NationalLibrary

- of Canada .. du Canada

U . Canadian Theses Service

- Ottawa, Canada ’
K{A ON4

T
(s

- CANADIAN THESES. -

_ NOTICE R ,
The quality of thns mncroflche is heavily dependent up0n the"
qualny of the original thesis submitted for mlcroﬁlmmg Every

effort has’ beer made to ensure the hlghest quality of reproduc-
tion possnble . o .

K Itpages are missing, comact the umversny whlch gramed the -
~ “degree.

- Some pages may have indistinct print especially if the originat,
~ pages were typed with a poor typewriter ribbon or |f the univer-’
- - sity sent us an |nfenor photocopy

-Prewously copynghted mauals (Journal articles, pubhshed
“tests, etc.) are not filmed.

Reproductlon m full or in part of this film is governed by the
Canadlan Copyright Act, R.S.C. 1970, c. C-30.

" THIS DISSERTATION -
HAS BEEN MICROFILMED
EXACTLY AS RECEIVED .

1

-
NL-339(r.86/06)

' B|bhothéque nat:onale .

IR

Se_rvnces des theses canadiennes -

THESES CANADIENNES -

o AVIS

La quamé de cette microfiche dépend grandemem dela quamé
" de la thése sournise au. microfilmage Nous avons tout fait pour

assurer une qualnté supéneure de reproduction.

S'it mangue des pages, veuillez communiquer avee funiver-

) ~6ité qui a conféré le grade.

La qualité d'impression de certaines pages peu! laisser a

- - désirer, surtout si les pages originales ont été dactylographiées

a raide d'un ruban usé ou si I'université nous a fait parvenir
une photocopie de qualité intérieure.

Les documents qui font déja f'objet d'un droit d'auteur (articles
de revue, examens publiés, etc.) ne sont pas microfilmes.,

* La reproduction, méme partielle, de ce microfilm est soumise

4 la Loi canadienne sur le droit d'auteur, SRC 1970, c. C-30.

LA THESE A ETE
" MICROFILMEE TELLE QUE
NOUS L'AVONS REGUE

- Canadd

The University of Alberta

EXPERIMENTS IN CHESS CAPTURE SEARCH
. N b /

- "

by

Prakash Bettadapur

»

‘ , A thesis
submitted to the Faculty of Graduate Studies and Research -
in partial fulfilment of the requirements for the degree .
.of Master of Science) '

Department of Computing Science

o

Edmonton, Alberta
- Spring, 1986 -

AN

I\

Permission has been granted
to the National Library of
Canada to microfilm this
thesis and to lend or sell
copies of the film.

(4

The author (copyright owner)
has reserved other
publication rights, and
neither the thesis nor
extensive extracts from it

may be printed or otherwise-

. reproduced
written

without his/her
permission.

i
t

S ISBN ©-315-308253-4

extraits de
doivent

¢ -

L'autorisation a été& accordéce
a 'la Biblioth&due nationale
du Canada de microfilmer
cette thése et de. prét@r ou
de ‘'vendre des .exemplaires du
film. o

L'auteur (titulailire du droilt
d'auteur) se ré&serve les
autres droits de publication;
ni la ‘the&se ni de 1longs
celle-ci _ne
.8tre ' imprim&s ou
autrement reproduits sans son
autorisation &crite.-

- ' -

THE UNIVERSITY OF ALBERTA

RELEASE FORM

S

NAME OF AUTHOR: Prakash Bettadapur
TITLE OF THESIS: EXPERIMENTS IN CHESS CAPTURE SEARCH

DEGREE : Master of Science
YEAR THIS DEGREE GRANTED: 1986 S N 2

Permlssxon is hereby granted to The Umverstty of Alberta Library to
" reproduce single copies of this thesis and to lend or sell such copies for
private, scholarly or scientific research purposes only.

The author reserves other publication rights, and nexther the thesis mor
extensive extracts from it may be printed or otherwise reproduced without

the author s written permission. . ‘ _ ,

R . v, / ' o ~
. (Signed) “?....L'*';M%mw.@ et
Permanent Address: |
1320, Nehru Nagar,
MANDYA, INDIA 571401.

Dated 21 March 1986

THE UNIVERSITY OF ALBI;IR'I‘A(

. ! A
i

“ FACULTY OF GRADUATE STUDIES AND RESEARCH

'i‘he undersigned certify that they have read, and recorﬁmend*to the -
Fac.ulty of Graduate Studies and Resean_:h for accebtance, ag‘thes’is ébtitled
.Experiments in Chess Ca.pt‘.‘ure~ Search | sdllbmitt,,ed,“ | By
Pr’akash.Bettadapur in Sartial fulfilment of the req'uirement-s)’ for: the

degree of Master of Science

Date March 21, 1986

e

-t~ —

[

To My Parents

iv

&

—

1S better to do capture search to an unllmxted depth

ABSTRACT

Capture search .in ¢hess is an example of a tree searchxng apphcatlon
 The- capture analysis, an expensxve part of any ‘chess program, checks for
‘quxescence at every leaf node of a depth limited game tree. A snmple capture
search is 1mplemented w1th hmlted hardware support, to study whnch
hardware and software aspects “caqn lmprove search cefficiency. Three expen-
ments are discussed, specxﬁcally, the performanCe compapisons order experi‘-
ments and the depth experiments study the eﬂ'ect of applying algorithms and ‘

heuristics to capture search.

Al

‘ Performance measurements suggest that the expensive\’part of".capture
search, - move generatlon can be made faster“usg ng bitmaps, but thls
1mproved performance may be lost if the moves cannot e provnded to the
. search mechanlsm efficiently. Move ordering ;s 1mportant ig search efﬁclency
Inlthe order expenments the capture search is done Wl\h different- capture
orders and their efﬁcxencxes are compared, The expenments indicate that
ordermg the moves usnng the heuristic of ﬁral capturing the btggcst prcccs by.
the smallest pieces leads to the most eﬂiclent search. In the depth expen-
' ments the capture trees are searched to varylng depths The resultlng error
nand the reductlon in tree size for depth hmxted capture trees are compared t
the correct values obtalned thh nd depth hmlt *The expenments show that

;selectxng a search depth leads toa lradcoﬁ between error and savings. There™ '

is'no optlmum search depth with' maximum savmgs and minimum errqr, so it

‘ Acknowledgements.

I would like to thank my supervisor, Dr. T. A. M‘arsland‘ for his gﬁidance
and support,'and for his patient reading of the thesis o Suggest corrections. | |
wo;xld like to express my appreciation and thank Dr. J. Schaeffer for his con-
stant encouragement and guidlance.‘ , .

My thanks are_-to the other comr;ittee members, Dr. W. Dol_)osiew-icz and
Prof. W Joerg .for their val'pable comments on improving tlljlis thesis.

Finally, I gratefully acknowledge Pirlxky’fpr her co':ntvinual lo&e/ahd sup-

I

port, which made things much easier.

N

Table of-Contents
. P
Chapter ‘ ‘ . T N :
Chapter I: INTRODUCTION e S e e,
1.1, Tree Searching
I.2.Q?apture search L
'1.2.1. Hardware support et eeeeer et eveeees e, e e
'1.2.2. Effect of order-on-capture search .i....................... e _‘
'1.2.3. Search to different de‘pths e JERR SV
Chapter 2: .

: BACKGROUND AND SURVEY OF ’I‘REE SEARCHING IN CHESS

2.1. Why Chess? ... L SRS SN
2.2. Deﬁnmon of BermS ...
2.3. Tree Searchmg in Chess S U TUE TOTORURIO
2.4. Components in tree searchmg T SO PO ORPUOP ORI
2.5. Role of quiescence search et e, :
Chapter 3: IMPLEMENTATION OF CAPTURE SEARCH
3.1 Why Capture search7 ;...;..; ...
3.2. Implementation’ consxderatlons R, S
'3.3. Capture search. 1mplementatlon rulese............. et e '
- 3.4. Archltecture of capture searchm...................‘...'.-.';, eerenn
3.4.1. BOARD ...l \ SOOI
3.4.2. Gapture ordenng ROM’................‘..,. e RERIN
3.4.3. Legal moves ROM:......................... e e
3.4:4. RAY_LOGIC S SOOI e i
3. 4.5. Stack MANAGRMENtooovweeieeectors o iereoeesooooos o)
3.4.6. CONTROL ...l S
3.5. Implementation on the MC68000 processor Lo, '
~3.6. Limitations of the Implementatron e e,
37 Lxmltatlons of hardware for tree searchmg e
Chapter 4: PERFORMANCE COMPARISONS T O
4.1. Test positionsi........7...... et SO
4.2, Measurements SR
421 Profiler ... SRR PO
 4.3. Results reedenii s /
4.3.1. Initial performance 0 Lc_g,&m,x\re search ...,
- 4.3.2. Improvements SO AN ertsatretenne et nt s
e

o

4.h3.3, Prbﬁling capture search e, e 41

Chapter 5: EXPERIMENTS 43
| 43
45
47
49
! 50
5.2.4. Comparing orders 2, 5 and 8ccoevoeeeeroo - 51
5.2.5. Comparison 7: Benefit:of sorting moves e et 52
5.2.8. Overview of the order expenments UV 53
5 3. Depth experiments eeeeeaans ederenrenns e e 54
5.3.1. Experimental set-up e e e 56
5.3.2. Error measurements e JERUR e, 56
©5.3.3. Savings .ocoooieereenn e, U et eeeeeens, B8
5.3.4. Savings versus erforocoooevvueevrn..... S e—— - 59
5.3.5. Search to even and odd depthsococooooiiiiiiniin 61
5.4. Conclusionsccceeeieeeeivvennniiiiii, e e . 62
Chapter 6: CONCLUSION§oc..cc... e cveeeiene 64
References e e 67
Al: Order Expenments U TOURUS SURUR 69
A2: Depth Experimentscocooooiiioiimiioee oo ‘70
>
¥y
<
. N)
x - ; i o

viii o

Table _

L List of Tables
\‘ N .:pk : ' . I f »

‘4.1 Performance Comparison U SRRt beeeen

ix

yeeesasase

4>2 Profiler results e r ettt veeeees
51 Comparison-1: Comparing orders 1a, 1and 2c............... feneeeente
5.2 Comparison 2: Comparing effect of attacking pieces e,
5.3 Comparison 3: Worst case alpha-beta, ...
5.4 Comparison 5: Comba.ring orders 2,5and 8 ...
5.5 Comparison 7: Comparing order 1 and order B NS
; . b
.)
e
. .

480
49 .
50
$1:

82

‘.%’:

»'._. .

P 1f_ .

e

: e R

3 :c ¢

-~'.;' .. "

o . o
S N

o - o

D
v T

" -
.

List of Figures

Flgure : R | S : B S A | ... Page’
31 ARRAY_LOGIC Loglc Ior legal moveﬁof Shdlng Pleces S)
.. Fekeseesssnie s e 28

32 .&RRAY_LOGIC et , e 20
' _7:"' 3. 3 Block Dlagmm tor Capture Search ervmmee e e s e e, 31 .
3 4 The Noh recursnre Algonthm used i in Capture Search - ‘

thmierteiteitesiderteiaesinaraneas Rersesengsthiraietestnantansercarnan -...g..........................;.-

4. I Desnrable mstructlons on MC68000 for efﬁcxent 1mplementatxon o

32.

' 5 3 Nodes searched Versus Capture Orders 53
5.4 Error versus Depth ...-..,.'..,.4._..:..;..;,.}-,A_.,._..., teeteseeee e 5B
5.5 Savmgs versus Depth ... , 58

5. 6 Savlngs vérsus Error - Gl 60

: L
- v
’ .’
[. ~ N
" - ¥ .
R BESEN :
/ L K B T .
S . o c
[:
A . . .
L T 7 ‘. Wl ‘L \J T
A
A . . Ll
©. Lo o Tl - "
B . / -
: g . . .
N i ,. »
N . T
v A
s e ‘
LY
o "' : L3
PR
L4 , N
Lv’,
PR P \
o . N
. \\ 7
X

N
N _ Chapter1 S : s

INTRODUCTION

Conventional computers-are not suitable for somevwell'deﬁned special-
ized apphcatlons because traditional machine architecture is designed for .
general ‘computation. Computers are inadequate because they cannot sup-,)
-port specrallzed data structures and the necessary control structures to han- -

dle such data Thns causes a gulf between the archltecture and the appllca—

G
tion [Mye82] and is the. reason for meﬁicrent implementation of many prob-

lems

.-z ‘ - - v) N ll
. One approach to efficient problem solving is to bu‘ild a machine with an’

appropriate archxtecture for each class of problems Another approach is to .
. :

bu11d a microprogrammable ~machine and an emulator for each problem
1]

d()main' Yet another method is to reduce the gap between the archltecture on' ,
one side, a,nd the High-Level Language and user s appllcatxon on the other, by

desxgnmg specxahzed pnmmves to handle complex components of a problem
. 2 e :
“ The best solutlon mlght be a comblnatlon of these approaches

| Many other factors for eXample the algonthms chosen the heunstxcs':
used and the technlques gpplled also 1nﬁuence efﬁclentéroblem solvnng A[i;.‘,

: ‘dlscussmn of these aspects and measurement\of thé 1nﬁuenc1ng parametersﬂ'

Il

__‘help to make the appllcatlon eﬂiclent | o FE ,

qu - . i . L

Accuracy of solutlon must be. consndered in problem solvmg appllcatlons

Much eﬂ‘ort may be necessary for an- accurate solutlon If some error cnn be

1]
i LA

X 'tolerated then problems can be solved w1th less expense A knowledge of the

' resultlng error can help in solvmg a problem easrly, w1th less eﬁort

L

oy
* -

» 1.1. Trée.S‘ear'chi_n’g
-, ¢ $ ¢ . - .
g 7 Tree se,arching is the only method available for solving some important
$. problems Programs adopt- many heuristics and techmques to limit the size of
4

;
the searcl tree, since searchmg a large problem space can .be expensrve

A .
.

Heuristics can be applied to gulde the search towards a.solut'ron as for exam-

ple in-_the traveling salesman problem A city that is near is consrdered

S

bel'ore a clty that s far away,,m .solvmg for mmlmum total travel distance.

Techmques can reduce the size, of a search tree by adoptmg efﬁcrent algo-

[N

‘rithms. The alpha-beta algérlthm applled tb search a well ordered game tree,

cuts the size of the search tree"sngm‘licantlx. L o .
- CY) ' oe L .

. T , , |
Game playing Programs adopt'tree«searcl}i‘hg and have long been a popu-

* lar area %f &rtiﬁciﬁ Intelligence refbarch. They are easj(to implementasince
_ . T s . E I T :
they are well defined in a fommal, rule-boupd_ manner. Many games can be

]

. - : . ' . e ., .
considéred to-represent models of real wor¥d situations. They form an experi-

-~

4

: T . o Y A L.
mental domdin where progress can be quantified, and' any “progress in

. . . % oG
research’is available for display. - ° ' ’
¢ l _— , oy - . [’i
- N A
. . . - : [4
.1.2. Capture search * A
- - ' . ' . ;ﬂ

Vo q -~ . ., e g »
In chess, programsse&arch a_depth-limited tree and evaluate the leaf

- nodes. The evaluation- ‘may. result in bwro'n’g values if the nodes contain forc-
1 ' N
' mg moves So the leaf nod’és are checked l'or qurescence by llmltmg the search

o

- to onlv captur%s checks forks and threat moves Thls forms the quiescence

.
2 ’°

: search’ Some programs consrder only capture moves for a,nalysrs This cap-

‘ ll Yy
ture sgarch l'orms a computatlonally expenswe part ol' the node evaluatron in

| chgss p.:-ograms-, usually, constltutmg about 50% of, total search eﬁ'ort [S1A83).
o e A ’ ‘ .) _' .

L . . a ¥ o
. n . L. < . <
A 3 v . -
g SR L. AN
P e -

\ 3

. ~ }
It is well defined and self terminating, but involves the complexities of move

generation. (

The aim/v\v‘as\to’jiscuss the hardware and software assists thn‘t can be
provided)'or capture search. Implementing the capture search in hardware is
desirable for better performance, but simpliqity is also a factor that must be
c%nsrdered Best capture ordering can be :i\etermrned by performmg the
ée#arch in various orders and comparing their performances To compromise
the search effort with error in search, it is necessary to terminate thc search

to different depths and compare the error and savings values. Several experi-

~ ments were conducted to address these issues in this thesis.

A

l‘.2.1, Harglwore support . .
“Game playing programs u‘sual.ly requ)re a step‘ towards the goz;.l node as

solutloh (lll\e a move ‘In chess) instead of a path from the start node to the

goal««node (as in the travelmg salesman problem) So programs search a

. depth-lim 1ted tr¥e wrth the assumption that the evaluation of leaf nodes
: (
truly represents nearness to@]e goal node.- Searchrng a deeper tree gives a .

more accurate solutlon (as seen in chess programs), sO prpgrammers demand

\

faster execution to search deeper w1th1n the specnﬁed time constramts (like

’

having to make a-chess move every three minutes). Since the final problem .

solving is on hardware, faster execution requires more eﬁicient hardware.

1,
b ‘o

The structure of mo*\st computers 'is not well suxted for chess, since the
fundamenta.l data ‘and control structures are notusupported Many chess
achmes a(re burlt with specrallzed hardware. Although successful they are

_complex and cannot be easily improved (e.g., BELLE [CoT82] Some prob-
A

v "
o Iy~
-
. LAY)

lems are caused by an inadequate understanding of the problem itself. Only a -

well defined applicatiop can be completely supported by hardware. The cap-

ture search is suited for such an implementation.

Effective and simple hardware support can be provided by supporting
the expensive and complex part of tree séarching, the move generation. By
encdding'moves of a piece from a square to all other squares of the chess
board in an array of sixty-four bits, we can form a move bitmap. Simple]égi-
cal operations on bitmaps can generate the moves. Such a design provides a
simple alternative to cpmplex rrlove genera'ti'on logic of special hardware chess
mgchines. With the alpha-beta algorithm, .more cut-offs are possible if the
best "move is “e;(amined ﬁrs\t‘. The hardware chess machinbes generate and
examine moves in sorne part'icular order, by having a complex priority c.ircuit
to provide the "next best move" for search. A simple mechanism for providing
the next best move is possible by stor’ing’ all Sranches that can be generated
at a ngﬁ, and exanrining them in the desired order. A large ROM stores
every piece-pair combination, so the branch of the tree that mlrst be gen-

-

erated next at a node is conveniently obtained.

With these considerations, a program for capture analysis was written in

MC68000 assembler, and mterfaced to the TlnkerBelle program. The per- |

formance is compared to kaerBelles capture search Some problems and

w

limitations in utilizing hardware for tree searchrng appllcatrons are exylored

"and discussed.

* A chess program, developed by K. Thompson (Bell Laboratories, Murray Hill, NJ),
which participated at thgzU .S. Computer Chess Championship, ACM National Confer:
ence, San Diego, CA, 197 .

N
V.

w

When all the forcing moves must be considered in a hardware implemen-
tation of -quiescence search, what aspects are involved? What hardware sup-
port can be provided? Ho.w:can the hardware be provided for functions like
node evaluation, move selection and move ordering in a typical tree searching

Q‘ application? These are eome‘ivssues that are also addressed.

1.2.2. Effect of order on capture search

i
L4

Move ordering is known to .be important for search efficiency, since the
alpha beta algorithm produces many more cut-offs on a well ordered tree. In
game trees, the value of the pieces and their positions must be considered in
obtaining the best move order. Programs‘isearch capture trees in diﬂerent
orders; some consider the value of attacked pieces only in ordering the searchv,
whereas others considei' the diﬂ"erence in the value of attacked and attacking
pieces. For example, BELLE [CoT82] examines the capture of biggcst pieces
by smallest pieces first, whereas’ some others [GECS67] prefer to ex'amine the

- captures with highest material value diﬂ'erence captures first. It is not clear
‘which is the, desirable order nor how the efﬁcnency of search is affected. The
pieces on the destination square of a capture move play a §reater role since

~ they alter the total material estimate of the node after the move. When the

xnoires are generated m a random way, . the value of attacked pieces are

not consndered in a move ordering mechanism (which is likeiy the case when

the moves are generated for each attacking piece) it is interesting to quantify

the §earch efﬁciency.‘ Many o't_her'ordei;ings are posalble, and how they affect

the search can be seen only by conducting capture seatjch. with different ord-

. -
*

s

\ ers and comparing them.

-

14

The flexible move ordering prbvi‘ded by‘ R'OM data is used to search the
captu‘i‘e tree with different orders and explére the effect o(&order on the
eﬁilcie‘i)c_}_{ of the search algorithm. These "order” experiments are‘performed
on two sets;l; ;es’t"positio'ns and the results are discussed. The experiments
clearly‘show that capturing the biggest pieces from smallest pie/ces provides

the best order for examining the moves. o,

I

1.2.3. Search to different depths

When search is used as a strategy for problem sélving, it is possible to
look at all the possibilitie§ amf’géan optimal solution. A ‘partial search
results in an approximate solution. A covnpromise with e);ecution. time and
reso‘urce's ‘available‘ may force one to live with some error. In capture analysis, .
-the.‘séa‘rch should termgnate in a quiescent position, but a depth-limited cap- |

ture tree search results in evaluating non-quiescent positions, thus returning

o

i

with some unknown error value.

' *
Many competent chess proirjns search capture trees to different depths

and compromise the effort speet’ and the error thiat can be tolerated. For

example, Phoenix [Sch86] searches a capture tree to an arbitrari' depth. The

TinkérBelle prégram’ séarches to only 8-ply deep, befor;a returning the \{al‘ue

of thg' subtree. Many microcomputer prbgfarhs do dnly a stat_ic analysis of

‘ vi_iqaptiures to estimate the QUiéscent value of a position [Kai85]. The experi; ,
' menis to qnaantify, the error and‘the,savings incurred iq a s‘éar"ch/to’ different

depths, hely.p in designing capture s‘;arch -for ’fu(ture chess programs.

~ The error in searchin.g a capture tree of depth d is defined as the ratio of

the number of times the search returns an error value as compared with

N |

searching a capture tree of arbitrary depth, to the number of capture trees
examined. The savings is the ratio of the saved nodes on searching a capture
‘tree of depth d, to the total nodes searched ou an arbitrary depth tree. A set

of "depth” experiments have been performed on two sets of test positions and

' "._"t‘he results are discussed. Though the savings values obtained are different for

£ x

‘the two test positions, the error values suggest that a deeper search is desir-

able for an accurate solutioh. . -

~a

&

Chapter 2
BA@KGROUND AND SURVEY OF TREE SEARCHING IN CHESS

“ -
2.1. Why Chess?
.

Chess has been an intriguing problem for res.earchers interested in
machine intelligence.and‘is an ideal problem for experimentation, since the
game is clearly deﬁned---in terms of the allowed operations (the legal moves),
and in the final goal. It is neither too simple to be trivial, nor too complex to

_obtain a satisfactory solution. Mathematically, the problem can be solved.
. ‘but computationally it is intractable. The game tree for chess consists of

[

over 103 legal chess positions [Sha50] and at a rate of 10% nodes per second,

§
it could take up to 1030 years to search. The problem is so]ved to the best
approximation w1thm a time constraint, like making a chess move in three

minutes.
The\type of trees that are looked at are for two person, zero sum, perfect
information games, known as adversary trees. A game tree,need not be an
| adversary. tree,\ for example, in Go, a player may, pass. his turn with the .
opponent’s permission, thus .allowilng him to make’ twp or more successive ;
}, moves. They need not be perfect information garnes e.g., Backg‘amvmo'n,
where a move is based on i‘he resvults of dice. T‘hey’ rxee'd not be two person,
zero sum games, e.g., Bridge, vrhere there can be collaboration. Thus chess

forms special trees and this makes the search much simpler,

Currently available chess prograrns play. much bétter than those in the
70’s. Slnce Shannon's classic paper [Sha50] appeared in 1950 performance of

chess programs has 1mproved consxderably Research has resulted in better ~

'w

\,&}'"

Aalgorithms, techyniques and representations. The computers.are more capable,
many run chess shecific algorithn“fé. A computer that runs six times faster
usually adds one'ply _ thve search depth of a brute.force chess program, thus
increasing its playin trengtih‘ by nearly 100 Elo points [WeB85]. Mastel" level
programs like BE E [C~0T82],'HITECH [EbP%M] and CRAY BLITZ [Hya85].
search a de of eight to nine ply in a typical middle game, where thﬁere is an
erage branching factor of thirty-five. Th\e"‘ annual comp‘uter“chesg cham-

pionships provide a good measure of progress in the area.

L

2.2. Definition of terms
To map a chess problem to a tree searching abplic‘ation, it is necessary to
describe some chess specific té"'r’ms. These terms are used frequently in this

thesis. Definitions of many other terms. can be found elsewhere

[AAB70,Ber74]. &

An estimalor \01; evalualor for the ter_minal nodes of the search tree cdﬁ-
sists of a material component and a positional compénent‘,l The material"‘
éomponent is obtained by adding the (arbitr.zllrily, l‘mt consistentfy) assigr;ed
va.lues for the pieces on the board. The posmonal componentf is based on

corﬁplex factors, such as, pawn structure, piece posmon and - king safety

[

‘Each component's relative weightings vary, depending on the situation of the
game and the strategy adopted. e ; b

A capture is a move from a2 node at depth d to a'node at depth d+1 (a

“ply), in which there is a change in the material ba’la‘n"'cé.\ A king is in chgck' ‘
4 when he'is attac\ked and is Subject,,té capture in the next mo#e. A check malé" :

_is a "game end” condition, in which the king in check cannot escape the .

- c—

s

10

a“ttacﬂk.

A move by the opponent creates a threat on a piece, if the piece is forced
to move from its present location. Whe;r'tw'o or n?’ore pieces are threatened
by moving a piece to a key square, the threatened pieces are said to be forked.
Berliner defines that, "A piece is pinned, if moving it would allow the éapture
of @ more valuable piece of its own side, when such a capture would not oth-
erv&is_e be possible” [Ber74]. A piece is said to be en prise if it is ctljrrently
under atfack. A piece is said ‘to be hung if it remains under attack even after
a move.

A capture search is the search through the subtree ir; which branches are
- ‘the capture moves and evaluation »inv}j")flves orﬁy the material balance. A
quiescence search is more general in &ét, the subtree searched terminates

‘only in a tactically "quiet” or "dead” position. Complex conditions like forks

and threats may also be considered:

A brute force search is one in which all moves are considered to a depth
D, which may. be fdllowed by a quiescence search up to a dead position. A
selective search is one in which 1mplaus1ble moves are ellmmated and

amongst the rest, only a few are selected for exammatlon by the search algo-

-~

rithm.

" um

11

2.3. Tree Searching in Chess

A chess program gea}ches a tree whose branches represeng, ‘moves and
whose nodes represent positions. The program searches Im/inim%x trees like
those produced by any two person, zero sum, perfect informatiot; game. The
object is to find a best move to play, so the program chooses a path that can
lead to the highest valued leaf node, under the assumption of best play by

both sides. Searching the entire game tree is impossible because of its size,

W T
g

programs usually limit the search tree to a fixed depth. Terminal nodes are
then evaluated to estimate their "nearness” to the goal node. Often, términal

nodes may contain forcing moves, which will be examAin‘ed by a quiescence
search. -7 o : "
Many algorithms can be applied to the search procedure of a minimax

tree. The most importan"t.one comes .from,tbe“oalpha-beta algorithm -[KnM75]

because of its snmphclty Tbe algonthm is dxrectlonal and the moves are

examined depth first. Seaﬁchmg the best move first results in maximugtcut-

T X LD S

offs. This suggests that when moves are generated at a node they*n'mst be* 4
- ’ ‘,,,f o

sorted befo “Me'mg provnded to the search algonthm A knowledge of. the prg\’]

""‘7'_%('erred order may permlt the generatlon of moves in that order and make%he
. , i B
search more efficient. - . A _ o

A"

14}

12

2.4. Components in tree searching

»

" There are three main components in tree searching; subtree generation,
‘evaluation of the nodes, and examining them to find a variation. The alpha-
beta algorrthm (Algorithm 2. 1) [CaM82] is illustrated below in a C/Pascal-like

i E

language to explam these components.

D 00N Dk 00—

alphabeta(p : position; a, b : integer)
m 1 t, w:integer; | ‘
if (TERMINAL(p)) return (EVALUATION()i '
w = GENERATE(p) /* Successors p; */
m = a;
for 1=1 to w do
t = -alphabe‘ta(p,, -b, -m);
10... if(t >m) m =t :
11. if (m >= b} return(m) /* cut-off */
12. -} .

13. return(m);

- Algorithm 2.1: alpha-beta

. .~\ i ’ ‘
‘All th‘e xnoves are gene‘rated by the function GENEMTE sorted and supbl

: phed to the search mechamsm (hnes 7 to 12). TERMINAL(posrtlon) is true if

the posrtron is a leaf node of the search tree: EVALUATION(POSitwn) returns

-”vf"'v'vgf'the estlmated value of the posxtlon Programs use the ztcratwe deepenmg' '

. --".":ftechmque [SlA83] to search SO that the succesSors can_be evaluated and re-f»;’

‘ordered bel‘ore the next level is. explored Elﬁclency is obtamed because the"

S ,-;,"‘:moves are examlned in the preferred order In Algonthm 2 2, NEXTSUC- -

Ly

: "-"",'.'CESSOR has to generate branches in a surtable order to obtaln cut-oﬂ's l -'

-f."}}_;'vusrng the alpha—beta Although each of these versrons mamtams data struc- h

T b-._A‘-"-_'tures that are speclahzed to the applxcatlon the ﬁrst algonthm must also o

13

alphabeta(p : position, a, b : integer)

£ integer; p’ : position; !
it (TERMINM(p)) return EVALUATION(p);
loop:
= NEXTSUCCESSOR(p);
~if (p’ == nil) return (a);
t = -alphabeta(p’, -b, -3);. -
if(t >a) a=t
if (a' > = b) return (a);
‘goto loop; o

PRNP DR W=

[
O = O
——

N
o

Algorithm 2.2: alpha-beta for generating moves one by one
. \) .

’ maintain all the branches at each node the algorithm has ¢raversed. In the

second case, a status word at each node can indicate what branch must be

generated next. © K,
: . L

S

Subtree generation mechanisms in -software typically generate ‘all the
rnoves into a1 rnove-list. This approach has some advantages and disadvan-
- tages. The move-list can be generated tn any convenient way, while a
separate s.or’ting phase can follow. It requires much less effort to generate all
the moves "from a piece, " than' generating‘all the mores_'"to a square.” The
. latter approach produces the moves in. a desirable order (shown later in
Chapter 5) while the former one can be\tpg expensxve to search- (also illus-
'trated in Chapter 5). . S __«j“ U N

Generatlng the move-llsts can beneﬁt from parallellsm in the representa- -
“tion. For example when bltmaps are used all the moves "from a. piece” cany'
be obtamed wrth relatlve ease. These mOVeS can be sorted and given to the.‘ :

ES

search mechamsm Sortlng adds complexnty to the move generatlon process

¥

"t ‘ , 14

since additional data structuresl‘are required to store move-lists at each node.
Sortmg is mexpenswe compared to the cost of move generation (illustrated in
Chapter 4). . , ’

K]

When an ordered move-hst is examined by a search ‘mechanism, a beta
cut-off can occur early, and terminate processing at that node. Much effort is
wasted in generating moves that are eventually . cyt-off. However, when
moves are generated one by one in an order that induces cut-offs, less effort is

wasted.

Several oether'op'timization’s can be applied to move generation in
. :

software. Vector processing in machines like Cray [Ibb82] helps in vectoriz-

ing sequen\ces of operations for move generation. Move-list generation requires
.the intera]ction ‘hof;pie;ces w'ith all the other'eqnares of the chess board (sixly-.
four squares). The Craya compdter supports sixty-four element/vector regis-
ters and the control structures for handling vector data. By choosing
appropriate data (structures (like holding a piece. of information correspond-
mg to a square in an element of vector regxster‘) vectoriz-ation can be made‘

more suxtable for chess [Wen85] CRAY BLITZ [Hya85] a chess program run-

nlng on a Cray computer uses such d:echmques

-

‘ When a snngle procesSor handles both move generatron and search the
problem of dlvrdmg the work or optlmally u lleng the hardware for move"»
vgeneratlon and search does not arise. When move generatlon is done by"
. chess speclﬁc hardware generatxng all 'moves at a txme mto a move-list under' 2
. t'utlhzes such hardWare For example, dunng the search phase, the generated“

"move-hst s used and the move generator remains 1dle There is also an exl:ra‘ '

'cost assoclated w1th updatlng the board w1th each mOVe whereas generatm“.. |

‘15

and making a-move at the same time is less expensive.

Move generation mechanisms' in ‘hardware are _charaeterized by extract-
jng the moves one by one. This technique has the advantage of not requiring
support for complex structure like a list of moves. Sortmg is eliminated by
generatmg the moves in a desxrable order. The implementation efﬁclency is
Armprovedeby not generatmg the moves’ that are cut-off by the search algo- ‘
rlthm NEXTSUCCESSOR of Algonthm 2.2 must be_able to generate the

possrbly “next best move” from the moves not yet generated at a node. To |
" select the "next best move” from a set of all possxble ‘noves.at a posntlon, a
hardware sy’stem rnust provi‘de:the follo-wing: S ' R ‘ >
(1) A method for generatmg all possxble moves at the same instant, to provrde
mput to a prlorlty circuit that can select the best move. |
(2) A masklng mechamsm to disable the moves that are already examlned and
so are not, inputs to tbe prlonty crrcult and 3 -
(3)A 'priority.‘ mechanlsm to extract the best of the available moves‘. ‘

-
We study how these mechanxsms dre 1mplemented in the existing systems

BELLE [COT82] uses the above techmque for move generatron Its
hardware system is an 8X8 array of combmatonal c1rcu1ts Each square hasa’
transmltter and a r%elver cireuit. Each transmlt?er connects, to its nexghbors_:
correspondmg to the klng s move, kmght] move, pawn move,' and manhattan,‘ o
| and dlagonal squares correSpondmg to the shdlng moves. Each recewer has 3
'srmllar input connectrons The pnorlty clrcult of BELLE extracts the best »
move from the move generator as follows: | | 8

ot

"The mrcrocode asserts FIND VICTIM “This causes each transmltter .
to activate signals corresponding to the piece on each occupied square.
The recelver sectlons then actlvate the prlonty leads for all enabled -

N
Sl o A
%h ' “next best move” is selected by

.. \

‘ge.st‘ p:'eges being captured by smailesi‘piéées'ﬁrst. The disabling mechanism is'

r

‘at.‘ta]cks} The priority’ tree finds the highest énabled attacked piece.
The microcode latches the address of the attacked piece and then-
asserts FIND_AGGRESSOR. The addressed victim’s transmitter radi-

that the lowest valued aggressor on the selected victim is found”
.[CoT82]. | ’

&
1

"Aftgr prdcessing each move, the victim and aggressor are restored.
Th{aggresg)’r is disabled and next lowest priority aggressor is found
until there are no moré aggressors on this victim. The victim is dis-
“abled and all potential aggressors are re-enabléd” [CoT82].

- This helps in ﬁﬁa'ip.g,'tﬁe next best 'vi‘ctim. This process continues until
. : ! . E) l

" all the victims areéxhausted. Thus BELLE generates moves, in the ofder big--

4

0 , .

0 - N \u. : “ 16 .

‘ates signalg as a super piece..The priorities®are inverted by the PLAso

by a.sixtj—four word stack, each entry of which i‘“sysixt‘y‘-Iéur bits long..Moves ",

.already seen aré'disa'iﬁled:and the next best move is generated.

" context stack for disabling the examined moves, are loc&ﬁ_’i}f stored in the chip. °

Thé VLSI implementation of chess ‘machine HITECH, uses a similar
approach for move generation [EbP84]. 1t contains an 8X8 array of VLSI

chips for move generation. As communication is expensive in VLSI, all the

2

né’&,&és‘ary data, e.g., %rd position, ROM, data for %informa}ion and

Each chip independently calculates the set of legal moves to its own destina-
Do ‘ . B . ~T}‘.‘ ., ! ~
tion®square. The problem of selecting thé¥best move is solved in two stages:

first, eac'.h chip decides which of its moves is the best, and then a global vot-

’in'g procedure deéidés which of the 64 chips has the best move. The legal

‘moves on each’ chip, are ordered by the heuristic that lower valued pieces

" should bg‘t;,giedtb»ef.oré mov.inf; high]er'vallhléd pieces. Each chip the;i calculates

~ avalue of tahe'highest pribritY» legal move based on the type of'moving' piece,

- typééﬁk?fl'the" capturgd piece (if any), and an estimation of the sefety of the

!{ .

£
S

s . !
Y f . . {

]

‘ ‘ 17

’

destination square. Safety information of the origin square is not used since it
is not available in an efficient way, and is considered less important. The

chiﬁss vote on the priorit}(' value, resulting in the selection of the best move.
. G ,
BELLE and HITECH.emphasize the "order” of move generation. BELLE '

considers only the material value of affected pieces for ordering. HITECH

" goes a step further in considering the safety of participating squares. Work ‘in
. '['

a later chapter quantifies how this extra consideration can influence the

2

efficiency of alpha-beta algorlthm

[

Another design for a move generator as a VLSI Chlp [SPJ83] has the logic
for move generation, but there is no support for orliering moves or saving

context. All moves have to be generated for each position. Thus, this requires

0

additional work to integrate the chip into a cheéss program. :
: . »

-)
Incorporating a hardware move generator to a search program is impor-

tant in obtaining good performance. When moves are generated, extracted
and provided to the search algorithm in an appropriate .order, the node

. . .o S >
evaluation must also be available in a comparable time. BELLE achieves this

‘by haging two evaluations: a fast evaluation that just considers the material
y haying ‘] .

balance and the safety of pieces, and a slow evaluation that considers the
L4 -) B

pawn structure and ray evaluation. Fast evaluation is available in less than

- an mstructlon ﬁlme and often results in a beta cut- oﬂ' Absence of hardware

evaluator can result An the loss of performance, as illustrated in CHEOPS -

)

[MHG79] CHEOPS “derives its chess specific power from a Chess Array
Module (CHARM), an 8X8 array of circuits. CHARM mamtams the board
data in piece list and square list,&nd S_SCAN and P_SCAN circuits to scan

the squares. The module makes the next move in a raster scan order (the

18

only distinctions in moves are noble captures, pawn captures and non-
capt;n'e moves) and reports this to the processor, which then performs the
node evaluation.‘Absence of move ordering to suit. the search algorithm and
not incorporaiing an evaluation function in hardware resulted in a perfor-

t

mance loss in CHEOP\S. '

It has been reported that in ADVANCE 3.0, a ninety-six-bit high speed
/\sequencer controls a sixteen-bit bit-slice processor (handling the search’)/a;a
sixty-four-bit TTL processor‘(handling chess speciﬁ'c operations) [WeBéS].
Complex functions such as attack propagation and locating and counting bifs
on the bit Bo-ard are available as operations. Optimum utilization of proces-
sor capacity by splitting the task into sixteen-bit and sixty-four-bit opera-

tions makes a good architecture for a chess machine.

BE.BE'S move.. generator, as déscril;ed by Welsh, adopts a software
approach. Here, move-list generation is microprogrammed to the'processor
instruction set so that it appears as a single instruction ’[WeB85]; This way,
the reQuirément of complex logic for move generation and the global priority
éiréuit for move extraction are eliminated. The same processor implements

move generation, node evaluation and search, so the probgem of integrating

the search components does not arise.

19

+ 2.5. Role of quiescence search

The size of the minimax search tree in a game playing program is con-
trolled by limiting the depth. The leaf nodes of the search tree must be

assessed by an evaluator. If the leaf nodes represent positions that are non-

quiescent, the evaluation may not be accurate. This effect, known as "Hor-

izon eﬁ'eg?’ is defined by Berliner:
"A problem that exists in the tree searches to fixed depths which

causes errors in terminal evaluation since not all terms in the evalua-
tion function are driven to quiescence” [Ber74].

Quiescence search reduces thg horizon effect by considering the forcing mdves
(like captures, checks, threats, forks and pins) from non-quiescent positions..
As Kaindl points out,

"The aim of a quiescence search is to find a quiescent position, which

should be distinguished from a normal game tree search where the aim
is to find a combination” {Kai85}. : . o

A quiescence search must terminate in a tactically "quiet” position, and not
be depth limited. What moves to consider for implementation depends on
the board position: whether the position has threat moves, or whether it has

fork moves. Kaindl, suggests that the static analysis by a program should

‘guide a selective Quieécence search [Kai85]. Typical implementations simpl“ify '

thbiS'by considering only capthring and checking moves.

The capture searé¢h is computationally expensive, consuming about 50%

of the total execution time, because it is ‘executed at every leaf node. Slate

& . «

and Atkin observe - -

”Typically; the capture search constitutes about 20 to 70 p'ercent of
the total search. On rare occasions the search does blow ap and this
fraction reaches as high as 95 percent” [SIA83].

. ’ @

¢ : 20

A study of the aspects of cap.t'ure search implementation can help in reducing

E3

this fraction of computation time.

In some chess programs, a quiescence search is often replaced by a static
analysrs Microcomputer programs typically adopt thls technrque [Kar85]
is reported that CRAY BLITZ uses a complex static exchange evaluator in
place of a full width capture search [WeB85]. The exchange evaluator does 2
fast evaluation of selective chess combinations without including unrelated
~ captures elsewhere, and considers only the material balance. Even though

this saves much execution time, it could lead to large errors.

A better alternative to static capture analysis is the dynamic capture
search, where capture moves are made in succession, and the quiescent
nature of a position is determined. In contrast to a static analysis, a d};namic
. aearch can expose .side effects like gidden threats, justifying its implementa-
" tion. The capture search is mainly an exchange-analysis. A major component
is the material balance, although'lesa suhtle /aspects such as safety and posr-
tional factors can also be consrdered It is not clear what kinds of material
exchanges are preferred e.g., whether an exchange ordenng involving
drﬂerence in materlal value is preferred over the absolute value of the cap-
tured piece. The node 'evaluatlon function of capture search is well mformed
(material evaluat_ion closely correaponds to actual material v»‘al‘ue of the node
 [Pea8s)). ‘The capture ordering fu'nction can use‘ this information 'to imple--
ment the capture search efﬁclently, because the amount of materlal taken ofI:

t

" the board at each capture is known

Game tree search programs produce shallow, b'ushy trees since they have

a large branching factor and are'depth limited. Capture search, on the other

21

/ ' ,
hand, produces arbitrarily deep, narrow trees, because there are limited cap-
.‘ .

tures at a node and the search is self terminating. Theorists have analyzed
the application of alpha-beta algorithm on the game . trees
[Bau78, KnM75,Pea80], Performance measurements of alpha-beta and its
refinements on the game trees have also been made [CaM83,Fre85]. Work
“about the efficiency of applying alpha-beta on capture trees is not found in

the literature. This thesis provides some of these performance measurements.

Q

m? P " b " o ~

8

-

Chapte_r 3

IMPLEMENTATION OF CAPTURE SEARCH

3.1. Why Capture search?

Capture analysis is a computationally expensive part of a game tree
search program because it is done at every leaf node. Implemeﬂtation of cap-
ture search can expose the problems involved and lead to improvements.

Results from capture search can be applied to other search applications.

‘

‘Capture search builds a tree in which the branches are capture moves
only; and forms a well defined subset of quiescence search.'It involves the
intricacies of move generation, but the evaluation function is simple and well

defined. So it can benefit from hardware implementation. Capture search

logically. forms a separate. block and hence clan be implementéd indepen-
dently. | .
Generating cabtures one b'y one can be useful in capture se;rch because -
' they can bé preofderedl in a p;eferred,way evén without sorting. Nodes of the
capture tree differ 'by material balanceb values Qx;ly, so the néde evaluation
fun'ctionv is well ix:fof'med. This inforrﬁation can be used for preofdering the
@ptures. Hardware chess machines choose to generatg the moves one by one,

- s0 capture search makes a good application..

Lof

$22

: ‘ _ 23.

3.2. ImplementaW')n consideratiog

-~)
Capture-search forms a logically separate block ‘for implementation. Its

im‘plementati,on is simple even if it involves move generation and node
evaluation..Move generation is,l{ept simple by using bitmaps, which are
formed by encoding the moves of a piece from a given square in sixty-four
bits. A capture is asserted when the alccessed‘ move bitmap has a "1" on the
destination sqrxare. Maqve ordering is predefined by a ROM to help in selecting
' ti),e "next capture.” Status at a node of a capture tree 1s reprgs'ented by a
word capture state, so when the search returns to the node; next capture is
generate)l easily. This mechanism also avdids the requirement for a global
priority circuit. |

Data.strucﬁures were chosen to suit the TinkerBelle chess progrém(For’
exam'dple, board data is stored as a piece-list and a}so as a bitmap. Datka for al¥
"the legal moves and information about the moves that must be generated at a
node are stortledf in'a ROM. An indexed access with offsets as th‘e piece and
- square numbers is'n'éces"sary to extract appropriate bitmaps from the ROM

that has the legal moves. To program these operations as 1mplemented in’

hardware, the c’z}{u_(e search program is xmplemented in assembler.

~ 3.3. Capture search implemerii:‘ation rules
A capture search consists of the following rules [Bea80]:
(l) All captures are searched s T :

(2) A posmon where the 51de to play has no captures is termmal and the

© static material balance value is taken.

- (3) At any node, if all the captures for the side to play lprove to be losing, the

24

static material balance value is taken.
Rule (3) above corresponds Me consistency cut-off, and the captuie search

corresponds to a consistency search [Beago].

Some rules specific to the implementation include:

| (1) A king's capture indicates that the ;revious capture move waS illegal; all

capt.urés that prevent the king's-check are tried in the previqu§ level of the

<apture tree. Other capture moves that do not take the king out of check are
ﬂ-eclared illegal, and are not explored. This produces more cut-offs in the
" “sedrch tree. | | .

(2) Branches of the tree are cut-off, wheq‘the beta bounds are reached.

(3) When the pieces are considered in the biggést to smallest valie of

at'tackéd pieces, an additgnal cut-off can be obtained because the value of

the piece that can be captured at that node is not any better than thai is

already seen. This cut-oﬁ‘ can be applied when the subtree is generated in a

specific order (more deltails in Chapter 5).

(4) The‘ capture sear‘-c.li.‘;li:j;sturns the materigl balance valu; of the quiéscent
posiﬁion. : |

(5) Captures are generated one by one, so the effort is 'n;ot‘ wasted in generat- |

ing moves that are eveptually cut-off by the search algbrithm.

P

25

” 4

3.4. Architecture of capture search _ (

3.4.1. BOARD

The board is represented as a piece-square memory, where each piece is
allocated a‘ fixed memory location. If a piece exists on the board, the
corresponding’square number is written in its position, else the location is
filled with an invnlid value like 'FF.’ An additional data structure is main-
ta.aed as a bitmep of pieces (PXR) to handle t‘he bit operations of the board
data. A bit is set to "1" if a piece i3 present on a square, reset if it is not.
Separate PXRS_ can be maintained for each-color end type of piece if neces-
sary. Incremental updating'o(the piece—Square'n)emory and PXR takes place

1)

when a move is made or unmade during the search.

" 3.4.2. _Capture ordering ROM
The capture ordering ROM (CAP_ROM) stores the order in which the
capture- move‘s must be examined at a node. This is necessary because it helps
in generating the "next best move” wrthout havmg a global prlonty circuit’
An alternatwe to this is to generate alnl»tlrrmoves at a tlme and sort them |
but it is snmpler to generate one move at a time, if they can be preordered
and CA.P_,P.OM helps this 1mp1ementatlon The status of ‘move generatxon
and search at each node 1s*stored in a word as the CAPTURE..STATE and -
produces an index into the CAP_ROM A list of plece-pau‘ combmatlons that
can make up the potential captures are stored in CAP..ROM Sequentlally
: going through each piece-pair exhaustlvely tests the exlstence of a capture for
the board position. CAP_ROM also stores other data hke matenal gamed by
a capture (a property of the TO__PIECE), and type of FROM__PIECE (i. e, |

- 26

oo

1t is a sliding piece or not or if it is a pawn) Corresponding to sixteen pieces
the capacity of CAP_ROM is 2568 words for each side. CAPTURE_STATE
forms an eight-bit word, ‘the ninth bit (of 2 combined - sixteen-bit word)

represents the side to move. Thus CAPTURE_STATE directly indexes into

the CAP_ROM.

3.4.3. Legal moves ROM ‘
.) _
The bitmap of moves of each piece on each square are stored in the Legal

Moves ROM (LEG_ROM) A bit is set to 1 in a.move bitmap, 11' a piece can |

move to the square number represented by the b1t from a glven ongln
square. This reptesentation simplifies the move generation by replacmg the
complex hardware, like that used by BELLE to determme ifa partxcular piece
; can move to a partrcular square. Entries of LEG__ROM are arranged so that a
simple indexed .access, with the piece numb'er and the square number as the
index, gives the corresponding move bitm'ap.

Some‘ad_ditronal‘ data is also arranged in a similar “rayj. This is the bit-

-~

‘map of all squares that can attack any particular square, stored as the

ATTACKED_BY bitmap. 'When a TO_PIECE is not on- the attack path; of

PR

any FROM_PIECE, a single test using the ATTACKED_BY bitmap helps in
skippaing the TO_PIECE, and a test through each FROMJ?IECE" is avoided.

27

3.4.4. ARRAY_LOGIC -

A 'simple indexed access of an entry f‘rom.LE1G.“_ROM can yield a move
bitmap, so this approach for generating the v’rrloyes-can be fast. Unfor-
tunately,‘the moves of sliding pieces, that is, 'qu;een, rook and bishop mo:'es
cannot be generated so easily. With the bitmap representation, it is pos‘sible'

-

to know the destination squares of a shding piece, from a given origin square,
if there are no other pieces on the board. The actual squares where a sl/iding .
piece can move, depends on the board configuration ('i._e., the location of
blocking pieces). The information on a TO_SQUARE 1/4& i'nsufﬁcient to deter-

mine the legal moves, and it is necessary to know the oc'cupancy of all the

ﬂ

squares intervening the FROM_SQUARE and the TO,SQUARE.

Processors generally ‘p.ermit simple AND/OR operations on the bitmaps.
y When only the information on a TO_SQUARE is suﬁicrent to determine a
legal move or capture {for example to determme a knxghts nrow)‘e it is
'enough tp know that the destlnatron square is empty or an any piece lS
‘- present) AND/OR operations can be used to generate the moves. For shdrng
pleces the presence of other pleces on man}(attan and diagonal neighborsof a -
chess board must also be consndered'~ On a bltmap representatron brtsf
) | representlng these nerghbors are not adjacent, and the general purpose pro- -

* cessors do not provide 1nstructlons to handle such operatlons on bxtmaps

When the moves of a shdlng prece are éenerated in software, each square '
‘18 checked to see if it is on the attack path of- the FROM._PIECE If the destr-
natlon square is empty, the attack path is extended If the destmatron square
has a frlendly prece, the attack is blocked If an’ enemy plece is present an

attack is asserted on. that square but the attack path is not extended These

28

operations can be doae in parallel and fast, when implemented in hardware.
o Te

One approach to s;)lve thi;‘s in hardware is to use c:)xrtﬁlex logice, like that
used by BELLE. A simpler approach is to use the bitmap representation and
some SImple logic. Since the bitmap move of a sliding piece, when no other
piece is present on the board, is available from LEG_ROM it can be used
with frién\i\ly pleces and enemy pieces bitmaps, to yield a bitmap of moves
valid for a given board position. A sequence of simple]ogié opérations on an
array of bits (of a bitmap) results in generating a move bitmap for a sliding
piece. This is the ARRAY_LOGIC, and the algorithm for its in{lglementation

is given in Figure 3.1. . BN

1) Send out "1" in all eight directions from FROM_SQUARE

2} If 1" comes in (COME_IN) then
If 1" is on that square (from LMREG (bltmap move)) then

If NO_PIECE then

ASSERT "17;

SEND_OUT "1 /* Move */
else if ENEMY_PEECE (EPXR) then

ASSERT "17;

N SEND_OUT "0 /* Capture */
, else if FRIENDLY_PIECE (FPXR) then -
- ASSERT "0,

- SEND OUT "0"; /* Blocker < :
else : H

~ ASSERT "0"; ' /* Bits adjacent to mo %ns */ i
- SEND_ OUT "0"; V\ .

else . _ \\ o I~
- DISABLE mput to ASSERT S LI
* SEND.OUT "0"; /* Affects squares set prev\husl/ *j

Figure 3. l ARRAY_LOGIC Logxc for legal moves oFShding Pleces ;

e |

- -

The cxrcuxt dlagram 1mplement1ng ARRAY_LOGIC glven in Fxgure 3. 2
shows the loglc for one blt Each sngnal for the c1rcu1t 1s 51xty-four bits long

: (correspondmg: to.sxxty-four.blts of»qa chess board);.SEND.'..OUT is 'connect(ed\ o
o A’ \'-\g AT e ' B .‘: S N

R

29

to the eight neighbors corresponding to the manhattan and.diagona,l squatres
(logical neighbors on a chess board). EPXR (a bitmap for Eneﬁr;(Piece
eXistence RegAister) and FPXR (Friendly Piece eXistence Register) are given
as inverted signals for this impiementation ‘Data for EPXR and FPXR can
be mput earlier and latched in the chrp This data is altered only when there
is a capture or a move. An input from. LMREG (Legal Moves REGlster) will
ASSERT the appropriate bits on the output bitmap, which forms the legal
moves for a sliding piece.,;‘Thvis _output bitmap can be hardled similar to a

" bitmap obtained from LEG_ROM for non-sliding pieces.

‘o

In the capture search program, the ARRAY_LQGIC is srmulated in a
routine SLIDING. The operatlons are similar to that"gwen in Figure 3.1. The
logic of the circuit corresponding to one bit has been simulated and tested‘.

using RNL [Not84], a logic simulator. The hardware is not implemented.

ARRAY_.LOGIC requires many. input/output conn‘ections{ By using a

two b1t mode-select for. handlmg dlﬂ'erent input data srxty-four pms can‘

handle the stxty-four bit mput/output srgnals A chlp that lmplements the .

_ARRAY_LOGIC can be mterfaced to a processor that handles bltmap move

generatlon to ease the task of generatmg shdmg moves.

| 3;4 5. Stack management
Tree searchmg requires stack management for stormg the data at the.‘ .
'nodes that w1ll be used when the search returns to the parent nodo The'
4_:'volume of 1nformatlon stored depends on the problem and the search algo-“‘.i’ :
rithm chosen~ One apprpach for stacklng is to store all the data on the same" -

stack wrth on]y one pomter mamtalmng it, whnch 1s convement when pro-- '

@ . : . . .) ,

S

30

G
» Logic at each bit - Replicated as 8 X 8 array oo
Inputs . ' '
¥ ' —
5 ; FR'O’M_SQUARE-] Outputs
LMREG SEND_OUT
EPXR
"FPXR >
' (to 8 neighbors)
R
(from 8 C) N):
"neighbors) (COME_IN)
i - \ !

FPXR . |

LMREG / |

—Inputs and outputs are 84 bits. o &g «
, | : e)
Figure 3.2 ARRAY_LOGIC
grammed in software. In hard,\;/a‘rev implementations, maintaining separate -
. ‘

stacks is not hard and is desirable since their structure can be modified to

sui’t%he‘ data. In the"impkl\ementa-tion on a MC68000 proggssor, the instruc-

tion set supports stac‘k"-managemenft, but if hardware is built, stacks can be.

“constructed by shift register controlled memory. ¥

For captu;é' search, the information stored at each node include the

31

moves made (reapresented by the piece and square numbers of origin aiid des-
tination squares), the status at each node, the alpha and beta bounds. In the
implementation, the data stored on the stack consist ;f (1) the move made:
FROM_PIECE, FROM_SQUARE, TO_PIECE and TO_SQUARE, (2) the
alpha-beta window, and (3) CAPTURE_STATE, MATERIAL_BALANCI;*? and

some flags.

3.4.6. CONTROL

Figure 33 illustrates a scliematic block diagram for the cap‘ture search,
with blocks in the diagram representing the different data and control struc—
tutes. The status of search, shown by the block "state,™ produces an mdex
into CAP_ROM, to" give a TO_PIECE-FROM_PIECE combination.
FROM_PIECE with its square number retrieved from -BQARD produces an
index 1nto LEG__ROM to yield a move bitmap. A logic operatloan the square
number location of TO_PIECE and the bltmap determmes a capture. To gen-
erate a bitmap for sliding movres, ARRAY_LOGIC (in this implementation,
the routine SLIDING) takes the Piece Ex1stence Register (PXR) and the move |
bitmap as input, A logical "test bit" operatlon of the TO_PIECEs square

nurriber with the sliding move bitmap asserts a capture for sliding pieces.

On a capiure, CONTROL stacks the informétion, makes the moves
updates the board and initializes the capture state. The search starts at a
successor node. When all the captures are searched on a level, or a cut-off -
occurs, CONTROL dnstacks the information, unmakes the move, upda.:tesﬂ

board data, to resume ,operation at a h‘igher level. When the analysis is com--

plete, CONTROL returns theé result of search. Thé» recursive search algo-

Ca

-

32

|
/
CAP_ROM LEG_ROM
! _
Y
e BOARD | Lfrom F———=
S
E;:] : N l to | L -
v Y |
SR logic |« ARRAYL "
- --{coNTROL el e | R
N U >{stacking
.....’ ________ B ~1 : R
Y_ Y g
state méves alpha
stack | stack beta
‘ stack
Solid~ lines indicate data flow
Dotted lines indicate control
‘Figure 3.3 Block Diagram for Capture Search

rithm is mapped to the hardware as a non-recursive algorithm. In a hardware

gesign, various blocks can operate in parallel, but in this simu'lation, the -

operations must be sequential. The non-recursive algorithm used in the

~ implementation is given in Figure 3.4.

13

&

33

CAPANAL:
Load address registers
Initialize the flags
Initialize with alpha, beta = [0, 127]
GO_DEEP:
Clear other registers.
NXT_CAP:
If no more captures, goto NXT_HIG_LEV.
Get one piece-pair combination of CAP_ROM.
If any of the pieces do not exist, goto NXT_CAP.
Get the bitmap moves of FROM_PIECE from LEG_ROM.
If it is a sliding piece, generate sliding moves.
'gst with TO_PIECE for capture, if so, goto CAPTURE
se goto- NXT_CAP.
If any error, goto ERROR.
ERROR:
Set flag; goto EXIT. -
CAPTURE: :
Compute material balance. -) 2
If King is in check, goto KING_CHK.
Store move, make move, update BOARD, update PXR.
Store alpha beta.
Store capture state and material balance.
Negate and mterchange alpha, beta. .
If no captures; update alpha with Material Balance
(or its negation for MIN nodes).
If alpha > = beta, goto NXT_HIG_LEV. .
Else goto GO_DEEP : ‘
KING CHK: ‘
/* Don't make move or store any data */
Update alpha with material balance
(or its negation for MIN nodes).
‘ _HIG_LEV
NXT EV:4
If top of stack, goto EXIT.
Retrieve move, unmake move.
Update the return value. |
If alpha > = beta goto NXT_HIG_LEV.
Restore capture state and material balance
Goto NXT_CAP. I
EXIT:
Return alpha as RESUL

Fi‘.gure 3.4 The Non-recu\l\-sive Algorlthm used in Capture Search

\

N

0
\

3.56. Implementation on the'Mé\BSOOO proqessér/

g

Bitmaps can be handied better;-if thﬂé applicétion is rﬁicroprogrammed.
But, to test the capture search with a chess program (the TinkerBelle pro-
gram), it was decided to imple@ent the capture search routine on the
MC868000 processor of a SUN work station. The MC68000 supports thirty-
two;bit operations, so a bitmap (of 64 bits) needs two instructions. The con-
trol for move generation is arr.anged' to suit the instruction set of MC68000.
For example, special instructions for extracting the bits from a bitmap are
not available for MC68000, and so the SET, SHIFT and TEST bit mstruc-‘
tions are used. The processor also sup’;orts elght bit and sixteen-bit opera-
tions, which are’ helpful in implementing the search. Stack mdnagement is
well supported with speci.al instructions available for the purpos;a." ‘The
indexgd operations to access the data for moves and c'\apture states are also
V su[;p:‘)rted on MCSSOOQ efficiently. This capture search implementation 1s
referred to as CAPANAL (capture analyzer) during the discussions.in later

chapters.

3.8. Limitations of the Implement‘ation

r
Il

The main drawback is the way in which the moves are generated and
provided to the'search mechanism. In an attem‘pt to éenerate the moves one
at a tlme and ehmmate the wasted effort in generating moves that are cut off
by search CAP_ROM is formed as a move arbitrator. But loopmg through
every ‘piece-pair using CAP_ROM to check if a capture exists, takes about

80% of the execution time (Chapter 4).

: 1nhelrent parallelism in the bitmaps is not used si,n:ce the moves are g.en-

35

" erated one by one. This forms another defect of the implementation. There
is no parallelism in the operations shown_in the block diagram. All opera-
tions in the program are sequential and a single processor generates the

moves and implements the search.

Pawn promotions and en passant captures also result in a change in
material b'alance, sa it is legical to considerl them in capture analysis. But,
pawn promotions are not :Neil defined.because the value of rnaterial changd
depends on the type of pie"ce to which the pawn is promoted. En passant cap- -
tures can be considered only after special pawn moves that require tng.
maintenance of extra data structures. These increase the complexity of imp‘le;

mentation and do not fit into our simple model.

Some capture* search programs include the moves that evade checks.
Infinite checking sequences may result sometimes, where some art1ﬁc1al cri-
~terion n(’glst'be applied to terminate the searoh. This v1o“l’ates the self-
terminating feature of capture search and makes the implementation

difficult. In CAPANAL, checking.moves are co'nsid_ered by assigning a high

value to the king, and returnlng that value for a kmg s capture This i is not a

'Ahdesnable approach since only the re-capture moves that take a king out of .

check are consxdered To include the -moves that evade checks it becomest
Decessary to generate all the mov/es Using the capture generatlon mechamsm
as dxscussed earher, requires a CAP_ROM of capaclty 16X64 words for gen-f
erating all the moves, with each entry Ql‘OV'ldlng the move of each p»lece to
every square." That would be impractical, since looping through each en‘t_‘ry of

' CAP_ROM at every node, causes a large delay.

Y

36 .

[

Sometimes, a quiescence search is adopted instead of a capture search, so
almhe forcing moves may be included. If threats, fork§ zind pinned pieces
must be considered, it is difficult to predefine the contents of CAP_ROM,
since the number of branches from a'node and the order for move generation

to suit the search depends on the position. So the approach described in this
i

chapter cannot be adopted in that, case.

Bitmap move g‘eneration is considered to be a time efficient, storage
expensive method [Cra84]. On the main frames, sufficient storage is available,
so it is not a problem. The technidue can be time efficient only if suitable
instructions are available to extract the moves (destination squares of moves

are available as set bits in a bitmap). Decidin.«g-"which move to generate

next?” is solved by using a CAP_ROM, but this introduces a delay in looping

through each combination.

3.7. Limitations of hardware for‘tree searching

Capt'ure search, although considers only ~wel! deﬁned moves and involves
only the'mat‘eria‘l balance for node evaluation, has li'mitations for an eﬂ'ective‘
lmplementatlon For a game tree searchmg program there are more serious

hmltatxons since 1ts components are less deﬁned Only the task. of move gen-

eration is well defined (except for the spec1al moves), and the hardware chess

N

machmes generate -the moves in a fast and efﬁclent way A move selection

may be necessary, to lxmlt the size of the search tree and permlt a deeper
“search for more accurate results but no good move selectlon mechamsms are
known, not only for hardware, but also for software 1mplementatlons The

order for generatlng the moves plays .an 1mportant role in the search

b4

37

efficiency. Move generation mechanisms adopt some simple heuristics for
move ordering, whereé.slmore sophisticated algorithms could result’in a more
efficient search. A node evaluat:’o;t is necéssary at eacﬁ_ leaf node, to determine
tbew move, but what features must be considered in such an evaluation
‘are not known [Mar85b]. Hardware chess machines implement only a few,
well defined features; Improvementé in the quality of game is po\ssible only if
more feat‘urés are implemented in hardware. Every léaf node must be checked” -
for qu'iescence, t‘o prevent blunders resulting from app'iying node evaluéa.tio‘n
on non-quiescent positions. The types Qf moves to be cofsidered for an .ideal

quiescence search (like forking moves, threat moves and moves involving

pinned pieces) are difficult to identify in a stric}{ hardware implementation.

In addition to irﬁplem’egting each comporient of a chess program, it
becomes necessary to inéox‘pory;glt} and integrate the componénts properly inkto
the cl;ess p'\rogr‘am: An eﬂ“lcientI/yty/nove'gener.ati‘on does not yield any benefits, if
the node evaluation is not aVaila})le in a comparable time, to the séa‘rch'

i ‘

mechanism. Therefore, it is much harder to implement a game tree searching

application mechanism in hardware.

~

Chapter 4 .

[

PERFORMANCE COMPARISONS

The performance of the CAPAN-ALutine is compared to TinkerBelle's
capture search. The programs are proﬁled'tcf‘determine the time spent in
each part of the program‘. CAPANAL was improved based on the results

obtained from the profiler. This chapter discusses these details.

4.1. Test positions

The comparisons are made using two sets of test positions. The first,
redferred to as the KOPEC1 positions, is a set? of twenty-four positions, and
has been extensively used to evaluate chess program performance [KoB82].

| The second set, referred to as the KOPEC2 positions, has "an' additional
twenty-five positions [KNY85]. TinkerBelle is used for alpha—beta Search to
two-ply and three-ply deep. The collection of terminal nodes from these
searches provides over 35000 non-qulescent posmons from the first:set; and
over 45000 »pos.itions from the second set. These 80000 positions are used as

the test set of positions for the experiments.

4.2. Measurements

A good measure of search efﬁclency is to determine the nodes searched
per unlt time. For capture search the number of capture nodes (here after
referred as Cnodes) searched per unit tlme are compared The UNIX* system

-

& call times() is used to obtain the exapsed execution time. Cnodes;examxned

per unit time are obtained by dividing the total Cnodes by the total time.

* UNIX is a trade mark of AT&T Bell Laboratories

[

L.o© ‘ 39

(s’
The execution time returned from the system routines may vary depending
on the load conditions, so these values are approximate. The results have

been averaged over a large set of positions, thereby removing any errors.

Another interesting measurerﬁent 1s the time sp'ent’ in different parts of
| the capture search routine. This profiles the behavior of the program, and:
helps in studying.any defects in the implem'entation. One way to measuré"—
this is by calculating the t-ime_ between the entry and the exit of each part of
the program. Another approach is to measure the time spent in each part of
the program statistically. A profiler that uses the second ap;?roach has been

implemented.

4.2.1. Profiler

The profiler uses the signal() facility of the UNIX system. It sets up an
inter\fal for interr‘upting the processor. The capture search seté specific values
on avﬂag_when it is in different parts of the program. At every interrupt, thg
. rp'roﬁle'r checks the flag to determine which part of the program is currently
A,befng executed and increments a corresponding count. When the execution
c_orppletes, the cbunts.give a relAative"measu're of the tirx\le sp’ent.in'eacb‘part_

of the program.

40
43 Results

4.3.1. Initial performance of capture search

\ .
The CAPANAL routine, written in assembler was expected to do much

(o]

better than TinkerBelle's capture search, but on th;e _contrary, its initial per-
formance was i_uferior. This is illustrated in tl;%%second and third columns of
Table :.l On the KOPEC]1 positions, TinkerBelle examined 2.48 Cnodes per
unit time, while CAPANAL could examine only 2.28 Cno'des per unit time.
Similar, but higher results were obtained with the KOPEC?2 positions.

' 4.3.2. Improvements

AR -
"-:ent in executlon efﬁcrency can result if the part of the

A major lmprov
program causing the maximum delay is 1mproved. The proﬁler showed that
loopmg through each of the 256 plece-parr combinations of CAP_ROM, con-
sumed 80% of the execution time. Thls looping may not be a problem in a

true hardware 1mplementatlon “since the CAP_.ROM is usually replaced by a

‘ complex pnonty crrcult that can extract the next best move. However here, -

an 1mprovement was made by checkmg every TO_PIECEif it was on the
attack path of any FR;OM'_PIECE, usmg the ATTACKED_BY brtmap._ lf the
FROM_PIECE wa’s“"not att@ed by an’).r TO_PIECE, sixte.en. combina‘tions’
were’sklpped-. With this improvement, the CAPANAL routi'n‘e could exa“m"ine |

' "_o'ver 4 nodes per unit time, as shown in the last column of Table 4.1.

Cnodes/unit tim_e_" ‘TinkerBelle | Old version’ New versmn
KOPECI positions | 248 | 228 4.07
KQPE_C2 positions 2.86 "~ 2.83 - 4.47

T'able 4.1 ‘-Performance-Co‘mparison

o

“capture, "Slide Mov" corresponds to the time s;p'éxit in generating the sliding

41
4.3.3. Profiling capture s',earch- "

TinkerB;elle’s capture search was pr_(')ﬁled'_to:detérmin-e”_wh,at 'ﬂpva;ts;of‘th‘e’
program were expensive. . The results shc‘m}ed tl}.at{' the mqvé generation took
up to 80% of the total execution time. éort’ih‘g,'recufsive calls, ma.]‘(in?g';nd"‘ .
unmaking moves toolg only 20%. This' suggests, il‘iat,. move .gengratiqn is
expenéive and must be made more effi~cie‘nt to lir‘n,p'ro‘ye, the overall perfor-

mance. Move generation could be made'simplelr by generaﬁhg moves for each

FROM_PIECE, and efficient by taking advantage of ;pa';allelisr;l—in_bitmap,

d

representation.” An inea:pensive'sort can reorder t‘be moves in a desirable way.

-~

The improved “CAPANAL routine was also proﬁled to determme how
much time wis spent in each part of the program. The fesults are shown mv
Table 4.2. Looplng corresponds to the time spent’ IOOpmg th;ough tbe
piece-pair combmatlons checking for the existence of pieces, "Move Gep
corresponds to the time spent in aécessing appropriate bitx‘IImps.Ato.'ﬁssert a
m0ves,‘ and "Stacking” to the ti_m.e.spe’nt in making and unmaking moves.
The KOPEC?2 positions spend more time in move géneration énd' less in loop--
ing. This suggests that ‘_thése‘lat\ter»posi’tions ‘have r;loﬁ_é captures .and vz.are

more complex.

°

Percentage Looping ' Mb\(e Gen | Slide Mov Stacki.ng@.
{ KOPECI1 positions 87% 23% - 55% | 45%

KOPECS positions | 61% | 32% | 37% | 33%

Table'fi;2 Profiler res\ults-v

TinkerBelle's capture search spent 80% ‘of its execution time in move

generation, -whereas -the new CAPANAL ;Qutine‘sp_e_nt’_l-ess' than 30% on.

: AN
~ . .
» ' > - ’ ; v

42

average. This is g\s;igﬁ‘iﬁéaglt.improv'ement in terms of the efficiency of move
\ . _
generation. The total time spent by CAPANAL for capture searching was

68% to that spent by Tinke'rBe_\elle.‘

(1) Efficient SHIFT instructions
(2) SIXTY_FOUR_BIT operations
(3) WHICH_BIT_SET operation
(4) FIRST_BITL\SET operation
(5)-COUNT of setbits .

Figure 4.1 Desirable instructions én MC88000 for efficient implementatio:

~
-

,\.
Y

Move generation using‘the bitmaps c’ané‘\b\e‘ moré‘w\égicieﬁt, if inding out what
moves _\imust,b'e geﬁerated is inefxﬁens'iv;\\(100ping th;ough "thle entries of
CAP_ROM is seen to l;me expensive). Move..-ge\fxgration on the MCSSOQQJcanl be
},@tter,‘ if more 'suitgble‘insirﬁctions tohandle t\hg bitmafis are available. For.
example, shift instgtions are f‘rgquently used in\ge basic \}Qop of the i‘m(}
‘ mentation. E.aclh shift ‘opzer‘atio.n' takés‘ 8+ 2n cioclé\c{cljes\“ to move ;i bits. .
With n\- 8, each shift caq[take 24 cl"ock“ cyéLes’, wherea\\;}otheﬁf rgﬂgist'er, 'o‘p‘léra; '
. tions t#ke only 4 to 6 clo‘ck cyéleg Fig‘lill'e 4.1 lisfs sor‘x'\ie} dvé‘sira“bl\e i‘qs;t"ni'c- v

\

tions on the MC68000 that can help in manipulating b’itmapg».'tlietter.“

>

B
ey ' A

Le
\iq’. PR

Chapter 5

_ EXPERIMENTS

This chapter..discusses the results of two experirnventa. By;conduu'cting)

the search- with diﬂere’ht capture orders, the order experiments_ quantify the

efficiency obtained using the alpha-beta algorithm on capture trees. In the

depth experiments,'the r"czsultfng error ‘and the reduction in :tree size for

depth limited capture trees are cornpared to the correct values obt:ained with

no depth limit. ‘The order gexp.er,imentsl use the CAPANAL routine;' the depth
exp,erirnents use TinkerBelfe’s capturebsearch. |

/

5.1. Measurements

74

The nurn‘ber of bottom positions (NBP) is a ¢ommon measure of se’arlch»

' performance and is said to reflect the total nodes of the search tree [CaM83]v{i "
This may be true fc:r game trees where all the bottom posrtxons are leaf nodes,
and are at the same depth. In capture trees, where the search is- termlnated..
"-at an arbrtrary depth only a count of all the nodes in the tree represents thev .

' true cost of search Therefore total capture nodes is taken for a measure of ‘

performance in these expenments L o

A set of twenty-four Bratko-Kopec posmons [KoBS2] referred to as the._'_

_KOPECI posntlons, and an addltlonal set of twenty-ﬁve posrtlons [KNYBS] .

referred to as the KOPE02 posntlons, are consxdered for the experlments
o TxnkerBelle ‘uses 1ts move ordermg mechamsm for lteratWe alpha-beta aearch -

to two—ply and three-ply on these forty-nme posmons “This lnltlal search .

- vresults in over 80000 non-qunescent terxmnal posxtxons, and forms the test

'suite for the'c-apture seal_'ch expenments. cox

PRIMARY ORDERING BASED ON THE'VALUE OF TO_PIECES:

) Order 1 -- Capture of blg pleces first

SR

»

"Best order of from pieces

\
Order 1a - Same as Order 1, with an extra cut-off for nodes ?

Order 3 -- Capture of smallest pieces first
} -
Order 4 -- Captur.\é‘ of big pieces first
- Capturing pieces in king to pawn order
All captures by kmg, followed by queen, etc.’

‘Order 7 -- Brg White preces captures first’ '
Small Black re-captures first

Order 8 -- Small white pieces captures first
Blg black re-captures first

PRIMARY ORDERING BASED ON MATERIAL VALUE DIFFEREN CE

Order} -- HIgh material value dlﬁ'erence captures first ¢

- Order 5 -- Eual pieces capture first
. G

od captures: positive material value drﬂ'erence first -
B#d captures: negative material value difference last

] A
" Order 6 -- Good captures: positive material value difference first

' Bad captures: negative material value drﬂ'erence next
nlnterestmg equal captures last

, Order 9 -- nghest material value dlﬂ'erence on white first

-

Smallest material value dlﬁ'erence on black first
) ~
Order A -- $mallest material value drﬂerence on whlte first
Hrghest material value difference on black first

Order D-- Lowest materlal value dlﬂ'erence captures first

o PRIMARY ORDERING BASED ON THE VALUE OF FROM_PIECE’S

Order B-- Captures "from small pieces first™-- Random ordering
~ All captures from pawns, then all from knight, etc
Captured pieces in king to pawn order
I4

Order C -- Captures “from big pieces first" -- Random ordering]
All captures from king, then all from queen; etc
“Captured pieces in king to pawn order

& Figure 5.1 Capture Qrderings'for‘experiments

&

44

5.2. Order experiments ' -

. | Move ordering is important in searching the game:‘srees, since alpha-beta
applied to a well ordered tree induces more cut-offs. As discussed in Chs;pter
2, there aré two approaches to generate an ordexfe& tree: One approach is to .
generate all the successor nodes and order them by sorting. This approach
provides the moves in either the best or the worst order, but is not suitable
lor -th;z order experiments considered here. These experiments consider more
than these twé cases, so they require a_‘ preordering for captures. In capture
scarch, the e).cactv’change in th'e rfaterial value 6f the node on making a move
.is known, since the material evaluation Hfunction .is well informed.

CAP_ROMs are constructed for each capture order and. tested with the

. . Q
CAPANAL routine, to measure their performance.

Figure 5.1 lists the capture orders considered in this analysi.s, which é.re
grouped into three categories. ~
(1) Primar'y order based on the value of to-pieces. Capture orders la, 1, 3, 4,
7 a;ld 8 are included_h-erev. The vdl’ug of the piece on the destination square of
a capture mox'ie,;.plays a major role ;n determining the desirable cabture
ordér, since removing this piece changes the material balance at the node, by
the value of the piece. |
(2) Primary order based on the material value difference. Capture orders 2, 5,
6, 9, A and D are grouped here. The piece-pair combin;;tions considered here
have the ordering based "both on the frbm;pieces and the to-pieces.

(3) Primafy 'ordef'based on the valﬁg of from-piecgg only‘.‘ Capturé orders B
and C are grouped here. | , '.

The capture orders are numbered in the sequence in which they were

generated and the experiments were conducted.

The performance of CAPANAL with some orders were compared to the

performance with the others. There are certain comparisons that are of

interest and thus require some discussion. They are listed in Figure 5.2.

Comparison 4 and comparison 6 are not discussed since their results were not

found interesting. They are only mentioned for completeness.

Comparison 1: Orders 1,1a and 2.
Determmes the most desirable type of capture.

Comparison 2: Orders 1 and 4. 9 -2
Shows the effect of from-pieces on capture order.

g

Comparison 3: Orders 1-3. ¢
Alpha-beta on well ordered and worst ordered trees.

o

Comparison 4: Orders 1-7-8-3 '
Does order of capture benefit from which side starts ﬁrst"

This comparison is not discussed.

Companson 5: Orders 2-5-6 | ‘
How do zero material difference captures effect search tree?

Are pieces placed to result in a chain of captures?

Companson 6: Orders 2-9-A-D
Similar to companson 4, but for material value dlﬂ'erence

: ~ This comparison is also not discussed.

Companson 7: Orders 1-B :
Benefit of sorting a generated move-list
and searching, to searching from-piece order.

Companson 8: 1a-1-2-4-5-6-B-C
‘A graph with these orders. .
Provides an overview of different orders.

J .
4

Figure 5.2 Comparisons

0’3

17
5.2.1. Comparing orders 1 and 2

The most popular order for capture search and move g%)eratiou is to

capture the "Biggest pieces from smallest pieces first™ [CoT82, EbP84). Some

people also consider the material value difference between the capturing and

the captured pieces for ordering [GEC67,Mar85a]. For example, the capture

of a rook by a vpawn is considered before the capture of a queen by a queen.’

This ordering is considered better, based on the assumption that the boards

would be set up in such a way that a capturing piece will also be captured, so

considering those with high material value difference first might result in an

early cut-off.

Capturing the biggest pieces first can benefit from an additional cut-off.
Since it is known how much material will be added on the remaining captures
at a particular node, it is easy to decide whether to proceed with the capture

analysis or cut-off (Algorithm 5.1). This consistency cut-off can be applied -

earlier for order la since the captured pleces are’ preordered in a desirable

- way.

If (value of piece captured < material balance already lost)

‘then

{ Now know remaining captures are no better;
Return to higher level }
else :
{ Assert capture; Add material balance
Contmue with capture search }

' Algonthm 5.1: Extra cut-off for order 1a

Order 1 is the capture analysis with the biggest captures first, but without

thé"extra cut-off (Algorifhm 5.2). This order provides a true comparison of

48

the effect of only alpha-beta cut-offs on the search order, since the extra cut-

off cannot be applied on some capture orders.

If (value of piece captured < material balance already lost)
then |
{ This capture is not suﬁicxent;
Try other captures on the same node }

else ¢ .
{ Assert capture; Add material balance;

Continue with capture search }

Algorithm 5.2: Normal Case with no extra cut-off

//7

In capture order 2, the piece-pair combinations with the higher material
value differences are considered first.

Table 5.1 compares the nodes in the capture tree for the two sets of test
positions. The capture trees b_uilt with capture order 2 result in 40%'to 80%
larger trees compared to orden 1. With the additional cut-offs on order 1, it is
possible te build eapture trees 35% smaller (order la). Order 2 analyzes the

captures thh the human way of thlnklng, by predlctmg that a capturmg '

- piece is likely: to be captured in the next move. This is p0531b1e if the cap-

LW

tured plece is defended but may not be the case in ‘the mllllODS of nodes

analyzed by the program.

{ Order 1a Order 1 | Order 2 |

| Total nodes | 309729 | 481383 | 685196
KOPECI positions |"pr 4o - 0.643 1| 1.493
L .. Total nodes | 504002 846743 | 1526170
KOPEC2 positions [Ratio 059 | 1 | 1809

Table 5.1 Conapar‘isdn 1: Comparing orders ia, 1and 2

49

5.2.2. Effect of from-pieces on the best order

Pieces on the destination square of a capture move (to-pieces) play a
greater role in ordering the captures, since they alter the material balance of
a position after the move. How do the capturing pieces (attacking piecés)

affect the efficiency of search? This is discussed here, i/ Comparison 2.

Capture order 1 cérresponds to captures from smallest pieces to biggest
pieces first. Captur'e-order 4 corresponds to captures from biggest pieces to
biggest pieces first. The t(;-pieces.'are arranged as biggest to smallest pieces in
both the cases. The results of c;pture sear_‘ch for th‘e two sets of test positioﬁs
"with these orders are shown in Table 5.2. The capture orde\r‘ 4 builds about
20% to 35% larger trees than ‘order 1,:-50 order 4 h2s a lower search efficiency.
The results also suggest that a capturing piece is more susceptible to capture
on" the next move, than other squares. This provides the logical reasoning for
some static exchange evaluators (for example, CRAY BLITZ), that-have a fasf
evaluation“of‘sélectivev chess combinations, and do not analyze capfures else-‘
where on the board [WeB85]. The results also imply that the destination
squares are less safe, and can have some eﬁ'ect on move orderlng For exam-

ple, HITECH considers the safety of the destination squares for its'move ord-

ering mechanism. . . ~

Order 1 | Order 4

| Total nodes | 481383 | 659229
KOPEC1 posntlpps 'Rat_;'io . 1 1 1.369

~ <. | Total nodes | 846743 | 1054186

- KOP-EC-2 pQSltlons Ratio 1 .| -1.245

Tablé 5.2° Comparison 2: Comparing effect of attacking pieces

50

5.2.3. Efﬂciency of alphzr-beta with wordt order

It is known that the worst case order for alpha-beta search results in the
lal"gest tree, and corresponds toua minimax search. For game trees of an aver-
age uniform branching factor and fixed depth,.the size of the minimax tree
can be estimated. Efficiency of alpha;beta on such trees can be easily seen.
Capture trees are self terminating, with non-uniform branching fact;)r and
arbitrary depth. Therefore, it is much harder to estimate their size. By
searchiné the tree with the worst order, it is possible to measure the max-
imum size of the capture trees, and compare the efﬁ%encies'obtained from an

alpha-beta algorithm.

A set of five sirﬁple positions is considered for measuring the efficiency of
" alpha-beta on worst order capture trees. Table 5.3 compares the nodes
searched for the best order and the worst Qrder. The pbsitions that do not
.have many e#pturgs are .cc;n_sidered hére for analysis, since the worst order for
s_éarch in more é()nmpléx pbsit/ion_s pioduced much larger tree§ and did not ter-

minate even after two or three days of computation. So these results igive

. R i ’ ']
only a best case estimate of the inefficiency of alpha-beta on badly ordered

_trees, i.e., searching a capture tree generated with a bad order can-be at least

this inefficient.

2 ‘ Order 1 Order 3
Total nodes | 13063 | 51974666

A sample of | _ .
| 5 positions | Ratio 1. | 39788

Table 5.3." Comparison 3: Worst case alpha-beta

s

51

5.2.4. Com ing orders 2,5 and 6

2 This comparison lets us to assess the effect of the role played by the
material value difference of to and ‘from-pieces. When analyzing the capture
trees, it is geﬁerally felt that the capturés wit’h equal valued from and to-
pieces would only extend the depth of the capture search tree, without induc-
ing extra cut-offs, or providing material benefits. This suggests that equal
captures must be considered last as in capture order 6. Another variation of
the éonstituents of capture order 2, i.e., considering _éaptures with equal
valued to and from pieces before the positive mzi.terial value captures, forms

"the capture order 5.

Table 5.4 tabulates the “total of searched n;)des for orders 2, 5 and 6. 'The'
results sho§v that the capture ‘order‘2 is much better than the other two.
Search efficiency is better when positive material value difference captures are
considered ﬁ;st,-followed by'cabtures with equal vélued to and from pieces,
é,nd laét, the négati-vé material value difference céptureé. Orders 5°and 6 are

seen to be inefficient, so this comparison suggests tha/t- they are not worth

| vc;onsiderilng. .
— v _ Order 2 6rder5 Orderb
KOPEC! positions ot 01 T 555 | soss.
e e e e

Table 5.4 ‘Comparison i H Co’mp'aring orders 2,5 and 8

1
5.2.6. Comparison 7: Benefit of sorting moves

—_—

Move-list generation is convenient wh‘en' all the moves for a particular
from-piece is generated, and is repeated for all the from-pieces. If the from-,
pieces are chosen in pawn to king order, we obt‘ain the capture order B, which“
is a random order in terms of to-pieces. Capture order 1 is genera?@d'in the
best order .of to-pieces, thus requiring a complex method for move generation, -

or requiring a sorting phase after move generation.

A comparison -between £he two shows that capture order 1 is nearly 70 to
150 times more efficient than capture order B'as in Table 5.5. For moves to
be in the be'st’order of to-p‘ieces requires that they must be generatedgone by
one for each from-piece and to-piece. ‘Generating all the moves for a from-
pieée can' be convenient be_cagse the parallelism;_'in_the bitmaps caﬁ be util-
ized. So;ting the moves‘generated from the lé‘tte(; orderv can provide the"
moves in the best order of to-pieces. Since so;tiﬁg is-inexpensive '(results~of
Chapter 4) and captufe order B for se'arch‘is e'xpen»sive, greater search
efficiency can be achieved by generating -moves conveniehtly,' followed by an

inexpensive sort. The comparison here helps to assess this fact.’

Order 1 Order.B

- ... | Total nodes | 481383 | 34422497

+ | KOPEC1 P'OS"IF,IODS‘ Ratio 1 I
. . T~ ,])
KOPEC2 positions Total nodes 84674;& 127483242

Ratio : 1 150.5

" Table 6.6 Comparison 7: Comparing order 1 and-ordér B

53

5.2.6. Overview of the order experiments

Figure 5.3 plots the expense of searching a capture tree with the dis-
cu§sed orders. The KOPECQ positions are represented by the dashed line. It
is seen that the various heuristig ix:" capturevordering lie between the Begt
order and the random order. The worst order (not shown in}e 'gréph), le.,
" capturing the smallest pieces first searches _the entire tree, and shows how the
alpha-beta algorithm can be inefficient on badly ordered trees. UI;ordered
trees correspond to the last two positions on the graph of Figure 5.3 and are
many times inefficient compared to the best order. Data corresponding to all

4 _ -
the order experiments are given in the Appendix Al.

For KOPEC1 positions, it is seen that theorder B is bétter than order C,
while for the KOPEC2 positions, order C is better. In‘capture order B,'all
capiures from smallest to biggegt from-pieces are generated. In ¢apture order
C, all captures. fr_om biggest to smallest ffom-pieces are generated. The |
attacked u'pieces (to-pieces) are distributed. in a arbifrary'_ order. Sin"ce the
attacked pieces play a major role in ordering the cé,pturg search, but are dis-
tributed randomly, order B is bettér some timef and o;der C is better other-

‘wise. This is the reason for the discrepancy in the total nodes searched for

capture order C, in the'KOPEClv and K’OPECQ positions.

\)

Nodes-Ratio 70

150-

140—
130
120
M . !
1104 Ic
: ' 1
100 ‘ - ' !
1
90—

OPEG1
80

o

60—

50—

30—

\
\
\
'
\
1
\
\
[}
'
‘1
\
\
'
\
1
\
\

20 KOPEC2

10

-10.

T |) 1] |]
orderia orderl ' order2 order4 orderd orderf orderB orderC

.

Capture Order

Figufe 5.3 Nodes searched Versus C,yure Orders

54 £

5.3. Depth experiments

-

_ Game tl‘ﬂt; seax":c/h[progra'ms are khown to dé» better if they search deeper
trees."’lI‘his ‘_is:‘bec.ause the;} c”a_n é:xplore. favorable combinatjons of mo#es, or
exposeldef‘ects, bgtter.lc,Look-ahead is \‘vic.lhely_acc'epted .i‘n minimax game tree
‘Séar§h, and~ tilere‘ are ‘.many ‘.attempté to . analyzé ’t"hisv ~ strategy

 [BéaSO,Bea82,BrC82,Pe$83], When an appljoximaté e?aluation' f\l.mctionvvis

“y
L

/

O

,55

used for the terminal positions, the minimax backed up values are statisti-
cally more precrse than the value produced by a static evaluatron function.
Game trees for chess generally have a uniform branchlng -factor and a ﬁxed
depth. If the searc‘h must be extended by one ply, the number of extra nodes -
to be searched, can be easily‘ estimated. Searching deeper increases the
re‘quired effort, but results in playing a b_etter game. It is much harder'to

. \
quantify the error as the evaluation functions are not well defined.

In capture search, the trees are narrow (because of lower branching fac-

tor), and arbitrarily deep (because the search must end in quiescent posi-

\

_tioms), so it is not easy to estimate the size of a’capture tree. Typically, 50%

of the total trme spent in a chess program 1s spent in capture search [SlA83]
So, the performance can be 1mproved if the capture search looks at smaller
trees. If depth is changed to reduce the sizeof the tree, then the search must
be term-inate'd at nonfquiescent positions, whose st‘atfrc_evaluatiovn is inexact,

and therefore may return an error value. Because the static-evaluation o

quiescent posrtrons is exact (only material balance is. consxdered in capture‘ ‘

search), it is easy to quantrfy the resulting error_. :

TWo types of measurements are made in these experiments.“(l) Error and

(2) Savrngs By searchrng deeper, more efrors can be elrmrnated as the static

evaluatron on more. nodes gets accurate Such a search is also expenswe since

. ¢

,;’l#"réer trees are searched. Thus these experrments provrde mterestlng results

about the error and savings mvolved when the search,rs termrnated to

‘different depths. The results the experiments are plotted-- m'the graphs ‘with.

the KOPECI positions represented by a SOlld line and the KOPEC2 positions “

represented by a dashed llne

56

5.3.1. Experimental set-up

The TinkerBelle chess program’s capture search routine is used to con-
duct the depth experiments. Capture analysis is made to variable depth, after‘
two-ply and three—ply full wxdth Isearch on the two sets of test positions.
Capture analysrs for .depth equal to sixteen is taken as the reference for the
4total nodes searched and the return value of the search tree. Rarely the cap-
ture tree depth equals sixteen,‘ s"o“th)er_esults from an arbitrary depth capture

tree and the one with depth equal to sixteen are almost same.

'5.3.2. Error measurements

The capture search is performed at each non-quiescent (all depth 2 and
depth 3 nodes are considered) ’position.b Each time the search returns a
different value to that when the depth is sixteen, -itl‘is recorded.as an error.
‘For every board position, ratio of the:number of times a different value is

' o _

'returned to the’number of non-quiescent positions searched represents the

percentage error. ThlS is computed over the two sets of test posmons

Flgure 5.4 plots the %error in capture search w1th respect to depth It is

seen that as the search depth is 1ncreased the return value of search becomes

: _ more accurate Thls‘ is because m‘ore noﬁes become qulescent .and the statlc
"iﬁevaluatron on more’ nodes becomes accurate Mlnlmaxmg accurate values

k .through the tree increases the accuracy at the Toot, node The KOPECI and :

‘ the KOPEC2 posmons have nearly the same errot values at dlﬁ'erent depths

‘Some programs adopt statlc evaluatlon of a posmon 1nstead o‘f capture

search It is believed that such analys1s could be maccurate and may Iead to

rl

fmany blunders durrng a chess game A statxc analysrs cannot eﬁ'ectrvely

. -

1 %%error

14

57

13—

12+

11

10

f

=]

o]
o
2]
)
=

|] 1 1 I !
2 . , 10 11 12 18 14 15 18
/ o depth(ply) . . o

- Figure 5.4 | Erro‘rlyi_v'ersué Depth

-

‘consxder the snde effects on captures. For example a pmned piece can be',

exposed when a capture is a.ctually made but cannot be evaluated by a statxc

analysis. Even if we con51der the statlc analysxs as equxvalent to a Inll 4-ply

bcapture search the error can be.as hxgh as 5.5%..

7

i

1

) . _ | |
“accurate. Experiments in this section try to characterize this behavior of cap-

58

6.3.3. Savings

Capture ftrees may have Aa lower branching factor at deeper levels of the
iree, so the shape 6[the plot satings versus depth can be considerably
different from that for a game tree. Searching deeper than a certain level of

the search trée can taper off the savings, even with the search becoming more

¥
s

‘ture trees.

L The number of board’ positions analyzed by the capture search routine,

r

either when it recursively calls itﬁor when called by the main search pro-
gram are referred to as capture no

Restricting the search depth can result

[

in smaller capture trees, reducing the capture nodes searched. Percentage

s

savings is the ratio of this reduction of capture nodes to the total capture

~ . N

~

nodes searched when depth is sixteen.

Figuste 5.5 plots the savings in searched nodes for various aepths. As.

e\:pected the savmgs ‘tapers off at higher depths, but is srgmﬁcant for a shal-

|

low search The KOPEC2 posrtlons represented by the dashed line have a

larger savings than the KOPECI positions, because they are generally com-

- plex, and burld large Capture trees. For example at search depth—7 there is

a15% savmgs in the KOPEC1 posrtxons whlle it is 21% m the KOPEC? posi-

' _tiens ‘The hxgher slope of the savmgs curve, from the graph of Flgure 5.9 |

'suggests that the KOPEC2 positions have a largerybranchmg- factor. even at

. depth=9 plil.

o

1

%osavings

5.3.4. Savings versus error

70.

" 59

65—

60

50—
45—

40—

30—
25—
20—
15

10—

®

|
I
1
|
7

@
—
o
—
—
—
~
—
(2]
-
LS

ot
o

|
8

[y
o af
o

O =]

16

depth (ply)

Figure 5.5 Savings versus Depth

A p)ot of savings versus error helpﬁ in deciding the depth for capture

search by combining error and savings information on the same graph. This

‘graph can be used to choose an optimum search depth, where the error is not

high, but there vis significant savings. This can also h,élp in choosing a search

depth for an estimated error and savings values.

1

"Figure 5.6 plots savings versus error for the two sets of test positionsl
The KOPEC2 positions represented by the dashed line result in larger sav-

ings and smaller error than the KOPECI positions.
) *

%‘;'}‘/

70

65— ’ ’

60—

55

50—

45—

40—

%savings 35

30-+

25—

15

10—

(<)
(=]
-3
o0
o —
[
=3
g
Ll
| ad
N
L
(]
Lo
b

%error

I

Figure 5.6 Sﬁvings versus Error

The shape of the plot does not sugge;st a point-at which there is high savings
for a given? error. The difference in KOPEC1 and KOPEC2 values makes it

hard to choose the curve fo'r‘ deciding search depth. The true range for

61

savings versus error curve.may lie in the vicinity, so we can get an approxi-
, h

mate value of savings for a specified error. Moreover, the returned val e from

capture search itself may be erroneous, since ideally, a quiescence search is

preferred. So these error results may not be accurate.

-
5.3.56.. Searcix to even and odd depths

When the search is terminated b.y sbecifying depth, the érrgr and savings
values can differ for odd and even ply, and is interesting to plot them
separately. Some positions had éigniﬁcant diﬁ'erence in fhe number of total
nodes searched and the number of error nodes, for odd and even ply, which
prompted the plotting this graph/.

Figure 5.7 plots the e'rrior versus savings for even and odd depths for the
KOPEC1 positions only. The dotted line represents the odd>depth values. It
is seen that the seafch to ‘'odd dep‘t‘h has consistently less errof for a g‘iv.en
savings, and more savihgs for a given error value, tha.n that for even depth.
Thése are shown by the horizontal and vertical pdinters on the graph. Search
to.an odd depih results in the last move by a piece of ‘the cg]or‘that made the

first move. This has more effect on the returned value and so a greater accu-

. ., AN
racy. It is thus a good idea to terminate the capture search to odd depths.

The data corresponding to all the depth experiments are given in the Appen-

dix A2.

14

13—

12—

11—

10

i

Toerror e

85 70

%savings

Figure 5.7 Seax;éli to Even and Odd depths

5.4. ‘Con"clusions
- The ex;’>erniments provide. fa qg\ood iﬂsight'_ into the capture searching in_ -
chtless. Thé. order experiments suggest that the cap‘t“ure'or.der 1 is the best,

" and cuts the 'si_z~e of search tree dl;astically"."The worst order could be m’ahi'
. tilm'eQ inefficient an'dk éven th‘;e ranvdom .ordgr‘sﬁ (orders B and C') "érg not desir-

able. The value of to-pieces pla}"s"a’ma;jor, role m etermining the order,

63

although the from-pieces also have an effect on the efficiency of search.

The depth experiments give an idea of what savings can be expected
from a capture search to various depths and what errors are involved. A 3%
error, allowed by engineering approximations, results in a savings of about
30% on éverage. There is no-value for an optimum depﬁh that has a max-
.imum savings with a tolerable error. T-he choice of depth. for search is only a
comproniisve between the error and savings invdlved. If debth must be chosen

as the criterion for terminating the search, it is better to terminate at an odd

ply.

Chapter 6

CONCLUSIONS -

The work in this thesis provides some insights into the tree searching
mechanism in general, and into the capture search of chess programs in par-
ticular. A simple.design that uaes limited hardware supporthas been imple-
mented and its performance is compared to TinkerBelle’s capture search. \The
amount by which the efficiency of imp'lementation is improved by applying -
heuristics on the Asearch order, and the amount of error-savings v‘alues for
‘search to varying depths are also quantiﬁed.

The search algorithm requires that the move generator must provide
moves one by one, to simplify the interfacebetween them. For efficiency, the
search algorithm prefers the moves (or captures) in a desirable or.der, which is
achieved in hardware by large combmatorral circuits and a complex ‘priority
clrcult An lmplementatron with a srmple hardware alternatxve that reqmres ‘
the CAP_ROM to extract the "next best move,” reveals that looping throrlgh
the entries of CAPjOM ish efpensive, andv is not a preferred allter.native for
capture search. Move generation using bitmaps is se'en to be fast' but mode
“of extracting moves from bltmaps is mefﬁclent Since sortlng is cheap
(Chapter 4), moves can be generated . convemently (Capture Order B) and‘
then sorted, so that search can be efﬁclent Handllng bltmaps can be expen-
sive on conventlonal processors 50 -these operatlons can be mrcroprogrammed A
~on: specxahzed processors, or processors like M068020 ¢an. be used. Thus there

18 no srmple hardware alternatrve to search the tree with the hardware'»

search mechanism drscussed in. Chapter 2.

64

65

Generalized tree searching mechauisms require more issues to be con-
sidered. In a quiescence search, what moves can be generated must be dynam-
ically determined, so with the CAP_ROM approach, the contents cannot be
predefined. Implementing a sophisticated node evaluation function, move
selection rrrechau,ism, Qu.i'escence search, are harder to implement with a pure
hardware approach. However,' hardware assists can be provided to handle the
expensive components. -For example, move-list generation can be rnicropro-
gramrrxed as a .function; ARRAY_LOGIC, used for generatiug the sliding

moves, can b7«bui1t as separate hardware and interfaced.

‘The order experirnents let'us to assess the role played iby the value of
participating pieces in capture search. The experirrrents clearly indicate that
‘, ‘the capture order 1 in which the biggest pieces captured by the .smallest
| pieces are considered ﬁrst is the best order. With the addltloual cut-off, the
search can be made more efficient. It is also seen that the order of to-pieces
" plays a greater role, but the order of from-pieces also has some effect on the
) search efﬁcrency The worst order for searchmg the tree i.e. capturrng the
\smallest pleces ﬁrst suggests the maxrmum “size of capture trees. Even g}e\

, ™~
raudom orders are no?sultable for tree sezgrchmg, and moves must be ordered

' before the search algonthm examines them.

A

Bulldmg ordermg functions in hardware is 1mportant as seen in the prao-
tlcal chess machines. The.CHEOPS dges not have proper move ordenng Burlt
in hardware whereas BELLE has a simple ordering mechanlsm HITECH has
‘a more sophxstlcated ordermg mechanlsm -- perhaps HITECH s performance’ .

. is'superior. - - I e

66

+

A deeper search results in more accurate values. The extra savings
obtained in searching a depth limited capture tree is signiﬁcaﬁt only when
large error is tolerated. The depth experiments also suggest that there is ﬁé .
optimum depth for which the savings/error is a maximum. Thus we have to
éorﬁpromise between tixe accuracy of the solution (or error) and the effort to
be spent (or savings) in choosing a search depth. Even a-7-ply deep search

with 0.4 to 0.7% error gives less than 20% savings, so an arbitrary depth cap-

ture search may be preferred.

[AAB70]

[Bau78]

[Bea80]

[Bea82]
[Ber74]
L
[BrG82j
[CaM83]

[CaM82]

[CoT82]
2 S
[Cra84]

(EbP84]

References

G. M. Adel'son-Vel'skii, V. L. Arlazarov, A. R. Bitman, A. A.
Zhivotovskii and A. V. Uskov, Programming a computer to play
chess, Russian Mathemat:cal Surveys 25, 2 (March-April 1870), 221-
257. ‘

G. M. Baudet, On the branching factor of alpha-beta algonthm
Artificial Intellzgenc:: 10, (1978), 173-199.

D. F. Beal An Analysms of Minimax, in Advances in Computer Chess
2, M. R. B. Clarke (ed.), Bdinburgh Univ. Press, Edinburgh, 1980,

103-109.

D. F. Beal, Benefits of Minimax Search, in Advances in Computer
Chess 8, M. R. B. Clarke (ed.), Pergamon Press, Oxford, 1982, 1-16.

Hans Serliner, Chess as Problem Solving: The Development of a
Tactics Analyzer Ph.D Thesis, Department of Computer Science,
Carnegie-Mellon Umversaity, 1974.

I. Bratko and M. Gams, Error Analysis cf the Minimax principle, in
Advances in Computer Chess 3, M. R. B Clarke (ed.), Pergamon -

Press, Oxford, 1982, 1-16.

Murray S. Campbell 2iud T. A. Marsland, A comparison of Minimax
Tree qM"'h Algorithms, Artificial Intell:gence 20, (1983), 347-367.

M. S. Campbell and T. A. Marsland, A Comparison of Minimax

Tree Search Algorithms, Tech. Rep. 82-3, Dept. of Comp. Sc., Univ .

of Alberta, Edinonton, July 1982. o

Joe Condon and Ken Thompson, Belle Chess Hardware, in
Advances in Computer Chess 8, M R. B. Clarke (ed.), Pergamon
Press, Oxford, 1982, 45-54.

Stuart M. Cracraft, Bitmap Move Generatxon in Chess ICCA:
Journal 7,3 (September 1984), 146-153.

Carl Ebeling and Andrew Palay, The Design and Implementatlon of

~ a VLSI Chess Move Generator, Proceedmgs 11th Annual Symposium

[Fre8$]

[GEC67]

" [Hya85]

’[Ibbsﬁ

on Camputer Archztect'ure 1984.
Peter W. Frey, The Alpha-Beta algonthm mcremental updatmg,

well- behaved evaluation functions, and non-speculative forward

pruning, in Computer Game Playmg, M. A. Bramer (ed.), _Ellls
Horwood Limited Publishers, Chxchester, 1985, 285-289. '

R. D. Greenblatt, D. E. E eIl and S. D. Crocker, The_
Greenblatt Chess’ Program, Proe AFIPS Fall Joint Computer

" Conference 31, (1967), 801-810.

Robert M. Hyatt, Parallel Chess on the CR?XW/Q Icca

Journal 8, 2 (June 1985) 90-99.

Roland N. Ibbeﬁ in The Arch:tecture of High Performance
Computer.f Sprmger-VerIag New York Inc., 1982, 112-125.,)

[Kai85]

[KnM75]
[KoB82]
[KNYSS]

[Mar85a
[Mar85b]

[MHG7§]

. [Mye82j

[Not84]

68

Hermann Kaindl, Quiescence Search in Computer Chess, in
Computer Game Playing, M. A. Bramer (ed.), Ellis Horwood Limited
Publishers, Chichester, 1985, 38-52.

D. E. Knuth and R. Moore, An Analysis of Alpha-Beta pruning,
Artificial Intelligence 6, (1975),.293-326.

D. Kopec and 1. Bratko, The Bratko-Kopec Experiment‘ A

-comparlswn of Human and computer performance in chess, in

Advances in Computer Chess 3, M. R. B. Clarke (ed.), Pergamon
Press, Oxford, 1982, 57-72.

Danny Kopec, M. M. Newborn and Winston Yu, Expenments in
Chess Cognition, in Advances in Computer Chess 4, D. Beal (ed.),
Pergamon Press, Oxford, 1985, 598-79.

T. A. MarslandTPersonal Communication, 1985. ‘

T. A. Marsland, Evaluation Function Factors, ICCA Journal 8, 2
(June 1985), 47-57.

J. Moussouris, J. Holloway and R. Greenblatt CHEOPS: A Chess-
oriented Processrng System, in Machine Intell:gence vol. 8, J. E.

“Hayes, D. Michie and L. I. Mikulich (ed.), Horwood- Wlley,‘

Chichester, UK, 1979, 351-360.

Glenford Myers, in Advances sn Computer Arch:tecture II, Wiley,
New York, 1982, 25-35.

Rudolf W. Nottrott NETLIST and RNL - Tutorlal for Begrnners,

 UW/NW VLSI C’onsort:um 1984.

[Pea80]

[Pea83|

Judea Pearl, Asymptotic properties of minimax trees and game
searching procedures Artificial Intelligence 14, (1980), 113-138.

Judea Pearl, On the nature of pathology in game sea.rchlng,

- Artificial Intelligence 20, (1983), 427-453.

[PeaB_S]ﬁ

[sehssl'
 [sPIs3
| [Shaso]
| '»[smss}

[WeBS85]

[W.ehS.Sl

Judea Pearl, Game searching theory: Survey of recent results, in
Computer Game Playing, M. A. Bramer (ed.), Ellis. Horwood le;ted
Publisheérs, Chichester, 1985, 276-284. :

J. Schaeffer, E:tperrments in Search and. Knowledge Ph/D thesis,
Computer. Sclence Department, University of Waterloo, 19886.:

Jonathan Schaeffer, Patrick A. D. Powell and Jim Jonkman, A
VLSI Chess Legal Move Generator, Technrcal report 4, Unrversrty of

‘Waterloo, Feb 1983.

C.. ‘Shannon, - Programming a computer for playing. chess,
~ Philosophical Magazme 41, (1950), 256-275.

David J. Slate and Lawrence R. Atkin, Chess 4.5-The Northwestern

‘University chess program,-in Chess sk:ll in man and machme, Peter
“W. Frey (ed.); Springer-Verlag, New York, 1983. :

David E. Welsh and Boris Baczynskyj; in Computer C’hess II Wm
C. Brown Publishers, Dubuque Iowa, 1985, 6-97.

Burton Wendroff, Attack detection and move generatlon on the X-

,MP/48 IC'CA Journal 8 2 (June 1985) 58-65.

g

Appendix Al

'y
¢ Order Experiments
’
V3
Effect of capture ordering on alpha-beta search algorithm
I'd
KOPEC! pasitions
Orderla| Order! Order?2 QOrders§ Order$s Oraer6 Order8 OrderC
I
*|{Total 309729 481383 685196 659225 1708750 4153507} 34422497144802627|
Ratio 0.643 1 . 1.423 |\.369 3.55 8.628 - .S ,93.07
KOPEC?2' positions
¢
TR |
- Ordertla| Order!? Order2 Order4 Order5 Orders OrderB OrderC
Total $04002 846743 1526170| 1054186| 2816330 |14090611]127483242[181337620
Ratio 0.59 1 1.802| 1.245| 3.326 16.64] 150,55 21.66|
LY

‘89

Appendix A2

Depth Experiments

Error and Savings values for capture search to various depths

KOPECt positions

Total Number of Quiescent nodes analyzed:

37138

depth=16 depth=9 depth=8 depth=7 depth=6 depth=-5 depth=4 depth=3 depth=2

Searched node;:233377 217547 209438 199677 192859 169876 151717 119861 89064

Sav?d Cnodes: . 0 15830 23939 33700 40518 63501 ‘81660 |13516’ 144;!3

. 1 of s;;inqs: 0.00 6.78 10.26 14.44 17.36 27. 20 33.99 ‘48;64 61.84

Ret val chg: [} 29 ~ 45 133 658 1008 2028- 3593 51;3

. 1 Error : 0.00 . 0.08 0.12 0.36 |l77 2.7 5.46 9.67 13.77

KOPEC2 positions

?otal Number of Quiescent fnodes analyzed: 45842 h .

depth=i6 depth=9 depth=8 depth;7 depth=6 debtp-s depth=4 depth=3 depth=2

Searched nodes:309254 281500 §61673 247453 220686 200208 ,166240 132337 103331

Saved chodes: 0 27754, 47581 61801 88568 109046 143014 176917 205923

' T of savings: 0.00 8.97 15.39 19.98 - 28.64 35.26 45.24 57217 66.59

t val chg: o 68 173 328 49 1288 2287 4;4{5 . 6057

T Error : . 0.00 ”‘ 2.81‘ 4.99 9.04 V.iu.oa

0.1 ©0.38 0.72 1.63

