecular structure consists of three 

hydroxy and two ether groups connected to a pyranose ring. 22 PEB (C14H14 O) can be considered 

as a model compound for lignin by representing the dominant ether linkage in lignin.23As shown 

in Figure 4-1, the methodology of this research mostly includes data acquisition and data 

processing in which each step will be explained in detail in the following sections. 

 

Figure 4-1. Proposed research methodology. 
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4.3. DATA ACQUISITION  

 

For data collection, a physical mixture of LG and PEB (1:1 weight ratio) went through the 

twenty-seven different conditions of hydrous pyrolysis reactions in non-catalyzed conditions, 

and in the presence of catalysts- sulfuric acid (0.05 M) and sodium hydroxide (1 M). In all 

conditions, the volume ratio of the physical mixture to the medium was 1:10. Supplementary 

Table 4-A-1 and Figure 2-1 present the variation in ranges of temperature and residence time in a 

stainless-steel micro batch-reactor and the experimental setup for the hydrous pyrolysis of the 

physical mixture respectively.  

After hydrous pyrolysis, samples were ready for characterization. In this stage, two different 

spectroscopic techniques (FTIR and 1H NMR) were applied. FTIR was chosen since it has the 

ability of fast measurement besides providing information related to asymmetric stretching of 

bonds. Therefore, the spectra were collected using an ABB MB 3000 FTIR spectrometer, at 2 

cm-1 resolutions over the spectral range 4000 to 600 cm-1 and the results are shown in Figure 4-2. 

 

Figure 4-2. Twenty-seven FTIR spectra of HTL of the physical mixture (PM) of LG and PEB. 



78 
 

To determine the entire chemical structure of samples, a magnetic resonance imaging technique 

called 1H NMR was used. This one-dimensional technique takes advantage of distinguishing 

between aromatic and saturated chains of alkanes by generating spectra from unique proton 

environments. NMReady at the frequency of 60 MHz with a resolution of FWHM<1.0 Hz (20 

ppb) was used for all 1H NMR measurements and data acquisition (Figure4-3). To provide an 

appropriate interpretation, these steps were followed by reviewing some handbooks of 

spectroscopic data.24, 25 

 

Figure 4-3.1H NMR spectra for PM conversion in the presence of SCW and NaOH. 

 

 

4.4. DATA PROCESSING 

 

Over the past few decades, data fusion and data mining have been applied extensively for 

obtaining meaningful information from raw data. Data fusion was employed focusing on 

combining data from multiple sources to obtain improved and more reliable information 

compared to the result from a single source. Data mining has been used to extract implicit and 

useful information from investigated datasets by clustering their data points (by finding a 

common control unit) and then predicting the outcomes. 
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4.5. DATA COMBINATION 

The usage of integrating different sources to explore a situation is very old, using sound and 

sight to cross the road. However, its application in digital information sources is somewhat new. 

In the 1980s, for the first time in signal processing, the idea of data fusion was introduced in 

defense applications (target identification or land to air defense). Later, its usage in different 

fields (medical diagnosis or equipment or process monitoring) has rapidly increased.26 

The US Department of Defense Joint Directors of Laboratories Data Fusion Subpanel defines 

data fusion as a multi-level technique, which combines information and data from different 

sources in order to get more accurate results, and it has many applications in dealing with 

estimation, correlation, fault detection, monitoring and controlling the system. 27 It has also been 

investigated and confirmed by many researchers that combined models provide fewer errors and 

better outcomes compared to the individual models. 28,29 To this end, data fusion (integrating IR 

with NMR) has been applied and confirmed improved results in petroleum properties. 15 

In a common data fusion classification, there are two kinds of fusion: a fusion of data types and 

fusion of data relations. The former method, which is more practical for dissertations or journal 

articles, takes the advantages of merging different data types into the same analysis entity. 

Contrary, in the latter method, the focus is on identifying and characterizing the relationships 

between individual objects by merging these multiple data relations into a new unit. 14 Morris et 

al. mentioned that to fully understand a research field or process, there is a need to observe and 

analyze the relationships from different angles since each individual relationship provides only a 

fraction of the whole picture. 30 Based on this classification, this study used the integration of 

multiple relationships to contribute to a comprehensive understanding of the PM decomposition. 

 

Based on the abstraction levels in the data, this research applied a low-level fusion method 31 by 

importing the raw data sets which had been already provided by FTIR and 1H NMR into the 

fusion algorithm. At the lowest level, preprocessing was accomplished by reducing the amount 

of data by scaling and normalizing them to the maximum peak intensity while retaining the 

useful information. Then, newly developed data points were connected to form the final data set, 

which had a lower signal to noise ratio implying that data is more accurate compared to 

individual data sets. 
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ss 

Figure 4-4. Proposed steps for data combination.32 

 

4.6. BAYESIAN HIERARCHICAL CLUSTERING (BHC) 

 

Clustering is one of the most important and applied techniques in data mining. In many 

clustering algorithms, Euclidean distance is considered as the basic determination for similarity 

between objects (samples) in a group; hence, the probability of an object belonging to a specific 

group is either one or zero. This approach brings up issues while dealing with objects made near 

the border of a group. On the other hand, BHC, based on Bayesian probabilistic principles, offers 

significant advantages, such as higher accuracy in clustering samples that are close to the borders 

of clusters. 33 The Bayesian clustering approach was applied in this study for two reasons. First, 

in pattern classification, most of the popular classifiers are based on maximizing the 

posterior probability which is the core principle of the Bayesian approach.34  Second, BHC is an 

appropriate method for dealing with a high dimensional data set (the IR and data fusion samples 

had 1764 and 3665 variables, respectively).12 

For these reasons, this study proposed a BHC algorithm that can maximize hidden variables by 

marginalizing the random parameter irregularity in large data sets to improve the precision of the 
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results by accurately depicting the information. All steps were explained in more details in 

previous paper.35 

 

4.7. SELF- MODELING MUTIVARIATE CURVE RESOLUTION- ALTERNANTING 

LEAST SQUARE (SMCR-ALS) 

 

The second goal of this study was to resolve the issues related to interpreting the high 

dimensional set collected by FTIR and 1H NMR, as well as develop an algorithm for online 

monitoring and controlling of a multi-mixture process such as biomass conversion in the real-

time analysis. To achieve these goals, SMCR-ALS technique was applied which is one of the 

most popular techniques which allows mathematical resolution of the mixture into spectral 

profiles and concentrations of pseudo-components in the mixture.36, 37 Differently put, the aim of 

this step was to develop individual factors for single species in a multi-component mixture by 

developing a mathematical data decomposition procedure which requires only some general 

information related to the variables (non-negativity of spectral profiles and concentrations).20  

This method takes the advantages of requiring less costs, chemical efforts and time, 38 and as its 

terminology (self-modeling) shows, it does not need prior information about samples or 

connecting the data to resolved pseudo-components.18 Moreover, this study develops an 

algorithm for online monitoring and controlling of a multi-mixture process such as biomass 

conversion within a decomposition framework consistent with the Beer’s law that adds physical 

significance to the interpretation of pseudo-component spectra and concentrations, all without 

any prior knowledge. 

All the steps, equations and procedures were explained in detail in the previous papers.35 The 

core idea behind SMCR bilinear model is that the data matrix D can be obtained from the 

following multivariate measurements:  

D = DSMCR + ESMCR = CST + ESMCR                                                                                                                                          (4-1) 

Where the reconstructed data matrices, row vector, column vector and the residual matrix are 

presented by DSMCR, C, ST, and ESMCR, respectively. 

 



82 
 

4.8. THE BAYESIAN NETWORK (BN) 

Recently, data sets with large variables and only a few samples (same as data sets obtained in 

this study) have become very common, consequently, many researchers believe that the Bayesian 

approach is the best choice to develop a reaction network in these cases. 39, 13 BNs are graphical 

models including nodes or vertices connected by directed edges or arcs in an acyclic manner. 

Hence, BNs are based on a set of random variables X = {X1, . . . , XN } which each X presents a 

node of a directed acyclic graph (DAG) and arcs present direct dependency between these 

variables (Xi).  

To develop a BN, two steps are required: structure and parameter learning. To learn these steps 

from a data set, the space(s) of all possible networks are searched by algorithms that make 

locally optimal choices based on maximizing the likelihood or scoring function (Equation 4-2). 

The graph presenting the maximum score will be chosen as the most likely network to present 

the data set. In other words, structure learning includes determining the DAG that presents the 

dependency relationship structure of the data and  parameter learning involves in estimating the 

parameters of the global distribution obtained from structure learning.40 To have an optimal BN, 

this study applied three different learning approaches- tabu, Hill climbing (HC) and Maximum-

minimum hill climbing (MMHC). 

The following Bayesian information criterion (BIC) was applied for scoring function in which 

the dimensions of the graph (d), number of samples by (n) and finally, last term was added to 

reduce the effect of overfitting:  

𝐵𝐼𝐶 = ∑ logPxi (Xi |Π xi) −
𝑑

2
 log (𝑛

𝑛

𝑖=1
)                                                                             (4-2)   

 

4.9. RESULTS AND DICSUSSION                                                                

4.9.1. FTIR, 1H NMR and Final Fused Spectra 

Bio-oil obtained from HTL of the physical mixture of LG and PEB was characterized for various 

functional groups using a simple, fast and reliable method such as FTIR.41 In total, twenty-seven 

processed samples were analysed for the physical mixture, and the handbook of spectroscopic 

data was used to identify the functional groups.42 
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The functional groups and related classification of compounds are listed in Table 4-1. The 

oxygenated compounds (O ̶ H group) are presented by absorption peaks at 3200–3600 cm-1. 

Furthermore, methyl (alkanes) and methylene (alkenes) groups are indicated by peaks at 2800 

and 3000 cm-1 (C ̶ H stretching vibrations); and 1350 and 1475 cm-1 (C ̶ H deformation 

vibrations), respectively. 43  Alkene also is presented by the peak 1656 cm-1 (C=C stretching 

vibrations). The presence of ketones, carboxylic acid or aldehydes groups is confirmed by 

absorbance at 1700 cm-1 (C= O deformation vibrations). Moreover, the acid compounds are 

represented in the range of 1210-1320 cm-1 (C ̶ O stretching vibrations).  In addition, aromatic 

compounds in bio-oil are observed by the peaks appearing in the range of 1475–1525 cm-1 (C=C 

ring stretching) and 700 and 900 cm-1(C-H deformation). Finally alcohols, phenols, ethers and 

esters are indicated by the peaks between 1000 and 1200 cm-1 (C ̶ O stretching vibrations).44 

 

Table 4-1: FTIR bands and functional groups of bio-oil obtained from HTL. 

Frequency  

range, cm-1 

Group Class of  

compound 

3600-3200 O-H stretching Polymeric O-H 

3050-2800 C-H stretching Alkanes 

1750-1690 C=O stretching Ketones, aldehydes, 

Carboxylic acids 

1680-1570 C=C stretching Alkenes 

1525-1475 C=C ring stretching Aromatics 

1475-1330 C-H deformation Alkanes 

1280-1200 C-H stretching Aromatics 

1200-1000 C-O stretching Alcohols, esters, ethers 

885 C-H deformation Aromatics 

750 Adjacent C-H 

deformation 

Aromatics 

696 Out of plan =CH 

deformation 

Alkenes 

615 Out of plan O-H 

deformation 

Polymeric O-H 

 

Another analysis was carried out using 1 H NMR to have a clearer understanding of the 

distribution of species in the whole bio-oil. Consequently, the obtained 1H NMR spectra 

provided complementary functional group information to the FTIR spectrum. Figure 4-4 

illustrates the spectra confirming the presence of aliphatic protons, aromatic, olefinic, alcohols 

and aldehyde groups for the bio-oil samples in the presence of SCW and NaOH across nine 

different conditions. Aliphatic protons attached to at least two carbon atoms (-CH3, -CH2-) are 

presented in the first region (0.5-1.5 ppm). The presence of compounds containing aromatic or 
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olefinic functional groups is confirmed by the most up-field region from 1.5 to 3.0 ppm 

(aliphatic carbon attached to a C=C double bond). In addition, the peaks in the next region (3.0-

4.5 ppm) correspond to protons on carbon atoms next to an aliphatic alcohol (-CH2O-

).Furthermore, the presence of phenolic and aromatic groups can be confirmed by peaks in the 

next regions (5.0-7.0 ppm) and (7.0 8.0ppm), respectively Lastly, the spectrum in the last area 

(9.0-10.0 ppm) resembles protons associated with aldehydes (-CHO). Overall, the presence of 

these typical functional groups in the whole region (0.5–9.5 ppm) had been already confirmed by 

FTIR results.  

 

After producing and analyzing individual data sets obtained from FTIR and 1H NMR, the next 

step was accomplished by using a low-level fusion procedure (integrating data points, spectra 

and curves) to produce a more reliable and comprehensive data set than produced by each 

individual spectrometer. For data fusion procedures, usually there is a need to down-sample the 

NMR spectra from 600 MHz to 60 MHz to provide a better representative of online process 

NMR data, allowing a fair comparison with the FTIR data. However, this study did not need this 

step since an NMReady at the frequency of 60 MHz was used. 

There is another requirement for data fusion that is normalization of signals with different 

intensities produced by FTIR and 1H NMR. To do this and develop a better optimal model, 

different techniques such as normalizing to unit length and maximum peak intensity exist; 

however, the latter was chosen in this study.  After normalization to the maximum peak intensity, 

the final fused signal (Figure 4-5) was formed by concatenating the normalized FTIR and 1H 

NMR spectra. In the final spectrum, the first portion of the spectrum (variables from 1 to 1764) 

is the IR spectrum, and the next portion of the spectrum (variables from 1765 to 3665) is the 

NMR spectrum. Since the final spectrum includes a large number of variables (3665 variables), a 

standard multivariate processing method called principal component analysis (PCA) was used in 

order to systematically reduce to a smaller but more meaningful set of variables, 45 and also to 

allocate variables in an order based on their contribution to the total variance of the data set. 

After applying PCA, 93 % of all information was captured and explained just by the first two 

principal components. All these steps were performed in MATLAB version 2018b and R version 

3.5.1 and the final fused data sets were clustered using BHC (Figure 4-6). 
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Figure 4-5. The final fused spectra for the products of PM conversion. 

 

4.9.2. BHC and the BNs 

 

In the BHC approach, there is a variety of distance criteria (based on types of variables used in 

clustering) for the determination of similarity between entities of a group. In this study, the 

functional groups and their related wavenumbers have been considered as a factor for 

conducting the hierarchical clustering. In addition, to achieve the aim of merging the similar 

clusters without overfitting, the probability of all the data in a potential merger was calculated 

and the results were compared to the lower levels of the dendrogram. This step was 

accomplished by using R version 3.5.1.  

The literature indicates that the main products in the pyrolysis of cellulose and lignin are mostly: 

acids, aldehydes, ketones, gases, phenols and alcohols. 4,46 Therefore, in this study the number of 

clusters were chosen between 3 and 6.  After developing the three different Bayesian learning 

approaches, networks with 3 and 4 clusters were the only ones, which had optimal solutions 

(Figures 4-(7 & 8)). This is why, in this paper, the focus will be on these BNs. In the following 

dendrograms, the total number of variables or wavenumbers have been grouped into four 

clusters.  
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Figure 4-6. Dendrogram obtained by applying BHC cluster analysis results (4-cluster). 

 

Before interpreting the developed BNs, three important points need to be highlighted. First, in 

thermal decomposition of the binary mixture of LG and PEB, even though each object goes 

under a separate mechanism, their interactions promote each other’s reaction.47 Next, it is already 

confirmed by other researchers that in a mixture of cellulose and lignin, the pyrolytic products of 

cellulose (based on similarity in the functional group and molecular weight) can be divided into 

three classes (except water, gases and char): (i) dehydrated sugars (5-6 carbons), (ii) furan 

derivatives ( 4-6 carbon numbers) and (iii) low molecular weight products (1-3 carbons). 4 

These results are consistent with the pyrolysis mechanism which will be proposed later in the 

discussion section in which a competitive glycosidic bond and C−C bond breaking are postulated 

to be the primary reactions for the thermal conversion of LG. Finally, most of pyrolytic phenols 

products of lignin are formed through the cleavage of hydroxyl and methoxyl groups on aromatic 

rings and fractionation of different linkages (ß-O-4, a-O-4, ß-5) of basic lignin units. Figure 4-7 

illustrates the reaction networks for the physical mixture of LG and PEB using data provided by 

data combination applying the tabu, HC and MMHC BN approaches. 
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Figure 4-7. Three- cluster Bayesian network (data from data fusion method) for HTL of PM. 

It can be seen from these networks that considering three clusters, all three different search 

algorithms (tabu, hill climbing and max-min hill climbing) provided the same results 

strengthening the confidence in the validity of the reaction network. While cluster 1 (compounds 

containing mostly phenolic groups) can be the result of hydrogen abstraction by the phenoxy 

radicals from hemolysis of PEB, cluster 2 consists mostly of compounds with alcohol and ether 

functional groups. Cluster 3 includes many organic compounds such as ketones, aldehydes, 

aromatics, alkynes, alkanes and alkenes. These compounds are the result of the cleavage of C-O-

C and C-O bonds and can be identified by absorbance peaks between 1900 and 1000 cm−1. 

Therefore, we can argue that by moving from cluster 1 to 3, the number of compounds with 

carbonyl and aliphatic groups have increased.  

 

To present the dependency and probable pathways between the clusters in a network, the 

strength value of each arc is calculated and reported in Table 4-2 (the strongest dependency 

belongs to the highest negative number). These values indicate the strength of the causality 

between the cause and effect confirming in which extent a product can be influenced by the 

change in the reactant. These numbers take the advantages of being automatically updated when 

new information comes in and presents the change in the overall score of the network. Therefore, 

according to data provided by this table, the arc pointing out from cluster 2 to the cluster 3 shows 
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the highest probability for updating itself (43.99) which means removing it, results in the overall 

score of the network to decrease automatically by 43.99.  

 

Table 4-2. Arc strength calculated by tabu, HC, and MMHC search methods. 

From To Arc strength 

Cluster 1 Cluster 3 -7.47 

Cluster 2 Cluster 3 -43.99 
 

After constructing the directed causal map between clusters (DAG structure) and calculating the 

strength value for each arc, the next step was parameter learning which involved quantifying the 

uncertainty about the model (ϴ). This was done by using the Markovian property in which the 

conditional probability of each child is only on its parents considering that in a single path or arc, 

a child is a descendant of its parent in the sequence of the ordered nodes.48 The conditional 

probability distribution of a group was used to compute a model for the mean value of the 

intensity (root mean square value of the absorbance intensities, RMS ) of that group.  

P(X1) ~ N (μ1, 0.0023 2)                                                                                                              (4-3)    

P (X2) ~ N (μ2, 0.0315 2)                                                                                                            (4-4)  

P (X3 |X1, X2) ~ N (μ3, 0.0108 2)                                                                                                (4-5) 

μ1 = 0.025                                                                                                                                    (4-6)  

μ2 =0.215                                                                                                                                     (4-7) 

μ3 =-0.087 – 3.29 μ1 + 1.28μ2                                                                                                     (4-8) 

 

Equations 4(3-5) depict the conditional probability distribution of each group, and equations 4(6-

8) show the mean intensity (Xi is the intensity value of the ith variable (i= 1,2,3) and μi is the 

mean value of Xi). The application of the last three equations 4(7-9) reveals to what extent the 

mean value of the probability distribution of each cluster is related to others in the network. This 

can be viewed as a pseudokinetic model and can be valuable and beneficial to monitor an online 

process in real time analysis by applying appropriate controls over process variables. 

In addition to a reaction network that included three clusters, all three different search algorithms 

provided the same results while considering four clusters (Figure 4-8). As mentioned earlier, the 

interactions of cellulose and lignin are very intensive and at low temperature, they promote the 

conversion each other’s pyrolytic products.49 By grouping the wavenumbers into four clusters, 

and comparing it with three-cluster BN, the initial and final clusters include the same functional 

groups, so the only difference is in cluster 3. This cluster mostly includes wavenumbers related 
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to the vibrations of the benzene and aromatic skeleton bearing methoxy or ethoxy substituents 

observed in the FTIR spectra following the pyrolysis of PM as multiple peaks at 2760–

3150 cm−1 and 690–1630 cm−1. These are due to such compounds as 1,2,4-trimethoxybenzene, 

eugenol, and 1,2-diethoxybenzene, which are considered as phenol alkylation47 or rearrangement 

or dehydration of LG under suitable experimental conditions.50  

 

Figure 4-8. Four- cluster Bayesian network for PM conversion (data provided by data fusion). 

According to data provided by Table4- 3 (in 4-cluster BN), the arc from cluster 2 to 3 elucidates 

the highest dependency or the most probable pathway showing the conversion of compounds 

containing ether and alcohol functional groups (such as LG) into aromatic groups (-35.36). This 

finding is consistent with the literature. 50 

 

Table 4-3. Arc strength calculated by tabu, HC, and MMHC search methods 

From To Arc strength 

Cluster 1 Cluster 3 -4.08 

Cluster2 Cluster 3 -35.66 

Cluster 2 Cluster 4 -32.79 

Cluster 3 Cluster 4 -10.61 
 

Equations 4(9-12) demonstrate the conditional probability distribution of each group and 

equations 4(13-16), describe mean intensity for those groups. 
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P(X1) ~ N (μ1, 0.002 2)                                                                                                                (4-9)  

P (X2) ~ N (μ2, 0.053 2)                                                                                                              (4-10)  

P (X3 |X1, X2) ~ N (μ3, 0.009 2)                                                                                                (4-11) 

P (X4 |X2, X3) ~ N (μ4, 0.003 2)                                                                                                (4-12) 

μ1 = 0.025                                                                                                                                  (4-13) 

μ2 = 0.202                                                                                                                                  (4-14) 

μ3 = 0.309 +2.78 μ1 -0.62 μ2                                                                                                     (4-15) 

μ4 = 0.066 +0.587μ2 -0.308 μ3                                                                                                  (4-16) 

 

4.9.3. SMCR-ALS & the BN 

 

The purpose of the SMCR method is to determine the region, concentration and spectral profile 

of each component in a multi-mixture compound by resolving the data while having the 

minimum information of the system (non-negative constraints). Additionally, including the 

alternating least squares regression procedure (ALS) as an optimization method enables SMCR 

to incorporate any data-specific constraints.  

 

Figure 4-9. FTIR raw and smoothed spectra and removed residual for PM conversion. 

To develop the SMCR-ALS algorithm, all steps and calculation methods were explained in detail 

in the previous papers.35 While Figure 4-9(a) shows the FTIR results from twenty-seven samples 

of hydrous pyrolysis of PM in various conditions, Figure 4-9(b) illustrates the denoised and 

background-corrected signals for these spectra by using the Savitsky-Golay filtering algorithm 

(the residual noise removed is also shown in the figure). Equation (4-1) and the ratio of the 
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second and third derivatives (ROD) were computed in order to dissolve the whole spectra into 

the spectral profiles and concentrations of those active chemical species or chemical ranks 

involved in the samples to compute the chemical ranks, respectively.51 Figure 4-10 illustrates 

that the number of species changing during the reaction reaches a maximum value of 4, meaning 

that the chemical rank is 4.  

 

Figure 4-10. Calculating chemical rank using ROD. 

Figure 4-11 shows the result of using this algorithm with the FTIR data. Figure 4-11 (a) 

demonstrates the overall resolved spectra for the pseudo-components (A1, A2, A3, and A4) for the 

whole region and Figures 4-11 (b-d) illustrate the regions containing the major peaks of these 

pseudocomponents.  It can be seen that these pseudocomponents have distinct spectra in the 

desired wavelength regions and they contain spectral structures that can represent the actual 

molecules. 
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Figure 4-11. (a) Resolved spectra for the pseudocomponents over the whole region; and (b, c, 

and d) the resolved spectra for the pseudocomponents by focusing on the major peaks. 

 

To develop the reaction network (Figure 4-12), the concentrations of A1, A2, A3, and A4 were 

estimated by applying EFA (evolving factor analysis) and later used as input data for the BNs 

approach. The one explanation for this BN could be that the first cluster (A1) represents pseudo-

components mostly containing phenolic groups (the absorbance of peaks between 3676 and 3584 

cm-1 or peak at 1200 cm-1). Cluster 2 (A2) can be identified as aromatic compounds by C=C 
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vibrations with absorbance peaks from 1625 to1575 cm-1 or C-C in-ring stretching at 1500-1400 

cm-1. The third cluster (A3) indicates pseudocomponents with alcohol functional groups (3676-

3584 cm-1) or ethers (3150-3050 cm-1). Cluster 4 (A4) represents compounds with carbonyl 

groups which can be produced by the cleavage of C-O-H and C=C bonds from clusters 1 and 3. 

The fourth group of pseudo components (A4) indicates the presence of carboxylic acids (3550-

3500 cm-1), ketones (3550-3205 cm-1), and aryl aldehydes (1715-1695 cm-1) as well as 

pseudocomponents with alkene groups (1650-1585 cm-1, and 3100-3000 cm-1) which can be 

mostly produced by a ring- opening from cluster 2 or a bond cleavage from cluster 3. After 

calculating the strength value for each arc, the strongest dependency belonged to the arc pointing 

out from cluster 2 to the cluster 4 shows the highest probability for updating itself (-73.69) 

implying that its removal causes the overall score of the network to decrease automatically by 

73.69. 
 

Table 4-4. Arc strength calculated by tabu, HC, and MMHC search methods 

From To Arc strength 

Cluster 1 Cluster 2 -35,21 

Cluster 1 Cluster 4 -15.46 

Cluster 2 Cluster 4 -73.69 

Cluster 3 Cluster 4 -20.61 

 

 
Figure 4-12. BN obtained from SMCR-ALS for the pseudocomponents. 
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4.9.4. Discussion 

This study employed a treated physical mixture of LG and PEB to present the real cellulose and 

lignin in biomass considering that pyrolytic products of un-treated and treated cellulose and 

lignin mixture are almost the same.52 It has been already confirmed by the previous study32 that 

using data fusion provides the same BNs for both LG and PEB conversion (Figure 4-13(a & b)). 

According to Figure 4-13(a), wave numbers collected in the first and second clusters 

representing LG and glucose can be mostly identified by alcohol and ether functional groups. 

Additionally, in the pyrolysis of PEB, clusters 1 and 2 represent PEB itself and compounds 

containing mainly phenolic groups resulting from hydrogen abstraction by the phenoxy radicals 

in the hemolysis of PEB. However, in both cases, the final clusters include many organic 

compounds, such as aromatics, alcohols, aldehydes, ketones and acids produced by the cleavage 

of C-O-C and C-O bonds.   

The 3-cluster BN for the physical mixture of LG and PEB presents some very interesting 

findings (Figure 4-13 (c)). First, the pathway from cluster 1 to 3 presents the conversion of PEB 

and phenolic groups into the final products with the almost same arc value (-7.47). Second, the 

arc pointing out from cluster 2 to 3 shows the conversion of LG and glucose to the final 

products, again, presenting the same dependency strength (-43.99). More interestingly, for both 

LG and PEB conversion, many wavenumbers grouped in clusters 3 can be traced in the third 

cluster for the conversion of the physical mixture which were identified by absorbance peaks 

between 1900 and 1000 cm−1. These findings are consistent with the other researchers claiming 

that lignin would promote the decomposition of cellulose to furans and low molecular weight 

products and the cellulose would also promote the decomposition of lignin to increase some 

phenolic compounds.49, 53, 54  
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Figure 4-13. Three-cluster BNs for LG, PEB, and PM (physical mixture) based on data fusion. 

Another interesting aspect was observed when the BNs for the physical mixture (PM) resulting 

from SMCR-ALS analysis was compared with the individual results from LG and PEB (Figure 

4-14).  It can be seen that most of the wave numbers found in clusters 1 and 2 in LG conversion 

(Figure 4-14(a)) showing the pseudocomponents including hydroxyl and ether groups can be 

found in the third pseudocomponent (A3) in the conversion of PM. At the same time, A1 and A2 

from both PEB and PM consist of pseudocomponents containing the same functional groups 

(phenolic and aromatic groups). It is also interesting that cluster 4 (A4) in PM conversion 

(Figure4- 13(c)) includes all final products of LG and PEB conversion. As a result, we concluded 

that BNs resulted from BHC and SMCR-ALS of PM conversion could not only be a proper 

network for their conversion but also an appropriate representation for each individual element 

of the mixture.   
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Figure 4-14. BNs from SMCR-ALS results for (a) LG, (b) PEB, and (c) PM conversion. 

In addition, in order to develop an algorithm for the online monitoring of species conversion in a 

complex reaction, we traced the time evolution of concentrations of A1, A2, A3 and A4 (Figure 4-

15). As the reaction progressed over time, we observed an increase in the concentration of A4, 

with a simultaneous decrease in the concentrations of A1, A2, and A3. By integrating this 

information with a suitable control strategy to adjust process conditions for yield maximization 

of the desired product, we obtained the algorithm for online monitoring of a complex reaction, 

such as PM conversion.  

 

Figure 4-15. Corresponding concentration for A1, A2, A3, and A4. 
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After developing the reaction networks, the following mechanism was proposed for hydrous 

pyrolysis of PM (Figure 4-16). According to this pathway, the pyrolytic products of D-glucose 

(LG dehydration’s result) can be categorized into furans, anhydrosugars and linear carbonyls by 

C–C bond cleavage, isomerization reaction, ring opening reaction, dehydration reaction, keto-

enol tautomerization reaction and cyclization (ring-formation) reaction.55 As a result, furfural 

(FF) and formaldehyde (CH2O) could be the result of the dehydroxymethylation reaction of the 

side chain of the furan-ring and 5-hydroxymethylfurfural (5-HMF) is generated through the 

dehydration of the hydroxyl groups (C-2). 

On the other side, Cᵦ-O homolysis is responsible for initial decomposition during the pyrolysis of 

PEB which resulted in forming radicals. Different phenolic products such as 4-hydroxymethyl-2-

methoxyphenol, 2-hydroxy-benzaldehyde and 2-methoxyphenol could be the results of 

conversion of these radicals. 56 Additionally, volatile liquids such as aldehydes (acetaldehyde) 

and ketones (acetone), could be considered as the other major products. They are produced 

because of the hydrogen-donor/radical balance at low temperature (which was used in this 

study). 

 

Figure 4-16. Proposed mechanism for PM conversion. 
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To have a complete argument considering the PM pyrolysis interaction mechanism, we propose 

that this mechanism can be recognized as the reactions of H-donors (LG derived pyrolytic 

products) and H-acceptors (lignin-derived pyrolytic products).  However, based on other 

theoretical studies, there is a possibility that the H-donation and H-abstraction reactions are not 

the only responsible interactions during the LG and PEB pyrolysis process. This is due to the fact 

that in cellulose pyrolysis process, the decomposition mechanism might happen without the 

formation of free radicals. 53  

 

4.10. CONCLUSION 

 

To overcome the complexity of the mechanism of a multi-mixture system such as hydrous 

pyrolysis of biomass, the first part of this research made use of data fusion and data mining 

methods to develop the most probable reaction network. The principal motivation for data fusion 

was to improve the quality of information and deliver a more complete image of the process 

under observation. The BNs, which are intuitively understandable and mathematically rigorous, 

provide a simple and effective representation of conditional dependence between any two 

distinct nodes. Hence, this study manipulated a set of random variables (wavenumbers) to 

compute their joint probability distribution (JPD) and applied three different score-based greedy 

search algorithms (tabu, hill climbing, and max-min hill climbing) to develop the most probable 

reaction networks for hydrous pyrolysis of a mixture of LG and PEB. All algorithms mapped the 

same BNs with three and four clusters confirming the optimal solutions. In these BNs, while 

initial clusters mostly contain compounds with alcohols, ethers and phenolic groups, the final 

cluster is a group of wavenumbers related to aromatics, aldehydes, ketones, alkynes, alkanes and 

alkenes. In other words, by moving from clusters representing feed to final products, the number 

of compounds with carbonyl groups and aliphatic groups increases. 

In addition, in the second part of this study, an SMCR-ALS algorithm was developed in order to 

predict the reaction chemistry of converting a physical mixture of LG and PEB into products 

along with the ability for real-time analysis and quantitative tracking of changes in the process. 

In this part, it was confirmed that only four pseudocomponents took part the reaction (based on 

changes in their pseudoconcentrations). Therefore, the whole spectra were resolved into spectral 

profiles of these pseudocomponents as well as computing their concentrations that were used as 
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an input for causality detection. The strength of this algorithm is that it requires a smaller amount 

of quantitative data to be effective and does not require vast prior knowledge of the system. In 

other words, we believe that mathematical modeling and principles rooted in chemistry and 

chemical engineering could be useful and practical techniques to understand a complex reaction 

as well as how to influence them.  
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5. THE APPLICATION OF DATA FUSION AND CHEMOMETRIC TECHNIQUES 

FOR UNDERSTANDING THE CONVERSION OF BIOMASS BY HYDROUS 

PYROLYSIS BASED ON SPECTROSCOPIC DATA 
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5.1. INTRODUCTION 

 

Biomass produces numerous, cheap and sustainable resources when used as a chemical feedstock 

for generating bio-oil, and it serves as an intriguing substitute for conventional fuels. Generally, 

biomass is CO2-neutral, and it is the only renewable energy source that contains carbon.1 

Biomass alteration takes place via biochemical or thermochemical processes. Pyrolysis is one of 

the essential processes of biomass thermal conversion; it produces bio-oil as a primary product. 

Bio-oil is an important source for chemicals in biorefineries, 2 and it is also used in 

manufacturing biological pesticides.3 Gases produced via pyrolysis can be used to generate heat 

and power.4 

HTL, also known as hydrous pyrolysis, is an adequate procedure for the transformation of wet 

biomasses into biofuels and value-added chemicals.5 Water is an essential reactant in the HTL 

reaction. Once the state of the reaction reaches the critical point, it intensely alters most of the 

physical and chemical properties of water, resulting in quick homogeneous and active reactions.6 

This procedure is performed at temperatures lower than 400 °C.  At these temperatures, the 

exclusive features of hot condensed water are used to produce a biocrude with about 10-20% 

oxygen.7 This temperature is adequate to start pyrolytic mechanisms in biopolymers while the 

pressure generated is adequate to sustain a liquid water processing phase.8 The product yield and 

the physiochemical features of the HTL are mainly affected by the various kinds of feedstock, 

processing states (mainly reaction time and temperature) and the presence of a catalyst.9 HTL 

can be a  useful conversion technique for biomass as a result of the hydrophilic nature of the 

biomass and the ease with which it forms water slurries of biomass particles, which are generally 

pumped at concentrations of about 5-35% dry solids.8 

Biomass contains different amounts of cellulose, hemicelluloses, and lignin. Its pyrolysis 

generates products that are equivalent to the total sum of the individual pyrolysis of the three 

constituents. Thus, the chemical nature of the bio-oil is firmly linked to the ratio of the 

components in the biomass. Bio-oil is a combination of over 300 compounds that are produced 

from the depolymerization of cellulose, hemicellulose and lignin. The oxygen and water 

composition of bio-oil ranges from 40-50% and 25-35%, respectively.10 Hence, it is essential to 

comprehend the molecular composition of the products used to upgrade the bio-oils produced. 

The chemical constituents of the bio-oils help us to understand its features and its stability. 
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Additionally, producing the reaction networks could be a way to comprehend the arrangement of 

the synergy between pieces of the system, and this can have a significant effect on the behavior 

of the whole system. These networks illustrate the architecture of a complicated system by 

producing the link between the empirical data and the massive toolkit of the effectively analyzed 

system.  This information is essential to develop the practical techniques required to enhance the 

selectivity of the products.    

In this research, Monterey pine whole biomass underwent the HTL process in the presence of 

water under different conditions. Samples were characterized using Fourier transform infrared 

(FTIR) spectroscopy and Proton nuclear magnetic resonance (1H NMR) spectroscopy. Generally, 

these on-line techniques are influenced by both physical process parameters like temperature, 

pressure, flow rate and liquid level, and molecular parameters that correlate to constituent 

concentrations, molecular structure and the degree of reaction.11 Subsequently, the data fusion 

method was used to create the final fused data (FFD) as an input data set for producing the most 

likely reaction networks among the active groups described by these spectrometers. Data fusion 

makes use of techniques from other fields of study like signal processing, statistical estimation 

and pattern recognition.12 The essence of data fusion is to link the data from several sensors to 

carryout deductions that cannot be acquired from a single sensor or source. Input data from 

various sources might involve parametric data linked to the object identity; consequently, lesser 

detection error probability and better accuracy are obtained by using data from numerous 

distributed sources.13 

A major issue in computational fields like biology or chemical processes is the use of high 

dimensional data sets to study the network architecture of the variables accurately.14, 15 

Functional connectivity is often illustrated in terms of statistical reliance, and it is also seen as a 

practical theory that controls the discovery of a functional connection without any guarantee of 

how that connection was made. It could also be illustrated as a dependency test between two or 

more time series used to reject the hypothesis of statistical independence. 16 The Granger 

causality technique and the Bayesian network inference technique are two major procedures 

frequently used to evaluate spontaneous interactions among a set of elements.17, 18 Several 

studies have been conducted on the systematic and computationally intensive comparisons 

between the two techniques on synthetic experimental data and it was inferred that when the size 
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of the data is small, Bayesian network (BN) inference is more preferable than the Granger 

causality approach.19 This research generated a high dimensional data set of 3665 variables with 

a brief data length of 27 samples; thus, the BN approach was used. A BN is an analytical form 

that depicts a cumulative probability distribution among a set of random variables. The tabu20 

and Hill-climbing21 techniques and a hybrid method (Max-min Hill-climbing)15 were used to 

analyze the network that maximizes the score function showing how the network fits the data 

optimally.  

Given the complexity of the thermochemical conversion of biomass and the difficulty in 

characterizing the physical constituents of the products with analytical instruments, a major 

thrust is aimed at discovering the link between the measurements that were easily acquired and 

labor-intensive measurements. Thus, the next objective of this study was to discover a good link 

to quickly foresee thorough and accurate measurement from the easily acquired measurements.22  

This study made use of a particular decomposition method known as Self-modeling multivariate 

curve resolution (SMCR) to straighten the two-way signals from instrumentally undetermined 

multi-constituents mixtures into determinants for single species.23 This procedure exhibits the 

use of a recent quantitative means for the concurrent qualitative and quantitative recovery of the 

reaction network. Additionally, a quantitative SMCR strategy makes use of a regression 

constraint throughout the Alternating least squares (ALS) techniques that were utilized to 

measure each component of the reaction. This quantitative SMCR strategy could be utilized for 

procedures that are not required to produce mixtures of known compositions as a result of the 

lack of isolated reference material, cohesion problems and also whenever the production of the 

aforementioned samples are costly and time consuming. The main aim of the SMCR-ALS 

techniques is to break up unsettled multi-component and multivariate measurement matrices into 

unmixed determinants like spectral profiles, concentration profiles, and pH profiles for specific 

species without preexisting knowledge of the system.24 Some applications of the SMCR 

procedures are quantification of trace analyses, 25 peak purity assessments,26 or characterization 

of batch reactions.27 The essence of this research is to formulate the SMCR-ALS algorithm for 

the monitoring of online reactions in a multi-compound reaction using compositional control 

techniques and quantitative monitoring of variations in the procedure.  
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5.2. MATERIALS AND HTL PROCESS  

The data used for this research was acquired from the experimental survey of hydrothermal 

decomposition of Monterey pine whole biomass that was bought from Sigma Aldrich Canada. 

The refined biomass specimen was manufactured by thermally decomposition. A stainless-steel 

micro batch reactor of 24 cm in length and 2.1cm in width was used to conduct this experiment 

and the solvent used was subcritical water. The procedure for this experiment has been described 

in the preceding papers.28 Twenty-seven liquid samples were examined in this research. This 

study was performed at different temperatures and reaction time intervals. The temperature was 

from 150-350 °C, while the reaction time was from 15-35 minutes. The initial pressure was fixed 

at 0.1 MPa. Catalysts are essential for HTL because they influence the rate of reaction and the 

structure of HTL products. Many homogeneous and heterogeneous catalysts were analyzed by 

other researchers for the catalysis of biomass HTL, even though the larger part of the work was 

centered around homogeneous catalysts (acid, alkali, and metal salts) because they are quite 

affordable.29 A typical feature of homogeneous catalysts is also that the liquid products are not 

affected by coking.30 Due to the aforementioned fact, 0.05M of sulfuric acid and 1M of sodium 

hydroxide was used to carry out this work. The temperature and residence time were obtained 

from the research and we concentrated on acquiring the maximum liquid with the specified 

features.31 The volume ratio of biomass to the medium was 1:10, and the end products were 

placed in a glass beaker and analyzed.  

 

5.3. SPECTROSCOPIC ANALYSIS AND DATA FUSION 

The molecular-level description of the distinctive nature of bio-oil was acquired using FTIR 

and 1H NMR spectroscopy. FTIR permits the characterization of the bio-oil 32 despite the high 

volatile constituents present. The IR spectra were obtained using an ABB MB 3000 FTIR 

spectrometer. The spectra were obtained at a resolution of 2 cm−1 as against the normal 

spectra range of 4000-600 cm−1. All the spectra had a numerical mean of 120 scans. The 

investigation was conducted with the aid of a Pike miracle attenuated-total-reflectance 

attachment. The spectra obtained are shown in Figure 4-1. The hand book spectroscopic data 

was used to label the functional groups.33 
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1H NMR was also used to label all functional groups that had hydrogen and carbon atoms in 

the specimen.11 All 1H NMR measurements were obtained at a frequency of 60MHz and a 

resolution of FWHM<1.0 HZ (20 ppb). Figure 4-2 illustrates the spectra for the conversion of 

biomass under nine different circumstances using sodium hydroxide as catalyst. Analysis was 

aided by consulting handbooks of spectroscopic data.  34, 35 

 

It is important to acquire only the essential information from the data obtained. This could be 

done with the aid of data fusion. 36 The multi-sensor data integrates information from different 

sensors and sources so as to draw conclusions that cannot be obtained from a single sensor or 

source and it also supports the principle for planning, decision-making and controls outcome. 

Multi-sensor data fusion can be conducted at four various processing levels and this is dependent 

at the phase the fusion occurs. They are signal level, pixel level, feature level, and decision 

level.37 This work involves acquiring signals from various spectrometers. The data fusion 

used at the signal level implies that signals from various sensors are integrated to produce a 

new signal with a good signal-to noise ratio than the original signals. All the outlined 

procedures for data integration were analyzed in the previous papers.38 Furthermore, the 

quantity of data was reduced by scaling and normalizing them to the minimum peak intensity 

while retaining the useful information; after which, newly developed data points were generated 

to form the final data set. This data set had a lower signal to noise ratio. This implies acquiring 

data that are more authentic unlike when the data is obtained from individual data sets.  

 

5.4. BAYESIAN HIERARCHICAL CLUSTERING (BHC) 

 

Clustering is defined as the process of categorizing data points in such a way that components 

that display some resemblance or innately belong to same class are placed in a specific group.39 

It plays a significant function in data analysis and inference and it is very common machine 

learning and data mining procedures. The Bayesian hierarchical approach offers a detailed 

fundamental approach to these kinds of analyses and is fast gaining grounds in other disciplines 

like clustering regions with various growth patterns in economics,40 signal processing 

applications41 , and computational biology and genetics.42 

The BHC algorithm is identical to the traditional agglomerative clustering because it is a one-

pass, bottom-up procedure that computes all the data points in its cluster and constantly joins 
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pairs of clusters. The algorithm utilizes a mathematical hypothesis test instead of distance to 

select the clusters to join.43 The preceding hypothesis can be illustrated in such a way that the 

BHC effectively enumerates the probabilities of clustering’s persistent with the commonly used 

Dirichlet method mixture model. The posterior probability of the incorporated or joined 

hypothesis is the derived using Bayes’ rule.44  

 

5.5. SELF-MODELING MULTIVARIATE CURVE RESOLUTION (SMCR) 

 

SMCR has been used in various works of chemical reactions or equilibrium shifts45 and a good 

number of its uses are in spectroscopy. Tauler et al. analyzed the use of SMCR to IR spectra 

obtained during numerous process runs and used for inspecting the Fujiwara reaction.46 

Gemperline et al. investigated UV /visible batch measurement. The principle of SMCR47 utilizes 

bilinear decomposition instead of chemical or physical separation procedures in order to manage 

the instrumentally undetermined multicomponent signals and extract the pure variables of 

overlaid constituents. “Self-modeling” means that the SMCR do not need any specific 

information relating to the data to determine the pure variables. The only hypotheses are the 

bilinear model for the data and some specific generic awareness about the pure variables like 

non-negativity and operating in a single mode.48 

This research used a rational  procedure for spectral deconvolution for SMCR methods by 

identifying an objective decision in which the pure variables are compliant with the  non-

negativity and unimodality constraints.49 A general analysis of the objective resolution is that it 

leads to a series of plausible solutions whose validity depend on the interaction or relationship 

between the real variables.50 Therefore, the aim was to identify an objective decision in which 

the pure variables are arrived at using statistical foundations. This is possible only if the 

statistical principles are consistent with either the chemical or physical model of the data. 

Conventional procedures for unique resolution consist of some methods like the evolving factor 

analysis (EFA).51 The resolution of the two-way data obtained from the on-line FTIR 

spectroscopic monitoring of HTL of biomass was illustrated to show the capability of the SMCR 

in spectroscopic studies. All required steps and developed algorithm were explained in the 

previous work.52 
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5.6. LEARNING THE BAYESIAN NETWORK (BN) STRUCTURE 

 

The learning technique solves the optimization issue by applying the accepted heuristic search 

procedures. The search space is very big and such a technique tends to invest resources analyzing 

contenders that are not logical. This issue becomes demanding when we handle huge data sets 

either in number of instances or number of attributes.14 Therefore, this research utilized the BN 

procedure to tackle this issue.53 Studying the Bayesian networks are often perceived as an 

optimization issue where the function of data processing is to identify the network that increases 

a mathematically instigated score. Mainly, there are two procedures for identifying the BN 

structure. The first procedure presents learning through a constrained manner based on pairwise 

conditional independence tests between nodes. This procedure entails the estimation features of 

susceptible independence among the attributes found in the data. This is normally done by 

applying a statistical hypothesis test. A network that illustrates the analyzed dependencies and 

independences was then created. The second procedure presents learning as an optimization 

issue. We begin by explaining a numerical propelled score that describes the strength of each 

possible structure to the analyzed data. What the learner needs to do is to locate a structure that 

increases the score. Almost all learning techniques used standard heuristic search techniques like 

greedy hill-climbing and simulated annealing to locate high-scoring structures. The 

aforementioned "generic" search procedure does not use information concerning the anticipated 

structure of the network to be studied. For instance, greedy hill-climbing and tabu search 

techniques analyzes all the possible local changes in all the steps and utilizes the one that 

generates the largest improvement in the score. There is another method, the Max-min hill-

climbing (MMHC) algorithm, which can be classified as a hybrid method, using concepts and 

techniques from both approaches. All the necessary procedures were described in the previous 

papers.28 

 

5.7. RESULTS AND DISCUSSION 

5.7.1. Spectroscopy Analysis and Data Fusion 

  

Generally, biomass is made up of cellulose, hemicelluloses and lignin which are CHO chemical 

compounds. From Figure 5-1, we deduced that the wavenumbers of functional groups in bio-oil 

ranges from 3000 to 3500 cm-1 and also between 1000 and 1750 cm-1. This proves the presence 
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of C=O bonds, C=C bonds, C–O bonds, C–H bonds, and O–H bonds in bio-oil. The functional 

groups depict that aldehydes, ketones, acids, aromatics, phenols, ethers, aliphatic compounds and 

alcohols in the bio-oil which exhibited the constant results acquired from the GC-MS results 

supported by the previous works.54 

 

 

Figure 5-1. FTIR spectra biomass conversion in 27 different conditions. 

Figure 5-2 depicts the 1H NMR spectrum of the bio-oil derived in the presence of NaOH. The 

protons on the aliphatic carbons were observed between 0.5 – 1.5 ppm. The strength and 

percentage of proton in the subsequent phase had the highest peaks (1.5-3.0 ppm) in the 1H NMR 

spectrum affirming the presence of aromatic or olefinic functional groups. The next phase of the 

spectrum had its peak at 4.0 ppm and this depicts protons of alcohols and carbon atoms next to 

an aliphatic alcohol (3.0-4.5 ppm). This phase has a lesser strength than that of the aromatic or 

olefinic carbon phase. In addition, the presence of phenolic and aromatic groups can be 

confirmed by peaks in the next regions (5.0-7.0 ppm) and (7.0 8.0ppm), respectively. Finally, the 

spectrum in the last phase (9.0-10.0 ppm) is identical to the aldehyde protons (-CHO). Hence, the 

presence of these functional groups in the whole phase (0.5–9.5 ppm) was proved by results 

obtained from FTIR. 
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Figure 5-2. 1H NMR results for biomass conversion (SCW and NaOH). 

After studying the data gotten from FTIR and 1H NMR, the next phase was implemented by 

utilizing a low-level fusion technique to create a credible and thorough data set combining 

information from the two sources. The primary essence of multiple sensor data fusion is to merge 

integral and unnecessary information to serve a composite representation that could be used to 

illustrate the whole scene or object recognition.  

Another specification for data fusion is the normalization of signals with various intensities 

generated by FTIR and 1HNMR. To create a better optimal model, various procedures like 

normalizing the unit length and the highest peak intensity could be used. The final fused signal in 

Figure 5-3 was produced by linking the recently acquired data points. The final spectrum 

consists of two main phases, the first phase is the IR spectrum and the next phase is the 1H NMR 

spectrum. The final spectrum had a large number of variables (3665), hence a standard 

multivariate processing technique referred to as the principal component analysis (PCA) was 

applied so as to decrease it to a lesser but more significant set of variables and assign data points 

according to their contribution to the total variance of the data set.55 95% of all the variance was 

explained by the first two principal components. The procedures were conducted in MATLAB 
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version 2018b and R version 3.5.1. Figure 5-3 depicts the final data sets that were used for 

clustering by BHC. 

 

 

Figure 5-3. The final fused spectra for bio-oil. 

 

 

5.7.2. Linear Cross Correlation Analysis 

Linear cross correlation was also performed on the clusters (from SMCR-ALS result) result to 

better understand the variables obtained from clustering and was qualitatively and quantitatively 

present on the lower and upper panel, respectively (Figure 5-4). In this plot, the distribution of 

each variable is shown diagonally, the significance level presenting by stars and the values for 

correlation are shown on the top of the diagonal, and the bivariate scatter plots are displayed with 

a fit line at the base of the diagonal. 
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Figure 5-4. The linear cross-correlation of the groups. 

The results indicate that group1 and group3 have the most correlated variables (0.78), while 

group2 and group3 have the least correlation (0.44). These results are consistent with findings 

from Table 5-2. Overall, the correlation matrix shows a smooth correlation between variables, 

but that alone does not indicate causality among variable, which is why Bayesian learning was 

chosen to assess any reaction network between variables. 

 

5.7.3. Six-cluster BHC and Bayesian Network  

 

This research work applied the FTIR and 1H NMR interpretation for reviling functionalities of 

HTL bio-oil using spectra band task and analysis based on the previous studies. As stated earlier, 

the main constituents in the pyrolysis of biomass are alcohols, phenols, aromatics, carbonyls 

(acids, aldehydes and ketones), aliphatic hydrocarbons and gases.8 Therefore, this work selected 

3 to 6 clusters. After the production of the three various Bayesian learning procedures, the 

network that had 6 clusters had optimal solutions. This work focuses on the 6-cluster BN. In 

Figure 5-5, all the variables (1764 wavenumbers) are categorized into six clusters using the BHC 

method, and the tabu, HC and MMHC BN procedures were applied to outline the most credible 

network between these clusters (Figure 5-6).  
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Figure 5-5. Six-cluster dendrogram for biomass conversion. 

 

 

Figure 5-6. Six-cluster Bayesian network for biomass conversion. 
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It was deduced that the various score-based search algorithms generated the same results 

providing certainty in the efficacy of the reaction network. Although several feedstocks have 

been reformed into biocrude through HTL, the reaction mechanism of HTL is a complex one as a 

result of the complexity of the feedstock. A lot of research works have tried to explain in details 

the reaction mechanisms and it is assumed that there are three elementary HTL reaction 

pathways: (a) Depolymerization of the biomass into its main components, (b) Decarboxylisation, 

decarbonylation, dehydration, and decomposition of biomass monomers by cleavage,  and (c)  

Recombination of reactive remains.56 This research work proposes the following reaction 

mechanisms for the HTL of biomass.  

 

Figure 5-7. Proposed reaction mechanisms for biomass conversion. 

 

The first phase of HTL that is the biomass feedstock is disintegrated into its primary building 

blocks of cellulose, lignin and hemicellulose. This phase does not exhibit any part of the actual 

pyrolysis reaction mechanism, but it is essential for adequate comprehension of the reaction 

modeling as shown in Figure 5-7. Cellulose and hemicelluloses are the most abundant 

carbohydrates in lignocellulosic biomass. Various carbohydrates have specific rate of hydrolysis. 

Hemicelluloses hydrolyze quicker than cellulose, as a result of the crystalline structure of 
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cellulose. The different hydrolyzed products exist in the aqueous fraction derived after 

hydrothermal liquefaction of biomass. Once carbohydrates are placed under hydrothermal 

conditions, they experience quick hydrolysis to form glucose and other saccharides. Alcohols are 

rarely recorded in HTL studies because single alcohols are found in small amounts with vapor 

pressures corresponding with a meaningful fraction of the biocrude leading to coelution.57 

Nevertheless, some alcohols and saccharides that were basically in the first cluster were 

discovered in this study (1010, 1012, and 1019 cm-1). The most abundant alcohols were the 

straight long chain and branched long chain alcohols, and they were produced as a result of the 

hydrolysis reaction. 

When hydrothermal liquefaction of lignin is performed, hydrolysis and cleavage of the ether 

bond, C-C bond, demethoxylation, alkylation, and condensation reactions take place, and there is 

counteraction between these chemical reactions.58 Cleavage of the β-O-4 ether bond has the lead 

in the breakdown of lignin and its prototypical compounds, while the bond between Cα-Cβ is 

readily broken.59 However, when the aromatic rings undergo hydrothermal reactions, they are 

unchanged and the biphenyl-type compounds were highly stable. Delicate conditions like low 

temperature and lesser reaction time are needed for the manufacturing of phenolic monomers and 

dimers from lignin. This is performed by preliminary cleavage of the ether bond and aliphatic C-

C bond during hydrothermal liquefaction. An increase in temperature might result in the 

demethoxylation and alkylation of lignin derived phenolic compounds. Alkyl phenols can also be 

obtained at high temperature. 60  Lin et al. discovered that during lignin liquefaction, that 

intermediates with aliphatic side chains exhibited a huge reactivity and further reacted with 

phenol or with themselves to change to the multi-condensed product.61 Phenols are highly 

abundant compounds from HTL of especially carbohydrate and lignin-rich feedstocks and depict 

compounds of potentially high value and a source of oxygen in the final biofuels. They are 

present in cluster 2 of the proposed reaction network (1099, 1100, and 1119 cm-1).62 

The significant wavenumbers in cluster 3 are linked to the oscillation of the benzene and 

aromatic skeleton (1223, 1254, 1279, and 1500 cm-1). The production of oxygenated aromatics 

from lignocellulose refining is common. The three monolignols of lignin are the protypes of 

many aromatic compounds, together with the dehydration reactions of carbohydrates.63 In 

contrast to the monofunctional ketones, the oxygenated aromatics naturally exhibit diversified 
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functionalities resulting in very complex compounds obtained from the complex and 

heterogeneous arrangement of lignin. The development of monomers originates through thermal 

breakdown and hydrolysis of ether bonds. 64 At higher temperatures, the decomposition and 

dehydrogenation reaction of cyclic compounds from alkenes results in the production of aromatic 

hydrocarbons.65 Aromatic structures were labeled by absorptions around 1600 cm-1 and slight 

absorptions between 3000 and 3050 cm-1 in FTIR spectra (Figure 5-1). 

 

Under subcritical conditions, alkaline water and carbohydrates are known to form carboxylic 

acids like acetic, propionic, formic, and lactic acid. They can also be subjected to homogeneous 

and heterogeneous ketonic decarboxylation generating a series of various ketones.64 Figure 5-1 

depicts carbonyl absorption at 1715 cm-1 and 1745 cm-1 showing six-membered and five-

membered cyclic ketones, respectively. Furthermore, compounds categorized in the first cluster 

are then further degraded to produce several oxygenated hydrocarbons like formic acid, lactic 

acid, hydroxymethy furfural (HMF), and levullinic acid.66 Carbonyls are said to be highly 

abundant in most HTL biocrudes. The most abundant carbonyls were indenones, acetophenones, 

and a wide range of alkylated chromenones.67 A recent study states that FTIR spectra of bio-oil 

in the region of 1490–1850 cm-1 could provide comprehensive information on several carbonyl 

groups in the bio-oil.68 This work recorded the presence of ketones, aldehydes, and carboxylic 

acids in cluster 4(1695, 1710, 1723, 1745, and 1749 cm-1). 

 

The development of short chained aliphatic hydrocarbons was noticed in cluster 5 (1332, 1420, 

1573, and 1665 cm-1), and this depicts the occurrence of C-C bond cleavage reactions. Glycerol 

conversion under near- and subcritical water conditions has been outlined to undergo C-C 

splitting via an ionic and a radical pathway.64 These compounds result in decarboxylation,  

decarbonylating, and decomposition reactions. 

 

We observed this from a thermodynamic point of view, the thermochemical conversion of 

biomass, glucose, and other organic components resulted in light constituents. CH4 and CO2 are 

thermodynamically preferred products with the CO and H2 yields remaining low.69 The existence 

of these molecules can be traced to the last cluster (cluster 6) in the generated BN. The proposed 

mechanism of HTL of biomass is illustrated below. 
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Figure 5-8. Two-phase reaction mechanism for biomass conversion. 
 

 

To record the dependency and probable pathways between the clusters in a network, the strength 

value of all the arcs are calculated and provided in Table 5-1 (the strongest dependency belongs 

to the highest negative number). Hence, the arc from cluster 3 to cluster 4 shows the highest 

probability for updating itself (34.68) and this implies that once it is removed, the overall score 

of the network will be decreased automatically by 34.68; implying that ability to make causal 

inferences decreases in proportion, leading to higher uncertainty about the system. 

Table 5-1. Arc strength for the reaction network shown in Figure 5-5 calculated by tabu, HC, and 

MMHC search methods. 

From To Arc strength 

Cluster 1 Cluster 3   -2.40 

Cluster 1 Cluster 4   -8.46 

Cluster 1 Cluster 5 -11.44 

Cluster 2 Cluster 3  -0.761 

Cluster 2 Cluster 4  -17.40 

Cluster 3 Cluster 4  -34.68 

Cluster 3 Cluster 5  -0.537 

Cluster 4 Cluster 5  -33.88 

Cluster 5 Cluster 6    -1.87 
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A causal map between clusters (DAG structure) was generated and the strength value for each 

arc was calculated. The next phase was studying the limitations which include measuring the 

uncertainty about the model. This was performed by applying the Markovian property in which 

the conditional probability of each child is only on its parents considering that in a single path or 

arc, a child is a descendant of his/her parents  in the sequence of the ordered nodes.70 Therefore, 

the conditional probability distribution of one group was calculated and presented as the 

equations 5(1-6) in which they were bases for calculating the model for the mean value of the 

intensity (root  mean square value of the absorbance intensities, RMS) of that group (equations 

5(7-12)). As a result, the last four equations were developed to display the mean intensity (Xi is 

the intensity value of the ith variable (i= 1,2,3,4) and μi is the mean value of Xi) which depict to 

what extent the mean value of the probability distribution of each cluster is linked to others in the 

network. Therefore, they can be useful to monitor an online process in real time analysis by 

applying appropriate controls over the process variables.     

P (X1) ~ N (μ1, 0.041 2)                                                                                                               (5-1) 

P (X2) ~ N (μ2, 0.162 2)                                                                                                               (5-2)  

P (X3| X1, X2) ~ N (μ3, 0.074 2)                                                                                                   (5-3)                                                                                                        

P (X4 |X1, X2, X3) ~ N (μ4, 0.013 2)                                                                                            (5-4) 

P (X5 |X1, X3, X4) ~ N (μ5, 0.005 2)                                                                                            (5-5)                                                                                           

P (X6 |X5) ~ N (μ6, 0.014 2)                                                                                                         (5-6)                                                                                                 

μ1 = 0.195                                                                                                                             (5-7)  

μ2 = 0.240                                                                                                                             (5-8) 

μ3 = 0.608+ 1.02 μ1 - 0.196 μ2                                                                                                     (5-9)                                                                                                    

μ4 = 0.022 + 0.384 μ1 - 0.153μ2 + 0.670μ3                                                                                (5-10)   

μ5 = -0.076 + 0.209 μ1  - 0.078μ3 + 0.766 μ4                                                                            (5-11)   

μ6 = 0.035 + 0.130 μ5                                                                                                                (5-12)   

                                                                                                                                                                                                                                    

5.8. SMCR-ALS RESULTS  

 

To recover reaction networks both qualitatively and quantitatively, this paper explores another 

approach called self-modeling multivariate curve resolution. Spectroscopic data (FTIR) was 

arranged into a two-way data type (the response matrix), where objects (spectrum of a sample) 

were represented in rows and wave numbers (or concentration profiles) where represented in 

columns. In accordance with the Beer-Lambert-Bouguer law, the matrix was the product of two 

matrices: C (concentration) and S (spectral absorbances), based on the profiles of the individual 

N components. The following figure shows the raw, de-noised and background-corrected signals 
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for these spectra. The removed residual noise is also shown. The convergence criterion for ALS 

was assessed using the lack of fit (LOF), which provides a measure of the relative fit between 

experimental data and ALS reconstructed data. The LOF was ultimately determined as 1.13% 

indicating a solid fit. 

 

Figure 5-9. Raw, smoothed, and removed residual data for biomass conversion. 

The next crucial step was to determine the number of changing chemical species/ranks (N) that 

occurred during the reaction, though this is difficult because of: (i) measurement noise and its 

non-assumed distributions; (ii) noise heteroscedasticity; and (iii) co-linearity in the measurement 

data.23 Thus, to achieve a good chemical rank estimate, this study attempted to reduce the 

influence of measurement noise as much as possible by employing a smoothing technique called 

Savitsky-Golay filtering to directly increase the signal-to-noise ratio. The ratio of the second and 

third derivatives ROD28 was then calculated and plotted where the maximum point was 3 

indicating the number of chemical ranks (Figure 5-10).  
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Figure 5-10. Calculating chemical rank using ROD. 

 

In this study, the assumption is that the first, second, and third pseudocomponents represent the 

actual molecules of A1, A2, and A3, respectively. As a result, to obtain the required necessary 

information related to these pseudo components, the whole spectrum resolved into spectral 

profile and concentration of these changing species during the reaction. Figure 5-11(a) 

demonstrates the overall resolved spectra for all three pseudo components for the entire region 

(4000-400 cm-1), and Figures 5-11 (b-d) illustrate the regions of high absorbance peaks of these 

pseudo components.  
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Figure 5-11. (a) Resolved spectra for the pseudocomponents over the whole region; and (b, c, 

and d) resolved spectra for the pseudocomponents by focusing on the major peaks. 

This work also used an initialization method for the SMCR algorithm called Evolving factor 

analysis (EFA) to determine the initial estimate of concentration of pseudocomponents by 

exploiting information from global regions. The concentrations of A1, A2, and A3 were used as an 

input to develop the reaction network. All three score-search heuristic optimization methods to 

learn BN structures produced the same networks (Figure 5-12). The A1 pseudocomponents 

confirm the presence of primary and secondary alcohols (1075-1010 cm-1, and 1120-1100 cm-1) 
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and aliphatic ethers(R-O-R) at 1150-1070 cm-1. The spectrum for A2 illustrates the presence of 

pseudocomponents associated predominantly with phenolic groups (broad absorbance between 

3550-3200 cm-1). A3 pseudocomponents indicate the presence of carboxylic acids (3550-3500 

cm-1), ketones (3550-3205 cm-1), and aryl aldehydes (1715-1695 cm-1), as well as aromatic 

compounds due to the presence of C=C vibrations with absorbance peaks from 1625-1575 cm-1 

or C-C in-ring stretching at 1500-1400 cm-1. 

 

Figure 5-12. BN for pseudocomponents from SMCR-ALS. 

Table 5-2. The strength values of each arc in BN shown in Figure 5-11. 

From  To Arc strength 

Cluster 1 Cluster 3    -18.31 

Cluster 2 Cluster 3    -8.634 
 

To better understand parameter learning in BN, equations 5(13-15) represent each group’s 

conditional probability, and the models presenting mean intensities are shown in equations 5(16-

18). 

P(X1) ~ N (μ1, 0.38 2)                                                                                                                (5-13)  

P (X2) ~ N (μ2, 0.43 2)                                                                                                               (5-14)  

P (X3 |X1, X2) ~ N (μ3, 0.51 2)                                                                                            (5-15)                            

μ1 = 0.34                                                                                                                                     (5-16)  

μ2 = 0.27                                                                                                                                     (5-17)                                                                                                                                    

μ3 = 0.878 – 1.11μ1 -0.51μ2                                                                                                        (5-18)  
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5.9. DISCUSSIONS 

 

Since all lignocellulosic biomass is largely composed of three basic independent structural 

components (cellulose, hemicellulose, and lignin), any aggregative behavior of these components 

during pyrolysis describes the behavior of any lignocellulosic feed.71 Furthermore, since biomass 

pyrolysis follows a complex network of reaction mechanisms, biomass pyrolysis chemistry can 

be simplified by studying the independent pyrolysis reactions of each individual component. If 

synergistic effects occur, predicting a biomass feedstock’s behavior would be considerably more 

complex. Hence, in the previous works, cellulose and lignin independently underwent HTL 

conversion using their model components: levoglucosan (LG) and 2-Phenoxyethyl benzene 

(PEB), respectively; and their most probable BNs were developed (Figure 5-13).  

 

Figure 5-13. BNs for (a) LG, (b) PEB, and (c) biomass (data provided by data fusion). 

 

After reviewing and comparing wave numbers in each cluster, it was inferred that the right side 

of biomass conversion from cluster 1 mostly represents hydrocarbon (cellulose or hemicellulose) 

conversion while the left side represents lignin conversion, though both have the same final 

products: aromatics, carbonyl groups, aliphatic hydrocarbons, and smaller molecules. In the 

previous work, one of the major products from the HTL of cellulose-related model compounds 

was formaldehyde, identified by FTIR, 1H NMR, and GC-MS. However, after performing HTL 
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of biomass, the presence of formaldehyde was also confirmed by bands at 3308, 2982 and 2914 

cm-1 for –CH stretch, a clear peak at 1636 cm-1 for –C=O for aldehyde, and bands at 1429, 1271, 

1103, 1019, and 989 cm–1. Figure 5-14 shows the mechanism of formaldehyde formation. Following 

glycosidic bond cleavage, hydrogen from the hydroxyl group of the carbon atom 6C is transferred to 

5C. This is convoyed by cleavage of the 5C–6C bond, resulting in formaldehyde formation. These 

conclusions are consistent with the 2-phase reaction pathway proposed earlier (Figure 5-8).  

 

Figure 5-14. Cellulose HTL pathway to Formaldehyde. 

 

The conclusion following development of the SMCR-ALS algorithm, detecting causality 

between the pseudocomponents of biomass conversion, and comparing these with the individual 

cellulose and lignin results was that the biomass and cellulose conversions closely follow the 

same causality map (Figure 5-15). These results are consistent previous studies using other 

methods. 72 For instance, it was confirmed by Muley et al. that the pyrolytic behavior of biomass 

can be affected more by cellulose rather than lignin, because cellulose can be more easily 

broken-down during pyrolysis at lower temperatures. This is due to the fact that cellulose has 

simpler molecular structure, lower thermal stability, and less fixed carbon content.71 For 

cellulose conversion, we proposed that pseudo compounds presented by A1 [(-OH), (-C=C-)] and 

A2 (R-O-R')] can be converted to ortho-hydroxy aryl ketones (C=O)-CH=(C-OH) by alkyl and 

hydrogen transfers and oxidation reactions.28 In fact, some signature wavenumbers identifying 
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alcohols, ethers, and alkenes collected in A1 and A2 from cellulose conversions can be traced in 

A1 of the biomass conversion. In addition, in lignin conversion (Figure 5-15(b)), A1 and A2, 

which represent phenolic and aromatics, could be mapped to A2 from biomass conversion. 

Overall, similarities between pseudo components were found in the last cluster of cellulose and 

lignin with A3 from the biomass conversion. 

 

Figure 5-15. The BNs from SMCR-ALS method for (a) cellulose, (b) lignin, and (c) biomass 

conversion. 

Another objective of this study which was developing an algorithm for online monitoring of 

species conversion in a complex reaction was attained by tracing the concentrations of A1, A2 

and A3 over the number of samples (Figure 5-16). Interestingly, the trends of these concentration 

profiles are with a good agreement with the BN which was developed earlier in this study 

(Figure 5-12); where the concentration of A3 increases at the expense of the A1 and A2 

concentrations as the processing time is increased. Hence, this plot can be useful by integrating it 

with a suitable control strategy that adjusts process conditions to maximize the yield of the 

desired product for online monitoring of a multi-spices process such as biomass conversion. 
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Figure 5-16. Corresponding concentration for pseudo components A1, A2, and A3. 

 

5.10. CONCLUSION  

 

To overcome the limitations of high heat and vaporization in biomass conversion processes, this 

study applied HTL where water is an important reactant and catalyst, and thus the biomass can 

be directly converted without an energy consuming drying step, as is the case for pyrolysis. The 

reaction’s chemistry is complicated and highly substrate dependent. Therefore, to recover the 

most probable biomass reaction mechanism of HTL, data fusion and a data mining approach 

called the BN learning were used. We used statistical variables to restrict the set of networks to 

be assessed. To obtain an optimal solution for a reaction network, three different BN learning 

techniques were applied, resulting in a final six-cluster BN mechanism. Wavenumbers collected 

in each cluster were identified and interpreted.  The pathway to biocrude represents biomass 

main components’ decomposition, large molecule hydrolysis, and reformation of produced 

molecules. In other words, producing molecules such as aromatics, carbonyl groups, alkanes, 

alkenes, alkynes, and gasses from larger molecules including alcohols, ethers, and phenolic 

groups. This study also developed a data-driven algorithm to describe the process and chemistry 

for ultimate use for real-time analysis and the optimizing hydrothermal cracking of biomasses in 
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150 to 350 °C using FTIR spectroscopy data. Only three pseudocomponents were involved in the 

reaction, so the whole spectra were resolved into profiles of these pseudocomponents and their 

concentrations were computed for use as an input for causality detection. These results produced 

new ways of generating reaction networks in biocrude fractions that are otherwise complex to 

distinguish. 
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6. CONCLUSIONS AND FUTURE WORKS 

6.1. CONCLUSIONS 
 

Biomass has been considered as a potential replacement for fossil fuels because of its 

sustainability, availability, and environmentally friendly characteristics. In the past few decades, 

computational resources have quickly evolved; however, the extensive network modeling of a 

complex system such as biomass conversion remains a challenging task. To overcome this 

limitation, this study employed data fusion and data mining as two powerful techniques in the 

process of knowledge discovery from hidden interesting patterns in the large data sets provided 

by spectroscopic techniques. Therefore, several necessary steps were taken: data cleaning or de-

noising, data integration, data selection, data transformation, data mining, and knowledge 

presentation. Taking these steps resulted in developing the most probable graphical models 

(BNs) to represent interactions between variables describing the biomass  conversion using 

representative datasets and statistics founded on Bayes’ rule of conditional probability. These 

developed BNs would be useful to enhance investigation of hydrous pyrolysis of biomass along 

with the capability of self-updating the arc dependencies in the network structure which makes 

them favorable for real-time analysis of the process. To achieve the main goal of this research 

which was develop working algorithms to enhance investigation of chemistry of biomass 

conversion, the following main objectives were also enhanced:  

➢ Developing an algorithm for integrating multiple data sets provided by FTIR and 1H NMR in 

order to increase the accuracy while reduce the overall uncertainty. 

➢ Developing an algorithm that could combine expert knowledge and experimental data to 

develop the most likely reaction network for a complex reactive system such as hydrous 

pyrolysis of biomass. These plausible models have the advantages of providing a theoretical 

basis to handle uncertainty. 

➢ Designing an SMCR-ALS algorithm for automatic resolution of spectra provided by online   

spectroscopic techniques which could be used for predicting the effect of intervention 

qualitatively and quantitatively. 

➢ Demonstrating the efficacy of the developed algorithms in identifying the chemistry of model 

compounds and biomass. 

 

https://www-sciencedirect-com.login.ezproxy.library.ualberta.ca/topics/engineering/dataset
https://www-sciencedirect-com.login.ezproxy.library.ualberta.ca/topics/engineering/bayes-rule
https://www-sciencedirect-com.login.ezproxy.library.ualberta.ca/topics/engineering/conditional-probability
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These goals and objectives were accomplished by the conducting and investigating of hydrous 

pyrolysis of model compounds representative of the processing of cellulose and lignin, a physical 

mixture of the model compounds, and real biomass, as well as developing three different 

Bayesian network approaches and parameter learning for each process. Major conclusions from 

the study are summarized below. 

The most probable pyrolytic pathway for HTL of levoglucosan (LG, an important primary 

product of cellulose decomposition) is a causal map with three clusters which can be explained 

as converting LG to formaldehyde (CH2O) and furfural (FF) directly or by producing an 

intermediate compound such as glucose. Based on the pathway proposed for this reaction, the 

formation of formaldehyde and furfural is the result of the dehydroxymethylation reaction of the 

side chain of the furan-ring. The number of pseudocomponents found using an alternate 

algorithm (SMCR-ALS) was determined to be three. The causality map from this analysis 

indicated that pseudocomponents represented by A1 [(-OH), (-C=C-)] and A2 (R-O-R')] can be 

converted to ortho-hydroxy aryl ketones (C=O)-CH=(C-OH) by alkyl and hydrogen transfers and 

oxidation reactions. 

When it comes to comparing the BHC and SMCR as methods to generate nodes among which 

the Bayesian networks are developed; the latter one provides better results. Applying the BHC 

technique groups wavenumbers in a cluster without any background constraints on how 

chemistry changes over different process conditions. On the other hand, the SMCR algorithm 

determines the concentration changes of pseudocomponents across different process conditions 

along with a full spectrum for each. This makes it more appropriate for the on-line monitoring of 

change in species during a process. However, in terms of mapping to real chemistry, interpreting 

the results from SMCR is more difficult.  

After conducting HTL of 2-Phenoxyethyl benzene (PEB, a model compound for lignin) and LG, 

individually, and analyzing and comparing the BNs from FTIR technique and fusion method, it 

was confirmed that the latter method presented some major improvements. In other words, data 

fusion provides the result that is more consistent with the findings of density functional theory 

(DFT) in the literature. Regarding PEB decomposition, after applying data fusion and data 

mining, a three - cluster BN was identified the optimal network. This network presents the 

conversion of PEB (cluster 1) into final products (cluster 3) which were identified as aromatics, 



138 
 

alcohols, aldehydes, ketones, and alkenes by the cleavage of C-O-C and C-O bonds. Cluster 2 

was identified as consisting mostly of compounds containing phenolic groups which could be the 

result of hydrogen abstraction by the phenoxy radicals from the homolysis of PEB. 

In the search for a deeper understanding of biomass conversion, a physical mixture of cellulose 

and lignin underwent HTL. All three different score-based greedy search algorithms provided the 

same BNs while considering three and four clusters. The novelty of the three-cluster BN in this 

case was that the pathway from cluster 1 to 3 presents the conversion of lignin and phenolic 

groups into the final products with almost the same arc value (-7.47)., while the arc pointing out 

from cluster 2 to 3 shows the conversion of cellulose and glucose to the final products, again, 

presenting the same dependency strength (-43.99). The advantage of calculating these arc values 

is that they represent the dependency and probable pathways between the clusters in the network 

(the strongest dependency belongs to the highest negative number). Therefore, the arc from 

cluster 2 to cluster 3 shows the higher probability for updating itself (43.99) and this infers that 

once it is removed, the overall score of the network will be decreased automatically by 43.99; 

implying that ability to make causal inferences decreases in proportion, leading to higher 

uncertainty about the system. 

In addition to these processes, HTL of real biomass was also conducted, and samples confirmed 

the presence of aldehydes, ketones, acids, aromatics, phenols, ethers, aliphatic compounds and 

alcohols in the bio-oil. To explain the reaction mechanisms, it was proposed that there are three 

elementary HTL reaction pathways (a) Depolymerization of the biomass into its main 

components, (b) Decarboxylisation, decarbonylation, dehydration, and decomposition of biomass 

monomers by cleavage, and (c) Recombination of reactive remains. Employing data mining 

resulted in a final six-cluster BN mechanism. After reviewing and comparing wavenumbers in 

each cluster, it was inferred that one part of the BN (cluster 1) mostly represents hydrocarbon 

(cellulose or hemicellulose) conversion while the other part (cluster 2) represents lignin 

conversion, though both have the same final products (aromatics, carbonyl groups, aliphatic 

hydrocarbons, and smaller molecules). Furthermore, detecting causality between the 

pseudocomponents (obtained from SMCR-ALS) of biomass conversion and comparing it with 

the individual results from LG and PEB conversion indicated that the pyrolytic behavior of 

biomass can be affected more by cellulose rather than lignin, because cellulose can be more 
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easily broken-down during pyrolysis at lower temperatures. In conclusion, the method used in 

this dissertation for causality detection could be a significant mining tool to comprehensively 

understand the behavior of the compounds present in a complex system such as biomass or 

bitumen conversion and in turn, allow the process to be controlled in a more precise way and the 

development of more targeted applications. 

 
 

6.2. FUTURE WORKS 

 

This work highlights some directions for future research. One possible direction could be 

employing an alternate strategy for self-modeling curve resolution (SMCR) by Particle swarm 

optimization (PSO) for computing better initial estimates to search concentration profiles or pure 

spectra of a multi-mixture solution. The literature indicates that SMCR using PSO is less 

sensitive to a local minimum in SMCR and it can be a new effective tool for curve resolution 

analysis. 

Another possible route can be led by developing an algorithm for data fusion by integrating data 

provided from multi-spectroscopy techniques such as FTIR,1H NMR, UV Vis, and Near IR to 

get a complete characterization of the process. Additionally, a mid-level data fusion1 seems to be 

a useful technique not only to extract useful features but also to eliminate the unnecessary 

variables. Moreover, exploring some other statistical data fusion methods such as Kalman 

filtering2 could be optimal under specific conditions. This technique model all of the events as 

probabilities, and typically has several parameters and a priori probabilities for false 

measurements and detection errors that are often difficult to obtain in a low-level data fusion 

method. 
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Table 2-A1-1. Wavenumbers in Cluster 1 

609.4611 3369.3941 3394.4668 3334.6779 3288.3898 644.1772 713.6095 649.9633 3097.7421 730.9676 

3415.6823 3425.3256 3363.608 3321.1772 3303.8191 3267.1743 707.8235 3218.9575 3199.6707 736.7536 

640.3199 3429.183 3365.5367 3340.464 3296.1044 3265.2457 3236.3155 3224.7435 680.822 628.7478 

3417.6109 3371.3227 3348.1787 3319.2485 3282.6037 669.25 3226.6722 3215.1001 1042.3955 732.8962 

3398.3242 3373.2514 3355.8934 3317.3199 3294.1758 717.4669 3228.6008 3213.1715 676.9647 682.7507 

3413.7536 3404.1102 3384.8235 3315.3912 3284.5324 3255.6023 3049.8163 3211.2428 705.8948 724.8249 

3419.5396 3411.8249 3346.25 3338.5353 3280.6751 3238.2442 601.7464 617.1758 630.6765 646.1059 

3400.2529 3409.8962 3353.9647 3309.6052 3292.2471 2906.1729 3247.8876 3209.3141 763.755 619.1045 

3390.6095 3407.9676 3350.1073 3336.6066 3272.9604 659.6066 657.678 3207.3854 632.6052 738.6823 

3421.4683 3406.0389 3344.3213 3311.5338 3286.4611 3263.317 771.4697 3205.4568 761.8264 648.0346 

3200.2543 642.2486 2859.3912 3013.4625 3274.889 3251.7449 634.5339 3193.8847 723.2529 622.9618 

3377.1088 3392.5382 3352.036 655.7493 3276.8177 667.3213 663.464 3195.8134 615.2471 702.0375 

3379.0374 3367.4654 3325.0346 3299.9618 3278.7464 3257.531 767.6124 3220.8861 721.3242 613.3184 

653.8206 3382.8948 3323.1059 3307.6765 661.5353 3261.3883 675.036 3222.8148 725.1816 605.6037 

3375.1801 3359.7507 3332.7493 1130.9073 3271.0317 3259.4596 769.5411 3100.956 727.1102 740.6109 

3380.9661 3431.1117 3326.9632 671.1787 715.5382 3244.0302 3234.3869 765.6837 621.0331 757.969 

3388.6808 3357.822 611.3898 3301.8905 607.5324 711.6808 3230.5295 3203.5281 599.8177 684.6794 

3402.1815 3361.6794 3328.8919 3298.0331 3269.103 3245.9589 3217.0288 678.8934 703.9661 722.5396 

3423.397 3386.7521 3330.8206 3305.7478 709.7522 3242.1016 3232.4582 3201.5994 729.0389 686.6081 

3396.3955 651.8919 3342.3926 3000.3184 3003.6736 636.4625 665.3926 603.6751 759.8977 1400.1088 

756.0403 744.4683         
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Table 2-A1-2. Wavenumbers in Cluster 2 

1051.1275 993.2673 2750.2896 2634.5691 3581.5482 2493.7759 2395.4135 3622.0504 3637.4798 1460.0065 

1139.8465 2974.0158 2622.9971 2790.7918 2156.2579 2208.3321 2426.2723 1444.5771 1066.5569 3973.0691 

1137.9179 1618.1578 2829.3653 2669.2853 2484.1326 1332.714 1406.0036 2281.6217 1159.1333 1539.0821 

1049.1988 2964.3725 1189.9921 2678.9287 2540.0641 2325.9813 2237.2622 1847.67 3635.5511 3706.9121 

923.835 2972.0872 3014.518 1562.2262 1004.8393 2092.6117 2102.255 1701.0908 1336.5713 3959.5684 

1053.0562 3002.9459 2559.3508 2711.7161 2570.9229 3583.4769 3562.2615 2445.5591 1718.4488 3681.8393 

921.9063 2339.482 1706.8768 1874.6715 1838.0266 3089.7363 1942.1751 1357.7867 1446.5058 3953.7824 

2916.1556 1726.1635 1676.018 3571.9049 2327.9099 1984.6059 2256.549 1780.1664 1423.3617 3980.7838 

1141.7752 2362.6261 2779.2197 2649.9985 1865.0281 1670.232 3070.4495 1355.8581 1868.8854 3762.8436 

925.7637 3541.0461 2055.9668 2160.1153 2578.6376 1126.3458 3068.5209 1199.6354 1544.8681 3876.6354 

2918.0843 2844.7947 2034.7514 1128.2745 2597.9243 2210.2608 2889.6275 2293.1938 3664.4812 3969.2118 

1135.9892 2366.4834 2196.7601 2655.7846 1276.7824 3554.5468 1755.0936 2146.6145 1377.0735 3587.3343 

948.9078 873.6895 2098.3977 2686.6434 1407.9323 1282.5684 3600.835 1685.6614 1220.8509 1596.9424 

985.5526 2902.6549 2615.2824 2038.6088 2486.0612 1402.1462 1870.8141 1758.951 3660.6239 3938.353 

929.621 887.1902 3018.3753 2709.7874 1577.6556 3087.8076 3060.8062 1317.6412 1479.2932 3718.4841 

862.1174 3001.0173 2345.268 2785.0057 2538.1354 1890.1009 2451.3451 1535.2248 3633.6225 3566.1189 

950.8364 1926.7457 1892.0295 2667.3566 2553.5648 1321.1419 1263.2817 1118.6311 1392.5029 3828.4186 

860.1888 1132.1318 1188.0634 1963.3905 2370.3408 2424.3436 1404.0749 2403.1282 1174.5627 1525.5814 

919.9777 2337.5533 1184.206 1834.1693 3579.6196 1272.9251 2079.1109 1741.5929 3662.5526 1542.9395 

987.4813 3004.8746 2804.2925 1949.8898 2543.9215 3024.1614 3031.8761 1697.2334 1043.4128 3990.4272 

927.6924 2900.7262 2734.8602 2088.7543 3558.4042 1008.6967 1284.4971 2216.0468 1166.848 3946.0677 

983.6239 2993.3026 2744.5036 2694.3581 1812.9539 2250.763 1350.072 2385.7702 1533.2961 3699.1974 

894.9049 2057.8955 2732.9315 2783.0771 2536.2068 1976.8912 2414.7003 3544.9034 3639.4085 3685.6967 

2920.013 2999.0886 2727.1455 2624.9258 2551.6362 2422.415 2011.6073 1216.9935 1085.8437 3974.9978 

946.9791 2904.5836 2117.6844 1818.7399 2514.9913 1178.42 3066.5922 1259.4243 1384.7882 3791.7738 

2914.2269 2960.5151 2748.3609 1861.1707 3550.6895 2534.2781 3552.6181 2295.1225 3643.2658 1515.938 

931.5497 2906.5122 2642.2838 1913.2449 1886.2435 2511.134 1352.0007 1342.3573 3589.2629 1324.7082 

1998.1066 2962.4438 2705.9301 2119.6131 1695.3047 3074.3069 1334.6426 2432.0583 1151.4186 3809.1318 

896.8336 1662.5173 2752.2183 2605.639 2939.2997 2144.6859 1317.2846 2300.9085 1481.2219 3830.3472 

989.4099 2858.2954 2806.2212 1839.9553 2133.1138 1105.1304 1147.5612 1087.7723 1770.523 3961.4971 

952.7651 2997.1599 2937.371 2692.4294 3575.7622 2420.4863 3058.8775 2376.1268 3641.3372 3907.4942 

864.0461 1056.9135 2729.0742 2696.2867 2243.0483 1730.0209 2447.4877 1124.4171 1751.2363 3963.4258 

954.6938 1851.5274 3016.4467 2518.8487 2497.6333 3078.1642 3093.5936 1296.0692 1600.7997 3895.9222 

956.6225 2840.9373 877.5468 2653.8559 1278.7111 1575.7269 2254.6203 2405.0569 1014.4827 3716.5555 

1034.9849 2958.5864 1946.0324 1924.817 1953.7471 2549.7075 2252.6916 1969.1765 1791.7385 1074.2716 

892.9762 2021.2507 2663.4993 2189.0454 2478.3465 3082.0216 2412.7716 1257.4957 1514.0094 1463.8638 

1658.6599 2842.866 2746.4323 2563.2082 1836.098 2393.4849 2399.2709 1735.8069 2163.9726 1251.7096 

918.049 1616.2291 2561.2795 2893.0115 2495.7046 3028.0187 1319.2132 1799.4532 1483.1506 3782.1304 

2360.6974 2995.2313 2715.5735 1849.5987 2036.6801 1569.9409 1207.3501 1957.6045 1747.379 3668.3386 

1612.3717 1099.3444 2761.8617 2204.4748 1089.701 2162.0439 1753.165 1116.7024 3774.4157 3845.7766 

981.6952 2812.0072 2661.5706 2588.281 1915.1736 2071.3962 1348.1434 2283.5504 3625.9078 3915.2089 
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865.9748 1573.7983 2640.3552 2651.9272 1546.7968 3026.09 1974.9625 1762.8083 1461.9351 1523.6527 

2920.0416 2898.7975 2636.4978 1932.5317 2040.5375 2391.5562 1824.5259 1529.4388 3666.4099 3793.7024 

973.9805 2929.6563 2742.5749 2032.8228 1909.3876 3560.3328 2129.2565 2009.6787 1068.4856 1504.366 

1047.2702 2000.0353 2792.7204 1180.3487 2187.1167 2090.683 2374.1981 1201.5641 1434.9337 3934.4957 

2358.7687 2954.7291 2590.2096 2135.0425 2094.5403 1787.8811 2464.8458 3606.621 1253.6383 3928.7096 

975.9092 1571.8696 2638.4265 2050.1808 1552.5828 3062.7349 2082.9683 1681.804 1157.2046 1452.2918 

970.1232 2368.4121 2619.1398 1324.9993 2509.2053 2489.9186 1205.4215 2177.4733 3658.6952 3679.9106 

972.0519 995.196 2819.7219 1895.8869 3022.2327 3056.9488 2462.9171 3595.049 3620.1217 3926.781 

891.0475 2059.8242 2704.0014 2788.8631 2879.5108 1973.0339 1442.6484 1714.5915 1560.2975 3940.2817 

898.7622 1893.9582 1880.4575 2947.0144 1409.8609 2532.3494 1589.2277 2312.4805 1448.4344 3785.9877 

1134.0605 3006.8033 2707.8588 2572.8516 1704.9481 3103.237 2441.7017 3598.9063 3631.6938 3784.0591 

958.5511 2956.6578 2023.1794 2891.0828 2873.7248 1841.884 1967.2478 1587.299 3608.5497 3947.9964 

2912.2983 1928.6743 2054.0382 1978.8199 2881.4395 2547.7788 2322.1239 1429.1477 1153.3473 3703.0547 

933.4784 1564.1549 2673.1426 2945.0857 1274.8537 2173.616 2455.2024 1757.0223 1398.2889 3878.5641 

945.0504 1091.6297 2219.9042 2786.9344 1832.2406 1888.1722 2181.3307 1292.2118 1373.2161 1517.8667 

977.8379 1728.0922 1934.4604 2817.7932 1679.8754 2138.8998 1315.3559 1531.3674 3610.4784 3944.139 

979.7666 1724.2349 2603.7104 2688.572 2530.4207 1737.7356 1776.3091 1959.5331 1512.0807 3764.7723 

1620.0864 2935.4423 1940.2464 3473.8336 2499.5619 3569.9762 1213.1362 1795.5958 3955.7111 1016.4114 

964.3372 875.6182 2675.0713 2096.469 2850.0101 3095.5223 2401.1996 1114.7738 1222.7795 3730.0562 

991.3386 2335.6246 2644.2125 2576.7089 1703.0194 1919.031 2271.9784 1789.8098 1155.2759 3760.915 

1614.3004 2086.8256 2048.2521 1668.3033 2206.4034 1803.3105 2198.6887 1830.3119 1683.7327 1502.4373 

867.9035 1566.0836 885.2615 2331.7673 1907.4589 3085.8789 1583.4416 1120.5598 1363.5728 3920.9949 

968.1945 1936.389 2835.1513 1045.3415 2044.3948 2460.9885 2453.2738 1760.8797 3568.0475 1467.7212 

966.2658 1938.3177 2582.4949 2690.5007 1328.8566 2470.6318 2111.8984 1828.3833 1375.1448 3720.4128 

904.5483 2813.9359 1863.0994 2125.3991 2487.9899 1265.2104 2081.0396 1108.9877 1168.7767 3951.8537 

889.1189 2364.5547 2767.6477 1720.3775 2229.5475 3076.2356 2273.907 1365.5014 1527.5101 3826.4899 

2850.5807 2952.8004 2759.933 1820.6686 3035.7334 2171.6873 3623.9791 1112.8451 1772.4517 3893.9935 

2848.652 2810.0785 2740.6462 2052.1095 3049.2341 3072.3782 1215.0648 1299.9265 3909.4229 3807.2031 

902.6196 1853.456 2671.214 3500.4755 2202.5461 1344.286 2439.773 2314.4092 3654.8379 3728.1275 

962.4085 2933.5137 1672.1607 879.4755 2123.4704 2065.6102 1604.6571 2310.5519 1716.5202 3629.7651 

912.263 1722.3062 1859.2421 2150.4719 2142.7572 1971.1052 3591.1916 1305.7125 1388.6455 3849.634 

1143.7039 2352.9827 2800.4351 2190.9741 3604.6923 2457.1311 2397.3422 1367.4301 1340.4287 3778.273 

943.1218 2821.6506 2594.067 1884.3148 1897.8156 2416.6289 2140.8285 1585.3703 1450.3631 3888.2075 

1660.5886 3008.732 2221.8328 3000.4481 1413.7183 3033.8047 1427.219 1286.4258 3772.487 3832.2759 

900.6909 2823.5792 2574.7802 2100.3264 2264.2637 2131.1851 2428.201 2383.8415 1417.5756 3708.8408 

941.1931 2860.224 2758.0043 1581.513 1994.2493 2262.335 2410.8429 1297.9978 1598.871 3780.2017 

960.4798 2030.8941 2702.0728 1687.59 3602.7637 3083.9503 1739.6643 1400.2176 3616.2644 3770.5583 

2910.3696 2775.3624 1712.6628 1058.8422 2869.8674 2069.4676 2200.6174 2179.402 1733.8782 3949.925 

2341.4106 2192.9027 2516.92 2526.5634 2476.4179 1267.139 2109.9697 3596.9776 3957.6397 1519.7954 

2194.8314 1857.3134 2046.3235 2084.897 3577.6909 2449.4164 2291.2651 1801.3818 1419.5043 3814.9178 

906.4769 2611.4251 1814.8826 2889.1542 2015.4647 2513.0627 1537.1534 1064.6282 1396.3602 1558.3689 

935.4071 2839.0086 1965.3192 2223.7615 1807.1679 2279.6931 2408.9143 1380.9308 1070.4143 1081.9863 

910.3343 1903.6016 2948.9431 3039.5908 2501.4906 1270.9964 1062.6996 1866.9568 3645.1945 3795.6311 
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916.1203 2825.5079 2684.7147 2632.6405 2347.1967 2106.1124 1440.7197 1768.5944 3618.1931 1226.6369 

869.8321 1579.5843 2815.8645 2115.7558 2127.3278 2073.3249 2270.0497 1122.4885 1394.4315 3824.5612 

1691.4474 2613.3537 2659.6419 2883.3681 2225.6902 2227.6189 2258.4777 1382.8595 3911.3516 3805.2745 

2923.8703 1855.3847 2601.7817 2599.853 3047.3055 2067.5389 1766.6657 1425.2903 3998.1419 3922.9236 

2852.5093 2794.6491 2682.786 2875.6534 1006.768 2289.3364 1826.4546 1699.1621 3697.2687 1076.2003 

914.1916 2736.7889 2665.4279 2630.7118 3055.0202 2372.2694 1782.0951 1743.5216 3612.407 3834.2046 

937.3357 2763.7903 2862.1527 1872.7428 2555.4935 1269.0677 2260.4063 1431.0764 3695.34 3766.701 

1693.3761 1101.273 2700.1441 2329.8386 2217.9755 2503.4193 1107.0591 2308.6232 1172.634 3942.2104 

939.2644 3539.1174 2713.6448 2584.4236 1822.5973 2491.8472 2443.6304 1218.9222 3994.2846 3701.1261 

1622.0151 2931.585 1882.3862 1982.6772 2061.7529 2025.1081 2298.9798 1110.9164 1436.8624 3627.8364 

1664.446 2777.291 1145.6326 2877.5821 2480.2752 3029.9474 3593.1203 2378.0555 1595.0137 3859.2774 

1095.487 997.1246 2754.147 2541.9928 1280.6398 2435.9157 2387.6988 2214.1181 3652.9092 1041.4841 

1656.7313 3010.6606 2677 2158.1866 3099.3797 2148.5432 2175.5447 2381.9128 4000.0706 3691.4827 

2356.84 1899.7442 2565.1369 2885.2968 2027.0367 1785.9524 2104.1837 1433.005 1749.3076 3714.6268 

2846.7233 1986.5346 883.3328 3041.5194 2507.2766 2437.8444 2318.2666 1843.8127 1361.6441 1541.0108 

908.4056 2808.1498 1186.1347 2244.9769 2482.2039 2113.8271 2169.7586 1301.8552 3811.0605 3886.2788 

2983.6592 1182.2774 2607.5677 2864.0814 2266.1923 3091.665 1353.9294 1290.2831 3996.2132 3897.8508 

1666.3746 2827.4366 1816.8112 2595.9957 2351.054 2468.7032 1922.8883 1255.567 3683.768 3919.0663 

2979.8019 1980.7485 2771.505 2628.7831 2867.9387 1550.6542 2007.75 2302.8372 3776.3444 3677.982 

871.7608 2765.719 999.0533 1805.2392 3097.451 1809.0965 1203.4928 1593.085 1170.7053 1465.7925 

2854.438 1990.3919 2617.2111 1323.0706 2520.7774 2075.2536 1209.2788 2165.9013 3967.2831 3924.8523 

2966.3011 2609.4964 1951.8184 3037.6621 2121.5418 1944.1037 2241.1196 1369.3588 3984.6412 3930.6383 

2981.7305 1130.2032 881.4042 1312.9107 1992.3206 2466.7745 2042.4661 2379.9841 3789.8451 3687.6253 

1610.4431 2896.8689 2798.5065 1000.982 2248.8343 3064.6635 1917.1023 1149.4899 3978.8552 3768.6297 

2968.2298 1677.9467 2005.8213 2524.6347 1548.7255 2275.8357 2406.9856 1556.4402 3847.7053 3672.1959 

2977.8732 2621.0684 2657.7132 2231.4762 2277.7644 2167.83 2433.987 1379.0022 3965.3544 3755.1289 

2989.4452 1608.5144 2837.08 1568.0122 3350.3083 1764.737 2239.1909 1845.7413 3986.5699 3874.7067 

2985.5879 2731.0029 2781.1484 2183.2594 2246.9056 2324.0526 1311.4986 1161.062 1477.3645 1510.152 

2925.799 2723.2882 2648.0699 2557.4222 1320.7853 1554.5115 1176.4913 1162.9906 3787.9164 3866.9921 

1097.4157 2725.2168 2580.5663 1326.9279 2418.5576 2108.0411 2297.0511 2306.6945 3936.4243 3917.1376 

2908.4409 1689.5187 2769.5764 1193.8494 3080.0929 2152.4006 1961.4618 3564.1902 3913.2802 1469.6498 

1708.8055 2717.5021 1878.5288 3051.1628 2545.8501 1197.7068 1313.4272 1602.7284 3976.9265 3670.2673 

2343.3393 2796.5778 2333.696 2626.8545 2233.4049 1778.2377 1294.1405 1288.3545 1485.0792 3884.3501 

2028.9654 2802.3638 1674.0893 2586.3523 1411.7896 2001.964 2316.3379 1164.9193 3656.7665 3861.206 

2991.3739 2950.8717 1191.9207 3045.3768 2522.706 2505.348 1211.2075 3585.4056 1083.915 3797.5598 

1996.1779 1930.603 2680.8573 2887.2255 2013.536 1784.0238 1797.5245 1359.7154 3982.7125 3932.567 

1988.4632 3012.5893 1876.6001 2003.8926 1060.7709 1012.554 2430.1297 1303.7839 3704.9834 3890.1361 

1093.5584 2019.322 3020.304 2185.188 1010.6254 1811.0252 1410.647 1438.7911 1386.7169 3757.0576 

2975.9445 2592.1383 2646.1412 2528.4921 1195.7781 2063.6815 2285.4791 1745.4503 1338.5 3857.3487 

2927.7276 2833.2226 2894.9402 1606.5857 2459.0598 2287.4078 2212.1895 1371.2875 1072.3429 3843.848 

1710.7341 1947.9611 2756.0756 1911.3163 2941.2284 1391.1563 3546.8321 1774.3804 3812.9892 3739.6995 

2987.5166 2831.2939 3542.9748 1905.5302 2474.4892 2077.1823 1955.6758 1421.433 3693.4114 1521.7241 

2354.9114 2773.4337 2136.9712 3500.7608 1920.9596 1346.2147 2320.1952 1390.5742 3988.4985 3722.3415 
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2856.3667 2738.7176 2698.2154 3053.0915 2871.7961 2349.1253 1261.353 1793.6671 3614.3357 3726.1988 

1901.6729 2719.4308 2567.0655 2568.9942 2017.3934 2268.121 2154.3292 1731.9496 3992.3559 3816.8465 

2970.1585 2721.3595 1103.2017 2943.157 2472.5605 2235.3336 1309.5699 2304.7658 3971.1405 3799.4885 

1080.0576 3905.5655 3758.9863 3803.3458 3647.1232 3892.0648 1228.5656 3880.4928 3674.1246 1080.0576 

1078.129 3836.1333 3818.7752 3491.9848 1405.4359 3741.6282 1450.0079 1018.3401 3863.1347 1100.129 

3882.4214 1249.781 1454.2205 3822.6325 3865.0634 3724.2702 3650.9805 3841.9193 3737.7709 3882.4214 

3868.9207 3801.4171 3712.6981 3676.0533 3820.7039 3710.7694 3753.2003 3689.554 3872.7781  
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Table 2-A1-3. Wavenumbers in Cluster 3 

 

1631.6585 1633.5872 833.1873 837.0447 806.1859 1649.0166 777.2558 790.7565 3130.2385 3107.0944 

1641.3019 3433.0403 3446.541 854.4027 810.0432 823.5439 725.1844 792.6852 3128.3098 3188.0987 

1629.7298 3473.5425 3454.2557 827.4013 3512.116 1730.4484 1484.6138 1654.8026 3145.6678 3172.6693 

1643.2305 3475.4712 1727.1635 3519.8307 852.4741 844.7594 723.3984 1647.0879 3151.4539 3137.9532 

1639.3732 3450.3984 856.3314 825.4726 838.9733 796.5425 3529.474 3120.5951 3126.3811 3134.0958 

1627.8011 3479.3285 3469.6851 2784.8079 811.9719 802.3285 3525.6167 3168.8119 3124.4524 3182.3127 

3434.969 1720.7941 3490.9006 3517.902 808.1145 815.8292 781.1131 3112.8804 3190.0274 3161.0972 

3436.8977 3440.755 1623.9438 3514.0446 798.4712 819.6866 3527.5454 3122.5238 3116.7377 3174.598 

1625.8725 3452.3271 3494.7579 3508.2586 800.3999 850.5454 788.8278 3118.6664 1731.9496 3186.17 

3458.1131 3448.4697 3498.6153 3487.0432 842.8307 813.9006 3537.1887 3170.7406 3141.8105 3136.0245 

3460.0418 3456.1844 3485.1145 1250.9452 3533.3314 3502.4726 786.8991 3114.8091 3139.8818 3184.2413 

3465.8278 3471.6138 3481.2572 829.33 3504.4013 1635.5158 783.0418 3166.8833 3163.0259 3180.384 

858.2601 3442.6837 3496.6866 1645.1592 840.902 3521.7593 784.9705 3153.3825 3109.023 3155.3112 

3438.8263 3467.7565 831.2586 3488.9719 3510.1873 775.3271 846.688 3143.7392 3132.1671 3159.1686 

3463.8991 3492.8292 3506.33 3515.9733 817.7579 821.6153 3523.688 3110.9517 3149.5252 3176.5266 

3477.3998 3444.6124 3483.1859 3500.5439 3531.4027 3535.2601 848.6167 3164.9546 3147.5965 3178.4553 

3157.2399 1652.8739 856.3314 1730.0210 1750.8867 2949.1779     
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Table 4-A1. Operating conditions for temperature and residence time for PM and Biomass 

conversion in a stainless-steel micro batch-reactor. 

Medium T (°c) t1(min) t2(min) t3(min) 

Subcritical water 150 15 25 35 

Subcritical water 250 15 25 35 

Subcritical water 350 15 25 35 

Sulfuric acid 150 10 20 30 

Sulfuric acid 200 10 20 30 

Sulfuric acid 250 10 20 30 

Sodium hydroxide 150 10 20 30 

Sodium hydroxide 200 10 20 30 

Sodium hydroxide 250 10 20 30 
T=Temperature, t=Time, min=minutes 

 

 

 

 

 

 


