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Abstract

In this note we present a construction which improves the best

known bound on the minimal dispersion of large volume boxes in the

unit cube. The dispersion of a subset of the cube is the supremal

volume over all axis parallel boxes in the cube which do not intersect

the given subset. The minimal n-point dispersion is the infimal dis-

persion over all subsets of the cube containing n points. Define the

large volume regime as the set of real volumes greater than 1
4 . In this

note we work exclusively in the large volume setting. The construction

presented in this paper yields a dimension independent upper bound

which is an improvement on, and is proportional to the square root of

the best known bound in this regime. We also show that some inter-

mediate estimates are sharp, given that the dimension is taken to be

larger than a specified volume-dependent constant.
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1 Introduction

The dispersion of a subset T ⊂ [0, 1]d is defined as the supremum of the

volume over all axis parallel boxes in the cube which do not intersect T .

Consider the class of all n point subsets of the cube. Define the minimal n-

point dispersion as the infimum of the dispersion over all such subsets. The

problem of estimating the minimal dispersion (defined originally in [14] as a

modification of a concept in [6]) has been given attention in recent years in

such contemporary works as [1],[3],[5],[7],[9],[10],[12],[16],[17]. We will refer

to these works when we discuss the historical progress on the problem, and

the best known bounds on the minimal dispersion. The dispersion of some

particular sets has been studied in [8],[13],[15]. When the volume is “large”

(r > 1
4
), the best known upper bound given in [12] on the minimal disper-

sion is of the order (r − 1
4
)
−1
. In this paper we present a construction which

improves the best known bound on the minimal dispersion of large volume

boxes in the cube. We construct a class of discrete configurations in the cube

which can be employed to yield the result. Let d > 1, and let r ∈ (1
4
, 1].

The inverse of the minimal dispersion is denoted as N(r, d). The number

N(r, d) is the cardinality of the smallest set of points which intersects any

axis parallel box with volume exceeding r. The topic of dispersion is of inter-

est in studying topics in Discrete Geometry and Approximation Theory and

in particular random point configurations as in [10]. For each r ∈ (1
4
, 1
2
] we

construct a discrete configuration of points in the cube. The cardinality of

such a configuration will be shown to be an upper bound for N(r, d). First,

consider the situation when r ≥ 1
2
. The minimal dispersion is attained with

one point at the center of the cube. Thus, it is clear that in the large volume

regime we are interested in estimating the minimal dispersion when r < 1
2
.

Theorem 1.1 improves the best known bound in the large volume setting and

is given by.

Theorem 1.1. Let d > 1, and let r ∈ (1
4
, 1
2
]. Then

N(r, d) ≤

⎢⎢⎢⎣ π√
r − 1

4

⎥⎥⎥⎦− 3. (1)
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Let r ∈ (1
4
, 1
2
], and let 1 = (1, 1, . . . , 1) ∈ Rd. We construct a set of points

on the diagonal in the following way. Consider the sequence

Q(r) =

{
r,

r

1− r
,

r

1− r
1−r

,
r

1− r
1− r

1−r

,
r

1− r
1− r

1− r
1−r

, . . .

}
.

Denote the subsequent elements in the sequence as q1, q2, . . . ∈ Q(r). We

show that there exists a smallest number n ≥ 1 such that

qn ≥ 1− r.

Now construct the configuration

q(r) = {qi1 : 1 ≤ i ≤ n}.

We define a monotone decreasing step function on (1
4
, 1
2
] as

r ↦−→ |q(r)|. (2)

This function is right continuous, and induces a partition on the interval. We

derive an explicit formula for the endpoints of the intervals, from which we

obtain a formula for the function in (2). We show that this step function is an

upper bound for the minimal dispersion. From this we obtain the estimate

given in Theorem 1.1. After this we restrict the analysis to the diagonal

{x1 : x ∈ [0, 1]},

and diagonal analogues to obtain some properties of our configurations. Fi-

nally, we use the results on the diagonal analogues to show that some of our

estimates are sharp, given that d ≥ Cr, where Cr is a constant depending on

r alone. We begin with the definitions and notation.
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1.1 Definitions and Notation

Let d ≥ 1. Denote the d-dimensional unit cube as [0, 1]d. By convention let

| · | denote the cardinality, and let 1 := (1, 1, . . . , 1) ∈ Rd. The set of all axis

parallel boxes is denoted as

B :=

{∏d

i=1
Ii : Ii = [ai, bi) ⊂ [0, 1]

}
.

The dispersion of T ⊂ [0, 1]d is denoted as

disp(T ) := sup
B∈B, B∩T=∅

Vol(B).

The minimal dispersion is denoted as

disp∗(n, d) := inf
T⊂[0,1]d, |T |=n

disp(T ).

Let r ∈ [0, 1]. The inverse of the minimal dispersion is denoted as

N(r, d) := min{n ∈ N : disp∗(n, d) ≤ r}.

Let k ≥ 0. Inductively define a sequence of functions {fk}k≥0 in the following

way. Let β0 = 1. Define f0 : [0, 1] → [0, 1] as the identity f0(x) = x. Given

functions f0, f1, . . . fk−1, and numbers β0, β1, . . . , βk−1, define

βk = inf{x ≥ 0 : x ∈ dom(fk−1), fk−1(x) = 1}, (3)

and define fk : [0, βk) → R by

fk(x) =
x

1− fk−1(x)
. (4)
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Proposition 3.2 shows that the infimum in (3) is attained for all k ≥
0. We will see that the numbers in (3) are the endpoints of the interval

partition described in the introduction. Let k ≥ 0. It is clear that dom(fk) ⊂
dom(fk−1), hence βk < βk−1. Let r ∈ (1

4
, 1
2
]. The following definition is a

rigorous description of the step function given in (2). Define

α(r) := inf{k ≥ 0 : r ∈ dom(fk), fk(r) ≥ 1− r}+ 1, (5)

and define

nr := α(r)− 1. (6)

In Remark 3.8 we show that the infimum in (5) is attained.

2 Previous Work

First some known results related to the dispersion problem will be discussed.

In the paper [1] Aistleitner, Hinrichs, and Rudolf showed that for r < 1
4
,

(1− 4r)
log2 d

4r
≤ N(r, d). (7)

This lower bound gives a non-trivial estimate showing that the dispersion

asymptotically increases with dimension in the r < 1
4
regime. The upper

bound

N(r, d) ≤ 27d+1

r
(8)

was given by Larcher, and is presented in [1]. This is an improvement on the

bound given by Rote and Tichy in [10]. The inequality given by

N(r, d) ≤ 8d

r
log2

(
33

r

)
(9)

is a consequence of a general result given in [2]. The authors present an

argument which uses the V C−dimension of B (which is 2d) instead of the

ambient dimension d. In the paper [11], Rudolf presented a probabilistic

argument which yields the bound in (9). The bound in (9) is an improvement
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on (8) under the assumption that r ≥ exp(−Cd) where C > 1 is an absolute

constant. Sosnovec in [12] obtained another upper bound which is better

when d grows to infinity

N(r, d) ≤ Cr log2 d. (10)

The constant Cr obtained in [12] grows extremely fast with r. This constant

was improved by Ullrich and Vyb̀ıral [16] who showed that

Cr =
27

r2
log22

(1
r

)
.

Litvak in [9] gives an improvement on the known bounds in the regime r ≤
exp(−d), and showed that

N(r, d) ≤ C ln d

r
ln
(1
r

)
.

This result is very close to the best possible in a probabilistic setting. Litvak

also established that in the regime r ≥ (ln2 d)/(d ln ln(2d)) that

N(r, d) ≤ C ln d

r2
ln
(1
r

)
,

which is an improvement on the bound given by Ullrich and Vyb̀ıral. Now we

turn our attention to the large volume regime r > 1
4
. Sosnovec in [12] gave

dimension independent upper bound for N(r, d). In particular, he proved

that for r ∈ (1
4
, 1), and d ≥ 2,

N(r, d) ≤
⌊

1

r − 1
4

⌋
+ 1.

The goal of this paper is to improve this bound. This is established in

Theorem 1.1.
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3 Auxiliary

Proposition 3.1. Let i ≥ 0. The function fi is strictly increasing on its

domain.

Proof. Employ induction on i. Let i = 0. By definition dom(f0) = [0, 1]. For

all x ∈ [0, 1], f0(x) = x. The base case is seen to be trivial. Assume that

the Proposition holds for i = 0, 1, 2, . . . , k. Let x1, x2 ∈ dom(fk+1) be such

that x1 < x2. Then by domain inclusion x1, x2 ∈ dom(fk). By the induction

hypothesis fk(x1) < fk(x2). It follows from the definition of fk+1 as in (4)

that

fk+1(x1) =
x1

1− fk(x1)
<

x2

1− fk(x2)
= fk+1(x2).

This proves the Proposition.

In Proposition 3.2 we show that the infimal definition of the endpoints in (3)

is attained.

Proposition 3.2. Let r0 = 1. For each i ≥ 1 there exists a unique number

ri ∈ dom(fi) = [0, βi)

with the properties

βi = ri−1 (11)

fi−1(ri) = 1− ri (12)

fi(ri) = 1. (13)

Proof. Note that β1 = 1 = r0. Employ induction on n. For each n > 0 we

produce a number rn with the properties (11), (12), (13).

Let n = 1. Recall the definition of f2 given in (4), by

f2(x) =
x

1− f1(x)
.

We will show that there exists r1 ∈ dom(f1) such that

1 = f1(r1) =
r1

1− f0(r1)
.
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Equivalently, we find the solution to the equation f0(x) − (1 − x) = 0. It is

clear that r1 = 1
2
is the solution, and that r1 < β1. Consequently, β2 = r1.

This implies that dom(f2) = [0, β2). Hence, r1 has properties (11), (12), (13).

Let n = 2. Recall the definition of f3 given in (4), by

f3(x) =
x

1− f2(x)
.

We show that there exists r2 ∈ dom(f2) such that

1 = f2(r2) =
r2

1− f1(r2)
.

Equivalently, we show that there exists a solution to the equation

f1(x)− (1− x) = 0.

The function f1 is strictly increasing by Proposition 3.1. Note that f1(0) = 0,

and f1(r1) = 1. Apply the Intermediate Value Theorem to f1(x) − (1 − x).

This yields a unique solution r2 < r1 such that

f1(r2)− (1− r2) = 0.

It follows that β3 = r2, and that dom(f3) = [0, β3). Hence r2 has properties

(11), (12), (13).

Let k > 2. Assume that there exist numbers r0, r1, r2, . . . , rk−1 with the

properties (11), (12), (13). Under the assumption that dom(fk) = [0, βk)

where βk = rk−1, and fk−1(rk−1) = 1. Recall the definition of fk+1 given in

(4), by

fk+1(x) =
x

1− fk(x)
.

We show that there exists rk ∈ dom(fk), such that

1 = fk(rk) =
rk

1− fk−1(rk)
.
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Equivalently, we show that there exists a solution to the equation

fk−1(x)− (1− x) = 0.

The function fk−1 is strictly increasing by Proposition 3.1. Note that fk−1(0) =

0, and by the induction hypothesis, fk−1(rk−1) = 1. Apply the Intermediate

Value Theorem to fk−1(x)− (1−x). This yields a unique solution rk < rk−1,

such that

fk−1(rk)− (1− rk) = 0.

It follows that βk+1 = rk, and that dom(fk+1) = [0, βk+1). This yields a

number rk+1 with the properties (11), (12), (13). This proves the Proposition.

Remark 3.3. For each k ≥ 1, the infimum in the definition of βk is attained

at βk = rk−1. Proposition 3.2 justifies the assertion following the definition

in (3). Fix the sequence

{rm}m≥0 = {βm+1}m≥0. (14)

Proposition 3.4. Let n ≥ 1. Let r ∈ (1
4
, 1
2
) be such that fi(r) < 1 for all

i ≤ n. Then for all i ≤ n,

fi−1(r) < fi(r).

Proof. Fix n ≥ 1. Employ induction on i. Let r ∈ (1
4
, 1
2
) be such that

fi(r) < 1 for all i ≤ n. Let i = 1. Recall the definition of f0, f1. Since r <
1
2
,

it follows that

f0(r) = r <
r

1− r
= f1(r).

Let 1 ≤ k < n. Assume as the induction hypothesis that for all 1 ≤ i ≤ k,

fi−1(r) < fi(r).
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By assumption fk−1(r) < fk(r), then by definition of fk it follows that

fk(r) =
r

1− fk−1(r)
<

r

1− fk(r)
= fk+1(r).

This proves the Proposition.

Corollary 3.5. Let r ∈ (1
4
, 1
2
]. Let n ≥ 1 be such that r < rn. Then for all

i ≤ n,

fi−1(r) < fi(r).

Proof. Let r ∈ (1
4
, 1
2
]. Let n ≥ 1 be such that r < rn. The sequence {rm}m>0

defined in (14) is decreasing. Hence, r < rn < rn−1 < · · · < r1. Property

(13) in Proposition 3.2 implies that fk(rk) = 1 for all k ≤ n. Since r < rk, it

follows by Proposition 3.1 that fk(r) < fk(rk). Hence,

fk(r) < fk(rk) = 1.

Now apply Proposition 3.4.

Remark 3.6. Corollary 3.5 gives the property that for all n < k, fn(rk) < 1.

Property (13) in Proposition 3.2 gives that for all k > 0, fk(rk) = 1. Let

r ∈ (1
4
, 1
2
], and recall the definition in (5) given by

α(r) := inf{k ≥ 0 : r ∈ dom(fk), fk(r) ≥ 1− r}+ 1.

Then we have that for all k > 0,

α(rk) = k = nrk + 1.

This gives the integral values of the step function in (2) evaluated at the left

endpoints of the interval partition given by

· · · [r3, r2), [r2, r1), [r1, 1). (15)

The following Proposition shows that the function in (5) is constant over

any interval in the partition (15).
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Proposition 3.7. Let i ≥ 1. Let r ∈ (1
4
, 1
2
] be such that ri ≤ r < ri−1. Then

α(r) = i.

Proof. First, let i = 1, and let r ∈ (1
4
, 1
2
] be such that r1 ≤ r < 1. Since

r1 =
1
2
, it follows that r = 1

2
. Hence, α(r) = 1.

Let i ≥ 2, and let r ∈ (1
4
, 1
2
) be such that ri ≤ r < ri−1. Since r < ri−1,

Corollary 3.5 implies that for all k ≤ i−1, fk−1(r) < fk(r). Apply Proposition

3.1 on fi−2 to get fi−2(r) < fi−2(ri−1). By Proposition 3.2,

fi−2(ri−1) = 1− ri−1.

It follows that

fi−2(r) < fi−2(ri−1) = 1− ri < 1− r.

This means that for all k ≤ i− 2,

fk−2(r) < 1− r.

It follows that nr > i− 2. Since ri ≤ r, apply Proposition 3.1 on fi−1 to get

fi−1(ri) < fi−1(r). Recall that by Proposition 3.2,

fi−1(ri) = 1− ri.

It follows that

1− r ≤ 1− ri = fi−1(ri) < fi−1(r).

Thus, fi−1(r) > 1− r. It follows that nr ≤ i− 1. Therefore, nr = i− 1. This

proves the Proposition.

Remark 3.8. Proposition 3.7 shows that the function in (5) is constant over

the intervals in the partition from (15). This shows that for each r ∈ (1
4
, 1
2
],

the infimum in the definition of nr as in (6) is attained.

A brief discussion on Geometric Rational Sequences follows. We use the

results herein to obtain explicit values for the numbers {rk}k≥1 as in (14).
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The paper [4] provides results which can be applied to sequences of the form

defined below.

Definition 3.9. Let r ∈ (1
4
, 1
2
]. A Geometric Rational Sequence {xn(r)}n≥0

is defined by setting an initial condition x0(r) = r, and recursively defining

xn+1 =
r

1− xn

.

If xn = 1, then define xn+1 = ∞, xn+2 = 0, so that xn+3 = r.

Definition 3.10. Let r ∈ (1
4
, 1
2
]. The reduced form of a Geometric Rational

Sequence {yn(r)}n≥0 is defined by setting an initial condition

y0(r) = −1 + r,

and recursively defining

yn+1(r) = −1− r

yn(r)
.

If yn(r) = 0, then define yn+1(r) = ∞, yn+2(r) = −1, so that yn+3(r) =

−1 + r.

Remark 3.11. Note that if yn+3(r) = −1 + r, then yn+2(r) = −1. Hence,

yn+1(r) = ∞ and yn(r) = 0. This occurs if and only if the sequence {yn(r)}n≥0

is cyclical.

Remark 3.12. Let i ≥ 1, and let r ≤ ri. Then,

y0(r) = −1 + r,

y1(r) = −1 +
r

1− r
= −1 + f1(r),

y2(r) = −1 +
r

1− f1(r)
= −1 + f2(r).

Continuing in this way, we see that for all k < i and r ≤ ri,

yk(r) = −1 + fk(r).
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Proposition 3.13. Let m > 0. Then the reduced sequence {yn(rm)}n≥0 is

cyclical with cycle length m+ 3.

Proof. From Remark 3.12, we have that for all k < m,

yk(rm) = −1 + fk(rm).

Apply Proposition 3.4 to yield

fk−1(rm) < fk(rm)

for all k < m. This guarantees no repetition in the first m− 1 terms of the

reduced sequence {yn(rm)}n≥0. By Proposition 3.2, fm(rm) = 1. It follows

that

ym(rm) = fm(rm)− 1 = 1− 1 = 0.

Recall the reduced sequence given in Definition 3.10. Then by definition

ym+1(rm) = ∞

ym+2(rm) = −1

ym+3(rm) = 1− rm.

This shows that ym+3(rm) = 1− rm = y0(rm). It follows that the sequence is

cyclical with cycle length m+ 3.

The following Theorem from [4] will be used. Note that there is a typo-

graphical error in the condition σ2 < 4γ.

Theorem 3.14. Let σ, γ ∈ R with σ2 < 4γ, and θ = arccos σ
2
√
γ
. A sequence

satisfying yn+1 = σ − γ
yn
, y1 ∈ R, has a finite or infinite number of cluster

points depending on whether or not θ
π
is rational. Moreover when θ

π
= k

m
∈ Q

is irreducible, the sequence takes on m distinct values y1, y2, . . . , ym which are

thereafter repeated in this order.
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Proposition 3.15. Let n ≥ 1. Let

Rn =
1

4

1

cos2( π
n+3

)
.

Then the reduced sequence {yk(Rn)}k≥0 has cycle length n+ 3.

Proof. Let n ≥ 1. Let

Rn =
1

4

1

cos2( π
n+3

)
.

In reference to Theorem 3.14, the sequence {yk(Rn)}k≥0 has the parameters

σ = −1, and γ = Rn. Apply Theorem 3.14 with the given parameters, and

set

θ = arccos
( −1

2
√
Rn

)
= arccos

(
− cos(

π

n+ 3
)
)
=

π(n+ 2)

n+ 3
.

Then
θ

π
∈ Q.

By Theorem 3.14, it follows that {yk(Rn)}k≥0 has cycle length n+ 3.

Remark 3.16. Proposition 3.15 gives a decreasing sequence of numbers

{Rn}n>0 ⊂ (1
4
, 1
2
] such that as n goes to infinity Rn → 1

4
. We show that

these numbers correspond to the numbers {rk}k≥1 given in (14). These are

exactly the values of the endpoints in the partition given in (15).

Proposition 3.17. Recall the sequence {rm}m>0 defined in (14). Then for

all n > 0,

rn = Rn.

Proof. Apply induction on n. Let n = 1. It is easy to check that r1 =
1
2
= R1.

Let n = 2. Recall that {Rn}n>0 is decreasing. Hence, R2 < R1 = β2.

By Proposition 3.2 it follows that R2 ∈ dom(f2). By Proposition 3.15, the

sequence {yk(R2)}k≥0 has cycle length 2 + 3. From Remark 3.11, it follows

that y2(R2) = 0. Then

y2(R2) = 0 = 1− 1 = f2(R2)− 1.

This implies that f2(R2) = 1. Thus, r2 = R2.

13



Let n = 3. Note R3 < R2 = β3. Then by Proposition 3.2, it follows

that R3 ∈ dom(f3). By Proposition 3.15, the sequence {yk(R3)}k≥0 has cycle

length 3 + 3. From Remark 3.11, it follows that y3(R3) = 0. Then

y3(R3) = 0 = 1− 1 = f3(R3)− 1.

This implies that f3(R3) = 1. Thus r3 = R3.

Fix k > 3. Assume that rn = Rn for n = 1, 2, . . . , k. Note Rk+1 <

Rk = βk+1. Then by Proposition 3.2, it follows that Rk+1 ∈ dom(fk+1). The

sequence {yl(Rk+1)}l≥0 has cycle length (k + 1) + 3. From Remark 3.11, it

follows that yk+1(Rk+1) = 0. Then

yk+1(Rk+1) = 0 = 1− 1 = fk+1(Rk+1)− 1.

This implies that fk+1(Rk+1) = 1. Thus, rk+1 = Rk+1.

4 Main Results

In this section we obtain an upper bound for the minimal dispersion in the

large volume regime. We also use the results in the Auxiliary 3 to derive a

closed form expression for the bound.

4.1 An Upper Bound for the Minimal Dispersion

Let r ∈ (1
4
, 1
2
], and let nr be as in (6). Define the following configurations on

the diagonal

q(r) = {fk(r)1 : 0 ≤ k ≤ nr}. (16)

It is clear that |q(r)| = nr + 1.

Definition 4.1. Let B = I1×I2×· · ·×Id ∈ B. The box B is Type 1, if one of

the following conditions holds. There exists 1 ≤ j ≤ d, such that Ij ⊂ [0, r],

or such that Ij ⊂ [fnr(r), 1]. There exists 1 ≤ j ≤ d, and 0 ≤ k ≤ nr − 1,

such that Ij ⊂ [fk(r), fk+1(r)].
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Definition 4.2. Let B = I1 × I2 × · · · × Id ∈ B. The box B is Type 2, if the

following condition holds. There exist 1 ≤ j, l ≤ d, and 0 ≤ k ≤ nr − 1, such

that Ij ⊂ [fk(r), 1], and Il ⊂ [0, fk+1(r)].

Lemma 4.3. Let r ∈ (1
4
, 1
2
]. Let B ∈ B be a box of Type 1 or Type 2. Then

Vol(B) ≤ r.

Proof. Let B = I1 × I2 × · · · × Id ∈ B. First assume that B is Type 1.

Assume that Ii ⊂ [0, r]. Then the Lemma trivially holds. Assume that there

exists 1 ≤ i ≤ d, such that Ii ⊂ [fnr(r), 1]. Since nr is the smallest integer

such that fnr(r) ≥ 1− r, it follows that

Vol(B) ≤ |Ii| ≤ 1− fnr(r) ≤ r.

Assume that there exists 1 ≤ i ≤ d, and 0 ≤ k < nr such that Ii ⊂
[fk(r), fk+1(r)]. Then

Vol(B) ≤ |Ii| = fk+1(r)− fk(r) =
r

1− fk(r)
− fk(r) =

r − (1− fk(r))fk(r)

1− fk(r)
.

Recall that nr is the smallest integer such that 1− r ≤ fnr(r). Since k < nr,

it follows that fk(r) < 1− r. Then

Vol(B) ≤ r − (1− fk(r))fk(r)

1− fk(r)
≤ r − rfk(r)

1− fk(r)
= r.

Hence, if B ∈ B is Type 1, then Vol(B) ≤ r.

Let B ∈ B be a Type 2 box. By definition there exist 1 ≤ i, j ≤ d and

0 ≤ k ≤ nr − 1 such that Ii ⊂ [fk(r), 1] and Ij ⊂ [0, fk+1(r)]. Recall the

definition of fk+1 as in (4) given by

fk+1(r) =
r

1− fk(r)
.

It follows that

Vol(B) ≤ |Ii||Ij| = (1− fk(r))
r

1− fk(r)
= r.
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This proves the claim.

Lemma 4.4. Let r ∈ (1
4
, 1
2
]. Let B ∈ B be such that q(r) ∩ B = ∅. Then B

is either Type 1 or Type 2.

Proof. Let

P (r) = {pi : pi = fi(r), 0 ≤ i ≤ nr}. (17)

Then informally

q(r) = P (r)1.

Let B = I1 × I2 × · · · × Id ∈ B. Notice that q(r) ̸= ∅ for all r ∈ (1
4
, 1
2
]. Then

it is clear that there exists 1 ≤ i ≤ d such that Ii ̸= [0, 1]. Define

Q := Ii ∩ P (r).

If Q = ∅, then B is Type 1. From here we list the remaining possible cases.

Case 1: In this case Q = {pnr}. Then pnr ∈ Ii. It is clear that Ii ⊂ (pnr−1, 1].

Since B ∩ q(r) = ∅, there exists 1 ≤ j ≤ d such that Ij ⊂ (pnr , 1] or

Ij ⊂ [0, pnr). If Ij ⊂ (pnr , 1], then by definition B is Type 1. If Ij ⊂ [0, pnr),

then since Ii ⊂ (pnr−1, 1], by definition B is Type 2.

Case 2: Denote Q0 = Q. In the second case let

0 < m ≤ nr,

and define

Q0 ⊂ {pm, pm+1, . . . , pnr}.

The following algorithm shows that B is Type 1 or Type 2. Let Im0 = Ii.

Then it is clear that Im0 ⊂ (pm−1, 1]. Recall that B ∩ q(r) = ∅. Then there

exists I ′m0
, such that I ′m0

⊂ [0, pm) or I ′m0
⊂ (pm, 1]. If I ′m0

∩ Q0 = ∅, then
B is Type 1. If I ′m0

⊂ [0, pm), then since Im0 ⊂ (pm−1, 1], B is Type 2. If

I ′m0
⊂ (pm, 1], then denote Im1 := I ′m0

. Let

1 < m ≤ nr,
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and define

Q1 = Q0 ∩ Im1 ⊂ {pm, pm+1, . . . , pnr}.

If Im1 ∩ P (r) = {pnr}, then appeal to Case 1. Since B ∩ q(r) = ∅ there

exists I ′m1
, such that I ′m1

⊂ [0, pm) or I ′m1
⊂ (pm, 1]. If I ′m1

∩ Q1 = ∅,
then B is Type 1. If I ′m1

⊂ [0, pm), then since Im1 ⊂ (pm−1, 1] B is Type

2. If I ′m1
∩ P (r) = {pnr}, then appeal to Case 1. If I ′m1

⊂ (pm, 1] denote

Im2 := I ′m1
⊂ (pm, 1], and continue the algorithm. At step ℓ of the algorithm

let

ℓ < m ≤ nr,

and define

Qℓ = Qmℓ−1
∩ Imℓ

⊂ {pm, pm+1, . . . , pnr}.

If Qℓ = ∅, then B is Type 1. Assume Qℓ ̸= ∅. If Imℓ
∩ P (r) = {pnr}, then

appeal to Case 1. If there exists an interval I ′mℓ
, such that I ′mℓ

⊂ [0, pm), then

since Imℓ
⊂ (pm−1, 1] by definition B is Type 2. The algorithm terminates

after at most nr steps.

Case 3: In the last case p0 ∈ Q. Since B ∩ q(r) = ∅ there exists Ij ⊂ [0, p0)

or Ij ⊂ (p0, 1]. If Ij ⊂ [0, p0), then B is Type 1. Finally, if Ij ⊂ (p0, 1], then

apply the results in Case 1 and Case 2. This proves the Lemma.

Corollary 4.5. Let r ∈ (1
4
, 1
2
]. Then

N(r, d) ≤ α(r).

Proof. Let n ≥ 1. Let r ∈ (1
4
, 1
2
] be such that rn ≤ r < rn−1. Recall the

configuration q(r) defined as in (16). By Lemma 4.3, and Lemma 4.4 we get

that

disp(q(r)) = r.

Since |q(r)| = nr + 1 = n, it follows that N(r, d) ≤ n.

Corollary 4.5 gives an upper bound for the minimal dispersion.
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4.2 A Formula for the Upper Bound

We derive a simple formula for the upper bound given in Corollary 4.5.

Corollary 4.6. Let r ∈ (1
4
, 1
2
]. Then

α(r) =

⌊
π

arccos ( 1
2
√
r
)

⌋
− 3.

Proof. Let k > 0. By Proposition 3.15 and the conclusion of Remark 3.17 it

is clear that
π

arccos ( 1
2
√
rk
)
− 3 = α(rk) = k. (18)

Notice that the function is strictly decreasing on (1
4
, 1
2
]. Let r ∈ (1

4
, 1
2
], and

let k > 0 be such that rk ≤ r < rk−1. By Proposition 3.7 and (18) it follows

that

α(r) = k =

⌊
π

arccos ( 1
2
√
r
)

⌋
− 3.

Theorem 4.7. Let r ∈ (1
4
, 1
2
]. Then

N(r, d) ≤

⎢⎢⎢⎣ π√
r − 1

4

⎥⎥⎥⎦− 3.

Proof. Let r ∈ (1
4
, 1
2
]. Then

arccos
( 1

2
√
r

)
≥

√
r − 1

4
.

This combined with Corollary 4.5 and Corollary 4.6 gives

N(r, d) ≤

⌊
π

arccos
(

1
2
√
r

)⌋− 3 ≤

⎢⎢⎢⎣ π√
r − 1

4

⎥⎥⎥⎦− 3.

The Theorem is proved.
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5 Diagonal-Analogues and Sharpness

We prove some results about our configurations on the diagonal and diagonal

analogues in the cube.

5.1 Dispersion of Subsets of the Diagonal

Proposition 5.1. Let r ∈ (1
4
, 1
2
], and let T ⊂ [0, 1]d be on the diagonal such

that

disp(T ) = r.

Then

|T | ≥ nr + 1.

Proof. Let r ∈ (1
4
, 1
2
]. Let T ⊂ [0, 1]d be on the diagonal such that

disp(T ) = r.

Let nr be as in (6), and let q(r) be the configuration as defined in (16). Let

P (r) be as defined in (17). Let

E = {ei ∈ [0, 1] : e1 < e2 < · · · < em, m = |T |}

such that

T = {ei1 : ei ∈ E}.

Assume toward a contradiction that |T | ≤ nr. Partition [0, 1] into nr + 2

intervals

[0, p0], (p0, p1], (p1, p2], . . . , (pnr−1, pnr ], (pnr , 1]. (19)

Since |T | ≤ nr, there exist at least two intervals which do not intersect E.

Assume E ∩ [0, p0] = ∅. Then p0 < e1. Construct the box

B = [0, e1)× [0, 1]d−1.

Then B ∩ T = ∅. However, Vol(B) = e1 > p0 = r which contradicts the

assumption that disp(T ) = r.
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Now assume

E ∩ [0, p0] ̸= ∅.

Then e1 ≤ p0. Remove [0, p0] from the partition in (19). Then two intervals

in the partition

(p0, p1], (p1, p2], . . . , (pnr−1, pnr ], (pnr , 1]

must not intersect E. If there exists i < nr such that em < pi+1, then

construct the box

B = [0, 1]× [pi, 1]× [0, 1]d−2.

It follows that B ∩ E = ∅, however,

Vol(B) = (1− pi) > pi+1(1− pi) = r.

This contradicts the assumption that disp(T ) = r. Let i < nr be the smallest

integer such that

E ∩ (pi, pi+1] = ∅.

Assume 0 < k ≤ m is the smallest integer such that pi+1 < ek. Construct

the box

B = [0, ek)× [pi, 1]× [0, 1]d−2.

Since T is on the diagonal B ∩ E = ∅, however,

Vol(B) = ek(1− pi) > pi+1(1− pi) = r.

This contradicts the assumption that disp(T ) = r.

The Proposition follows.

Proposition 5.2. Let i > 0. Let ri be as defined in (14). The configuration

given by q(ri) in (16) are symmetric on the diagonal. That is, if 0 ≤ j ≤ i−1,

then

1− fj(ri) = f(i−1)−j(ri).

Proof. Let i > 0. Let ri be as defined in (14). Employ an inductive argument
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on j. Let j = 0. Then by Proposition 3.2 it follows that

1− f0(ri) = 1− ri = fi−1(ri).

Let j = 1. Then by definition of the functions, and by Proposition 3.2

fi−1(ri)(1− fi−2(ri)) =
ri

(1− fi−2(ri))
(1− fi−2(ri)) = ri.

By Proposition 3.2, fi−1(ri) = 1− ri. It follows that

(1− ri)(1− fi−2(ri)) = ri.

Then

1− fi−2(ri) =
ri

1− ri
= f1(ri),

in particular

1− f1(ri) = fi−2(ri) = f(i−1)−1(ri).

Fix 0 ≤ j < i − 1, and assume the induction hypothesis, for all 0 ≤ k ≤ j.

Namely that

1− fk(ri) = f(i−1)−k(ri).

We show that

1− fj+1(ri) = f(i−1)−(j+1)(ri).

By the induction hypothesis

1− fj(ri) = f(i−1)−j(ri).

By construction of the functions, we have that

f(i−1)−j(ri)(1− f(i−1)−j−1(ri)) =
ri

(1− f(i−1)−j−1(ri))
(1− f(i−1)−j−1(ri)) = ri.

Therefore,

1− f(i−1)−j−1(ri) =
ri

(1− fj(ri))
= fj+1(r1).
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It follows that

1− fj+1(r1) = f(i−1)−(j+1)(ri).

The Proposition follows.

5.2 Dispersion of Subsets of the Extended Diagonal

Definition 5.3. Let r ∈ (1
4
, 1
2
], and d > 1. Let P (r) be given by (17),

and denoted as P (r) = {pi : pi = fi(r), 0 ≤ i ≤ nr}. Define the Extended

Diagonal as

D(r, d) = [0, p0]
d ∪ (p0, p1]

d ∪ · · · ∪ (pnr , 1]
d.

Definition 5.4. Let d > 1. Let x = (x1, x2, . . . , xd) ∈ [0, 1]d. Define

s(x) = min{xi : 1 ≤ i ≤ d}.

Proposition 5.5. Let r ∈ (1
4
, 1
2
], and d > 1. Let A ⊂ D(r, d) be such that

disp(A) = r.

Then

|A| ≥ nr + 1.

Proof. Assume that the hypothesis holds. Let nr be as in (6), and let q(r)

be the configuration as in (16). Define

C0 = [0, p0]
d, Cnr+1 = (pnr , 1]

d.

For 0 < i ≤ nr define

Ci = (pi−1, pi]
d.

Assume toward a contradiction that |A| ≤ nr. The nr points contained in A

must lie in the nr+2 disjoint sets in {Ci : 0 ≤ i ≤ nr+1} composing D(r, d).

There exist at least two integers i ≤ nr, such that A ∩ Ci = ∅.
First assume that A ∩C0 = ∅. Since A ⊂ D, it follows that s(p) > p0 for

each p ∈ A. Let

t = min{s(p) : p ∈ A}.
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Construct the box B = [0, t) × [0, 1]d−1. The magnitude of the components

of each p ∈ A is bounded below by t. It follows that A ∩ B = ∅, however,
Vol(B) = t > p0 = r. This contradicts the assumption that disp(A) = r.

Now assume that A ∩ C0 ̸= ∅. Let 1 ≤ i ≤ nr be the smallest number

such that A∩Ci = ∅. Assume that for all j > i, A∩Cj = ∅. Then set t = 1.

Construct a box

B = [0, t]× (pi−1, 1]× [0, 1]d−2.

Since A ⊂ D, it follows that B ∩ A = ∅, however,

Vol(B) = (1− pi−1) > pi(1− pi−1) = r.

This contradicts the assumption that disp(A) = r. Assume that A ∩ Cj ̸= ∅
for some smallest j > i. Then set

t = min{s(p) : p ∈ A ∩ Cj}.

Construct a box

B = [0, t)× (pi−1, 1]× [0, 1]d−2.

Since A ⊂ D, it follows that A ∩B = ∅, however,

Vol(B) = t(1− pi−1) > pi(1− pi−1) = r.

This contradicts the assumption that disp(A) = r. It follows that

nr + 1 ≤ |A|.

Remark 5.6. The condition d > 1 in Proposition 5.5 is required. Let r = 1
3

and d = 1. Note q(r) = {1
3
, 1
2
, 2
3
}. Define

U0 = [0, r], U1 = (r, f(r)], U2 = (f(r), 1− r], U3 = (1− r, 1].
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Then by definition

D(r, 1) = U0 ∪ U1 ∪ U2 ∪ U3.

Let A ⊂ D(r, 1) be the set {1
3
, 2
3
}. Then

disp(A) =
1

3
.

Since |A| = 2, and

nr + 1 = |q(r)| = 3

the Proposition fails. This example shows that Proposition 5.5 only holds

when d > 1.

5.3 Dispersion Dependent Configurations

Proposition 5.7. Let d ≥ 2. Let rn be as in (14) and let q(rn) be as in (16).

Let A ⊂ D(rn, d), be such that |A| = n, and

disp(A) = rn. (20)

Then

A = q(rn).

Proof. Assume the hypothesis. Note A ̸= ∅. For all 0 ≤ i ≤ n define Ci to be

as in the proof of Proposition 5.5. Assume that for all 0 ≤ i ≤ n, A∩Ci ̸= ∅.
Then it follows that for all 0 ≤ i ≤ n− 1, A∩Ci = {pi1}. Hence, A = q(rn).

We state here that for all 0 ≤ i ≤ n − 1, A ∩ Ci ̸= ∅. This follows directly

from the proof of Proposition 5.5: thus we shall omit the details to avoid

repetition. Then for all 0 ≤ i ≤ n− 1, |A∩Ci| = 1. Now apply induction on

i to show that for all 1 ≤ i ≤ n, A ∩ Cn−i = {pn−i1}.
Let i = 1. Assume toward a contradiction that

A ∩ Cn−1 ̸= {pn−11}.

Let p ∈ A ∩ Cn−1 \ {pn−11}. There exists a maximum component of p

which is less than pn−1. Without loss of generality, assume that this is the
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first component. Denote the magnitude of this component as b(p) < pn−1.

Construct the box

B = (b(p), 1]× [0, 1]d−1.

Since A ⊂ D, it follows that A ∩B = ∅. However,

Vol(B) = 1− b(p) > 1− pn−1 = rn.

This contradicts (20). Therefore, A ∩ Cn−1 = {pn−11}.
Fix 0 < m ≤ n − 1. As an induction hypothesis assume that for all

m ≤ k ≤ n − 1, A ∩ Ck = {pk1}. Assume toward a contradiction that

A∩Cm−1 ̸= {pm−11}. Let p ∈ A∩Cm−1 \{pm−11}. There exists a maximum

component of p which is less than pm−1. Without loss of generality, assume

that this is the first component. Denote the magnitude of this component as

b(p) < pm−1. Construct the box

B = (b(p), 1]× [0, pm)× [0, 1]d−1.

Since A ⊂ D, it follows that A ∩B = ∅. Then

Vol(B) = pm(1− b(p)) > pm(1− pm−1) = rn.

This contradicts (20). Therefore, it follows that A∩Cm−1 = {pm−11}. Hence,
for all 0 ≤ k ≤ n− 1, A ∩ Ck = {pk1}. It follows that A = q(rn).

5.4 Bound Sharpness

Now we show that the bound in Corollary 4.6 is sharp, given that d is large

enough. Recall that for each r ∈ (1
4
, 1
2
], there exists n > 0 such that rn ≤

r < rn−1, and

nr + 1 = α(r) = n.

Theorem 5.8. Let r ∈ (1
4
, 1
2
]. Then

N(r, d) = nr + 1,
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given that d ≥ nn−1 + 1, where n = α(r).

Proof. Let r = 1
2
= r1, then for all d ≥ 2,

N(r, d) = 1 = nr1 + 1.

Let r ∈ (1
4
, 1
2
) be such that r2 ≤ r < r1. Let d ≥ 3. Define U0 = [0, r1],

U1 = (r1, 1], and denote [0, 1]d = (U0 ∪ U1)
d. Assume toward a contradiction

that there exists q1 ∈ [0, 1]d such that

disp({q1}) = r.

Then either q1 ∈ [0, 1]d−1×U0 or q1 ̸∈ [0, 1]d−1×U0. Assume q1 ∈ [0, 1]d−1×U0.

Construct the box B = [0, 1]d−1 × U1. Then q1 ̸∈ B, and

Vol(B) = r1 =
1

2
> r.

This contradicts the assumption that disp({q1}) = r. Assume q1 ̸∈ [0, 1]d−1×
U0. Construct the box B = [0, 1]d−1 × U0. Then q1 ̸∈ B, however,

Vol(B) = r1 > r.

This contradicts the assumption that disp({q1}) = r. Then 1 < N(r, d), and

by Corollary 4.5, N(r, d) ≤ 2. It follows that

N(r, d) = 2.

Let r be such that r3 ≤ r < r2. Since α(r) = 3, d ≥ 10. Define

U0 = [0, r2], U1 = (r2, 1−r2], U2 = (1−r2, 1]. Select two points q1, q2 ∈ [0, 1]d.

Assume toward a contradiction that disp({q1, q2}) = r. The components of

q1 and q2 are contained in the intervals U0, U1, U2. Denote the components

of q1, q2 as {q1,i}1≤i≤d, {q2,i}1≤i≤d. Let M1 ≥ 4 denote the largest number of

components of {q1,i}1≤i≤d contained in a single interval, denoted as Um1 . De-

note the corresponding indices as {ai}1≤i≤M1 := {ai : a1 < a2 < · · · < aM1 }.
Let M2 ≥ 2 denote the largest number of components of {q2,ai}1≤i≤M1 con-
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tained in a single interval, denoted as Um2 . Denote the corresponding indices

as {bi : 1 ≤ i ≤ M2} ⊂ {ai}1≤i≤M1 . It follows that

q1,b1 , q1,b2 ∈ Um1 ,

q2,b1 , q2,b2 ∈ Um2 .

Project onto the components,

q1 → (0, 0, . . . , 0, q1,b1 , 0, 0, . . . , 0, q1,b2 , 0, 0, . . . , 0) = q′1,

and

q2 → (0, 0, . . . , 0, q2,b1 , 0, 0, . . . , 0, q2,b2 , 0, 0, . . . , 0) = q′2.

The points are projected onto a 2-dimensional face of [0, 1]d, given by

{0}b1−1 × [0, 1]× {0}b2−(1+b1) × [0, 1]× {0}d−b2 .

Note that

q′1 ∈ {0}b1−1 × Um1 × {0}b2−(1+b1) × Um1 × {0}d−b2 ,

and

q′2 ∈ {0}b1−1 × Um2 × {0}b2−(1+b1) × Um2 × {0}d−b2 .

The components q′1, q
′
2 are contained in D(r2, 2). By Proposition 5.7 there

exists B′ ∈ B such that

B′ = {0}b1−1 × I1 × {0}b2−(1+b1) × I2 × {0}d−b2 ,

where q′1, q
′
2 ̸∈ B′. However, Vol(I1 × I2) ≥ r2. Let

B = [0, 1]b1−1 × I1 × [0, 1]b2−(1+b1) × I2 × [0, 1]d−b2 .

It is clear that q1, q2 ̸∈ B. However, Vol(B) ≥ r2 > r. This contradicts the

assumption that disp({q1, q2}) = r. Then N(r, d) > 2, and by Corollary 4.5,
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N(r, d) ≤ 3. It follows that

N(r, d) = 3.

Fix n > 3, and let rn+1 ≤ r < rn. Since α(r) = n+ 1,

d ≥ (n+ 1)n + 1.

Let q1, q2, . . . , qn be arbitrary points in the cube. Assume toward a contra-

diction that disp({q1, q2, . . . , qn}) = r. Define the partition

U0 = [0, rn], U1 = (rn, f1(rn)], . . . , Un+1 = (1− rn, 1].

For all 1 ≤ i ≤ n, denote the components of qi as (qi,1, qi,2, . . . , qi,d). Denote

d1 := (n+ 1)n + 1. Let

M1 ≥ d2 :=
d1 − 1

(n+ 1)
+ 1

denote the largest number of components of {q1,i}0<i≤d which are contained

in a single interval, denoted as Um1 . Denote the corresponding indices as

{a1,i}1≤i≤M1 .

Let

M2 ≥ d3 :=
d2 − 1

(n+ 1)
+ 1

denote the largest number of components of {q2,a1,i}1≤i≤M1 which are con-

tained in a single interval, denoted as Um2 . Denote the corresponding indices

as {a2,i}1≤i≤M2 .

For all 1 ≤ k ≤ n let

Mk ≥ dk+1 :=
dk − 1

(n+ 1)
+ 1

denote the largest number of components of {qk,ak−1,i
}1≤i≤Mk−1

which are

contained in Umk
. Denote the corresponding indices as {ak,i}1≤i≤Mk

. This
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guarantees that Mn ≥ 2. Define a projection on 1 ≤ j ≤ n, such that

qj → qj,an,1 , qj,an,2 ∈ Umj
.

This embeds into D(rn, 2). Then by Proposition 5.7, there exists a box B′

such that q′j ̸∈ B′ with I1, I2, such that

Vol(I1 × I2) ≥ rn.

This can be extended to a box

B = [0, 1]an,1−1 × I1 × [0, 1]an,2−(1+an,1) × I2 × [0, 1]d1−an,2 .

It is clear that q1, q2, . . . , qn ̸∈ B and that Vol(B) ≥ rn > r. This contradicts

the assumption that disp({q1, q2, . . . , qn}) = r. Then n < N(r, d), and by

Corollary 4.5, N(r, d) ≤ n+ 1. It follows that

N(r, d) = n+ 1.

6 Concluding Remarks

6.1 Construction when r = 1
4

When r = 1
4
, and d is small the following configurations are better than the

best known bound which asymptotically is log(d). We present a configuration

which is easy to describe and visualize.

Proposition 6.1. Let r ≥ 1
4
. Then N(r, d) ≤ 2d.

Proof. Let d = 2 let

K =
{
(
1

2
,
1

4
), (

1

2
,
3

4
), (

1

4
,
1

2
), (

3

4
,
1

2
)
}
.

Every box B ∩K = ∅ inside [0, 1]2 is contained in one of the following
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[0, 1
2
)× [0, 1

2
), [0, 1

2
)× (1

2
, 1], (1

2
, 1]× [0, 1

2
), (1

2
, 1]× (1

2
, 1],

(1
4
, 3
4
)× (1

4
, 3
4
), [0, 1

4
)× [0, 1], (3

4
, 1]× [0, 1], [0, 1]× (3

4
, 1],

[0, 1]× [0, 1
4
), (1

4
, 1
2
),×[0, 1] [0, 1]× (1

4
, 1
2
), (1

2
, 3
4
)× [0, 1],

[0, 1]× (1
2
, 3
4
),

(21)

This gives the result in the 2 dimensional case. Let d > 2. Let

K1 =

{(
1

2
,
1

2
, . . . ,

1

2
,Mi,

1

2
, . . . ,

1

2

)
: Mi =

1

4
, 1 ≤ i ≤ d

}

K2 =

{(
1

2
,
1

2
, . . . ,

1

2
,Mi,

1

2
, . . . ,

1

2

)
: Mi =

3

4
, 1 ≤ i ≤ d

}
.

Let K = K1 ∪ K2. Then each box in B ∈ [0, 1]d such that B ∩ K = ∅ is

contained in a product of d− 2 intervals [0, 1] with one of the boxes in (21).

Each of the boxes have volume 1
4
. Therefore,

disp(K) =
1

4
,

and |K| = 2d.
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