
Fluid vector flow and applications in infant brain MRI analysis
Tao Wang

Abstract
A parametric active contour model based on fluid vector flow is presented in this paper.
The contribution of this model is two-fold. First, it has the largest capture range. Second,
it is able to extract concave shape. We apply this method to infant brain MRI analysis and
the results are very impressive.

1. Introduction
Active contour models (snakes) [1-4] have been proven to be very useful for
segmentation and object tracking. In the literature, there are two types of active contour
models: parametric active contour models [1-3] and level set active contour models [4].
Level set active contour models have a number of advantages such as insensitive to
initializations and capturing multiple objects. However, they also have many
shortcomings. First, continuity of contour is not considered in level set active contour
models (see Figure 1). Second, they tend to extract many “false” objects when noise
exists (see Figure 2) because of the ability of capturing multiple objects. For many
applications, users want to extract single object with continuous contour. Since continuity
and uniqueness of contour is guaranteed in parametric active contour models, we focus
on parametric active contour models in this paper.

Figure 1: discontinuity of level set snake. Figure 2: “false” objects extracted by

level set snake.

The internal spline energy of parametric active contour model can guarantee continuity.
In addition to that, uniqueness is also guaranteed because one parametric active contour
will not evolve into multiple contours. However, parametric active contour models have
two major shortcomings. First, the capture range is limited (see Figure 3 (a) and (b)). If
the initial contour given by a user is out of the capture range, the active contour will not
evolve (see Figure 3 (c)). Second, they are unable to extract acute concave shapes (see
Figure 4).

 (a) (b) (c)

Figure 3: capture range of (a) traditional snake (b) GVF snake (c) initial contour is out of
the capture ranges of traditional snake and GVF snake.

(a) (b) (c) (d)

Figure 4: (a) a saddle point in GVF (b) GVF snake (c) a stationary point in BVF (d) BVF
snake

In this paper, a parametric active contour model based on fluid vector flow is proposed. It
has two major advantages. First, it has the largest capture range (the entire image) by
using a polar interpolation method. Second, it is able to extract acute concave shape. We
notice other parametric active contour models are unable to extract acute concavities
because the external force fields are stationary [4] so that the active contours could be
stuck at saddle points and/or stationary points (see Figure 4). In our method, the external
force field will change dynamically with the evolution of the active contour. Therefore,
the active contour will be stuck and acute concave shapes can be extracted.

2. Background
2.1. Traditional snake
A traditional snake is a parametric active contour:
c(s) = (x(s), y(s)), s∈[0, 1] (1)
With a given initial contour, it evolves within an image I(x, y) to minimize the energy
functional:

Esnake = ∫ +
1

0

))](())(([dsscEscE ei (2)

where iE is the internal (spline) energy and eE is the external energy.

The internal energy iE =
2

|)(''|)(|)('|)(22 scsscs βα +
 (3)

In many implementations, the coefficient of the first-order term is a constant, a(s) = a;
and the ß(s) is set to zero to allow the snake to be second-order discontinuous to develop
a corner. Many parametric active contour models share the same internal energy. They
are mostly different in the expression of external energy. A snake should evolve to
minimize the energy functional Esnake. This problem can be formulated with the Euler-
Lagrange equation. In calculus of variations, the Euler-Lagrange equation of

J[c(s)] = ∫
1

0

))(''),('),(,(
s

s

dsscscscsF (4)

is

Fc - 'cF
ds
d

+ ''2

2

cF
ds
d

 = 0 (5)

Therefore, the Euler-Lagrange equation of (2) is
ac’’(s) - ßc’’’’(s) + ∇ eE = 0 (6)
To find the numeric solution of (6), the snake is treated as function of time t as well as s:
ac’’(s,t) - ßc’’’’(s,t) + ∇ eE = 0 (7)
When the contour stabilizes, the time term vanishes and the solution is achieved.

2.2. GVF snake
GVF snake diffuses the edge information from the object contour to its neighborhood
therefore it has larger capture range than the traditional snake. The external force of GVF
snake [2] differs from traditional snake in that it cannot be written as the negative
gradient of a potential function. In addition to that, the GVF snake is formulated directly
from a force balance condition rather than a variational formulation. The gradient vector
flow is defined to be the vector field
Ggvf(x, y) = (u(x, y), v(x, y)), x∈[x0, x1] and y∈ [y0, y1] (8)
that minimizes the energy functional

Egvf = ∫ ∫ ∇−∇++++
1

0

1

0

))((
222222

y

y

x

x
gvfyxyx dxdyfGfvvuuk (9)

Where k is a blending parameter, ux, uy, vx, and vy are the derivatives of the vector field,
∇ f is the gradient of the edge map. The GVF snake is computed by solving the following
Euler-Lagrange equations:
k 2∇ u – (u – fx))(22

yx ff + = 0 (10)

k 2∇ v – (v – fy))(22
yx ff + = 0 (11)

2.3. BVF snake
The basic idea of BVF [3] is interpolation. In this way, it extends the capture range to the
entire image. It applies a threshold to generate a binary boundary map of the input image.
Then, four potential functions ? x, ? y, ? xy, and ? yx are computed by line-by- line
interpolations in horizontal, vertical and two diagonal directions (see Figure 5). The
boundary vector flows are defined based on the gradients of the potential functions as:
? 1 = (∇ ? x, ∇ ? y) (12)

? 2 = (
2
2

(∇ ? xy+∇ ? yx),
2
2

(∇ ? xy -∇ ? yx)) (13)

The external force is defined as:

eE (x, y) = ? (x, y) (14)

 (a) (b) (c) (d)

Figure 5: Interpolations of 4 directions: (a) horizontal; (b) vertical; (c) and (d) diagonals.

3. FVF: fluid vector flow
Given an input image
I(x, y) = f(xj, yk) ∈R, j∈[0, 1, …, M-1] and k∈[0, 1, …, N-1]. (15)
and a closed parametric contour
c(x, y) = (x i, yi) ∈R2, i∈[0, 1, …, P-1] (16)
we assume the user wants to evolve the contour to extract a target object O(x, y). Our
approach has three main stages: binary boundary map generation, vector flow
initialization and fluid vector flow computation. The internal energy is equation (3).

3.1. Binary boundary map generation
The boundary map is defined as:
MB(x, y) = |∇ (- Gs(x, y)*),(yxI)| (17)
where Gs(x, y) is a Gaussian smooth filter with deviation s and ∇ is the gradient operator.
Then, we compute the normalized boundary map:

MNB(x, y) =
)),(min()),(max(

)),(min(),(
yxMyxM

yxMyxM

BB

BB

−
−

 (18)

Inspired by BVF [3], we apply a threshold T ∈[0, 1] to generate the binary boundary map:



 >

=
otherwise

TyxMif
yxM NB

BB ,0
),(,1

),((19)

Figure 6 shows an input image and its binary boundary map (threshold T = 0.8).

Figure 6: (Left) an image and (Right) its binary boundary map.

3.2. Vector flow initialization
The parametric contour c(x, y) may be outside, inside, or overlap the target object O(x, y)
as shown in Figure 7. To demonstrate the basic idea of our algorithm, we suppose the
contour is a circle and outside the object. Since any parametric contour is represented in
discrete format by (16), the method described below can be generalized to other

parametric contours with ease. In addition to that, our method can be easily modified
when the contour is inside or overlaps the object.

Figure 7: Contour is (Left) outside (Mid) inside (Left) overlap the object.

For the circle c(x, y), its center is:

cc(xc, yc) =),(

1

0

1

0

P

y

P

x
P

i
i

P

i
i ∑∑

−

=

−

= (20)

Then we define an external energy functional as:



 ==−−

=
otherwise

yxMwhenff
yxE BByx

e ,0

0),(),sin ,cos(
),(

φφχ
 (21)

where χ is normalization operator,),(yx ff = χ (∇ I(x, y)), and















<==

>==

≠
−
−

=

cc

cc

c
c

c

yyandxxwhen

yyandxxwhen

xxwhen
xx
yy

 ,
2

3

 ,
2

),arctan(

π

π
φ ,]2,0[πφ ∈ (22)

The energy Ee has two terms: the gradient term and the directional term. When the
contour is far from the object, the directional force makes the contour shrink. When the
contour is close to the object, the gradient force pushes the contour (see Figure 8 (b)) to
the object. However, if concavity exists, convergence will not be achieved. The contour
will evolve to the yellow line show in Figure 8 (c).

The vector flows of (21) spread around in the entire image I(x, y). The capture range is
the whole image so that it is the largest. Therefore, even if the initial contour given by
user is far from the object (see Figure 3(c)), the snake can still evolve to capture the
object. Moreover, if the initial contour is not given by user, we can use the contour of the
image as the initial contour and snake can also evolve to capture the object. This feature
is not available neither in traditional snake [1] or GVF snake [2].

Although the capture range of BVF [3] is also largest, our method is different. The
difference is two-fold. First, the performance of our method is better because
interpolation is avoided. Second, the BVF interpolation is done in four directions but our
method is direction invariant (]2,0[πφ ∈).

3.3. Fluid vector flow computation
In this step, a boundary trace method is applied to the binary boundary to get an array of
control points:
B(xq, yq) = ?(MBB(x, y)), q∈[0, 1, …, Q-1] (23)
where ? is boundary trace operator and Q is the number of the control points.

Then, we define fluid vector flow energy functional as:









∈

==−−+∇

=

otherwise

Byxand

yxMwhenyyxx

yxE qq

BBqq

FVF

 ,0

) ,(

 0),()), ,(y)) I(x, ((

),(

χχχ

 (24)

The energy EFVF has two terms: the gradient term and the directional term. The
directional force attracts contour towards itself. When a control point is in a concave
region, the contour can evolve into the concave region because of this force. When the
contour is close to the object, the gradient force will push the contour (see Figure 8 (b)) to
the object. Convergence will be achieved when the contour stops evolving.

In Figure 8 (c) – (k), the fluid vector flows are shown as blue arrows, the active contours
are yellow lines, the binary boundaries are black lines, and B(xq, yq) are green points. The
control points selected by the boundary trace operator moves along the binary boundary,
like water flows along the boundary. Therefore, we name it “fluid vector flow”.

The pseudo code of FVF is as follows:
Algorithm
Input: an image I and an initial snake Si
1. Compute binary boundary map.
2. Compute initial vector flow and evolve the snake.
3. While convergence is not reached

a. Find a new control point on the binary boundary map
b. Create new vector flow based on the new control point and evolve the snake

Output: FVF snake SD
End algorithm

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 8: (a) image and contour (b) initial vector flow (c)-(k) fluid vector flow (l) result.

4. Experiments

References
[1] Snakes: Active contour models.
[2] Snakes, Shapes, and Gradient Vector Flow.
[3] Boundary vector field for parametric active contours.
[4] MAC: Magnetostatic Active Contour Model.

