~30707

l b - National Library Bibliothdque nationale - " CANADIAN THESES .THESES CANADIENNES o
of Canade - duCanada- . - . - ONMICROFICHE . SUR ulcnoncws .
"\i N RN

»

ue;'Ce:Qz : ‘ 'V " o s
Ar Macﬁ\‘)&, Ortc_n.l;gi LQMuac\e g« y\a M 370»

" NAME OF AUTHOR/NOM DE L' AUTEUR
. i - .

TITLE OF THESIS/TITRE DE LA THESE

"

| -. - v ,\. '_] » . .
- umvensm/umvsnsm‘ Umueng ’C AU:eA"R : o - e . ‘ _
" DEGREE FOR WHICH THESIS WAS PRESENTED/ : M S o ST L -
GRADE POUR LEQUEL CETTE-THESE FUT Pntsmrfe PP AN : : S -

’ YE?‘R THIS DEGREE CONFERRED/ANNE'“E D’ OBTENTION DE CE GRADE i m

NAME OF SUPERVISOR/NOM DU DIRECTEUR DE THESE %*;S Ha«'nOUbK N .

A

< . o SR SRS SIRLATES SIS (O

k]

c Permission is hereby granted to the NATIONAL LIBRARY OF i’ autonsat:on ost, par la présente accordée 2 la BIBLIOTHE '

" "CANADA fo microfilm this thesis and to lend or sell copies _ QUE, NAT'[ONALE DU CANADA de microfimer cette thése et
' .) - . i s ,l, o o *

of the film, e S de préter ou de yendre des efxemp/alres du f//m
’ The author reserves other pubhcahon nghts and neuther the L auteur se réserve Ies autres drozts de publ:canon nila

thesns nor extens:ve extracts frt])m |t may be-: prmted or other- ; thése ni de /ongs exrra/ts de ce//e—c/ ne do:vent étre :mpr/més

* wise reproduced wuthout the author’ s»wntten pergss;m.' ' b ou*autrement reprodu:ts sans /auronsar/on écrite de /aureur

| D';\TE,'D/bA ré"~ [ﬁ 2 C OC&"W7 mtmso/smtf’

PE‘RMANENT Aoongssmésms/vt:f F/xf : Cl/ o H"' H u‘(&ffl o _ ' ' |
S AL Tenhll Coeed, =

o | D;. Mills LOVL{'RVN e

a - Mac 26‘{

O

PLEASE NOTE: Some hagds may have
(ndistinct print. Filmed as :

INFORMATION TO USERS
L | . .

—

THIS DISSERTATION HAS BEEN

‘ MICROFILMED EKACTLY AS RECEIVED,

This. copy was produced from a micro-

fiche copy of the o¢1g1na1 document.
. The quality of thé copy is heavily
' dependent upon the guality of the
~original “thesis submitted for
‘microfilming. Every effort has

-~ been made to @nsure the highest

qualjty of reproduction possible.

. 4 . N . ‘\ - '
b R . . oS
- 14 . - ~.

received. - | e

v

- ” " ' .)l
Canadian Theses Division

* Cataloguing Branch

National Library of Canada
Ottawa, Canada K1A ON4

" nous 1'avons regue|.

AVIS AUX USAGERS

LA THESE A ETE MICROFI 1EE

~ TELLE QUE NOUS L'AVONS RECUE ~

Cette cop1e a ete fa1t a part1r
d'une microfiche du document
or1g1na1 La qualité de 1a cop1e
dépend grandement de Ja qualité
de la thése soumise pour le

NOTA " BE@! " La, qua11te d'1mpress1on

désirer. M1trof11

Division des-thé&ses canadiennes -

. Direction -du catalogage .
Biblioth&que nationale du Canada -
"Ottawa Canada =~ KIA. ON4

o 2

L The Uniiersitf of Alberta

'PL370: A MACHINE-ORIENTED LANGUAGE FOR THE IBN 370

. ‘ .
: o) P ‘). ¢
. . lv // to- .
. / L
- . / by -
’Jaqés M. Heifetz »
B B /"", .

‘/ : A thesis

?jsubnltted to the P#culty of Graduate Studles and Research
in part1al fulf11 ment of the requ1renents for the degree

of Master of Sc1ence‘

Ce I o
™ ;\\ o ' Department of Computing Science, * ’ °

Edunonton, Alberta

~ Pall; 1976

. ..
o R
.) ’:> j ,
| ‘ THE unxvnasrn OF ALBERTA |
c e ~xuscm.'mr oF. GRADUATE STUBIES AND. Rnsmacn
| . -v" Q‘) 2 . .
| 2

' 3Thé.s§n3é£§iqned céttifi“th#tffhéfbha?effé#d;Ahnd_f

» 1" : recommend “to the Faculty of Graduate StudleS‘ and 'ﬂésé&ich;

‘ for acceptance, a thes;s entltled “PL37O'VA uachlne-Orxente

: /‘:QA " Language for fhe IBu 370'5" subnltted by Janes M. Hqifetz in

partlal,-fplflllent of‘ the requlrelents fon the dégree of

‘Master of Science. R ; ‘ v,,': S
. o . — . | : o v:, \

. PL370 a prOgralning u]anguage derxved‘ fro V the.
genéral’purpose language _ALGOL 68;v It is 1ntended' éin11 “
for Systens progranning.@ It is more difficuIt tol us ’

ALGOL 68,r_ because 3?0n§'_lust speclfy his' pnogra f:ﬁ;;é

conpletely, but allous the 'progtaller to favo;d e}pensxve;lﬁ
: R & _ A
) generallzeq featutes. _Th desxgn goals are given

: need for yet anothec 1anguage Iexplained._;

been fallures in‘ the past.,»The varlous conpone'

o

a successful 1 ‘.gc

-/than'i}:"lﬁ

’{, inspxratlon. Seigral fellou gtudents, including Chris Gray f f

’o;the final stages. “ﬁ“ ‘ s J”i

"

. fron pthers. uy wife, Ellnor. has been a constant source offff;-ﬂﬂ g

'fg'and Chtis Thonson, have been of great help 1u 1istenxng toa;;f"'

'_1deas, "and. in contrlbutlng thelr own. I uould also 11ke to'}*ﬂ;ﬂ*””

'thank ny supervisor, Barry uailloux, for hxs help throughout

" the’ perlod of ny research and eSpecxally, for his help 1n f i;;,fJ

I herehy acknowledge the inportant help I have :eceivedo.;.,‘_

'Library Release Forl .nnno-----o--..b.--..‘.-.-...-.--qn..l .
. , : , : B

: Tltle '....“‘.....‘..'..'.-’...-.....-;....‘.-

kiTable of F;gures -

““-{caakrshl.:i'"

. ‘Tsble of Centents .

Approval Page‘..’."QI..-.........."...;"........-lli
T T e s

-

. Abstract -..n.bocna-.;.;.;-.-.--.------lp--.v.‘....-..-v--.l"”j

'As _E

\\ACknOUledgenentS ..-..-‘....".‘...‘."....‘._..-...".’.v'

a::fTable of antents......;,a.‘”éﬁﬁ?.;...,;;;;;..;;.-,....y;fﬁ
‘_ L .' P . : .

hd

»

| 7«'/1\
&Zt‘“tw’\y uf‘-i (ﬁ% v

s s

-

,’Introductlon-...‘......h..........._....1;7,
\1 1‘ HQthation .ll..‘-...l..;ﬁcl..l....rI-..‘t.......1.,. .
" 1.2 An Overviewv of. the TheSiS cescevasoccacsassnannsd
130 ‘Short Glossary Of ALGOL 68 TELES vevesnessssaald
1.4 Language Des;gn Goals81T,

—‘_\‘:. . ;,‘-7. .3” L o

)

<

e

PORTRL" .cn--.--o.hanc-q.q..-cl“

Bliss -.n-.....-.-.....‘..-OQ"‘!..’..IJQ.0001100‘19‘

Q........Oo.q..172.

BCPL Ghewoe s N TIN UnvsEseensseese .q-.-....-..-‘zu
C q“..l!O,.............-.“..-..:‘QJ:".......IC..ll264'

Pascal‘.........'.I'..'%‘.."............Iza

z--PL/Sv.o--.--....--.;..n..----.-...---..----...-36

SUE'....I‘....-..-...-Q..I...I..."......38

fnﬁn&nppwuﬁwhw:{'
Lo

. e 8 g .8 8 .. 80

,agqugam#wv9

"S'

sxderatlon of Varlous Language Constructs475

con

3.1 Condxtxonal ‘CLlAUSES deasscesccannccatiusecanneesl’

3.2 Condition Code HANALING caveeeetassssalonacneas3
. 3.3 LOOPS sneecescnisncsiasssaissncsacacsnoncscnnieaib
3-“ .GO TO. Statelents ..n‘Qd.t-.;.n-....l'.-.bﬂtc-...63
“3.5 The Meaning of -REF ivessuscesssscacvessatossassaeb

3-6A>;:-PaCk1ng of Data -..o;d-...-.-.---q‘--o.....-.--.71

3.7:LStorage Allocatlon .;..;..................;....73

vl

‘;.‘... 'Ic...li'

..‘\@)é ".‘%‘..;...;iﬂﬁtctQ‘I.!v‘ill""

ALGOL 68 nc.....bt‘—-l..ntul..-.IIIODOQ..A......33 v

HARY .-...c....-...-..-.--.--...---..P.-..-....uo”'{.

'Sun‘ary ..Q....'......./........‘.J..Q.....-.....l‘u”'" ’

1e“ Of <ernative Languages 00-.-...7-0 o‘-.n--o..-“z‘:,ﬂ'.‘,._.'H. -
..IBn Assenbler Language_;,___.13.1_

Rgglstet Hanagenent_........76
' Soope-..-........--.-.......‘.-.......-.-82
0. Addressability amessssssstasssesnasenssnceascaes 86
1,Hultip16 valnas u.-....-..-.--.--.-.-.--....-..88-
2 Linkage CONVENtiONS caceceanccacssscnsnncannnasdl .
3 OPELAtOLS. wevinsmcsncasscssasnsensasnsssanssesad5 o
4 Exception Handling eeoeeesecessecesscsccaaascaaads - 1
3.15 Basic ACtions e ceecceenccscencacsasncssnsannssdl
3.16 Dec1&rati°ns .‘..'........-.‘.....-..-..;...."19.\
.3.17 EXPresSSionS itecssessecscsiccensacisacnccsacasasl2lh
.- 3,18 . Macros and Compile-~Time ACtions (ceavmeccceceaal26
~'3.J19 .Separate Compilation MeChaNiSmS ceeedaaacacssa132
° 3.20 Restrictions on Capabilities of the Language .134°
- 3.21 Support for Languages other. than English135"
3.22 Dse of Extra Graphlc Synbols,..........136

L) _ Pinal Design of the Language3...139,"
w“o1 Data !....ccn.-qlo.nntcﬂco--l.-....o--......-.139}‘ s
_DeclarationsS Of DeClarerS e.c.eceescemsicscsnss 1l
Declarations Of ObJECLS wecveeencevenssanncasselSl
"Scope Rules P e S 1
Agtions e T
lConpllatlon SEIUCLULES cesecccccncnescacavesaalb9
Extensibility FeatuUresS «ieccececcsecevceceaiaas 177
Run-time Organization2...%%g&j’”w}.....17u

EEREEEE
» s 8 &
VOV EWN

[

. . . . 'émr',”
nplenentatlon,.........176
1 Desired Environment for Program Design176
1.1 Compiler Services,....................176_
1.2 Register Management .ccccececccscsccsaccnacanal?8
1.3
2

Run‘Tlle Sﬂpport .n---c-c----o-o-----.n--n--179

I
5
. 5.
7 5a
5
5.

6 Concluslon .l..............I.....-....‘.“.....‘..-182 . a/
* 6.1 What was Accomplished ...ccceeiececacannenaaaa182 ‘
6.2 .Future “ork ...-‘.I....."...Ih.....O..’.18q

.g bibii°grath ic..o..('-r.d-qo.-..--.-.-.-;.on;;.-b;§-0185'

| APPENDIX °
'-I ' ﬂov;ng and lddlng 1n IBHASH188'

R &
N & S Sample Llnkage Declaratlons190

vii -

e

3- States Of the norld under HTS --..;..'...-'--¢..‘.--.24.....‘92

1. The Design ODjeCtLVGS of Bliss}............20‘7

2 Language Evaluat;on Sunnaryas:_'Qv

[

£

Cwiii

2

CHAPTER 1 - R

| INTRODUCTION
A\)

Cdlr n__;otnn.g X

X lajor~ problen in large systels ‘is 1ncorrect linkage‘

“betueen constltuent routines (sub—prograas) of the systen.
A cd-non error 1s that a calllng routlne and a called
routine are urxtten nszng dlfferent conceptons of how the

call will be.nade. The tern "linkage»conventlon” is-uéed to

include all the details' of.hov a call is made - not what 1

routine is called or ﬁhai‘inforlatioq.'is 'passéd, ¢bu£_ how

inforsation is 'pasSed " Most systens programmers using IBN

\
nachlnes st;ll progral in assenbly language.\even thqugh it

;'contalns- feu features to help theu detect errors in their

prqgrans, , The<~ingidént - related below prov1ded . the'

-hotivation fot.the.developheqt of an assembler replacement.

TR P

" In eafly 197“,' Bérry Hail;oux réceived the ALGOL68C

| co-pller [8] and associated soffvgté’ fron bniveréity of

Canbrldge in England. I *SOOv took respon51bility for

lalntaxnlng thxs systen at the Unlver51ty of Alberta. ' The
systen '1nc1uded‘a run—tlne-llbrary wrltten in IBH Asselble: '

[3] for use undet;IBu's,os operating-syS;en. The 'run-time -

~

{

library had to be converted to run unﬁer the”qrs operating-

’

system in order to be used here. Sohe of the routines, :such

as 'the one for fornatting of data befbreanoqtput, are

operating-systen independent. Others, sucﬁ aé 'the ’ene‘

! ‘ o
called “open", are alnost coupletely different in the';tuo

versions. The style, of progralninq used by the originall
authers in*Canbridge vas very ‘terse 'and almost’ w1thoub)

comsentary; - there was no documentation ' about 'the'basici

unable to -ake the necessary newv. run¥tine;routinesfbecause'I ,
"~ did not completely know the 11nkage conventions ‘that they

used.v This fear vas Jjustified several tines. For,,exenple, ,

-about one year after the conversion uas supposedly conplete,

I dxscovered that the trigononetric functrons dld not work.

because they wvere supposed ~to, return the 'result in a

different reeister thenvthe.one I had used.,

. «
<
S

- The 1inkage problel‘is lade worse in-aSsenbly language

because even- vhen you knov what the linkage conventlons are,

you uust be very diligent to abide by theu. If by nxs&ake,_

you break a conventlon, it is e(:ii;ely unllkely that an

_ assembler can catch this error.

.

Slnce I vas unsure of the conventxons, I uanted to be'

A-able to write thel doun soneuhere once -and for all and let a
compller enforce the conventlons. Therefore, I dec1ded that
I wanted to revrlte the run-time library in a better
language — obe which had a'conﬁiler that Qoule catch many

L4

structures of the‘vhole ‘syeten. . I wvas afraid of being

v

et e o e

i e AT ST

YO SO

‘replacement languege.i

R 4

more logic errors than an assembler. I then looked around
‘ [’ -

for « language to-.use.

+H

There is one absolute requirelent for any language used -

to write this run-tiae library. Oone nust be able to write'

‘procedures using the sane linkage convention as every other

ALGOLGSC routine. This i-nediebely elininates all. possib137

.Vreplacenents other than- PL360[23] But neither PL360 nor

‘L

Assenbler neets the goel of being able to nenforce linkage“‘

conventions.~ In fact, neither the basic asselbler Lengueg:
(Assenber ninus conditional asselbly) her PL360 give fthe
prograrner any help at -all in doing this. The Assenbler

also has a -acrofprocessor, ~and nost conventious can be

embedded in macro defimitions. Although this does not
.entpr;e conventions, it greatl;~reduces’tbe workloed on ‘the

programmer, because "al} he need do is remember never to

0

circuavent the few essential macKos. PL360 has no na0t6$‘;' -
vhich makes procedure calling hard-to-write, error-prone, -
‘ - ling ha

eqd'bard-to—read. Therefore PL360 ’was‘inot'“ab -acceptable

Lo

- The aCknowledgelent that there was. no- acceptable

replacement for Assenbler. which. is generally _conéidered ‘a

.

poor language, uas not -ade heppily.'=ﬁhat was needed vds a

1anguage that naneged the ° registers for the progralner,

A espec1ally in the sebsitive area of 1inkage, but could

J

1 SOne:versions of PL360 with lacros are- appearing now, - but

there does not seem to be ‘any “official“ or generally-

N

availeble versxon with’ macros. - S

B

\

i

3
accept'QOle iﬁstructions'frOp the progrqnuér on how to do

it., There are currently ao such languages. o

ot
»
v

Nowithe idea 'of updating PL360, to reflect the advances

-~ over ALGOL 60 'made by ALGOL 68(-34], had been around for some
‘ﬁine} I’decided to design a nev, updaiad version of PL360.
Initially, it was called "pnaea« - thh "60" in "PL360" vas

.replaced by "68" to indicate that the guxdlng language ‘wvas

ALGOL 68 rather than ALGOLIGO. .However the "60" in "PL}GO”'

is dlsoypart o# the'"360"} meaning ghatA PL360 is otiented‘

tovards the IBM 360. PL360 fdogs hot'uSe any of the nev

v’

lnstructlons rntroduced on the IBM 370 series. :Aiso PL360

does not» support many of the 1nstructionsvavailab1e on the

5 N v

_ IBM 360v§er;§s.‘for example decimal ﬁari}h-efiCx A~ 500N

decided that ‘the updating of pL360'Should’alsg'include the

u

capabil;ty of using all the 1nstruct10ns on the ' IBM 360.

Later I dec1ded to include all the 1nstructlons on the IBH

¢

‘370{6] as well. At this point, I decided that MPL368" was

too ungiéldy a name and renamedvthe langdage "gL370".

¢

°

originally, I intended to make PL370 a‘ true subset of

0

afeor 68 by: | . o J'Q‘ T e

)

30 /identlfying and élimindting all the iery expegsivef

features, . _ :
:) L
30 cutting odtinpst-of-the standard prelude,
. o c o ' . - .- g
30 providipy a system prelude in which the registers and

all hardvare operations vere made known, and

o

-

- 30 providing a systea prelude for each .operating systei,

|

[}

b

in which all itsffacilities were made available.

Wt Al

. The '*task would then be to urlte a compiler for the subset

f
chosen uhxch could produce code as good as aSSenbly code.

S\ 1.2 Overview. Of The The§is
, = A

™~

In the latter part of this chapter, the design goals of

~ PL370 are given. 1Although one goal is to repléce assembly

. (\l

language, there is a nore anbltlous goal behlnd the stated

~goals ~ that there be an area‘,of application |, hoveVer'

small, for- thCh PL370 is clearly the best language.'

vavailable- The area chosen vas the wrltlng of 1nterfaces.

i
Y

ThlS 1nc1udes any progran that uses more tham one convention -

for the llnklng of procedures. It also 1nc1udes ran—-time

systeas, thCh 1nterface a language to an operatlng system.

. 'Chapter 2 is a study of manyi of the languages Vhich

"have been dsed'for systems programming. Although very few

v’of them were designed for this purp05e they have been so

used and are thus con51dered. It is important to realize -

that criticisms in this chapter are omnly intended to be

!

appllcable - when the = language is used for systems
programming. Heavy criticism does not mean that a language

is bad, but only that I consider it a poor choice for

'systens programming. The point of this chapter is to

examine the various constfucfegﬁsed"in these languages, in
_o;der'to borrou‘fhoee features which arev good, and avoid.
thoseAuhich a;e'bad.e‘ |

Chaptef 3 dlscusses language constructe agaln, but by_
topic rather than by language. Sonme .p;rts _of PL370 have”'
been taken dlregtly from ALGOL 68 without any consideration -
of alternatives‘beéause the ALGOL 68 _form 'Seemed 2learly‘
superior. = These parts are not discussed in Chapter 3.
Those ' topics discussed incldde‘ both machine-independent
general improvements | to ,ALGOL 68 and machine-oriented
additipns.--Thertoﬁics fall into the general categories of
control strﬁctutes, - data structures; | actions;_‘ agd

extensibility.

j Chapfer u‘gathers together all the constructs outllned
in Chapter 3 to glve a descrlptlon of the language. Thi%
chapter can be read by itself for those lnterested only in a

description of PL370. L N

.Chapter' S '~ discusses tﬁe.“ feaéibility ;of vfah
implenentatiph and what ‘kind: of things I would-gaﬁt a
compiler to do. The specxflcatlons of vhat a compller nust
do are consxdered an essential .part,;ofukthe' languageA
desgription.by some people, and’irrelevant_by other%, wvho do
not vish to restrict the implenenter- _?he discussioh‘of an
implementatien is . necessarily li@itéd because this is a

>complete fopic in itself.

Ih the rest of this thesis,- the reader is assuléd to

B have;fht‘ least a reading'knovledge,of‘ALGOL 68 (or at least
_its terminology), to kmow one ALGOL language, FORTRAN, IBM

Assembler, and the IBM 370‘nachine instructions. Also, vhen
discussing .any other language, térms generally uséd in the
description of that langdége may be used -without " further

comment.

1.3 A‘Short Glossdrxsgg ALGOL 68 Terné

mode - typé_
proc | - procedure

'.tag ' | - ideniifier (hut hot of a gode)
unit v - a statement Or'expreséion
clause - a blockf(pbssibly valued)’
stoved object - a structure or a row

row | : - an array (any dimension)

'Q‘ s ﬁ&

1.4 Language Design Goals

e} 1l

. (1) Procedures

Vv

A\u i) . c t L. . ’
/. The language must inGlude .a complete procedure

;facilitf,-includiné p&rameter passxng (unllke '§L360 énd
'»assembly languéges). The progranner lust be able to "define
 proqedures_gs1ng any ngLreQ,%lnkage, conventlon..’.h major
iﬁse fpp¢Ioﬁ—levelllanéuagesﬁfs’to rewritpjpnograhs fhat wvere
wCitten >;n a high?level languaée but Lave_not,béen conpii;d
..as éfficientl& as requi:ed. int any @nit’of compilation in
any ‘ldnguage) it'i;stvbe posSiblé‘to:replécé‘thaf ﬁnit’by a
PL370 source module. This will be done by writing ﬁhe:“ugit

PN
|3

as- a procedure.

(2) Readab;lity

PL370Q prograas hus£ be fairiy'eASj td:read. vIn.the
case ‘of a progran in one language belng re~wr1tten in- PL370,
vas decribed above, one should be able to deflne the des1red
envxronment sufflcxently well so that the'PL370 replacement
reads sxlllarly to the origlnal, or at least in»» natural

nanner»to a reader of the orlglpal-language, r"

(3) Register uanageheng‘

The programmer. must be able to nanage those reglsters"

he-wvants to by himself, u;thout being requlred to. concern

himself with the others. The set of-registers beiﬂg uauaged
by the conpiler uust be changeablefuithin"a,conpilation.

v

(4) completeness
o \

'The = language must be able to express any operations
wvhich the'nachine can perfcru. -There must be'nd~‘Cases for’
which one must’ give up and go back to the Assenbler. Thls

1anguage nust be able to replace the Assenbler conpletely.

(5) Safety: o » R ' y

The lancuage uust be ouet in which uany €rrors. are
-recdguized v5s~ such by the language and the conpller. As
uany types of errors as p0551ble that nust be‘ con51dered
logic errors when u51ng ‘an assenbler shoul&*be noved to the

,class of syntax errors.-

(6) Powerful Data Structures

The progrénner must be able to create ;EStract- date'
structures and operatlons upon them, as in ALGOL 68, 1n
vorder to accurately reflect his algorlthn." The progranner‘\
‘must be able to use and aanlpulate any data created by other

-progranms.

(7) Powerful Gontrol Structures

<R

" The progranuer"needs poverful control‘struCtures to

o

improve the cbnpactness and cbrrectneSS of his - prograas.
Qood control structures naxe prograns ea51er to read and to,

urite.‘ They also allow the 'COnpaler to uake. a better

9

< By translatlon.

‘(B)vConvenient Representatiqn"f o .

The character set needed to represent a progqnl must be

51mple, * but flexlble. 'The lost conmon character "set

| avallable (those characters avallable both on the IBH‘ 029

'keypunch‘ and on the PN prxnt traln) nust suffxce for any
progran, hut the prOgraller nust be able to take advantagev
of any ddltlonal characters (sylbols) avallahle, such as.

those on the TN prlnt traln.

(9) Macros B ‘ o f)

P

major reasch'vhy §L360 isvHOrSe than Assembler. Ohe 'should
'be“able to. use the nacro—processor by itself to generate
arbitrarY'text rather than a PL370 program. (e g. as: 0S
SYSGEN uses the nacro¥processcr‘in‘thevhssenbler tcgproduce

JCL programs).

e

- (10), Elegance a

-F

The language should show no weaknesses when conpared‘to‘

cther‘ systens-progralningA languages,v eﬁpeciaily .any

"availabie. on the %gp 360 or 370. Hhen th ' is.avChoice of

There mist be a macro-processor. .Lack of macros is the

w

Ay sigplic‘ity

A“yl

Y

othiervise e§ual fqrné, the. one that B?ﬁtleﬁgenblés _lLGOL 68

is'préferable.

»

| The language should be“easy to learn. Knouing‘hLGOL’GS o

already ‘'should be an asset.

&
&
_CS;‘:.: "

11

fOl’.‘

12

CHAPTER 2

REVIEW OF EXISTING LANGUAGES

-~

In this chapter, several languabes°which haveabeen used

_ systeas inplénentatidn will be/reviewed._ The languageS-

ohosen_include some of the ' best 7avaiiahle,‘ or p0551b1y

f avaiiabletufor thevIBH 370;‘ None'is véry satisfactory. thata.

&

-is uhy PL370 was de51gned. Although each ‘language has ‘been

approached on its own terIS, there are some basic criteria

for’judglng a language. These are presented-heiou,_ not‘:in 2

,any.spec1al order.

t(2{

13(3Y?

“w

)
(6)

7

(8)
- (9)

Can all 'the approprlate 'features of the nachlne be

nsed’ Can the language replace the asselhler?

il

Is 1t easy to learn?
Does it have powerful data descrxptlon facxlxt;es?

(This feature is very anortant 1n 1arge systens.)f'

ZDoes 1t have good control structures?
'Can_one have operators for all hls data types’

,Can[one approach the language from dlfferent levels?

Can‘the language connunlcate uxth other languages? -

Does 1t have a good nacro facxllty?

Are nost anut devices (e g. a keypunch) suff1c1ent for ‘

;1 progral lnput?

RUR

e

Are lOSt output devxces (e.g. a prxnter Ulth a PN prxnt .

Vl'traln) suff1c1ent for program llstlng?

-;(11}

Can-vqne use any _extra characters avallable on a

-

 printer?

In what follous, any references;to "ALGOLY mean ALGOL W

or AnGOL_Ge.

‘:agegxnlt; "IBHASH" - athe language_ accepted by' the

processor IBN: calls ‘Asseabler F [3].

"_ggig;&;_g "conplete" language is one .iu' which _auy

“progran ‘that can be urltten in IBuASH can also be urltten in

’ that- language' without resorting-,to .the use of uachlne

- language in the data.

gggin;tion:'a “structure" is a collectlon -ofV data 'in:.oue-'

;ooject. ThlS t%rn,ris used in the sanme way as 1n COBOL,
PL/I, and ALGOL 68. |
: ; : &j

' ": At ‘thee end of each 1section is “'list' of f‘the

(’7 unacceptable features of the 1anguage from the p01nt of v1eu

of" a systems progranner. In fact, some of these features

. .are good features fron the p01nt of V1ev ‘of an applxcatlons"
”v~prograuner._ All exanples 1n this chapter are wrltten in the-'

language belng discussed in the sectlon 1n thCh the exanple

appears. .

2.1 IBmAsH -

_iThe'jbasio assenbly language allous full control over “

ithe»nachine;'but is ted;ousv to:»‘_ej because every sxngle

lachine’7operation must . be _sbécified, The macro language

13

v

allows one to extend the language and build "higher-level"

features, - so that the source program becomes more and more

legible. Although the ldcro definitions are . often very

.ugly, they may be used to build alpost anything that could

be wanted; thé restrictions ‘are in the number ° of

continuation cards and parameter length on the macro call.

The big draubacﬁ to using the macro processor is tﬁat\ to

build nice features, a programmer ends up writing more and

- more of a parser and code generator as part of his ‘'macro

definitions.

Tags (identifiérs, labels, and operators) are

restricted to at most 8 characters.

A 'program' is broken into assemblies. There is 'no

inherent seiantid meaning to an asseably; it is simply a

collection of possibly related statements being assembled at

‘the same time. Thére is little.languagé-inposed control on
references within an assembly: é tag)declared anyvhere may
' be referenced from any other statement (after an appropriate

- USING ‘statement).

-

{ The ‘idea of ‘the independent subroutine as a

"cdmpilation unit is coampletely hisSing,in IBMASM and also in

'COBOL. Whereas the latter mildly encourages a “"run-unit" to

&
5

‘be broken into several "progtans", assenbly progranneré seenm

to be reluctant to break up their assemblies. FORTRAN has

betfer facilities for this than either 1anguage. }

LL)

There is no check against the misuse of variables in
storage. E.g;, one canA;aSSign a packed-decimal integer
value to a binary-integer variable and the amove 1is nade

without conversion or complaint.

There are too many operators to remenber easily. For
exanble,vthere are 15 different add instructions and " u8
different instructions to move data from one part of the

%nachiné to another without conversion (see Appendix I)..

Al

Procedures with parameters are7poor1y'supported. With

the IBM linkage conventions, the ‘actual parameters are

possibly scattered in memory. To reference each paraieter

(wiihout-moving it.into'a more cohvenient ldcation).by a tag

takes much work on ‘the part of the programmer. It also

réquires‘at least one register for each piraleter. For this

- reason, high-level languages move parameters to a more

convenient location, but the assembler gives the prograamer
4 _ A : :

no help in doing this.

. An expression,nust be split into several lines (at

least one for each operator in the expressiony.

The programmer must keep track of which registers are
in use; he can acéidentally.overirite»any value (although an

assembler could give varnings) .

ﬂdrsg Features gg.LBHASH'

- no PROCEDURES
- no IF-THEN

15

- no IF-THEN-ELSE -

- no CASE v
. = no type checking
. = no expressions

- cannot ignore registers ; .

- no initialization in declarations of re-
' entrant routines ‘ : .

- range of a label too 1arge

2-2 PL360

PL360 [23] vas designed by Wirth to be "aore civilized®

yghan-'IBuASH., It can be used alnost everyuhere that IBHASH

caan. Hovever, because it has no macro facility, it is not

~

alvays an 1lprovelent.g

P

PL360 is not “complete" because it alvays réquires the

_use of a base tegister, even when- one is no§~neeé§d by the

program. -

There is no support for decimal nuabers and poor

S

support for_Strings;

. L v

- Dynamically acquired storage could be better supported;

one must make the identifiers of the data section available
for nisuse_ before the storage is actually aéqgited'ifihe
vants .the compiler to compute the length of the section,

vhich is the usual case. -

16

4

‘ Prd@dﬂurés, with: parameters are even nore“ poorly

supported than ih IBMASM., The parameter list must be “built

explicitly by the caller. PL360 also has-all the problems

of parameter passing mentioned in thé section on IBAASH.

. : Do ‘
Boolean expressions are very restricted; one cannot

have both AND and OR in the sime expression.

Worst zeg;ggég g; PL360

- no macros
- passing paraneters takes too much work

- very rudimentary type checking.

- cannot ignore registers

- (practlcally) no support for decimal ndnbers

\\

2.3 mggau" ' . S
FoRTBAN [1j3 as de51gned to ease’ programniﬂg of

?

arlthletlc fotnulae.‘ Although it vas not infended"tq be
'use¢ for systeIS. programning, it has‘been~usedvfbr.tha§
pﬁrpose by many people, so it will »be;'coégidered - here.
'FORTRAN ~ has -Sevéfal features qttractivé to 'sysiéns
1lp1ementors- 1t is 'a ‘readily avéilablé tobl ~On most

e

conputers; often the only alternative tq» J; asselbler-
4 . -

P

l ari£h-3jIE/:; ve;p.eaSY to‘do; it includes several important |

.basic data types (LOGICAL,INTEGER,REAL), arrays of several

17

dimensions, ‘and independent subroutines; and it is usually
vell—supportgd in that wmost subroutines provided °‘by an

installation are callable from FORTRAN programs.

on the other hand the language has many defects, vhich
have beén doculented at length in the literature, so only a

brief list will be given here.

i

There is a.low limit (6) on the number of characters in

an identifier. ’

R\

‘ Idéntifiers‘need not be declared; thus misspellings are
seldom . caught by a éonpiler, and only with difficulty by a

_pProgrammer.

There are unnecessary restrictions throughout . the

',languabe: e'g.'

. no expre551ons in the DO loop paraneters
only simple expressions fpr subscrlpts,
a restricted number of dimensions in arrays
the DO loop increment must be positive ’
the DO 1loop control values must be simple
identifiers or comnstants
e the "then-part" of an IF statement must be
'] ~ from a restricted set of statements.

The control structutes prov1ded are nxnllal. There are
only CALL, DO loops (but séé abOVe), IF (vlth only one

statement in the then—part and no else—part at- al;), andf

varlousvk;nds;qﬁ GO TOS. only numeric labels are-pIOvided;

The IF statepeht is so weak that the then-part is almost .

always'lavabg5T01 $t§tement. Because of ‘the DO loop.

‘restrictions, otherwise unnecessary variables clutter the

18

program. As,a result of a;; fhis, FORTRAN programs are very

often badly organized and hard to read.

A FORTRAN_program~cannoto communicate - with a progranm

writtem in another language, unless both implementations

*happéd'fo pse.cbmpatible linkage conventions.

A FOBTRAN program is unable to use' ahy storage other
than that facqulred at load tlne or at subroutine entry,

i.€a, éne‘cannot build linked—lisgs with pointers at run-

time as in ALGOL, IBMASH, and’ PL360.

" There are no pointer variables or structures. Also

there are no named constants.

Horst Features of FORTRAN:

~ no IF~THEN-ELSE

~ no IP-THEN

<. no, CASE

~ no structures

- cannot use registers
=~ cannot commpunicate vell * ,

~ weak DO loop ' -

~Hsub*programs cannot be re-eatrant :

2.4 Bliss

2

The authors of Bliés [39] handle .very vell the problen

of desigaing a product that looks 1like a high-level

19

language, yet is efficient. They‘_do not ‘really _considef

cdmmunibétion ‘with programs written in other languages at

all, Vhereds communication is a major objecfiée of PL370.

The design objectives ‘for Bliss (see Figure 1 below) are

good, but IBMASM meets six of the first seven very ﬁell,

- failing the .fifth one. This would make one wonder about the.

The Design Objectives of Bliss
as ranked by the authors of [39]

(1) 'space/tlne econony .
(2) access to all relevant hardware features
(3) object code must not depend on elaborate
~run-time support
(4) control over the representatlon of data
structures
(5) - flexible range of control sttuctures

(including recursion, coroutines,
a nous processes)

c
|

|

i

|

|

|

I

|

|

[

i

i

l

l .

| : (6) modularization of 3 system into separately
i compilable sub-modi les

{ (7) ‘paraneterlzatlon, especially conditional
I compilation '
{ (8) eéncourages program structuring for
| understandability
| (9) encourages prograim structuring for
| ' debugging and measurement
) (10) economy of concepts (involution),
| : generality, flexibility, etc.
| (11) utility as a design tool -
| (12) machine independence
{ ,
|

|

[

s

Figure 1. The design objectives of Bliss

desirability of Bliss, yet there is no doubt that Bliss is

actually superior to any assembly language. It seems that

._____;__________f___;;_-f__;;J

20

more of the design objectives,are considered absolute by the
authors than £hey imply. Because PL370. is concerned vith
interfianéuage communication, soﬁe of the characteristics of
Bliss.a;e unaccebtable:\ |

a) Thére is no.:eguiremeﬁﬁ that the objects supplied for

external declarations actually match the declarations.

b) 'The: data are always sfored on a stack, wvhich requices'

: sone'ruﬁ-time suppbrt omn an IBM 370. and‘ nany‘ other
machines. | |

-c)“Conﬁrol over :egiste;s is said tb bé availablé, but not

‘describedvin,fhe'docﬂﬁentation'[39,40], so the control

must be assumed to be not very good.

The design of Bliss is very much dependent on the PDP-

10 architecture. The IBN 370 is a very different machine

from the PDP-10. The PDP-10 is a machine with a single

address space of untybed vords. some of the words are in
registers and some are . in wmemory. The IBM 370, on the other
hand, has four separate address spaces:v3'sets of.regisferé
(general;pufpbse, floating-éoint, and contrbl), eaéh

register béingv a»iyped vord, and a main memory composed of

_ untyped bytes. Because 4of-'the‘ varied data types ' and

alignment restrictions on the IBN 370, it is possible to

: look at a memory-duhp and make some intelligent guesses as o

‘to where the data are and vhat the type of each datunm is.
This has two consequences. First, the typelessness of

Bliss, which matches that of the PDP-10 exactly, is

inappropriate for the IBM 370. One nust have at least four -

21

types: one for each address 'space. Secondly, the

interpretation that the use of an identifier, such as. 'xi,"

means the address df the object and that '.x' is necessary

to get its contents, does not work cospletely on that

" machine. If we have ' reqgister x, local y ', then, on an

“IBM 370, it may happen that ! x?='y'!;'this is not possible

on a PDP-10. The expression f.2i could have up to five’

different interpretaiions on the 1IBM 370, depending on .

context: the contents of memory byte 2, general regisﬁer 2,

!

control registet 2, floatiqgfpoint register "2(short), -or

floating-point register 2(long). The usual rule -in 3

lanquage used on the‘IBH 370 is that one may not ask for the
address of a register; this again ‘;equires- at least a

minimal typing systen.

Bliss always reguires the use of an operator to

- Tetrieye the contents of a variable. This leads to many

(ppssibiy:ugiy) uses of the dot operator. A réaéon for this
requirement- is’ the -~ inability to distinguish - between
addresses énd‘other values in a typeless language. It can
be confusing to try‘ to decidg whether ;.x' is’itself an
address dr'another value. ~With a strong typing systen,
taking the contents of a variable,aﬁtoma?icaily'and bhlj

vhen correct is both easy and desirable.

Bliss has no go to statement. In fact, it has no

statements, for it is an expression language. The wealth®of .

control structures is very.‘good, except for. the eight

22

L4
P

different kihds; of’ exit control. It is Aprefetable “to
require only one exit kquqrd.and_to allow 1a5els on groups.

For a further diécgssiOn on go tos, see Chapfet 3.

" The co-routine wmechanism appears cluméy and hafd to

understand. Its chief asset is in forcing the prograsmer to -

J—

prepare for a co-routine to 'RETORN. However, oOne “cannot

transfer from one co-routine to another by mentioning its

* naae; this’unusual mechanisa looks, error-prone.

Bliss sfructures‘appear to Dbe "inteiligent .atrays".

‘One cannot access a field of a structure by identifier as in

ALGOL, COBOL, PL/I, or Pascal. ‘Instead, the programmer

'“tfains" subscripts to behave differently accordihg to which

 structure is the current map for the object. Note that
" ’ S N ; :

- mapped objects are, in fact, typed objects, even though the

particular tjpe of an object may be temporary. A structure

'may also be thought'of as a function, invoked implicitly,

wvhich returns a value typed as an address. The programser

.has his ‘choice of how each structure iS“é? be allocated.

This'is flexible, but it " encourages the use of several

different allocation schenmes. 'Furthernoré, this mechanisa

>

is fragmentary - each structure aust be allocated.

seg@rately; _there are times when one would like to allocateA
all the local objects at once. In general, Bliss structures
seem far ihfetior_to the usual kind, i.e., those in ALGOL,

COBOL, or PL/1..

23

%

Horst Pegture _j Bliss - y

- only 1 type, of. flxed size
- cannot comnunlcaﬁe vell

- no labels
- error-prone co-routxnes
>~ = no structures
/
5
2.5 BCPL

BCPL [29] is a generalfpurpoSe language. - It is

primitive in that it has_only-oné‘type (bits),:but a fairly
rich control structure gives it the look of a higher—ievel

language. It uses the concept of "mode of evaluation®: - an

expression evaluated in "Lmode" produces the name of a cell;

" one in "Rmode" ptoduces a value. Normally, expressions on
' the left-hand-side of an:assignnent are evaluated in Lmode,
and those on the :tight-hand side ian Rhode, but the

prograamer can override this.

BCPL, like Bliss, has a very rigid concept of run-time
organization. It cannot Aconpletely replace an assenbler,
and indeed for sone appllcatlons may be less secure.' ~Since

all varlables are of type blts, they are all the same size.

There is always a stack for local variables and tenporarles,

and there is no access to régisters.

Structures must be simulated uSing vectors and naming
o i : - : -

24

the displacehents of each field (like ~Bliss and EORTRAN);

this is an inferior method.

The syntax is different from that of most other

- languages in iany vays, sone of thenl;intefestipg. - Some
éxamples are:
a) a mqltiple_asgignmeni,state-ent is'brOVided; e.g.
| t1, t2, t3 := s1, s2, s3; : | e

is equivalent to

., b) vectors ane. created byi "!gg _<eipression>",3 which
allocateé a veétOr of the desired léngth and ;éﬁurns a
pointer to 1t. o _

c) 1IF statements have been Spllt 1nto two types, both ugly.
CASE statements are called switchon.

d) Declarations of global v-vafiablés' sPeéify their

: displacemﬁnts within the coanmon area, not their initial

values. For example, " global x = 14 " means that x is the .

14th word in thfélobal area, not that X has a value 14.
This 'isv.confusing ‘béqause no other - 1angua§e (including
assembly languages) has the_prégramner specify addresSes of

variables.

Horst Features of BCPL
- only 1 type, of fixed size
- cannot use registers
- no structures '
- ugly syntax _ :
-~ cannot communicate ’ . ' oo

25

2.6 C |
, : : ' ‘

Cc ([30]) is a high-level language that is usable for

syStgms prograaming; for example UNIX [19] vas written in C.

As in the case of PORTRAN, a routine written in C .may call

or be called by a.routine written in another language - as

long as both use the same linkage conventions.

C has a weak type sjstem. It provides char, int,

.leggg,b gggglg, arrays 6f _.ﬁ,‘ﬁqutiogs returning ...; and
- pointer'jg.;.. . 5owevet, the system_allous much abuée.- E

. ggggyis really short int wvith some character feétures

. ,charadier constants are of type int

I v . _ .

e float is lengtheaed to double almost anyvhere, even if
f@is is not uéhted | |

- i;ggs and gﬁgg; nay‘ﬁe‘QSed as pointers
e There is no type bool, per se. Boolean expressions

‘retyrn ints 1 or 0.1aﬁd-accept_any positive int as TRUE

e int variables ﬁay be used as label variables!

Pointers are indicated indirectly. % ipt xg M

defines a variable, fg, of fype épinter to int, which may

point. at iats. similary, poimter ‘to pointer to char is.

indicated by " char xxtag ".

\

C includes hoth prefix and postfix unary operators.

For instance, " xg++ " means ‘“increment g '~ by -ome,.

defeference its original value, and return the variable thus

pointed at".

26

The syntaxvis a little -strange for one used to ALGOL.
e The for statement has the form:

for (<parameters>) <statement> .

The 3 parametets, separated by semi-colons, are an

initialization statement, a completion test, and an .

incrementing statement (which, hopefully, does increment the

.variable ' initialized in the first parameter). Braces are.

used to bracket compound statements.

e H=W jg the(assignnent 'operétér,_ even in _expressions;
N==W g thé‘conpgrison operator.

. Conditiqnal expréSSions have the form " E1 2 EZ.::E3 ".

e Case statements are called "suitchon“; each case is

prefixed by "case". The default actioh‘after each case is

to go to the (textuélly) next case.

+

- break is .providedA to escape from loops and case

statements. continue terminates the current iteration of

the innetmost'loop;-

There is a rudimentary macrg facility. "#define" may
be used to cause subsequent occurrences of an identifier to

be replaced by an arbitrary string. This is useful for

parameterization of array sizes (wvhich are determined at-

compile-time) and for making programs more légible or in a

format with wvhich the programmer is more comfortable.

Pointer arithmetic is unusual. Consider:

int *p, =9, i, 3

27

Then " p + 3 " is the address of‘fhe 3rd“int‘after the one p

~points at. | -

“p- 3 " is the address of the 3rd int before the one jo

‘points at.

" ﬁ -q " is the number of ints bétween é and.q. This

' means that u "
P-(g=p+4) ==4

is true.

Variables may be created automatically - upon function
entry or may be static. Registers may be used, but only for
local storage, i.e. not for communicating between

functions.

Horst Features of C

- incoansistent type systesn
- cannot communicate
-.unconstrained pointers

]

72;74 Pascal

Pascal [37] was designed to bé efficient and ‘easy to

teach. Some of its good points are given below.

The programmer may define new data types by presenting

‘a set of values. Encoding the values then becomes the

28

compiler's. fesponsibility. The programmer uses values that
-have meaning, instead of some code, Hhich he might use
incorreétly. Becausé_ of the strong‘5ysfem of types; theré
is even'hore‘proteciion than in a - language with a veak
systei of types: - one cannOt accidentally use a value from

the wrong set.

Arrays may be indexed by any finite data type, not just.

integers.
&
Named constants are prbvidea. This is good for - two
reasons. First, the name may 1indicate the use of the
constant, e.g. ‘nmb tape drives = 4'. Second, if the

'constant' should ever change, e.g. two more tape drives

were purchased, it is easy to change the value.

There are two kinds of boolean—controiled loops: the

- kind that ‘tests before -the body (and is repeated zero or

more tinmes), and the kind that tests after the body (and is-

' repeated one or - more times). The latter is theoretically

‘unnecessary, but faster when appropriate.

The with Sfatenent allows one to factor out all the
u.0ccurrences\of a record pointer from the source‘progéan vhen
Aaccessing' several fields in one record; thisvcﬁn reduce the
squtce;program’size considepably:'naking the pfogran. easier

to read.

Sets are available as a data type. One may have sets

1

of anj other data type (short of .circularity).'_ Very few

29

languages provide sets explicitly (see SETL), although many

problems involve éetsvof objects, and keeping track ofﬁthen.

4

Unfortunately, Pascal has many faults.

The Pascal record with variants seems an inferior

concept to ALgdL 68's UNIONs. .The Pascal record has an

explicit tag fieid wvhich may be set by the progrénmer; The

programmer is not prohibited from,k6 changing - this tag to

change .the interpretation of the bits in the varight part of

the record; in fact, there is no prohibition againét using -

field selectors vhich\fdo not correspond to .the variant

specified by the tag field. This can easily lead to errors.

VThe declafations;segj_confusing; it is not .immédiately
obvious which arélthe type idedtifiers and which are the new
variables. Looking for.;isfs,vas in other languages, does
not help; a list may be’ either a iypé decl#ré; or a list of

.identifiers.

™~

Dereferencing 1is ,dbne by a postfix operator. This is
‘hard. to read because :all other momadic operators use the

~

usual prefix style. " : - _ _‘ o .

~

Case statements have a problem similar to declarations;

it is easy to confuse a label on an individual case, with a

value selector for that case. Labels and scalarfvalues look’

very siamilar. W

Pascal has certain restrictions in common with other

30

#

high*lﬂVgI‘ llpyqééesf' A program cannot access registérs or
other machine data not in main memory (e.g.- CPU id). There
is one fixed Jinkage conventioh chosen by'the coapiler; no
other nay be used. There is thus no way for communlcatlng
' Hlth programs in other languages. The programmer has no

explicit control over word slzes}‘and very little implicit

control.

P

- There is no way to use external objects, and no

\,

separate compilation mechanism.

Variables may not be initialized in their declaration.

At best this can make a program longer than necessary, and
at worst, -slou it down tremenddusly; Some ALGOL ﬂ 'programs‘

-take almost 40% of their time 1n1t1a1121ng varlables becausew

\

each array elenent must be xnltlalzzed separately [7].

There‘ is no support for variable-length strings. The

- IBM360 is not very good with them, but better than Pascal.

One cannot define dperators'for'all'his nevw data types.
' Nor is there any macro facility to allow concise

expressiops.

An arbitrary type may be usgd_as'an index for an arrgy
by naming that type. This implies some kind of"table

mechanLSm such as SNOBOL has, if that type is not inherently

| [

ordered or dense (e g. S a record/ﬁype).‘ thle this is a

nice feature for a general—purpose language, 1t nay require

extensive run-time support..,

3

The following items are restatements of criticisms made

by Habermann [16].

There are no blocks as in ALGOL; BEGIN-END is used only.

for procedure bodies. This means that variables can not be

nade local to a Sequence' of statements without gathering

that sequence into a procedure. One loses either protection

or éfficiencj (and possibly locality of reference). Further
theré is no g!g.stbrage as in ALGOL 60, ;r static storage as
in - IBMASM, ' FORTRAN (i;e. COMMON) , COBOL, and PL/I. This
means that if itviS'requiréd that a procedure \remember its

currént‘ stéte .and resune. from there vhen called the next

time,vthe -cdntrol varlable(s) maust Dbe deC1ared in the’

containing. procedure,v becoming suscaptibleklto harmfal

-

referenceéxby outside procedures which éhould’bex unable to

reference it.

Conditional expressions have not been included.

A FOB loop pay be 1ncremented only by 1. bne'may have

a WHILE or REPEAT loop ulth a global control .variable and an

expllclt increment - ‘statement, but FOR statements are

supposed to eliminate these, belng nuch safer (becausev the
prograumer cannot forget to 1ncrement h1s control varlable).
(Ssome IBM .370 hardware counts 'only by ‘one (BCT), but
arbitrary incremé;ts'are”routinely’uéed'with other _1oopihg

constructs.)

32

Worst Eeatures'gg Pascal

l

- no block structure
- label range is complete contalnlng procedure
- no initialization 4n declaratlons

- no separate compllatxon

- unchecked variants

~— cannot use external objects -

— FOR loop increment is +1 '

- cannot use registers:

- cannot communicate

5 v A S v,

2.8 ALGOL 6

=P A — g

filfhough, the ’oRevised erort [34] -hos just. ' been
_publi;hed énd few imbleméqiafion ‘_pfojecté 'ha;é'lvbgén
' qomgieted, some of the good featufeS'OQf'\theoolanguage
'vappeared’nine yearé”ago.inl1967o[33];'3Thi§visvréallY a long
>time‘ipicomputiho'sciencé. some of the-goals of the authors
’ aré applicable to any laogqagg~design pfoject.
(a) catch as'mony er:opé as possible

(b) [if compiling].catch as many _errors as possible at
‘compile- time. " ‘

@ Coo

(c) allow an opt;nlzlng compller to do a good jOb

() build the language_out of a few 1ndependent.p1eces which
interact.uell
~

(e) remove restrictions wherever possible.

“Some of the good points of the language are - presented below.

Constant data may be declared, to improve readability
or save// values; a variahle may be initialized via an

arbitrary .expression in its declaration.

New nodgs/; may be defiﬁed to better convey the
c&nceptual'data. The conétructors of modes include pointer%‘
to another mode, afray of anothe? mode, struthre with named
fields each of sone mdde, “union of vsevefal modes, aﬂd
procedure returning.a value of a specified mode possibly
with pafameie:s'of specified modes. Unions wvere introduced
in ALGOL 68; they specify a Set pf’ modes ~for a datunm,

allowing more freedom;thdn spécifyihg just one of'the'modes,

.) : . . ' . #ﬁ%r"':(
but without the unrestricted chaos of no specification. The ;g
mode of the current value is determined (and may vary) at
run time. Procedure modes are different from many languages
in that they completely specify ‘the modes . of their
parameters. In a procedure declaration, any parameter which
is itself a procedure must specify the nodes of its own
parameters; recursively; if one of these is a procedure, it,

- too, must specify the modes of its own parameters. E.g.:
PROC ¢ = -(‘INT Xy - :
~PROC (REAL , .
PROC {TINT , INT) BOOL
' '} vVOoIb p '
‘) INT :
£ procedure body £
Actually, .most ALGOL 68 data structures could be
.representedﬁfairiy similarly in PL/I, but the ALGOL 68 modes

and dedlarations describe and control the data ‘more

accurately and more safely.

£

34

A procedure may return a value of any mode.

one(may define opérators for new (or old) modes. This
wakes the mode definitiom facility more useful. The
combination of a\good name for a'mode(va gdod definitioﬂ aof
the mode, and abprop;iateloperators for it, can make the'use
of daté almost'asbeasykas in its "natugalﬂvform; “Included
among the built-in operat;rs are -the- "op-ahd—becomes"
operators (such as Mes=, called plus-and-~becomes) which
manipulate one variable using "a second datum (e.g.,
"a +:= D" peans "a := a+b"‘except that'"a" iS'evalugted only
' once, which is useful if the left—hand—Sidé is a. subscripted

variable or a PROC REF AMODE). -

Control statementsvwith end-markers were first used in
ALGOL 68, allowing any expression to be a complete block
without .begin or end, because‘it Was surrounded‘by other

,3delimiters. Although not everyone agrees on FI as an end-

: ‘ » . a .
marker for 1IF, many new languages do use end-markers. The

_ ability to use a block anywhere a constant is allowed does
more than improve readability; it often allows a shorter,

faster prograun. ‘
The for loop is a good FOnstructiog. Being able to
‘leave cut irrelevant and >defaultgd 'parts is a real

convenience to program writers and readers. . The ability to

have both a to (until) condition and a while comndition at

the same time is important. :Bghile this comstruct is an.

35

order

36

of wmagnitude ‘superior to the for L loop in ALGOL 60,

which is far superlor to the DO loop of" FORTRAN. the PL/I DO

" loop is

more pouerful Stlll- SR '*T

°

Worst Features of ALGOL 68

has some very expensive constructs
(e.g. FLEX, PAR)

confusing use of REF ,

cannot use extergal objects

cannot use registers

cannot communicate }
no separate compilation

The motivation §9r PL/St is similar to that for PL370.

Some people at IBM wvanted|a systems ilplementqtion‘ language

as similar as possible to PL/I. PL/S is used for the

writing of new IBN systeas software. .

The majof differences beﬁveep PL/I and PL/S seem to be:

O

(a) data attributes

" . PL/S has integers, pointers, bytes, bits, and

struétures. There may also be other types. Integers may be

! PL/S is a secret of IBM's. Details presented here are
deduced from 1listings of VS systeas, but no authorltatlve
deflnltlon has been made public.

FULLWORD, HALFWORD, or n BYTEs 1long. Pointers may be

FULLWORD, 1 BYTE, or 3 BYTEs long. BYTES and BITS may have

any non-negative length specified. Fullword integers and

" fullword [pointers hay be located in tegisters. © Objects in

REmOrY may be explicitly“aligned on byte, word, or

doubleword boundaries (plus an offset, if desired).
| ﬁany of the PL/I attributes are not included. Probable

omissions are PICTURE, COMPLEX.

{b) procedure entry and exit
PL/S may use standard linkage conventions, not those

PL/I uses.

Some of the problems with PL/S are:
(1) "= is used both for’assidnmént and for combariéon.
(2) Thefe is no ‘CASE statement (assunéd since PL/I lacks
one) . |
3) Boinfefs are unconstrained; they >nay be uSed‘.as if
pdiﬁting atrény kind of structure.

7

Worst Features of PL/S - ‘ o *

- unavailable
- unconstrained pointers

37

k‘ 2.10 SUE
K

\k SUE" (9] was deSigned for writing an operating systenm.

t can be regarded as a systems-implementation “variant of

Pascal.

Perhaps the most uniéue featufe of SUE is thelﬁay that

_ ,) _ N ,
systeas are’built-out of prograhs. Much as in_’COBOL, each
ptocedufe has a DATA block, A-CONTEKT bloéx (optiohal),'and
a PROGRAN ‘block. . The DATA block'ideﬁtifieé - all procedures
conceptually 1local to vthe current one, and declares all
types and data sharedvbetween local précedures and/or the
‘current frocéduté. : The COHTExf -prck defines -shared

constants, types, macros, and machine-dependent information.

The PROGRAM block contaidslthe executable statements plus

data not shared with any of the local procédures. A.systeh
_consists of a tree of procedures (as in ALGOL), but each is

defined .indépendently; they are'ﬁﬁoked up by the¢mechanisn

of each proce&ure declaring the names of its local
procedureé.. In the current,implénenfation, all the parts of
\a system must first be filed, then the compiler is given a
vlist of names of compilation blocks; e.g.

DATA MAIN
DATA SGN1
PROGRAM SON1
‘DATA SON2
'DATA GRSONZ1
PROGRAM GRSON21
. PROGRAM SON2
' _PROGRAM MAIN

SUE attempted to unify'expressions by allowing a 1list

38

- anywhere a single element was acceptable. Other languages
restrict lists to subscript, parameter, and possibly for-

loop control positionsQ

SUE - has loops of indefinite repetition. Unlike the
usual while loop, SUE's cycle ... end may have any nuiber of
‘termination tests and'a test may abpear anyhere in the 1loop

that a statement could.

The implementation features of SUE are:
a) The ability to not test for range errors during

assignment, selection, and subscripting.

b)'Tﬂe attributesvfast, tegisfer,_ aligned,- gnd absolute.
gggg may make a datum bigger (i.e. at.least a hélfword)'so
£hat it may be acceésed faster. register neaﬂs that a datunm
‘is located in a register. ‘aligned.specifieé‘ the alignaent
of‘ a datum. absolute specifies the logicalxlocatign of a

datum. (i.e. ‘fhe unrelocatable virtual address).

c) Macros may.be used instead of~kpro¢edures to get open

subroutines. .

_6) The ~ “ipline" bﬁilt—in function . can generate machine
instfuctions in-liﬂé.‘j o -

e) The programmer may access an objectAof any type és t@ough
it h&d any other type by Spéciinng thaf other ifpe.’”’

fj Thece are “Ygroup" types; Iﬁese are like records, but»the
fields are unaligned; and the groub' can be treated as a

single object (ignoring the field boun@aries); These are

useful for machine-defined structures (e.d., PSW, CSW, CAW).

.39

Unfortunately, SUE is .designed for a one-linkage--

conﬁention éysten. One - cannot cgll»other routines unless
£hey use the saame linkage conventions 'as the object progranms
‘emitted by the compiler. There is no facility for error
recovery, alghough some could' be providedbif there were
appropfiate procedures defined in the global environment.

-

Worst Features 9of SUE

- camnnot communicate

MARY [26] is a machine-oriented higher-level language

vhich claims to be a superset of ALGOL 68. In many ways it
is an ideal combination of higher-level features ' and

machine-oriented features.

f

It has the powerful mode-definition facility of

. ALGOL 68. By properly describind.the data, many errors can.

be avoided.

The conéebt of mode is expahded'to include the "status"
'Qf"a datum, where status indic;tes vhether the datum is

variable or constant. For non-references, this = is

40

|

straightforward. For references,.the status applies to the
pointer (Cén one change it to point at a different datum or

ﬁot?). The ﬁode also inéiudes the status of the datdn being

referred to (can bit' be changed via this reference?).
Unfortunately, there is a slight ambiguity in usage: a
VAL INT is a constant integer, but'a REF VAL INT refers to
an integer which may be a variable. For example, after |
INT j := 3; .
"REF VAL INT k = Jj;
jo= 7 ’

k refers to j, whose value is now seven.

The concept_of rous is better for "Systems prograﬁming
than that of ALGOL 68; the descriptor is separated from the

elements. A vector ofv'n' contiguous elements, each of 'mode

- ‘M, is a datum of mode STRUCT(n) M, which is a structure with

‘n" fields of mode M, but is selected from by subscript

_ : . : {
rather than by field name. This corresponds tQ a vector in

most implementations of FORTRAN, except that the lower bound

'd

s usualiylo; For rows whose size is determined. at run timpe
(as in ALGOL), one neéds a descriptor; in MARY this is an

object of mode Roi‘u,'.This'bbjeCt consists of a reference

‘and a, length count for the STRUCN(n)H being referred to. A
. . ,P . .

STRUCT(n)ﬂ,of‘the correct size ma# be generated dynanicaliy
at run time. Thus} the prog;émmer_,may'fuse descriptors
exactly vhen he needs them. Note that, since the descriptor
and the elenments being described areﬁ different objects,

their statuses may differ.

41

MARY has added several good lobpihg constructs. These
are based on letting the control variable pass through a set

of noninteger values: either references or SET values (see

below) . One may 1let a reference pass through all the

possible references to the elements of a row, rather than

having an integer pass th:ough'the values 0 to the upper

bound of the row; Rain[27)] claims that the former wvay is

much more efficient. Since the row being traversed may be a

row display, the fdr—list of ALGOL 60 is avai}able‘in this

format.

MARY has borrowed programmer-defined types, - calling

then SETs,‘ and powersets thereof, calling then uASKS, from

pascal. These are valuable for readablllty, they eliminate,‘

most nonarlthmetlc uses of 1ntegers and catch many errors in
mixing modes that aré not detectable vheq integer codes'gre
1used..~Suép6rt for these nmodes includes' a ,1abe11ed éase
Statement, thch chooses the appropriate value for SETs and

all approprlate values for MASKs; and FOR 1oops in vwhich the

control'variable assumes either all the pbssible values of a

SET mode or all the values thereof in a given MASK variable.

R

The mode MASK CHAR is especially useful for lexical

analysis. There are pre-defined identifiers (of mode VAL

MASK CHAR.) CHARSET, ALPHAR, and NUM which include all the

characters valid in a MARY program, all the letters, and all
. . 4 .) . Rt

the digits, respectively. .

MARY has also borrowed. rangésofrom Pascal. - One may

42

define a FIXED or FLOATING mode Which consists of a
specifiéd‘ range; objects of this mode may then be allocated
in the smallest necessary storage. This method of
specifying precision ignportable, hnlike~ALGOL's LONGé and

SHORTs. . However, -there is a problem with mixed-precision

arithmetic. FORTRAN and ALGOL disallow it - one operand
always 1is converted (explicitly or impliéitly) to the

pr?cision of the other. But when there are many modes of

similar precision as in Pascal and MARY, there are problenms
of interpretation [16]. For instance, in

FIXED(1:9);

MODE A =

MODE B = FIXED(2:10);
A x;

By;

X+y

' is Hyx+y"n éllowed, and, if so, what 'is the mode of the

expression? What about ny+1n? ' L »

MARY includes UNIONs as in ALGOL 68. This is not like

REDEFINES in COBOL or PL/I, where a cell may contain a value

of one mode or another; but rather a pointer which refers to

an object of one of several different modes, and a mode
indicator. It is required ‘that ‘UNIONs muét work in a
parallel ”procéssing eniironment, vhere «a tésk may be

Bl

interrupted at any time.

MARY regquires. a run<time system to support the object
code. In particular, support for a stack, a heap with a

garbage collector, and-parallel processing are required in

thé‘ run-time 'systenm. There seems to be no way to define

43

external procedures or have partial compilations of a
program. Thus one cannot communicate with programs written

in other languages.

Many ugly spots in the language hawe 'not really been

removed; they' have Jjust been hidden in the "library
prelude". Conseguently this prelude must be a mess which
could not be implemented in MARY - another language is still

needed.

‘

Worst Features of MARY

- cannot use registers
= cannot communicate well

2.12 §ggmarﬁ

The lelqyian is a <chart evaluating ‘the languages

‘against the 11 criteria. mentioned at the beginning of this

chapter. ~The weights and ratings are strictly my personal

opinion. The weights are on a scale from_1 to 10 by 1.

" Each language rating is on a scale fros 0 to S by.1/2; e

is used as aﬁ‘abbreviation for 1/2: in the table. Each total.

is the inner product of the ueight'vector‘and the rating.

44

\ :

weight 10 710 9 4 110 8 3
BCPL - 2 3.1 3 1.2 1 0 5
- FORTRAN 2 4 2 2 1 2 2 0 5
c 2 24 3 2 2 2 2 1
Pascal: 2. 4-5 5 1 2 0 O 5
ALGOL 68 2 3 5 5 5 3 0 O 3
Bliss 4 3+ 3+ 4 2 2 2 0O 5
PL360 - 4+ 34 3 3 2 2 4 0 5
" MARY 4 4 5 5 4 3 1 0 5
SUE 3 3 5 5 1 2 3 4 5
IBMASM 5 3 4 1 5 2 5 4 5
PL/S 4 3 5 4 1 2 5.4 5
PL370 5 3+ 5 5 3 5 4 5 5

. . .
o B M gue S e S B Se B e S S G S G SEe Sy B Sy S . Bee S B S G-
—

Lol au o

w

\\

(82

~

(1) (2) (3) (4) (5) (6) (7) (B) (9) (10) (17)

)

(54}

- ok wd e emd () o b -

Ratings of the languages under the 11 criteria

TOTAL
(weighted)

335

126.
144
155
181
183
198
1209
224
246
256
267

315

e cane e e B e S A S S e S S e S B0 A eve R Sne EEe Amn SEL SED S A Sme o

Figure 2. Language Evaluation Summary

The following major deficiencies were found among - the

languages reviewed:

- no PROCEDUREs

- no IF-THEN

- no IF-THEN-ELSE

- no CASE.

‘- weak loop comstruct

'~ ugly syatax =

- FOR loop increment only #1-
- no type checking-

- only 1 type

- inconsistent type systen

- unconstrained pointers

- no.expressions P

- no macros -

- passing parameters takes too much work

- ({practically) no support for decimal numbers

45

no structures

cannot use registers

cannot ignore registers

cannot communicate (well)
unreasonable restrictions

no labels

error-prone co-routines

no initialization in declarations
no separate compilation ‘
range of a label is too large ¢
unchecked variants .
cannot use external objects
has expensive constructs
confusing use of REF

A

46

#
‘ CHAPTER 3
_CONSIDERATION OF LANGUAGE CONSTRUCTS
Y
'This chapter presents the constructs of. PL370 and
~explains why,thése particular constructs were chasen. Some

constructs are presented by pargdigm'and some are'ptesented

3

in ;n'extended BNF. The BNF is extended by the use of:

A x| <« 1l Y} means choose one of x or ... or y.
{ x }=» . ‘ means 0 or more occurences of x.
{ x] : means {'x |} .

s N _ A ,

3.1 Conditidnal Clauses

Since onergodl is compatibility with ALGOL 68, thice

- Jconditioral forms are obvious:

(a) The standard ALGOL 68 IF clause:

IF <boolean-clause>

THEN <clause> , ' ,
{ ELIF <boolean-clause> THEN <clause> }=x
{ ELSE <clause>,] ‘ : S

FI :

%2

(b) ALGOL 68's indexed case clause:

47

CASE <integer-clause>

IN <unit> { , <unit> }x , o
[OUT <clause>] :
ESAC - '

" This dignores OU0SE, which is ‘rarely used in ALGOL 68 and

should never have been invented.

(c) ALGOL 68's confotmityﬂ%ca‘se clause for manipulating

‘unions:

‘CASE <datum~of-a-united-mode>
I N Y : .
' (<mode~indicant> <new-tag>): <unit>
{ « (<mode-indicant> <mew-tag>) : <unit> }x
[0UT <clause>]

\l
- : A

There are several other forms or modifications worth

considering.

(d) Dijkstra‘'s IF statement with guardiﬁ commands {12].

IF ; :

C _<boolean-unit> -> <clause> .

{ || <boolean-unit> -> <clause> } ¥

] . v
'FI

-

" This form is different from .most 1in that it - is non-

deterministié: any oné clause may be selected, provided its

guarding booleam-unit is_ TRUE. Bl so, Dijkstra does not

provide for any ELSE case; it is an error if all the gdards

are FPALSE.

(e) A more,likely candidate is a deterministic version of

~the above. There is no point claiming a construct is non-

detelministic unless it is. For those wvho like Dijkstra‘'s

48

proof methods, they will still apply; that is, a proof which

assumes no deterpminism in the order of evaluation of the

guards and proves that a program works is not invalidated by

determinism.. This form 1s a variant of the COND function in
LISP:

CASE , .
IF <boolean-unit> THEN <clause>

{ IF <boolean—unmit> THEN <clause> }x
[ELSE <clause>] : .

ESAC ' :

An alternative first keyword could be FIRSTCASE (to indicate

the determinism), PCASE (shorter), 'COND (like LISP), .ot

o

SEARCH. Another-form'for.this‘clause.is:4

CASE [<M=-unitd>]
- IN ’ :
<{M-unit> :; <¥-clause>
{ <M—unit> : <N-clause> }x
[OUT <N-clause>] .
ESAC S :

In the <case where there 1is an <n—unit> after CASE, this

value g§ compared vith the other values; the first matching-

<#M~-unit> selects the clause to elaborate. In the case yheré
there is no <M-unit> after CASE, TRUE is assumed, ‘i.e. the
existing <M+unit>s are"<boolean-unit>s, For those who are

unhappy with ELIF,'this forn is bette:,

(f)‘ Array style notation.) &

One could change the syntax of the case clause drasticélly_

to make it look like an array refefence. I.e., instead of:
CASE e IN C%s wev,.ch OUT o ESAC

one could éay:
(clptee, ci) (€| OUT o]

W

49

with exactly the same semantics. This form has the

advantage of increasing "uniform reference" (for those who
bélieve that this is an advantage). \Ihe fdisadvantage is
that this is so uniform as to confuse even a coﬁpiler and
probably often confuse the programmer. There is usually a
aiffereQCe in ‘semantiés between aVCASE'clause and a row-
display;,the former elaborates only the chosen case wheréas

the latter elaborates every element. A resolution of the

problem for this form is to not guarantee elaboration of all

. the elements of a row display (and their side effects) at

v

any time, and thénvsay that any rov or structure fronm 1hich

kj’selected, is effectively a CASE
clause. A second réason-for mentioning this form is that it

an element is immedi
Ll

naturally gives the idea of aliowing an OUT paft for any

subscript. This allows the prégrdnmer to recover gracefully

from subscript range errors and, in those cases vhere not

all subscripting is being checked, to neatly indicate the

~operations to be checked.

(3) In séme situations,’oné wishes fo perform some’ action
after the case- clause, but onlfﬁ if some unit has been
Selected; i.e.,» the QUT clause was- hot eléboraﬁed. " The
'programmer then usuvally re~évaluates the«conditions Qnder
vhich one of the cases will be selected. This 'exﬁressiOn
can be complex; why bother when the work has already been
déne? 'An.optional clause can be allbued after {or before)

the individual cases; it would be executed only if the OUT

50

51

clause is not.

CASE <case-cnooser>

{ BEFORE <void-clause>] .
IN <cases>: '

[AFTER <void-clause>]

{ 0oUT <clause>] .

ESAC ‘

This construct means:

Calculate the address of the case to choose.
If it is not the OUT clause,
THEN ' .
Execute the BEFORE clause
Execute the chosen case -
Eemenber its value.
Execute the AFTER clause
Return the remembered value
e ELSE . ‘
Execute the QUT clause
FI

’

. (h) - Although'ALGOL>68 case clausés work vith codes-fﬁom 1
inCrementing by f; many :outinesv return codes fros 0,
inérementing by 4, to allow use of a juap table (i.e. a case.
construét). PL370 must be able to use these codes without -
modification.‘ Forcing the user>to write:
CASE return code DIV 4 + 1 IN ... S
just to fit ALGOL 68 semantics is not acceptable; Some |
alternatives are: , o | : , .
(1) CASE rc FROM O BY 4 = &N ...
This indiqates that cases are to be countgd first - 0,

second *~ 4, third - 8, etc., rather than the usual 1, 2, 3,
etc. If, at run~-time, r£c is not a multiple of 4, +then the
program will branch to some unexpected location.

‘(2) Include in the 1language a special mode RC which a

.procedure could return énd vhich vgdld be the appropriate
subrange Of WHOLE. " Then the CASE construct would
automatically work cérrectly.
(3) Inclﬁde a subrange mechdnism in the language. Then: the
user could ‘define RC himself or actually list the possible
return codes‘with thé»proéedﬁre; e.g.:

PROC p (...) INT(0,4,8,12) ,

/% INT(0,4,8,12) is intended +to mean that

subrange of INT including only the integers 0,
4, 8, and 12 %/

(1) Sometimes, it happens that the action of.one case is a
subset of +that for another case.’ As usual, the programmer
would like to be able to share the common code. In

- ALGOL" 68, the‘ programmer must repeat the code or gather it

into a procedure which two or more cases then call. In

PL370, he could repeat the code safely by uéingva RacCro.

But what about sharing without expensive overhead?

One can use very cheap local procedures . wherein the =

overhead is . just BAL - BR. However, they can be nested

easily only as far as the programmer prepares for by

explicitly using different retura registers. Also, if there

'is any nesting, then the overhead increases significantly.

One -could treat each case like am implicit procedure.
The case chooser could calculate the address of “ESAC" and
each case could branch there (like a COBOL paragraph). Then

v

each case could be invoked by ‘name and called. For example:

52

CASE ...
IN ¢ e ay

<«+ docase(3) 4 performs case 3

A very simple but less flexible approach is to have the
programmer order his céses so tﬁat case j includes case j+1
as its last action. Then éase~1 may include case j+1‘ very
,simply, by doing nothing. Instead of going th"ESAC";
control juét falls through to the neit case. For eiample:

CASE 1
IN case
: - case
case
case
case
case
* ESAC’

FALL
T

[4
FALL
FALL

3.2 Condition Code Handling

On the IBM 370 series, conditional execution is done by

- setting a special register called the '"condition code" Cin -

‘one instruction and testing it in a subsequent instruction.

This register is 2 Vbits 1long; therefore, it .has four

different possible valuesS. -The setting instruction and the

utesting instruction need not be contiguous, nor need there
be a 1-1 correspondence. In most high-~level 1languages,
conditional execution is @gerformed by IP-THEN-ELSE

statements or CASE stqtemenfs. The IP-THEN construction

v

53

covers most ' actual uses of the ‘condition code, but the
.machine harduare is more flexlble than that and can be used

more efficiently in certain cases.

The first optimization to make is to avoid an explicit

code-setting instruction in the cases where a previous
instruction has set it as a side effect. In'most Eases this
could be done by the compiler but it would have to be very
1ntelllgent. The programmer could spec1fy vhen to ‘use' the
existing condition code, as in PL360, but this requires him
to know which machine instructions'uill Se generatéd fronm
each source language cbstruqt,'and how ;hey set (or don't
set) the condition code. At this time it SeemnS. more
feasible to train - the programmers than the cohpiler, so I
vould opt for the Asecond approach. This allows’ the
following shortcut; »
rl +:= b; IF r1 > 0O THEN a ...

‘ma be replaced by ‘ - » .
Yo .
rl #:= b; IF > THEN a ...

h N
- A compiler might be able to optimize:
IF (£l +:= b) >0 THEN ...

but probably very little nmore complex.

An IF‘ statemrent allovs only e Z‘Vay braﬁch. In some
casee, a 3-way or 4-way branch could be used to .advahtage.
The ' FORTRAN ‘arithmetic-IF is an’ exaaple of the former.
These cases are rost;naturally handled by a case statement.

A foxm such as:

54

.CASE condition code 1IN
< : <unit>,
= : <unit>,
> ¢ <unit>,)
roverflow : <unit>

" ESAC
could handle thése more complex cases. Once condition
symbols such as ">* and "<" are introduced, it would be

desirable to have a way to define new ones, e.g.:

CONDITION +ve = 2, |
' mixed = 1 AFTER tm; -

Then condition variables would seem natural, e.g.:
CONDITION cc;

- 1
cc := condition code;

: . ‘
IF cc THEN ... FI
'3 i,e. ‘IF cc = condition code THEN ...

We then have a new basic type, condition, which can be

‘assigned, compared, and used in if- and case-clauses.

Although some basic constructs using this type are
noderately expénsive, this 1is Dbecause of the machipne
definition; AéSeubly.‘prbgranhers needing the construct

simply use many instructions.

One also needs sets of conditions (called masks by
IBMY) . E.g.:

MASK 0 OR 2,

0 OR 1;

it

IA IV

55

3.3 Loops

In the course of this research, over a dozen ‘different
loop forms have been.cbnsidered. Why all this activity when
ALGOL 68 has only 1 loop form? Eipstly, to accomodate the
hardware instructions built for 1ooping | (vhich,
unfortunately, hardly ever ‘match a loop as general as
ALGOL 68'5); And secghdlim to p:ovide additional safety and
efficiency. ‘Although some forms of the ApGOL-Gs ;oop don't
nake sense '(e.d.J ﬁFRou 7 DO --- OD“, "BY 35 DO --- OD",
etc.), iﬁ is huch easier'for}the programmner to remember the
rule that each part of tﬁe loop clause‘is optional (excepf’

the loop itself).

3.3.1 Improving Safety and Convenience (machine-independent)

J

3.3.1.1 Location of Boolean Test

In Algol, the test for termination is always before the
loop body. In Fortran; it is always afterwvards. Some other
languages test anywhere the programmer Trequests; PL370

allows this because it has an exit statement.

e.g. ‘ ‘
WHILE st1; a >b DO s2 0D is equivalent to:
DO s1; 'IF a > b THEN EXIT FI; s2 0D and to:

DO s1; EXIT IF a > b; s2 OD

t) : : R
The exit statement provides 'sufficient power for

terminating any ioop. Houevér, some people may be more used

-

56

"to, or may prefer, the vhile-clause. One way to make the
while-clause more useful is to allow it elsewhere than the
top of‘the loop.‘ One possible place is just‘before the. OD.
For example: | ' !

DO cenn WHILE <condition> OD.

one could also allow the WHILE in the middle of the

loop. This - would require the addition of a new word to .

terminafe the condition or a reguirement that it beva closed

vcléusg. For example: _ " - ﬂ /{_
‘DO s1 WHILE (a > b_)‘ s2 dﬁ

This is equivalen£ to the fhree examples above, and does not

reéuire a label, but work§ionly‘at the samé_nest level. " i

" consider this form of the while-clause inferior to the exit

statement.

3.321.2 Choice of Keywords

Allow " UNTIL <condition> " as an alternative . to

" YHILE -<condition> .

Users of languages other than ALGOL 68 may be upset at

the size of the keyword “FROM". The familiar . aSsighment

symbol should be available in this place, as it is in most

lahguages.

_Another popular keyword, especially with ONTIL, is

"REPEAT". This can be considered as a synonym of DO. E.g.:

REPEAT s UNTIL b OD

57

is equivalent to:

DO s WHILE -~b OD

3.3.1.3 Control Variables of Modes Other Than INT

bProgrammers often write loops controlled by variables
of types other than integer. In general, a‘plain while-laop
is more verbosé and more error 'prone' than the“sahe loop
controlled with a fof part. I£‘is, therefore, desirable to
extend the for‘loép.to:control incrementing‘and testing for

any mode.-

i 7

For ’any finite mode, this is easy. In PL370, all.

finite modes, are ordered. So, one could allow:

T FOR i := <valuel> 4 .
[BY <integer-unit>] ' ‘
{ TO <value2>]
DO ... OD

Here'<valhe1> and <valueZ2> are vdlﬁes of t 21e¢ mode, and
ﬁhe by- part:specifies how many values are¢ to be skipped.
For,example, “BY 2" uould'dse every sedond valué;

For an‘afbitréry node, the compiler must be told how ﬁo
update'the.control variable. This can bgfaodé in two Qays:
(1) Have the user define %e" for thevdeéired mode and INT.

. Then the regular form (as inm shoun above) could be used.
(11) Have- a NEXT clause rather than a BY clause. This would
be 'an expr9551on to be evaluated at the end of. the loop

and put in the control variaplé. Thus:

58

p
FOR“i:=1 TO n NEXT i+
is equivalent to | ‘
for i:=1 step j until n .
in ALGOL 60.- ThlS will be more palatable than (1) if the
reader does not like "+". belng used where 1t is not even
;emoiely related to addition (although it may Dbe

incrementing) .

3.3.1.4 Trgversing Muitiples
A classic horror story concerns the implementation of

the array assignment statement in. the ;BH PL/I-F compiler.
Consider the statement " A = 0 ", where ;‘is an array of 1
dimension. This statement is internally expanded to:)
DO I = LBOUND(A,1) TO HBOUND(A,1);

A(I) = 0; ' ’

END;

The <catch is that when subscript checking is. on, the second

line invokes an umnecessary check every time it is executed.

" PL370 must eliminate as many of these cheCks as possible' at '

- compile—-time. Another con51derat10n is that at each pass,

the effective address Lis computedtk

" 2A (0)+Ix%x(size of one element) ", or possxbly 1n a‘wotse‘

way. Why should the loop control variable be-the: subscrlpt

‘{

vhen. it 1is . really the address of thev elelent 've are3 \

»rv

interested in? If the control variable is an address, then
. 'ﬁ B
the expression above can be replaced by a sxngle addxtlon.,
-What is indicated is a loop with semantics sxu

FOR. REF INT p:=da[L¥B a]

P

'such as arrays of any number of dimensions and sets of"

‘Would mean: oy

BY (size of one element)
TO @a| UPB a]
DO

/% €.ge x/ 3$p =0

J

oD

This could be done by requesting that the control variable

possess, one at a time, each of the elements of an array. '
For example: .

FOR i IN a
DO 1 := Q OD
In the DO part, 'i' plays the role of '$p'; that 1is, an
. .) Q ‘
assignment to 'i' assigns to the currently selected element

1) .
of 'a', while the true control variable /(the address of the

element) is unaffected.

g N O

This construct can be extended to cover any multiple.

anything. Example:

FOR colour ' IN (blue,green,red,yellow) DO ...

Chris Gray (15] has propoéed allowing several control
variables. %}g.:

FOR i IN a, j 1IN b
DO i_:= 3 0D

b2 : . R
(INT o1=LWB a-1,
-02=LWB b-1, ‘
d1 ='0PB a - L¥B a-1,
.- d2 = UPB b - LWB b-1;
FOR i TO min(d1,d42) T,

DO a[i+01] := b{i+02]
op) . . |

~ Note that the loop stops as soon as 'a' or ,'b' has been

exhausted. This is simi;at to:

60

61

FOR i,j WHILE (i IN a) AND (5 IN b)

3.3.2 Im .oving Efficiency (machine-independent)

3.3.2.1 Specification of UP or DOWN

Given a loop such as:

Ezad(i,j,k);)
FOR x FROM i BY j TO k DO ...

there is no way of foretelliqé thg direction of the loop.
Even with values for- i, j, and k, it may not be obvious

which direction the loop should take. Three possible rules

»
. arez:

(a) Op if £4> i.; Doin ;f k < i‘; do once if_k = i

(b) Up‘if‘j > O ; Down if j < 0 ; error if j=0

(c) Up if j > 0 ; Down if j < 0 ; forever with x=i if j = 0
ALGOL 68 uses the thiéa‘rﬁlef[au (Section‘j.S)J. Those with
a finite .bark éccount uiLl probably prefer the second. In
ahy case, ‘it is fairly expensive to éétermine direction at
run-time. Therefore, the prograsmer should be ébie to
specify at compile-time the direction the loop ﬁill take.
If he does not,,and the sign of the by-part is unknown ' at
combile—tiﬁe;' tﬂen the compiler must generaté extra code to
.determine direction. Since the purpose of this cdnstruct is
‘code reduction andvincreased speed, the assertion uiil not

4

be checked; if the programmer specifies ™ UP BY b ", and 'b!*

is negative at loop entry, then the loop will iterate untiléy,

an overflowv occurs.

The first proposal below is machine-independent in . the
Ssense that almost every machine has registers, but machine-
dependent in that the registets useful in a loop differ from

machine to machine. A more portable 17ay is‘ to 1let the,
; 5 ‘

7

compiler manage the registers not fﬁuf' ' for linkage.

'
¢

3.3.3 Improving Efficiency (machine-dependent)

3.3.3.1 Restricting Loops to Use BXLE or BX
1

—_—

The formnm:

FOR <geheral reg> :
FROM <int unit> { UP | DOWN }
BYTO <reg pair> [:= (<int unit>,<int unit>)]
WHILE <condition)> ' ~
DO <clause> @D

i}

and .the fora:

FOR <tag> » . :
~<beta> <single reglster> <double register>
FROH .ae '

This gives the compiler sonme reéisters to use for the loop.
<betad> could be "USING" or "“WITH" or ",". The” second form
could be extended to " ... <beta> REGISTERS ... ", meaning

that the compiler should store the control values in

registers and pick the registers itself.

62

3.3.3.2 Restricting Loops to useéBcT

——i " e

If the for-, from-, and.by-parts Kﬁe omitted, then . we

have:

TO <int unit> [WHILE <condition] DO .es | .
In this case'the BCT in§£ruction ééh be_used. Indeed, this
is almost what that instruction u;s degégned'for. But, if

the programmér wants access to the counter in his loop, he
would usually say:

FOR <tag> TO' <int unit>. g
iﬂowever,iusing ALGOL 68 semantics, this 'means' that the
counting starts at one and inéreﬁents, _If the programmer
needs the counter, doesn't'care about the order, but does
want the effi;ien£ BCig.thén‘hevmust say:

FOR <tag> FROM {ipt-uhit)‘BY.-I TO 1 DO ...
This could be sweetemed to: | |

TO <int unit> COUNT <reg> DO ...

 Note. This proposal conflicts with another proposed.
use of the'keyvOrd'"COUNT" to support BCT as a primitive

(See the section "Basic Actions").

3.4 GO TO Statements

Ever 'since Dijkstra‘s famous letter [13] condemhing go

to, people have been suggesting strong curbs on its use;

63

The extreme (as shown by Bliss) is to forbid it entirely.
0f course, one cannot forbid‘branching; but one aust provide

‘alternate stylized access to this lou-iever concept. Old

examples are if clauses, case clauses, and loops. A newer

construct is gggg,‘which is ﬁore(primitive than "the others
in' thaﬁ it is just a.glofified go to, and identifies not a
target loéation but a whole range to be ieft. If also
eﬁplicitly includes all the overhead associated with block
aﬁd procedure exit. Bliss went so far ps to remove llabels,
but that has been a failure»[ab]. -
Tg$ loop clause and go ig are thé only constructs in
ALGOL 68 uhich cannot return & Value."In Bliss, loops have
jbéen given ,valhes. | This qeans'that the removal of go to
allows every construct to alva}s have a value. This - makes
'Bliss,vyork‘as ah expression language.v,If it wvere de#irable
toihaVe an éxpressiqn language, then this vould be a strong
argument in favbr of removing gé to. However, récent work
by-Gannon[iu]‘has'ihdicated that statémenf languages .are
‘better because,pro@r&nmerﬁ make fewer mistakes. Therefore,

PL370 is a statement language and this argument cannot be

used.

-

Although go to may be harmful, its lack may, at timeé;

be more harmful (see [20]), unless there is an ‘adequate

replacement. If clauses, case clauses, exits, and loops are

almost enough, but not gquite. One form that has been

-discussed is a proposal by Zahn‘given in {20]. The form is:

64

LOOP OUNTIL <event 1 OR ... OR <event.n>:
<clause. 0>

REPEAT .
THEN <event. 1> => <clause.1>;
. ' . ssT
<event.n> => <clause.n>

FI ‘ ' ' ' - ‘

<cléu$e.0> is répeated "uptil one of the <event>s is
encountered, then the corresponding <clause> is’executed; A
non—repeéting form could use BEGIN — END instead 6f Loop -

REPEAT.

Another pOSSLblllty is simpler and less powerful-\

TO FIND <tag> <clause>

The semantics of the prefix are that any assignment to <{tag>

in the <clause> fulfills its purpose, and so, it is followed

'by an immediate exit from the <clause>.

g
v

S Ny

“Can the go to be eliminated? Although alternative
‘constricts can cover most cases, no one has found a set of

control structures that is always guaranteed to _repléce ‘do

to® without 'degrading _the program in any way. On this. -

ground, it seems unwise ‘to go to the trouble of remov1ng it.

Secondly, it must be remembered that it is easy for

programmers to fabricate control structures with macros, and
Af statement labels are 3included in the language, a,GOTO
‘macro would be easy»to;write. Fnrthermore, it would surely

be used. A go to 'is less harmful if the conpiler knows

.abodt it, and the construct should . be included for " this

reason. In conclusion, go to can be eliminated only if

65.

statement labels are eliminated. Since statement labels are
not needed by any other construct (the only other thlng they
can be used for is in treatment of- 1nstruct10ns as data by

basic actions), go to can be eliminated.

-

’In‘ standard languages, such as ALGOL ‘60, FORTRAN,>and
~ CoBOL, there are no pointers at 511; Also, there are no.
constants, only initialized or uminitialized variables.l‘In‘
ALGOL W, references (pointers) are introduced, " but are
’restricted tc point only at records, which are distinct froa
: references, so that | the ; uorld ;is partiticued into
nOnreferences and references to nonreferences (although a
nonreference aay contaln a ‘reference). In éL/I any
var;able may be BASED, and thus a p01nter may f01nt dlrectly
at another p01nter. Even in cases where polnters p01nt only
at structures, as in ALGOL W, it may appear otherwlse to the
reader of a program. Con51der, for instance, the PL /I
varlable COUNT thCh is in full |
" P ->S5.0 > TiR -> W.COUNT ".
: ‘ N .
If Q, R, and COUNT are unique, then the previous phrase mnay

be abbreviated to

" P ->Q -> R -> COUNT ™,

In all these languages, the use of a variable requests

either the name (address) or value (contents) of'that

variable. It is determined by context which one is desired.

As long as the rules are simpie,' programmers have 1little

_trouble.

Languages such as BCPL, Bliss, and ALGOL 68 are quite

different"@nffhat the destination (LHS) of an assignmenty as
. oL : . .)
[

v

well as the source (RHS), may be -an arbitrarily coamplex
exprésSion, possibly invblving procedure calls. Also, a

ointer may point directly at another pointer. ‘The
programmer may have trouble deciding what a given phfése
means or how to say vhat he wvants. ?he three languages
attempt different' solutions. 1In Bliss, the name is aluéyé
‘téken and éll_dereferencing ié explicit; this 1is probably
the simpiest and the ugliest solution. In BCPL, there are

twvo "modes of eialuation", Lmode and Rmode. Rules - specify

N 3

which mode is useqd for a given sub-expression. This usually
allows BCPL to take the name when appropriate and take the

vélde .when that 1is appropriate; the programnmer may

explicitly specify which mOde@ to use when he wishes. 1In

ALGOL 68, the name, 1if any, is taken, but there is a
complicated set of cbercion_rules vhich try to minimize the

amount of writing the programmer must ¥ do. In all three

&

‘however, the programmer may be confused as to the conceptual

modes being handled, because Bliss and BCPL have only one
mode, and, in ALGOL 68, declarations sometimes leave. out a

REF.

67

o Y
!Wﬂ\
b

ALGOL 68 ,attemptedf to 'solve the name-value problem by
|

consxderlng a name to be a different kind of a value: when

~talking about ALGOL 68, one does not say Véhe value of x is

v

3", buy gathet!,"the-value s 1s 3", The mode of a name
vhiéh refers to an integer is‘REF INT, different from the
mode, INT, of an integer value. However, being "econonmical"
with concepts, it’builtbdata“security and pointers out of
the same"ﬁechanism, thus making a useful separatibn and a
badbunion. The result is an improvement over all preceeding
" languages. All the’kinds of variables previously dvéilable
are available as well as sohe'more kinds of variables and
$ome kinds»of constants.‘ Supposé '*x' is a datum of mode REF
M, wvhere M is any mode- Af any time, 'x' may be changed to
refer to a different M object; tﬁus 'x' is a "“variable".

Hdvever; one may make a read-only .éopy of what other
ianguages call >"the value-iof the Qariable"' by saying
M XX = x;': This causes 'xfi-to be an identical copy of
the M dbjeét vhich fx' ~referred to at the time of the

definition of 'xx'. This is. important because, in other

languages, people. do make assignﬁents to variabiés vhich

vere supposed to be' ‘constant', causihg real errors.

, HARY attempts to better ALGOL 68 by. séparating- data
protection from indirection. To theb mode is added the
“status";gthich cﬁnveys_the aécess permitted to the dafuﬁ
(i.e-, either. reédfﬁrite~ or read—only); Then BEF>has~no

. bearing on status, which is determined by another keyword,

=

68

VAL,

So what does the REF (REFERENCE, PTR, etc.). mean? In

ALGOL W and PL/I it is clearly an address vaiué or variable
(occupying some memory) of another objecg\in memory. In
MARY also, most REFs are addresses, but there is an imélicit
VAL REF for each.identifier or literal which may not appear
in mémory. In ALGOL 68, we may say that each REP is a

conceptual pointer which has a side effect of making

vériable the objeét referred to. Hov should conceptual

pointers be mapped to physical péinters (i;é;,'addresses ‘in
mepory) at run time? if one uses one physical pointer for
eadh conceptual pointer (i.é., one for each REF in fhe node
), " then integeg variables will bé twice as big in ALGOL 68
as in FORTRAN kciearly’unécceptable). .They will also be
twice as slow when ﬁsing thei}, values. Also, ‘lafge
constants nust theh be copied ins{ead of passed by
réferénce, vhich may require an‘extra physical pointer. One
could use aé many physical pointers as REFs in the decla;er,
this often being ‘one - less the the number of REFS in the
modé; this is efficient fof simgle variablés; but not for
"renamed“ variables. If a "most efficient" map is used,

then the programmer may hﬁve difficulty in kXnowing what that

map is. Whereas a user of ALGOL 68 wmay be pacified by

A 4

saying that'vthg run-tine organization is irrelevant to him

as long as it works, a user of a MOL will not be.
Therefore, if the ALGOL 68 model were to be used in PL370,

some sub-optimal compromise would be required.

5 .

69

Like MARY, PL370 rejects the ALGOL 68 model of modes.
That is, an integer variable is not a reference ‘to an
integer constant, but rather integers come in at least two

. Lo
kinds: constants and variables. In a sense, this 1s a

retreat from ALGOL 68 back to ALGOL W, but both MARY and

PL370 provide an even richer choice of modes than ALGOL 68,

probébly richer than any other 1language. In PL370, each-
object has a mode which includes a status. ' A status is

either read-only (i.e., a constant or value) or read-write

(i.e., a variable). The former .is indicated in a declarer
by CONS and the latter by VAR or by default. A reference is

an address in memory constrained to point at objects of a

given mode ‘via a path of a given status (at least as

restrictive as the object being pointed at). Thus a REF VAR
INT may point at-a VAR INT, but not at a CONS INT. In the

case of fields of a structure, each field has a status and

the'structure as.a whole also has a status. If the wholeﬁ

N\
structure is read-only, then that status overrides those

" mentioned for each field. If the whole structure is = ad—
writé, then each field behaves according to its declared
status, except that a read-only field may be changed by an

assigmment to the complete structure.

-70

3.6 Packing of Data

Several languages. haVe‘ mechanisms whereby structures
may ‘exist in either a compact ("paCked“) format more
suitable for transmission or - in an expanded format more
suitable for processing. For exaqplé; in COBOL, "“MOVE
CORRESPONDING"~-uill- copy all fields from one strhcture to
the corresponding fields in another.'étructuré (two fields
correspond if they have the same identifier). This feature
will convert any fieidS‘ that it can during the copy-.
(Actuéliy, many COBOL structures are‘gggggggg fdr transput.)
MARI, on the other hagd, h;s an explicit PACKED keyword to
tell the compiler té pack all -the parts of the multiple
value with this attribute as compactly as possible. Oae nay
pack or unpack by assignments frém ca PACKED (UNPACKED)

object to. an UNPACKED (PACKED) variable of the same mode. .

Data is more useful in a packed fbrmat because:it then

takes less memory (or file space) to store it.' In many

files; with thousands or millions of data itéms,.‘thisi is

essential. Data 1is more useful in expanded format because

then the CPU can~process.it directly. -

|

What types of"data might.be packed? l

-"Intégers in the rangé (-128 TO 127) or whole ﬂu_bers‘_in

the range (0 TO 255) ‘can be-packed 'into one byte.

e 9 ASCI1I cha;actérs - can be‘istored in a adubﬂeuord (8

bytes) .

e Programmer-defined types can be stored using as feu bits

i
i
1
i
|

71

as necessary, not some multiple of 8.

e 1Integers imn the range (a TO b) can be mapped onto the
range (0 TO b—a)aﬂ

. Alignments' reqdired by machine instructions can be
ignored. |
In summary then, there kre 3 aspects of éxpanding:
- representing allbvalues "as isn,
—‘iﬁsertiné enpty bits for alignment,

- inéerting empty bytes for alignment.

A so;ution is io have a machine-dependent part of 3
’mode_déclaration. The'ﬁange shifting can be accomplished by
jan FEXCESS <¢ompile-£imejinteger-expression)" part, meaning
that the tép&eSentatibn exceeds the desired value by that
expression. The alignment can be contrd;led by an "ALIGNED
<byte—bdundary> <bit;boqndary¥option> " part; for example,
YALIGNED BYTE .+ 1 BIT"; ﬂUNALIéNED“, QALIGNED WORD+1Y (i.e.,

WORD + 1.BYTE) -

»Move"Corregponding is not feésible unless different
"_stfucture nodes may- haye field selectors with the same
identifiers. vFor thoée programmers Qhose’style_is to'haVe a
field séleétor"indicate the mode (e.g. by the first few
retters), move corresponding is d;eléés;A'In any case, the
programmer can build onF‘ of ‘his own by defihing the

appropriate macros.

KL

;fl‘:'Cy,;'}_v L 2
In most asseably languages, instryctions$ and’

%\

intermixed and appear in the object code in qxéctiwaheg

"

programmer multiple location counters so fhat vhile all

let the programmer set the location counter, letting ' him

overlay previously mentioned items or leave gaps.

In most - higher—level languages, the programmér's
confﬁol is 1less. and inditecf. A compiler 'may reorder
v&riables to minimize waste space, move code from an
internal ptocedure to Qomeuhere.outéide, and reserve ;bém
for temporaries.without.ever reportihg them. Variables are
almost aluayérkept separately from code, as afe cdnStahts.
The ptogramqer does .- have Some éont:ol ovef the number of

o

objects that exist when'he uses explicit allocation (e.g.

ggnefators in ALGOL 68, record deéignatots in ALGOL W, .and
ALLOC in PL/I). PL370 must) stridg ‘a middle - road, not
requiring' apy ﬁdré ‘work from the,progfammer‘than a high-
lévél,language, yet alloying‘him to'controi _pO%iiioningi as

L4

much as he‘wants to.

.. -* SO s

mAy not appear until after everything using the first. 'Some‘

i

Vorder - presented. Some assenbly lanquages ‘gi@é = them

mS using one counter appear as given, those using anothér .

13

“datal ara., .

L L
LR
.

o
Wi

v

ﬁ@3.7.1 Location of Data

I

The basic control overvlocation of-gata is the k.nd ot
..

usability desired; i.e., re—entrant, re-usable, or not c-

usable. ' This,’the programmer will specify for each module.
~ " &“

Reordering of variables is an optimization that should not

be done unless spec1f1cally requested, because it makes

debugging.Zﬁuch harder and many programmers have already

carefully ordered thelr deélaratlons

Data cannot- appear exactly where found in the ‘code.

Declarations are reached by flow of control in Algol—llke

languages, so, if each datum was . located vhere declared,

7

‘Bany extra jumps would be requlred in the code. The

. , : ! .
programmer can put data in a given order in a special

sectioh" by.using global records, but this is unnecessary in

the normal.case. When data and code are intermingled' (non—
2 N *

re—entrantf: the’ 51mplest safe actlon 1s to remember all of'

} 8

the data and reserve space for them after the nearest or the‘

’// o

next unconditional branch. The .data could also be gathered'

after each procedure, or after each global procedure, or in

a separate section. f' Varlables can‘ be controlled

»1ndependently of constants, although on the IBM 370 there, as

<

.~ no advantage in puttlng the constants in a Separate CSECT

rfuntll IBH develops execute only memory (1 e. fetchlng 'vould

be a110ued only as an 1nstruct10n, not’ by an 1nstructlon)

The Programmer should be allowed all these ch01ces.

74

3.7.2 Dynamic Allocation e

o

Most operatiag sygtems-have one primitive for obtaining
uéer stoiagejfrqm thé systen épd one for retufning¥storage.

Sé_this is probably a'gOOd model. Each module can.specify a
routine to be used to a;locate dynamically and another to
frge._ These vii&i be -invokgd automatically vhen the user
specifies re-ent;;niicode. Such routines will all have the

same required parameter and as many -optional parameters as

the programmer desires.

"The dseg must also be'able to allocite explicitly; One
method is-fé.cbds;der all thé available memory as one area
and let. it Dbe broxen into sub—areAS, which iay in‘tgfn be
“split up, and so on. Another is for the user to write
explicit g;nergtor. ;odtines, such as HEAP. These could be
‘invoked as in ALGOL 68,"§nd‘”behaye -as the progrémmer

defines. They <can be easily used to create and maintain

" areas. They can also include garbage collection; since all

allocation goes through the programmer's routine, each

object may be allocated to ,include any extra information

that the generator jwants.

o TR

2.

75

L

3.8 Register Management

3.8.1 Register Usage

In most lamguages, including PL360 and assembly
languages, a programmér may store a value in a variable and
subsequehtly store another value in the same variable
without any warning. In many, however, he is warned if - the

\‘ .-

second value has a mode different from the first. But since
non~use of a wvalue is usually an error, it might be
preferrable to require the programmer to explicitly throw
away values he has created but does not,want to usa&SYths

: . . L
1s especially important for registers, since anfﬁnuseéﬁgalue *
in. a register is even more likely to indicate -am error.

. ' ‘ .

" There are five ways to access a Eﬁg;ster:

a) an otherwise ordihary declaration - is '1ocateQ' in a
register rather than in-memory,

b} as above, but a specific register is requested.

c) a specific register is used without any declaration to
give itg mode. A =

o - ?‘\ B g %‘} Co ur . . .

d) a " part of a neglﬁté?gls accessed as a field, considering
T — 2 '
the Tegister as a structure.

¢

e) a register is accessed as a side effect ‘of another

-

operation. , _ \\

All five are useful -and therefore should be included in

LY

PL370. " Examples of uses of .these five are:

a) to increase speed

-4

TP,

b) a value is going to end upjﬁn a specific register anyway

(e.g. a parameter) so why not put it there in the first
-place? /’, ‘ o
i /

c) having performed an integer division, one may cheaply
extract the remainder,from the doubleword result
d) EDMK, TRT

e) after an access of type (d)

P

/

The ~compiler must carefully note which objects with

differeht names actually affect each .other. For“exémple.

@

in:

REG LONG REAL a,b; ¢ these are 16-byte reals
£fro := 3.0; s

the assignment must modify a or E, because there are gglyd32‘
‘bytes’ of floating-point registers. However the problem is

>ﬂnot.different for registers from that for memory.

3.8.2 Base Registers

® T

3.8.2.1 Pointing at Data | -

IBHASHM and PL360 show two different views of the world.

In the former, data exists in organized structures. When a

register points at such a structure, that register may be

used explicitly {e-g. FDFIELD;DNAME(REG)") or implicitly

77

g o

‘regisfer for then

/ ’ . l
?7én opened), and this should not be lost.

©w

after a "USING" statement. Note tht only one "record" may

[

L @2 .
be used at any one time with any given mapping, but any

number of records 'may be used by giVing explicit pointers
and offsets. IBMASH also allows the data définitibﬁ*'to_ be
uSed‘like a lorgnette, giving a particuiar»viev of angéﬁéa.

PL360, on the other fhaﬁd; seems to'reflécé'é‘vieﬁ of the

4

data mapping as being fixed to the regiéter,jrather than {o
the 'storage. In IBMASH, thé"stréng link is :memory:<;>
map and the veak link is registet <¥$ map : In PL3€0,
the reverse is true.l Rérsonaily, I believeﬂthe IBMASM view

to be more realistic and furthermore it matches the ALGOL 68

model better; in- ALGOL 68, memory binding - is fixed at

 generation time, but pointer binding is not fixed until the

_ actual selectiong Coﬁsidering that the vast ma jority of

IBMASH prégrammers choose fp access- records by USI&G’a base

should include a“s{#¥lar mechanism. However, the ALGOL 68

‘not mentioming. it ‘again), .PL370

/to access. other .records much more

model has tbe'ab%iizi
cénvénieﬂ%lgx/than IBMASM (Wheh one record of that type has

P

3.8.2.2" pginting at Code

" Again, in IBMASM, the binding of code baSe registers is

much more flexible than in PL360. In particular, the

g - -

register may bé:changéd_pfrt way through a procedure, and in

§

‘(look at a standard entry~macro;[21j)- PL360's restriction

&

t

'“fact, almost all IBHASH p:ogrammers take advantage of this -

78

79

v

to the same register throughout is unacceptable and easy to

Qverconme.

3.8.2.3 Large- Séctions

On the IBM 370, handlingﬂ‘sections lonéer than 4
kilobytes ;is alvays a problenm. PLBgQ.avoids it by forcing
the pfogramhet»to break his procedure intoﬁsegmehts.each‘ of
4KB or lese. IBMKSﬁ.ptodees two 5Hditional'methods. fhe
‘fipstvieito have.horerthan'one register”for the code, thue‘
allowing' lengths of- 4KB times the oumbet of dedieated
reglsters. _Perhaps more lmportant there is ao requlrement
that one point at the beglnnlng of the procedure, only that

*""&
Y
e suff1c1ent " However,

the area "covered" by the reglster‘

-kls eP:ethod regulres some .run-time management, which, in

’&”LQHASH,';s,suppl;ed by the programmer. The programmer may :
® Use an extra base‘rggister. . S A
-?Break ‘his procedure into-2 pieces.w ' : :

« Draw a llne about 4000 bytes from' the: beglnnlog of the 3
procedure and ‘base code. from there when paﬁ* that llne. o
Crossxng that iine then :reqplres_'modlfylng the' base

‘ reglster. Constahts‘ aay oe»dupiicated or pointEG at via a -
full address from across the line. !

. Hake the constants addressable. at all tlmes"(e.gs located -

at the beglnnlng, of the proc) and use longvjumpfﬁin the‘

.~ latter part of the procedure.
| P A

PL370 should allow all these options, but it would be

~ modes held: INT, BITS, WHOLE, BIT, BQQL, quR ADDRESS;_

>¢.A ! 0y
(b) floatlng pOlnt re

. modes held: SHORT REAL

80

nice if one of the last two could be auytomated (the last one

is easier to do).

' 3.8.3 Register Names

' What should the registers be called? While this is Apt
a crucial questioh (anyone can make synonyms to suit his

taste), the ansver may be 1mportant tof'thé popularity of

PL370.

(a) géneral registérs

¢

SHORT WHOLE, SHORT INT, CHARS (2), CHARS}

W “”g” :
(1) 0, £1, .., £15 (like PL360) - @ﬁ el
(2) groy grl, <., gr15 (like MTS) ‘[@@w g Sl
(3).x0, 1, «.., ©9, ra, rb, ..., rﬁ¢'fgji,
(a)ﬁﬁegscﬂ), £egs (pons aay Legs (15) =2k

(5) reg (0)., reg(1)
(6) gregs(0), greg
(7) greg(0), greg}, s

(4)

;., gregs(15)
¢ greg(15)

oy, %
o

(1) fo, f2, f4, f6' (1ike PL360)
(2) fro, fr2, fr4, fré (llke MTS)
(3 £0, £1, £2, £3 . .

(4) fro, fr1, frz2, fr3 , .
(5) fregs(0), fregs(2), fregs ! _
(6) freq(0), freg(2), freg(4), freg(é)

{7) fregs(0), fregs(1), fregs(i), fregs(3)

(8) rfreg(0), freg(l), freg(2), freg(3) : - ' ’
(9)-(16) as (1)-(8), bu¥ preceeded by an 's' (for short)

" fregs(6)

(c) control registers
“ mod & held : dgponas on reglster N ') - '
(1) CO' C1 “asy C15

(2) cro, cr1,A..;; cri15
(3) 0, cl1, “«.., C9, Ca, Cby «<., cf .

(4) cregs(0), cregs(1l), ...; cregs(15)
(5) creg(0), creg(l), ..., creg(15)

(d) floating-point registers(longi

nodes held: REAL

(1) fo, e, f4, £6 (since mode=REAL)
(2) fro,” . fru ré
(3) f0, f£1, ., £3 ,

(4) £fr0, fri1, fr2, fr3 .
(4) fregs(0), fregs(2), fregs(4), fregs(6)
(5) freg(0), freg(2), freg(4), freq(6)
. (6) fregs(0), fregs(1), fregs(2), fregs(3)
(7) freg(0), freg(l), freg(2), freg(3)
(8) £01, £23, fu5, f67 (like PL360)
. (%) fro1, fr23, fr45, fre7
(10) fregs(0:1), fregs(2<3), fregs(4:5), fregs(6:7)
(11) freg(0:1), freg(2:3), freg(4:5), freg(6:7)
{(12)-(18) as (1)-(7), but preceeded by a *d' (for double)

(e) floatlng p01nt reglsfgrs(extended)
modes held: LONG REAL |

(1y 1f0, lfu (51nce mode=LONG REAL)
- (2) 1frc0, 1fr4 ‘ . ,
(3) 1£0, 1f1 : .
(4) lfrO, 1fr1 - : S
(4) 1fregs(0), lfregs(4)
" (5) 1lfreg(0), lfreg (4) i
(6) 1lfregs(0), lfregs(1))
" (7) 1lfreg(0), lfreg(1) '
(8) £0123, fu4567 - (PL360 stylé)
(9) £fr0123," fr4s567 . ~
(10) fregs(0:2), fregs(4:6) ,
(11) freq(0:2), freg(4:6) o)

(12) frefs(0:3), fregs(4:?. ‘B

- (13) freg(0:3),. freg(4:7) 0
o (14)-€20) as (1)-(7), but preceeded by a 'q' (for
' quadruple) rather than an''1°*. C

RY

(f) dgeneral reglster palrs
modes held: LONG INT, LONG WHOLE, LONG BITS, CHAR£QB)

(1) dr0, dr2, ..., driy .

(2) a0, 42, «.., d14.

(3) dgr0, dgr2, ..., dgri4

(4) gdr0, gdr2, ..., gdrciy

(5) ¢gd0, gd2, ..., gdl4

(6) dg0, dg2, .v., dgii

(7) drd, dr2, ..., ar8, dra, drc, dre
(8) dro0, drt, ..., 4Ar7

(9) 4o, 41, ..., a7

(10) dgr0, dgri1, ..., dgr?

(11) gdr0, gdrt, ..., gdr?

(12) gd0, gd1, ..., gd?

(13) dg0, dg1, ..., dg7 : ,

(14) dregs(0), dregs(2), ..., dregs(14)
(15) dgregs(0), dgregs(2), ..., dgregs(14)
(16) gdregs(0), gdregs(2), ..., gdregs{i4)
(17) dregs(0), dregs(1), ..., dregs(7)

(18) dgregs(0), dgregs(1), ..., dgregs(7)
(19) gdregs (0), gdregs(1), ..., gdregs(7)
(20) dreg(0), dreg(2), ..., dreg (14)

(21) dgreg(0), dgreg(2), ..., dgreg(1s)
(22) gdreg(0), gdreg(2)y, ..., gdreg(i4)
(23) dreg(0), dreg(1), ..., dreg(7)

(24) dgreg(0), dgreg(l), ..., dgreg(7)

(25) gdreg(0), gdreg(1), ..., gdreg(7)
(26) regs(0:1), regs(2:3), ..., regs(14:15)"
(27) gregs(0:1), gregs(2:3), ..., gregs(14:15)
(28) reg(0:1), reg(2:3), ..., reg(14:15)
(29) greg(0:1), greg(2:3), ..., greg(14:15)

3.9 scope

vsihce this is an ALGOL-like language, the basic scope
rules are derived fronm ,biOCk structure. That 1is, - in

general, an inner block may reference any object declared in

o a bloqk containiﬁg’i;, b ; Quter'bloék may not reference
any objeéts;déélared ih'b;u it contains. It€ would be
quite useful to ,havel'bqth ovn ($£ati¢) and ordinary
'(aﬁtomatic) variables., References are a. little, more

complicated. In ALGOL 68, the mode REF AMODE is really a
> union whose meaning changes in every range. This is because

a. REF AMODE object refers to an.AnODE object of any scope

greater. than or equal to that of the REF. This is

effective;y UNION (REF HEAP—AHODE,REF global?AMObp,REF nesti-

AMODE, REF nestZ—AHODE,..;,REF LOC-AMODE), and in fact, a

preper ALGOL 68 system must break open the union on almost

any assignment of a REF vithout dereferencing. %our
A

. possible Qays to handle this problem are:

(1) Ignore the problem and never check forL errors. Allow

all the flexibility of ALGOL 68, but force the programmer to

explicitly insert code to check for errors. This 1is the
method used by‘ALGOL68C [8].
(2) 4110@ full ALGOL 68 flexibility and use a proper scope
check“ This‘can get ptetty expensive at run-time.
(3) Dlsallou any poineer assignment uﬂless guaranteed - safe
at complle time. This is cheap to implemenf in the compiler
and eliminates all ﬁeed "for run—time checking}‘but does
'restrlrt the language, forc1ng many objects from the stack
to the ﬁeap.; At this level, that may not be much of a 1055.
(u) As (3),. Sut extend . the language to allow. declarations of
the form: |
“:p: pEGIN
IN 1p,
o ‘{.'.BEGIN
T/ 1 INTi3;
~REFP INT p1; ¢ as flexible as ALGOL 68
pl = a@ip; ¢ legal

p1 ;= @i3; ¢ legal
REPR LOC(p) INT P2;

p2 := @ip; # legal
p2 := @i3; £ illegal
pl := p2; ¢ legal
p2 := pl; ¢ illegal

REF HEAP INT p3;
p3 := HEAP INT; ¢ leégal
" p3 :=_@i3; ¢ illegal

83

p3 := aoip; ¢ illegal
p3 = pl; £ illegal.

p3 := p2; # illegal’

pl := p3; 2 legal .
p2 := p3; £ legal

If © (3) or (4) be chosen, then many variables will be
declared more global in sqope in order that +they may be
shared. In that case, one or more of the protection schenmes

below may be required.

Certain deviations from strict nesting scope rules may

) be useful for efficiency or protection.
i, ,
TWwo scopes at the same level could share own objects
(to the exclusion of their common ‘container) by mutual co-
operation. This can be simulated by the PERNIT below, but,

that involves trusting the containing procedure.

Oﬁe can - compare .data to files. ”Just as advénced
operating sysiems allow various permissions to different
‘users of a fiie}»a'language could allow various permissibns“
~to differentvu;ers'(tead t§ngesAor blocks %r>ptocedures) or

an object;'- This could be implemented by a PERMIT command

. puch 1ik& that in NTS [35]. i.e.: R

PERMIT <identifier-list> { R | RW | ' NONE }
<range—-name-1list> ; o

‘This " could be implemented at run~£ime (easier to undefstand

but gxpensive)vor at compile-timé; As ﬁ compile-time téol,
this is much clumsier, but thé'difﬁerenée in cost (none
versus much) is very great. |

One could-restrict the “natural® flow df scope into the

LI

Pape!

¥

next level by having a block explicitly name those non-local
objects which it might use. Since this acts as a filter it
can be uséd'both by the container to restrict what is passed

Ll

on, and by a block to 'guarantee it does not ruin its

environment. ‘The default import list could be made all or

none. The latter is safer and more efficient, whereas the
former is more like ALGOL 68 aund may Save some°typing. The

import list is an important considetatioh when efficiency is

-concerned’ because if all outer scopes must be available in

case needed, then, in general, there is a certaip.amount‘ of.

overhead at each scope entiy and exit for addressability.

. .]
+In a true stack scheme, it should be possible to

‘allocate objects in the frame of the 'calling procedure.
. - YO R ‘ ‘ - ; "
This 1is because there is nothing above that frame until the

nev procedure creates 'its own, but it could put some objects

on thé 0old frame first. This ca: -hility is built into most

such schemes for the ;éturn of.valugs- . be a. useful

geﬁeral facility, but would-mnot be free,
- frame of a prbcedure wvould no longer be static in size,.
- B @ N - . . -, .

This means that a stack-top or frame-size variable would

have to be kept around and updated at run-time.
. : ‘ v

ause the‘iocal.

85

3-10 Addressability

This sSection is very much tied up with register

management (g.v.) and scope. Depending on register usages,

«
access to non-local storage can be made fast (limited number

of ranges),'slod (unlimited number of ranges, but gettina

even slover as ramnges get more non-local), or impossible (as .

in FOﬁTRAN). leobal references can be handled as extreme
non-local (ae in ,ALGOL ¥#) or as. a special cése (as in
AtGOL68C)., Thev usual way to address an object is to give
the compiler a register to use for this purpoSe, like a

USING in IEMASM. Another way is to dereference a pointer.

To address code, there must be at least one register
given to the compiler. This can be dome with a statement of
the form:

' BASE CODE ON <address expre551on>

This wlll cause the conpller to use the sPecified' address

expre551on. . for 'addresslng all the code iithjthe curreht
procedure, except for any contalned procedures which have
their - ovn BASE statements. It would’be useful if one could
base a structure on any address expression, not just a
register as in IBMASNM, e.g::
register o
register + offset
register + register

register + ‘register + offset
actual address

Another ,convenlence ruould be to have the compiler generate

code to perform the copy when a BKSEh"stetement 'indicates

86

e | e

v

that the base register.is being switched frém gne register
to another. Note that since BASE CODE statements wusually
appear 1in an ENTER macro, the usual program can ignore this
item altogether. Large sections of code can be handled by
explicitly naming extra‘base registers,‘e.g.:

BASE CODE ON r3, rl ’
They can also be handled by the compiler automatically

taking necessary actions (sSee Section 3.8.2.3).

There are ﬁAdifferent ways to address data.’
(1) The.bésic data blocks are Specified as for cbde, when
located separately., VARS mayl-be‘ specified when tgs
variablés are located.sepatately from:the code, and CONS iay,
be.speéified'only when the constants are located ségérétely
from boﬁb the)codé épd'the variables:

BASE _VARS ON <addfess—expres$ion>
BASE' CONS ON <address-expression> ”

(2) Global récords may'addressqg in a s}milat manner. Each
ohe neéds one base“registeb,fsincétthe ugual 'rﬁle is- that o
" weparate CSECTs are 1§aded independently:. |

BASE <reéord name> dN '<addres$—e¥pression>

\ '

(3) XIf ST is a Stiucted mode, and register r contains a
value of—modekREF ST or PTR ST, then any field of'ST_may be
accessed by:

<field name>. OF r

.
(4) If ST is a structed mode, and register L contains . a
value of mode REF ST or PTR ST, and if the particular “object
pointed to by r is being used frequently, then ‘it may be

B

more convenient to "open® the structure:

=

OPEN 1;

f := 3; .
g = 35 ,

h 1= 3.0; ‘ !

: is equivalent to: !
f OF r = 3; K

g OF £ := 3;

h OF r 2= 3.0; "

This "dpen"ing lasts until the end of the clause in which

the structure was opened or until r is assigned a new value,

~whichever comes first. The open .statement is .a copy of
IBHASM}S‘ USING statement, and is also similar to Pascal's

4 3
5

‘with statement.

N : A
r& - N . “

{ .
i
‘ .

e x

3.11 Multiple Vglues

o v ’ ' ‘ |
In ALGOL 68, a row is]mone .than. ju%t a ‘'sequence of

. , . ' : . , . [
elements - it also includes a descriptor:. There 1s no mode

which means just the elements (ihichvis all you get ip many

languages) . In - PL370, ﬁt is regu%red that both_r ¥s with;
desciptors and'vrovs ,without'sdescriptors be a ailable:}
therefore the .primitiVer ARRAY is . the mbtg primiéive
construct - justfthe elemeﬁts.' A ROW is then the/désériptor

I.4

for an ARRAY. Lo : ’ //

N —

-

-88

\

Since one éim is for cOmpatapildty wfth‘»the ianguage

being replaced, and sSince array ”fOBmetS“vdry so widely,

there - must be a coqpromiSeQ L_Two schqmes héve-vdbeen. _
- b - v (\ . ; . ‘ . .- }v

‘considered:

(1); Let\«the programner deflne the "‘é ¥ '»operafor; or use-
the standard deflnltlons when appllcabled‘ This aiiOHSV him

to store an array 1n any manner he . wlshes, such as row-major
‘order "or. colunn-major order. ‘He may check.subscnlpts 1f,he v
‘uisﬁes, or do so only for certaln modeSe Unf%rtgnafefy, orf
fortunately,. dependlng . on your blaS thlS turnsléach array
: into a procedure dellverlng an element and is basxcally the
:same as what B;xss has done. nA
(2) Provide a less flexible constrdot tha£ cannoiﬂbuiid the
general procedures of the first . schede,‘:buthﬁregpires“jn;:_

\"programmlng" and covers all reasonable cases. This can be

used if you agree that-“\ S
.‘ There is no reasonable way to- storg‘an array other tthan)
row—major order Qr coluMn-major order.a Scheme.(j) canhuse a
VSparse . representatlou) ;nstead spf- .ihe usual" gdil
‘ ~representatiod.without requirinq any change‘in»“thea"proérem
'out51de the definition of. subscrlptlng. |
. SubSCrlpt checklng should be elther complete or left out
completely (for any one mode). | d.
. A default .16wér—bound makesiseose; but a defadlt upper
bouhd‘does ot o o ,“:r -) ‘:‘ o
e There are 'really no’ opherr importantv parameters :xo _

A element-storing mechanisms.

90
RN
”This -scheme generalizes ARRAY by allouxng different
'ARRAYT!PEsffound by three characterLStlcs-
-+ ({ ROW-MAJOR .| CQLUNN-HAJOR },
| { CHECK f NOCHECK | }, -
default louef bound)
“ Examples- - _ ’
ARRAYTYPE ‘NICE_ ARRAY = (Row—maoa, cuﬁcx{, 19;
NICE ARRRY (5) INT £, . o
NICE_ TARRAY (5:6, -9 5) COHPL X'
Note that 1f a NICE ARRAY is passed as an actual paraﬁeter,

A the mode matchlng regulres that the bounds match also.

Now that 'the . elements have been Qescribed, one must |

‘design a . format : for the descriptor. One can define
. :

descriptdrs . in termsf“of STRUCTs,: Suppose_that\there‘is a

'compile+time procedure "ﬂim' which.'for‘ any array mode

’

returns the number of dimensions 1n that mode. One can then
deflne a ROW by. . : S
DESCRIPTOR ROW (X) = STBUCTO(
’ REF X p; DR
ARRAY(1 dlm(xf), lower bounds,
. L upper bounds [R N
: .)' . ‘ T : .) /
) \ ‘ .] \ ' FE S
?) - . . :)
A more conprehen§ive solutlon to rows is to have the (,/

.user define conplete modgles in the sense of Zilles, LlSkOV,
etc. {11].ﬁ A module v;uld de5cr1be .pov to represent a
deSpripror;‘houfto allocate one, how to assign then, and how
to use theﬂ‘to)reference an element of the array. -This is.
even 'nore coﬁprehensive zhan ftheﬂ previous scheae for
 defining subscriptihepn because the programmer has contrql

over copying as well.

o 3.12 .Linkggg gggventiong : -

’

Thls toplc concerns the - melelentatlon of % procedure

-calllng. “Most 1mplementat10ns ple one method and stlck to\

_ lt, Unfortunately, most of then pick a dxfferentp_metbod.

,PL360 apd IBHASH ‘avo1d thls .problen and leave‘it to the

-programner, ‘who must deflne procedure call exp11c1tly eVery
Arlme._ In practlce, the IBHASH programner can make order out
"of ‘chaos .jud1c1ous ‘use of macros, usually one each of
'CALL, ENTER, and EXIT for each llnkage conventlon.; Even_so,

it ls very easy to make errors, and many_ errors OCcurcpat

_ﬁhese 1nterfaces betueen procedures. Therefore, PL370 seeks

,to' gl6e the - programmer even ‘more control over hlS lznkagew

vithout restrlcting valld flexibility.

bne 1ﬁportant con51derat10n of a llnkage conventlon is

restoration of the "state ‘of the qorld" to what lt vas

before the startvof'the call,reicepting, of course, those

changes that the procedure was called to"eerct,

Responsibilities for restoration are.usually diiidédtbetween

the caller‘and tﬂe- callee, but' the programmer -must be
careful that he‘Has‘covered as much as’he can berueen then:

A compiler should assist the programmer vith this; Houever
the llSt ‘of thlngs to restore may be outrageously long, or

an . operating systenm nay be def1c1ent and unable to restore

something, once changed.b For - example, - see the . table

describing MTS.

g

.Q' o

L)

(‘

o I N
S CAN CAN '~ CAN . ‘1\
'“ITEH ‘ GET - CHANGE - RESTORE. RS
T - VALUE? VALUE? . VALUE?" |_RM
: ' o co T _ ‘ : |
genetal reglsters S T . .. Yyes ~yes. . yes . .
floating-point registers .-l yes | yes ~ yes 1
. 'program mask _ .. .yes - yes - .yes +
~ condition code®@.” . . ”*u‘ .yes . yes- yes .. |-
instruction address : , ‘Y"Yes . yes yes ot
. current program trap .. - (/ yes yes yes 1
current attention trap ' N yg§s - yes - ' yes 1l
current time trap no _ - -yes no T
current prefix char - . . - yes yes . “yes . |
- control chars (#,>, —,.,etc) yes yes -.yes-. -
accounting statistics "'yes - no no. {
other "“User INFornatlon" [21] -yes: ‘some some. E
I/0 assignments . _ : ‘Yes - yes = ' no Nk
“local time limit Coe _' » yes .m0 . - no |
- global settings ($SET) DR yes yes yes {-
‘current active file ~ © - no ..yes ‘no- -

. current socurce file I no .yes _ \no |
~current sink file .. .no. yes ‘no |
set of valid- pseudo-names ° - mo. yes . no l
~.for each tape - using labels? yes - yes . yes e
for each tape - forpat-+ T yes ..yes- yes [
‘current position of a tape - " .yes . .‘yes - yes - i
“for each tape - other info . some yes some - | -

.!.
Figure 3. ‘States of the World under MTS [21]
SOmé of the thiugs_rconmonly considered part of a -

llnkage conventlon are.

. What
s What
e What

What

e HWhat

Texit?

reg;sters contaln information ét ptocedute[entry?

are their uodes’andvvalues?

reglsterérare saved’ just after entry?

else is done at entry txne?

-

registers contain,info:nation just after

oo

procedure

92

i

e What are their modes and. values?
R \ g . . o P
e What registers are restored just before exit?

] 'Hhat else is donefat‘exit time?

" :) : .
How does one call?

&\

o\ What paraneters are passed in registérs? o
\) 4. .

\Hou are paraneters passed in lemory?

Does: the paraneter llst contaln values or %ﬂdresses?

b} »

. How ‘are optional paraneters handled? .

e What information must be -saved and restored bxdthe;

caller?
U Hou does & procedure obtain and release local storage?

e qhat\klnd ‘of-save areas are maintained?

It is very difficult to succinctly cuaracterizevva'

ilinkage conventiou. What 15 'possible, is “to'provide a

'fraueuork 1n whlch the;%ompl er and the progranmer 'can oof
operate to ‘the benefxt of .the programmer. ‘By means of
declaratlons of the important' states of the uorld ~at the

_ procedure call boundary, 'the conpller can check that at

;east the nodes match. The three main parts whrch the user

. must define'by hinself'are entering, calllng, and ex1ting.“

It GOuid.he‘nice_to provide a generator that could be given

some paraueters and votk in all cases, but conventions are

§0 dxverse that any generator would be full of‘ kluﬂées to

cover .the exceptxons in the more conmon conventlons. .The
~only all-purpose..va; is complete specxflcat;on; by the

prograsmer.
T - . &

-

.93

.

_ A linkage convention definition will specify:
= vhat registers contain 1nformation on entry and what mode-
of 1nformatlon, ISpecial "modes" such as ENTRY, RETURN. ~and

: PLIST wlll be allowed hery),

-

= what reglsters contain léfornation Oon GXLt and uhat mode
of infOfnation,_

- what reglsters contaln junk on exit, R S
- (;y_onisslon)'what :eglsters w;ll have.kbeen. restored on
'eilt,j o ' ' ' ' o oA
- hov}to'call,7 ‘ o TR “} ' ‘ | .
'VJf,houLto‘enten; | |
.Q.hoﬁ'to‘exit}_,g.
‘ﬂf nonutovsaVe and llnk, .
‘f”héydtoiunllnk and restore, 7 and o

- how to return a value (for a functxon (see Sectlon 3. 18)).
A once linRAge -conventions “havef been defined, each,
procedure is associated with one convention. <Clearly, IBM'S

A S . : , v
S-type-and R—type-conventions must be pre-defined so that

‘everybody can use thenm.’

‘Thejfcolpilef can'sthen ensune‘ that atvthe tine.ot a
call, all input registersv'hane,'.inn fact,d'been ’ glv nN
i;acceptable values.d It also knows which registers m gt ‘be)%f*\
stored in’ nenory {or lost) across the call, and vhich can be |
yleft alone. ‘It also _can nalntaln its knowledge of thea

current modes of registers.

In order to help the_progranner define entry, call, and

-

- 3.13 »Qggggtors-'

. exit} the comp;ler will prov1de some primitlves to glve him

sone 1nformat10n. Some_ obV1ous ones"’ are the number of

parameters expected, their types, hou nany actual paraneters:.

there are, and the mode of the result (if any) that the

[

procedure is supposed to produce. | o .

2 . i

| -
ALGOL 68 1ntroduced user deflnable operators. They ‘.

“ntroduce no addltlonal capablllltles over procedures, but

'-can enhance readablllty trelendously when used correctly.

. Therefore, PL370 _snould include ‘at . least the ALGOLFGS

- concept.

/ : ’ v
‘since operators are usually used<\\b¢ short, frequent

code Seqnences, Cit mlght be useful to,dastingulsh between

operators and procedures by nornally'generatlng in-line code

for the operators, and out-of-line code for the procedures.:

- . . . /

l{;l P N)

S

3. 14 Exception Handling -

.The programner'needs'SOle vay to oontrol wvhat happens

after. a- program interrupt or after anmn error that has been

95

by

' caught by software. He has some control,tbecause he.'checks

for some errors himself, and because he éan'easily call the

appropr;ate system routlnes to set up an’ 1nterrupt handler.

However, these global error . handlers have much overhead, are

d;fflcult to’ urlte, and are clumsy.~ h sma}l routine to

oaich a local possible'error‘is easier to write. The point

is nade relevant by the existence of a "brahoh_ on program
,lnterrupt" (BPI) feature in NTS [21] . One can'set a locai
trap for a possxble ertor “in the inmediately preceediog
instructlon. Although thlS fac111ty is not avallable in Jhe
much more prevalent OS, a user could add 1t via a globa;

handler without nuch dlfficulty - if he thought of it. . In
gt

- practice, BPI allovs 1nte111gent actizn after an fg,f“
almost every time, when a global erro e-routlne uould be

floundering = “around for an excuse. .It is, therefore,

igportant that PL370 be'fable_'to support this feature.
‘Because it -applies only to a siogle instruction, and some

PL370 primitives nay generate several, the IBMASM technique

of mentipning it after the fallible instruction won't work.

At a little higher-level, the compiler may be able,to

" generate‘better code.if it knows what the program mask will

be at run—tine. FPor instance, - there is no ‘point in

'generatlng hranch—on-overflov instructions vhen the mask

Ulll be set for overflow to generate an 1nterrupt. Some -

featpres.like-the PL/X on‘unit and the PL/I condition prefix

may be useful. The aimfisltoi connect a recovery routine

vith a range of source text and for a given class of errors.

96

It can be appended to the statement covered (as in cosoL),

vhich matches the BPI usage ‘in IBMASM closely, or 1t can he

turned ON and OFF (at conplle—tlme) like a PL/I on unit.

The second is certaxnly easier to complle, because the. class

of errors to check for 15 known before the clause is read..

FHOSt'languagés that - do FCheck for ‘subSctiptf.eprdrs

provide no method for recovery from ‘that eCror. ‘One:

ppssiblé method, meﬂtioned in the section about case
-clauses, is to provide an'FQUTﬁhblauseffor thefsubcript,
. which wouid be elaborated if the subcript(s)‘_were not

-

correct; the;>OUT clause would be_bf'the same mode as an

array element and would be the value of _the subscripted‘

“obect.

3.15.1 Introdugction - -~ . C
This section concerns the simplest -statemehts_ and

expressions out of which prdgrams- are composed. All the

ot

more ' complex control structures eventually - invoke these

~ "basic actions". - For example, in ALGOL_GO;. the basic

actions are:

97

assignment statenent,
. procedure call _
dummy. statement \ s,

99&9
In FORTRAN there are six categorles of basic actions: -

_a551gnment statement (1ncluding ASSIGN)
CALL
- CONTINUE
‘60 TO
- READ :
- WRITE

In a machine language, however, there are nany_dozens’ef
instructions, each one of which is a basic -act;on."of that

machinexlanguage. "uany fit into the categories named above,

but some don't. PL360 neatly put 531 1nstruct10ns 1nto the

first four categorles and deflned funct ;g ns as a nethod of

acessing any other sxngle 1nstruct10n. A nction calli

looks 1like a procedure call, but the fggctig_ is deflned by

a single machine lnstructlon:in an assenbler ~like format.

Another method used by PL360 is operators, the.destination

of whose results is restricted.

The terl whasic actions" ~can be interpreted ,in two
}ways. First, how can the nachlue primitives be represented
5(reguestedr in a PL370'progran; tnis-is eguivalent to asking
'hou:toadeconpile an arbitrary machine language vprogran.

Seconn, wvhat are the prlmltlve actlons ‘of PL370, those that
can be done uxthout requlrlng tke programmer to urlte more
than a sriple express;on, even if they regulre several

machine instructione?vrIt,is the first inferpretation- uhich

1 51 for assxgnment and arlthmetlc (See Table 4 in Section

4) +. BC + BAL

4

98

is taken here.

3.15.2 Representation of Individua) Instructions

o

Most _of the time, one does not care whether a source-

-

construct is translated into one. instruction or several
(aside from efficiency considerations). However, the
execute instruction has as Cits operand., exactly -1

"instruction. . This effectively makes instruction a data

type, which needs some way,of”denoting objects of that type.

One possibility'is;tO'use PL360's Asselbler-like‘functidns.o
Another is to provide an Algdl—style repreéentagion for each

operation..

| An aim of-PtB?O‘is to éccountrfor'nqst-of the - IBM 370
~iﬁs£ructions vithouﬁ resorting~£o funétidgs. Two techniﬁﬁes
uéed are better data deScfiptions and the,"op—and*becénes"
format. We Staft off with a simpie -base{ using the

following modés:

N

2

PL370 mode = PL360 mode IBMASHM type code
INT - " INTEGER 'F1
~ SHORT INT SHORT INTEGER 'H'-
REAL LONG REAL 'D¢
SHORT REAL . _REAL SRR T

' WHOLE ~ LOGICAL

99

; | - 100
o . o o ’
CHAR BYTE . 'Ce

"

.Many Qperators are easiiyvaccounted for using the basié.
pattetnsu " ah :=b "and " a gp:= b " (i.e., "a :=a gp b
"). That is, the contents of "a" are replaced by the value
of "b" or "é Qp b". \Althougﬂ,the‘tetis "INT reg", "WHOLE
reg", “CHAR regﬁ, and "SHORT INT reg" appear below, théy
nﬁst- all end up as general registers; however, in th*g\\.
sectlon 1t is assuned that a conpller can knou the cnrrent
modg"oﬁ every 4rggxster. For a'source reglster, INT will
accept INT, WHOLE, or SHORT INT. éo; a destlnatlon
register, ;hg operation'nqy change the current mode to. that
_specifiéd; -For instance: |

SHORT INT i = 2;. &

INT j = 100000; o N

rl :=.i; ¢ ¢ r1 is now SHORT.-INT

rl +:= j; ¢ rt is now INT .
;The notatlon used below is:
<AMODE reg> - a regzster whose cug}ent node 1s AHODE
"‘<AHODE men> - an AMODE object in lemory
<AMODE literal> - an AupDE‘&enotation‘
‘ <addr>'- an addféés-expressionf > . | .
- <HHOLE literal> . er |

- <HHOLE reg) + <HHOLE literal> .

o . Ny, @

' (1) copy

L <INT reg> := <INT mem> S g ""(///
LD . <REAL reg> :=: <REAL aem> -] L
LDR -~ <REAL.reg> := <REAL reg> . ' o N
LE <SHORT REAL reg> := <SHORT REAL nen) .

LER <SHORT - REAL reg> := <SHORI‘REAL.reg>'
LH <SHORT INT reg> := <SHORT INT mem>

LR
MVI
ST
STD
STE

*STH

ﬂ(2)

‘AD

ADR

AE
AER
AH
AL

ALR

;AR%

3)

SD
SDR
SE-

SER

SH
SL '
SLR
SR

MDR

MH

(5)
DD

"DDR

"DE’
DER

. HDR
- HER

T<INT reg> := <INT reg> ’5

-

<CHAR m@a> := <CHAR literhl>

<INT mem> := <INT reg>

<REAL mem> ':= <REAL reg>

<SHORT REAL mem> := <SHORT REAL reg)
<SHORT INT mem> <= <SHORT INT reg>

v

<INT reg> +:= <INT mem>
> <REAL reg> +:= <REAL mer>’
<REAL reg> +¢:= <REAL reg>
<SHORT REAL reg> +:= <SHORT REAL men>
<SHORT REAL reg> +:= <SHORT REAL reg>
<INT reg> ¢:= <SHORT INT mem>
<WHOLE reg> +:= <WHOLE mémd>
<WHOLE reg>-«+:= <WHOLE reg>
<INT reg> *:= <INT reg>
subtract . \ ~
<INT reg> =-:= <INT mem>
<REAL reg> =:= <REAL aemn>
<REAL reg> -:= <REAL reg>
<SHORT REAL reqg> =-:= <SHORT REAL nen)
<SHORT REAL reg> . -:= <SHORT REAL re@)
XINT reg> =:= <SHORT INT mead>
<WHOLE reg> -:= <WHOLE aem>
. <WHOLE reg> =~:= <WHOLE reg>
<INT reg> =-:= <INT reg>
Goan .
Bultiply
<RBAL reg> *x:= <REAL men>
<REAL reg> %:= <REAL reg> :
<INT Teg> #:=_<SHORT INT memp
S\l ' .
divide -~

<REAL reg> /:= <REAL mem>
<REAL reg> /:= <REAL regs>
'CSHORT REAL Teg> 7:= <SHORT REAL mem>

<SHORT REAL reg> /:= <SHORT REAL reg>
 <REAL reg > /:= 2 . ‘ _ ‘
. <SHORT REAL reg > / 2

[
.

4

101

(A0

b
e
2
v -

(6) and s - S
N <WHOLE reg> AND:= <WHOLE mem>
NI - <CHAR mem> AND:= <CHAR literal>

NR . <WHOLE reg> AND:= <WHOLE reg>

(7) inclusive or L B

' i \
0 ' <WHOLE reg> OR:= |<WHOLE mem>
OI. <CHAR. mem> OR:= <CHAR literal>

.OR <WHOLE reg> OR = <WHQLE reg>

i

S

(8) exclusive or

X <WHOLE reg> XOR:=' <WHOLE mem> -
XI : <CHAR mem> XOR:= <CHAR literal>
_ XR <WHOLE reg> XOR:= <WHOLE reg>
. (9) shifts
"SLA° <INT reg> SHL:= <addr>
. SLL <WHOLE reg> S§HL:= <addr>
SRA <INT reg> SHR:= <addrc>.
SRL - <WHOLE reg> SHR:= <addr>

"Note‘that AL and SL have ‘been changed. from PL360, where ' the
opératori is different ("+¥"{ and_ ﬁhe - modes INTEGER and

LOGIC%Lfare nbt'distinguished.
’ . T

Another basic pattérn is - the . monadic hopefafogl It:
_appea:é in tvo foras: | “ R

(1) a := 9p b

_‘ , (ii)v op ‘a '
vPLBSQ; uses the operator .symbols neg, abs., and neq abs.
"Anétﬁer operator which fits this paradigm . is copy~and-set-'

condition-code, or test for short. Rounding from one length

o

~of real to- a3'Shbr¢ep- one can be done by assignment, but

Algol traditidnbho#ds;thai the programmer mnmust - explicitly
ackhbwledgéAﬁfhat he is throwing awvay preéisibn, by using é
monadlc operator such as short. | It is also tempting to
-shorten (1) even further to |

(111) a _p b

~ See the ex3mple shown below for LTR.

(10) .2 ts

BAL " CALL <procedure~1dent1fler>
BALR © CALL <REF PROCMODE reg>
LCDR =~ <REAL reg> := NEG <REAL reg>
.LCER = <SHORT REAL reg> := NEG <SHORT REAL Treg>
LCR .~ ' <INT reg> := NEG . <INT reg> . . :
~ LNDR <REAL reg> := NEG_ABS <REAL reg>
LNER - <SHORT .REAL reg> := NEG_ABS <SHORT REAL reg)
LNR <INT reg> := NEG_ABS <INT reg> ,
LPDR <REAL reg> := ABS <REAL reg>
LPER <SHORT REAL reg> =. ABS <SHORT REAL reg>
LPR <INT reg> =" ABS <INT reg> ,
LRER <SHORT REAL REG> ' := SHORT <REAL REG>
LTDR <REAL reg> := TEST <REAL reg>
LTER <SHORT REAL reg> = TEST <SHORT REAL reg>
LTR <INT reg> := TEST <INT reg>

- <INT reg>. TEST:= <INT reg>

K

ThlS accounts for 67 out of 185‘ 1nstruct10ns, 1eav1ng 118:~

AP, AU, AUR, AH, AWR, AXR, BALR (non—branchlng),
BC, BCR, BCT, BCTR, BCTR(non-branching), BXH,
BXLE,: ¢, CD, CDR, CDS, CE, CER, CH, CL, CLC,
CLCL, CLI, CLM, CLR, CLRIO, CP, 'CR, CS, CVB, .
~CvD, diagnose, D, DP, DR, ED, EDMK, EX, HDV,
R10, IC, ICM, IPK, ISK, LA, LCTL, LM, LPSW, LRA,
LRDR, M, MC, ME, MER, MP, MR, MVC, MVCL, MVN,
~MVO, MVZ, MXD, MXDR, MXR, NC, 0OC, PACK, PTLB,
RDD, .RRB, SCK, SCKC, SIGP, SIO0, SIOF, SLDA,

1 ‘There a:e¢v183“decribed in (6], but I anm counting non-
branching BALR and :BCTR separately.

103

¢

~ sLpL, sP, SPT, SPX, SPM, SPKA, SRDA, SRDL, SRP,

SsK, ssM, STAP, STC, STCK, STCKC, STCM, STCTL,

STIDC, STIDP, STM, STNSM, STOSM, STPT, STPX, SU,

. . SUR, SVC, SXR, SW, SWR, TCH, TIO, TN, TR, TRT,
/ TS, UNPK, WRD, XC, 2AP - . -

3.15.3 Covering the Rest of the Instructions

There are fivé techniques for achieving . complete

Coyerage of the instruction set. These are:

(l)lInyenf new modes. -

(2) Invent ‘predefined variables = (as PL360 does for

, regiSters);

(3) Invent new operators.
(4) Invent new syhtax.‘
(5)‘Invent a clean proéedural, intéfface. ’ Thié is pretty

close tb'giVing up and using a fupction.

Most of the multiplication instructions have beén

omitted because of a problem in semantics: ' the

‘_inferpretation given to "a x:= b" by ALGOL 68'15 that the

hnltiplicand is n"aw, bﬁk these’ instructions assign to a

‘register the product of omé half of the register multiplied

by another object the saae size as the nmultiplicand.

Consider the instruction (given in IBMASM format) MR 4,7:

_ thefﬁultiplier is r?7 (as expected), but the multiplicand is

r5, ~while the product is both of r4 and r5. A more

104

realistic representation might,beﬁ
dr4 := r5.x r7
“This formw reads better than thk alternative:

dar4 x:= r?

However, it appears to have 3 Lndependent operands, when, in

 fact the second operand must be the rlght half of the first

operand. A more'conyenlent story (for the progranm uriterlr

108

iwould be ‘to have a mode PAIR ='STRUCT(1NT'even’odd), and to,f?

-y

say that "#"" can take a PAIR flISt operand and convert it

into a LONG INT, but this contradlcts the ALGOL 68 nodeL of

an 'operator, wvhich would allov thlS' subterfuge»only by

declarlng ¢.= as an OP(UNION(PAIR,LONG\INT) ,CONS INT). ,'It'“

is hard to choose between the two. forns, but readablllty is - .

7..probably nore 1nportant than wrlteablllty also, the longer'}

. form can/ ex1st Hlth 3 independent operands and regulre tuo

lnstructlons in Qeneral. e | -f ‘ '_

A sinilar ’problen "of seiantios“ existS'”for 1nteger
divide,, uhlch replaces the d1v1dend by two smaller 1ntegers

in the-place of,the larger one. The eaSLer-to—wrlte choice:

is:
/* The dividend is nicely prepared: :
"in a double register or in nenory N Yee
. <d1v1dend> DIV:= <divisor>; . o
4 ‘The mode of the <d1v1dend> is now
B STRUCT (INT remainder,quotient)
and not LONG INT } x/

The more difficult choiCe,offers some safety advantages:.

DIVIDE <dividend> BY <divisor> GIVING <tag1>,<tag2>

These <tag>s would ne,very localized; the <dividend> would

-.106-

be inaccessible under its previous <tag>;vbntfthe' renainder

and quotient flelds uould' be acceésible nnderf(tagl> and
4
<tag2>, untrl another value vas loved 1nto the variable,

3.15.4 New Modes

All of the nodes‘ptevionély presented can appear in '

both menory .and . registers. Of the modes presented belou,
. only LONG INT, LONG WHOLB, CHARS(Q), CHARS(B), LONG REAL and

any REF mode can appear in reglsters."

‘-; The 'IBN 360 and 370 serles both have dec1mal hardware 1n,

jaddltlon to‘the blnary that most procedural 1anguages stick
to. Unllke blnaryylntegers which nnst be elther 2 bytes or

'4'bytes;.decinal.integers may be°any nunber of bytes frbn‘ 1

to 16; therefore, 1t is necessary to have 16 dec1na1 modes.

“compared to 2 blnary. and LONG LONG LONG LONG LONG LONG LONG

LONG LONG LONG -LONG LONG LONG LONG LGNG DECIHAL is out of
the’ guest1on. A__more reasbnable notation is DECINAL(n),

where 1 < n <16 ‘and_n is known atvconpile?rinej

e The machine also supports another 1version of1\dgcimal“

7nnnbers more-'suited for display than arithletic; but siili
-'signed- these are sxnllarly of any size from 1 to 16 and may

be denoted ZONED(n),'Hhere 1 n < 16.

. The ALGOL 68vnode [JCHAR seems particularly "appropriate'

.on IBN harQHare, vhich is characterYOriented,' It vill be
included, but for convenience may be spelt CHARS(n). Here,

'n' may be in the range 1 £ n < 2xx24, but the operators

ix';)

glven below are deflned only for (1 S n s 256).

. A fourth node, avallable only on larger nachlneSvls LONGe

REAL (called extended prec1sion by IBH), uhlch is tvice as‘

= b1g as REAL. Qld',J,Jﬂ_ 1"”‘f;.‘:;? / j' S ‘ﬁ
.o PL370 wlll use full po;nter typlng as ln AﬂbOL 68 (see
sectlon 3.7, uhereas PL360 _uses INTEGER for addresses.
. Thus for any node AHODE, there is a mode REF ANODE, thCh is
.a fullvord poxnter to an AHODE. ‘The enreferenc1ng voperetor

is "an - the same as ln PL360.

. Slnce u and uR produce 6u blt szgned blnarq products andv

D' and DR use 6u~b1t s;gned blnary d1v1dends, we need LONG

- INT.

'0_ Slnce the tlne of‘day clock 1s an un31gned 6“ bit valuef

ue need LONG HHOLE. B

107,

>0 Varlous pleces of the hardvare QSe un51gned halfwbrdd?

‘ Antegers - SHORT HHOLE.. uany hardvare—deflned structures‘;f

contaln nunbers of unusual snzes."gThE easxest uay tof.‘

support thlS is to allow INTs and HHOLEs of arbltrary sxzes~nvp;

of ’Course. these »nust be oopled '1nto -a; standard slzed~lt’“~

variable before they can be used 1n arxthnetlc, but sone can:';'

" be conpared as 1s.> In keepxng v1th the» pattern nsed by

DECIuAL, INT(n) neans an INT n bytes 1ong, INT(O n) neans an,l~

o,

INT»_n- blts 1ong.; -HHOLE(n)u:and« HHOLE(O n) are deflned':

Sin;larly. Another necessary mode 1S BIT - one bxt; .nrrnys

of BITs can be called BITStn) or. ARRAY(n)BITS'f BYTE means

BITS(B) allgned 1n one byte.

e “ The psv and ‘other spec1al regxsters xn the nachlne can

%”?

" 3
O

s

.be _supporwed by e varlety of struFtured modes-’ these

-structures -are- described 1n detall in [”] We need the mode’

Y'PSW (- sone of 1ts sub-odes are PRO RAH HASK = BITS(Q),‘

‘PROTECTION KEY. and CC = HHOLE(O.Z)). s ORAGE KEI PREFIX,'

~and h node CPUID STRUCT(CHAR vet ion code, CHARS(B)

108

efldentlficatlon nunber, CHARS(Z) nodel num‘ec, VSHORT.;HHOLE';~

".uax mcel length). ’T,: f_ii:;::ﬁc v /_g

'ij It ‘1s posszhle to ‘el‘e? :eglster

‘ o hold just one

”‘lcharacter and to ignore the high—order three bytes.j In thlsbelﬂ

'z’case, ve uxll say that the node of the reglstet is CHAR.;

e It is possxble to have a 3-byte address ima’ uord wlth'

'fother vlnfornatzon 1n the flrst byte.f ThlS 51nple structure?ffc“

”lycan be called "PTR UITH ...ﬂ uhere " ;f “:;s any one-byte,“'

"noae- e g. PTR WITH (CHAR letter).~, ~"fffi

'.i~‘ -Slnce fa general reglster can” hold so many dlfferent

‘l;modes, and 51nce 1t 1s often dlfflcult to know wh;ch one»fi;

(\

“cheei at any glven tlne, it is useful to have a name for the'

g :d

'lxunlon of all posslble nodes thch can’ be stored 1n a general

-rreglster.‘ Thls unlon 1s called GENRL.

. . sua gagx - modes added {; BIT._BITS(n),,BYTE,: CHARS(n),l,”

f»CPUID.; DBCIHAL(n)i‘ GENRL, INT(n), INT(O n),JEONG INT LONG

REAL, LONG HHOLE, PREFIX. PROGRAH HASK, PROTECTION KEY, PSW,;

(PTR WITH ..., REF ceer STORAGE xE!,'vsrern;uasx,' nHoLE(n),.7

~HHOLE(0 n) and ZONED(n).

’

These nev modes cover the follovlng 23 1nstruct10ns ftou the_

long . list glven above"'

AP <DECINAL () len) +:1=' CDECINAL(n) memd> - ,
AXR <LONG ‘REAL reg> " +:= <LONG REAL reg>
S .

CVB
CVD
Ic
LA

LRDR

MNP
NVC
MXR
'NC
ocC
'PACK
SLDA

SLDL .
SRDA
-~ SRDL
. sp

STC
“SXR

UNPK.

XC.
 ZAP.

7-:Thls accounts for 90 out of 185 1nstruct10ns,

i
d,'

<INT reg> 2= <DECIHAL(B) iem>
- <DECIMAL(8) mem> := <INT reg>
<CHAR reg> .:= <CHAR mem> ..
_<REF. AHODE reg) := @ (AMODE mem>
- <REAL, reg) = SHORT <LONG REAL reg>
<DECIuAL(u) Ren> x:= ~<DECIMAL (n) men)
. <CHARS (n) mem> := <CHARS(n) ,mem>
- <LONG REAL reg> x <LONG REAL reg> .
. <CHARS (n) mem> - AN <QHARS(n) nemn>
KCHARS (n) lgn) OR <CHABRS(n) mem>
- <DECIMAL (m) men> <ZONED (n) nem> -
<LONG INT reg> SHL:= <addr> :
. <LONG WHOLE reg> SHL:= . <addr>
~<LONG INT reg> SHR:= <addr> -
<LONG WHOLE reg> . SHR:= <addr> :
N <DBCIHAL(m) mem) s <DECIHAL(n) mem>
. . <CHAR mem> - := <CHAR reg>
‘(LONG REAL reg) -~3= < <LONG REAL teg)
<Z0NED (m) mem> ' :=. <DECIMAL(n): mem>
<CHARS (n) '‘mem> - XOR:= <CHARS (n) nea>
: <DBCIHAL(m)»men>" f=; <DECIHAL(n) memd>

s a8 23 0
L]

AU, AUR, AW, AWR, BALR (non-branching) , BC, BCR,

BCT, BCTR, BCTR(non-~branching), BXH, BXLE, C,

' €D, FDR, cns. CE, CER, CH, CL, CLC, CLCL, CLI,
CLM, ' CLR, CLRIO,. ‘CP, CR, CS, diagnose, D, DP,
_DR. ‘ED, EDHNK, EX, HDV, HIO, ICM, IPK, ISK, LCTL,
-,Ln.‘LPss, LRA,'M, MC, ME, MER, MR, MVCL, MVN, .
-MVO, . MVZ,’ uxn. uxna, PTLB, BRDD, RRB, SCK, SCKC, . ..
"siep, .SI0, sxor, SPT, SPX, -SPM, SPKA, SRP, SSK,
SSM, STAP; - STCK, STCKC, STCM, STCTL, STIDC,
STIDP, STM, STNSK, STOSM, STPT, STPX, . SU, SUR,

o svc, SW, swn, TCH, TIO, T, TR,’TBT,_TS, WRD

' 3.15.5 New .s.ggf.ugg u.;m.-

L
.

APS#} psw /x the current psv */
'LONG WHOLE clock; /% the time of day Qlock /"

- LONG HﬁOLE< 61§ck .co;parator,; Ve »what the clock

conparéd ﬁith‘¢/ S ﬁ}‘::f' S

leaving 95:

109

is

110
e LONG INT cgu timér /& anfaccurate'interVal timer to
b ’ : . :
measure Cpu usage #/
e CPUID cpu id
‘e SHORT INT cpu'address
. VPREFIX“préfix" | |
. fiélds ‘of psw in¢lude:VBYTE systé; maSk,vPROTECTiON;KEY
protectlon key, ’PROG&AﬁvﬁASK p:og:am mask, CC conditién
 code, PTR instluction address ’f', | R o o -

OQ"aﬁ'IBu360, BALR'proﬁﬁ#és thé_rightAhan OF psi; buﬁ
on &n IBu370, it’broduces Hhat uoﬁld be the right haif.‘bF
p$w} lf the machlne were in basic. control mode (node(psw)'= :
BCPSH) '

.

, Having these objects covers the folloulng 15 1nstructxons.

IPK : r2 := protection key OF psSw
LPSW psv 3= <PSW mem> e
SCK . clock := <LONG. WHOLE mem>
- 8CKC . clock:-comparator := <LONG WHOLE men>
SPKA protection key OF psw := <addr>
1. | - program mask OF psy := <PROGRAH uASK reg)
SPT - . 'cpu timer := <LONG INT mem> : ,
- SPX . prefix := <PREFIX menm> ‘ :

- SSM . ‘'system mask OF psw := <BYTE mem) o e
"~ STAP. - <SHORT INT mem> := cpu address - : '
- STCK . <LONG - WHOLE mem> := clock ’

STCKC <LONG WHOLE mem> := clock comparator
STIDP - €<CPUID memd> := cpu id

STPT. - <LONG INT mem> := cpu’ timer:

-STPX _ <PREFIX nem> := preflx_"'

This accounts fo;-los out of‘165‘inStrﬁcpions, leaving. 80:

AU, AUR, AW, AWR, BALR (non-branching), BC, BCR, -
. .BCT, BCTE, BCTR(non—branchlng), BXH, BXLE, C,
. ' CcD, CDR, 'CDS, CE, CER, CH, CL, CLC, CLCL, CLI,
© ' CLM, CLR, CLRIO, CP, CR, CS, <diagnose, .D, . DP,

‘DR, ~ ED, EDMK, EX, HDV, HIO, ICM, ISK, LCTL, LN,

"~ LRA, M, MC, MR, MVCL, MVN, MVO, MVZ, MXD, . MXDR,
PTLB, RDD, RRB, SIGP, SIO, SIOF, SRP, SSK, STCHN,
STCTL, STIDC, STM, STNSM, STOSM, SU, SUR,.SVC,
SW, SWR, TCH, TIO, TM, TR, TRT, TS, WRD

3.15.6 New Operators

Althoungh not very attractive, no : preferable
alternatives have been found to PL360's use of "“++" for

unnormalized add and "-~-" for unnormalized subtract. EDIT

is ba51cally a move with modification, so "EDIT:= is

suggested. _ The remaining multiply instructions are'included
‘with the proviso that tho'mode'is INSTRUCTION only if the
second operand 'is the correct (second for 1nteger, first for

» real) half of the flrst operand.

ALGOLGBC[S] uses :=:= (”is‘replaced by"y for.a variety

" of assignments where the value of (a :=:= b) is the

~

original valué- of a, rather than its new value. This is

also used in an op-and-is-replaced by format; for ‘éxalple;

‘_the' value of {d :=4; a +:2=:= 3) is 4. These operators
can. express 19 more machine instructions. |

~ AU <SHORT BEAL reg> ++¢:= <SHORT REAL mem>

AOR - <SHORT BEAL reg>. +4:= <SHORT REAL reg)
AW . <REAL reg> ++:= <REAL mem>
AWR ° <REAL reg> ++:= <REAL reg> ‘
BCTR (non-branching) = == <INT reg> =-:= 1
- ED ' <CHARS (n) nem) "~ EDIT:= ’<DECIHAL(m) mem)
_EX © <GENRL reg> EXEC XINSTRUCTION menm>
- - . EXEC <INSTRUCTION mem> (==>r0)
L "<LONG INT reg> := <INT reg> * <INT nem>
ME - <REAL reg> :=
: o T <SHORT REAL reg> * <SHORT REAL mem) ?
MER - <REAL reg> := ’

. <SHORT REAL reg> & <SHORT REAL reg> ,
" MXD <LONG REAL reg> " "<REAL reg> % <REAL nem> .

MXDR <LONG REAL reg> := <REAL reg> % <REAL reg>
MR : <LONG INT reg> := <INT reg> x <INT reg> ‘
STNSH <BYTE mem> := system mask OF psu
: ' AND:=:=. <BYTE literal>
- STOSHM . <BYTE mem> := sSystem mask OF psv

. OR:=: ‘<BYTE literal>
SU . <SHORT -REAL reg> =-:= <SHORT REAL rend
SUR <SHORT REAL reg> --:= <SHORT REAL reg>

1

SHW <BEAL reg> --:= <REAL amen>
. SWR . <REAL req> --:= <REAL reg>

This eccounts for 124 out of 185 imstructions, leaving 61:

‘BALR - (non-branching), BC, BCR, .BCT, BCTR, BXH,

 BXLE, C, cb, CDR, CDS, CE, CER, CH, CL, CLC,
cLcL, cLI, CLM, CLR, CLRIO, CP, CR, Cs,

" diagnose, D, DP, DR, EDMK, HDV, HIO, ICM, ISK,
LCTL, LM, LRA, MC, MVCL, MVN, MVO, NVZ, PTLB,
BRDD, RRB, SIGP, SIO, SIOF, SRP, SSK, STCH,
STCTL, STIDC, STM, SVC, TCH, TIO, TM, TR, TRT,
TS, WRD | ' : .

.'~3 15.7 New’51ntax

Let the mode- 'LABEL = ‘REF INSTRUCTION. See section 3.2

Afor‘a descrlptlon of masks;* The reasonlng “behind the
- choices for BCT,/"X@E, ‘and BXH is presented in subsectlon 8
fbeloﬁ.i Several .operatxons‘ usé only - part of a general

. o L 3 et as o es
‘reglster.r' Fo: these cases, we need .some .way of indicating

the desxred part of"it, a- ' a subsctipt. © The
~follou1ng notatlon is proposed. o

_<reg1ste:>,.” / <bit> <bit> <bit> <b1t> a
esg. 1. /1011, : _

An alternate’notatlon 1s,der1ved from'the ALGOL 68eopérator
>vg1§!;' In thls notatlon the éxpre551on dbove would . appear
for example.» |

(1-31“)'VELEH_ r1

‘This could ‘act as a source, destination, or comparand.

For referencing ' several registers in a row, ellipsis

112

- notation is convenient. One could also cohside; that

mathematics uses ellipsis where ALGOL uses TO, and allow TO

 here also. E.g.:

(rl,...‘,‘rS) ! e

(r1l,e00.,r12) wvhat ve usually save

(1 TO r5) ‘ , - '

(14 To £12) . ' n -

_ ‘ o ‘4/”“% _ :
Also, one could use one of the array-style notations

proposed in the subsection Register Names (3.8.3).

Several operators teally have more than two operands.
“We need a way of'haiing.passing 3‘o§ more opbrandsi'to an
instruction. One way isl;b use the IBNASM notation:

<operand> <09erq£or> <operana>,<operand>;;..

An improvement would be to allow-an operator to haye.mbre'

than one word in it, effectively replacing some of the

cdn(gs by words. 17 more iastructions are presented:

BC * GO TO <LABEL literal> IF <mask>

BCR GO TO <LABEL reg> IF <mask>

BCT GO TO <LABEL literal> IF COUNT <INT reg)
BCTR . GO TO <LABEL reg> IF "COUNT <INT reg>
BXH GO TO - <LABEL literal> IF <INT teg>
L XGT <STRUCT (INT,INT) reg> =

~ BXLE GO ‘TO - <LABEL literal> IF <INT reg>

S . XLE <STBUCT (INT,INT) reg>

D DIVIDE <LONG INT reg> BY <INT mem>
o ' : -PRODUCING -<tag>,<tag>

DP - DIVIDE <DECIuAL(n) men>

BY <DECIMAL¢n) mem>
L . - PRODUCING .<tag>,<tag> . -
DR ' DIVIDE - <LONG INT reg> BY. <INT reg>

o PRODUCING . <tag>,<tag>

EDMK <CHARS (n) amem> EDIT:= <DBCIHAL(I) Ien> MARK r1
- . ICH . <GENBL reg> .. / <4-b1ts> / A-—f '
o , <CHARS() mem> : , :
. LCTL . (<control-reg>,...,<{control-r eg>) = o
B <ARRAY.() RHOLE Rea> . ' '
" LM (<general-reg>,.-.,<genera1-reg>) :=

: <ARBAY () WHOLE mem>
- regs(m:n) := <ARRAY(‘)WHOLE nen>

. SRP ' <DECIMAL (n) mem> . SHIFT:= <addr>

113

1

ROUND <DECIMAL (1) literald

STCHN <CHARS() mem> == . .
Co .<GENRL reg> . / <4-bitsd> /
STCTL <ARRA!() WHOLE nenmn> ==
S (<controlvreg>,...,<control—reg>)
STM <ARRAY () WHOLE mem> :=

((general—reg),...,<genera1-reg>)
This accounts for 1u1rout of 185 instructions, leaving 44:
BALR (non-branching), C, CbD, CDR, CDS, CE, CER,
' GH, CL, CLC, CLCL, CLI1, CLA, CLR, CLRIO, CP, CR,
Ccs, diagnose, HDV, HiO, ISK, LRA, MC, MVCL, MVN,

MVO, MVZ, PTLB, RDD, RRB, SIGP, SIO, SIOF, SSsK,
sTIDC, Sv¢, TCH, TiO, TM, TR, TRT, TS, WRD

3.15.8 new.gggcedgresﬂ' N)

' various forms have been. devised. for the remaining

_insxructions;'but‘the,;esniﬁ/is' eitherf_a.’prQCedure or a

COBOL-style ‘keYHord- nolation (operators);fyln implementor.

could 8v01d a decxsxon altogether by ,ch0051ng ‘the keyuord_

notatlon9 and provxdlng the procedures as. standard Racros.

For many 1nstruct10ns, there 1s llttle to choose between thei'

¥

tvo forms., For others, a procedural notatlon is. perhaps the

most natural of 11 ’ the . possxblllties. A "spec;al -

cOnSideration i for the conpare lnstructlons. .People are

114

‘used to seelng lnflx conparlson operators;/pn4<ﬁhese are allﬂﬁ;

boolean, hereas the conpare operators here turn ‘one of
P Ot

*four 90551ble' values. : For a non'boolean result,'a preflx'”

L

notatlon . preferred.- Four | alternat1Ves : have | been

cons1dered for conpare operators. but for brevxty, they are

only presented for "C"; for the rest orily one alternative is

shown.

Assume the following:

MODE STRING = STRUCT(PTR address, .

PTR WITH (CHAR pad) len');

MODE LINK = PTR WITH (WHOLE(0,2) ilc, cc,
- PROGRAM_MASK progranm
mask) 3 ‘ :
PROC LINK getllnk'
PROC (ADDR) PROTECTION_ KEY protection key;
PROC (ADDR) STORAGE_KEY storage key;

Here is ‘a list of'the remaining instructidns:

BALR <WHOLE reg> := getlink

C compare (<INT reg> , <INT mem>)
- COMPARE <INT reg> , <INT men>
- <INT reg> CF <INT mem>

- COMP <INT reg> , <INT nmem>

CD " compare (<REAL reg> , <REAL menm>)
CDR compare (<REAL reg> , <REAL reg>)

CDS test and update (<LONG WHOLE mem> control word,
<LONG WHOLE reg> new value, _

_ : <LONG WHOLE reg> old value)

CE. .~ compare

(<SHORT REAL reg> , <SHORT REAL mem>)
CER = compare (<SHORT REAL reg> ,. <SHORT REAL reg>)
CH compare (<INT reg> , <SHORT INT mem>) -
- CL . compare (<WHOLE reg> ,, <WHOLE mem>)
CLC : . compare (<CHARS(m) nen% <CHARS (n) nen))
CLCL compare { <STRING reg> , <STRING reg>). :
CLCL ~compare ($<STRING reg> , $<STRING reg>)
CLI compare. (<CHAR 'mem> , <CHAR literal>).
- compare (<CHAR literal> , <CHAR mem>)
cLM . ‘;onpare (<GENRL rég) /<4~bits>/ , <CHARS(m) mem> y
CLR compare (<WHOLE reg> , <HHOLE reg>)
CLRIO. clear io (<addr>)
- ' CLEAR IO <addr> '
~CP compare (<DECIHNAL (m) mem> , <DECIuAL(n) nem))
+ CR. compare (<INT reg> , <INT reg>) .
Cs test and update (<HHOLE nen> control word,

' <HHOLEVreg> nev value,
. - <WHOLE reg> o0ld valué’)
diagnose . ~diagnose (<bitstring>)

HDV ' halt device (<addr>)
- , © HALT *DBEVICE ' <addr>
HIO =~ halt io (<addr>)
- : . BALT 10 <addr> _
- ISK - <STORAGE KEY reg> := o
: stotage key (<REF AHODE reg>)

" LRA - <REF AMODE reg> := real address (<AMODE reg>)

11

" MC

MVCL

MYN

MVO

MVZ

PTLB

KDD

RRB .

SIGP
SSK

STIDC
SvC

TCH

TIO

TS
WRD

El

116

<REALREF AMODE reg> = @ <AHODE reg>

<REALREF AMODE reg> “:= - 3@ <AMODE reg>

monitor (<WHOLE (O, 4) literal> , <addr>)

MONITOR = CLASS <HHOLE(O 4) literal> CODE <addr>
3<STRING reg> := $<STRING.reg>f

move (<STRING reg> , <STRING reg>))
move numerics (- <DECIMAL(n) men>, <DECIHAL(n) mem>)

numéﬁlcs OF <DECIMAL(n) mea> ==
' 5

numerics OF <DECIHAL(n) memn>

‘move with offset. (<DECIMAL(m) mem>,<CHARS(n) iem>).

dlglts OF <DECIMAL(m) mem> := <{CHARS(n) mem>
move zones <DECIHAL(n) mem) s <DECINAL (n) men>)‘

zones OF <DECIMAL(n) mem> :=

zones OF. <DECIHAL(n) nem>
purge tlb ,

PURGE tlb ~ :
read direct (<CHAR mem) +; <CHAR literal>) -

" READ- <CHAR mem> SIGNAL <CHAR literal>

reset reference bit -{ <addr>)

- RESET reference bit (<addr>)
reference bit (<addr>-) := PALSE

SIGNAL <SHORT INT reg> , <addr> STATUS <HHOLE reg>
signal (<SHORT INT reg> , <addr> , <WHOLE reg>)
storage key (<REF AMODE reg>) =

STORAGE_KEY reg> - ‘

- get. éhannel id { <addr>)

supervisor (<WHOLE (1) literald>)
SVC <WHOLE (1) literal>

.test channel (<addr>)

TEST CHANNEL <addr>

‘test io (<addr>)

TEST I0 <addr> -

test (<BITS(8) mem> , <BITS(8) literald>)

TM <BITS(8) nmeam> , <BITS (8) literal>

test .(<BITS(8) men> & <BITS(8) literald>)
TRANSLATE - *<CHARS (n) mem> BY <CHARS(256) mem>
TRANSLATE <CHARS(n) mem> WITH <CHARS (256) mem>
TRANSLATE <CHARS(n) mem> USING <CHARS (256) nen>

TRANSLATE <CHARS(n) mem> VIA <CHARS(256) men>
“translate (<CHARS(n) mem> , <CHARS(256) mem>)

SCAN <CHARS (n) mem> USING <CHARS(256) mem>
. MARK r1, r2

. SCAN - <CHARS (a) mem> WITH = <CHARS (256) mem>

MARK 1, r2

SCAN <CHARS (n) mem> VIA <CHARS(256) mem>

- MARK rl1, r2

SCAN <CHARS (n) mem> BY <CHARS(256) mem>

" MARK Tt1, r2

trt (<CHARS(n) mem> , <CHARS (256) mem>)

test ‘'and set (<BYTE mem>)
write direct (<CHAR mem> , <BYTE literal>)
WRITE <CHAR mem> SIGNAL <BYTE literal>

3.15.9 Support for BCT, BXLE, BXH

There are two basic approaches which one could take to
these instructions. One could enumerate which special cases

of ‘a general form are implemeﬁtable using these more

_efficient' instruciions; then the programmer who cared would

¥

use these foras and the conpller would look hard for then.
Or, one could de51gn special forms so that both programmer

and compller could easily recognize the intended. use of

’

these instructions.
Example:

general form: ,

IF - <boolean clause> THEN <clause> FI
special case: : ' : .
<boolean clause> ::= <var in genrl reg> -:= 1

<clause> =--~> GO TO <label> '
special code: :
BCT <genrl reg>, <label> n) T

;

Example

geueral form: '
‘ [FOR <tag>] [FROH <int-upit1>]
[BY <int-unit2>] [TO <int un1t3>]
DO <clause> 0D
special form: o
- compiler has a working register ‘available
OR' <tag> is. a general reglster
- <int unit2> is omitted or is -1 -
- <int unit3> 1s 1
special code:
<reg> := <int aniti1>;
1: <clause>;
BCT (<reg>,1)

special foram: .
compller has an available general register

pair + another general register -OR

((FROM part gives a register) OR (FOR parct:
gives a register) AND compiler " has &
general reglster pair) OR

((BY part gives an even general register)
AND (To part gives the matching odd
register) AND (conpller has another general

117

register)) OR .
etc. ' , \
special code: : ‘ '
! <int unlt1>; . RS
© <dnt unit2>; '
<ipt unit3>-1;
t: BXH((reg),f),
<{clause>;
GO TO t;
f: -—-

A compromise example is the use of a special procedure,

such as a PROC(GENRLBEG)BOOL decr to zZero.

Proposal - -

A special form to support these three operations via

conditidns for IF statements vas developed. Thié means that
the programmer must baild hls own loops with 1n1t1allzat10n
parts and jumps.

- (a) <boolean primary> ;:=‘COUﬁT {general registef usage>
This operatoradecremen£s the register and returns true if it

Ad

is non-zero.

- {b) <boolean,,primary> 1:= <general' register usage> XGT
<general register usage>
This operator adds the second general register to the first

deneral register. It then returnS~true if the value of the

firét general reglster is - now greater than the value of the

_second general register (the value of the second general

register+1 if the second general register is even).
(c) <boolean - primary> ::= <general reglster usage) XLE

‘<general register usage>

This .operator adds the second general register to the first

118

general ;egistef. At then_returnsytru?'if the value of the

first general register is now less - than or equal to the
value -of the second general__regisier (Ehe.value of the

/

second generalbregister¥1 if the second genéral register is
evéh). |
These three boolean‘ prinaries can be used anyﬁhere_ a
relation couid be used; e.qg.

IF COUNT £1 AND x < 7 THEN ... |

rd := n+1; . =

WHILE CQUNT rt1 DO ... 0D;

Since, unlike a brelation, the .negatioh of_ 'theée

" primaries cannot be tesiéd, some uses (e.g. fhe first above)

may involve conditioﬁally skipping a jump and may be no more

efficient than a more straightforwvard usage.

-

3.16 Declarations

In ‘Algol 68 one nmust read to the end of a range in’

order to begin to parse it; this necessitates another pass.

"which - inéreases.compilation costs. This cost income can be
elimihated‘by ;equiring everything: to .be declared ﬁefdre
use. Mutual recursion at the sane level‘(e,g. - procs or
‘modes calling each other) and forward brancheé before any
references can be pérmifted by a halffdécla;ation.before aﬁy

references to the other are made. For example:

119

e ' ‘ 120

ALLOW PROC (INT) REAL p , LABEL 1 ;
PROC ¢ = (INT x) REAL :)
" IF x > 0 THEN 7.0 ELSE. p(x+1) FI;
PROC p = (INT x) REAL :

, IF x > 0 THEN 6.

'GOTO 1 ;

:1: SKIP

0 BLSE gq(x+2) FI;.

uauyviIALéOL 68 ‘ilpleuentore ‘have. ;argued against-
*reservxng all hbde'nanes in any reserﬁed void— sehene fbt.
that language because -0f the asymmetrlc nature of a: workable
schene.o A tag x in an outer block is shlelded by a mode X
1n an 1nner hlock, but not v1ce-vérsa. ~ This asymnetry is
) removed,n and parsing simplified, if all mode indtcanfs and
opera€or‘iadicants_'are ‘fixed befote;-object ,declarations

.+ begin.

There are two major styles for declaratlons. In-ALGOL
and PORTRAN, the type or mode is mentloned, and then a 1list
of Ldentlflers may ﬁollow.' ,In IBMASH, COBOL ,and PL/I‘
I]vithout factoring) , eacu identifier ie presented sepafately
and then its attributes are given. - This second for- is more
ﬁverboee, but,the identifiers are‘ more ‘visible. ﬁi alsoi
allous »_several attributes to »appear without 'hlnderlng
readability; whereas the flrst schene suffers . if the type
name 1is moxe'Athan one word. I prefer PL/I's style of
dediarations, but did not use them because changing the
style - of ‘declaration uouid be a very ‘large break from

'ALGOL 68 compared to the benefits..

Pascal introduced subranges of a type as'a new type.

Ry

The reasoniang behind‘ thlS is that an xnteger varlable may,

\ B \

Possess any'integer. value, »but' uany integer Values',are-;
' snpposed. to possess values only in . a liﬁited subset of the.

possxble values.' Rellabxlrty is enhanced 1f ‘the progrannere

s

121

can be sure that hlS varlables do possess values only ulthlnf”’

_themr 1ntended ranges. ror--exanple, a varlable 'hourly

salary' mlght be restrxcted to the range "(m1n1hun uage e

'rZSOO)' Considering Habermann's cr1t1c1s.[16] and Lecarme’

'and Desjardln's response[22], it is clear that the» subrange

is net really a 'neu' type,b'bnt_ rather a request for an

automatlc range check whenever necessary. This check,can be
reguested in teras of a node sufflx. It can be allowed both
ln a ‘mode def1n1t10n and - 1n a varlable declaratlon. _E;ga:

MODE DIGIT IS INT RANGE (0O: 9) o
INT RANGE(2,3, 11, 13 17,23,29) snall.prime

s!Smalllprlne' w111 be a very expen51Ve object to ass1gn to.

- The range SfolX’lS glveniuxth the vord "RANGE" rather‘ that‘

- being simply appendednto the nodev(efé;f INT (0:9)) because
'fparentheses-arter'mode-indicants,are'already’nsed.for length

.modifiers.

objects stored at fixed offsets in5the nachine,:for exampie,*'

the timer at >location‘ 80. This can be done by use of
register 0 as a base register;"E.g.ﬁ

'RECORD lowmem (. ‘ 4
£ ... stuff for flrst 80 bytes AR £ .
INT timer, . R
£ ... Dhore declaratlons ¢
- ‘)i
BASE lowmem ON rO0;
o

It would be useful to have some vay of describing °

qARY'and SUE allow location,modifiers oe‘ ehe declaration.
The MARY declaration has the farm: | |
 INT timer A'r.»aov; |
| ‘%1

For modeﬁ' where packing is a. concern, this must be

windieaﬁed. ih the . mode. vPrdgramher—defined types- v1ll

usually . have less then 257 dlfferent values and Hlll fit 1n“
‘a singlewbyte, But on some_mnchlnes, objects 1n\;fullwords‘

~ can _bev,nanipulaied faster than objects in single bytes..

There must'be some default, either packed or expanded. I
;believe”_fhe beet' defau1twis;expended_juSt”eeough.for fast
loading. BOOLs-‘will‘ normaliy .be ,stored . one :pe: byte,
because‘ bfte addre551ng is easier: thaelb;t eddfeésihg.

Progranmer-deflned types can be stored in »a"halfwotd, vthe
smallest 'unltb whlch ‘can be loaded‘lnto‘a registe: in one
inetructibn;.»ﬂegisters are a.cdnsideration’beeeuse.one may

increment or decrement a variable of a programmer-defined

type. These variables can also be stored>in packed decimal .

format, using oneubyﬁe»if,theze,afe 10 values or less.

/

A pregranmer may, wish to pack an object. more oOr less

tightly than the default. He should be able to indicate the

size of the aree of’ nemoryv in whlch an object»euill_ be
Stored} and uhere ln that area 1t Hlll be stored. B.g.:

BOOL IN HORD - ¢ in fullvord-
- BOOL "RJUST IN BYTE ¢ last bit in a byte‘
BOOL . LJUST IN' HHORD . £-in halfvord
MODE C = colour; IN HWORD
MODE YR = IEAR EXCESS —1900 v

g

A full procedure declaratlon repeats nuch 1nformat10n.,e

(
0

122

&

?‘

This is hecause the full mode appears on the 1eft and the
",mode of each paraneter appears on the rlght. ALGOL 68 makes

a spec1a1 case to shorten procedure declarat1ons. One may

abbreviate: : L N
PROC (<arg mode. 1>,...,<arg mode. n>)<resmode>
<tag> = (<arg mode.1> <arg id.1>, ...,
. <arg.idn> ') <resmode> :
_ <routine body) C '
CORP

tors

PROC <tag> = |
(<arg mode. 1> <arg id. 1>, ceee
<arg idn>) <resnode> :
<rout1ne body>
cbrp-

This assunes that the mode of the actual procedure value is

,'correct. Another abbreV1at10h 1s borrowed from HARY.

. coNs <node> <tagd> = <value>

may be'abbrevxated to

<mode> <tag> =’ (value)

/ 3

,vhlch 1s dlstlngulshed from

<mode> <tag> :=, <value>

uhlch makes a varlable. This’ abbrevlatlon that a m1551ng or

7

*,eextra-”;"- may . be undetected, but the perturbed source

program is very close to_the intended one. ' This serves to

reddce the clutter in a'prOgram.

123

3-17 Expressions

N}

Having determined uhatfthe basic actions are, ahd how

to conbine units into clauses, it remains to £ill im the

'definiﬁion of a unit. Although variations can be made thére
are two fundamentally diffe¥ent possibilitgs:

(a). Any"ALGOL.68 _expression (within reéson) uiil be
accepted. This'implies ad expression has ‘simpilar semantics

to the same expression in ALGOL 68, that expressions are

‘evaluated in the same. order (sometimés 1eft+to-right and

sometimes right-to-left), and that there is an operator

priority mechanisa. This ' means that the/ compiler is

prepared to generate many temporary variables.

(b) Only the same kinds of expressions that PL360 accepts
| ' | ' \

vill be accepted. This aeans:
'-__thé left hand side of an'expression is a ﬁéry simple
expression. J | |

- No exprégsion uses a register not mentiéned. This néans
that.unléss‘the,‘maChine can evéluate the expression in
memory;(the"deStinatiop_ is a mégister,in which it can be
_evaluated(. | -

- no brackets —‘,strict 1eft-tq;right evaiuatioﬁv “of
operafors,' | | |

LY

This chbice‘ is fery impértani. It determines'uhether
‘PL370 iéva,high-level langu&ge or ‘a 16v¥le§el- languaqe. - I
have ichosen‘(aL becauée I believe it will make PL370 A more
USefui ignguage and a mofeA convenient language. It also

N
o

124

makes it a more expensjye language to compile, because the

compiler will be doing the register management work that the.

programmer does in PL360 and Assémhler;

The proviso "within reason" must be elaborated. I want

to keep out of . the language those features nhiéh_ would

prohibit one-pass compilation. Tﬁeréforé, while a sourCe-_
expression maj Be cbmplex, ‘a destination—expressibn”is_.
seﬁerely restrictgd. it laytnot be‘cohditiohal or involve
any operatoré except that one may ‘indicate an éddreés

expressibn by the monadic dereferencing operator and follow

thm&:by a complex expression. Othervise;_a destination is a
Varigble,v pOssibly includin§ selectors or subscribts.

Without this restriction is would be difficult for the

compiler to determine when to p:bduce ‘values and when to .

producekaddresses (vithout seeing the ":=").

A second proviso is that ‘if a PL370 assignméntv

k]

statemeﬂi.is simple enough to be'acceptablé under (b), then

the .code produced must be as good as it uduld'havé_beehAif

(b) had been chosen. Example: .
LB a

source - ‘basic actions

£l := 2 + r1 tempreg := r2;
o : tempreg +:= r1l;
rt := tempreg.

r1 .:= 12 + £3 1

= r2;
' r1>+:

N

- In ALGOL 68, a .function call may appear in an

. expression. This 'may happén in PL370 also, provided that -

125

"function" is properly defined. Languages with a single
linkage 'COnventiom usually ‘include . functions, .but those

vithout, don't. The problem is to locate the value - of a

‘functiom; All expressioms in proéramning' languages are -

=31ngle-valued Thls means that ‘if a procedure returns aore

than one value and it is used as a functlon, one value must

126

be msed and one 1gnored, or the'tuo combined fby some rule -

L

“into a '_t : « In order to avoid comfusion; and because

‘addlng functlons lS onlyjto make programs more conc1se,’ not
to ;ncrease power, only 51ngle—valued procedures may be
“functioms;' \ “

definition : A user;uritten funct;on is a procedmre which
‘has eiactly one~.resmlt.v This mey“ be either an OUTPUT
-.reglster or a RESULT paraneter in memory.

ThlS deflnltlon allous the user to urlte functions. u51ng‘any
_linkage convent;oni(Unfortqnately,_this works in .a non-
intuifive"mamnerlfqusetyme iinkage: fhosebprocedures vhich

return‘a.result may'nOt'be functions, uhile.PROC (...)VOID's

.can. This is because these _procedures always 'return a .

return code in addltlon to any value.

3.18 Conpilebtimg Actions

3.18.1 Varieties of Compjle-time Actions

——

'In many cases, when a compromise is needed betveen
1 . . , .

high—level'and lov-level languages, the fechnigue used to
find a mid-level alternative is to parameterize some hiéher-
level construct (e.g. ARRAYTYPE). But other coﬁstructs
 .(e.g. ﬁNfRi ségueﬁcé) cagnotf be built that ' way without
undue loss of freedom - ‘the user must be'givén'éonpléte

controi»ovér that phase of the semantics. Thus, PL370

vithout some sort of macros is unthinkable. But what

preprocessing‘s@ould be’availablg?' Consider the folloviné:
- straiéht text substitution without parameters.(like XPL,C)
- stfaight text substitution yith parameters (propéged for
PL360) | | |

- ﬁariables may -exist at]compile-tiné. »Text:nécros may élso
play with these vafiables (1Ike ;BuASH)

- syntax macros. As vith a text macro, it produces some

text, but'the resulting text must be source of a specified

mode." . o ‘ | ~ .
= as above, but with the'ability to type check-opérandé.
flcdmpile—time{ procedures which produce some_compileﬂgime

~

action -

- as above,'but they may prodhce sbne source text as a side

- effect

- és.above,'but the text is of some fixed'mode.x

127

Ty

'Certainly compile-time objects shoul%- exiSt. “When

eventually used they can turn intddenotation% or pieces of

/.

text. The uqﬁgfkeaeﬁghﬁmocegsor attached to a compiler has

a "compile-time language" yhichfis ‘higher"leVel than the

."ordinAry" language. 1t seesed reasonable to follow the
PL/1 model and make the conplle time language very sinilar

to the- run-tlne language, Hlth most of the extensions to

A,

128

ALGOL 68 1e£t out; As in PL/I, a complle—tlme action can be

' ihdicated as .a spécxal character prefixing the statenent;
This nust' be an otherwvise useless character.i nin . wvas
con51dered as 1t is easy to input and would never be .nissed

\
\

(the PN prlnt chaln excludes nyn) if the compller llsted the

program afterfpre—proce51ng-/-Houever, a printing character.

is safet5and'PL/I's-ﬂ%" is as good as any.

: There are 6 types of "nacros" thch nlght be provlded'
’(1) %PROC - accepts conplle-tlne 'values- and ptoduces a
complleftame result. . This Ais called 11ke a proc (as in

PL/I) .

(2) HACRO‘ - accepts source text as- argumehts ~and - has no .

oy

exPllc1t result, but the body is expanded to source code (as

IBHASH).F The lacro body Hlll be source text and wlll be

-‘delxulted by the end of the macro ‘header and a term;natlng

0

ﬁsymbol, such has HEND. . Thxs- is 'called like a proc. An:
Nalternate forn of deflnltlon is that used by FHT [2Sj;(in’

t,vhlch the macro has no formal paraleter 115t and the body :

. may ask for any actual paraneter by p051t10n numbet.
\ . o

13) %0P - llke *PROC, and operates/gn conplle tlne values.

It is called 1like an ordlnary operator,-but there is' no

-longer any.infline/out—qf~line distinction. "%OP * could be

used as. nice frill, but as few mode definitions are expected
in ‘the compiler-time program, it would be of marginal use.
Also, an operator could become truly overloaded.
E;aﬁplg-“..’: ‘Suppose "+" is defined on compile-time
integers. ansidef the source text;e |

L := m =3+ 4 |
A likely interpretation'would be:

L r,m 0
M r,3+4 ‘ i.e. N c,7

' So, %OP is more trouble than it is worth.
(4) MACRO2 - accepts ‘source‘uhichv;epreSents a requested
run-time mode. This can be sinulatede-by. HACRO‘e;Y For
exanple: ‘ ‘ : ;
'MACROZ x (INT a, REAL b) BOOL = ...
(LI) a‘. b LI) B
or . -

MACRO! x (a, b)) =~ : , .
BOOL (.o« INT (a) ';. BEAL (b) .;;.)

Thls will nake the para-eters of the regulred node (possxbly“

/

by run-tlme actlon) or ulll 1ead to an error dnrlng ordlnary

p:ocess;ng-»ﬁ"ltl_is also . much ugller 1f the macro 1s ever

expanded;ea

B

- (5) uacaoa - 51n11ar to HACRO! but' 1nstead 'of-‘proéedarai"

kstyle call the nacno header glves a pattern to natch for.

-(6) HACRO‘ - similar to MACROZ, but called llke uACRo3 .

Actually, HACRO‘ can be made a spec1a1 case of HACRO3
and MACROZ, a spec1al case of MACRO*. HACRO‘ vould be nlce,
but appears to have hldden traps, e.g. after.

' REAL Cxs (mac(x.y)

5

129

'Suppose thaf ‘mac' has genetated, so far:
- N

INT x _- .- : \V

. and then it calls 'mac2'.. What is the mode of 'x'? If the

 §xt‘ symboi~generated,is a delimiter (v, or _";"y, then 'x°'

&
Vs

7 is being tedeclared; but 4if it is arJletter, then this

7

‘ déélaration'dOes not'affect txt.
i ‘ \
. &» . . B . . - .)
" { Prpblem.. What kind of operand cam a macro take? If it is
an arbitrary symbol, then thihgs aré not too bad, although

L .
the symbol could be moderately long. But if it is arbitrary

text,\théh‘ihat-canvbé very long. This problen occurs with

all fdrﬁs.f A possiblé'Solution could be ﬁhdt as soon as it
'iS-détécxed théi this is more than a single - syﬁbdi,- the
: whﬁle, aétual paramét§r is swalloved up asvtﬁe.definition.pf
an implicitly‘défined macro, ana‘the actuai parameter of the
'dfrgina1~macro i$ a call on the new macrd.ﬂ } |

Conclusion.

[

. %PROC should be included. MACRO?® can be included as
long> as thé'patté:n matchingbispfairly simple (e.g., match

.) o " ey . . . -
for keyword and swallow parameter until next keyword)..

.

i

130

3.18.2 How To Distinquish between Compile-time ‘Acfions and

Run~-time Aétions/
7 ﬂ

\ih ~IBMASN, aSsémbly—time statements are distinguished’

by a:d;fferent\ set of operators. In .PL/I, conditionai

vactions_are triggered by a "%". In51de a %PROC, all actibns_

are compile—time and soutce code 1s put 1nto %CHARACTER
variables. But outside a %PROC, what happens° For example,
suppose a programmer wants.

IF target ‘machine is a 370

THEN some source code
‘ELSE other source code. :
FI' o R
This must be distinguished fron: S ¥

IF target machine is a 370 o
THEN some compile-time. statement

s ELSE other complle-tlme statenent

FI , o :
' There are tud possible regimes:

7(1) A'ssume run4time'uhéuever“possible. Thus, %IF, %THEN,
 %ELSE, “anad AFI uould all be marked as uould the actlons in
fhe second example; The boolean clause after a &IF,

obviously does not need marking - it must be evaluated at

compile-time.

(2) As soon as a compile-time Clausevis gatered (e,qg, %IF,

%PROC, %CASE),“ the whole clause is done.at compile-tiﬁe.

One possible compile-time statement is' a source-code
generator which - causes some text to beéome source text
(éfter pre—procéssi@g).v Several forams vere conéidered, of
‘-which the bést two are: |

(a) << text >>

131

é‘f

The text is scanned and any compile-time variables are

source.

(b) A procedure called generate'(or gen for short)

‘replaced by their values. The text then 1is processed as

vhich behaves just 'like ALGOL 68's pﬁint, except that it

writes on the "source file". This foram is more precise than

the other because the programmer presents»string denotations

which .are not modified, and symbols vhich must be compile~

time expressions. The programmer may

calso

usé all the

ALGOL 68 layout features (nevwline, nevpage, set char number,

etc.) to beautif{ his generated source text. This form also

.

macro processor.

For example:

gen ("INT r =", m % g, ";", newline,

"REAL mpg; ", newline);

 It wvas decided to use form (a)

. convenient, but to allow form (b) also,

precise, the layout features may be

introduces no new syntax.

3.19 Separate Compilation Mechanisas

The larger a system, the more

since

as it

useful,

crucial

is

and

separate -

allows the pre-processor to be used as a generalapdrpose

it is more

more-

Sit

compilation becomes. Therefore, k| systenms programhing

132

language must facilitate separate compilation. Hovever,
PL370 is trying -to clean up the interfaces in order to

reduce erors, and compilation/assembly boundaries are

dirtiest interfaces around. There is no point insisting on

all kinds of fancy mode checking if it can all be

Circnmveﬁted_- by -separate compilation. ~The only safe

compromise is to have a new linkage - editor which perforas

all the same mode checks when it matches external symbols,

and only produces a loadable program when all references

(except to system subroutines) have been resolvegd.

* There are two ways to build sYstems} bottqm4up and top-
dbun. - When bdilding bottom;up, a procedure must assume no

more enviromment than it has a right to - at most ' the

standard operating systen. It then declares all the

‘external objects it needs (except those assumed in the

- system) . ‘Such a procedufe-may in turn be declared extermal’

Yo

* o]
and ‘called by any other procedure.

s

when building top-down, a procedure marks a spot "to be

defined later". The compiler then saves the envi

known at +thdt spot and compiies a book to call t

module. A subsequent module is then compiled as if it vere

originally in that spot - nomne of the old variables it uses

need:be(redeclared. Natutally; this module "may be called

only by the ogf which left a hole for it in the first place..

This method is taken from that used by ALGOL6SC [8].

Since the a program comnunicates with the dperating

future

133

system by procedures. (via BALR or SVC), and since all
procédure calls are checked for dee nismétch; all the
operating systém proéedures‘used; must be declaréd. Since
this can "be a lot of vork, the standard environment for an
installation should have all‘theSe.pfocedures pre—deqlared.-
Thié is both easier for the programmer, -and safer, as he

cannot declare one incorrectly.

<

3.20 Capabilities Restriction

Not all features of PL370 will be equally deSirable;v

some will be ugly, unsafe, but necessary. MARY has made a

i

sharp -break between SAFE MARY and UNSAFE~HARY,_but it seenms

that anyone can use UNSAFE features.

I suggest that the normal mode of sticking to a safe

subset should be enforced by the compiler. Unsafe features
-~ ‘ e |
'should be consideréd errors unless the programmer has

labelled the whole module UNSAFE. Even: further, in a

business brganization, a manager could create .prbfiles for
his programhers “indicating whether or not they are allowed

to specify UNSAFE. -

A different method of protection is "to banish UNSAFE
features to macros written by the‘befter programmers; for a

macro, the capabilities could be attached to the library

134

135
rather than using those of the invoking module.

An obvious candidate for exclusion from the safe subset’
'is GO TO and statement labels. Another possible bxclusion

'is the LINKAGE definitiomn.

0

3.21 Support For Languages Qther Than English

| Since?readability and understanding.are primesgoals of
this project it uould be counter productlve to 1n51st on
the use of English by a person vho does not speak and ur;te
it well. Slnce it is a Canadlan product,°PL370-shou1d be"
’ blllngual - Engllsh and French Thls neans that a processor
: should be able to conmunlcate Hlth the progranmer 1n French
as well as 1t does in Engllsh. sThls could be done by'haVing
.one - blllngualv‘processor, or Aiuo: eguivalent:YUnilingualn
vvpfocessors. In the;latter”case,'QSe»offthe' other language

_uould be 1llegal. In the'former'case, the list of keywords

uould double in size to'ailou either french or English "at

s»any‘ poiot.’ The language the processor. used for 1ts»output

" could depend in some yay on,the input, or be strlctly one or
: - ' 0
the other according to an environaent dec}aration. " The
adventages' of .this method are that one can .never choose the

wrong processor; a,‘bilingQAI programmer may find it .

advantageous ' to have two sets of brackets (e.g= , IF -- THEN

~- SI -- ALORS -- PSI -- FI may show program structure more

clearly than IF -- THEN =-- IF -- THEN -- FI -- FI); and

program fragments can be nore easily combined. - The’

disadvantage is the Same .as the second advantage; those

easily written bilingual programs may be hard to read for

unilingual readers, vho_wiil be'forced‘ to learn tvwice as

many keywords in order-’to“be able to read a program.

Actually, the acceptanceA of French keywords 1is a minor

- problen; ., one can'make,é library of sfnonyn kéYuords for Any”

other 1ahgdage The real problem is to get the processor to

L .

talk back in French; this cannot be patched from the outside

unless the processor has a file containingl all possible

messages, none of which is variable, which can be,replaced~i

'by an installation,

'3.22 Use of Extra Graphic Symbols

Ektra sylbols/make}the reading of a program easier if

‘the - symbols are familiar. Although it is right hotvt;

'require.any;moreicharacters 'than'*a“APN p:iﬁtw train . will

provide, rost = languages also doj not allow any “such’

characters. However the TN and APL print trains, when
available, provide ﬁany useful symbols. Both the TN and the
APL, print trains provide "#", nn, wgn, ufe, aje, ugn, and

up e, The TN train prdvides wg¢n angd éupersgripts. The APL

136

train - provides a nultiplicatioo-symbol, a divide-syabol,
floor ahd ceiling.symbols,‘and four arrows. Thus it would
be desirable to allow as many symbols as possible. "It would

also be desirable to ensure that only printable symbols are

used; however, a compiler Cannot tell vhere the listing will .

" be’ prlpted if 1t ls sent to a flle or spool pack. In fact,
'}prlntablllty can be checkedi qnly 1f the 115t1ngv" .made
 d1rectly onto a prlnter, if . the systen‘ulll tell a user vhat
. traln_ 1s.mounted ‘and if the conpller knows about that kind
of prlnt traln (1nc1ud1ng all 1ocal 1dlosyncrac1es). ThlS

1s,obvlously veryounllkely. Thus, when extra characters are

allowed . by ‘the ,conpiler,, it. must trust the programmer to

ensure ‘that all are visible. In ny opimion, the advantages

~of".better readablllty for the careful outweigh the

~dlsadvantages of lost readablllty for the careless. There
is another dlsadvantage of using these characters- théy

limit the portablllty of a program 'too those -1nstallations

uhlchvhaye»an acceptablerprlnter.

The usual technique of "teaching" cohpilers is a
déclaration. A possible example is: '

NEW OP: #, 2, S, %, =, e.

Operators'arq easy to add: like this, proVided ﬁﬁat they nmay

not be combined into multi-symbol operators (like "<=w),

"They' méy',then be"osedr freely both dyadically and

1 This 1is not true for control characters, whose codes are

less than the code for a space. ' Control - characters are
never printable, and may be forbidden as symbols in the
language. ' . : o

137

138

///Naonédically.‘ Other'symbolslmay seem unnatural as operators,
Ceig. wn, Since Lrackets are usually in shoft supply, it
would be useful to allow the user to add pairs or brackets.
These uould be equlvalent to "(* and ww. It is also’
possible - to add letters (e.g. the hypheﬁ ") . Possible
declarations:

NEW BRACKETS: €,); {, }.
 NEW LETTERS: —.

Digits are harder becauée éach one ﬁas. sonme éemantic
meaning. Even knowing that "9"}is a digit symbol is’not
enough; should 34s = 3482 Allowing ‘x2 for x*x%2 imptofes
readabiiity (in = those rare cases when one needs

exponentiation), but ‘any more support for superscripts would

“be‘out—offplace in a lower-level language such as PL370.

e

B

CHAPTER 4

FINAL DESIGN OF THE LANGUAGE

In this chapter, the form " { x }x." means 0 or more

repetitions - of vhatever x 1is. The form " { x | b |v... .

] 4 } " means that a choice of one of x or b or ... or

d is mandatory. The form " [x] " means that x is
optional. The form " [X | b | .-. | d] " means that a
choice of one of ‘X or b Or .-. or d is\optional.

4.1 Data

4.1.1 Types and Modes

[<%

- Bach datum has a :type which '~ ‘determines the set of

IValdes it may possess. The typé'oﬁ a datum is an idealized

set. .

14

There are 7 basic types:

integer - the set of integers

L]

eal - the set of floating-point numbers
(defined by pairs of integers)

bits - uninterpreted sequences of bits

bool - { TRUE , FALSE }

139

140

— el D e

whole - the non—negative integers

instruction - single machine instructions

Types are ‘broken down into wmodes, which are nmore
spec1f1c as to representation of information and datum size.
The set of values which may be represented by an object of a
mode is a subset of the type of that object. The type of a
datum determlnes the set of operators Uthh may access it.

The basic modes are derived from the basic types as follows:

from in tege :
INT ‘ | signed 4-byte binary 1nteger
(2ts complement) |
SHORT INT signed 2-byte hinarj integer

(2's complement)

LONG INT v Signedvs—byte binary integer

. S (2's compiement) | : C/Ahq

INT(n) signed'binary integqu/«\\v/}ﬂj7

| n bytes long |
INT(O,m) - signed binary integer,

m bits long, 1<n < 70

' DECIHAL(n) ' a signed,*packedbdeciHAl number,
' n bytés long, 1 << 16
i.e. 2xn-1 digits long
. ZONED (n) . a signed, uhpaeked decimai number,

n bytes long, 1 < n < 16

i.e. n digits long

141
|

from réal

REAL signed 8-byte hexadecimal floating point
SHORT REAL signed 4-byte hexadecimal floating point .
LONG REAL ' . signed 16-byte hexadecimal floating point

from hits :
UNKNOWN (a, m) an uninterpreted object,

n bytes + m bits long

.from bool i_

BOOLEAN (t, f) one character (t for TRUE,f for FALSE)
BOOL : BOOLEAN ("T", "F") / |
‘BfT‘ _ one bit, 1 or O

from ghéracter :
CHAR j ' one character (one byte), usually EBCDIC

from whole :

_ oS) _
WHOLE | unsigned 4-byte binary integer (i.e. 2 0)
SHORT WHOLE .unsigned 2-byté binary igtegefi

BYTE ' S ~ unsigaed 1—byte'binarykinteger >

NIBBLE = | unsigned 1/2-byte binary intggér;'j.?
WHOLE (n) | . unsigned binary_integér;v L |

n bjtes long
WHOLE (0,m) unsigned binary integer,

m bits long, 1 < @ <7

DISPLAY (n) an uﬁsigned, unpacked decinal number,
‘ ’ N digits iong, 1 <n <16
DISPLAYB (n) same as DISPLAY (n), but may contain
o - leading Blahks and may have a sign

character

. from instruction :

INSTRUCTION(n) an instruction of 'n' halfwords, 1 <n < 3

'In additiom, one may define new types, and derivé

 fur£her,tybeS from old ones. The .derived types include

pointers, arrays, structures, records, afd unions.
/ _
Programper—defined Iypes '~ These are borrowed fronm

Pascal. One mentions a 1list of new identifiers, which

‘ compriSelall the valid values of that type. For example,

TYPE cblour»=v(blhe,green.red,yelloi,orange)~

‘défineSu'é: type with ekactly. 5 values. Thié‘ilplititlyv

‘defines a mode célled'COLOUR;:tother modes may be.'defined'

from a type if the size of,theidéfault.node is not suitable.

"‘Qefinitiog : finite type /A type is a finite type if it

is integer, whole, bool, or character,. or if it is a

gprbgrammeerefided'tipe or a set tjpe.

Sets - - _ Sets are also borrowed from Pascal (where they

are calléd'pouetsets){ For any fihite.typé_“ffff",’ﬁset of

142

fE£f" is a type. The possible values for a ‘'"set of ffffv -

object are the different subsets of the set of all possible

"ff£f" values. A set type is implemented by a bitstring of

as many bits as there are different val@es of the base type.
. The basic operations on sets are: addiug members, deleting

members, testiug for membéﬁship,‘unitiugﬂ and intersecting.
f .~’

N
N

Pointers Pointers are machine addresses. The user

maust specify vhat‘mode“of object is being pointed at.
There are three basic address modes. A REF pointer
will have its first byte =zero on machines with 24-bit

addressing (this allows easy comparison). A PTR pointer is

‘the last three bytes of a word, allowing any value in tyﬁgﬁ -

- first byte. A SHORT REF pointer is a halfword.

.

Arrays o akray ls a céa guous sequence of objects

" all of'ihe sahe node.‘ Hultl~\£ gfv‘onal arrays are allowed.

\

The bounds of an array are deter; ned at. comp11e~t1me. The

bounds' fotgéeach dlnfn51on are an upper and lower bound of

the same flnlte node 1uteger bounds may also 1nc1ude..a Bi

”part. One may subscrlpt b§\91v1ng as nany subscrlpts ‘as the

yarray has d1mens1ons, e. g.,fmix(2 Q) ﬂ Arrays are classed
into Yarray types" on the ba51s of storage order,: subscrlpt.”

'checklng, and default lower bounds. ‘For those vho vant the'

'safer ALGOL construct of an array wlth a’ descrlptor, a 'Row

is the descrlptor for an array, and may be used just like an

--ALGOL 68 rou.,""

143

Records. % A teoord is.an object which contains one or
more sub-objects. It is used solely to 1nd1cate hxerarchy.
it corresponds roughly to a CSECT of data.

‘Structures A structuce 'is similar .to a record in

declaration, but is merely a map or template for describing

an ebject. There may be many objects ‘describable by ~the
same”structure-mode at any one time.

» xs

~“Unions A union is a set of one or more modes. It is-

. uged to ‘ndlcate that the value of an object may be 'of .any

oae, of the modes in the union. No manlpulatlons on the"-

.objeot (otherathan copying) are‘ allowed? wlthout knowlnc
"'uhieh*'of the poss;ble modes it 1s. There are safe unions.
‘for which the compller generates code‘:to _manipulate‘ unio-
vflags, “and . unsafe unlons, *for which the 'user'provides

routines for selection and uniting.

1

Strings There are at least 11 different ways of.

B - T - ‘ ‘ : o
representing a string variable on the IBM370, made up of
variations on the existence, length, and positi-n of length

and ‘address désciptors.for the characters. Therefore, the

‘user may redefine STRING 'SG as to fit his_ needs. The

standard,definition is:-

STROCT (PTR address, PTR WITH (CHAR pad) |
‘length) : s ' '

LY

144

145

4.2 Declarationms of Declarers

4.2.1 zuzg_é;

New types iére;fdefihed eby pnesenting”ea ‘list of
- 1dent;flers _uhleh‘vafe 'the' values‘ of that type. These
eidentlflers may not be used for any %other purpose in the
source module. 'E;g.:av . o
TYPE egg size ;»

kE _ (small, "medium,' large, extra large,
“jumbo) ‘ :

N

Renltry,

u 2.2 Eihkade Conventions

~ Each’protedurefﬁuStibe declared to be.of 7¢me 'LLNKAGE
convenﬁioﬁ. _e~Each _LINKAGE"rconventioﬁ' defined7‘by
specifying how ;he‘ procedure uses ‘the' registers of the
machine. H,The LINKAGE convention specifiee.dnly where the
 e;gumeﬁt'1ie£ 7if'any, can be . found in memofy;' not its
- format; thls :fOrmat ‘ ie- speC1f1ed in each ptpcedure

deCIa;atIon. There are six parts to a LINKAGE convention.

&

INPUT.”speeifles ‘what reglsters are Tequired . to contain

useful ihformationfﬂyhen' the procedure is entered. A1l

registers will _be festpred .by_the'procedure»except those
o

mentioned by NORESTORE or OUTPUT; these two 1lists must be

‘wdiSEOidt. - The latter list specifies that the register will

contain a value of interest to the caller; the former
specifies that the value 1is' no longer meanlngful.- A
reglster in the OUTPUT list is set by the flnal unit of the
: p;ocedure, which is a list of as many value§ as are needed,
and in the ;ame order as im the OUTéUT list. A register in

the NORESTORE. list need not be changed at all; but if

changed, will not be restored. SAVEAREA defines a mode to

be- used as a savearea by procedﬁres of this LINKAGE
conveéntion. CALL specifies a pacro to use for_iballing
procedures of this LINKAGE convention. ENTER specifies a
macro to use to.expand the éefinition of érocedure entry.

EXIf' specifies a macrb to use to expand the definition of
prqcedufe exit. These BRacros may Areference‘ many built*in
-compile-tinme procedures- fqr exaﬁble,;bne may examine the
nodes 6f parameters of the ptocedures. See Section 4.7 for

. an explanation of the macro language. . “

<11nkage declaration> ::= LINKAGE <linkage-indicant> =
INPUT (<reg-syn> { , <reg-syn> }x),
NORESTORE (<register> { , <register> }x),
OUTPUT (: freg-syn> { , <reg-syan> }x%),
SAVEAREA = <mode-indicant)>,
CALL = <macro>,
ENTER = <macro>,

. EXIT = <macro>

<reg-syn> ::= <pode-indicant> <register> .

I <mode-indicaant> <tag> = <register> “

In this context one may also.use the ‘modes' ENTRY, RETURN,

and 'PLIST on the INPUT list. ENTRY means the entry " address

of the procedure. RETURN means. the return address. PLIST

!

means the parameter 1list in nmemory; this requires the

es

146

147
parameters or their addresses to be contiguous.

Built-in linkages include S_TYPE, R_TYPE, and LOCAL. A

-samplé linkage declaration is shown in Appendix IT.

4.2.3 Arraytypes

Arraytypes are declared as described in Chapter 3.
' Q N) .

Example:
ARRAYTYPE ARRAY = (ROW-MAJOR, CHECK LVIR ,
ARRAYTYPE DIMENSION = (COLUMN-MAJOR,NOCHECK, 1),

4.2.4 Modes

4.2.4.1 Basic Declarers

By >default, for each programmér-defined type, a mode

[;9111 be created Qith the same name eXxcept that the letters’

are .,in upper case and blanks are deleted. This.hode uses
o , .

)

?’b"one fulluord for each -datum.

o

'Modes can be defined in terms of other modes. This

fotm isV used to define structures, array modes, reference
modes, union modes, procedure modes, etc.

. -
<mode-declarer> ::= <basic- mode—declarer) /% from 4.1.1 %/

| <type-name>
| SET OF <mode- indiqant>_

148

REF <actual-mode-declarer>
PTR <actual-mnode-declarer>
SHORT REF <actual-mode-declarer>
<array-~declarer>
ROW (<dimensions>) <actual-mode-declarer>
STRUCT (<fields-1list>)
<united-mode-declarer>
<unsafe-united-mode-declarer>
| <mode-declarer> <mode-modifier>
<fields-1ist> z:= <fields> A ¢ <fields> }x
<fields> ::= <actual-mode-declarer> <jidentifier-list>
<actual-mode-declarer-list> ::= <actua1-mode—declarer>
v <actual—mode—declarer> {f
'<actual-mode-declarerd> } =« :
<array-declarer> 2= <arraytype-1nd1cant> (<d1men51ons>)
<actnal-mode-declarer>
| CHARS (<dimensions>)
| BITS (<dimensions>)
<d1menSXOns> 2= <dimension> { , <dimension> }x
<dimension> ::= <integer>
|‘<denotation> : .{denotation>
.<united-mode-declarer> ::= UNION (
<actual-mode-declarer-1list>)
| ROW (<formal-bounds>) <actual-<mode-declarer>
<unsafe-united-mode—-declarer> ::= <array-declarer>
| UNSAFE UNION (<actual-mode-declarer-1list>)
[SELECT(<identifier>) = <macrod>]
[UNITE(<identifier>) = <macro>]
| CHARS '

. S . —— . Swm—

‘Examples:

REF CONS INT

ARRAY (1:5) STRUCT(INT x)

‘ARRAY (small: large, 1:2G, 2 TO 34 BY 4) EGG
‘SHORT REF ARRAY (3) ROW (5) BOOL

SET OF BOOL-

SET OF SET OF COLQUR

UNSAFE UNION {(CHARS (8) ,INT,REF FDUB) : b

SELECT (x) = e - . R »
" .IP x.(0]3) = 16r000000 - o
THEN INT . ' ‘ o
ELIF x. (0]1) = 16r00

THEN REF FDUB
ELSE CHARS (8)

FI ,

UNITE(u) = u

4.2.4.2 Mode Modifiers

An <alignment> is a phrase vwhich ensures that the
address of the follov1ng datum is aligned as desired. The
<allgnment>s are:

@DOUBLE (multiple of 8) or @DOUBLE+n (0<n<8)

@WORD ' (multiple of 4) - or AWORD+n (0<n<u)
@HALF (multiple of 2) or @HALF+1
ABYTE {on any byte boundary)

@NIBBLE (on byte or half-byte boundary)

@BIT - unaligned

<mode-modifier> ::= RANGE (<values> { + <values> }x)
I { LJUST | RIUST] 1IN <Wword-size>
| <alignment)> v
<values> ::= <denotation> _
| <dénotationd> { : | TO } <denotation>
<alignment> ::= @ <word-size> [+ <whole-number>]
. <word-size> :1:= { DWORD | DOUBLE I
| WORD ’
| -{ HWORD | HALF }
1 BYTE .
| NIBBLE
| BIT
<actual—mode—declarer> 1= CONS <mode~dec1arer>
| [VAR] <mode- declarer)

§.2.4.3 Mode Declarations

Thé actual mode declaration comes in two kinds. In the

normal case, the mode being defined is a new mode, which

inherits all the operators and procedures defined on the
righf hand side mode in the surrounding environment, but

shares nothing else. Denotations for this new mode mrust

149

appear in a cast.

new mnode be made equivalent to the 0ld mode.

One may also use "IS" to request that the

<mode declaration> ::= HODE <mode-indicant> <new sym>

<mode-declarer>

- <new-sym> :i:= IS

Modes can be partially parameterized.

mode indicant is required in al declarer, one may use a mode--

-

That is, where a '

indicant parameter, and vhere an integer would be required

in a declarer, one may use an ordinary parameter.

<mode declarat10n> ::= MODE <mode-indicant> (

<mode-declaration- -parameter-1list>)

<new sym>

<mode declarer (involving parameters))
<node-dec1aratlon-parameter-llst> 3=

<node-declarat10n—parameter>
<mode-declarat10n—paraneter—llst> .
<mode-declaration-parameter>

<mode-declaration-paraneter> ::2= <boung- parameter)

<mode-parameter>

<bound-parameter> ::= % <1dent1f1er>
.{mode-parameter> ::= <indicant>

. Examples:

MODE EGGSIZE = egg size ¢ automatic

. MODE A = egg size: - z - length is one
word ' . _ , : o , o
MODE B = ARRAY (n) A £ a vector of 1length
npw ’ _ ' . .
MODE C = STRUCT (B fsell, fse12, A aa);

MODE D (%n) = ARBAY (%n) INT;

use of D:

D(7) dd means [7]INT dd
MODE E(M,%n) = ARRAY (%n) M;

use of E:

E(INT,7) ee .meansVARRAY(7)INT

MODE FBOOL = BIT RJUST IN WORD
MODE DIGIT IS WHOLE RANGE (0:9) °
MODE PACKDEC IS DECIMAL(8) @DOUBLE
MODE PPP = UNKNOWN (3,0) RJUST IN WORD @WORD+1

150

4.2.5 Foruard Declarations

Because everything must be declared before uée, thefe
must be a mechanism to allow the declaration .of mutually

recursive modes.

<forward-declaration> ::= <forward-moede-declaration>
| <forward-robjeét-declarationd - ,
<forward-mode-declaration> ::= MODE <indicant>
I OP <indicant> . :

4.2.6 Dencotations

4.2.6.1 Plain Denotatioms

- The denotations for programmér—defined types are

presented in ‘the declaration. Denotations for strings, .

151

reals, bits, and bools are as in ALGOL 68. Denotations for B

integers are’the same as siéned ALGOL 68 ipnts. _‘Denotatidns

for wholes ‘are the same as unsigned ALGOL 68 ints.

Denotations for chars are '<char®>'. In the case where a

‘tYpe contains more than one,iOde, the mode of:the denotation
depends - on the context. If the denotation is the only

element'in:anAexpression, then its mode is that:teguited by

the left hand side; otherwise, the mode of the denotation is

the main mode of the type.

Examples:
LONG REAL x;
"REAL y;

x +:= 1.0; £ here 1.0 is LONG REAL
y +:= 1.0; £ here 1.0 is REAL
/*.string */ "hello"

| "this string contains one ""."
/% bits''x/ 16r34234abd :
/% bool x/ TRUE , FALSE
/% whole x/ 15, 100000035
/% integer x/ +1, +0, +73434, —-3432

. 4.2.6.2 Stowed Denotations . .

- There are also dehotations for arrays and structs. An
afray denotation has the form:

ARRAY (<element-list>) where all <elementds are

152

denotations of the same type. 'An element which is itself an’, .

arréyA.peed not .fepeat the word. "ARRAY". A structure

denotation has the form:
| <£ype—name$_((denotation—listﬁ)
where the type of the n'th derotation is the same as the
type of,tpé n'fh field of strucfs of‘tﬁe named type.
Example: | e
ARRAY(3, 4, 5, 6)
ARRAY (. (2,3) , (4.5))

STRING (@name,size (name)) -
"COMPL (3.045, -4.2)

. 4.2.6.3 Procedure Denoﬁatiégg :

In ~ALGOL 68, thére are ﬁo procedure denotations;
rather, there are routine texts. These provide the actual

values for procedures to possess. They are not called

denotations because all other denotations are -primal in
scope, but a procedure has the scope of the range in which
it is‘ declared. Rather than change the semantics of

wdenotation", the authors of [34] chose another term. In

ALGOL 68, the user cannot have procedure denotations. This

is no mere -guibble over niceties: creating procedure of
S

primal scopé is a major activity of systems programmers and

PL370 has procedure denotations.

. <procedure—-denotation> ::= <linkage-indicant> [(
<formal-parameter-1list>)] [<result mode
‘ indicant>]} : <serial-clause> CORP [<tag>]
<formal-parameter-1list> ::= <formal-parameters> { »
: <formal-parameters> }x* o '
<formal-parameters> ::= <formal-parameter> [, <tag> }=x
{ <register-tag> <formal-parameter>
<formal-parameter> ::= LOCAL <formal-declarer> <tag>
{ { VALUE] [RESULT] <formal-declarer> <tag>
<routine-text> ::= <linkage-indicant> [(:
<formal-parameter-list>)] [<result mode
, indicant>] = <import-list> ; <serial-clause>
CORP [<tag>] :
| <procedure—denotation> ; .
<import-1list> ::= IMPORT <identifier> ([, <identifier> '}«

Examples:

S_TYPE (LONG REAL VALUE a,b) LONG REAL:
a+b CORP add ?

A_TYPE (INT VALUE num,width) STRING:
IMPORT error char; .

CORP vhole

153

. ‘ 154

4.3 De lgratibns of Obijects

4.3.1 Forward Declarations

Because everything mnmust be declared before use, there

must‘be a mechanism to allow the declaration of labels for

forward branches and mutually recursive procedures.

/
: _ , /
<forward-object—declaration> ::= FWD <actual-mode-declarer>
<identifier-list> :

4.3.2 Procedures

The procedure deélaration specifies the‘modes of ény
‘parametefs passed in memory, and fhe body of the procedee.
The:e,are 3 kinds of procedures. ‘An EXTERNAL procedure is .
declared in a vsoqrce module, but its bodj isAgivénlin.}
anothe; source moduie. A 'GLOBAL p;océdu:é is declarednin a
source module vith its defining body; it ﬁay be declared as
EXTERNAL in other source mdduies. A LOCAL prbcgdure . 1is
declared intermally tos a GLOBAL procedurg.' It may not be-
called except from inside that GLOBAL ptocedure. ‘X LOCAL
procedure mpay be a SEGMENT procedure,.in_vhich'case it‘is
indeéendently addressed andfdoes not inherit any of the data
from the surréunding blocks. Other LOCAL piocedures‘dq nét

reload - any base registers and do inheritythé sarrounding

155

environment.

<procedure declaration> ::= [-<scope>] [
<linkage-indicant> '] <procmode-declarer>
<proc—names> <1nit1al—procedure—value>
| [<scope>] PROC <proc-names>
<initial-procedure-value> :
| <linkage-indicant> <procmode- -declarer> <proc—names>
" <scope> ::= GLOBAL
} EXTERNAL -
| SEGMENT .
<proc-names> ::= <procedure-identifier> <external-names>
<initial-procedure-value> ::= <routine-text>
| <procedure-identifier> S

Examples:
PROC (INT, INT) BOOL g = T

PROC z = LOCAL INT: 3 CORP

REF S_TYPE PROC (A_TYPE PROC (REAL) REAL,
REAL) REAL func

P

4.3. 3 Records

‘A record is siﬁply a group of objects gathered togethei
under one haﬁe. Like a COBOL record, it may also be used as
if it were a simple‘ ARRAY () CHAR. Records may also be

global or external.

<record -declaration> ::= [GLOBAL | EXTERNAL] RECORD
' <identifier> <extermnal-names> <record-body>

,<record body> ::= <extended—ob3ect -declaration-1list>)
<external-names> ::= <eat py> :

- | -/ <string-denotation> ¢{ , <str1ng-denotat10n> }*
.<extended object-declaration-list> ::=. .
<extended-obiject- declaration> {
<extended-object declaratlon> %

156

<extended -object-declaration> ::= <variable-declaration>
| <constant-declaration>
{ CONS <mode—declarer> <denotat10n—llst>

Examples:

GLOBAL RECORD date/"DAT" ' :
(INT year, month, day, CHARS (8) veekday),
£ a deflnltlon of named common 4

EXTERNAL RECORD date/"DAT" o S
. (INT year, month, day, CHARS(8) veekday) ;
- ¢ a reference to . named common ¢ o

RECORD header : , ’
(CHAR e, ,

CHARS(5) " »,

CHARS (20) title,

CHARS (40) * p,

CHABRS "Page ",

DISPLAYB (4) pn

4.3.4 Operators -
'-PL370' ‘has 'many built- -in operators, such as. “+" . N-u,
ng=n, Operators behave li&e generlc functlonS'—' there pay

be? several deflnltlons fér ‘the same operator and they will

be dlstlngulshed by ‘thef,types ;of the Qperands (actuafk

-parameterS).'; An- operator may be an'indiCant, a bﬁllt*in[\

operator, or,a'neu_operator.. uew operators are declared« 1n'~“

. v‘., _"
. : . Co . [

the module header; e.g.:

NEW ARITH OP: +, - . - ’
NEW COMP OP: >, <, # . o | R
{ . NEW BOOLEAN OP: = . . R | B

- (See section 4.5.3 - Expressions.)

Sample'@eclaratiohi

157
iy

OP CEIL = (REAL x)INT: (/% code to find the
value %/) ; '

f
¢

4.3.5 Qther Constants

‘ Constants arevdeclaféd uSing the word CONS. As - in

ALGOL - the nmode preceeds the identifier list. Each constant
‘ _ . 0 .
‘must be ‘given a value when declared.

Examples:

CONS INT max int = 2147483647,
- lowest unit = 0, highest unit = 19
Do T N N ! ¢ '
CONS REAL min real = REAL (
16r0000000000000001)

»

CONS CHARS (8) LOGICAL_UNIT = ("SCARD_S",‘

' “SPRINTY, "SPUNCH" “"GUSER", WSERCOM®", w(w,
wyn, w2n_ w3n_ uqn ugn _ ugn nyn _ugu _ ugmn
"1Qn, "itn, u12u wq3e, wqyn, unyse, 1|1§||,

® n17u'u1'3n' u19u) o . ')

- : .
4.3.6 Other”variables ‘

re

. ® ‘ . - :, o @0 o ’ :
’ A'variable may have an initial vaiue specified. If the
- object code 1s reguested to be re—entrant or reusable (see

Bl
Wi

A'fthe optlon llst “in. the sample program), then the 1n1t1a1

o value 1s a551gned to the varlabLe at run tlue.

'ivariable4declaratidn> 1:= [VAR] <mode—declarer>
: <var-decl> { , <var-decl> }=x
<var-decl> ::= <1dent1f1er>

sfi<identifier> := <value>

Sy

Examples:

INT x

:= 3 s/ note automatic conversion from T
v vhole to integer %/ ' : '
' INT x := 3, 7, 2 2= =2
REAL z

COMPL v

‘4.4 - Scope Rules

- J Lo . ’ . :
- The - .normal scope of an identifier 1is its enclosing

block and gll blocks contained by ' that block (staﬁdérd
ALGOL 60 scope ;r;le). Because of the hardware oﬁ thevIBH
370, onlj 4K bytes of memory can be addresséd'from any ohe
registef; therefdré identifiers that mighF othervise be
usable méy he unéddr;ssable and thus invalid in certain

contexts? .
.)

The programmer may restrict the use of variables by
internal blocks. This is done in much the same way : that
access: to files 'is restricted in MTS. Normally, any

contained procedure may .fead and write a variable; this - may

pe changed with the PERMIT Compilé-time operator. The

PERMIT operator ~applies to ' the source lines statically

following it.

4

Format:

158

i

PERMIT <what> { R | BW | NONE | W } <to what>
{« { R | RV | NONE | W } <to what> }

vhere <what> is a <Variable> or a llSt of them, and <to

vhat> is a <procedure 1dent1f1er> or a list of thea.

Examples;
PERMIT width R ALL .
.PERMIT size R¥ getsize, R OTHERS

In FORTRAN, a sub-program may. refer

only two ranges: globkal (COAHON) and_ldég“’:'ln ALGOL, a

‘procedure may refer to varlables from ranges in between

global and local as well. There are two thiﬁgs wrong with
this. First, it is expensive to nmaintain the display
necessary: to allou addres51ng of the lntermedlate ranges.

Second, mlSSpelllngS in the 1nner Fange are not errors if
the 'spelllng used matchesv the spelllng.of én'identifier
aeclaréd in an outer range. ’Cohpare this with FORTRAN, in
- which there must be a declaration in tﬁe current sub—program
‘before a variable can be non;lbcal (i.é. COKNMON). In PL370,
the fprogrammer may have the ALGOL features, which do have

advartages, but he must work for then.

At the beginning of a prdcedure body, the programmer

may use Aan' IMPORT statement. This 1lists all those
idgntifiers declared in Lthe Containing procedﬁre (9r
IMPORTED into if) which ﬁhis procedure needs. It may also
specify "ALL"™ or "NONE". 1 fhose‘ objects whose iéentifiers
are on _the' import - 1ls¥ will be made available to the

sprocedure, and the identifiers may be used. If there is no

159

<

\U)

import 1list, then all objects of“&u 1mal 'scope will be

imported. This includes named denotatlons and some

procedures. Small constants will be copied"ﬁnto the local

data area. For otherr objects, the address ofh the object
will be placed in the local data area. ﬂﬁternatlvely, the
programmer may build a dlsplay by 1mmed1ately, ba51ng "VARS
OF <procedure—1dent1f1er>" for some procedures “(see belov).

Those ob]ects in the data area for the named. procedures, and
in the import 1list, will be‘made available and addressed

A

from the named registers. s

To address other non-local daia,'-the programmer must
tell the compiler Qhere\fhe’data is. This is done vith.the
BASE operator - it correéponds to the GIING operator in
iBMASM. |
Format-

BASE <data—area> ON <address>

where

<data-area> ::= <external-record-identifier>
: | VARS OF <procedure~1dent1f1er>
<address> ::= <regigter-nane>

I <reglster name> + <whole-number>

| <wh01e—number>. ey

{

Examples: , R

BASE savearea ON"r13;

IMPORT ‘a,b,c,d,e, pq, maxint;
BASE VARS OF pp ON r2; -

The object then remains addressanle until the contalnlng

claqse ends, or untll the programmer modifies any referenced

160

iy

registers.

4.5.1 Contrgl Structures

A unitlis- either a Staﬁemént (a void—ugif)‘lér an
éxpression delivering'a_vaiue of some MODE (a ﬁODE—uhit). A
clause is a‘unﬁt,optionaily.b;eéeededAby statements, which
are optionally preceeded by deciarations (see> belou).‘ ~The
control structﬂres.ianL370,aré almostwfhe same as those in
“ALGOL68.' With soﬁe éyntax (below); the form of each‘control

structure is now explained.

<clause> ::= <MODE-clause> | <void-clause> _
<MODE-claus€> ::= { <declaration> ; }* { <statement> ; }=x
<MODE~unit> . - . _ ‘ '
<void-clause> ::= { <declaration> ; } % [<statement> ; }=*
' - <void-unit> ' : :
<MODE-unit> ::= <MODE-expression>
" <void-unit> ::= <statement>

The control structures are:

(1) <null statement> ::=‘ SKIP | <empty>

161

162

| (2) <block> =::=
BEGIN <clause> END i

(n <clause>)

s

(3) <if clause> ::i=
| iF kboolean-cLause) THEN <M-clause>
{ ELIF <booleanclause> THEN <#-clause> }x
{ ELSE <M-clause>] | |
FI

The <#-clause>'s must all be of the same mode, M.

{4) <indexed-case—clause> 1=
"CASE <integgrkclause> | : | - .
IN-'<H—uni;>L{., <M-unit> }=x%
OUT <M-unit> '

ESAC

- All of the <M-unit>'s must be of the same mode, M, or
they must all be void. AThe‘value:of the <integer clause> is
used | t§ choose which of fhe <M-unit>'s to perforn, cbuntind
<from 1.‘ If:there is no‘suéﬁ <H-udit>, then the <H;ﬁnit>

after OUT is pérfotnéd. ®* QUT SKIP " may be omitted.

s

(X}
(X

(5) <labelled—-case clause>

163

CASE <M-clause>
IN <caselabels> <Nfunit$
(P <céselabels$ <N-unit> } %
O0UT <N-unit>
ESAé
- where <caselabels> ::=

<Mt-value> : { <M'-value> : }«x

The <M-clause> delivers a value of é érogrammer-defined
type,H. The <M'-value>'s are idgntifiers from the list
défining the type M. All thg <N-unit>'s are of »the same-
‘mode, N, or they are ail void. The <H~clause$' is
elaborated; The <N-unit>: corfespbnding to the {H'-value>

.

‘which matches the <M-clause> is perfornmed.

T(6) <conformityfcése-clause> '::=
CASE <tag> | .

IN (<M'-name> <other tagd>): <N—uﬁit>'

{ +, (<M*—pame> <other—tag>):._<N4unit> 1+
OUT <N-unit> o
ESAC ‘ |
| 4 - B -
Here <tag> is the identifier of some object of mode N,

where M is UNION(...). Each <M'-pname> is a <mode-name> for
one of the constituent modes of the union. The <N—uhit>'s
are all of the same ﬁode, N, or they are all void. The flag

procedure for the wunion is velaborated to Qeterminé the

current = mode of the value of <tag>. The <N-unit>
corresponding to the appropriate <M'-name> is elaborated.
<other-tag> may be used to”access the value of <tag> in the

<N-unit>.

(7) While loops e
<basi§—while-f&§3§ 1=
[{ WHILE | UNTIL j’<booleanfc1ause1>]
{ "0 | REPEAT } ' <void-clause>
[{ WHILE | UNTIL } <boolean-clause2>]

oD

~The only required part of the loop is its'<void-clause$
body and. its égclosing keywords. The loop tepeats until one
of the boolean tests is safiéfied,_i.e. a WHILE clause .is
'FALSE or an UNTIL clause is TRUE. The‘boolean.tests are

made in the position that they appear - <boolean-clausei> is

evaluated before the loop body and <boolean—c1ahse2> after

it If <boolean-clausel1> is omitted, then the loopxwill be:

o
elaborated at least once.

(7a) <iﬁéfemental—uhilééloop> ;:=.
<iteraiion—control1>'<basic-vhile—loop}
where ‘<iteration-controli> ::=
| ‘[FOR ,<tag$: o o | -
" { { FROM | := } <ihteger—udit>‘] |

[P |\90nﬁ'}]

164

[BY <integer-unitd>]]

[TO <integer-unit>]J.
| N

‘This introduges further constraints&gh the elaboration
/

of the 1loop. If FOR <tag> appears,/then that <tag> is-

kﬁ'ovn ds a lo¢¥1l CONS INT through’ the whole loop.' The
tag may be referenced in both the <boolean-clause>s and the
<void-clause>. “PROM 1" and "BY 1% may be omitted. The
<tag> (or secre£ loop counter if there is only,a'TO part) is
incrémented and tested at thg end of the loopf The FROM
part specifies the inigial value for théw<tag>, Tﬁe:BY and
TO parts afe.évaluated oniy once. After each iteration the
value of the BY part is :addéd (subtracteq, if ﬁoﬁN is
specified). to the control variable (<tag>). ©p and DOWN
assert at 'cohpile;time that the loop is ascending or

' descending, respectively; if neither is specified, then the

direction of the 1loop >is> determined (at run-time, if

necessary) by checking the sign of the BY part. E.g.:

FOR r£2 := 17 DOWN BY 1 TO 1 DO £(x(r2)) oD

(7bj <traVersal;lodp> 1=
<ite:ation;contr012>,{basic-uhiie—ioop>

-where <i£ef5tion-control2$ 1=

: FOR <MODE-name$ <tag$

{:FROH [2=} <n0DE-uhit>

NEXT <MODE-unit>

165

166

This is intended mainly for traversing lists. The unit
after NEXT may reference the <tég>; The value of this
reference is the value the control_va;iable had . during the
iteration just finished; the value of the.unit is. the next
value of the <tag>, i.e. the value of the <tag> during - the
pext iteration of the loop; E.g.:

 FOR REF TASK t := first OF tasklist OF tptr
NEXT next task OF t , }
UNTIL t = pull OR ready to run flag OF t

DO SKIP
oD |

AN
(76)‘<coﬁplete;loop> 1=
<itétation—control3$ {basic—dhile-logp>
where <itefation-c6ntrdi3> i:=

FOR <tag> IN { <mode-name> | <mu1tiple~va1ue> }

This_vis -intended mainly for accessing all values of a
prograsmer—defined type. The <tag> will take each value ﬁéf
mode MODE. | 1 ‘ | K4 |

FOR ’s‘iu EGG_SIZE
"' DQ print (ﬁag(s), minsize (s), maxsizé(s), nevwline)

oD

(8) <exit> ::=
EXIT [([PFROM] <label>] [WITH <MODE-unit>] [

»
[

167

IF <boolean unit>]

This construct jumps out of a labelled clause (see
section 9 for an example). The <MODE-unit>, if any, becomes
’ : Ty
the value of the labelled clause; MODE must be the same as

the MODE of the last unit of the labelled clause.

4.5.2 Units

4.5.2.1 Simple Expressions

All the basic actions from Section 3.15 - are included;
where several suggestions were made, the first ome is the
one used. '0On a less primitive level, the basic cqncepts’wof

PL360 have been expanded in a similar manner.

The simple expression may be regarded as an

_ abbreviation for:a sequence of basié actions. From Ath;s,
- point of\vieu,'the ébb;eviations are:
(1) long form: a := a 0oP1 b op2 ...
| ébbréviatioh: a QbPi:="b ; a 0P2:= ;.;
- (2) long form: " a i= b := C ...
abbreviati;n: b := ¢ ... : a := b

Also, some restrictions are removed :

o LONG_REAL‘divisibn will be simulated.

4.5.2.2 Object Designators

An object designator is a name or address . The object

may .be in memory or in a register.

<object-designator> ::= <identifier>

| <denotation>

| (<object-designator>)

|} <field-name> OF <object-designator> o

| <object-designator> <sub> <field-name> <bus>

| <object-designator> <sub> <{subscripts> <bus>

| <object-designator> (<field-mame>)

| <object-designator> (<subscripts>)

| <object-designator> <index> :

<subscripts> ::= <expression> ([, <expression> }x
<index> ::= . (- <expression : <expression>)

| - (<expression | <expression>)

Examples:

a

re OF z

(£2 OF w (35)) (3)

w(35) (£2) (3) /x same as above x/ -

4.5.2.3 Expressions

.

Most ALGOL 68 expressions ~are valid in PL370. ‘The

‘major .eXceptions are: no- trimming, no balancing, no

automatic widening, and no selections from [JREF STRUCT (.
<<-). There is no widening of BITS to [JBOOL because the
two are semantically quivalént tdvstart with. The rowing:

coercion will produce a one-element array with no

descriptor.

<expression> ::= <object—desi§natot> : v ‘ ‘ o

168

169

<function-call>
<generator- 1nd1cant> [:= <expression>]
<formula> :
'‘BEGIN <serial-clause> END
{ <ser1a¥aclause>)
" IF <boolean-clause> THEN <serial-clause> FI
. IF <boolean-clause> THEN <serial-clause> <elses> FI
CASE <integer-clause> IN <expression-list> OUT
.~ <serial-clause> ESAC

| CASE <serial-clause> IN <labelled -expression> { ,

<labelled—expression> }x OUT <serial-clause> ESAC

| CASE <tag> IN Kconformity-expression> { ,

' <conformity-expression> }* OUT <serial-clause>
ESAC
<function-call> ::= <procedure—1dent1f1er> .

{ <procedure-identifier> (<expression-list)>) : -
<expression-list> ::= <expression> { , <expression> }x
~<labelled-expression> ::= <case-labels> <expression>
<case-labels> ::= <identifier> : { <identifier> : }=*
<conformity-expression> ::= <mode-indicant> { : '

<mode-indicant> }%x : <expression> : ’ S/
| ,(<mode-indicant> <identifier>) : <expression>

— e G B ey P

In a. formula nthere ~are several different levels of
precedence' for operators. MohadicV operators - have ‘the
highest priority.v-‘Dyadic operators are divided into three
 classes: arithmetic, comparlson, and boolean (1n descendingk

precedénce). Hlthln -each _of- theSe three classes;

expressions are evaluated from left to right.

4.6 Coumpilation Structures .

| A compilation consiﬁts of'oné or more source mocdules.
A source module consisté of an optionQIist,'fOIlowed by the
type; proctype, and‘mdde.declarafionﬁ (if'any);,fbllbued' by
declaratidns for one or more global: objeqts (i.e.

'

PR ;.!:L&!fm% h-,e,,_.,

what constralnts ‘to use, for example, what 1nstruqtlom¢set

procedures or records).
is available on the machlne 1ntended for running the object
progranm. As in PL/I; each EXTERNAL object must be declared
in each of the source modules that references it. All
declarations of a global (shared between source modules)

object must be the same.

ReéreSentation

All 1nput is eXpected in- LBCDIC. Normaliy there is no

/translatlon,' but_ the ' programmer may request that the two
‘:cases of letters "be ‘equiValeht‘ (i;e., g = “A“). All
:keyyords_ (control 1nd1cants, mode indicants, end opereter
indicants) are in upper case and are 'reserved. ' Since 'all
mode declerations appear before anybdata deelaration,'there

will be no difficulties in identifyingv wliich ‘words .are

‘keyuords or indicants even without case distinctions. ' An

ldentlfler is any comblnatlon of letters and digits that
start - with é letter’,(as 1n ALGOL), but may include both
"'upperfﬂand 10ﬁer—case letters. . Also, it may not be the same

‘as ‘any keyword s.ace they are Teserved. To - improve

vreadablllty “when 'iny"ausidgle'case is availdble, keywords

. S _ o .
‘and indicants may be prefixed with 'a ".", e.g. ".BEGIN".

"This does 5nq£ make thev:unfprefiied'word_avaiiable as an

identifier.

‘ Chanactér,‘ “%" - No code will be generated for any actlon

in SNOBOL. ,;There is only one length_of“xnteger (INT) , One

AR,
.\%'\
u

4.7.1 The Compile-time Language

In additiom to the ﬁbgdinary"f idﬂguage,‘ there is a

cbmpile—time'laﬁguage. ‘This_language is very-similat to the.

ordinary _1adguage,< but simpler. ‘Tﬂe.'keywords 'LINKAGE,

(i
ARRAYTYPE, REG, GET, RELEAKE, OPEN, GENERATOR, and BASE are

not available. ASSERT 1is avallable vénd, behaves as in

ALGOL W. Complle-tlme actlons are dlStngUlShed by .a trip

Uthh can be done at compllehtlme. in case of doubt, a rup—
time ;nterpretat;on wlll be preferred The complle—tlme

language is interpreted durlng‘compilatiOn of thev ordinary

languége, ~‘Tﬁéicompile—time 1anguagefhas.STﬁINGs:as;a basic.

mode. . They are completely flexible aqd;behéVe‘like strings

of vhole (WHOLE), one.of real (REAL);.’and one of .- p01nter

'tYPeSHhavg-been made superflous (there.ls only one mode per -

" ALGOL 68 unformatted output tacilities except ' FILE

(REE ...L, the other ba51c modes are BOOL and CHAR. Since

. D - | . .
type). the extra .concept has been dropped. Programmer—

2]

deflnedamodes are Stlll avallable. The only klnd of atrays_v

are ROW Ulth a full descrlptor, as in ALGOL 68. There are

?no 1nput facllltles, _although, 'parstring (the paraﬁeter

.'ffrom‘ the;,system).,may, be inSpécted.. Thére‘,ére all the

' dec;a:atlons; . there .’are, ”tvo-prédefined: files. The

171

progr?mmer may write on the iistipg. via "print", and may
generate 'Source text via "gen" .~ The cbm%ilé*time language
vallows arbltrarlly complex expressions, as in ALGOL 68. The
complle—tlme lgnguage does noﬁ provide access to registers

.or allow privileged 6perations.

53

. e
4.7.2 Macros : v

There are several kinds of macros. There are text

@

macros (called MACRO) and then there are PROCs and. OPs which

are compiled in-line (called IPBOCs and IOPs). The header
; - .

of a macro consists of keywords and symbols to be entered

verbatim in a call, and parameter-packs.

<macro-definition> ::= MACRO <header> ; <text> MEND
<header> z:= [<exposed-macro—formal parameter—pack>]

<closed-header> [

<exposed macro- formal-parameter—pack)]
<closed~-header> ::=.<macro-delim>

| <closed-header> <afpl-opend> :
<macro—formal—parameter~llst> <mfpl close)
- <macro-delim> gf

<exposed-macro-formal-paramefer-pack> ::= <mfpl-open>

<macro-formal-parameter-list> <mfpl-close>
<macro-formal-parameter-list> ::= <macro-formal- parameter> {

’ <macro—formal~parameter> } %
- <macro-delim> ::= <actual-text-to-match-for>
<macro-formal-paraneter> ti= <idettifier>
<mfpl-open> ::= < '
<mfpl-close> ::= > =

2
L

A special <case of this is the procedute notation
: .0 -

vherejn the first\'<macro:delim> is the name of the macro

followed by a "("‘ahd the second and last <macro-delim> is a
- :) ‘)

"yu, To call a.macro, the <macro-delim>s are given exactly

¢ . v

Lo

o
as iﬂv ?he definition (except for numbers of spaces, as in
identifiers), the angle brackets are repldcéd by spaces, and
‘macro-formal-paraneter>s are replaced bx/ sqp£ce—fext
»,ggSEiops. In - the case of an <exposedimagro—fo;mal—

&
paraﬁeter—pack), the actual parameters are restricted to

~ single-token expressions, i.e..a identifier, or a denotation

of one of the basic’“typeé, a string, an indicant, or an
operator.
Samnple defiﬁitiont

¢ This macro subscripts a matrix
¢
MACRO <vec> [<i,3j> 1

(IF 1 < 1 LWB-vec 'OR j < 2 L¥WB vec
THEN GO TO Jlwberror FI; o
IF i > 1 UPB vec OR "~ j > 2 UPB vec A
THEN GO TO upberror FIj :
men (dvec + {(i - (1 LWB vec))x(2 DIM vec)
+. (j - (2 LWB vec))) = element
size(vectl) o :
.) ' ’ e
MEND ‘ '
 Sample call:
W OF x [7#i-lkf%3ekm, h (u OF 3,-345)]
Sample expansion:

u OF (IF 7#irlkf%3ekw < 1 'LWB x S
. OR‘h (1.0F j,-345)%< 2 LWB x .
THEN &b o lwyemwor “FI; A
7xi-lkf%3ekm > 4 UPB X :
.OR h(u OF j,-345) > 2 UPB x
‘ - THEN &GO TO upberxrror FI;

- IF

5 mem (,@x + {((7+«i-1kf%3ekm - 1 LWB . x)x%(2
DIM . x) - \
+ (a(u OF j,~345) - 2 LWB X)) =*

element size (Xx)

«

“ e

173

4.8 Run-time Organization
| -

The programmer has his choice of several storage
.] oo .
organizationsﬂ He makes this.choice by using some of the

I .
options at tﬁevhead of the source module. The compiler will

always prodmce;one CSECT .per global procedure. It should

produce one;object moQule per source module under 0S and one

object module per globél object under MTS; this is because

of the different capabilities of the linkage editors in

these sjstems;

N B [
Constant data will be located with the code in the

‘order. of their declarations. Theynwill‘ normally be moved
~after the nenreét unconditional branch, or nearer if ‘that
‘can shorten the objeqt code.. The prngrammer - may -reqnést
tha&l the constants be gathered in larger‘gboups: ali the

constants for any procedure, a segment procedure, or a

global_pnbcednre to b; placed before or after the code.
‘ ‘ 4

Variables will normally be located in areas dynamically

174

‘acquired at the beginning of each global procedure (re- -

entrant) . The variables may be acquired instead at the

' beginning of every procedure by using the same linkage type

for é%tetnal procedures as for the global procedure- this in
itself does not give the programmer the ability. to use
" recursive procedures - itais.bnly:a necessary condition.

The variables may be located in a static location, i.e. a

separate CSECT, by specifying "re-usablen. The variables

can also be allocated fn the same way as the constants by

‘

——
—

!]
' . /'/ . .
- - : 175

. g ©
specifying '"non-reusable".
1 ¢

2
!

\
g
S e :,/’
,4...‘-..‘_// \
3 i * o
8
- *
-
N #
. o
Yy,
g | A
LS
a oy 3

176
‘ CHAPTER 5

IMPLEMENTATION

5.1 Desired Environment for Program Design

5.1.1 Compiler Services

The burden ;of a PL370 conmpiler is -ﬁore than juét

producing the best possible’ object code &Y¥om the source

code. It must he fapable of:

{g thé {ﬁ;ut from any type of file r

* ignoring casé .distisctions in the source while showing’ B
: * R . '] T
them in the listing S . - &

. produc1ng a good llstlng, 1nclud1ng

~ the complete input llne‘ , E I 5 p

- a full header, with the defaults filled in 4
- paragraphiny tge input.neatlf
- showlng the object separately or beside (the source
-(user 'S ch01ce)

- supportlng tltles and spac1ng'controis
- optlonal expan51on of macros

- an optlonal cross reference S e o §£ e
’;.an optional alphabetical list of tags apd éheir

»

complete modes (like the PL/I ATTR table) - ,
¢ Pproducing warnings for non—mse of computed values
* catching operations that change the mode of an object

without permission

¢ catching all violations af choices _specified in the

module header

,

¢ denerating code for debugging purposes (e.g. actually

check assertions)

]

.. allowing macros, pieces of source -text, and env1ronment

descrlptlons to be kept in llhrarles and referenced from the
program,;rather than requ1:1ng everything‘to be kept in the
module/seurce file. |
e
system
. suppptting separate compllatlon as descrlfgf

L

.3.

There must’ be a ,staﬁ" ' llbrary ‘ of procedure

declarations to interface wltﬂf e peratln ‘S stem._ Under
e : Q g Y

would 1ssue the standard superv;sor - calls

2

ptoperly; under MTS, they would just make the present

routlnes known to the compller.

The compiler nust also 1nclude much more environkent

1nformatlon in the ou]ect outpwt than the - usual case, to»

a;lov the llnkage aditor to ensure that the 'llnkage is

correctw Ak

E

2 useful feature ofvthe‘IBH.ASSemﬁler is that one can

177

¥

always get an object module. Frequently, source errors can

be corrected and the Objecéﬁmodule used with few or even no
changes (saving re-asseably). Therefore, the compiler

should always strive for some plausible'interpretétion‘and-

produce code for thgﬁl\\—\////
, o 3R

5.1.2 Reqister Management

The cempller must carefully trace register usage. It

must produce errors warnlng of those cases when:

. e value in a register 1s 1osE@w;thout use or exp11c1tly
being dlscardedv(whep_a value 1ncludes‘ several ‘register,
‘theh eniy-a part of itlneed belused) L
e a reglster in local use at -the tlme of a call is needed
for parameter pas51ng : ' f%fﬂ

. a, Leglster in local use at the‘tlme of ‘ cail ~is = one
“ . .

that is used for result pa551ng or is not restored

e a reg;ster is used_wlthout belng'acgq;red via GETﬁ

Inltlally all s ureglsters_ are under the control §§§khe"

+

p:ogrammer.,- To allou : max1mum flexlblllty, he must

‘Aimmediately RELEASE, them all. when'the’compiler“controls no

“reglsters, then express1ons are severely restrlcted and many

 features are unavallable, €-g.:,

~

<REAL mem> +:= <REAL'mem>

178

«1.3 Run-time Support

In order to ease programming, there should be available

some - librarie§» of routines to do transput. This should
include toutines to convért string input to internal form

and internal data back to string. It -should also include

routines to do simple stream transput as in ALGOL 68. Other.

.

routines in‘fhe library will be LONG REAL division, LONG
forms of translate ~(TR) and scan (TRT), and LONG forms of
move (MVCL) and compare (CLCL) for programs compiled to run

on /360's.

There iill also be “some routines required (despite the

goal of no required run-time routines) to report errors.

'For' example,C if sdbscripts are being checked, then.

"subscript error" will be called if an error occurs. A
routine "null proc" will. be called when a PROC variable
‘contains an invalid address (e.g&?'ﬁIL) and that “"proc" is

called.

5.2 'Qgtlinélgg ; Compiler
"A. two-part compiler is envisioned. A pre-processor
will perform all,@he COnpiie—time actions, and a processor

!A\ . N

'ﬂiill generate ‘code from the resulting source text. .Either.

one may be used without the other. Because everything is

179

declared before being used, a one-pass processor (with
fixup) is possible. The pre-processor can also be done in
one pass, as it consists of iﬁterpreting the input as a

compile~time language program. If no built~in pre-processor

primitive gives information about text _not yet read when

| <
that primitive is first encountered, then the pre-processor .

can produce source text in one pass without even needing any

fixup. In this case the two partsvéan be run as co-routines

‘and appear as ‘ome pass to the user. This restriction
howgver, doés ‘prohibit Some forms which .uere proposed
earlier; A problen is the‘propoSed primitive "calls", .vhich
is TRUE if the procedure calls any procedure. If‘ this
prlmltlve is\ kept, then the pre-processor must‘usé tvo or

more passes. If not, theh‘calling‘ will be slightly less

N

yvefficient or there must be two dlfferent S-type linkage

. deflnltlons, OBG‘Mthh allocates a save area and may call,

and one whlchﬁ 8vesn't and can! t. This vorks,'but not

cleanly, as the call part of a linkage definition describes

_ how that class of procedures is called,'not how it calls; so

the unwanted «call Hlll be - detected only because, at the

/

call, reglster 13 1#fnot pointing at a writeable save area.

{ \ o

The env1ron£ent descrlptlons that the compiler produces

- can be nodelled after those of ALGOL68C 81

It is wery,difficult to estimate implementation costs.
Using a good compiler-uriting system, one or-two' men might

finish a complete PL370 systen in under a year. If one

180

-

vanted a super compiler which produced optimal code
(L.e. significantly better than the average assenmbler

programmer), then it might take an extra year or more.

iR,
[

181

. | CHAPTER. 6

CONCLUSIONS

6.1 HWhat Has Been Accomplished

Thisvthesis has proposed a solution to a major problem
in systeas proéramming. Twelvé years after the introduction
of the 1IBM 360, applications programmers have been given
several suitable ‘lénguages, but systems: programmers are
still waitihg for some language . which really is an

improvement over Assemblerx. : ' N

. Assembly language and eleven other languages were

discussed in detail, examining gﬁe reas. = why each of thenm

is not good enough for producing the reliable " that
, R S ‘ . . . :

are needed. Some languages are error-prone, oth re not

properly implemented, and others are just too expensive.
‘While they all can be used for writing self-contained
syétgms, such as APL and SPSS, none of the high-level

languages can be used to write service routimnes to be called

from any other high-level language-

Service Coutines are needed for run-time systems for
other languagés and operating; 5ystems.. A new language,

PL370 has been proposed. It is capable. of being a general-

V]

182

purpose assembler replacement and also 1in being a good
language for the production of reliable service routines.

Many languages have been proposed which were des;gned for
the writing of compilers. Also, it has become feshionable

tb‘demonst;ate a language by showing a compiler = for it,

written in itself. On the other hand, PL370 is fhe flrst‘

‘language designed for the writing of run-time systems and is

not recommended for compiler writing.

pPL370 is based on ALGOL 68, but othe: 'languege» have

influenced its desigu. Two important influences were PL360

and COBOL. The former was an example of where the Jlanguage

design was heading- The latter was used because I believe

that the liberal use of Engllsh keywords cam result in MQte

readable, hence more reliable, ptograms.

Oone can use PL370 from at least three different

approaches. First, one can try to ignore the differences

between it and ALGOL 68 as. much as possible and have a’

N

general purpose language uxth almost no rﬁn—time systen.

Secondly, -ope can take care of as much register allocatlon

as one uants and use all the instructions aVallable on the .

S
}

machine to have a nedlum-level machine- dependent language.x,

Thirdly, one can specify each 1nstruct10n»exp11c1¥ly,as in a

low-level language}

183

6.2 gggggg‘WOrL Y

<

It isimy opinion that PL370 is' worthy of future\ uofk,

Thé next step shouldAbe the building.of a compiler for the
langﬁdge as defined herein. This smomld be a table-driven
compiler so .that it can be written and changed easily and
quickly.‘ Then a group of systems programmers should be
given the compller to use for a test perlod of from ihrée to
tuelve months. After this time, the language desxgn should

be revised in the light of the criticisms made the users.

Then a high-quality production compiler should be built. If’

there are enough users,_an optimizing compiler should also

‘,;/—f/////

be built.

184

el ’e; ’
Yoy

a

185

Bibliography

1. ANSI : "American National Standard X3.9- ~1966- FORTRAN“
American National Standards Instltute,‘Neu York, VNew
York U.S. A._(1966) :

2. CODASYL :' COBOL Journal of Development, printed by
Government of Canada, Dept of Supply . and Services,
Ottawa, Ontario (1973)

)) . ' . i
3. IBM: S Assembler Language" ° Form GC28-6514,
Internatlonal Bu51ness Machines (1970) ,

‘Q. IBM : "PL/I(F) Language Reference Manual", Form C28-
8201, Internatlonal Business Machines ‘
5. IBM : "System 360 Principles of Operations", Fornm
GAL2-6821, International Business nachlnes (1968)

6. IBM : "Systenm 370 Prlmglples of Operations®", Fornm
GRA22-7000, Internatlonal Business Machines 197&) :

7. iH. Boom : private communication (1974)

8. S. R.. Bourne, A. D. Blrrell I. Walker : "ALGOL68C
Reference Manual®™, Prellmlnary Edition, University of
Cambrldge Computlng Servxce, Cambrldge,_u. K. . (1975)

9. B. L. Clark F. J. B. Ham : "The Pro;ect SUE Systen
Language Reference Manual", Technical Report CSRG-42,
- Computer Systems Research Groyp,” University of
Toronto, Toronto,.oniarlo (1974) 7 ’ B

10, R. Conradl, P. Holager ::“A study of MARY's data types”
in a systens programmlng applicati&a®, in [32]" below,
Pp. 295-309. N N S , N

1. J. B. Dennis’ E "An' Example of Programmlng/ ‘with
Abstract Data Types"%, Slgplan Notlces 10,7 (1975)°

12. . E. W. Dijkstra : -A. Dlsc1gllne -gﬁx AProggbmmlné}
Prentice-Hall, Inc.,. Englewood Cliffs, = New/Jersey,.
U.5.8. (1976) S et . ' /

13. " E. W. Diijtra";."Go-to;Cbnsidered Harmful®, ACH‘11,3 I P

. , : ‘ —
(1968) L \ | '

14, 'J.;D. Gannon :V"Language Design to Enhance Programmlng a
Reliability", .Technical Report CSRG- 47 Computer
Systems - Research Group, University Teronto,
Toronto, Ontario (1975) ’ _

A o !

. - 7 . . 4 . . |

5.

16.

S17.

18.

19.

20.

21.

22..

23.

~ 260

25.
26.
217.

28.

29.

C.>Gray': ALAI: A Lagguagv for Artificial Intelllgence
Master's Thes The31s, Departnent of Computing Science,
The Un1vers;ty of Alberta, Edmonton, Alberta (1976)

A. N. Hahermann :—:‘"Crltlcal Comments on the-
‘Programming Language Pascal"', Acta Imnformatica, Vol.
3, Fasc. 1, pp. 4757 (1973) °

v

,Ce’ A. R. ‘Hoare : . "Hints on Programming Language
Design", STAN-CS-73- 403, Computer Science Department,
Stanford University,, .Stanford, California, U.S.A.

(1973 /.

Ly

B. Kernighan : "Programming in ¢ - A Tutorial®, Bell

Labs @97?)

B. Kernighan : "UNIX for BeginnerS" Bell Labs (1977)

D. . E. Knuth : "Structured programmlng with go to
Statements", Computing Surveys,] (197&) '

: . . .

L. Leader, R. Salisbury (eds.)~ Michigan Tegg pal
System, Volume 3 - Subroutine ang-Macro Rescriptioas,
Third Edition, revised, The Univeristy of . Michigan
Computing Center, Ann Arbor, ulchlgan, U.§-. A. (1973

0. Lecarme, P. Desjardins : "Reply to a Paper by A. N;
Habermann ‘on -the Progranmlng Language pascal", Slgplan
Notices 9, 10 (1974) : .

\

U.S.AC (1972) o RN

P. uaur _(éd.} : "Revlsed Report on: the Algorlthmlc‘

Language ALGOL 60", CACK 6,1 (1963).

J. Pearkins, FMT Reference Hanual,-COmputingzSéruices,
The University of Alberta, Edmonton, Alberta (1976)

e

M. Rain : "MARY Programmers' Reference Manual", RUNIT,

Trondheim, Norway (1973) : .]
M. 'Rain : "Some Formal Language Aspectsgof MARY" or.
"Algol X Revisited", SINTEF, Trondhein, Norway (1972)

M. Rain : "A possible resolution of the subroutine .
calling” reference prqblem in ~ machine . oriented- -

languages", in (32] below, pp. 193-206

M. Richards : “"The PBCPL Programming Manual", The .

Computer .. Laboratory, University of Cambridge,
Cambridge, U. K., 6 (1973) v

b
?

e

M. Malcolm : "PL360 (ReV1sed) A Brogrammlng Language”
for the IBM 360", = STAN-CS-71-215,' Computer Science-
' Department, Stanford Un1vers;trﬁ Stanford, Callfornla,

186"

30.

31,
32.
- 33.
34.

- 35.

36.)

37-

38' :

39.

401

41,

o
-/

b;’Ritchie : nC Reference Mapual", Bell Labs (197?)?

-

R. L. Sites : "ALGOL W - Reference Manualv, STAN—CS 71-

230, Computeér Science Department, Stanford Unlver51ty,

Stanford, Caleorn;a, U.S.A. (1971)

W. L. nan4 der Poel, L. vuaarssen (eds.) : Machine
Oriented Hiqgher Level Languages, North-Helland
Publlshlng Conpany, ABsterdan (197&) ' '

.A. van Hljngaarden, B. J. Mailloux, J. E. L. Peck :
"braft Report on the Algorithmic Language ALGOL 67",
MR88, - Mathematische Centrun,. .Amsterdaan, Netherlands‘

(1967) L f

2N

- 187

A. van Wijngaaréen, et al. : "Revised Repont ‘on the-=» .

Algorlthmlc Language ALGOL 68" Acta Informatica, Vol.

5, Fasc. 1-3".(1975)

D. Webstef (ed) ~: MIS Co!magd Language, Computlng
Services, The UnlverSLty T of Alberta, Ednonton, Alberta
(1976). . :

4“' \\

'N."W1rth : "A Programmlng Language for the 360
,computers" ,JApu 5,1 (1968) ' -

N. leth : "The Programmang Language Pascal"™, Acta

- Informatijica, la (1971)

N. Rirth : "The Programming Language Pascal (Revised .

Report)®,. " Berichte der Fachgruppe Computer

Wissenschaften, Eldgenoe551sche Technlsche Hochschule,
Zurlch Switzerland (1972) :

W. S. Wulf, D. B. Russell, A. N. Habermanpn : "Bliss: A
~Language for 5ystems Programnxng"\\cacn 1“ 12 (1971)

W. Hulf,‘ c. Geschke,: D. Wile, ' J. Apperson e

"Reflections ‘on a Systeas- Programming - Language",

Proceedings of a Sigplan Symposiua on Languages for

Systenms Implementation, ln Slgplan Notlces, 6 9 (1971)

C. . T. Zahn : "sStructured Control 1n programmlng
Languages®", reprinted from AFIPS Conference
Proceedings, Vol. 44, Proceedings of the 1975 “NCC, in
Sigplan Notlces, 10,7 (July,1975) T

~-data

these instructions set the condition
‘effect is ignored in this appendix.

BR \- .
BALR

ED

ic
ICHM
IPK
ISK
LR

L
LCTL
LH
Ly
LPSW

MVI

MVC
MVCL -
BVN
MVO

. MVZ :
PACK:

RDD
SCK

. SCKC ~

SPT .
SpX
SPM.

"SPKA
'SSK

SSH
ST

STIDC.

'STC

STCH
STCK
STCKC
STCTL
STAP

STIDP

STPT
STH

n*STH

STPX

UNPK
WRD

-~ ZAP

t' APPENDIX 1

. exact

exact

copy/

copy

merges for

- eXxact

exact

- exact

exact
exact
exact
exact

modified copy - 51gn is extended

exact
exact
exact

exact copy., except when overlap
copy may be padded

‘exact
~exact copy:

exact

exact
e;act
exact

- exact
exact

exact

. exact
- exact
- exact

éxact
exact
'exact

exact

. exact.
exact-

exact

“exact
exact:

exact
exact
exact

copy
copy
Ccopy
Ccopy
COPpY

COPpPY.

copy
COopY -
copy
copy
COPY
COPY
Copy

copy
copy

copy

. modified copy

copy
copy.

copy

copy
-copy

copy'
Ccopy. .

copy-

copy

CopY

copy

copy

copy
copy
copy
Copy
Ccopy

. GOpY
exact

copy

modified copy

exact

copy.

modified copy

gav;ﬁg and Add;ng 1n IBMASH

The IBN 370\[6] has Rany lnstructlons which
to, from, or within the processor and-aemory.
Lt this

A}

o : oy
- deletes,zoﬁ@gh

inserts zones

may. add leading zeroes

These are:

just
Some of

188

LDR

- LD
LER.

LE
STD
STE

51 inst:dction%i of

exact.
exact
exact
exact
exact

. exact

copy

copy
copy

copy

capy
copy

o S s i P A i w2 S P 4T - D Y Sy U e R S S S L D S e 4 e S

O

wvhich 44 are exact copying instructions._

o .

189

o

APPENDIX I N - o

Sample ngkag_ Declaratlons

o . E) ks

. II.1 IBM S-type Linkage = e

v) . “d 4

g - : ' : S

LINKAGE . S_TYPE o - o
INPUT (PTR coug§::§!sm 1, ey
. PTR SAVEAREA 13, - ~ . oo
RETURN ©14, - ‘ |
ENTRY r15)

~“¢

OUTPUT (INT return code == r15.)
NORESTORE (£01, £23, £45, £67)

-SAVEABEA‘= S_TYPE_SAVE
[. . X
CALL ="~ Q ‘
. RPROC (plist)'s 35
<< BEGIN >> » ,
© INT np = UPB parameter-
- IF np > 0 :
THEN ' ,
PROC parm = (INT i):
IF known (i) -
" THEN << 'a@parameter (i) >>
,EI :
CORP
-BOOL any := FALSE' :
FOR i° TO np WHILE ﬁany
DO any := Known(i) O0D; L ;
<< /% a- partlculat ARRAY (np) ADDRESS x/

+

! . PALIST .parm list >> N
'IF omitted(plist) ’ B
. THEN
> 'ELSE , o ’
- << == plist >> .
PI; T
-IF any
BGOL all~:=‘TRUE; - . - o _ .
FOR 4 TO np WHILE all : -
- . DO all := known(i) OD; :

IF on1tted(pllst) AND all

o 1 o o 191

: . THEN << == >> R
. ELSE "< = T
) S0 FI' e ¢ ' ’ '
R SO parn(1) >> s . “
FOR i FROM 2 TO np j S
¢ © 5 DO << , parm(i) >> op; . -
" IF- known (np) R T T S
THEN << OR 16r80900000">> FI; S e
FI ;- - T
SRR S SE T > T L -
T FORi TO mp ® . _ - L)
bo . - v S . RN
1F wknafi(x) ;)
select fleld(parm 115t 1) = apatameter(i);ﬂ“a‘
2> - B

S RIY . — _) N
) OD. : : .

B IF ﬁknoun(np) THEN ’ ,
TN << select fleld(parn llst,np).(pli) 0R°‘ 16:80- >> co~
R FI' M

k<. rto:= aparm 1lst- >>) B *A N -

PI' R K : :
<< CALL procnane '
© BND - > :
CORP

%paot(hase). ' Lo o R _
/% . implicit GET for each INPUT reglster *Y 6 ot
<< BEGIN - , L , o
" SAVE regsave OF r13 = (r1a,,..,r12); S e
RELEASE r14“ > = ' oo ; - : o

'f IF base ~= r15 N '__ e fp; SR
' THEN = - ST S Lo e
- TEXT br' - - ; g . : , : "

.IF omitted (base) _ : A o e
. THEN br :-»genlab << REG >> - . . :
~ELSE- br := base: << GET >%.
<< REF INSTRUCTION br = r15; . o .

BASE CODE ON br; I : N
3 RELEASE r15; >>) ‘ ‘ o

FI1; Y

‘IP' UPB paraneter > 0 .) - : o

~ THEN << GREG .REF PALIST pllst = rl; "RELEASE r1; >

FI; 4 L : ! .

~ IF reentrant

_ THEN
- IF calls
THEN '

<< getSpace(rO 3,r1-51ze(L0CVARS)+72),

nfxt‘or ri3 :=r1; \

e R ‘ 192

R ~ _SAVE previous OF r£1 := r13;
CT S °r13 := ri; ' RN
B ° BASE VARS *ON ;r43+]2r

>>
ELSE _ _ o R o
<< getspace (r0=3,r1=size (LOCVARS))'; _ P
" . REG REF LOCVARS db := r1; '
y - : PERMIT r13 R
‘ N ‘ ’ BASE VARS ON db;
. 5> . " , :
FI
"+ ELSE . ,
g IF; calls o “: _ _
: THEN) ' oy v ot ‘
. : - 5ﬁ FBASE VARS AFTER CQf3+ [BMAVEARER) ;
L (REG ADDRESS vngiig- (SAVEAREA),
o . ASSERT ~t IS¢ REF ;yW¥eheRy ,
. - . 7~ next OF r13 M%t «;;;QE*J‘..
SAVE previous OF t := r13; '
. T13 = t) >> . - SRR : & '>
o~ ELSE : o . Ly .
- . PERMIT £d3 R Y. e
,j?/ S BASE ‘VARS AFTER cous- >> X :
i ORI , L _ . PO S
FI o o .
CORP '
EXIT = | - L '
 %PROC (INT rc): - SRR
e &K 5 D2 o ' .
" IP calls
‘. THEN ’

IF reentrant THEN << ‘rt := E#Q?A>> FI:
* << - RESTORE r13 := previous OF r13 >> _
IF_.reentrant THEN << freespace(ro 0 r1). > FI
FI. .
<L RESTORE rl“ = (regsave OF r13)(1), >>
CASE result T o
IN VOoID: << RESTORE 10 := (regsave OF r13)(3) D 5 2
' GENRL: << r0 := result >3, o
LONG INT: << dQ = result >>,
~ LONG REAL: << ' (RESTORE (regsave o# r13)(3),
- : 1£fr0 := resu{t) P>
REAL << (RESTORE rO := (regsave OP r13)(3),
- fro := result) >,
SHORT REAL' << (RESTORE r0 := (regsave OP r13)(3).
. sfr0 := result). >>

- OUT _error("can't return " + result) o '
ESAC;
. €< ;° RESTORE (r1,...,r12) = (regsave OF r13)(u 15)
' . END > ' ,
e CORP = = ‘ ' R »‘/fw

-s
N

Y
- CALL =

II.2 - ALGOL68C Linkage

MODE A_TYPE_SAVE =~
STRUCT (GENRL saverQ,°
RETURN saverl,
ADDRESS saver2,

REF INSTRUCTION saver3, ' saverﬂ, saverS)3

LINKAGE A_TYPE =

INPUT (RETURN r1,
'REF GDSECT r13,
REF SAVEAREA ri4,
ENTRY r15): o

’ . . ’

14 .
SAVEAREA = A_TYPE_SAVE
S U

#PROC : o
INT np = UPB parameter;
.<< @DQUBLE >>
IF 'np > O ‘ ©
“THEN
<< CONS PLIST parm lxst
FOR.i TQ np DO <<
<<) > - e
“ELSE

Z This t*parm list?,

o £ parameter list.
3 BYTE ‘parm list; >>
FI; , :
<< 14 := @parm list;

CALL procC name

ERD >>
CORP

-

"ENTER = .
_XRPROC : ‘
IF -reentrant 'THEN error
<< BEGIN e

% register - synonyms
ADDRESS . plink == p1, pp

base == r3, neu
OPEN r13; ’

~ GET REF INSTRUCTION r3 =
-BASE CODE ON r3; . REL
GET ADDRESS, r2 = ril;

SAVE reg save OF rifivw=

¢ MODE GDSECT not defined here

4

ré6, 1, f8, r9, £10, ri1)

)

: -

C i Rt B
{f | ﬁ?*“§§
b ko

= (parameter (1) >> .
parageter (i) >> OD; AN

AN

) ‘ oo L.
<< # We need the address of the next available byte
¢ on the stack (for the callee to use (see below).

of course, is NOT really a

‘FI1;

x/
== r2' ;
p == rl4;

(ro' L -,1'5)]
ri5;
BASE r15;

193

e .
RELEASE r14; .
BASE DATA ON r2; RS
>> ' :
IF UPB parameter > 1
THEN o ‘ ' .
<< /% first tdata' is the parameter list
. /* Reserve it now =/ '
PLIST parm list; 4?
o OPEN parm list; >
FI ' :
CORP
L.
EXIT =
%PROC :
CASE result . -

IN® , .
- "~ YOID: << SKIP >>,. . S
A\, INT: << GET INT r6 := value.~ >>,
" . . CHAR: << GET CHAR ré6 := value >>,
PR BITS: << GET BITS r6 := value >>,
' © 'BOOLEAN(1,0): << GET BOOLEAN(1,0) ré6 :=

*/

value

ADDRESS: << GET ADDRESS r6 2= value = >>,

BREAL: << GET REAL fr2°:= value >>, -

o ‘ "BYTES: << - - GET BYTES fr2 := value >>
OUT err . ’ . o
ESAC; B _ _
<< ; RESTORE (r0,...,r5) := save regs OF r2
. "END >> e - :
CORP
LY
(S
J

194.

>>,

-,

