
Towards Community Search in Uncertain Graphs

by

Yashar Talebirad

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computing Science
University of Alberta

© Yashar Talebirad, 2024



Abstract

The representation of real-world relationships and entities through nodes and edges

in a network has found wide applicability across diverse scientific fields. At the core of

network analysis are the tasks of community detection and community search, which

aim to identify distinct groups within a graph. While community detection partitions

the graph on a global scale, community search focuses on a specific node or group of

nodes to discover a cohesive subgraph in their vicinity. Traditionally, these networks

were represented as deterministic graphs with clearly defined nodes and edges. How-

ever, as networks grow in scale, analyzing these networks becomes more challenging.

Coupled with this, the emergence of uncertainty in data collection has necessitated a

shift towards probabilistic modeling of these relationships, presenting a suite of new

complexities and challenges. In response to these challenges, this thesis first focuses

on enhancing the SIWO algorithm, initially designed for community mining in deter-

ministic graphs, to make it suitable for processing very large graphs. We introduce

a methodology to convert large graphs into a format that is more manageable by

local community search algorithms, ensuring efficient processing without the need to

store entire networks in main memory. This is complemented by the development of

data structures and optimization techniques specifically designed to manage and pro-

cess large-scale network data efficiently. Building upon these enhancements, we then

present USIWO, a scalable and local algorithm for community search in unweighted

uncertain graphs with edge uncertainty. USIWO starts from a single node or set of

nodes and incrementally adds “suitable” adjacent nodes one at a time, until it rapidly

finds the core of a community even in very large uncertain networks.

ii



Preface

The work done in Chapter 3 of this thesis has been published under the title “Fast

local community discovery relying on the strength of links” at the Social Network

Analysis and Mining (SNAM) 2023 journal [1]. The work done in Chapter 4 has

been accepted for publication under the title “USIWO: A Local Community Search

Algorithm for Uncertain Graphs” at the ASONAM 2023 Conference.

iii



Dedicated to raising awareness of mental health, in the hope that it may contribute

to greater understanding, support, and compassion for those affected.

iv



Acknowledgments

I want to express my gratitude to my supervisors, Osmar R. Zaiane and Christine

Largeron, for their kind help and advice. Without their help, this work would not

have been possible. I also want to give my thanks to my teammates in Meerkat, who

helped me in my research.

v



Table of Contents

1 Introduction 1

1.1 Motivation and Background . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Problem Definition and Challenges . . . . . . . . . . . . . . . . . . . 2

1.3 Thesis Statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Thesis Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.5 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Background and Related Work 7

2.1 Preliminary Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Social Network Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.1 Deterministic Networks . . . . . . . . . . . . . . . . . . . . . . 9

2.2.2 Uncertain Networks . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Community Detection and Search . . . . . . . . . . . . . . . . . . . . 14

2.4 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4.1 With Ground Truth . . . . . . . . . . . . . . . . . . . . . . . 15

2.4.2 Without Ground Truth . . . . . . . . . . . . . . . . . . . . . . 17

2.5 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.5.1 Community Detection in Uncertain Networks . . . . . . . . . 21

2.5.2 Community Search in Uncertain Networks . . . . . . . . . . . 34

2.5.3 Community Detection and Search in Deterministic Networks . 37

2.6 SIWO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.6.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

vi



2.6.2 Algorithm Overview . . . . . . . . . . . . . . . . . . . . . . . 41

3 Enhancing SIWO 43

3.1 Large Graphs and Optimizations . . . . . . . . . . . . . . . . . . . . 43

3.1.1 Map-Reduce Procedure for Graph Conversion . . . . . . . . . 44

3.1.2 Memory Optimization: FastFile . . . . . . . . . . . . . . . . . 49

3.1.3 Time Optimization: FastGraph . . . . . . . . . . . . . . . . . 50

3.1.4 Handling Timeout . . . . . . . . . . . . . . . . . . . . . . . . 50

3.2 Running SIWO With a Limited Time Budget and Limited Memory . 51

3.2.1 Scalability in Large Real-World Networks . . . . . . . . . . . . 54

4 Probabilistic SIWO (USIWO) 57

4.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.3 Experiments and Results . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.3.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.3.2 Optimal Threshold Value . . . . . . . . . . . . . . . . . . . . . 66

4.3.3 Competitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.3.4 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . 68

5 Conclusion and Future Work 72

5.1 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . . . 72

5.2 Potential Areas for Future Research . . . . . . . . . . . . . . . . . . . 73

5.2.1 Enhancing Scalability and Efficiency . . . . . . . . . . . . . . 73

5.2.2 Expanding Applicability . . . . . . . . . . . . . . . . . . . . . 74

5.2.3 Integration with Machine Learning Algorithms . . . . . . . . . 74

5.2.4 Development of a Comprehensive Software Suite . . . . . . . . 74

5.2.5 Experiments on Robustness . . . . . . . . . . . . . . . . . . . 74

5.3 Closing Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

vii



Bibliography 76

viii



List of Tables

3.1 Quality of SIWO partial search results for given timeout (seconds)

in terms of found community size |C|, number of nodes visited by

algorithm, sum of edge strengths in community S(C), precision P ,

recall R, and F1 score (± the standard deviation for F1). Results

averaged over 183 runs, using each of 183 nodes as query node in a

given ground truth community. . . . . . . . . . . . . . . . . . . . . . 52

3.2 Characteristics of the large real-world networks. . . . . . . . . . . . . 54

3.3 Performance of SIWO and LCTC on 5 large networks with 5 random

query nodes each in terms of maximum memory required (RAM) and

size of the index file needed by LCTC (Index Size) in MB, number

of nodes visited for SIWO, size of the found community |C| and time

in seconds taken by each algorithm. The wall time for a community

search is set to 1200 s. . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.1 Characteristics of the small real-world networks. . . . . . . . . . . . . 60

4.2 Performance on real-world and Synthetic networks . . . . . . . . . . . 71

ix



List of Figures

3.1 Outline of the Map-Reduce procedure used for the conversion of the

input file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.1 Community search: Comparing the F1 scores calculated over all nodes

used as query nodes on real world networks. Each bar represents the

average F1 score for the corresponding algorithm, with the error bars

representing the standard deviations. . . . . . . . . . . . . . . . . . . 69

4.2 Community search: F1 average scores calculated over 100 nodes used

as query nodes on a synthetic network . . . . . . . . . . . . . . . . . 70

x



Abbreviations

ACR Average clustering reliability.

AVPR Average vertex pairwise reliability.

CTC Closest Truss Community.

DBCLPG Density-Based Clustering of Large Probabilistic Graphs.

LCTC Local CTC.

LFR Lancichinetti–Fortunato–Radicchi benchmark.

LTE Local Tightness Expansion.

NMI Normalized Mutual Information.

PPI Protein-Protein Interaction.

PWF Pairwise F-Measure.

SIWO Strong In, Weak Out.

SNA Social Network Analysis.

TCE Triangle-Based Community Expansion.

URGE Uncertain Graph Embedding.

USIWO Uncertain SIWO.

xi



Chapter 1

Introduction

1.1 Motivation and Background

In recent years, networks have become essential tools for modeling complex systems

across a variety of domains such as social sciences, biology, pharmacology, criminol-

ogy, and computer science. They provide a framework for representing relational data

through graphs, where vertices (or nodes) symbolize entities and edges (or links) cor-

respond to the relationships between these entities. As emphasized in “The Future is

Big Graphs” [2], the sudden growth in the amount of interconnected data highlights

the importance of graph processing in modern society. With this growth, however,

comes significant challenges in analyzing networks that have expanded to encom-

pass millions of nodes and billions of edges. Effectively handling and understanding

these large networks necessitates the development of new methods and scalable algo-

rithms, which need to be specially designed to deal with the challenges of handling

large and complex network structures. Additionally, while commonly these networks

have been modeled as deterministic graphs, the reality of many real-world scenarios,

influenced by factors such as data collection processes and inherent relationship am-

biguities, often introduces an element of uncertainty [3]. This uncertainty has led to

the development of “Uncertain Graphs” or “Probabilistic Graphs”, which embed the

uncertainty directly into the graph’s structure [4]. Such graphs can represent various

sources of uncertainty, whether in edges, nodes, or attributes. Particularly, uncertain

1



graphs with uncertainty on edges are often used to represent noisy connections be-

tween data, such as in Protein-Protein Interaction (PPI) networks, social media, and

brain activity representation [5]. Additionally, these graphs are also used in scenar-

ios where the relationships between nodes are not explicitly known and need to be

predicted, which is particularly seen in domains such as recommendation systems or

link prediction in social networks [6].

As networks continue to grow in size and complexity, two tasks—community detec-

tion and community search— have been getting more attention. These tasks focus on

finding the inherent structure within networks characterized by communities, which

are groups of vertices that are densely interconnected within the network yet sparsely

connected to the rest of the network [7]. While community detection aims for a com-

prehensive partitioning of all graph vertices, community search offers a more localized

approach, focusing on specific nodes or node groups to find densely-connected sub-

graphs containing those nodes. Such a local approach, especially on large graphs,

stands as a promising solution for detecting communities in large uncertain networks.

This kind of approach is especially useful for cases where the entire graph structure

may be too large to store in main memory. Furthermore, the shift from deterministic

to uncertain graphs demands new algorithms, as naive approaches often fall short in

being accurate [8].

In light of these challenges, this thesis first addresses the enhancement of the SIWO

algorithm for performing community search in large-scale networks. This algorithm is

an extension of the SIWO method initially described in [9] for global community de-

tection. Following this, we present USIWO as a community search algorithm designed

for large-scale unweighted uncertain graphs with independent edge probabilities.

1.2 Problem Definition and Challenges

The primary objective of this thesis is to address two challenges in network analysis:

to effectively manage the complexities associated with large-scale networks, and to

2



address the challenges of community search in uncertain graphs. Given an uncertain

graph G = (V,E, p) where V represents the set of nodes, E the set of edges, and

p the probabilities of those edges, our objective is to identify meaningful communi-

ties around a given node or set of nodes. The inherent uncertainty in these graphs,

coupled with their potentially massive size, poses significant challenges. Traditional

community mining algorithms, both global and local, are primarily designed for de-

terministic networks, which are networks in which the connections have been observed

with complete certainty. Applying these algorithms to uncertain networks without

modifications can lead to inaccurate community structures. Furthermore, the sheer

scale of large graphs, often featuring millions of nodes and billions of edges, presents

an additional layer of complexity. These large graphs necessitate algorithms that can

efficiently process vast amounts of data without compromising accuracy. The desired

properties of a suitable community search algorithm for uncertain graphs, therefore,

include:

• Handling edge uncertainties: Determining the strength of relationships be-

tween nodes when edges are probabilistic.

• Scalability: Efficiently processing large-scale uncertain networks without com-

promising accuracy.

• Real-Time Implementation: Being able to find communities in real-time or

a limited amount of time by only traversing the required parts of the network.

• High Accuracy: For a query node, outputting a community with the highest

possible number of nodes from its true community without including outliers.

Addressing these challenges requires an approach that balances the complexities of

uncertain graph structures with the practical demands of processing large networks.

The development of such methods is a key focus in this thesis.

3



1.3 Thesis Statements

This thesis explores the field of community search in large uncertain networks, with a

particular focus on the SIWO algorithm and its adaptations for such scenarios. The

primary hypotheses explored are:

• Thesis Statement 1: Specialized data structures and optimizations can be

employed to enhance the efficiency of reading and processing large input files.

These improvements are particularly effective for community search when inte-

grated into the SIWO algorithm.

• Thesis Statement 2: The SIWO algorithm, designed for community mining

and search in a graph, can be modified in a way that allows for flexible execution,

ensuring partial (but accurate) outputs even within specific time constraints.

• Thesis Statement 3: Uncertain networks carry probability values within their

edges. By effectively utilizing these probabilities, one can quantify how strong

these edges are, rather than merely recognizing them as weights, thus refining

the process of community detection and search.

• Thesis Statement 4: The SIWO algorithm can be adapted and optimized

for uncertain networks to yield a coherent and meaningful community structure

containing the query node(s).

1.4 Thesis Contribution

The primary contributions of this work include:

1. Introduced a methodology to convert large graphs to a more manageable form,

enhancing their suitability for local community search algorithms. This trans-

formation ensures that large-scale networks are efficiently processed, without

the need to store them in main memory. This is explored in Section 3.1.1.

4



2. Enhanced SIWO by utilizing data structures and optimization techniques de-

signed for handling large input files. These methods significantly improve the

efficiency of reading and processing data, making subsequent analysis on large

networks possible. This is explored in Sections 3.1.2 and 3.1.3.

3. Introduced a flexible implementation1 of the enhanced SIWO algorithm that

allows it to operate within given time constraints, producing accurate partial

community detection results even when faced with limited time. This is explored

in Section 3.1.4.

4. Conducted several experiments to showcase the scalability of the enhanced

SIWO algorithm on large synthetic and real-world networks. This is detailed in

Section 3.2.

5. Extended and optimized the enhanced SIWO algorithm for uncertain networks,

introducing the extended version as the USIWO algorithm. This adaptation

ensures that USIWO is an accurate algorithm capable of finding coherent com-

munity structures when faced with probabilistic networks. This is explored in

Sections 4.1 and 4.2.

6. Devised an uncertain network generator that converts deterministic graphs to

uncertain graphs, introducing varying degrees of uncertainty while preserving

the community structure. This is detailed in Section 4.3.1.

7. Conducted a variety of experiments to showcase the performance of the USIWO

algorithm on synthetic and real-world networks that have undergone several

variations of uncertainty, and compared them with several contenders. This is

covered in Section 4.3.4.

1Code available in Github.

5

https://github.com/talebirad/SIWO


1.5 Thesis Organization

This thesis is organized into several chapters, each focusing on a distinct aspect of our

study. The following outlines the structure and key focus of each remaining chapter.

Chapter 2 provides a comprehensive review of existing community detection and

search algorithms, detailing their strengths and limitations. A review of social net-

work analysis, community detection, community search, as well as the common eval-

uation methods used in the literature, is also provided. We finish the chapter by

reviewing SIWO, a community mining algorithm that we build upon.

In Chapter 3 we describe the challenges posed by large graphs and present the ways

we adapted SIWO to handle them. We introduce a method to convert large input

graphs to a format that is more compatible for local community search algorithms.

We then detail specialized data structures and optimization techniques that facilitate

the efficient reading and processing of vast input files. The chapter concludes with

the experiments done with SIWO on large networks.

Chapter 4 highlights the transition from deterministic to uncertain networks. It

begins with an exploration of the complexities introduced by the probabilistic nature

of edges in uncertain networks. The chapter then presents the USIWO algorithm,

an adaptation of the SIWO algorithm, designed to utilize the probabilities on edges

to calculate their strengths in order to perform community search. The chapter

concludes with the experimental results that demonstrate the capabilities of USIWO.

The thesis concludes with Chapter 5, which offers a summary of the research

contributions and discusses potential future work.

6



Chapter 2

Background and Related Work

In this chapter, we cover important works related to our research, mainly in the

areas of social network analysis and community detection. We begin by introducing

and explaining key concepts and terms essential for understanding the subsequent

discussions. After establishing the foundational knowledge, we discuss various metrics

used in the relevant studies, ranging from standard measures such as accuracy to

those used specifically for uncertain graphs. We then take a close look at the relevant

literature and existing methodologies focused on uncertain graphs with an emphasis

on two key areas: Community Detection, and Community Search. The last section

of this chapter is dedicated to the SIWO algorithm [1]. SIWO is a flexible algorithm

that can be updated to a global algorithm which can be run on the whole input

graph. It has also been improved to take weighted graphs into account, which has

also been shown to outperform its competitors [10]. In this thesis, we refine SIWO

by introducing a new version capable of handling graphs of any size, as detailed in

Chapter 3. Additionally, we extend its functionality to work on uncertain graphs,

which is detailed in Chapter 4.

2.1 Preliminary Definitions

We first explain some key terms that is necessary to understand our contribution to

the field.

7



A network in its simplest form is represented by a graph G = (V,E) where V is the

set of n nodes (|V | = n) and E is the set of m edges (|E| = m)

Node (or Vertex) A discrete entity or point in the network. In a social context, it

can represent an individual, organization, or any other entity.

Edge (or Link) Represents a relationship or connection between two nodes. In

uncertain networks, this connection is often associated with a probability, indi-

cating the likelihood of its existence.

Degree The number of edges connected to a node. For uncertain networks, this can

be represented as an expected degree, which incorporates the probabilities of

the edges to account for uncertainty in connections.

Adjacency Matrix A square matrix used to represent a finite graph. The elements

indicate whether pairs of vertices are adjacent or not in the graph.

Probabilistic Adjacency Matrix In uncertain graphs, the adjacency matrix is ex-

tended to capture the uncertainty associated with each edge. Instead of binary

entries, each element in the matrix represents the probability of the existence

of an edge between respective vertices. An entry of 0 indicates no possibility

of an edge, while a value of 1 would mean the edge’s existence is certain, and

values between 0 and 1 indicate varying degrees of uncertainty.

Communities (a.k.a Clusters) Community structure in a network indicates the

presence of groups of vertices, where intra-group edge density is higher than

inter-group edge density. These densely-connected vertex groups are termed

communities [11].

Realization (a.k.a. Possible World) A specific deterministic network derived from

an uncertain one when considering the existence of a particular set of proba-

bilistic edges.

8



Subgraph A graph formed from a subset of the nodes (and respective edges) of a

larger graph.

Connected Component A subgraph in which any two vertices are connected to

each other by paths, and which is connected to no additional vertices in the

supergraph.

2.2 Social Network Analysis

Social Network Analysis (SNA) refers to a set of methods used to analyze social

networks, which are structures determined by relationships and entities. Originat-

ing from sociology and anthropology, it has over the years been applied to diverse

fields, including computer science, epidemiology, and organizational studies [12]. In

social network theory, a network is represented as a graph, where nodes represent

entities (e.g., people, organizations) and edges denote relationships (e.g., friendships,

collaborations). In social network analysis (SNA), the emphasis is placed on the

inter-connectedness and inter-dependencies that exist among the nodes [13].

2.2.1 Deterministic Networks

Deterministic networks have clear and straightforward relationships between nodes,

where an edge connecting two nodes represents an unambiguous relationship. This

clarity makes it easier to understand and analyze the network [14].

Deterministic graphs have evolved to include more complex forms, such as weighted

and attributed graphs. In weighted graphs, edges are assigned values that represent

specific characteristics of the relationship between the nodes [15]. Attributed graphs,

extend this concept by incorporating additional data, primarily in the form of at-

tributes. These attributes are typically associated with nodes, and provide more

contextual information about the entities [16].

Though the relationships between nodes in a deterministic graph are clear, the

9



networks themselves can change over time. Some networks are static, showing re-

lationships at a specific moment, while others are dynamic, reflecting the flow of

connections as they evolve. These networks are also known as Temporal Networks

[17].

The unambiguous nature of deterministic networks enables the use of various an-

alytical metrics. For instance, centrality measures are used in revealing the most

influential or central nodes within a network [12]. Furthermore, deterministic net-

works find applications in many areas. Sociograms, for example, are visual charts

that describe social relationships [18]. Moreover, in both academic and corporate

settings, these networks can effectively map out collaborations, highlighting the pro-

fessional interactions among collaborators [19].

2.2.2 Uncertain Networks

While deterministic networks have been widely studied in the past, uncertain networks

are now getting more attention as they represent the complex and often uncertain

nature of today’s world. This is because traditional networks, where relationships be-

tween nodes are deterministic, often fall short when modelling real-world phenomena

where uncertainty is inherent. In fact, numerous real-world networks are character-

ized by uncertainty, which can arise from various sources such as the data collection

process or pre-processing methods that use machine learning [3]. This has led to the

development of “Uncertain Networks” also known as “Probabilistic Networks”, which

incorporate uncertainty into the network structure.

In these networks, the existence of an edge does not guarantee a relationship; it

just indicates a possibility. Every connection or edge in such a network is tagged with

a probability, indicating the likelihood of its existence. Because of this uncertainty,

an uncertain network can lead to many possible deterministic networks (known as

possible worlds), each showing a different set of relationships based on the probabili-

ties. This variety brings both challenges and new ways to understand these types of

10



networks.

Uncertain networks can also be seen in real-life situations. For instance, in online

communication, they can be used to map out the spread of information, especially

when the relationships or connections have inherent uncertainty, such as in the spread

of rumors or unverified news. In online platforms, networks might represent interac-

tions with associated trust scores, reflecting varying levels of confidence in different

interactions. In bioinformatics, they can show possible interactions when certain

biological pathways are based on approximate statistical models [20].

However, the probabilistic nature of these networks brings forth its own set of

challenges. Computationally, managing and analyzing these networks, especially

when considering the large number of possible realizations can be infeasible. Fur-

thermore, the task of gathering accurate probabilistic data for relationships can be

both resource-intensive and challenging.

Generally speaking, Uncertain Graphs are graphs with any type of uncertainty. In

an uncertain graph, uncertainty can be associated with one or several of the following

components:

• Edges: This is the most common form of uncertain graphs, in which each edge

is associated with a probability, with various interpretations based on context.

• Nodes: In this case, a probability value is assigned to each possible scenario

based on the node states. Many of the problems that are studied on graphs

with edge uncertainty can also be studied on graphs with node uncertainty.

• Attributes: More complicated forms of uncertainty can arise when the graph

contains attributes on nodes, edges, or both. The uncertainty would then cause

the attributes to change in different scenarios.

Uncertain graphs with edge uncertainty help deal with most situations where the

node connections are probabilistic, and are frequently used to represent noisy con-

nections between data. PPI (protein-protein interaction) networks are a well-known

11



example of this type, with nodes representing proteins and edges representing the

interactions between them. In this case, the edge probabilities are the likelihoods of

them existing [20]. Other use cases of uncertain graphs with edge uncertainty include

social networks, where probabilities can represent the likelihood that two individuals

know each other or share a similar interest, and machine learning, where probabilities

describe correlations between events. These graphs are also used in neuroscience, for

instance, to represent activity in different brain areas, as discussed in a case-study by

[5].

In uncertain graphs with edge uncertainty, a common approach in research is to

treat the probabilities on the edges as independent. This means that the existence of

one edge does not influence the probability of another edge in the graph. These graphs

are usually interpreted using the possible-world semantic, where each edge is sampled

independently according to its assigned probability. This model of uncertainty does

not account for the relationships between the edges but remains the most prevalent

approach due to its simplicity and effectiveness in various applications. Therefore, it

is used as the primary model for uncertain graphs in this thesis.

It is important to note that dependencies between edge probabilities can also ex-

ist, which adds another layer of complexity to the analysis and interpretation of these

graphs. For instance, work such as that presented in [21] explores clustering methods

in uncertain graphs with correlated probabilities. However, due to the increased com-

plexity and less common usage in current research, the correlated probabilities model

is not further explored in this thesis. Following the conventional model of probabili-

ties, the simplest and most widely used definition of uncertain graphs, introduced in

[22], is akin to:

Definition 1 An uncertain graph G = (V,E, p) where p : E → (0, 1] can be viewed as

a probability space whose outcomes are sub-graphs G
′
= (V,E

′
) of G where any edge

e ∈ E is included in E ′ with probability p(e) independently. These possible outcomes

12



are also referred to as “Possible Worlds”, each representing a potential realization of

the uncertain graph [23].

The problem of mining “Attributed” uncertain graphs is also studied in [24]. These

graphs are represented as G = (V,E, F, p), where F is a set of n attribute vectors

indicating the d attributes associated with each node, and p maps every pair of nodes

to a real number in [0; 1].

Following these definitions, several problems can be studied in the subject of Uncer-

tain Graphs. These problems typically involve taking a problem of interest (especially

mining problems) on deterministic graphs, proposing a relevant question on uncer-

tain graphs using new definitions, and finally, finding new algorithms to solve the

newly-defined problem. Examples of such problems include (but are not limited to)

computing several properties between nodes (e.g. Reliability), mining problems (e.g.

Clustering, Link Predictions, Node Classification), and graph algorithmic problems

(e.g. Most Reliable Spanning Tree, Information Flow Maximization). A thorough

analysis of these problems on probabilistic graphs is done in [25].

Although these issues have been widely researched on deterministic graphs, tran-

sitioning to uncertain graphs introduces new complexities, as it necessitates the re-

definition of existing problems and the development of novel algorithms. To mention

the most important challenge in this transition, note that since there is a probability

associated with the existence of some edges (with size m), the resulting determinis-

tic network generated by the probabilistic graph can take 2m different forms, which

can be exponentially difficult to deal with. Thus, doing an exhaustive search on all

the possible worlds would be infeasible. In this thesis, we focus on the problem of

community search in uncertain and deterministic networks.

13



2.3 Community Detection and Search

In networks, clusters of interconnected nodes within larger networks are known as

community structures. These are the groups of vertices that are densely connected

within the network and sparsely connected with the rest of the network [7].

Traditionally, community detection methods aim to find these structures by glob-

ally partitioning a network and identifying all possible communities through the anal-

ysis of various network features and properties. In this thesis, the terms “community

detection”, “community mining”, and “clustering” are used interchangeably and con-

vey the same meaning. Various methods are used as potential solutions to this prob-

lem. For instance, direct edge densities within a potential community can be utilized

to identify “bridges” that separate communities, or the information flow within the

network can be evaluated to assist with community detection [26].

On the other hand, as noted in “The future is Big Graphs” [2], the current era

of big data and notably large networks have brought local search methods into the

spotlight. This is because the necessity to store and process all network information,

especially in scenarios involving networks with a large number of vertices and edges,

makes global approaches increasingly impractical and resource-intensive.

Local community discovery or community search approaches are more localized,

initiating a search from a specific query node or set of nodes [27, 28]. These methods

aim to identify nodes that belong to the same community as the query node(s),

without the need to explore and analyze the entire network. This strategy not only

reduces computational time, making it applicable even in large networks, but also

proves beneficial in applications where the interest is primarily in the community

of a specific entity. Furthermore, local methods offer a practical solution for online

searches and managing dynamic graphs that change over time [29].

Studies that focus on community search or community detection also tend to con-

sider different metrics to measure the accuracy of the output of their proposed algo-

14



rithms. We will now go over a number of the metrics that have been used by the

related literature.

2.4 Evaluation Metrics

There are several ways to determine how good a community detection or search

algorithm is. These methods are often very different in terms of the existence or

non-existence of “ground truth” communities. Ground truth communities refer to

pre-established and accepted sets of nodes known to form a community. If these

known communities are trustworthy, we can compare the communities found by the

algorithm to the known ones to see how good the algorithm performs. If the known

communities are not trustworthy or non-existent, other measures can be used for

evaluation.

2.4.1 With Ground Truth

In scenarios where the community structure within a graph is well-documented and

reliable, several metrics are used to evaluate the performance of community detection

and search algorithms.

For community search, various metrics compare the discovered community of a

specific node to the node’s established ground truth community. We will now formally

define several of these metrics, which are applicable to a specific node or set of nodes

belonging to a community.

Definition 2 (Precision) : Precision determines the fraction of vertices in the de-

tected community c that belong to the actual community g.

Precision(c, g) =
|c ∩ g|
|c|

Definition 3 (Recall) : Recall represents the fraction of vertices in g that the algo-

rithm correctly identifies within c.

Recall(c, g) =
|c ∩ g|
|g|

15



In the literature, precision and recall are often combined into the F score (also

called the F1 − Score, or simply F1) as a more comprehensive metric.

Definition 4 (F Score) : The F Score provides a balanced measure, combining both

precision and recall.

F (c, g) =
2× Recall(c, g)× Precision(c, g)

Recall(c, g) + Precision(c, g)

The values of precision, recall, and F score lie between 0 and 1. Higher values

indicate a more accurate match with the true community.

All three of these metrics (precision, recall, and F score) can also be applied to

assess community mining methods that are designed for uncertain graphs. In uncer-

tain graphs, the discovered community for a node is still a set of nodes, even if they

are determined under the influence of edge uncertainties. This makes it feasible to

compare this discovered set with a known ground truth set using precision, recall,

and F score. Essentially, despite the probabilistic nature of uncertain graphs, the end

goal remains consistent: identifying a community that most closely matches the true

community.

In situations where community detection algorithms are applied, and the entire

detected community structure is compared against all known communities, the Nor-

malized Mutual Information (NMI) metric can be used. NMI is a metric used to

measure how much information one set shares with the other. In community detec-

tion, NMI measures the similarity between two sets of clusters or communities, by

evaluating the correspondence between the discovered community structure and the

known ground truth.

Definition 5 (Normalized Mutual Information (NMI)) :

NMI(X, Y ) =
2× I(X;Y )

H(X) +H(Y )

Here, I(X;Y ) represents the mutual information between sets X and Y , and H(X)

and H(Y ) are the entropies of X and Y respectively.

16



The metric yields a value between 0 and 1, where a higher value indicates a greater

similarity between the two community structures. Specifically, an NMI value of 0

suggests no mutual information, implying the two sets of communities are entirely

dissimilar, whereas a value of 1 means the sets are identical.

Other variations of NMI exist that use different normalizing factors, such as the

maximum, the sum, the square root, or the minimum of the marginal entropies of the

two different clusterings [30].

2.4.2 Without Ground Truth

In many scenarios, the ground truth for the community structure within a graph

is either unreliable or unknown, making it challenging to evaluate the quality of

community detection algorithms. Under these circumstances, alternative metrics can

be utilized to assess the effectiveness of these algorithms in identifying meaningful

communities.

Various methods are available for evaluating community detection in deterministic

graphs, such as Modularity [31]. Miasnikof et al. [32] provide different metrics for

analyzing graph clustering algorithms. However, these metrics are specifically used

for measuring the performance of clustering algorithms in deterministic graphs, and

thus, extra measures must be taken when applying them to algorithms designed for

uncertain graphs. Some of these techniques are explained in [5]. In this section,

we mainly focus on detailing the evaluation metrics specifically designed to assess

algorithms operating on uncertain graphs.

One fundamental concept underlying many of these metrics is “Reliability” [33].

In a connected deterministic graph, by definition, all pairs of nodes are intercon-

nected. This concept, however, requires adaptation for probabilistic graphs, where

connections between nodes are not guaranteed but are instead characterized by prob-

abilities. Reliability extends this concept to uncertain graphs by quantifying the

likelihood that a set of vertices remains interconnected across different deterministic

17



instances of the graph, known as “possible worlds”. We now proceed to formally

define reliability.

Definition 6 (Reliability) Given an uncertain graph G = (V,E, p) and a subset of

vertices Vs ⊆ V , the reliability R(Vs) for the vertex set Vs is defined as:

R(Vs) =
∑︂
Gi⊑G

Pr(Gi)I(Vs, Gi), (2.1)

Where Gi is a possible world of G, and I(Vs, Gi) is the indicator function of whether

Vs is contained in a connected component in Gi (in which case it is set to 1), or not

(in which case it is set to zero).

Note that the reliability value lies in the interval [0, 1], whereas deterministic con-

nectivity is a binary value. This measure was later used by researchers to devise

metrics to quantify how good a clustering algorithm is. For instance, in [34] the

authors first generalize the concept of reliability even more by utilizing information

theory, coming up with a new formula. Later, they use the metrics ACR and AVPR

to compare their clustering algorithm to other contenders in the literature. These

metrics are defined as follows:

Definition 7 (Average clustering reliability (ACR)) : ACR is defined as

ACR(C) =

∑︁k
i=1 |Ci|R(Ci)

n
(2.2)

Where C = {C1, C2, · · · , Ck} is the set of k clusters in an uncertain graph with n

nodes, and R is the reliability measure.

ACR quantifies the probability of the nodes remaining connected in each cluster

and is used to measure the reliability of each cluster obtained by a clustering algo-

rithm. A high ACR means that the clusters are likely to be connected subgraphs in

most possible worlds, and a low ACR means that the clusters are likely to be broken

into fragments in many possible worlds. ACR is designed to penalize clusters that

are not robust to edge uncertainty.

18



Definition 8 (Average vertex pairwise reliability (AVPR)) : AVPR is defined

as:

AV PR(C) =
2
∑︁k

i=1

∑︁
u,v∈Ck

R({u, v})∑︁k
i=1(|Ci|)(|Ci| − 1)

(2.3)

AVPR is the average connection probability of all pairs of nodes that are in the

same cluster (inner) and different clusters (outer). Definition 8 is for inner-AVPR,

which is referred to as simply “AVPR” in some literature. A high AVPR means that

the nodes in the same cluster are likely to be connected in most possible worlds, and

a low AVPR means that the nodes in the same cluster are likely to be disconnected

in many possible worlds. AVPR is designed to penalize clusters that contain nodes

that are not well-connected.

ACR and AVPR are later used by other works as measures for the comparison of

clustering algorithms [24, 35].

To evaluate the accuracy of the different clustering algorithms, Li et al. [24] use

the generalized metrics of accuracy for clustering, such as Accuracy (ACC) [36] and

Pairwise F-Measure (PWF) [37]. For clustering algorithms that are center-based,

there are additional metrics that can be used (as in [35]):

• pavg : Average connection probability of all nodes to their respective centers

• pmin : Minimum connection probability of any node to its center

In some literature ([38] and [5]), Jaccard index (or coefficient) [39] is used for

performance evaluation. The Jaccard index between two sets is defined as the size of

the intersection of the sets divided by the size of the union. In the subject of graph

clustering [5], this metric is used to measure the similarity between the clusters.

However, Hu et al. [38] use an expected form of the Jaccard index as a similarity

measure between nodes.

19



2.5 Literature Review

In this section, we provide a survey of the existing body of work, focusing primarily

on community detection and community search within uncertain networks. We also

briefly mention related works on community detection and search within deterministic

networks. Although Community Detection and Community Search are different in

nature, there is a strong parallel between them since one could perform partitioning

by iteratively applying a community search algorithm on a query node, removing

the found community from the network, and repeating this process until the entire

network is partitioned into communities. Each community detected by the algorithm

corresponds to a cluster in the network.

Most community mining and search algorithms work towards optimizing a certain

objective, to find the “best” communities among the nodes. Most of these algorithms

use one or both of the following definitions:

1. Defining how “similar” a pair of nodes are in the network.

2. Defining a function to measure how “good” a community is.

For instance, Modularity is a concept that captures how well a network can be divided

into groups of nodes that are densely connected internally and sparsely connected ex-

ternally [31]. It is based on the idea that in a network, the deviation from randomness

can indicate the presence of communities, as random network would not have such

a clear community structure. However, modularity also faces some limitations, such

as the resolution limit, which prevents it from detecting small communities in large

networks [40], and the inconsistency problem, which makes it unreliable for finding

statistically significant communities [41]. Therefore, modularity should be used with

caution and complemented with other methods and criteria.

In modularity-based algorithms, modularity is used as an objective function to

optimize in order to find the best partition of a network into communities. By max-

20



imizing modularity, the groups of nodes that have more internal connections than

expected by chance can be identified [42]. For instance, Modularity Q [43], Modu-

larity R [44], Modularity M [45], and Modularity L (or L-Metric) [46] are among

these algorithms. Although these algorithms are devised for deterministic networks,

they can be made to work for probabilistic graphs by extending the definition of

modularity to account for all possible worlds. For instance in [47], the authors have

extended the definition of Modularity R and followed a greedy approach to find the

best community.

2.5.1 Community Detection in Uncertain Networks

To the best of our knowledge, Liu et al. [34] were the first to have studied and

formalized the definition of clustering for uncertain graphs. The formalization of the

problem made way for other researchers to study the newly-formed problem.

In this section, we are going to review the contributions of the literature sur-

rounding the problem of community detection in uncertain graphs, and discuss their

shortcomings. The algorithms that are proposed for the uncertain graph clustering

problem can be divided in several categories, based on their main approach:

1. Information Theoretic Approach

2. Edit-Distance-Based Approach

3. Similarity-Based Approach

4. Connectivity-Based Approach

It is worth noting that both edit-distance-based and connectivity-based approaches

are based on the notion of “center”, i.e. they rely on identifying a center for each

cluster. However, their objective is entirely different. Each of the following sections

is dedicated to one of these categories.

21



Information-Theoretic Approach

In 2012, Liu et al. [34] formalized the definition of clustering for uncertain graphs

and proposed new metrics to measure how good a clustering is. The paper’s main

contribution revolves around a generalization of “Reliability” in probabilistic graphs,

which evaluates the connectivity of a set of nodes in the context of the entire network,

using the possible worlds model. Generalized reliability is based on the intuition that

reliable clusters are clusters that are not likely to be disconnected in different possible

worlds.

This measure is then used to develop a novel k-means algorithm for clustering

using information theory. This generalization relies on the two measures “Purity”

and “Size Balance” that are intuitively helpful to differentiate a good clustering from

an inaccurate one.

Since each possible world may break the graph into several connected component

(fragments), given a possible world, if two nodes are from the same underlying cluster

then they are expected to be contained in the same fragment. This is the basis of

the Purity measure: For each fragment of a possible world resulting from uncertain

graph sampling, the number of distinct clusters to which the different nodes belong

should be as small as possible, and one of the clusters should dominate the fragment.

This measure is then defined with the help of cluster label entropy. However, the

minimization of purity tends to bias the process towards unbalanced clusters. In

other words, if the purity criterion is used alone, the result will typically contain a

single cluster containing most of the nodes. To mitigate this, “Size Balance” is added

to the clustering criterion, which measures how balanced the clusters are, in terms of

the number of nodes in each.

Using these definitions, an objective function is created which incorporates both

size balance and purity. To devise an algorithm that aims to maximize that objective

function, an Auxiliary Cluster Table is created for each possible world. In this table,

22



each row corresponds to a cluster, each column corresponds to a connected compo-

nent, and each cell contains the set of vertices from the corresponding component

and cluster. The Auxiliary Cluster Table not only provides a structured view of the

possible world but also contains all the information for the clustering, including the

cluster and fragment identifier for each vertex. Then, Hoffman Encoding is used to

encode each table. It is then shown that the coding length for the tables is directly

related to the aforementioned objective function. This relation is utilized to devise

a two-step procedure aimed at minimizing the objective function for the N sampled

graphs. This procedure assigns each vertex randomly to one of the clusters, and

repeats the following two stages until the objective converges:

• Coding Computation: Given the current vertex assignment, and correspond-

ing sampled components, the coding for each row of the table is computed using

Huffman coding.

• Vertex Assignment: Given the current row coding for each table, one can

assign each vertex to the cluster that minimizes the total coding cost for that

vertex through all the sampled graphs.

It can be shown that this procedure makes the objective function converge to a

local optimal value. Finally, another algorithm is used on the resulting clustering

to ensure connectivity in each cluster. The resulting algorithm is named “coded k-

means”. Finally, experimental studies are conducted to demonstrate the effectiveness

and efficiency of the algorithms.

Two groups of “effectiveness” experiment results are reported:

1. Generalized reliability (the objective function): To compare the accuracy

through different datasets, the average coding length per vertex is used.

2. Standard reliability: Acts as a more objective measurement for the results.

Includes two measures: Average vertex pairwise reliability (AVPR) which em-

23



phasizes the pairwise reliability, and average cluster reliability (ACR), which

puts a stronger constraint that requires all vertices in one cluster should be

connected simultaneously.

The contenders that are used for comparison are MCL [48], Spectral Clustering,

and Ensemble Clustering [36], which are methods used for deterministic graphs. In

order to use these algorithms, the authors have converted the uncertain graphs into

weighted graphs. It is then shown that the coded k-means algorithm produces better

clusters than the aforementioned previous works on both the generalized and standard

reliability criteria.

To compare scalability, databases with 20k to 100k nodes were tested, to show that

the running time of the coded k-means algorithm is linearly related to the number of

nodes. In short, the use of information theory in this paper in the context of graph

clustering is novel, which has led to the definition of a new measurement for comparing

clustering algorithms. However, there are some shortcomings to this approach. First,

the intuition behind “Size Balance” is not accurate for small-world graphs, because

these graphs feature a limited number of very large clusters along with numerous

very small clusters. Also, the number of clusters is a parameter that is considered

a feature, which is fixed and fine-tuned when compared to other algorithms. Lastly,

the contenders are designed for weighted networks, not uncertain networks.

Edit-Distance-Based Approach

In 2013, Kollios et al. [49] approach the problem of clustering uncertain graphs in

an entirely different way, through a concept called “edit distance”. The edit distance

between two graphs (on the same set of nodes) is defined as the number of edges that

needs to be added and removed from one graph to get the other graph. This concept

was already used in previous literature, in which a “clustering” is viewed as a cluster

graph which is basically a graph consisting of disconnected cliques, to provide a new

definition of graph clustering for deterministic graphs. The ClusterEdit problem was

24



first introduced by Shamir et al. [50] for deterministic graphs. In this problem, the

goal is to find the cluster graph that has the minimum edit distance from the input

graph.

The authors extend this edit-distance-based definition of graph clustering to prob-

abilistic graphs. In this paper, pClusterEdit is the problem of finding the cluster

graph that has the minimum expected edit distance from the input graph, making

it a generalization of the ClusterEdit problem. This objective function is parameter-

free, which means that the number of clusters does not need to be known in advance.

At first, a connection between the objective function and the correlation clustering

problem is exploited to propose practical approximation algorithms for the clustering

problem.

The four algorithms that were used for the pClusterEdit problem are:

1. The pKwikCluster algorithm: In the correlation clustering problem, the

goal is to group vertices according to their similarity to each other. This sim-

ilarity is represented in a binary manner, by “0” or “-” meaning dissimilarity,

and “1” or “+” meaning similarity. In probabilistic graphs, the probability on

the edges can be seen as the likelihood that an edge is labeled “+”. However,

this setting requires the input graph to be complete, which means no pair of

nodes has the edge probability of zero.

Ailon et al. [51] proposed the KwikCluster algorithm for the weighted Correla-

tion Clustering problem. Kollios et al. utilized this algorithm for probabilistic

graphs. In the pKwikCluster algorithm, a random node u is selected, and a

cluster with all neighbors of u that are connected with u with a probability

higher than 1
2
is created. If no such node exists, u defines a singleton cluster.

After removing u and its cluster neighbors, the algorithm proceeds with the rest

of the graph. When the clustering is completed, the result is a set of discon-

nected cliques. This algorithm is called pKwikCluster, which is a randomized

25



expected 5-approximation algorithm for the pClusterEdit problem.

The worst-case time complexity of the pKwikCluster is O(m), m being the

number of edges, which makes it linear with respect to the size of the input.

2. The Furthest algorithm: The Furthest algorithm uses the notion of centers

for a top-down approach. At each step, the node that is not a center and has the

maximum distance (i.e. minimum probability) to the current centers is selected

as the new center. The distance of a node from the current centers is defined

as the maximum among the probabilities of having an edge with the current

centers. The nodes are then assigned to the center to which they are connected

with maximum probability. At the end of each iteration, if the edit distance

between the current cluster graph and the input is less than that of the last

iteration, the algorithm continues to the next iteration. Otherwise, it stops and

outputs the previous cluster graph.

The Furthest algorithm needs to compute the distance between every node with

the selected cluster centers. If k clusters are formed in the end, the worst-case

running time of the Furthest algorithm is O(n · k2).

3. The Agglomerative algorithm: The Agglomerative algorithm is a bottom-

up procedure, which can be seen as the inverse of the Furthest algorithm. It

starts with all nodes in a singleton cluster, then finds the pair of clusters with

the highest average probability and combines them. The algorithm ends when

the highest average probability is greater than 1
2
.

A naive implementation of the Agglomerative algorithm requires O(k ·n2) time,

where k is the number of clusters in the output. However, using a heap for re-

trieving the closest pair of clusters reduces the time complexity of the algorithm

to O(k · n log n).

4. The Balls algorithm: The Balls algorithm has an extra input α, which serves

26



as a threshold for average distance when a cluster and a node are considered

for composition. When set to 1
4
, the algorithm provides a clustering of at most

3 times the cost of the optimal. This was proven by Gionis et al [52] in 2007,

who initially proposed 3 of the mentioned algorithms (Agglomerative, Furthest,

and Balls). The number 1
4
is not, however, proven to be the optimal value for

α. Different values of α are experimented with to find a good approximation of

the optimal value for each graph.

The methods are then tested in two real-world scenarios. First, the algorithms are

used on a Protein-Protein Interaction network and its corresponding ground-truth

data, which resulted in discovering the correct number of clusters and identifying most

of the established protein relationships. The results from the experiments indicate

that the techniques not only produce meaningful clustering but also discover the

correct number of clusters. It is shown that pKwikCluster works better than the

other proposed algorithms, as well as the contenders. Also, the practicality of the

algorithms is shown using a large social network consisting of one billion edges. This

is done to showcase the scalability of pKwikCluster since the previous work could not

handle large graphs such as this network.

Despite the good results in practice and the simplicity of the algorithms, there are

certain downsides to this method of experimentation. For instance, the experiments

are done to showcase the paper’s own proposed objective function and the contenders

are compared in terms of the defined objective function. However, other measures

for the quality of the clustering could be used for comparison. Furthermore, some

contenders required the setting of a parameter, which is set to a value that minimizes

the expected edit distance.

These downsides are later alleviated by Nilsson [5], who further explains the main

shortcomings of the algorithms:

• All algorithms produce a lot of clusters, which makes them impractical when

27



coarse-grained results are desired, i.e. in visualization.

• Algorithms require the input graph to be complete, which is not realistic in

most real-world scenarios.

• The pKwikCluster algorithm is non-deterministic, which could be important in

specific applications.

• The furthest algorithm is very slow, the results are not up to par with the rest

of the algorithms, and its number of iterations is unpredictable. However, it

can perform well when the input graphs are very dense.

Nilsson also [5] studies the effectiveness of the algorithms by implementing them

and testing them on a set of fMRI scans. The experiments are done on a set of

probabilistic graphs derived from brain scans done on people with or without autism,

in order to compare the 4 algorithms. The comparison measures include the number of

clusters produced and the balance in cluster size, as well as the mean-intra- and mean-

inter-cluster connectivity, with respect to the global connectivity, as suggested by

Miasnikof et al. [32]. The Jaccard Index is used to get an overview of the similarities

and differences between clusters. The “edit distance” metric [49] is also used for

comparison. The study also explains why certain measures are not appropriate to use

for evaluation, such as Modularity, the Silhouette Index, and Conductance. However,

the datasets in this study are not extensively defined.

Similarity-Based Approach

Similarity-based approaches usually aim to use a similarity measure between nodes

to come up with a new representation of the input graph.

For instance, in 2017, Hu et al. [38], used two similarity measures between nodes

to acquire an embedding of an arbitrary uncertain graph. This embedding is then

used for numerous graph mining applications (i.e. clustering, classification, k-NN

querying). The embedding is done in two steps: Proximity matrix computation and

28



Node vector generation. At first, the graph is converted to its corresponding proximity

matrix, which stores the proximity information between every pair of nodes. Two

node proximity measures are used in this paper: The “Expected Jaccard Similarity”,

which is the probabilistic variant of the Jaccard Similarity and is a second-order

proximity measure, and “Probabilistic Random Walk with Restart” [22], which is

a high-order proximity measure. The random walk procedure is defined as follows:

Generate a possible world G for u, walk to a neighbor uniformly at random if there

exists any neighbors of u in G, otherwise stay at u. This yields a Probabilistic

Transition Matrix which requires additional ways to compute efficiently (the paper has

introduced a hash-based method for this computation.) The transition matrix is then

used in a matrix relation (Probabilistic Random Walk with Restart) which needs to

be computed iteratively by utilizing Monte Carlo methods. These proximity measures

are computed using scalable algorithms that are tailored to work on uncertain graphs.

Then, the proximity matrix is converted to the node-vector representation of the

graph. This is done by solving an optimization problem, utilizing techniques such as

negative sampling and asynchronous stochastic gradient descent. The solution to this

optimization problem is a factorization of the proximity matrix, which is a compressed

form of the initial proximity matrix. This solution can then be used as an embedding

of the uncertain graph. The whole embedding algorithm is called URGE, which stands

for “Uncertain Graph Embedding”. Finally, existing graph mining algorithms can be

used on the embedding. Extensive experiments show that URGE is more effective

and faster than the current mining algorithms on uncertain graphs, as well as the

state-of-the-art embedding solutions.

Later in 2018, Li. et al. [24] proposed the problem of clustering uncertain graphs

with node attributes into k clusters. The definition of Attributed Graphs is given

in Section 2.1. The node attributes can be represented as a vector per node. The

clustering problem in these networks requires novel ideas because of the challenges

imposed by high-dimensional attribute vectors. Li. et al. leverage node attributes

29



in order to reduce edge uncertainty, which in turn helps with the clustering. Then,

each possible world of the uncertain attributed graph is converted to a deterministic

weighted graph by using a similarity measure between nodes to convert the attributes

to weights. The conversion is done with the help of distance metric learning, to

learn the parameters of the Mahalanobis distance [53] between nodes. The learning

step aims to find the optimal solution to the optimization problem imposed by the

distances. Two methods (AUG-I and AUG-U) are then used to derive a new weighted

graph:

• AUG-I combines all attribute-induced graphs into a new weighted graph,

• AUG-U is based on the unified partition over all possible worlds of an uncertain

graph.

In both methods, spectral clustering is used as the final step to cluster the final

weighted graph. To evaluate the accuracy of the methods, Accuracy (ACC) and

Pairwise F-Measure (PWF) are considered. Furthermore, the reliability of the output

clusters is computed using the average clustering reliability (ACR) measure. These

metrics are then used to compare the algorithms with several contenders, the most

important of which is coded-k-means, by [34].

The results show that the contenders fall behind when measured with the afore-

mentioned metrics. However, the proposed methods have several drawbacks. First,

solving the optimization step could be challenging. Second, the algorithms require

the input network to have a high assortativity, in order to produce meaningful clus-

ters. Third, there is no way to know the required number of samples needed in the

simulation step of the algorithm. Lastly, the contenders are designed for either non-

attributed uncertain graphs (which makes them ignore the attributes completely), or

deterministic graphs (which makes them ignore the probabilities on the edges). This

will cause the proposed algorithms to inherently outmatch the contenders.

30



Connectivity-Based Approach

Connectivity-based approaches typically involve center-based algorithms that are

based on the intuition that a good clustering algorithm focuses on good connectivity

on the nodes inside a cluster and low connectivity between the clusters themselves.

In 2017, Ceccarello et al. [35] devised two algorithms using the mentioned intuition

to partition the nodes of an uncertain graph into k clusters, each featuring a center

node. In summary, approximation algorithms are given for each of these problems:

• MCP problem: Maximizes the Minimum Connection Probability of a node

to its cluster center, which is proved to be NP-hard.

• ACP problem: Maximizes the Average Connection Probability of a node to

its cluster center, which is conjectured to be NP-hard.

Both proposed algorithms compute a partial k-clustering. They aim to cover a

maximal subset of nodes based on a threshold for the minimum connection probability

to a cluster’s center.

The algorithm responsible for doing this is called MIN-PARTIAL. Given a

threshold q on the connection probability, MIN-PARTIAL returns a partial k-

clustering of an uncertain graph G. This clustering covers a maximal subset of nodes,

each connected to its cluster center with a probability of at least q. Nodes not meeting

this threshold are considered outliers and remain uncovered.

The two algorithms focus on maximizing the average and the minimum connection

probability of any node to its cluster’s center, in a possible world. To estimate the

connection probabilities among different nodes, Monte-Carlo simulations are utilized.

The authors propose an approximation algorithm for metric k-center and k-median

problems, using [54] as a baseline. This is extended to probabilistic scenarios to derive

a full k-clustering, which is a clustering that covers all nodes.

The main idea is to iteratively call MIN-PARTIAL and gradually decreasing q,

using specific termination conditions in each of the algorithms. Provable guarantees

31



are also provided on the quality of the approximation. As an extension to their

algorithm, the authors also mention that the proposed algorithms can be run by

setting a limit on the length of the paths that contribute to the connection probability

between two nodes. This setting is useful in scenarios where the similarity between two

nodes diminishes sharply with their topological distance regardless of their connection

probability. They emphasize that all the algorithms can be adapted to incorporate

limited path lengths d in the estimation of connection probabilities, transforming

them into d-hop algorithms.

Finally, the authors compare the algorithm with contenders such as MCL [48]

and GMM [55], by using several metrics such as pavg, pmin, and Innter and outer

AVPR, which are defined in Section 2.3. The results of the experiments show that

the clustering that is computed by MCP and ACP feature higher inner-AVPR than

GMM and MCL, and a lower outer-AVPR, both of which are desirable features of a

good clustering algorithm.

The methods offered in this paper fall short in several areas. In terms of the

algorithms, it is not clear which of the metrics (average or min) should be used for

the best result in a problem. Also, the maximization problems can have more than

one solution, and it is not clear what needs to be done in this case. Furthermore,

the contenders that are used in the experiments are primarily designed for weighted

deterministic graphs, and they are used on the uncertain graphs by changing the

probabilities to weights. This method can be expected to fail, as the contenders are

driven more by the topology of the graphs rather than by the connection probabilities.

Lastly, the researchers fine-tune the d-hop algorithms by identifying the best d, which

makes the results closer to the ground truth.

Later in 2019, Han et al. [56] improved the two algorithms that were initially intro-

duced by Ceccarello et al. [35] for the problems of k-center and k-median. According

to the authors, the algorithms introduced by [35] provide rather weak approximation

guarantees, regardless of whether the connection probability between any two nodes

32



is known. Moreover, they state that when good approximation assurance is needed,

significant computation overheads are required. Furthermore, the initial k-center al-

gorithm requires knowledge of a lower bound of the optimal value to achieve the

claimed asymptotic guarantees; however, the paper does not provide a method for

deriving such a lower bound.

Han et al. [56] alleviated these problems by significantly improving approximation

and efficiency guarantees, and proving several theorems for the hardness and inap-

proximability of the problems of k-center and k-median on uncertain graphs. Note

that [35] conjectured that the k-median problem is NP-hard when there is a con-

nectivity oracle, but this paper has proved that this conjecture is true. The authors

have also utilized the monotonicity and sub-modularity of the objective function of

the k-median problem, to devise a greedy algorithm for the problem that leverages

graph sampling to achieve better approximations with high probability. Furthermore,

a new greedy algorithm is devised for the uncertain k-center problem, which offers

better approximations with high probability, and does not require prior knowledge of

the optimal value, whereas the initial algorithm requires that a tight lower bound of

the value is given.

These algorithms are further improved in practical efficiency by utilizing additional

advanced optimization techniques Finally, the authors have defined new measures to

quantify the goodness of their clustering in order to compare the algorithms to other

similar algorithms in the literature. In the experiments, in order to increase time

efficiency, a data structure is used to store the nodes and the generated random

samples.

The experimental results demonstrate that the new algorithms outperform the

previous ones proposed by [35] on both the processing time and the quality of the

clustering results. However, it is worth mentioning that the comparison is only done

for [35].

33



2.5.2 Community Search in Uncertain Networks

Unlike Community Mining, which focuses on partitioning the entire graph, Commu-

nity Search is more targeted and looks for a specific community that includes the

user’s query node(s). Community Search is sometimes referred as Local Community

Detection [57].

Halim and Khattak [58] proposed a density-based approach, called DBCLPG (Density-

Based Clustering of Large Probabilistic Graphs), that starts with a single query node,

well-chosen, as a cluster. It then greedily adds nodes from the shell set (also referred to

as the cluster neighbors) to the current community, based on a condition to only add

“reliable” nodes. The shell set comprises nodes that, while not part of the community,

are linked to at least one node within the community, and the reliability of a node is

determined by a threshold edge weight (Tw). For each candidate node v, the number

of common neighbors between v and the cluster are computed and added to the sum

of edges’ probabilities (which is the expected degree) between the cluster and v. This

value is called the CP (cluster periphery) of the node. If CP is higher than Tw, the

node is added to the cluster. The process is repeated until no node in the shell set

satisfies the condition. The cluster is then removed from the graph and the procedure

is repeated for the remaining graph. This approach is effective for identifying dense

communities in uncertain networks, but it may not perform well on networks with

complex structures, due to the assumption of high local density for cluster formation.

Moreover, the method differs from a typical community search since there is no query

node per-se but the ego-centric process starts from a well-chosen node with the aim

of partitioning the whole graph. In addition, to carefully choose an optimal node to

start with each iteration, the approach needs the full adjacency matrix making it not

really solely local.

Qiu et al. [59] propose detailed definitions of density-reachability and structural

similarity in probabilistic graphs. The proposed similarity measure can capture the

34



similarity between two vertices over all the possible instances of the probabilistic graph

but is challenging to compute. This challenge is alleviated by using a polynomial-

time dynamic programming (DP) algorithm to compute the similarity. The structural

clustering problem on probabilistic graphs is then formulated based on this similarity,

and the SCAN algorithm (which is originally used for deterministic graphs) is adapted

to obtain the clustering results. The SCAN algorithm is somewhat similar to SIWO,

in the sense that it starts with a node and checks the neighborhood of that node

for potential nodes to add to the cluster. Below we review a few of the important

definitions that are used in this work:

• The Structural Neighborhood of a node u (denoted by N [u]) in a deterministic

graph is defined as the set of neighbors of that node and the node itself.

• The Structural Similarity between two nodes u, v (denoted by σ(u, v)) is the

Jaccard similarity [39] between the set of structural neighborhoods of the two

nodes. σ(e) is used to denote the structural similarity between u and v in the

edge e = (u, v), which can be calculated as the number of common vertices in

N [u] and N [v], normalized by |N [u] ∪N [v]|:

σ(u, v) =
|N [u] ∩N [v]|
|N [u] ∪N [v]|

.

This notion is then used to see if two nodes are similar “enough” (which is called

(ϵ-Structural Similarity), by using a similarity threshold ϵ and comparing the

structural similarity of the two nodes to ϵ. In probabilistic graphs, however,

the notion of ϵ-Structural Similarity will be probabilistic. Determining the ϵ-

structurally similarity between two adjacent nodes is done by to identifying the

possible worlds in which they are similar and taking a weighted sum, using the

probabilities of those possible worlds as weights.

• The (ϵ, η)-reliable neighborhood of u is defined as the subset of vertices like v

35



in N [u] such that Pr[(u, v), ϵ] ≥ η. The threshold η is given as input, which

is used to filter out the edges that have a probability of ϵ-structural similarity

higher than η. In other words, u is called reliable structural similar to v if

Pr(e, ϵ) ≥ η. The definition of (ϵ, η)-reliable neighborhood is in fact used to

defined the “good” neighborhood around a node u.

Intuitively, the number of reliable similar neighbors is directly related to the impor-

tance of that node in the clustering procedure. Thus, if a node has a sufficient number

of reliable similar neighbors, it is called a reliable core node. This is determined by

comparing the number of reliable neighbors to another parameter µ. Further details

of the algorithm is beyond the scope of this thesis due to complexity. Although the al-

gorithm is shown to have comparable results to the contenders, it is highly parametric

which will add layers of unnecessary complexity due to the inevitable hyper-parameter

tuning.

In the work by Zhang and Zäıane [47], the authors propose an algorithm called

UR +K, to address the problem of community detection in uncertain graphs. The

algorithm starts with a single node and expands the community by adding neighboring

nodes that are considered to be part of the community, using the metrics UR and

K. These neighboring nodes that have the potential to be inside the community are

referred to as candidate nodes. K measures the closeness of the relationship between

a candidate node and an existing community. A high K value indicates that the

candidate node is closely related to the community and is more likely to be part of

it. K is used in the first few steps of the local community detection algorithm to

help choose which neighboring node should be added to the community. UR, on the

other hand, stands for the uncertain version of Modularity R [44], is proposed for

evaluating local communities in uncertain networks. UR is calculated based on the

expected number of edges within the community and the expected number of edges

connecting the community to the rest of the network. A high UR value indicates a

36



sharp boundary between the community and the rest of the network, meaning that

the community is well-defined. The algorithm starts by placing the start node in

the community and its neighbors in the shell set. At each step, candidate nodes in

the shell set are sorted based on their metric (K or UR) values, and the first node

that can increase the community’s metric is added to the community. This process

continues until there are no remaining nodes in the shell node set that can increase

the community’s metric, and the resulting set of nodes is considered to be a local

community. The hyper-parameter λ determines for how many stepsK is considered as

the main metric before switching to UR. It has been shown experimentally that UR+

K outperforms other local community detection algorithms (including ULouvain, the

weighted variant of Louvain [60] considering edge probabilities as weights) on real-

world and synthetic networks.

DBCLPG [58] and UR+K [47] are among the algorithms used to evaluate the per-

formance of our proposed community search algorithm for uncertain graphs, USIWO,

as detailed in Section 4.3.

2.5.3 Community Detection and Search in Deterministic Net-
works

While our literature review primarily focuses on uncertain graphs, it is essential to

acknowledge the extensive body of research dedicated to community detection and

search algorithms in deterministic networks. This field has seen significant devel-

opment and numerous contributions, as evidenced by the comprehensive literature

survey conducted by Baltsou et al. [57].

Blondel et al. [60] introduced the Louvain method for community detection, which

operates through two primary phases to optimize Modularity Q [43], beginning with

the individual assignment of nodes to communities, then relocating them to maximize

modularity gains. It is shown that Louvain is relatively fast in finding communities

in a network.

37



However, Louvain had a number of shortcomings, such as the potential for discon-

nected communities and the resolution limit issue. Later, Traag et al. [61] proposed

the Leiden algorithm to address those shortcomings. This algorithm introduces a

novel quality function and an efficient node movement strategy termed ’smart lo-

cal move’, significantly reducing unnecessary re-calculations. Additionally, it uses a

refinement phase to enhance connectivity within communities and address the reso-

lution limit problem by allowing more flexible community formation. However, the

Leiden algorithm also had a number of limitations, such as introducing an additional

parameter and potential non-convergence due to the randomness in its refinement

phase. Furthermore, both the Louvain and Leiden algorithms are not designed to

handle very large graphs.

According to the survey conducted by Baltsou et al. [57], Hamann et al.’s Triangle-

Based Community Expansion (TCE) method [62] is the best community search

method focusing on node selection, making it a strong benchmark for comparison.

TCE is fundamentally based on the Local Tightness Expansion (LTE) algorithm [63],

as both exploit the fact that some edges are more embedded in their neighborhood

and have more common neighbors than others. LTE uses an edge similarity score

based on triangles for deciding which node to add next and for determining the qual-

ity of the community. TCE, on the other hand, also uses an edge score based on

triangles, but employs conductance for the quality function of the community. Balt-

sou et al. [57] highlight that experimental evaluations show that TCE exhibits solid

performance and often finds the correct community, building on the already excel-

lent performance of the computationally more expensive LTE on most tested graphs.

However, a significant drawback of both LTE and TCE is that they use NetworKit1 for

their implementation, requiring the entire graph to be loaded into the main memory,

making these algorithms infeasible for handling large networks.

In small networks, the effectiveness of Louvain, Leiden, TCE, and LTE are directly

1https://networkit.github.io/

38



compared against SIWO and other contenders. For detailed information and results

of these comparative experiments, refer to [1].

The Local Closest Truss Community (LCTC) method [64], is a community search

algorithm shown to handle large graphs. This method addresses the challenge of iden-

tifying a Closest Truss Community (CTC) within a network that contains a set of

given query nodes. The LCTC method has shown to produce meaningful communi-

ties when evaluated on six large real-world networks, making it a suitable benchmark

algorithm for assessing SIWO’s effectiveness in managing large graphs. The experi-

ments focusing on the scalability of SIWO, along with its comparative analysis with

LCTC, are detailed in Section 3.2.1.

2.6 SIWO

The SIWO (Strong Inside, Weak Outside) method was initially proposed as a global

community detection technique in [9]. Since its introduction, the algorithm has under-

gone enhancements, evolving into a local search method with capabilities for global

community detection, on both deterministic weighted and unweighted graphs [1].

SIWO aims to optimize a quality function. However, unlike the state-of-the-art meth-

ods, its quality function is not an extended version of modularity, which is known for

its resolution and field of view limits [9, 40]. We now explore several different notions

and definitions that serve as a foundation of SIWO.

2.6.1 Preliminaries

We begin by explaining the notion of “Edge Strength” or “Link Strength” that is

introduced in [9]. In the paper, each edge is assigned a strength value in the range

of (−1, 1), with stronger edges corresponding to larger weights. The strength of the

connection between two nodes is calculated based on the number of neighbors they

share, which is referred to as their support value. More specifically, the support of an

edge between two nodes is the number of triangles, or size-three cliques, that include

39



both nodes:

Definition 9 (Support) Given a graph G = (V,E), the support of the edge eu,v is

the number of mutual neighbors of u and v or the number of triangles that eu,v belongs

to, and it is defined as follows:

sup(u, v) = |w ∈ V, eu,w, ev,w ∈ E|

The strength of the link between two nodes is then calculated based on their support

value and the maximum support value of any link involving either node:

Definition 10 (Link’s strength) Given a graph G=(V,E) and a vertex u ∈ V , the

strength su,v of the link connecting u to a node v ∈ VN(u), where VN(u) is the set of

neighbors of u, is defined as follows:

su,v = sup(u, v)(
1

supu,max

+
1

supv,max

)− 1

Where supu,max is the maximum support of u and any node in VN(u): supu,max =

maxw∈VN (u){sup(u,w)}. If supu,max = 0 or supv,max = 0, then sup(u, v) = 0 and we

assume that part of the equation is zero. We can see that the strength of the connec-

tion between a pair of linked nodes increases with the number of mutual neighbors

they share.

The concept of Link Strength, which leads to the SIWO objective function, forms

the foundation of the work presented in [9]. This approach enables community discov-

ery in a network through a greedy optimization process, which iteratively performs

two main phases until a local maximum of the SIWO measure is reached. In our

version of the SIWO algorithm, these values are calculated locally to find the best

candidate nodes to expand the community at each step. Still, this best candidate is

added to the community only if it increases the total strength of the edges inside the

community [1].

These concepts are among the several foundational concepts that are used in the

local variant of the SIWO algorithm. Another concept is the shell set. The shell of a

40



community C, denoted by shell(C), is the set of nodes that are not in the community

but are connected to at least one node in the community.

Formally, the Shell Set is defined as:

Definition 11 (Shell set) Given a deterministic graph G = (V,E), the shell of the

community C is defined by:

shell(C) = {v ∈ V, v ̸∈ C s.t. ∃u ∈ C, (u, v) ∈ E}

Another important concept is the notion of Peripheral Nodes. In the context of

community detection, these nodes often represent outliers or unique entities that are

only loosely connected to a community. Since our method involves counting triangles,

peripheral nodes that are not a part of any triangle should be considered at the last

stage of our algorithm for potential addition to the found community.

Definition 12 (Peripheral Nodes) In a deterministic or uncertain graph, periph-

eral nodes are nodes that have only one neighbor. These nodes are connected to the

rest of the graph through a single edge.

2.6.2 Algorithm Overview

In SIWO, we follow a greedy approach by starting with a query node (or set of nodes),

calculating the support and strength values (with Definition 10) for edges between

the community (which initially consists of the query node(s)) and nodes in the shell

set (which initially consists of the neighbors of the query node(s)), adding the best

candidate node from the shell set to the community, and repeating until an stopping

condition is met. In the case that the starting query node is a peripheral node, we

will consider its sole neighbor as the input to the algorithm instead. The pseudo-code

of this algorithm is given in Algorithm 1, and a comprehensive explanation, along

with additional information, are given in Chapter 4.

41



Algorithm 1 SIWO : A local community search algorithm

Input: Deterministic Graph G = (V,E), query node(s) {q}
Output: The community C of the query node(s) {q}

C = {q}, S = VN(q)
while S ̸= ∅ do

Calculate and store s(C, v) =
∑︁

u∈C su,v for all v ∈ S
Find the node u ∈ S which maximizes s(C, u)
if s(C, u) > 0 then

C = C ∪ {u}
S = S ∪ (VN(u)− C)− {u}

else
break

end if
end while
C = C ∪ P where P is the set of peripheral nodes that are connected to a node in
C
return C

SIWO has been shown to perform effectively for the task of community search.

However, in its original form, it only handled moderately-sized deterministic networks.

This thesis contributes to adapting SIWO in two major ways:

1. We introduce optimizations that allow SIWO to run on large networks regardless

of their file size. This is covered in Chapter 3.

2. We extend the definitions and methodology in SIWO in such a way that it can

handle uncertain networks, which we discuss in Chapter 4.

42



Chapter 3

Enhancing SIWO

In this chapter, we summarize our main contributions to enhancing the SIWO al-

gorithm, with respect to handling very large graphs and its respective experiments.

Here, the term very large graphs refer to networks characterized by their large scale,

typically comprising nodes in the magnitude of millions and edges reaching into the

billions. The subsequent sections will explore the methods and experiments that

demonstrate how SIWO has been adapted to effectively manage and perform com-

munity search on these types of networks.

3.1 Large Graphs and Optimizations

Existing community mining and community search algorithms face challenges when

dealing with large graphs, even those designed for local execution. A primary chal-

lenge lies in the typical input format of these graphs, as many algorithms either

depend on libraries that are designed to load the entire graph into main memory, or

they fundamentally lack the capability to selectively read the necessary parts from the

graph file. The standard representation of graphs as input files typically consisting

of lines that each define an edge with two node IDs (and an associated probabil-

ity for probabilistic graphs), proves to be inefficient for performing local search on

very large graphs. In this format, edge information is scattered throughout the file,

without any specific order or structure connecting a node to all its neighbors. This

43



means that to access all information related to a single node, the algorithm may have

to scan through the entire file. This approach becomes increasingly impractical as

the graph size grows, as it involves processing large amounts of data just to retrieve

information about one node, leading to significant memory and time overheads and

processing bottlenecks. Such constraints make this format less suitable for performing

local search algorithms on large-scale networks, where the access to a node’s complete

edge information needs to be done quickly and efficiently.

To mitigate these issues, we introduce unique data structures and optimization

techniques, starting with transforming the traditional edge list format of the input

graph into an adjacency list format. An adjacency list format facilitates further access

to graph entries by storing all connections of each node into a single line in the file,

significantly reducing the computational overhead. This transformation is done with

the help of a Map-Reduce procedure, and is the first step in addressing the issues

of memory inefficiency and slow data retrieval commonly encountered in analyzing

large-scale networks.

3.1.1 Map-Reduce Procedure for Graph Conversion

The first step towards optimization is the pre-processing of the input graph. Given

the substantial size of these networks, with possibly millions of nodes and billions of

edges, it is important to adopt a method for the conversion of the graph that can

handle such scale efficiently. The Map-Reduce approach is particularly suited for this

task, as it is traditionally used for parallel processing of large datasets.

For deterministic graphs, each line in the original format represents an edge

in the graph, comprising two entries which are the node IDs. The goal of the Map-

Reduce procedure is to convert this format into an adjacency list format, in which

the neighborhood information of node i is stored in line i, considering nodes are

indexed as positive integers. This conversion ensures that accessing the neighborhood

information for any node becomes almost instantaneous when needed.

44



In details, the original representation of a deterministic graph can be shown as:

Listing 3.1: Original input file for deterministic graphs

u 1 v 1
u 2 v 2
.
.
u n v n

In this format, each line represents an edge in the graph, with no specific order. The

reformatted structure looks like:

Listing 3.2: Converted input file for deterministic graphs

1 v 11 v 12 v 13 . . .
2 v 21 v 22 v 23 . . .
.
.
n v n1 v n2 v n3 . . .

In this format:

• Each line corresponds to a node in the graph, represented by a line number

(e.g., 1, 2, 3, · · · , n).

• Following the line number, each neighbor of the node corresponding to that line

is listed. vij represents the node ID of the j-th neighbor of node i.

To proceed with the conversion, we use a Map-Reduce procedure. Each line of the

input file is initially parsed to extract pairs of nodes representing each edge. The

’Map’ phase involves processing these pairs to generate two-way entries, ensuring

that each node’s connections are symmetrically represented. During the ’Reduce’

phase, these node pairs are aggregated by their key, which is the node identifier in

this case. The aggregation groups all edges connected to a particular node, creating

an adjacency list. This list is then further processed to eliminate any self-loops and

duplicate entries. Finally, the adjacency lists for each node are sorted and merged,

and the result is saved in a file. Algorithm 2 outlines a summary of the procedure for

45



deterministic graphs, in the form of a pseudo-code. The procedure is also outlined in

Figure 3.1.

Algorithm 2 Deterministic Graph Conversion using Map-Reduce

function parseLine(line)
tokens← split line into components
return {(tokens[0], tokens[1]), (tokens[1], tokens[0])}

end function
function GraphConverter(input file, output file)

data← read input file into distributed dataset
data← apply parseLine on each line in data
data← filter out self-loops and duplicates from data
data← group data by key (first element of each tuple)
data← convert grouped data into list format
max node← find maximum node number in data
range data← create range of numbers from 1 to max node
range data← parallelize range data into (node, empty list)
data← union of data and range data
data← reduce by key to merge lists
data← sort values in each list
data← sort data by key (node number)
data← convert each entry of data into string
coalesce data into a single partition
save data to output file

end function

For probabilistic graphs, the reformatted structure and the conversion process

is slightly more complex because of the addition of the probabilities, but the goal

remains the same: to structure the data in a way that facilitates faster access and

processing. Each line in the original format represents an edge in the graph, with the

first two entries being node IDs and the third entry being the probability between

those two nodes. The Map-Reduce procedure is again employed to convert this format

into an adjacency list format, where the neighborhood information of node i is stored

in line i.

46



Figure 3.1: Outline of the Map-Reduce procedure used for the conversion of the input
file

In details, the original representation of a probabilistic graph can be shown as:

Listing 3.3: Original input file for probabilistic graphs

u 1 v 1 p 1
u 2 v 2 p 2
.
.
u n v n p n

Each line represents an edge in the graph, with the first two entries being node IDs

47



and the third entry being the probability between those two nodes. The reformatted

structure looks like:

Listing 3.4: Converted input file for probabilistic graphs

1 : {v 11 : p 11 , v 12 : p 12 , v 13 : p 13 , . . . }
2 : {v 21 : p 21 , v 22 : p 22 , v 23 : p 23 , . . . }
3 : {v 31 : p 31 , v 32 : p 32 , v 33 : p 33 , . . . }
. . .
n : {v n1 : p n1 , v n2 : p n2 , v n3 : p n3 , . . . }

In this format:

• Each line corresponds to a node in the graph, represented by a line number

(e.g., 1, 2, 3, · · · , n).

• Following the line number and a colon, the neighborhood information of the

node corresponding to that line is written in a set of curly braces {}.

• Within the braces of line number i, each neighbor of the node is listed along

with the probability of the edge connecting them. vij represents the node ID

of the j-th neighbor of node i, and pij indicates the probability of the edge

between node i and its j-th neighbor.

The Map-Reduce procedure for probabilistic graphs also involves parsing each line

of the input file to create pairs of nodes. However, unlike deterministic graphs, we

make tuples that include the pair of nodes as well as the probability of the edge

between them. The ’Map’ phase involves creating a two-way entry for each edge

along with its probability. In the ’Reduce’ phase, these entries are grouped by node,

creating an adjacency list where each node is associated with a list of neighbors and

the respective probabilities of the connections.

It is important to note that the conversion process is not limited to enhancing the

SIWO algorithm alone, as it can also be utilized by other local community mining

or search algorithms. Also note that while this conversion ensures that the input

graph representation is in a suitable format for subsequent operations, managing

48



memory usage while dealing with very large files (which have the size of around tens

of Gigabytes) remains a challenge. Even with an optimized graph format, the size of

these networks can result in substantial memory consumption if the input file is not

handled correctly. To address this, we introduce FastFile, which is a class we used in

the enhanced implementation of SIWO.

3.1.2 Memory Optimization: FastFile

Large networks can consume significant memory, making it imperative to design a

local approach to read the file and calculate the strengths of only the edges that are

needed. To achieve this, the FastFile class is proposed, which is specifically designed

for efficient reading and interaction with graph data. The primary goal of FastFile is

to selectively read and store necessary information from the input file. This is done

by utilizing a data structure that consists of a list of line break locations up until

the maximum node number that was requested from the file. This approach ensures

that only the required part of the graph is stored in memory, thus conserving memory

usage. FastFile’s approach can be compared to the concept of memory-mapping in

operating systems, which maps a section of a file to a part of the virtual address

space, reducing the need for repetitive system calls and data copying [65]. For more

information regarding managing large files and various file system aspects in operating

systems, a comprehensive overview is provided in [66].

Note that the utility of the FastFile class extends beyond its application in the

SIWO algorithm, as it can be used as a valuable tool for any implementation dealing

with very large input files by providing a way to selectively process only relevant

segments of large files.

We now explain how we deal with maintaining time efficiency while processing

graph data. This leads us to the introduction of the FastGraph class.

49



3.1.3 Time Optimization: FastGraph

The FastGraph class represents the graph structure optimized for the SIWO algo-

rithm. It uses dictionaries to store neighbors for each node, support values for pairs

of nodes, and strength values for pairs of nodes. By employing these dictionaries,

SIWO can quickly check if the required information for a node or edge already ex-

ists in the memory. In cases where this information is not pre-stored, the necessary

calculations are performed and the dictionaries are updated accordingly.

FastGraph also collaborates with FastFile for efficient graph file access. By using

the line break locations stored in FastFile, FastGraph can quickly reach the required

line in the file, storing any unseen line break locations in the process. This approach

eliminates the need to repeatedly read and process the entire network file, which in

turn reduces unnecessary I/O operations and speeds up the algorithm’s execution

time. By utilizing these two classes, the SIWO algorithm is made truly local by only

accessing the lines and computing the strengths that are needed as the algorithm

progresses. This is a significant improvement compared to computing strengths for

all nodes and edges.

3.1.4 Handling Timeout

One key feature of SIWO is that it can return intermediate results before finishing a

search. In other words, SIWO can output the discovered community up to the allot-

ted time, which is basically a subset of the targeted community. This is particularly

useful for larger graphs where a complete search might be time-consuming. We im-

plemented this feature by utilizing Python’s multiprocessing library. By initiating the

SIWO algorithm as a separate process, we can impose a timeout constraint, ensuring

the algorithm halts exactly after the specified duration. This method was a signif-

icant improvement compared to having the algorithm check the timeout in certain

breakpoints, which could result in halting too late due to specific computations taking

a long time. We introduced a number of shared variables, such as the list of nodes in

50



the current community, the number of visited nodes, and the current strength of the

community. These variables are shared between the separate SIWO process and the

main program’s process, allowing for real-time updates on their values. If the algo-

rithm exceeds the allotted time, it is terminated, and the community discovered up to

that point is returned. This approach ensures that even in scenarios with strict time

constraints, SIWO can provide the partial community structure around the query

node.

3.2 Running SIWO With a Limited Time Budget

and Limited Memory

To compute the quality of the intermediate results by comparing it to the correspond-

ing ground truth using precision, recall, and F1 Score, we conducted an experiment on

a large synthetic network generated with LFR benchmark [67]. The network is gen-

erated by setting the number of nodes to 1 million, µ to 0.3, the power law exponent

for the degree distribution (τ1) and and the power law exponent for the community

size distribution (τ2) to 2 and 1 respectively, average degree to 100, and maximum

degree to 300. In LFR networks, the mixing parameter µ is the fraction of inter-

community edges incident to each node, and controls the fraction of edges that are

between communities.

We took each node of a community of 183 nodes as a query node and ran the algo-

rithm several times for different amounts of timeout. Then, for each value of timeout,

we took the average of the metrics calculated on each of the output communities. To

show the magnitude of the expansion, we also counted the number of nodes visited

by the algorithm, as well as the strength and size of the community found so far, per

each combination of query node (inside the community) and timeout. The results for

this experiment are shown in Table 3.1.

The results show that recall and F1 Score have a direct relation with the input

timeout, which is expected. This means that SIWO is generating meaningful results,

51



Table 3.1: Quality of SIWO partial search results for given timeout (seconds) in terms
of found community size |C|, number of nodes visited by algorithm, sum of edge
strengths in community S(C), precision P , recall R, and F1 score (± the standard
deviation for F1). Results averaged over 183 runs, using each of 183 nodes as query
node in a given ground truth community.

Timeout |C| Visited S(C) P R F1

10 5 35, 810 7 1.0 0.027 0.053± 0.013

30 29 209, 955 282 1.0 0.160 0.277± 0.011

50 72 374, 825 1,181 1.0 0.398 0.569± 0.023

70 168 500, 589 2, 154 1.0 0.922 0.955± 0.067

90 182 512, 803 2, 226 1.0 0.999 0.999± 0.003

100 183 512, 880 2, 227 1.0 1.0 1.0± 0.0

110 183 512, 880 2, 227 1.0 1.0 1.0± 0.0

even if there is a limited time. Also, as we give the algorithm more time, it brings

nodes that increase the community strength inside the community, until the stopping

condition is met (at which point the algorithm will stop even if we give it more time,

as illustrated in the last row of the table). To the best of our knowledge, there are no

claims regarding the possibility of yielding a result before completion by any of the

contender algorithms, and they can not be extended to do so.

Based on the standard deviations, we can also see that the results do not differ

greatly by selecting different query nodes inside the same community. In fact, SIWO

seems to provide nearly the same results for all query nodes in a community, if enough

time is given to the algorithm. This shows that SIWO does not suffer from the issue

of the sensitivity of the output community to the initial query node. In other words,

the expansion using the SIWO strength function is less likely to cross community

boundaries.

52



Scalability in Large Synthetic Networks

Following the aforementioned improvements, SIWO was able to handle extremely

large input graphs regardless of their size. To showcase the scalability, we conducted

experiments to observe the performance of SIWO on an even larger synthetic LFR

[67] graph consisting of 2 million nodes. The graph was generated with parameters

τ1 = 3, τ2 = 1.5, µ = 0.3, an average degree of 10, and a maximum degree of 30. This

particular choice of parameters, resulted in a network with 154047 communities that

is not overly dense, allowing our algorithm to not spend excessive time per node.

We selected 1000 random nodes, ensuring that no two nodes belonged to the same

community. The results were again promising, with an average precision of 0.947,

an average recall of 0.904, and an average F1 score of 0.920, with all three metrics

having an standard deviation of around 0.214. The average time spent per node was

1.768 seconds, with an standard deviation of 0.095. The low average time compared

to the experiment on the LFR network with 1 million nodes highlights the truly

local nature of our method, demonstrating its capability to efficiently navigate large

networks without being hindered by their size. This also indicates that SIWO’s time

complexity is indeed related to the community size of the given query node and the

magnitude of the expansion (determined by the average degree of the nodes in that

community), rather than the size of the whole network. This is because SIWO’s steps

are focused on the local neighborhood around the query node. In the initial stages,

the algorithm assesses the strength of connections within the immediate vicinity of

the query node, which is a relatively quick process depending on the local density of

connections (or the average degree of the nodes). As SIWO expands the community,

it considers the neighbors of newly added nodes, but it does this in a way that does

not require revisiting the entire network by only considering the new connections at

the time of community expansion, instead of recalculating the strength values.

It is crucial to note that the sheer size of this graph necessitates methods that are

53



Table 3.2: Characteristics of the large real-world networks.

Network name Number of
nodes

Number of edges Number of
communities

Overlap

Youtube [68] 1, 134, 890 2, 987, 624 8, 385 Y es

Orkut [68] 3, 072, 441 117, 185, 083 6, 288, 363 Y es

UK-20021 18, 520, 486 298, 113, 762 N/A N/A

Twitter [71] 41, 652, 230 1, 468, 364, 884 N/A N/A

Friendster [68] 65, 608, 366 1, 806, 067, 135 1, 449, 666 Y es

truly local and can handle large files without loading them into main memory. This

constraint rendered other contenders infeasible for this experiment, as they require

substantial memory resources. Our approach’s ability to perform efficiently on such

a large-scale graph underscores its practicality and robustness in real-world scenarios

where memory constraints are often a significant consideration.

3.2.1 Scalability in Large Real-World Networks

Further experiments have also been done to observe the performance of SIWO on

five very large real-world networks. The characteristics of these networks (Youtube,

Orkut, UK-2002, Twitter, and Friendster) are given in Table 3.2. It is important to

note that the available communities for Youtube, Orkut, and Friendster have been

functionally defined [68] which do not constitute a confident ground truth [69, 70].

Thus, these networks are used for assessing scalability rather than accuracy.

We compare SIWO to LCTC [64] as it was shown to perform local search on

Orkut. However, while the LCTC search algorithm itself is local, it must first create

an index of the entire network unlike SIWO which indexes only as needed while the

search progresses. The LCTC indexing process requires a significant amount of time

and memory to complete, e.g. around 50 GBs of RAM and 4 hours for Orkut, and

produces a large index file.

1https://law.di.unimi.it/webdata/uk-2002/

54

https://law.di.unimi.it/webdata/uk-2002/


Five query nodes were randomly selected from each graph, and subsequently used

as the input query node, with 1200 seconds set as the timeout per node. Table 3.3

reports the size of the discovered community |C|, the time in seconds and memory

in MB used by each algorithm. As SIWO indexes while searching, the reported time

includes both the indexing time and the search time. LCTC starts searching after

the indexing has been done, so the times can be broken down. For a fair comparison,

we compare the total time of indexing plus searching as this would be the time

required to find the community given a specific node and network. Nonetheless,

even just comparing solely the search time of LCTC with the time SIWO requires,

apart from two nodes on Table 3.3 for the Youtube dataset, SIWO was considerably

faster. For SIWO, we have also reported the number of nodes that were visited by

the algorithm to show the magnitude of the search. The results confirm that SIWO

finds larger communities than LCTC in less time while using much less memory. In

fact, the memory requirements of LCTC meant that we were not able to run it on

the laptop with 16 GB and had to use a machine with much larger memory. Even

with this machine we were not able to complete the indexing process of LCTC on

the two largest networks and cannot present results. This highlights how SIWO is a

truly local algorithm that can handle very large networks on reasonable commodity

hardware.

55



T
ab

le
3.
3:

P
er
fo
rm

an
ce

of
S
IW

O
an

d
L
C
T
C
on

5
la
rg
e
n
et
w
or
k
s
w
it
h
5
ra
n
d
om

q
u
er
y
n
o
d
es

ea
ch

in
te
rm

s
of

m
ax

im
u
m

m
em

or
y

re
q
u
ir
ed

(R
A
M
)
an

d
si
ze

of
th
e
in
d
ex

fi
le

n
ee
d
ed

b
y
L
C
T
C

(I
n
d
ex

S
iz
e)

in
M
B
,
n
u
m
b
er

of
n
o
d
es

v
is
it
ed

fo
r
S
IW

O
,
si
ze

of
th
e

fo
u
n
d
co
m
m
u
n
it
y
|C
|a

n
d
ti
m
e
in

se
co
n
d
s
ta
ke
n
b
y
ea
ch

al
go
ri
th
m
.
T
h
e
w
al
l
ti
m
e
fo
r
a
co
m
m
u
n
it
y
se
ar
ch

is
se
t
to

12
00

s.

S
IW

O
L
C
T
C

[6
4
]

D
at
as
et

N
o
d
e
ID

R
A
M

V
is
it
ed

|C
|

T
im

e
R
A
M

In
d
ex

S
iz
e
|C
|

T
im

e
(i
n
d
ex
in
g
+

se
a
rc
h
)

3
4,
9
9
9

4
0
.8

4
6
4.
0
(4
9
.6

+
1
4
.4
)

20
02

1
1,
5
9
9

7
2
.0

3
6
4.
3
(4
9
.6

+
1
4
.7
)

19
97
3

2
9,
4
0
0

7
8
.5

2
6
5.
1
(4
9
.6

+
1
5
.5
)

96
59

1
01
,0
26

2
0

1
2
00
.0

8
6
3.
2
(4
9
.6

+
1
3
.6
)

Y
ou

T
u
b
e

97
64
8

7
,4
1
0

5
45
,6
30

4,
3
0
8

94
3.
7

55
7

6
1

4
6
3.
1
(4
9
.6

+
1
3
.5
)

14
34
7

2
9

6
0
.1

6
15
,1
0
0
.9

(1
3
,6
6
3
.5

+
1,
4
3
7.
4
)

31
02
5

6,
1
7
6

3
57

1
5.
8

3
15
,1
2
1
.8

(1
3
,6
6
3
.5

+
1,
4
5
8.
3
)

78
98
4

2
1,
8
5
1

9
28

3
0.
1

5
4

15
,1
0
9
.3

(1
3
,6
6
3
.5

+
1,
4
4
5.
8
)

44
37
9

1
57
,1
61

1
,6
08

31
6.
3

1
4

15
,0
9
7
.2

(1
3
,6
6
3
.5

+
1,
4
3
3.
7
)

U
K
-2
00
2

61
38
4

1
,8
7
8

3
35
,3
46

4
59

49
6.
7

1
8
,8
3
4

2
,2
9
9

2
2

15
,0
6
9
.1

(1
3
,6
6
3
.5

+
1,
4
0
5.
6
)

98
17
1

1
,0
9
2,
3
0
7

1
,2
16

52
2.
4

1
2

20
,1
31
.2

(1
9
,4
3
8
.1

+
6
93
.1
)

2
1
,1
3
1,
0
1
1

1
,4
00

39
2.
1

1
4

20
,1
54
.7

(1
9
,4
3
8
.1

+
7
16
.6
)

52
00
2

1
,1
7
4,
2
5
4

1
,3
10

41
8.
9

1
9

20
,1
44
.2

(1
9
,4
3
8
.1

+
7
06
.1
)

86
52
5

1
,1
9
6,
7
5
7

1
,2
73

57
2.
5

3
20
,1
39
.2

(1
9
,4
3
8
.1

+
7
01
.1
)

O
rk
u
t

79
84
7

7
,4
1
9

1
,2
0
1,
0
5
1

1
,3
34

43
9.
3

5
6
,9
3
4

6
,0
2
1

1
09

20
,1
63
.8

(1
9
,4
3
8
.1

+
7
25
.7
)

30
63
4

3
6

9
1
7.
9

90
20
5

4
7

6
2
2.
9

20
64
8

74
5

2
5

51
.3
8

10
1

1,
6
8
4

2
18
4.
7

T
w
it
te
r

43
74
8

6
,9
1
8

1
7,
1
8
6

1
0

53
.3
2

N
/A

72
75
9

1,
2
6
2

6
5
4.
2

18
42
7

1,
6
2
3

14
4
6.
2

34
45
5

1
79
,3
25

1
04

1
2
00
.0

69
94
7

2
53
,1
45

4
73

1
2
00
.0

F
ri
en
d
st
er

84
06
3

7
,4
2
8

3
21
,6
48

7
30

1
2
00
.0

N
/A

56



Chapter 4

Probabilistic SIWO (USIWO)

In this chapter, we shift our attention to the Probabilistic SIWO, abbreviated as

USIWO for Uncertain SIWO. Building upon the foundational concepts of SIWO,

this extension allows SIWO to run on probabilistic graphs. We begin by detailing the

modifications and enhancements made to the original SIWO, including how uncer-

tainty is handled, and how a new stopping threshold was introduced, addressing the

gaps identified in the preliminary version of USIWO initially introduced in [72]. We

conclude the chapter with an thorough discussion of the results, offering a compara-

tive analysis against other competing algorithms.

4.1 Preliminaries

USIWO builds upon its deterministic variant SIWO by re-defining the strength for-

mulas. To determine how strong a connection is, we adopt a similar definition of

link strengths and support values. The support of an edge between two nodes in a

deterministic graph is the number number of distinct triangles, or size-three cliques,

containing that edge. This number can be calculated by counting the number of

shared neighbors the two nodes have. However, in an uncertain graph, the process of

counting these cliques becomes more complex. In the initial introduction of USIWO

in [72], the way these values were calculated did not seem to capture an accurate

expectation of the triangle count. Rather than counting the shared neighbors, we

57



must compute their expected count. To illustrate how we can modify the support

value formula to account for probabilistic cases, consider the following probabilistic

structure:
1

0.2

0.2

u

w

v

To count the expected number of triangles between u and v, we need to check all

possible worlds. In all possible worlds, there is an edge between u and w, so we only

need to consider the other two edges. There are 4 possible worlds corresponding to

the existence and non-existence of these two edges:

u

w

v
(I)

u

w

v
(II)

u

w

v
(III)

u

w

v
(IV)

We can observe that among these four possible worlds, only one of them (I) contains

a triangle between the three nodes. With u, v, w there are a maximum of 23 = 8

possible worlds regardless of their edge probability, and only one possible world will

have the 3 edges occurring (i.e. a triangle). The probability of that possible world

occurring is the product of the probability of the three edges:

P = 1× 0.2× 0.2 = 0.04

Given the fact that only one possible world will have the 3 edges occurring (i.e. a

triangle), the expected number of distinct triangles E[Nu,v|w] between nodes u and v

related to w is defined as follows:

E[Nu,v|w] = (pu,w × pw,v × pu,v)

Where pi,j is shorthand for p(ei,j), or the probability assigned to the edge between i

and j in the graph. Having defined this notion, we can now define the probabilistic

58



support. In a probabilistic graph, the support value of an edge, corresponding to the

expected number of triangles between the two linked nodes, is defined as follows:

Definition 13 (Probabilistic Support) Given an uncertain graph G = (V,E, p),

the support of the edge eu,v is the expected number of mutual neighbors of u and v or

the number of triangles that eu,v belongs to, and it is defined as follows:

sup(u, v) =
∑︂

w∈VN (u)∩VN (v),w/∈{u,v}

E[Nu,v|w]

Where VN(u) denotes the neighborhood of the node u defined as the nodes in the

graph for which there is a non-zero probability of an edge between them and u. It

is important to note that the nodes w contributing to the summation must be part

of the shared neighborhood of both nodes u and v. This is because if a node w is

not a mutual neighbor of u and v, either pu,w or pv,w would be zero, rendering the

entire term zero in the summation. Therefore, only those nodes w that are mutual

neighbors of u and v contribute non-zero terms to the summation, reflecting their

role in the formation of potential triangles involving u and v.

The strength of the link between two nodes is calculated similar to the determin-

istic case based on their support value and the maximum support value of any link

involving either node. The link strengths are scaled in such a way that they take a

value in [0, 1]:

Definition 14 (Probabilistic Strength) Given an uncertain graph G = (V,E, p),

and a vertex u ∈ V , we define the strength of the link connecting u to a node v ∈ VN(u)

as follows:

su,v =
sup(u, v)

2
(

1

supu,max

+
1

supv,max

)

Where supu,max = maxw∈VN (u){sup(u,w)} is the maximum support of u and any node

in VN(u).

59



Table 4.1: Characteristics of the small real-world networks.

Network name Number of
nodes

Number of edges Number of
communities

Overlap

Karate [73] 34 78 2 No

Dolphins [74] 62 159 2 No

Football [7] 115 613 12 No

4.2 Methodology

In this section, we propose the detailed methodology of our proposed USIWO algo-

rithm for community search in uncertain graphs. Building upon the foundational

concepts and definitions of support and strength values established in the previous

section, we outline the step-by-step process of our approach. This includes the initial-

ization phase, the iterative process of node expansion, and the criteria for stopping

the expansion.

USIWO begins by placing the query node in an empty community. It then locally

explores the network to identify the most suitable node in the community’s neighbor-

hood to expand the community one node at a time. This iterative process continues

until the desired community around the given query node is found. The method

involves five key steps, as outlined in Algorithm 3:

1. Update Shell Set: The shell set, initially empty, is updated after placing the

query node u in the community C. All nodes connected to u are added to the

shell S. If the query node is a peripheral node, its single neighbor replaces

the query node. The shell set is updated in subsequent rounds by removing the

node v that joined C in the previous round and adding nodes directly connected

to v that are not already in C. The nodes in the shell set are called “candidate

nodes”, since they represent potential candidates for new nodes that may be

added to the community. In the uncertain setting, the shell set is defined similar

60



to the deterministic case:

Definition 15 (Shell set (Probabilistic)) Given an uncertain graph G =

(V,E, p), the shell of the community C is defined by:

shell(C) = {v ∈ V, v ̸∈ C s.t. ∃u ∈ C, p(eu,v) > 0}

2. Assign Strength Values: Following Def. 14, the strength value su,v is com-

puted for each pair of nodes (u, v) where u ∈ C and v ∈ S. This process is

performed locally, meaning it does not require access to the entire network. We

can also make sure we only calculate what is needed in each step and store the

calculated strength values in a data structure, to avoid re-calculation of values.

3. Select Best Candidate Node: After edge strengths are determined, the

strength that each potential candidate node v can bring to the current commu-

nity is computed. This value, denoted by s(C, v), is the sum of the strength

values of all edges between the community and v:

s(C, v) =
∑︂
u∈C

su,v

The node corresponding to the largest s(C, v) is declared the best candidate.

4. Expand Community: The community is expanded by adding the selected

node, but only if its addition will result in a significant increase in the overall

strength of the community. This “significance” is determined by the stopping

threshold δ, which is a threshold that can be set depending on how large we

want the resulting communities to be. Thus, for the best candidate node v,

we check if s(C, v) > δ. In that case, the algorithm returns to the first step

to update the shell set. If no new node can be added, (i.e., there is no node v

such that the sum of the strength values between v and the nodes inside the

community would exceed δ), the algorithm proceeds to the final step.

61



5. Reform Community: The final step of the algorithm is to add any peripheral

node that has a neighbor in the current community. Without this step, these

nodes do not have the chance to join the community, because the edge that

connects them to the rest of the graph cannot be a part of any triangle.

The proposed method of greedy expansion ensures that the final detected commu-

nity is a connected sub-graph and that a node joins C only if it improves its strength.

The process repeats until an optimal community structure is obtained. Furthermore,

to make the algorithm truly local, USIWO only loads the necessary edges and calcu-

lates their strengths by utilizing the techniques mentioned in Section 3.1. Although

this greedy approach provides us with a community “search” algorithm with the ob-

jective of finding the best community around a given query node, it can be extended

to community mining by repeatedly applying the community search process to ran-

dom query nodes and removing the found community from the network, defining it

as a distinct community (or cluster). This strategy offers a practical approach to

community detection in uncertain graphs, particularly when dealing with large graph

structures. Algorithm 3 outlines a summary of the proposed USIWO algorithm in

the form of a pseudo-code.

The selection of an appropriate stopping condition, combined with the probabilis-

tic support values, can yield optimal results, provided a suitable threshold value is

chosen. In Section 4.3, we provide evidence supporting this claim and detail how we

determined an appropriate threshold value through a series of experiments.

4.3 Experiments and Results

The aim of the experiments is to assess the performance of USIWO in comparison

with other existing methods.

62



Algorithm 3 USIWO : A local community search algorithm

Input: Uncertain Graph G = (V,E, p), query node(s) {q}, and the stopping
threshold δ
Output: The community C of the query node(s) {q}

C = {q}, S = VN(q)
while S ̸= ∅ do

Calculate and store s(C, v) =
∑︁

u∈C su,v for all v ∈ S
Find the node u ∈ S which maximizes s(C, u)
if s(C, u) > δ then

C = C ∪ {u}
S = S ∪ (VN(u)− C)− {u}

else
break

end if
end while
C = C ∪ P where P is the set of peripheral nodes that are connected to a node in
C
return C

4.3.1 Datasets

Due to the scarcity of probabilistic networks with ground truth available online,

we employed a method to convert deterministic graphs into uncertain graphs. Our

method is a variation of the network generator proposed in [72], which is built upon

the network generator introduced in [47]. This generation process was chosen for its

ability to create large synthetic uncertain graphs, allowing us to compare the output

with the ground truth. In particular, we use this method to convert LFR [67] net-

works and real-world networks with ground truth to uncertain graphs. The generation

process is outlined below:

• The algorithm takes a deterministic network G with the ground-truth communi-

ties as input. It also takes two parameters: pintra and pinter. These parameters

define the range of possible probability values for intra-community links and

inter-community links respectively. Both pintra and pinter are bounded between

0 and 1, where pintra defines the lower bound for intra-community link probabil-

63



ities and pinter defines the lower bound for inter-community link probabilities.

The value for pintra is commonly expected to be larger than or equal to pinter,

so that the generated intra-community links would be generally more probable

than inter-community links.

• The process of converting deterministic networks into uncertain networks begins

by identifying the links as either intra-community links or inter-community

links based on the ground-truth communities. For each intra-community link,

a probability value is generated using a uniform distribution, ranging between

the pintra value and 1. Similarly, for each inter-community link, a probability

value is generated using the same uniform distribution, but between the pinter

value and 1.

• The generated probability values are then assigned to their respective links,

turning the deterministic network into an uncertain network while preserving

the community structure from the original deterministic network and does not

compromise the preset ground truth.

For the purpose of our experiments, we also introduce the concept of “complexity”

to describe different variations of added uncertainty. The complexity of an uncertain

graph is determined by the parameters pintra and pinter, as well as the method used

to assign probability values to the edges. We define four levels of complexity:

1. Complexity 1: Probability values are first generated uniformly at random

in range of [0,1]. These values are then sorted from most likely to least likely

and assigned to intra-community edges and inter-community edges, respectively.

This ensures that intra-community edges are always stronger and the ground

truth is not compromised.

2. Complexity 2: The lower bound for intra-community link probabilities (pintra)

is set to 0.6, while the lower bound for inter-community link probabilities (pinter)

64



is set to 0. This creates a scenario where intra-community links (which are given

probabilities in range [0.6, 1]) are generally stronger than inter-community links

(with probabilities in range [0, 1]).

3. Complexity 3: Both pintra and pinter are set to 0.6, creating a scenario where

both intra-community and inter-community links can be strong.

4. Complexity 4: In addition to the settings of Complexity 3, new probabilistic

edges are added between communities with a low probability (0.01). This in-

troduces additional uncertainty and can potentially make community detection

more challenging.

The complexity levels were designed to progressively increase the difficulty of the

community detection task, and create multiple variations of uncertain networks from

a given deterministic network. Complexity 1 represents the simplest scenario, where

intra-community edges are always stronger than inter-community ones. Complexity

2 introduces some uncertainty by allowing inter-community edges to be potentially

as strong as intra-community edges. Complexity 3 further increases the uncertainty

by making the strength of intra- and inter-community edges indistinguishable on av-

erage. Finally, Complexity 4 represents the most challenging scenario, where new

low-probability edges are added between communities, further blurring the commu-

nity boundaries. This way, we are able to examine the performance of community

detection algorithms under different uncertainty scenarios.

Real-world Networks

For the experiments on the real-world graphs, we consider three well-known networks

with a known community structure, namely, the Karate [73], Football [7] and Dolphins

[74] networks. These networks were also used as potential graphs for experiments in

works of [75] and [47]. Each of these deterministic networks are then converted to

four uncertain networks using the explained method.

65



Synthetic Networks

To further evaluate the algorithms on a network with ground truth, we used our con-

version method to convert an LFR network [67] with 2500 nodes into a probabilistic

network. The parameters for generating the LFR network were set as follows: the

power law exponent for the degree distribution τ1 was set to 3, the power law expo-

nent for the community size distribution τ2 was set to 1.5. These were selected in

such a way that the network would have a realistic degree distribution and commu-

nity size distribution, respectively. The fraction of inter-community edges incident to

each node µ was set to 0.2, which would create a significant yet manageable level of

overlap between communities. The average and maximum degree of nodes were set

to 10 and 30 respectively, to cause the network to have a moderate density. Addition-

ally, to test scalability, we used the same parameters to generate a much larger LFR

network with 1 million nodes and 5,774,105 edges. This time, we chose 1 percent of

all edges and sampled their intra-community edge probabilities and inter-community

edge probabilities from [0.7, 1.0] and [0.0, 0.3], respectively.

4.3.2 Optimal Threshold Value

Before testing the effectiveness of our method on the converted graphs, we conducted

a series of experiments to determine the optimal threshold value for the stopping con-

dition. These experiments were performed in two stages. In the initial stage of our

experiments, we explored a range of threshold values, incrementing by 0.1 from 0.1

to 1.5. We applied the algorithm to several query nodes and evaluated the average

F1 measure against the threshold for three real-world graphs: Football, Karate, and

Dolphins. For each graph, one query node was randomly selected from each com-

munity. These experiments suggested that an effective threshold value consistently

fell within the range of 0.8 to 0.9, regardless of the input graph or the specific nodes

chosen. To further refine our threshold selection, we conducted an additional set of

experiments, adjusting the threshold between 0.8 and 0.9 in increments of 0.01. The

66



outcomes of these experiments led us to identify an optimal threshold value of 0.82

within this range. This value was then applied as the stopping condition for the

USIWO algorithm in all subsequent experiments.

4.3.3 Competitors

When it comes to community search in uncertain graphs, the number of direct com-

petitors is limited. The most notable method in this category is the UR+K method

proposed by Zhang and Zäıane [47]. We ran the community search algorithms, namely

USIWO and UR+K, for each query node in the uncertain graphs. The resulting com-

munities were then compared with the ground truth communities. We calculated the

usual precision, recall, and F1 measures for the results of each query node. The final

reported metrics for these algorithms are the averages of these individual results.

Given the scarcity of direct competitors in the field of community search, we also

included in our comparison other algorithms that are primarily used for community

mining. This approach allows us to provide a more comprehensive evaluation of our

method. We first considered the DBCLPG method proposed by Halim and Khattak

[58], which has shown promising results in detecting communities in uncertain graphs.

Furthermore, we also included the Leiden algorithm [61] in our comparison. The

Leiden algorithm is widely recognized as one of the most effective algorithms for

community detection in deterministic graphs, and it has been shown to outperform

the Louvain algorithm [60]. We included both the weighted and unweighted versions

of the Leiden algorithm in our comparison. Even though the Leiden algorithm is

originally designed for deterministic graphs, for the purpose of our experiments, we

adapted it to work with uncertain graphs. For the weighted version of the Leiden

algorithm, we treated the edge probabilities as weights. For the unweighted version,

we ignored the edge probabilities altogether and treated all edges as if they do not

have a weight. This approach allowed us to apply the Leiden algorithm to uncertain

graphs and include it in our comparison.

67



For the community mining algorithms, which include the two versions of the Leiden

algorithm and DBCLPG, and for each community found by these algorithms, we

associated each discovered community with all its contained query nodes. We then

proceeded as before, computing the precision, recall, and F1 measure for each query

node, then averaged these metrics to obtain the final results. Note that choosing bad

starting nodes, such as those on the boundaries of a community, could potentially

lead to poor results. By attributing the communities found via the optimal starting

node to all nodes inside that community instead, this starting node issue is mitigated,

which gives these methods an advantage over USIWO and UR+K.

4.3.4 Results and Discussion

To evaluate the performance of our algorithm, we ran USIWO on each node of the

three real-world networks (Karate, Football, and Dolphins), and on 100 random nodes

of the synthetic network. We then calculated and recorded the precision, recall, and

F1 measure, and calculated the average of these measures across the nodes. Figures

4.1 and 4.2 plot the average F1 scores for each algorithm on each uncertain graph, and

their corresponding standard deviations. The average results over existing graphs are

shown in Table 4.2.

For the real-world networks, the USIWO algorithm outperforms other algorithms

in terms of Recall, and F1 measure on average and it is second in terms of Precision

as shown in Table 4.2. However, in specific cases such as the Football network at

complexity level 4, the Weighted Leiden algorithm surpasses USIWO with an F1 score

of approximately 0.77, compared to USIWO’s score of 0.65. This can be attributed

to the “starting node issue”, which causes both versions of the Leiden algorithm to

start with good starting nodes and having all nodes of a community contribute to a

better performance, whereas the new added links in graph with complexity level 4

may cause USIWO to start venturing on a wrong community when starting with a

bad node, leading to poor results for that specific node. This kind of scenario does

68



Figure 4.1: Community search: Comparing the F1 scores calculated over all nodes
used as query nodes on real world networks. Each bar represents the average F1

score for the corresponding algorithm, with the error bars representing the standard
deviations.

69



Figure 4.2: Community search: F1 average scores calculated over 100 nodes used as
query nodes on a synthetic network

not happen in community mining algorithms that start with the most optimal node.

Despite this, USIWO shows its strength in consistently achieving high scores across

a range of networks and complexity levels. Specifically, USIWO has the highest

performance in 9 out of the 12 experiments regarding the real-world networks, and

in all of the experiments regarding the synthetic networks.

For the small-scale synthetic network, USIWO demonstrates outstanding perfor-

mance, achieving an average precision of nearly 1.00, a recall of 0.98, and an F1 score

of 0.99. The low standard deviation for the F1 score, 0.04, suggests that USIWO’s

performance is stable and reliable across different query nodes.

The runtimes of the algorithms are also reported as the experiments were con-

ducted on a commodity laptop. The UR+K algorithm and both variations of the

Leiden algorithm had an average runtime of approximately 0.03 seconds. The DB-

CLPG algorithm was the slowest, taking about 1.91 seconds on average. USIWO had

a runtime of approximately 1.41 seconds, which, although longer than UR+K and

the Leiden algorithms, is still reasonable given its superior performance in terms of

precision, recall, and F1 score. However, the runtimes drastically change when the

size of the network increases. The real strength of USIWO comes from its scalability.

To test scalability, an experiment is done on the 1M node synthetic network. On

this network, USIWO averaged 1.605 seconds per node (for 100 searches) with preci-

70



sion, recall, and F1 scores equal respectively to 1.000, 0.988, and 0.994, using only 200

MBs of RAM. In comparison, UR+K took 19.03 seconds per node, achieving scores

of 0.706, 0.555, and 0.598 in precision, recall, and F1, respectively, while consuming

around 5 GBs of RAM. Furthermore, Weighted and Unweighted Leiden, as well as

DBCLPG, faced memory errors and could not operate on this network, mainly due

to the way they handle the input graph.

Our results experimentally validate the fact that the strength values calculated

using Definition 14 effectively capture a node’s relative importance relative to its

other connections, providing a perspective that is both consistent and reflective of

broader connectivity patterns of the involved nodes.

Table 4.2: Performance on real-world and Synthetic networks

Algorithm Precision (avg) Recall (avg) F1 (avg ± std)

Real-World networks

DBCLPG 0.78 0.46 0.49 ± 0.23

UR+K 0.75 0.42 0.44 ± 0.16

USIWO 0.83 0.80 0.78 ± 0.25

Unweighted Leiden 0.82 0.60 0.63 ± 0.21

Weighted Leiden 0.92 0.66 0.72 ± 0.23

Small-scale Synthetic Network

DBCLPG 0.71 0.56 0.60 ± 0.31

UR+K 0.72 0.60 0.64 ± 0.12

USIWO 1.00 0.98 0.99 ± 0.04

Unweighted Leiden 0.36 1.00 0.50 ± 0.21

Weighted Leiden 0.48 1.00 0.61 ± 0.20

71



Chapter 5

Conclusion and Future Work

In this thesis, we explored the concept of community search in large uncertain and

deterministic networks, emphasizing the SIWO algorithm and its adaptability to these

networks. The primary achievements and contributions gained through this work are

summarized below.

5.1 Summary of Contributions

1. Efficient Handling of Large Graphs: We developed a methodology to con-

vert large graphs into a format optimized for local community search algorithms.

By doing so, we significantly reduced the resources needed for the processing

of massive networks by eliminating the need for storing the entire network in

main memory. This advancement is detailed in Chapter 3.

2. Enhanced SIWO Algorithm: The SIWO algorithm underwent significant

enhancements in this work. We utilized data structures and optimization tech-

niques that were specifically chosen for their efficiency in dealing with large

datasets. This new implementation of SIWO also makes it capable of operating

within specific time constraints and producing accurate partial results. These

enhancement are described in Chapter 3.

3. Adaptation to Uncertain Networks: A significant part of this work is fo-

cused on adapting the SIWO algorithm for uncertain networks. This adaptation

72



was necessary to address the complexities introduced by the probabilistic nature

of these networks. This is discussed in Chapter 4.

4. Experimental Validation: We presented several experiments that showcase

the scalability and performance of both the enhanced SIWO and the adapted

USIWO algorithms. These experiments, covered in Chapters 3 and 4, provided

empirical evidence of the algorithms’ effectiveness in synthetic and real-world

networks.

5.2 Potential Areas for Future Research

In this section, we present various directions for future research on the topics discussed

in this thesis. The future research areas outlined in this section hold the potential

to significantly advance the field of community search in large deterministic and

uncertain networks. As networks grow in complexity and size, the emphasis will

be on developing more sophisticated, efficient, and versatile tools that can adapt to

different kinds of networks.

5.2.1 Enhancing Scalability and Efficiency

While our approach is local and by definition only explores locally without loading

the whole graph, future research could focus on further enhancing the scalability and

efficiency of SIWO and USIWO. This might involve exploring more efficient data

structures or parallel processing techniques to handle the computational challenges

of handling large-scale deterministic and uncertain graphs. By utilizing parallel com-

puting and distributed systems, we can enhance the SIWO and USIWO algorithms to

operate efficiently on distributed computing platforms. This would make them more

scalable and efficient, and potentially more suitable for handling very large networks.

73



5.2.2 Expanding Applicability

The applicability of SIWO and USIWO can be explored in other types of graphs, such

as weighted uncertain graphs and attributed uncertain graphs, as well as graphs with

uncertainties on nodes in addition to edges. This may also include an adaptation

of SIWO and USIWO for real-time community detection in dynamic and evolving

networks, where nodes and edges change over time. Furthermore, SIWO and USIWO

can also be expanded to work in multimodal networks [76], where nodes can represent

different types of entities and edges can represent different types of relationships.

5.2.3 Integration with Machine Learning Algorithms

Future research could explore the integration of machine learning algorithms with

SIWO and USIWO, to develop methods for automated tuning of the algorithm pa-

rameters, such as the stopping thresholds or introducing new thresholds for edge

or community strength. Specifically, it can be used to train a more accurate stop-

ping condition that can adjust the stopping threshold value based on the network,

determining when the best candidate node does not have “enough” strength. This

automated tuning would make the algorithms more applicable in different types of

networks, without the need to manually adjust the threshold.

5.2.4 Development of a Comprehensive Software Suite

Developing a comprehensive software suite that includes the enhanced SIWO and

USIWO algorithms along with visualization tools and data pre-processing modules

could be a significant contribution. Such a suite would make the algorithms more

accessible and user-friendly for network analysts and researchers.

5.2.5 Experiments on Robustness

Investigating how SIWO and USIWO perform under varying data conditions can

be beneficial to assess their robustness and adaptability. Research could focus on

74



how these algorithms handle networks with different levels of connectivity density

and node degree distribution. Furthermore, even though the current experiments

performed with USIWO include various levels of uncertainty, conducting a thorough

quantitative analysis of how different levels and types of uncertainty in networks

affect the performance of the algorithm could be useful. This research would involve

systematically varying the degrees of uncertainty in a wider variety within benchmark

networks to examine how these variations affect the accuracy and efficiency of the

algorithms.

5.3 Closing Remarks

In summary, this thesis has made substantial contributions to the understanding and

practical implementation of community search algorithms in both large deterministic

and uncertain networks. However, the field of network analysis is constantly changing,

bringing about new challenges and opportunities. Therefore, continuous research

in this area is crucial to stay updated with the evolving characteristics of complex

networks.

75



Bibliography

[1] M. Zafarmand, Y. Talebirad, E. Austin, C. Largeron, and O. Zäıane, “Fast local
community discovery relying on the strength of links,” Social Network Analysis
and Mining, vol. 13, Sep. 2023.

[2] S. Sakr et al., “The future is big graphs: A community view on graph processing
systems,” Commun. ACM, vol. 64, no. 9, pp. 62–71, Aug. 2021.

[3] X. Huang, L. V. Lakshmanan, and J. Xu, Community Search over Big Graphs:
Models, Algorithms, and Opportunities. 2017, pp. 1451–1454.

[4] A. Khan, Y. Ye, and L. Chen, On Uncertain Graphs (Synthesis Lectures on
Data Management). Springer International Publishing, 2022.

[5] A. Nilsson, Implementing and evaluating clustering methods for large probabilis-
tic graphs, Available Online, 2021.

[6] C. Zhang and O. Zäıane, “Neighbor-based link prediction with edge uncer-
tainty,” in Mar. 2019, pp. 462–474.

[7] M. Girvan and M. E. J. Newman, “Community structure in social and biological
networks,” PNAS, pp. 7821–7826, 2002.

[8] P. Hintsanen and H. Toivonen, “Finding reliable subgraphs from large proba-
bilistic graphs,” DMKD, pp. 3–23, 2008.

[9] S. Z. Gharaghooshi, O. R. Zäıane, C. Largeron, M. Zafarmand, and C. Liu, “Ad-
dressing the resolution limit and the field of view limit in community mining,”
in IDA, 2020, pp. 210–222.

[10] E. Austin, “Topic modelling via community mining of term co-occurrence net-
works,” Available Online, M.S. thesis, University of Alberta, 2022.

[11] S. Fortunato and M. E. J. Newman, “20 years of network community detection,”
Nature Physics, vol. 18, no. 8, pp. 848–850, Aug. 2022.

[12] S. Wasserman and K. Faust, Social Network Analysis: Methods and Applications
(Structural Analysis in the Social Sciences). Cambridge University Press, 1994.

[13] T. A. B. Snijders, “Social network analysis,” in International Encyclopedia of
Statistical Science, M. Lovric, Ed., Springer, 2011, pp. 1356–1358.

[14] S. P. Borgatti, A. Mehra, D. J. Brass, and G. Labianca, “Network analysis in
the social sciences,” Science, vol. 323, no. 5916, pp. 892–895, 2009.

76

https://www.diva-portal.org/smash/get/diva2:1605722/FULLTEXT01.pdf
https://era.library.ualberta.ca/items/d5834478-b239-45da-b671-6206fafdc108


[15] A. Barrat, M. Barthelemy, R. Pastor-Satorras, and A. Vespignani, “The archi-
tecture of complex weighted networks,” Proceedings of the National Academy of
Sciences of the United States of America, vol. 101, pp. 3747–3752, Apr. 2004.

[16] I. Falih, N. Grozavu, R. Kanawati, and Y. Bennani, “Community detection in
attributed network,” in Companion Proceedings of the The Web Conference,
Republic and Canton of Geneva, CHE: International World Wide Web Confer-
ences Steering Committee, 2018, pp. 1299–1306.

[17] P Ramesh, J JebaEmilyn, S Vasanthi, M Venkatesh, and J. Aldo Stalin, “De-
tailed investigation: Performance of influence analysis towards big social data,”
in Proceedings of the International Conference on Intelligent Computing Sys-
tems, 2017.

[18] D. Cartwright and F. Harary, “Structural balance: A generalization of heider’s
theory,” Psychological Review, vol. 63, no. 5, pp. 277–293, 1956.

[19] Y. Ding, “Scientific collaborfation and endorsement: Network analysis of coau-
thorship and citation networks,” Journal of Informetrics, vol. 5, no. 1, pp. 187–
203, 2011.

[20] R. Jin, L. Liu, and C. C. Aggarwal, “Discovering highly reliable subgraphs in
uncertain graphs,” in Proceedings of the 17th ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining, Association for Computing
Machinery, 2011, pp. 992–1000.

[21] Y. Gu, C. Gao, G. Cong, and G. Yu, “Effective and efficient clustering methods
for correlated probabilistic graphs,” IEEE Transactions on Knowledge and Data
Engineering, vol. 26, no. 5, pp. 1117–1130, 2014.

[22] M. Potamias, F. Bonchi, A. Gionis, and G. Kollios, “K-nearest neighbors in
uncertain graphs,” Proc. VLDB Endow., vol. 3, no. 1–2, 2010.

[23] D. Suciu, “Probabilistic databases,” in Encyclopedia of Database Systems, 2009.

[24] Y. Li, X. Kong, C. Jia, and J. Li, “On clustering uncertain graphs with node
attributes,” in ACML, 2018.

[25] S. Banerjee, “A survey on mining and analysis of uncertain graphs,” Knowledge
and Information Systems, vol. 64, no. 7, pp. 1653–1689, Jul. 2022.

[26] M. Coscia, F. Giannotti, and D. Pedreschi, “A classification for community
discovery methods in complex networks,” Statistical Analysis and Data Mining:
The ASA Data Science Journal, vol. 4, no. 5, pp. 512–546, 2011.

[27] P. De Meo, E. Ferrara, G. Fiumara, and A. Provetti, “Mixing local and global
information for community detection in large networks,” Journal of Computer
and System Sciences, no. 1, pp. 72–87, 2014.

[28] D. Luo, Y. Bian, Y. Yan, X. Liu, J. Huan, and X. Zhang, “Local community
detection in multiple networks,” in Proceedings of the 26th ACM SIGKDD In-
ternational Conference on Knowledge Discovery & Data Mining, 2020, pp. 266–
274.

77



[29] M. Takaffoli, R. Rabbany, and O. R. Zaiane, “Incremental local community
identification in dynamic social networks,” in IEEE/ACM International Con-
ference on Social Networks Analysis and Mining, 2013.

[30] N. X. Vinh, J. Epps, and J. Bailey, “Information theoretic measures for cluster-
ings comparison: Variants, properties, normalization and correction for chance,”
J. Mach. Learn. Res., vol. 11, pp. 2837–2854, Dec. 2010.

[31] M. E. J. Newman, “Modularity and community structure in networks,” Pro-
ceedings of the National Academy of Sciences, vol. 103, no. 23, pp. 8577–8582,
2006.

[32] P. Miasnikof, A. Y. Shestopaloff, A. J. Bonner, Y. Lawryshyn, P. M. Parda-
los, and E. Estrada, “A density-based statistical analysis of graph clustering
algorithm performance,” Journal of Complex Networks, vol. 8, no. 1, pp. 1–33,
2020.

[33] C. J. Colbourn, The combinatorics of network reliability (The International
series of monographs on computer science 4). New York: Oxford University
Press, 1987.

[34] L. Liu, R. Jin, C. Aggarwal, and Y. Shen, “Reliable clustering on uncertain
graphs,” in ICDM, 2012.

[35] M. Ceccarello, C. Fantozzi, A. Pietracaprina, G. Pucci, and F. Vandin, “Clus-
tering uncertain graphs,” VLDB, pp. 472–484, 2017.

[36] A. Strehl and J. Ghosh, “Cluster ensembles — a knowledge reuse framework
for combining multiple partitions,” J. Mach. Learn. Res., vol. 3, pp. 583–617,
2002.

[37] T. Yang, R. Jin, Y. Chi, and S. Zhu, “Combining link and content for com-
munity detection: A discriminative approach,” in Proceedings of the 15th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining,
2009, pp. 927–936.

[38] J. Hu, R. Cheng, Z. Huang, Y. Fang, and S. Luo, “On embedding uncertain
graphs,” in CIKM, 2017, pp. 157–166.

[39] P. Jaccard, “Distribution de la flore alpine dans le bassin des dranses et dans
quelques régions voisines.,” Bulletin de la Societe Vaudoise des Sciences Na-
turelles, vol. 37, pp. 241–72, Jan. 1901.

[40] A. Lancichinetti and S. Fortunato, “Limits of modularity maximization in com-
munity detection,” Physical Review E, vol. 84, no. 6, Dec. 2011.

[41] S. Fortunato and M. Barthélemy, “Resolution limit in community detection,”
Proceedings of the National Academy of Sciences, vol. 104, no. 1, pp. 36–41,
2007.

[42] U. Brandes et al., “On modularity clustering,” Knowledge and Data Engineer-
ing, IEEE Transactions on, vol. 20, pp. 172–188, Mar. 2008.

78



[43] M. E. J. Newman and M. Girvan, “Finding and evaluating community structure
in networks,” Physical Review E, vol. 69, no. 2, pp. 26–113, Feb. 2004.

[44] A. Clauset, “Finding local community structure in networks,” Physical Review
E, vol. 72, no. 2, pp. 26–132, Aug. 2005.

[45] F. Luo, J. Wang, and E. Promislow, “Exploring local community structures in
large networks,” vol. 6, Jan. 2008, pp. 387–400.

[46] J. Chen, O. R. Zäıane, and R. Goebel, “Detecting communities in social net-
works using local information,” pp. 197–214, 2010.

[47] C. Zhang and O. R. Zäıane, “Detecting local communities in networks with edge
uncertainty,” in IEEE/ACM International Conference on Advances in Social
Networks Analysis and Mining (ASONAM), 2018, pp. 9–16.

[48] S. Van Dongen, “Graph clustering via a discrete uncoupling process,” SIAM
Journal on Matrix Analysis and Applications, pp. 121–141, 2008.

[49] G. Kollios, M. Potamias, and E. Terzi, “Clustering large probabilistic graphs,”
TKDE, pp. 325–336, 2013.

[50] R. Shamir, R. Sharan, and D. Tsur, “Cluster graph modification problems,”
Discrete Applied Mathematics, vol. 144, no. 1, pp. 173–182, 2004.

[51] N. Ailon, M. Charikar, and A. Newman, “Aggregating inconsistent information:
Ranking and clustering,” J. ACM, vol. 55, no. 5, Nov. 2008.

[52] A. Gionis, H. Mannila, and P. Tsaparas, “Clustering aggregation,” pp. 341–352,
2005.

[53] P. C. Mahalanobis, “On the generalized distance in statistics,” Proceedings of
the National Institute of Sciences (Calcutta), vol. 2, pp. 49–55, 1936.

[54] D. S. Hochbaum and D. B. Shmoys, “A best possible heuristic for the k -center
problem,”Mathematics of Operations Research, vol. 10, no. 2, pp. 180–184, May
1985.

[55] T. F. Gonzalez, “Clustering to minimize the maximum intercluster distance,”
Theoretical Computer Science, vol. 38, pp. 293–306, 1985.

[56] K. Han et al., “Efficient and effective algorithms for clustering uncertain graphs,”
Proc. VLDB Endow., vol. 12, no. 6, pp. 667–680, 2019.

[57] G. Baltsou, K. Christopoulos, and K. Tsichlas, “Local community detection: A
survey,” IEEE Access, vol. 10, pp. 110 701–110 726, 2022.

[58] Z. Halim and J. H. Khattak, “Density-based clustering of big probabilistic
graphs,” Evolving Systems, vol. 10, no. 3, pp. 333–350, 2019.

[59] Y.-X. Qiu et al., “Efficient Structural Clustering on Probabilistic Graphs,”
IEEE Transactions on Knowledge and Data Engineering, vol. 31, no. 10, pp. 1954–
1968, Oct. 2019.

[60] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre, “Fast unfolding
of communities in large networks,” Journal of Statistical Mechanics: Theory
and Experiment, 2008.

79



[61] V. A. Traag, L. Waltman, and N. J. van Eck, “From louvain to leiden: Guar-
anteeing well-connected communities,” Scientific Reports, 2019.

[62] M. Hamann, E. Röhrs, and D. Wagner, “Local community detection based on
small cliques,” Algorithms, vol. 10, no. 3, 2017.

[63] J. Huang, H. Sun, Y. Liu, Q. Song, and T. Weninger, “Towards online mul-
tiresolution community detection in large-scale networks,” PLOS ONE, vol. 6,
no. 8, pp. 1–11, Aug. 2011.

[64] X. Huang, L. V. S. Lakshmanan, J. X. Yu, and H. Cheng, “Approximate closest
community search in networks,” Proc. VLDB Endow., vol. 9, no. 4, pp. 276–287,
Dec. 2015.

[65] D. Lacamera, Embedded systems architecture: explore architectural concepts,
pragmatic design patterns, and best practices to produce robust systems, eng.
Birmingham Mumbai: Packt Publishing, 2018.

[66] R. H. Arpaci-Dusseau and A. C. Arpaci-Dusseau, Operating systems: three easy
pieces, eng. Erscheinungsort nicht ermittelbar: Arpaci-Dusseau Books, LLC,
2018.

[67] A. Lancichinetti, S. Fortunato, and F. Radicchi, “Benchmark graphs for testing
community detection algorithms,” Physical Reveiw E, vol. 78, 4 Oct. 2008.

[68] J. Yang and J. Leskovec, “Defining and evaluating network communities based
on ground-truth,” Knowledge and Information Systems, vol. 42, no. 1, pp. 181–
213, Oct. 2013.

[69] R. Rabbany and O. R. Zaiane, “Evaluation of community mining algorithms in
the presence of attributes,” in Trends and Applications in Knowledge Discovery
and Data Mining, X.-L. Li, T. Cao, E.-P. Lim, Z.-H. Zhou, T.-B. Ho, and
D. Cheung, Eds., Lecture Notes in Computer Science - Springer, Nov. 2015,
pp. 152–163.

[70] L. Peel, D. B. Larremore, and A. Clauset, “The ground truth about meta-
data and community detection in networks,” Science Advances, vol. 3, no. 5,
e1602548, 2017.

[71] H. Kwak, C. Lee, H. Park, and S. Moon, “What is twitter, a social network or
a news media?” In Proceedings of the 19th International Conference on World
Wide Web, 2010, pp. 591–600.

[72] M. Zafarmand, “Community detection and discovery in deterministic and un-
certain networks,” Available Online, M.S. thesis, University of Alberta, 2020.

[73] W. W. Zachary, “An information flow model for conflict and fission in small
groups,” Journal of Anthropological Research, pp. 452–473, 1977.

[74] D. Lusseau, “The emergent properties of a dolphin social network,” Proceedings
of the Royal Society of London. Series B: Biological Sciences, 2003.

[75] J. Dahlin and P. Svenson, “A method for community detection in uncertain
networks,” in EISIC, 2011, pp. 155–162.

80

https://era.library.ualberta.ca/items/a179190a-9aeb-4977-8c8a-c920067bfd36


[76] L. S. Heath and A. A. Sioson, “Multimodal networks: Structure and operations,”
IEEE/ACM Transactions on Computational Biology and Bioinformatics, vol. 6,
no. 2, pp. 321–332, 2009.

81


	Introduction
	Motivation and Background
	Problem Definition and Challenges
	Thesis Statements
	Thesis Contribution
	Thesis Organization

	Background and Related Work
	Preliminary Definitions
	Social Network Analysis
	Deterministic Networks
	Uncertain Networks

	Community Detection and Search
	Evaluation Metrics
	With Ground Truth
	Without Ground Truth

	Literature Review
	Community Detection in Uncertain Networks
	Community Search in Uncertain Networks
	Community Detection and Search in Deterministic Networks

	SIWO
	Preliminaries
	Algorithm Overview


	Enhancing SIWO
	Large Graphs and Optimizations
	Map-Reduce Procedure for Graph Conversion
	Memory Optimization: FastFile
	Time Optimization: FastGraph
	Handling Timeout

	Running SIWO With a Limited Time Budget and Limited Memory
	Scalability in Large Real-World Networks


	Probabilistic SIWO (USIWO)
	Preliminaries
	Methodology
	Experiments and Results
	Datasets
	Optimal Threshold Value
	Competitors
	Results and Discussion


	Conclusion and Future Work
	Summary of Contributions
	Potential Areas for Future Research
	Enhancing Scalability and Efficiency
	Expanding Applicability
	Integration with Machine Learning Algorithms
	Development of a Comprehensive Software Suite
	Experiments on Robustness

	Closing Remarks

	Bibliography

