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Abstract	

Although	the	reliability	levels	of	structural	steel	and	reinforced	concrete	structures	

designed	to	the	Canadian	codes	and	standards	have	been	investigated	substantially	in	the	

past	four	decades,	studies	on	the	reliability	of	masonry	structures	are	limited.	Based	on	

some	preliminary	studies	in	1980s,	the	design	of	masonry	structures	using	the	limit	states	

method	was	introduced	in	the	1994	edition	of	the	Canadian	standard	S304	in	order	to	

provide	more	uniform	and	economical	design	guidelines.	However,	the	limit	states	design	

criteria	were	not	supported	by	a	rigorous	reliability-based	analysis.	The	investigation	

reported	herein	was	carried	out	to	contribute	to	filling	the	gap	in	our	knowledge	on	the	

reliability	of	structural	masonry	members	designed	using	the	limit	states	method,	to	

establish	reliability	levels	for	masonry	comparable	to	other	structural	materials	and	to	help	

remove	any	unnecessary	conservatism	in	the	masonry	design	process.	The	first	order	

reliability	method	was	used	to	assess	the	reliability	of	unreinforced	and	reinforced	non-

slender	concrete	masonry	walls	under	combined	axial	load	and	out-of-plane	bending.	In	

this	research,	only	non-slender	walls	having	a	slender	ratio	(𝑘ℎ 𝑡)	not	requiring	

consideration	of	second	order	effects	are	considered.	Nevertheless,	the	procedure	for	

performing	the	reliability	analysis	for	walls	with	larger	𝑘ℎ 𝑡	is	proposed	and	explained.	

ii



Acknowledgement 

I would like to express my special appreciation and thanks to my advisors, Dr. Yasser Korany 
and Dr. Samer Adeeb. They have been tremendous mentors for me on being a professional 
research scientist. Their advices on research work have been invaluable. 

I would also like to thank my committee members, Dr. Shelley Lissel, Dr. Carlos Cruz 
Noguez, Douglas Tomlinson, Dr. Marwan El-Rich for serving as my committee members. 

iii



Table	of	Contents	
Chapter	1	 Introduction	
1.1	 Structural	Reliability	of	Masonry	structures	 1-1
1.2	 Motivation	 1-3
1.3	 Objectives	&	Scope	 1-4
1.4	 Layout	of	the	Dissertation	 1-6

References	 1-8
Chapter	2	 Summary	of	Prior	Related	Research	

General	 2-1
2.1	 Structural	Reliability	Approach	 2-1
2.2	 Categorization	of	Load-Bearing	Walls	in	CSA	S304-2014	 2-10
2.3	 Reliability	of	Masonry	Structures	 2-16
2.4	 Behavioural	Models	for	Load-Bearing	Masonry	Walls	 2-25
2.5	 Effect	of	Workmanship		 2-38
2.6	 Statistical	Data	for	Masonry	Construction	 2-44
2.7	 Statistical	Data	for	Loading	 2-45

References	 2-46
Chapter	3	 Verification	of	the	Behavioural	Model	

General	 3-1
3.1.	 Stress-Strain	Relationships	 	 3-1
3.2.	 Behavioural	Model	for	Non-Slender	Walls	 3-2
3.3.	 Verification	with	Test	Results	 	 3-3
3.4.	 Behavioural	Model	for	Walls	with	Slenderness	Effects		 3-8
3.5.	 Conclusion	 3-13

References	 3-14
Chapter	4	 Sensitivity	Analysis	

General	 4-1
4.1	 P-M	Interaction	Diagram 4-1
4.1.1	 Equivalent	Rectangular	Stress	Block	 4-1
4.2	 Sensitivity	Analysis	 	 4-6
4.2.1	 Steel	Reinforcement	Area	 4-6
4.2.2	 Wall	Thickness		 4-6
4.2.3	 Steel	Yield	Stress	 4-8
4.2.4	 Masonry	Compressive	Strength	 4-9
4.3	 Conclusion	 4-11

References	 4-12

iv

1
3
4
6

8
8
17
23
32
45
51
52

53
53
54
55
60
65

66
66
66
71
71
71
73
74
76



R ef er e n c esR ef er e n c es



List	of	Tables	
Table	 2–1  Target	reliability	indices	from	CSA	S408	(2011)	for	30-years	(50-years)	building	
lifetime	 	 	 	 	 	 	 	 	 	 	 2-6	

Table	 2– 2 Target	reliability	indices	from	JCSS	(2001a)	for	1-year	(50-years)	reference	period	
and	ultimate	limit	states	 	 	 	 	 	 	 	 	 2-7	

Table	2–3	 Partial	factors	of	safety,	γ#,	ENV	1996-1-1	(1995)	 	 	 	 2-23	

Table	4–1	 Summary	of	the	sensitivity	analysis	 	 	 	 	 	 4-11	

Table	5–1	 Statistical	information	for	different	load	types	(Bartlett	et	al.	2003)	 	 5-8	

Table	5–2	 Statistical	information	for	resistance	parameters	 	 	 	 5-10	

Table	7-1	 Comparison	of	current	minimum	reliability	indices	(β#$%)	between	reinforced	
masonry	&	reinforced	concrete	 	 	 	 	 	 	 	 7-4	

Table	7-2	 Effect	of	the	recent	change	in	ϕ#	on	β#$%	unreinforced	masonry	 	 7-5	

	

vi



List	of	Figures	
	
Figure	2-1:	Algorithm	for	Rackwitz-Fiessler	procedure	(Nowak	2000)	 	 2-9	

Figure	2-2:	Inter-relation	of	different	parts	of	the	study	for	reliability	analysis	 2-10	

Figure	2-3:	Eccentricities	at	top	and	bottom	of	a	compression	member	 	 2-12	

Figure2-4:	An	example	scenario	where	slenderness	effects	is	less	than	10%	for	a	
wall	where	kh/t	 > 10– 3.5(e//e0)	 	 	 	 	 	 	 2-15	

Figure	2-5:	stress-strain	relationship	for	masonry	 	 	 	 	 2-37	

Figure	2-6:	stress-strain	relationship	for	reinforcement	steel	 	 	 	 2-38	

Figure	2-7:	coefficient	of	variation	in	bed	joint	thickness	in	brick	masonry	
(Grimm	1988,	with	permission	from	ASCE)	 	 	 	 	 	 2-41	

Figure	2-7:	coefficient	of	variation	in	head	joint	thickness	in	brick	masonry	
(Grimm	1988,	with	permission	from	ASCE)	 	 	 	 	 	 2-42	

Figure	3-1:	Conversion	of	masonry	to	equivalent	rectangular	stress	block	 	 3-3	

Figure	3-2:	Comparison	between	test	results	by	(Yokel,	Mathey	et	al.	1971)	and	the	
behavioural	model	used	in	this	study	 	 	 	 	 	 	 3-4	

Figure	3-3:	Comparison	between	test	results	by	(Aridru	1997)	and	the	behavioural	
model	used	in	this	study	 	 	 	 	 	 	 	 3-5	

Figure	3	4:	Comparison	between	test	results	by	(Aridru	1997)	and	the	behavioural	
model	used	in	this	study	 	 	 	 	 	 	 	 3-5	

Figure	3	5:	Comparison	between	test	results	by	(Fereig,	Hamid	1987)	and	the	
behavioural	model	used	in	this	study	 	 	 	 	 	 	 3-6	

Figure	3	6:	Comparison	between	test	results	by	Athey,	J.	(1982)	and	the	behavioural	
model	used	in	this	study	 	 	 	 	 	 	 	 3-6	

Figure	3-7:	Comparison	between	test	results	by	Hu	(2006)	and	the	behavioural	
model	used	in	this	study	 	 	 	 	 	 	 	 3-7	

Figure	3-8:	Comparison	between	test	results	by	several	investigations	and	the	
behavioural	model	used	in	this	study	 	 	 	 	 	 	 3-8	

Figure	4	1:	Different	behavioural	models	(CSA	S304	and	proposed	model)	 	 4-4	

Figure	4	2:	Different	behavioural	models	(CSA	S304	and	proposed	model)	cont’d	 4-5	

Figure	4	3:	Effect	of	10%	change	in	reinforcement	area	 	 	 	 4-7	

Figure	4	4:	Effect	of	10%	change	in	wall	thickness	 	 	 	 	 4-8	

Figure	4	5:	steel	yield	stress	 	 	 	 	 	 	 	 4-9	

Figure	4	6:	Effect	of	10%	change	in	masonry	compression	strength	 	 	 4-10	

vii



Figure	5-1:	Typical	interaction	diagram	showing	different	points	for	a	given	
eccentricity	(𝑒),	true	resistance	(point	A),	true	load	(point	B),	nominal	resistance	
(point	C)	and	nominal	load	(point	D)	which	is	derived	from	point	C	 	 	 5-4	

Figure	5-2:	Test-to-specified	compressive	force	ratios	for	grouted	prism	test	
(Moosavi	and	Korany	2014)	 	 	 	 	 	 	 	 5-12	

Figure	5-3:	Gumbel	distribution	fit	for	f4 f45 	for	grouted	masonry	 	 	 5-12	

Figure	5-4:	Schematic	plan	for	grouted	reinforced	masonry	wall	 	 	 5-17	

Figure	5-5:	β	versus	normalized	virtual	eccentricity	for	dead	load	only	(DL)	 	 5-18	

Figure	5-6:	β	versus	normalized	virtual	eccentricity	for	DL + LL	for	different	values	
of	α;	and	α<	(reinforced)	 	 	 	 	 	 	 	 5-23	

Figure	5-7:	β	versus	normalized	virtual	eccentricity	for	DL + SL	for	different	values	
of	α;	and	α<	(reinforced)	 	 	 	 	 	 	 	 5-24	

Figure	5-8:	β	versus	normalized	virtual	eccentricity	for	dead	plus	wind	load	types	
for	different	values	of	α;	and	α<	(reinforced)	 	 	 	 	 	 5-25	

Figure	5-9:	β	versus	normalized	virtual	eccentricity	for	DL	(unreinforced,	grouted)	 5-26	

Figure	5-10:	β	versus	normalized	virtual	eccentricity	for	DL + LL	
(unreinforced,	grouted)	 	 	 	 	 	 	 	 5-27	

Figure	5-11:	β	versus	normalized	virtual	eccentricity	for	DL + SL	
(unreinforced,	grouted		 	 	 	 	 	 	 	 5-27	

Figure	5-12:	β	versus	normalized	virtual	eccentricity	for	DL + WL	
(unreinforced,	grouted)	 	 	 	 	 	 	 	 5-28	

Figure	5-13:	β	versus	normalized	virtual	eccentricity	with	ϕ4 = 0.55	
for	DL,	DL + LL,	DL + SL	(unreinforced,	grouted)	 	 	 	 	 5-28	

Figure	5-14:	β	versus	normalized	virtual	eccentricity	with	ϕ4 = 0.60	for	DL		
(unreinforced,	grouted	&	hollow)	 	 	 	 	 	 	 5-30	

Figure	5-15:	β	versus	normalized	virtual	eccentricity	with	ϕ4 = 0.60	for	DL + LL	
(unreinforced,	hollow)		 	 	 	 	 	 	 	 5-30	

Figure	5-16:	β	versus	normalized	virtual	eccentricity	with	ϕ4 = 0.60	for	DL + SL	
(unreinforced,	hollow)		 	 	 	 	 	 	 	 5-31	

Figure	5-A1	P-M	interaction	diagram	for	a	wall	with	f4 = 5	MPa,	t = 190	mm,	
ρH = 0.0013	 	 	 	 	 	 	 	 	 	 5-33	

Figure	5-A2.	P-M	interaction	diagram	for	a	wall	with	f4 = 5	MPa,	t = 190	mm,	
	ρH = 0.0025	 	 	 	 	 	 	 	 	 	 5-33	

Figure	5-A3.	P-M	interaction	diagram	for	a	wall	with	f4 = 17	MPa,	t = 190	mm,	
ρH = 0.0013	 	 	 	 	 	 	 	 	 	 5-34	

viii



Figure	5-A4.	P-M	interaction	diagram	for	a	wall	with	f4 = 17	MPa,	t = 190	mm,	
ρH = 0.0025	 	 	 	 	 	 	 	 	 	 5-34	

Figure	5-A5.	P-M	interaction	diagram	for	a	wall	with	f4 = 5	MPa,	t = 290	mm,	
ρH = 0.0013	 	 	 	 	 	 	 	 	 	 5-35	

Figure	5-A6.	P-M	interaction	diagram	for	a	wall	with	f4 = 5	MPa,	t = 290	mm,	
ρH = 0.0025	 	 	 	 	 	 	 	 	 	 5-35	

Figure	5-A7.	P-M	interaction	diagram	for	a	wall	with	f4 = 17	MPa,	t = 290	mm,	
ρH = 0.0013	 	 	 	 	 	 	 	 	 	 5-36	

Figure	5-A8.	P-M	interaction	diagram	for	a	wall	with	f4 = 17	MPa,	t = 290	mm,	
ρH = 0.0025	 	 	 	 	 	 	 	 	 	 5-36	

Figure	5-A9.	P-M	interaction	diagram	for	a	wall	with	f4 = 5	MPa,	t = 190	mm	 5-37	

Figure	5-A10.	P-M	interaction	diagram	for	a	wall	with	f4 = 5	MPa,	t = 290	mm	 5-37	

Figure	5-A11.	P-M	interaction	diagram	for	a	wall	with	f4 = 17	MPa,	t = 190	mm	 5-38	

Figure	5-A12.	P-M	interaction	diagram	for	a	wall	with	f4 = 17	MPa,	t = 290	mm	 5-38	

Figure	6-1:	Illustration	of	limit-state	function	for	slender	walls	 	 	 6-3	

ix



Notation	
𝑑		 reinforcement	depth	

𝑑"		 nominal	reinforcement	depth	

𝐷/𝐷"	 bias	factor	for	dead	load	

𝑒	 eccentricity	of	axial	load	

𝑓'	 compressive	strength	for	masonry	

𝑓'( 	 nominal	compressive	strength	for	masonry	

𝑓)	 yield	stress	for	reinforcement	

𝑓)"	 nominal	yield	stress	for	steel	reinforcement	

𝐺 𝒙 	 limit	state	function	

𝑘ℎ 𝑡	 slender	ratio	

𝑀	 out-of-plane	bending	moment	

𝑀0	 random	variable	for	bending	moment	due	to	dead	load	

𝑀0,"	 bending	moment	due	to	nominal	dead	load	

𝑀2 	 random	variable	for	bending	moment	due	to	live	load	

𝑀2,"	 bending	moment	due	to	nominal	live	load	

𝑀3 	 random	variable	for	bending	moment	component	of	resistance	

𝑀3,"	 nominal	bending	moment	component	of	resistance 

𝑀4	 random	variable	for	bending	moment	due	to	wind	load	

𝑀4,"	 bending	moment	due	to	nominal	wind	load 

𝑃	 axial	load	on	the	wall	

𝑃0	 random	variable	for	axial	load	due	to	dead	load	

𝑃0,"	 axial	load	due	to	nominal	dead	load	

𝑃2 	 random	variable	for	axial	load	due	to	live	load	

𝑃2,"	 axial	load	due	to	nominal	live	load	

𝑃3 	 random	variable	for	axial	load	component	of	resistance	

𝑃3,"	 nominal	axial	load	component	of	resistance	

𝑃4	 random	variable	for	axial	load	due	to	wind	load	

𝑃4,"	 axial	load	due	to	nominal	wind	load 

𝑡	 wall	thickness	

𝑡"	 nominal	wall	thickness	

𝑉'789: 			coefficient	of	variation	of	the	strength	prediction	model	
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𝑉;		 coefficient	of	variation	of	the	professional	factor	

𝑉<=9> 	 coefficient	of	variation	related	to	the	differences	between	the	measured	and	actual	

parameters	of	the	test	specimens.	

𝑉?9<?	 coefficient	of	variation	of	the	measured	masonry	capacity	due	to	inaccuracies	in	the	test	

measurements	and/or	the	definition	of	failure	

𝒙	 vector	of	random	variables	

𝛽	 reliability	index	

𝛽A 	 target	reliability	index	

𝜌C 	 workmanship	factor	

𝜌3(0E2)	rate	of	loading	for	live	load	

𝜌3(0EG)	rate	of	loading	for	snow	load	

𝜌3(0E4)rate	of	loading	for	wind	load	

𝜌<	 steel	reinforcement	ratio	

𝜌H 	 balanced	reinforcement	ratio	

𝜙'	 resistance	factors	for	masonry	

𝜙<	 resistance	factors	for	steel	reinforcement	
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Chapter	1 	

Introduction	

1.1 STRUCTURAL	RELIABILITY	OF	MASONRY	
STRUCTURES	

The	term	structural	masonry	represents	that	type	of	construction	in	which	a	

large	 number	 of	 small	 modular	 units	 are	 mortared	 together	 to	 produce	

structural	elements	in	a	building	(Hatzinikolas	and	Korany	2005).	Typically,	

these	modular	units	are	clay	bricks,	 concrete	blocks	or	cut	 stone.	The	most	

common	masonry	 structural	 element	 is	 the	 wall;	 however,	 when	 properly	

reinforced,	masonry	may	be	used	to	build	columns	and	beams. 

There	have	been	many	studies	 to	 improve	building	codes	and	standards	so	

that	 the	 most	 influential	 sources	 of	 uncertainties	 are	 accounted	 for	 in	 the	

design	 procedures.	 These	 efforts	 have	 led	 to	 a	 design	 criteria	 called	

reliability-based	design.	 In	 Canada,	 although	 the	 reliability	 (safety)	 levels	 of	

structural	 steel	 and	 reinforced	 concrete	 structures	 have	 been	 investigated	

substantially	 in	 the	past	 four	decades,	 studies	on	 the	 reliability	of	masonry	

structures	 are	 limited.	 The	 Canadian	 standard	 for	 the	 design	 of	 masonry	

structures	 (CSA	S304)	has	been	 in	 the	 limit	states	 format	since	1994	based	
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on	some	preliminary	studies	to	provide	more	uniform	and	economical	design	

guidelines.	 However,	 these	 design	 criteria	 are	 not	 supported	 by	 rigorous	

reliability-based	 analysis.	 For	 example,	 the	 recent	 change	 in	 the	 material	

resistance	factor	for	masonry	from	0.55	to	0.60	in	the	current	edition	of	the	

standard	 CSA	 S304-2014	 was	 justified	 by	 simple	 calculations	 (Laird	 et	 al.	

2005)	 in	which	the	values	 for	 the	statistical	parameters	were	chosen	based	

on	judgement. 

Some	research	was	performed	on	the	structural	reliability	of	masonry	walls	

during	 1980s	 based	 on	 the	 design	 expressions	 in	 the	 standard	 of	 the	 time	

(Turkstra	 and	Daly	1978;	Turkstra	 and	Ojinaga	1980;	Turkstra	 et	 al.	 1982;	

Turkstra	 et	 al.	 1982;	 Turkstra	 1983;	 Turkstra	 et	 al.	 1983;	 Turkstra	 1984;	

Turkstra	 1989).	 In	 these	 studies,	 workmanship	 effects,	 which	 have	 a	

significant	 influence	 on	 reliability	 levels,	were	 applied	 based	 on	 judgement	

and	 very	 limited	 experimental	 data	 (Brick	 Institute	 of	 America	 1969;	

Turkstra	 1983).	 Therefore,	 there	 is	 a	 strong	 need	 for	 a	 comprehensive	

assessment	 of	 the	 design	 expressions	 of	 the	 current	 standard	 in	 order	 to	

establish	 reliability	 levels	 for	 masonry	 comparable	 to	 other	 structural	

materials	and	to	help	remove	any	unnecessary	conservatism	in	the	masonry	

design	process. 

The	 research	 described	 herein	 focuses	 on	 the	 reliability	 analysis	 of	 a	main	

category	 of	 masonry	 walls,	 namely,	 flexural	 masonry	 walls	 under	 axial	

compression	 and	 transverse	 loading.	 Masonry	 walls	 (unreinforced	 or	

reinforced)	 are	 the	 most	 common	 structural	 members	 in	 masonry	

construction. 

Masonry	 walls	 are	 often	 built	 to	 transfer	 concentric	 and	 eccentric	 gravity	

loads	 as	 well	 as	 lateral	 loads	 due	 to	 wind	 or	 earthquake.	 These	 vertical	

members	 experience	 beam-column	 action	 to	 transfer	 combined	 axial	 and	

2
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bending	loads	and	their	behaviour	is	governed	by	the	interaction	of	material	

strength	and	member	stability.	These	structural	members	have	a	complicated	

behaviour	due	 to	reasons	 like	 the	composite	nature	of	masonry,	pre-failure	

cracking,	and	slenderness	effects.	

After	 the	 adoption	 of	 limit	 states	 design	 for	 masonry,	 sections	 may	 be	

designed	 to	be	more	 slender	and	economical.	Therefore,	members	undergo	

larger	 deflections	 compared	 to	 those	 designed	 using	 the	 working	 stress	

method.	 The	 limited	 research	 performed	 on	 the	 structural	 reliability	 of	

masonry	walls	during	1980s	(Turkstra	and	Daly	1978;	Turkstra	and	Ojinaga	

1980;	Turkstra	et	al.	1982;	Turkstra	et	al.	1982;	Turkstra	1983;	Turkstra	et	

al.	 1983;	 Turkstra	 1984;	 Turkstra	 1989),	 was	 based	 on	 the	 design	

expressions	of	the	standard	of	the	time	and	the	analytical	models	to	consider	

slenderness	 effects	 were	 all	 approximate.	 Consequently,	 a	 comprehensive	

assessment	of	the	design	expressions	of	the	current	standard	is	required.	

1.2 MOTIVATION	

The	 research	 herein	 is	 motivated	 by	 the	 following	 concerns	 regarding	

reliability	levels	of	masonry	structures.	

The	 design	 of	 masonry	 structures	 using	 the	 ultimate	 limit	 states	 method	

needs	 to	be	 supported	by	 rigorous	 reliability	 analyses	 to	 achieve	 two	main	

goals:	 calculate	 the	 current	 reliability	 levels	 for	 various	masonry	 structural	

members	 and	 ensure	 that	 reliability	 levels	 for	 masonry	 structures	 are	

consistent	with	other	structural	materials.	

Masonry	 material	 properties,	 construction	 methods,	 and	 inspection	 levels	

have	 improved	 over	 the	 past	 two	 decades.	 However,	 these	 improvements	

have	 not	 been	 reflected	 in	 the	 design	 standard	 based	 on	 a	 comprehensive	

3
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reliability	analysis.	For	example,	the	increase	of	the	material	resistance	factor	

for	masonry,	𝜙",	 from	0.55	to	0.60	in	the	current	edition	of	CSA	S304-2014	

was	 justified	 by	 a	 two-page	 calculation	 based	 on	 statistical	 values	 selected	

mostly	by	judgment	(Laird	et	al.	2005).	

Also,	 the	 quality	 of	 workmanship	 has	 a	 substantial	 effect	 on	 masonry	

strength	(Turkstra	1989)	and	therefore	the	workmanship	factor	needs	to	be	

probabilistically	 quantified	 and	 applied.	 This	 will	 also	 affect	 the	 structural	

reliability	levels.	

1.3 OBJECTIVES	&	SCOPE	

It	 is	 clear	 that	 the	 reliability	 of	 all	 types	 of	 masonry	 members	 under	 all	

loading	 conditions	 cannot	 be	 investigated	 in	 one	 study.	 The	most	 common	

structural	members	in	masonry	construction	are	loadbearing	masonry	walls	

and	 they	 have	 a	 complex	 behaviour	 due	 to	 reasons	 such	 as	 the	 composite	

nature	of	masonry,	 pre-failure	 cracking,	 and	 slenderness	 effects.	 Therefore,	

the	 scope	 of	 this	 study	 is	 limited	 to	 the	 reliability	 analysis	 of	 load-bearing	

masonry	 walls	 under	 axial	 compression	 and	 out-of-plane	 bending.	 In	

particular,	the	ultimate	limit	state	of	masonry	walls	under	axial	compression	

and	out-of-plane	bending	will	be	studied.	However,	the	shear	mode	of	failure	

is	 not	 considered	 in	 this	 work.	 The	 scope	 of	 this	 study	 does	 not	 include	

masonry	 shear	walls	 and	masonry	 infill	 shear	walls.	 This	 study	performs	 a	

complete	reliability	analysis	on	non-slender	walls	where	slenderness	effects	

are	negligible	and	proposes	an	algorithm	for	expanding	the	analysis	to	walls	

where	 slenderness	 effects	 should	 be	 taken	 into	 account.	 This	 is	 further	

elaborated	in	Chapter	2.	

Both	 reinforced	 and	 unreinforced	 load-bearing	 masonry	 walls	 constructed	

from	hollow	concrete	blocks	and	type	S	mortar	were	investigated.	
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The	main	objectives	of	this	study	are:	

Objective	1:	To	select	a	proper	behavioural	model	 for	masonry	walls	under	

axial	&	out-of-plane	bending	to	be	used	in	the	reliability	analysis;	

specific	aim	1:		To	 perform	 a	 comprehensive	 literature	 review	 on	

behavioural	models	(Chapter	2),	

specific	aim	2:		To	 compare	 different	 models	 &	 select	 a	 model	 which	 is	

proper	for	iterative	calculations	(Chapter	2),	

specific	aim	3:		To	 verify	 the	 selected	 model	 with	 experimental	 results	

(Chapter	3),	

specific	aim	4:		To	 examine	 the	 sensitivity	 of	 the	 selected	 behavioural	

model	 to	 various	 material	 and	 geometrical	 parameters	

(Chapter	4).	

	

Objective	 2:	 To	 propose	 a	 limit	 state	 function	 for	 non-slender	walls	 under	

axial	 compression	only	 and	under	 axial	 compression	 combined	

with	out-of-plane	bending	moment	(Chapter	5).	

	

Objective	 3:	 To	 collect	 statistical	 data	 for	 the	 parameters	 involved	 in	 the	

proposed	limit	state	function	(Chapter	5);	

specific	aim	1:		To	collect	statistical	data	for	different	load	types,	

specific	aim	2:		To	 collect	 statistical	 data	 for	 resistance	 parameters	

(geometrical	&	mechanical	properties).	

	

Objective	 4:	 To	 assess	 the	 reliability	 levels	 provided	 by	 the	 design	

expressions	 &	 material	 resistance	 factors	 in	 the	 Canadian	

masonry	design	standard	for	non-slender	flexural	masonry	walls	

(Chapter	5);	
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Objective	5:	To	examine	the	effect	of	changing	masonry	resistance	factor	on	

current	reliability	levels	(Chapter	5);	

	

Objective	 6:	 To	 propose	 an	 algorithm	 and	 the	 framework	 for	 performing	

reliability	 analysis	 on	masonry	walls	with	 slenderness	 effects	 to	 assess	 the	

reliability	levels	provided	by	the	design	expressions	and	material	resistance	

factors	in	the	2014	edition	of	CSA	S304	for	this	category	of	walls	(Chapter	6).	

1.4 LAYOUT	OF	THE	DISSERTATION	

In	 Chapter	 1	 of	 this	 dissertation,	 current	 chapter,	 an	 introduction	 to	 the	

background	information	about	structural	reliability	of	masonry	structures	is	

given.	 The	 motivation,	 objectives	 and	 scope	 of	 the	 research	 study	 and	

organization	of	the	dissertation	are	also	presented.	

Chapter	2	contains	a	summary	about	previous	research	relevant	to	structural	

reliability	of	masonry	structures,	analytical	models	for	load-bearing	masonry	

walls	and	their	mechanical	behaviour,	the	effect	of	workmanship.	

Chapter	3	 illustrates	 the	basics	 for	development	of	a	behavioural	model	 for	

the	 analysis	 of	 non-slender	 load-bearing	 masonry	 walls;	 reinforced	 or	

unreinforced.	The	outcome	of	this	model	is	the	interaction	diagram	between	

axial	 compression	 and	 out-of-plane	 bending	 moment	 resisted	 by	 a	 given	

masonry	wall.	

This	model	 is	capable	of	capturing	material	nonlinearities,	 i.e.	post-cracking	

and	crushing	of	masonry	and	yielding	of	steel	reinforcement.	The	masonry	is	

presumed	 to	 be	 a	 homogeneous	material	with	 some	 tension	 strength.	 This	

model	is	then	verified	with	experimental	results	in	the	literature.	

6
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Chapter	3	also	explains	the	moment-magnifier	method	that	can	be	used	as	an	

alternative	 to	 finite	 element	 method	 to	 extend	 the	 reliability	 analysis	 for	

masonry	walls	with	slenderness	effects.	

Chapter	 4	 contains	 results	 of	 an	 analysis	 to	 assess	 the	 sensitivity	 of	 the	

behaviour	 of	 non-slender	masonry	walls	 under	 axial	 load	 and	 out-of-plane	

bending	to	various	material	and	geometrical	parameters.	

In	Chapter	5,	a	limit	state	function	for	non-slender	masonry	walls	under	axial	

load	 and	 out-of-plane	 bending	 is	 proposed.	 Then,	 first	 order	 reliability	

method	 (FORM)	 is	 used	 to	 assess	 the	 reliability	 levels	 according	 to	 the	

statistical	 properties	 for	 the	 contributing	 parameters.	 The	 statistical	

properties	 for	 loading	 is	 adopted	 from	 the	 most	 recent	 study	 for	 loading	

information	 in	 Canada.	 The	 statistical	 properties	 for	masonry	 compressive	

strength	 is	 derived	 in	 this	 study	 by	 establishing	 an	 experimental	 database	

from	numerous	 recent	prism	 tests.	Results	 for	 this	 comprehensive	 analysis	

are	presented	and	discussed.	

In	 Chapter	 6,	 an	 algorithm	 for	 extending	 the	 study	 for	masonry	walls	with	

slenderness	 effects	 is	 proposed	 along	 with	 a	 framework	 and	 scope	 of	 the	

future	study.	

Lastly,	Chapter	7	concludes	the	text	with	summary	of	results	and	conclusion.	
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Chapter	2 		

Summary	of	Prior	Related	Research	

GENERAL 

This	 chapter	 summarizes	 previous	 research	 and	 studies	 relevant	 to	

structural	 reliability	 concept,	 categorization	 of	 load-bearing	walls	 based	 on	

slenderness,	structural	reliability	of	masonry	structures,	behavioural	models	

for	 load-bearing	 masonry	 walls,	 mechanical	 properties	 of	 materials	 in	

masonry	 construction,	 effect	 of	 workmanship,	 statistical	 properties	 for	

loading	and	masonry	construction	and	experimental	studies	on	load	bearing	

masonry	walls	and	prism	compression	tests.	

2.1 STRUCTURAL	RELIABILITY	APPROACH	

Similar	 to	 any	engineered	design,	 there	are	many	 sources	of	uncertainty	 in	

structural	 design.	 The	 parameters	 of	 the	 load-carrying	 capacities	 and	 the	

loading	of	structural	members	can	be	considered	as	random	variables	rather	

than	 deterministic	 quantities.	 In	 the	 context	 of	 structural	 reliability,	

structures	 should	 be	 designed	 to	 serve	 their	 function	 within	 a	 finite	

probability	 of	 failure.	 In	 other	words,	 it	 is	 expected	 that	 the	 structures	 are	

8
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designed	 with	 a	 reasonable	 safety	 level.	 In	 general,	 the	 reliability	 of	 a	

structure	 is	 its	ability	 to	 fulfill	 its	design	purpose	 for	some	specified	design	

lifetime	 within	 an	 acceptable	 probability	 of	 failure.	 In	 practice,	 these	

acceptable	or	expected	safety	levels	are	achieved	by	specifying	design	values	

for	 minimum	 design	 loads,	 maximum	 allowable	 deflection	 as	 well	 as	

load/resistance	 factors	 in	 design	 guidelines.	 Codes	 and	 standards	 have	

evolved	 so	 that	 design	 criteria	 take	 into	 account	 some	 of	 the	 sources	 of	

uncertainty	in	design.	Such	criteria	are	often	referred	to	as	reliability-based	

design	criteria.	Therefore,	code	requirements	such	as	minimum	design	loads,	

maximum	 allowable	 deflections	 and	 load/resistance	 factors	 should	 be	 the	

results	 of	 extensive	 reliability	 analyses	 where	 sources	 of	 uncertainty	 in	

design	 are	 taken	 into	 account.	 Concisely,	 five	 essential	 steps	 for	 the	

development	 of	 practical	 probability-based	 resistance	 criteria	 can	 be	

considered:	 (1)	 to	 define	 limit	 states	 that	 needs	 to	 be	 considered	 (2)	 To	

establish	 mathematical	 models	 using	 principles	 of	 mechanics	 and	

experimental	 data	 to	 predict	 the	 behaviour	 of	 masonry	 walls	 subjected	 to	

various	 load	 conditions;	 (3)	 to	 establish	 procedures,	 based	 on	 probability	

theory,	 for	measuring	quantitatively	 the	structural	performance	 (limit	 state	

probability	or	reliability	 index);	(4)	to	specify	target	reliability	measures	by	

assessing	 reliabilities	 inherent	 to	 existing	 designs	 that	 have	 performed	

satisfactorily	 and	 other	 considerations;	 and	 (5)	 to	 determine	 resistance	

factors	 to	 ensure	 that	 the	 performance	 objectives	 of	 the	 specification,	

expressed	in	reliability	terms,	are	met.	

As	mentioned	 above,	 the	 first	 step	 in	 any	 reliability	 analysis	 is	 to	 define	 a	

criterion	for	deciding	whether	the	performance	of	the	engineered	product	is	

satisfactory.	 Such	 criterion	 is	 called	 a	 limit	 state.	 In	 terms	 of	 structural	

reliability	 analysis,	 there	 are	 two	 main	 categories	 for	 limit	 state;	 namely,	

ultimate	limit	state	and	serviceability	limit	state.	Ultimate	limit	state	involves	

collapse	 of	 all	 or	 part	 of	 structure	 such	 as	 tipping	 or	 sliding,	 rupture,	

9
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progressive	 collapse,	 plastic	 mechanism	 instability,	 corrosion,	 fatigue	 and	

deterioration.	 Serviceability	 limit	 state,	 on	 the	 other	 hand,	 involves	

disruption	 of	 normal	 use	 of	 the	 structure.	 Examples	 for	 serviceability	 limit	

state	are	excessive	deflections,	vibrations	and	local	damage.	

To	perform	reliability	analysis	for	a	given	limit	state,	the	limit	state	needs	to	

be	defined	mathematically	 as	 a	 limit	 state	 function.	General	 form	of	 a	 limit	

state	 function	 is	𝐺 𝑿 = 0	where	𝑿	is	 a	 vector	 including	 random	 variables	

involved	 in	 the	 limit	state	 function.	A	very	simple	case	 for	an	ultimate	 limit	

state	 function	would	be	𝐺 𝑿 = 𝑅 − 𝑆 = 0	where	𝑅	is	 the	resistance	and	𝑆	is	

the	 load	on	the	structure.	𝑅	and	𝑆	are	both	random	variables	and	one	of	the	

main	steps	in	any	reliability	analysis	is	to	determine	the	statistical	properties	

of	 the	 important	 parameters	 involved	 such	 as,	 values	 for	 mean	 and	

coefficient	 of	 variation	 (COV)	 and	 distribution	 type.	 Useful	 explanations	 of	

random	variables	and	functions	of	random	variables	are	given	elsewhere,	e.g.	

Nowak	(2000). 

The	 structure	 is	 described	 as	 safe	 when	𝐺 𝑿 > 0	and	 the	 problem	 of	

reliability	analysis	is	to	calculate	the	probability	of	failure	which	is	defined	by	

𝐺 𝑿 < 0.	With	a	given	limit	state	function	such	as	𝐺 𝑿 = 0,	where	vector	𝑿	

includes	the	random	variables	involved,	a	generalized	reliability	problem	can	

be	formulated	as	follows	(Melchers(1999)):	

	
	

𝑝, = 𝑃 𝐺 𝑿 ≤ 0 = …	 𝑓𝑿(𝑿) 𝑑𝑿
	

4(𝑿)56

	 (Eq.	2.1)	
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𝑝,	is	 the	 probability	 failure	 of	 a	 structural	 member	 and	𝑓𝑿(𝑿)	is	 the	 joint	

probability	density	function	for	the	n-dimensional	vector	𝑿	of	basic	variables.	

Even	 for	 the	 simple	 case	 of	𝐺 𝑿 = 𝑅 − 𝑆,	 Eq.	 2.1	 changes	 to	 a	 convolution	

integral	and	analytic	solution	is	possible	only	for	very	special	cases	of	limited	

practical	 interests.	 Therefore,	 several	 techniques	 have	 been	 introduced	 to	

address	this	problem	which	are	briefly	discussed	in	the	following.	

2.1.1 TECHNIQUES	FOR	STRUCTURAL	RELIABILITY	
ANALYSIS	

Integration	&	Simulation	Methods	

Simulation	is	one	possible	way	to	approach	reliability	problems.	Simulation,	

as	the	name	implies,	is	to	numerically	simulate	some	phenomenon	and	then	

to	 investigate	 the	 number	 of	 times	 some	 event	 of	 interest	 (e.g.	 failure	 to	

function)	occurs.	Results	of	previous	tests	(or	other	information)	can	be	used	

to	establish	the	probability	distributions	of	the	important	parameters	in	the	

problem.	Then	 this	 distribution	 information	 is	 used	 to	 generate	 samples	 of	

numerical	 data	 and	 the	 limit	 state	 criteria	 are	 investigated	 in	 the	 end.	 The	

basic	 concept	 behind	 simulation	 is	 relatively	 straightforward	 but	 the	

technique	 can	 be	 computationally	 exhaustive.	 Some	 of	 the	 simulation	

techniques	are	named	in	the	following.	The	details	for	these	methods	can	be	

found	 in	reliability	analysis	references	such	as	Melchers	(1999)	and	Nowak	

(2000).	

• Direct	or	Numerical	Integration	

• Monte	Carlo	Methods	

• Importance	Sampling	

• Latin	Hypercube	Sampling	

• Rosenblueth's	2K+1	Point	Estimate	Method	

• Directional	Simulation	

11
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Second-Moment	&	Transformation	Methods 

The	basic	concept	behind	these	methods	is	to	simplify	the	probability	density	

function	𝑓7()	in	 the	 integrand.	 The	 simplest	 case	 is	 when	 each	 variable	 is	

represented	 only	 by	 its	 first	 two	 moments	 i.e.	 by	 its	 mean	 and	 standard	

deviation.	This	is	also	known	as	the	“second-moment”	level	of	representation	

of	 variables.	Higher	moments,	which	 are	usually	 referred	 to	 as	distribution	

types,	describe	skew	and	flatness	of	the	distributions.	

“Second-moment”	methods	became	popular	because	of	 their	 simplicity	 and	

gained	a	measure	of	acceptance	among	researchers	after	a	study	by	Cornell	

(1969).	 The	 second-moment	 concept	 led	 to	 several	 extensions	 and	

improvements.	The	most	 important	 improvement	 is	 that	with	 iteration	 it	 is	

now	possible	to	approximate	the	actual	probability	distributions	in	𝑓7 	 	with	

normal	 probability	 distributions	 and	 still	 good	 estimates	 of	 failure	

probability	is	obtainable.	Some	of	these	extended	methods	are	

• First-Order	Second-Moment	(FOSM)	

• First-Order	Reliability	Method	(FORM)	

• Second	Order	Reliability	Method	(SORM)	

The	 final	 result	 from	 all	 these	 methods	 are	 reliability	 indices.	 Reliability	

index	or	safety	index	is	denoted	as	𝛽.	For	a	very	simple	case	where	the	limit	

state	 function	 is	 defined	 as	𝐺 𝒙 = 𝑅 − 𝑆 	with	𝑅 	and	𝑆 	representing	 the	

resistance	and	load	respectively	and	both	following	a	normal	distribution,	𝛽	

is	 related	 to	 the	 probability	 of	 failure	 as	𝑝, = Φ(−𝛽)	where	Φ()	is	 the	

standard	normal	 cumulative	 distribution	 function.	 For	 other	more	 complex	

cases,	𝛽	can	 only	 be	 related	 to	 a	 “nominal”	 probability	 failure.	 A	 modified	

definition	 of	 reliability	 index	was	 introduced	 by	 Hasofer	 and	 Lind	 in	 1974	

(Nowak	(2000)).	The	modification	was	to	calculate	the	limit	state	function	at	

a	point	called	the	“design	point”	on	the	failure	surface	𝐺 𝒙 = 0.	The	design	
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point	 is	 characterized	by	yielding	 the	 least	𝛽	over	 the	 failure	 surface	which	

corresponds	 to	 the	 real	probability	 of	 failure.	 Since,	 the	design	point	 is	not	

known	 beforehand,	 an	 iteration	 technique	 is	 required	 to	 solve	 for	 the	

reliability	index.	Additional	information	on	the	reliability	index	can	be	found	

in	reliability	analysis	references	such	as	Nowak	(2000)	and	Melchers	(1999).	

Calculated	reliability	indices	are	then	compared	with	target	reliability	indices	

proposed	by	code	and	standard	organizations	(𝛽;)	which	are	 functions	of	a	

range	 of	 factors	 including	 the	 type	 of	 failure,	 estimated	 cost	 of	 failure	 and	

existing	 levels	 of	 safety	 (Lawrence	 and	 Stewart	 2009)	 and	 serve	 as	

approximate	 measures	 of	 the	 acceptable	 probability	 of	 failure	 (CSA	 S408	

2011).	 CSA	 S408	 (2011),	 Guidelines	 for	 the	 Development	 of	 Limit	 States	

Design,	 suggests	 various	 target	 reliability	 indices	 depending	 on	 the	 type	 of	

failure	 (gradual	 vs.	 sudden)	 and	 the	 consequence	 of	 failure	 or	 safety	 class	

(Table	2-1).	

Table	2–1	 Target	reliability	indices	from	CSA	S408	(2011)	for	30-years	(50-

years)	building	lifetime	

	 Type	of	Failure	
Safety	Class	 Gradual	 Sudden	
Not	serious	 2.5	(2.3)	 3.0	(2.8)	
Serious	(normal	buildings)	 3.5	(3.4)	 4.0	(3.9)	
Very	serious*	 4.0	(3.9)	 4.5	(4.4)	
It	 is	 assumed	 that	 for	 very	 serious	 consequences	 there	 is	 better	
quality	control	

	

Joint	 Committee	 on	 Structural	 Safety	 (JCSS	 2001a)	 adds	 considerations	 for	

the	risk	of	investment	by	relating	the	target	reliability	to	the	relative	cost	of	

enhancing	 the	 structural	 reliability	 in	 addition	 to	 the	 risk	 to	 human	 life.	

(Table	2–2)	 shows	 target	 reliability	 indices	 from	 JCSS	 (2001a).	Numbers	 in	

brackets	 correspond	 to	 50-years	 reference	 period	 and	were	 calculated	 and	

added	to	this	table	so	they	are	comparable	with	numbers	in	Table	2-1.	
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Table	2–2	 Target	reliability	indices	from	JCSS	(2001a)	for	1-year	(50-years)	

reference	period	and	ultimate	limit	states	

Relative	 cost	 for	 enhancing	
the	structural	reliability	

Failure	consequences	
Minora	 Averageb	 Majorc	

Large	 3.1	(1.7)	 3.3	(2.0)	 3.7	(2.6)	
Medium	 3.7	(2.6)	 4.2	(3.2)d	 4.4	(3.5)	
Small	 4.2	(3.2)	 4.4	(3.5)	 4.7	(3.8)	
ae.g.	agricultural	buildings	
be.g.	office	buildings,	residential	buildings	or	industrial	buildings	
ce.g.	bridges,	stadiums	or	high-rise	buildings	
drecommendation	for	regular	cases	

	

	

While	 FOSM	 takes	 into	 account	 only	 the	mean	 and	COV	 values	 for	 random	

variables	involved,	FORM	also	can	reflect	the	type	of	distribution	for	each	of	

the	 random	variables.	 Therefore,	 FORM	gives	more	 accurate	 results.	 SORM	

yields	 even	 more	 closer	 results	 to	 exact	 solutions	 at	 a	 cost	 of	 more	

computational	time.	However,	the	difference	between	results	from	FORM	and	

SORM	 are	 noteworthy	when	 the	 failure	 surface	 has	 very	 sharp	 curves	 and	

FORM	 always	 yields	 practical	 approximations	 Melchers	 (1999).	 FORM	 is	

supported	by	CSA	408,	Guidelines	for	the	development	of	limit	states	design	

standards,	and	 is	adopted	 in	 this	 research	study.	When	using	FORM/SORM,	

attention	should	be	given	to	the	ordering	of	dependent	random	variables	and	

the	selection	of	initial	points	for	the	iterative	algorithm.	Moreover,	the	results	

for	the	design	point	should	be	assessed	to	ensure	that	they	do	not	contradict	

physical	 reasoning	 (JCSS	 2001b).	 Further	 fundamentals	 for	 reliability	

analysis	 can	be	 found	 in	 literature	 such	as	Melchers	 (1999),	Nowak	 (2000)	

and	JCSS	(2001b).	

A	 brief	 iterative	 algorithm	 for	 FORM	 procedure,	 proposed	 by	 Rackwitz-

Fiessler	in	1978	and	adopted	in	this	study	is	shown	in	Figure	2-1.	Reliability	

index	 derived	 from	 this	 method	 is	 the	 Hasofer-Lind	 reliability	 index	

introduced	 before.	 Details	 for	 Rackwitz-Fiessler	 procedure	 can	 be	 found	 in	

Nowak	(2000).	Step	4	in	the	iterative	algorithm	shown	in	Figure	2-1	involves	
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calculating	reduced	variates	of	design	point	parameters,	𝑋∗ = 𝑥?∗ 	which	are	

shown	 as	 𝑧?∗ .	 For	 normally	 distributed	 random	 variables	 𝑧?∗ =

(𝑥?∗ − 𝜇B?) 𝜎B? .	 For	 random	 variables	 with	 other	 distribution	 types,	 first	

equivalent	mean	and	distribution	needs	 to	be	 found	as	𝜇B?D 	and	𝜎B?D 	and	 then	

𝑧?∗ = (𝑥?∗ − 𝜇B?D ) 𝜎B?D .	 Procedures	 for	 calculating	 these	 equivalent	 values	 are	

illustrated	in	Nowak	(2000).	Figure	2-2	illustrates	how	different	part	of	this	

research	study	contribute	to	the	reliability	analysis.	An	 important	step	 is	 to	

define	 a	 failure	 criteria	 and	define	 it	 in	 a	mathematical	 form	 i.e.	 limit	 state	

function.	 Then	 all	 the	 involved	 random	 variable	 should	 be	 introduced	 to	

reliability	algorithm	with	their	statistical	information	i.e.	mean,	coefficient	of	

variation	and	distribution	type.	
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Figure	2-1:	Algorithm	for	Rackwitz-Fiessler	procedure	(Nowak	2000)	
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Figure	2-2:	Inter-relation	of	different	parts	of	the	study	for	reliability	analysis	

	

2.2 CATEGORIZATION	OF	LOAD-BEARING	WALLS	IN	
CSA	S304-2014	BASED	ON	REINFORCEMENT	&	
SLENDERNESS	

With	 the	 development	 of	 rational	 analysis	 and	 design	 methods,	 confident	

construction	 of	 masonry	 walls	 with	 larger	 slenderness	 ratios	 has	 been	

possible.	Before	introduction	of	limit	states	design	methods	in	CSA	S304-94,	

slenderness	 effects	 of	 walls	 were	 considered	 by	 applying	 reduction	

coefficients	 on	 wall	 capacity	 (Drysdale	 and	 Hamid	 2005).	 Limit	 states	

requirements	 for	 design	 of	 unreinforced	 masonry	 walls	 and	 reinforced	

masonry	 walls	 are	 given	 in	 section	 7	 and	 section	 10	 of	 CSA	 S304,	

respectively.	 The	 following	 are	 the	 clauses	 from	 CSA	 S304	 classifying	 load	

bearing	masonry	walls	 based	 on	 their	 slenderness	 ratio.	 These	 clauses	 are	

reproduced	 here	 to	 explain	 how	 non-slender	 walls	 in	 this	 study	 compare	

with	standard	definitions.	
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7	 Design	of	unreinforced	walls	and	columns	

⋮	

     §	7.7.5.1	 Slenderness	ignored	

     The	effects	of	slenderness	can	be	neglected	when	the	ratio	of	effective	          

     height-to-thickness	(slenderness	ratio),	𝑘ℎ/𝑡,	is	less	than 

    	(10	– 	3.5(𝑒P	/𝑒Q	)).	
     Note:	 See	Clause	7.5.1	for	information	on	the	factor	𝑘.	

     §7.7.5.2	 Maximum	slenderness	

     The	slenderness	ratio,	𝑘ℎ/𝑡,	shall	not	exceed	30.	

⋮	

10	 Design	of	reinforced	walls	and	columns	

⋮	

     §10.7.3.3	 Slenderness	limits 
					§10.7.3.3.1	 Slenderness	ignored 
					The	effects	of	slenderness	can	be	neglected	when	the	ratio	of	effective	           

    height-to-thickness	(slenderness	ratio),	𝑘ℎ/𝑡,	is	less	than 

    	(10	– 	3.5(𝑒P	/𝑒Q	)).	
     Note:	 See	Clause	10.5.1	for	information	on	the	factor	𝑘.	

					§10.7.3.3.2	 Effect	of	slenderness	with	𝒌𝒉/𝒕	less	than	or	equal	to	30	

					Except	as	provided	in	Clause	10.7.3.3.1,	if	the	slenderness	ratio,	𝑘ℎ/𝑡,	does	

					not	exceed	30,	the	procedures	10.7.4.2	or	10.7.4.3	shall	be	applied.	

					§10.7.3.3.3	 Slender	walls	with	𝒌𝒉/𝒕	greater	than	30	

					If	the	slenderness	ratio,	𝑘ℎ/𝑡,	of	a	wall	is	greater	than	30,	the	design	

					procedures	and	requirements	of	clause	10.7.3.3.2	and	10.7.4.6	shall	be	

					applied.	

					Note:	 The	maximum	slenderness	for	column	is	𝑘ℎ/𝑡.	
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Figure	2-3:	Eccentricities	at	top	and	bottom	of	a	compression	member	

Where	𝑘	is	the	effective	length	factor	for	compression	members	and	𝑒P	and	𝑒Q	

are	the	smaller	and	larger	virtual	eccentricity	of	axial	load	acting	on	top	and	

bottom	of	the	wall,	respectively	(Figure	2-3).	So	according	to	CSA	S304,	

slenderness	effects	should	be	considered	for	walls	where,	𝑘ℎ/𝑡,	is	between	

(10	– 	3.5(𝑒P	/𝑒Q	))	and	30;	and	for	unreinforced	masonry	walls,	𝑘ℎ/𝑡	cannot	

be	greater	than	30	and	for	reinforced	masonry	walls	with	𝑘ℎ/𝑡	greater	than	

30	specific	provision	are	prescribed.	It	can	be	shown	that	the	limit	of	30	for	

𝑘ℎ/𝑡	is	an	approximate	equivalent	to	the	limit	of	100	for	𝑘ℎ/𝑟	for	solid	

rectangular	sections	used	in	reinforced	concrete	structures	where	𝑟	is	the	

radius	of	gyration	(§10.13.2,	CSA	A23.3).	It	should	also	be	noted	that	the	

approximated	limit	of	30	for	𝑘ℎ/𝑡	is	slightly	conservative	for	fully	grouted	

walls	but	is	rather	restrictive	for	partially	grouted	sections	where	for	the	

same	wall	thickness,	the	radius	of	gyration	is	larger.	For	steel,	maximum	limit	

for	𝑘ℎ/𝑟	is	200	(§25.7.3.1,	CSA	S16).	Beyond	these	slenderness	limits,	the	

P 

P P 

P 

Single 
Curvature 

Double 
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behaviour	of	compression	members	is	expected	to	be	dominated	by	elastic	

buckling	and	for	slenderness	ratios	less	than	these	limits,	behaviour	is	

dominated	by	strength	of	the	material.	Therefore,	compression	capacities	of	

members	with	slenderness	ratios	greater	than	these	values	are	very	low	and	

the	mode	of	failure	in	such	cases	is	dominated	by	buckling.	

Theoretically,	all	walls	experience	slenderness	effects	and	design	standards	

define	where	neglecting	slenderness	effects	is	allowed.	According	to	previous	

research,	it	is	reported	that	for	all	𝑘ℎ/𝑡	less	than	(10	– 	3.5(𝑒P	/𝑒Q	)),	effects	

from	slenderness	is	less	than	10%	at	failure	and	therefore	ignored	in	CSA	

S304	(Drysdale	and	Hamid	2005).	However,	as	it	will	be	shown	in	the	next	

paragraph,	this	limit	is	according	to	single	curvature	loading	and	is	

conservative	for	double	curvature	cases	(Figure	2-3).	In	the	case	of	double	

curvature	bending,	the	balancing	shear	force	at	the	supports,	tends	to	reduce	

the	slenderness	effects	in	early	stages	before	failure.	Therefore,	there	are	

cases	of	𝑘ℎ/𝑡	greater	than	(10	– 	3.5(𝑒P	/𝑒Q	))	that	the	slenderness	effects	are	

less	than	10%	at	failure.	Therefore,	the	term	“non-slender”	within	this	text,	is	

not	specifically	limited	into	the	first	category	of	CSA	S304	where	𝑘ℎ/𝑡 <

10– 3.5(𝑒P/𝑒Q).	This	category	of	the	standard	covers	very	short	walls	which	

normally	are	not	present	in	masonry	construction.	The	term	“non-slender”	in	

this	text,	is	used	to	refer	to	walls	where	slenderness	effects	are	less	than	10%	

and	negligible	even	if	the	slenderness	ratio	is	bigger	than	10– 3.5(𝑒P/𝑒Q).	

Therefore,	the	results	of	reliability	analysis	in	this	study	relate	to	many	of	

loadbearing	walls	in	practice. 

For	instance,	considering	a	wall	with	𝑓V = 5	MPa,	𝑡 = 190	mm,	𝜌] = 0.0013,	

the	P-M	interaction	diagram	according	to	CSA	S304	is	shown	in	Figure	2-4.	P-

M	interaction	diagram	for	a	wall	(or	column)	is	constructed	based	on	a	

failure	criteria	and	presents	the	largest	combination	of	axial	load	(P)	and	

bending	moment	(M)	that	a	section	can	resist	for	any	given	eccentricity.	The	
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failure	criteria	according	to	CSA	S304	is	when	the	extreme	compression	fibre	

in	masonry	reaches	a	strain	of	0.003.	This	compression	strain	corresponds	to	

masonry	crushing.	The	straight	line	represents	𝑒/𝑡 = 10%	without	

slenderness	effects	and	intersects	with	the	interaction	diagram	at	about	𝑃 =

390	kN	and	𝑀 = 7.4	kN.m.	The	other	two	curves	represent	two	scenarios	

with	slenderness	effects	using	the	moment	magnifier	method.	One	curve	is	

associated	with	a	short	simply	supported	wall,	with	𝑘 = 1,	ℎ = 1240	mm	and	

with	𝑒P = 𝑒Q = 𝑡/10 = 19	mm	(single	curvature)	and	therefore,	𝑘ℎ/𝑡 =

10– 3.5(𝑒P/𝑒Q).	The	other	curve	is	associated	with	a	wall,	with	𝑘 = 1,	ℎ =

2800	mm	(normally	seen	in	construction)	and	with	𝑒P = −𝑒Q = 𝑡/10 =

19	mm	(double	curvature)	and	therefore,	𝑘ℎ/𝑡 > 10– 3.5(𝑒P/𝑒Q).	It	is	

observed	that	both	curves	intersect	with	the	interaction	diagram	at	about	

𝑃 = 376	kN	and	𝑀 = 8.0	kN.m	exhibiting	about	13%	magnification	in	

bending	moment	at	failure	if	compared	to		𝑀 = 376	kN	×	0.019	m =

7.14	kN.m	and	this	is	very	close	to	10%	mentioned	earlier.	The	intention	of	

this	example	is	to	show	that	depending	on	the	curvature	patterns	and	

eccentricity	values,	several	cases	can	be	found	for	𝑘ℎ/𝑡 > 10– 3.5(𝑒P/𝑒Q)	

where	secondary	effects	are	about	10%	or	less.	Thus,	as	mentioned	earlier,	

the	results	of	reliability	analysis	in	this	study	can	relate	to	many	of	scenarios	

of	loadbearing	walls	in	practice.	Nevertheless,	this	investigation	should	be	

extended	to	walls	where	slenderness	effects	are	more	significant	by	direct	

reliability	analysis.	
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Figure	2-4:	An	example	scenario	where	slenderness	effects	is	less	than	10%	

for	a	wall	where	𝑘ℎ/𝑡	 > 10– 3.5(𝑒P/𝑒Q) 

But	the	more	important	reason	of	studying	“non-slender”	walls	separately	

and	expanding	the	analysis	to	walls	for	which	slenderness	effects	are	

considerable	is	that	the	Canadian	building	standards	uses	partial	factor	

format	to	isolate	different	sources	of	uncertainty.	Other	than	the	fact	that	

each	load	type	has	its	own	load	factor,	on	the	resistance	side,	there	are	three	

resistance	reduction	factors,	namely,	𝜙V,	𝜙],	and	𝜙D 	(or	𝜙Di).	𝜙V	and	𝜙]	are	

material	resistance	factors	for	masonry	and	steel	reinforcement,	respectively,	

and	𝜙D 	(or	𝜙Di 	for	the	case	of	reinforced	walls)	is	the	resistance	factor	for	

member	stiffness	used	in	the	determination	of	slenderness	effects	on	the	

capacity	of	the	masonry.	A	reasonable	way	of	calibration	of	𝜙V	and	𝜙D ,	

assuming	that	𝜙]	is	the	same	for	both	reinforced	masonry	and	reinforced	

concrete	standards,	is	to	deal	with	them	separately.	Therefore,	this	study	

presents	a	complete	analysis	on	non-slender	walls	to	provide	a	tool	for	
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calibrating	𝜙V	and	in	the	next	step	proposes	steps	for	the	analysis	of	

slenderness-sensitive	walls	for	calibration	of	𝜙D 	(or	𝜙Di).	

It	is	noteworthy	that	CSA	S304	suggests	two	methods	for	considering	

slenderness	effects	when	𝑘ℎ/𝑡	is	less	than	30	but	higher	than	10	– 	3.5(𝑒P/

𝑒Q	).	These	two	methods	are	the	moment	magnifier	method	and	the	𝑃 − 𝛿	

(load-displacement)	method.	Details	for	these	methods	are	given	in	CSA	S304	

and	are	elaborated	elsewhere	such	as	Drysdale	and	Hamid	(2005).	The	

moment	magnifier	method	is	the	more	convenient	alternative	since	the	

secondary	moment	is	calculated	directly	as	the	product	of	factored	moment	

and	a	magnifier	coefficient.	On	the	other	hand,	𝑃 − 𝛿	is	an	iterative	procedure	

to	work	out	the	secondary	moment	resulting	from	deflection.	

2.3 RELIABILITY	OF	MASONRY	STRUCTURES	

Reliability	 analysis	 of	 structural	members	 is	 fully	 connected	with	 standard	

requirements	 and	 those	 requirements	 are	 regional	 and	 local.	The	 following	

sections	 explains	 how	 limit	 state	 design	 criteria	was	 adopted	 over	 time	 in	

different	regions.	It	is	worth	mentioning	that	each	standard	from	each	region	

has	its	own	approach	of	adopting	limit	state	criteria	in	terms	of	definition	of	

limit	state,	design	expressions,	load/resistance	factors	designation	and	target	

reliability	 index.	 Moreover,	 structural	 reliability	 analysis	 needs	 to	 be	 done	

with	 local	 statistical	 information	 for	 each	 standard.	 Therefore,	 direct	

comparison	 of	 standard	 expressions	 and	 factors	 won’t	 yield	 reliable	

conclusions.	The	sought	goal	 in	the	following	sections,	other	than	observing	

major	reliability	studies	which	led	to	adoption	of	 limit	states	criteria	in	CSA	

S304,	 is	 to	 point	 out	 and	 discuss	 some	 specific	 differences	 between	

approaches	 in	 CSA	 S304	 and	 standards	 in	 other	 regions.	 Current	 Canadian	

guideline	 for	 designing	 reinforced	 and	 unreinforced	 masonry	 walls	 is	 CSA	
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S304-2014	This	standard	is	referenced	through	this	research	for	calculating	

specified	resistance	to	the	factored	loads	specified	in	NBCC. 

2.3.1 CANADA	

Preliminary	safety	analysis	for	masonry	walls	started	in	1980.	As	a	first	step,	

walls	 under	 axial	 compression	 and	 out-of-plane	 bending	 moment	 and	

columns	 were	 considered.	 The	 purpose	 was	 to	 recognize	 the	 main	

parameters	of	 a	new	masonry	 code	based	on	 limit	 states	approach	and	 the	

problems	 involved	 in	 development	 of	 such	 design	 procedures.	 The	 main	

problems	were	named	to	be	the	selection	of	a	basic	code	format,	specification	

of	 basic	 material	 strengths,	 treatment	 of	 the	 very	 significant	 uncertainties	

due	to	workmanship	and	inspection,	and	uncertainties	in	structural	analysis.	

The	reliability	analysis	results	indicated	that	the	design	equations	of	the	time	

did	not	provide	 consistent	 safety	 levels	 for	different	 structural	 elements	or	

for	walls	under	different	 loading	conditions.	The	results	also	suggested	that	

the	safety	levels	for	masonry	walls	are	relatively	higher	than	those	for	other	

structural	materials	(Turkstra	and	Ojinaga	1980). 

Afterwards, limit	states	design	approach	for	load	bearing	masonry	walls	with	

minor	 axis	 bending	 was	 reviewed.	 The	 theoretical	 model	 involved	 the	

concept	 of	 an	 average	 value	 of	 flexural	 stiffness	𝐸𝐼D,,	dependent	 on	 the	

cracking	pattern	of	 the	wall	 at	 a	 load	 level	near	 failure.	 Since	 the	proposed	

theoretical	 model	 did	 not	 account	 for	 buckling	 problems,	 a	 limiting	

slenderness,	ℎ 𝑟,	of	80	to	85	was	assumed.	For	a	solid	wall	this	represents	a	

ℎ 𝑡	ratio	 of	 approximately	 25.	 Moreover,	 because	 the	 theoretical	 results	

showed	bias	with	respect	to	end	eccentricity,	a	set	of	correction	factors	was	

applied	to	theoretical	values.	These	correction	factors	were	not	based	on	any	

reasonable	explanation (Turkstra	et	al.	1982). 
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In	 the	 same	 year	 (1982)	 the	 same	 researchers	 outlined	 the	 principles	 of	

development	of	a	new	limit	states	design	code	for	unreinforced	load	bearing	

masonry	structures	in	Canada	and	proposed	a	new	code	formulation	for	the	

design	 of	 eccentrically	 loaded	 walls.	 The	 reliability	 analysis	 performed,	

accounted	 for	 uncertainties	 due	 to	material	 variability,	workmanship,	 dead	

and	 live	 load	 magnitudes,	 load	 analysis,	 modelling	 errors,	 etc.	 The	

introduction	 of	 a	 modelling	 error	 variable	 was	 due	 to	 the	 fact	 that	 the	

analytical	model	for	estimating	wall	capacity	was	unable	to	produce	unbiased	

results.	 Uncertainties	 in	 net	 area	 and	 thickness	 were	 considered	 to	 be	

embedded	in	workmanship	parameter.	The	results	suggested	that	the	code	of	

the	 time	 was	 more	 conservative	 for	 single	 curvature	 than	 for	 double	

curvature	with	safety	generally	increasing	with	wall	slenderness	ratios.	Also,	

there	was	a	significant	decrease	in	safety	level	for	large	eccentricities	which	

was	attributed	to	the	fact	that	wall	cracking	is	very	sensitive	to	eccentricity	

and	 involves	 a	 great	 deal	 of	 uncertainty.	 It	was	 concluded	 that	𝜙	factors	 of	

approximately	 0.60	 and	 0.2	 for	 inspected	 and	 uninspected	masonry	would	

yield	average	𝛽	values	of	around	4.5	(Turkstra	et	al.	1982). 

Turkstra,	 based	 on	 a	 similar	 analysis	 approach,	 suggested	 to	 use	0.7	for	

masonry	material	strength	reduction	factor	 for	specially	 inspected	masonry	

to	provide	a	 safety	 index	 in	 the	order	of	4.0.	And	 for	masonry	with	 routine	

inspection,	 material	 reduction	 factor	 was	 reduced	 to	0.4	for	 both	 clay	 and	

concrete	 units	 (Turkstra	 1983).	 Also,	 in	 this	 research,	 for	 reinforced	

masonry,	 two	 cases	 were	 studied,	 i.e.	 heavily-reinforced	 and	 lightly-

reinforced	 walls.	 It	 was	 shown	 that	 safety	 indices	 tended	 to	 decline	 with	

increasing	eccentricity,	 to	be	nearly	 independent	of	 live	 to	dead	 load	 ratios	

and	 increase	slightly	with	slenderness	ratios.	Finally,	based	on	examination	

of	 a	 variety	 of	 results,	 the	 same	 values	 for	 masonry	 material	 strength	

reduction	 factor	 were	 suggested,	 namely,	 0.7 	for	 specially	 inspected	

workmanship	and	0.4	for	normally	 inspected	workmanship.	However,	 these	
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factors	 were	 suggested	 with	𝛾] = 0.5	for	 reinforcement	 steel	 where	𝛾] 	is	

strength	reduction	factor	for	reinforcement	steel. 

(Turkstra	1984)	presented	an	overview	of	the	development	of	a	limit	states	

design	 code	 for	 masonry	 without	 adding	 any	 new	 analysis.	 However,	 he	

suggested	that	with	 limiting	design	eccentricities	to	around	25%	of	 the	wall	

thickness	𝜙 = 0.6	seems	 appropriate	 to	 achieve	𝛽 = 4.0.	 This	 analysis	 was	

also	reported	in	Turkstra	(1989)	with	more	discussions.	

Following	 the	above-mentioned	studies,	 the	 limit	states	design	method	was	

included	 in	 the	 1994	 edition	 of	 S304	 standard	 as	 an	 alternative	 to	 the	

traditional	allowable	stress	design	method	(ASD).	In	the	original	draft	of	CSA	

S304.1-94,	 it	was	decided	 to	use	a	 single	 class	of	 inspection	and	𝜙V = 0.40	

was	 proposed	 according	 to	 the	 above-mentioned	 analyses	 which	 also	

included	slenderness	effects	(Turkstra	1983;	Turkstra	et	al.	1983).	However,	

this	was	superseded	and	slenderness	effects	were	considered	separately	and	

a	 resistance	 factor	 was	 applied	 directly	 to	 the	 effective	 flexural	 stiffness	

(𝐸𝐼D,,).	So,	in	the	1994	edition	of	CSA	S304.1,	𝜙V = 0.55	was	used	based	on	a	

limited	 analysis	 that	was	 later	 presented	 in	 (Laird	 et	 al.	 2005)	 and	 then	 in	

2004,	following	the	increase	in	the	resistance	factor	for	concrete	𝜙n ,	the	same	

analysis	 was	 used	 to	 justify	 increasing	𝜙V	from	0.55	to	0.60	in	 the	 current	

edition	of	the	masonry	design	standard,	CSA	S304-2014.	

Changes	in	CSA	S304-2004	from	the	previous	CSA	S304.1-94	were	reported	

by	 (Laird	 et	 al.	 2005).	 Mandatory	 limit	 state	 design	 and	 new	 resistance	

factors	for	masonry	strength	and	stiffness	and	new	load	factors	were	a	few	of	

those	 changes.	As	mentioned	earlier,	 the	 resistance	 factor	 for	masonry,	𝜙V,	

was	 increased	 from	 0.55	 to	 0.60.	 However,	 that	 did	 not	 affect	 the	 flexural	

tensile	 strength	 because	 the	 tabulated	 values	 for	 flexural	 tensile	 strength	

were	 reduced	 to	 compensate	 the	 increase	 in	𝜙V.	 As	 stated	 earlier,	 a	 short	
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statistical	 derivation	 by	 Drysdale	 (1992)	 was	 referenced	 to	 justify	 the	

rationale	for	the	increase	in	𝜙V. 

Another	change	 in	CSA	S304-2014	was	 the	 increase	 in	 the	resistance	 factor	

for	member	stiffness,	𝜙Di ,	 from	0.65	to	0.75.	This	change	was	matched	with	

the	change	in	CSA	A23.3	1994	(Laird	et	al.	2005)	and	was	not	based	on	any	

reliability	 analysis.	𝜙Di 	is	 used	 in	 determination	 of	 slenderness	 effects	 for	

reinforced	walls	and	columns.		

Therefore,	there	is	a	need	for	a	comprehensive	structural	reliability	analysis	

to	support	parts	of	CSA	S304	and	the	objective	of	this	study	is	to	investigate	

non-slender	walls	under	combined	axial	load	and	out-of-plane	bending.	

2.3.2 U.S.	

Structural	reliability	assessment	for	reinforced	concrete	has	always	led	that	

for	structural	masonry.	Calibration	of	resistance	factors	for	ACI	318,	Building	

Code	Requirements	 for	Structural	Concrete,	was	done	by	determining	these	

factors	 based	 on	 load	 and	 load	 combination	 factors	 specified	 by	 the	 ASCE	

Standard	 7	 (1998),	 Minimum	 Design	 Loads	 for	 Buildings	 and	 other	

Structures.	 The	 study	 included	 the	 development	 of	 calibration	 procedure,	

development	of	statistical	models	for	load	and	resistance,	reliability	analysis	

for	 selected	 representative	 structural	 components	 and	 materials	 designed	

according	 to	 the	 ACI	 318	 1999	 edition,	 selection	 of	 the	 target	 reliability	

indices,	and	finally	determination	of	the	recommended	resistance	factors	for	

new	 editions	 of	 ACI	 318	 (Nowak	 et	 al.	 2005).	 The	 considered	 load	

components	 were	 dead	 load,	 office	 live	 load,	 wind,	 snow,	 and	 earthquake.	

Statistical	models	of	the	loads	are	based	on	the	data	in	(Nowak	2000).	Monte	

Carlo	simulation	was	used	 to	assess	 the	statistical	parameters	of	 resistance	
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for	beams	(in	bending	and	shear),	slabs	(in	bending	and	shear),	and	columns	

(Nowak	et	al.	2005).	

By	 1980s,	 the	 design	 criteria	 in	 the	 United	 States	 for	 engineered	masonry	

construction	 was	 based	 on	 linear	 analysis	 and	 working	 stress	 design	

principles;	however,	efforts	were	underway	to	adopt	 the	 limit	states	design	

criteria	 following	 European	 countries.	 In	 one	 of	 these	 initial	 studies	

(Ellingwood	 1981),	 first	 order	 reliability	 analysis	 was	 used	 to	 assess	

reliability	 indices	 for	 masonry	 walls	 under	 axial	 compression	 with	 and	

without	 eccentricity.	 It	 was	 concluded	 that	 there	 was	 sufficient	 amount	 of	

data	 on	 the	 strength	 and	 behaviour	 of	 masonry	 walls	 to	 start	 considering	

probabilistic	 limit	 states	 design	 as	 a	 basis	 for	 the	 standards;	 however,	

additional	data	was	necessary	in	certain	areas.	For	instance,	there	were	not	

sufficient	 test	replicates	to	establish	confidently	the	probability	distribution	

of	 strength.	Moreover,	 there	were	 limited	 data	with	which	 to	 establish	 the	

effect	of	workmanship	or	differences	between	laboratory	and	in	situ	walls	in	

a	statistical	sense.	

In	 a	 subsequent	 study,	 a	 comparison	 was	 made	 between	 using	 partial	

resistance	factors	and	using	overall	resistance	factor	for	the	safety	checking	

format	of	design	expressions	(Ellingwood	and	Tallin	1984).	It	was	concluded	

that	 by	 isolating	 uncertainties	 in	 material	 properties	 (masonry	 and	

reinforcement	 steel)	 and	 applying	 different	 material	 strength	 reduction	

factors	 to	 each	 material,	 the	 reliability	 levels	 can	 be	 maintained	 more	

consistent	over	different	cases	of	loading	patterns.	

The	 same	 authors	 investigated	 both	 non-slender	 and	 slender	 walls.	 They	

explored	the	effect	of	parameters	such	as	eccentricity,	𝑒 𝑡,	slenderness,	ℎ 𝑡,	

statistical	correlation	between	different	variables,	reinforcement	ratio.	In	all	

of	 the	 analyses,	 inspected	 workmanship	 was	 assumed	 and	 it	 was	
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acknowledged	 that	 additional	 work	 is	 needed	 to	 determine	 how	 to	 take	

workmanship	into	account	(Ellingwood	and	Tallin	1985). 

Reliability	levels	for	other	aspects	of	masonry	construction	are	also	studied.	

For	 example,	 Zorapapel	 (1991)	 studied	 the	 effects	 of	 system	 ductility	 and	

redundancy	 on	 the	 reliability	 of	 buildings	 whose	 lateral	 force	 resisting	

system	is	series	of	concrete	masonry	walls.	The	research	was	limited	to	walls	

with	lateral	force	on	top	accompanying	the	axial	load	on	the	wall.	Some	other	

recent	reliability	analyses	also	include	masonry	walls	subjected	to	explosive	

loads	(Eamon	2007). 

(ACI	530	2011)	still	permits	for	both	allowable	stress	and	strength	design	of	

structural	masonry	members.	Unlike	CSA	S304-2014	which	prescribes	using	

partial	 strength-reduction	 factor	 for	 material	 strength,	 (ACI	 530	 2011)	

applies	a	global	reduction	factor,𝜙,	on	the	nominal	strength	of	the	structural	

members.	As	mentioned	earlier,	partial	reduction	factors	tend	to	yield	more	

consistent	reliability	levels	over	different	loading	cases.	Reduction	factors	in	

ACI	 530	 (2011)	 are	 different	 for	 various	 loading	 cases.	 For	 example,	 for	

combinations	 of	 flexure	 and	 axial	 load	 in	 reinforced	 masonry,	𝜙	shall	 be	

taken	as	0.90,	and	in	unreinforced	masonry,	𝜙	shall	be	taken	as	0.60.	Also	for	

masonry	subjected	to	shear,	the	value	for	𝜙	shall	be	taken	as	0.80.	There	are	

also	different	𝜙s	for	anchor	bolts	and	bearing	in	masonry	construction.	Using	

global	strength	reduction	factors	versus	partial	strength	reduction	factors,	is	

one	 of	 the	 important	 differences	 between	 the	 ACI	 530-11	 and	 CSA	 S304-

2014.	

2.3.3 EUROPE	

Eurocode	 6	 (EC6)	 draft	 was	 first	 published	 in	 1988	 and	 is	 one	 of	 the	

standards	 that	 are	 issued	 by	 the	 European	 Committee	 for	 Standardization	
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(CEN).	 After	 a	 period	 of	 discussions	 on	 the	 draft	 form,	 the	 first	 part	 was	

issued	in	1995	as	a	“pre-standard”	or	ENV	under	the	title	“Part	1-1:	General	

rules	 for	 buildings;	 Rules	 for	 reinforced	 and	 unreinforced	 masonry”	 (Fyfe	

2000).	The	code	was	used	on	a	voluntary	basis	in	a	trial	period.	After	making	

necessary	 amendments,	 the	 document	 was	 reissued	 as	 Eurocode	 6	 (EC6).	

Moreover,	 Eurocode	 6	 superseded,	 BS	 5628:	 Part	 1	 (the	 British	 code	 of	

practice	 for	 structural	 use	 of	 unreinforced	masonry).	 EC6	 is	 based	on	 limit	

state	 principles	 and	 the	 values	 for	 the	 partial	 factors	 of	 safety	 for	material	

properties,	𝛾V,	 have	 been	 chosen	 by	 the	 Drafting	 Panel	 based	 on	 the	 best	

experience	 available	 to	 them	 (Fyfe	2000).	𝛾V	is	material	 strength	 reduction	

factor	for	masonry	in	EC6	similar	to	1/𝜙Vin	CSA	S304.	These	values	are	set	

out	in	Table	2–3.	Since	the	final	𝛾V	values	may	need	to	be	modified	to	fit	the	

conditions	and	the	target	level	of	reliability	in	the	Member	States,	the	values	

shown	in	Table	2–3	are	boxed.	

Table	2–3	 Partial	factors	of	safety,	𝛾𝑚,	ENV	1996-1-1	(1995)	

𝛾V	
Category	of	execution	
A	 B	 C	

Category	of	manufacturing	
control	of	masonry	units	

I	 1.7 	 2.2 	 2.7 	

II	 2.0 	 2.5 	 3.0 	

	

From	Table	2–3,	it	can	be	seen	that	there	are	two	different	situations	for	the	

category	 of	 manufacturing	 control,	 and	 three	 different	 situations	 for	 the	

category	 of	 constructions	 control.	 While	 by	 satisfying	 the	 requirement	 of	

category	‘I’,	there	is	about	10%	of	benefit	compared	to	category	‘II’,	there	is	a	

benefit	 of	 about	 35%	 for	 meeting	 category	 ‘A’	 of	 construction	 control	

compared	 to	 category	 ‘C’.	 This	 shows	 the	 intrinsically	 high	 variability	

associated	 with	 the	 construction	 phase.	 Combining	 the	 effect	 of	 both	

measures,	 there	 would	 be	 a	 45%	 reduction	 in	𝛾V,	 i.e.	 from	 3.0	 to	 1.7.	 In	
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addition	 to	 the	 fact	 that	 CSA	 S304-2014	 uses	 different	 design	 expressions	

from	 Eurocode	 6,	 CSA	 S304-2014	 does	 not	 recognize	 different	 levels	 of	

inspection	and	construction.	

Reliability	 studies	 on	 masonry	 construction	 are	 more	 extensive	 in	 Europe	

than	 other	 regions.	 For	 example,	 Brehm	 and	 Lissel	 (2012)	 reported	 a	

comprehensive	 study	 on	 the	 reliability	 of	 unreinforced	 masonry	 bracing	

walls	where	the	reliability	was	determined	by	SORM.	Some	other	studies	also	

performed	 preliminary	 reliability	 analysis	 on	 different	 types	 of	 structural	

members	 such	 as	 Schueremans	 and	 Van	 Gemert  ( 1998)	 on	masonry	 shear	

walls	 for	 historical	 masonry	 buildings	 and	 Casas	 (2011)	 on	 reliability	

assessment	of	masonry	arch	bridges. 

2.3.4 AUSTRALIA	

There	 have	 been	 notable	 studies	 on	 structural	 reliability	 of	 masonry	

members	in	Australia.	In	an	earlier	investigation,	unreinforced	brick	masonry	

walls	in	flexure	were	studied	(Stewart	and	Lawrence	2002).	Many	sources	of	

uncertainty	were	considered	such	as	discretizing	of	masonry	unit	thickness,	

unit	bond	strength,	hypothesis	of	failure	mechanism,	and	load	intensity.	The	

results	 showed	 that	 reliability	 levels	 are	 most	 affected	 by	 wall	 width,	

workmanship,	 discretizing	 of	masonry	 unit	 thickness.	 It	was	 indicated	 that	

reliability	 levels	 for	 masonry	 walls	 are	 comparable	 to,	 and	 in	 some	 cases	

higher	than,	for	other	structural	materials.	

Subsequent	 studies	 showed	 that	 the	 Australian	 standard	 for	 masonry	

structures,	 AS3700-2011,	 is	 unnecessarily	 conservative	 for	 walls	 loaded	

concentrically	in	compression.	Therefore,	recommendation	was	made	that	𝜙	

for	walls	loaded	concentrically	in	compression	be	increased	from	0.45	to	0.75	

in	 AS3700-2011.	 These	 result	 was	 based	 on	 a	 reliability-based	 code	
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calibration	 (FORM)	 using	 experimental	 data	 from	 several	 research	 works.	

Both	 slender	 and	 non-slender	masonry	walls	were	 studied	 in	 this	 analysis	

(Stewart	and	Lawrence	2006). 

In	 another	 research,	 the	 reliability	 of	 unreinforced	 masonry	 in	 vertical	

bending	was	assessed	in	order	to	calibrate	the	capacity	reduction	factor,	𝜙,	in	

the	 Australian	 Masonry	 Structures	 Code	 AS	 3700.	 Different	 factors	

influencing	 the	 reliability	 of	 masonry	 in	 vertical	 bending	 were	 studied,	

including	model	error,	wall	height	and	discretization	of	wall	thickness.	It	was	

concluded	that	the	𝜙 = 0.6	in	code	of	the	time	should	be	decreased	to	0.47	if	

a	target	reliability	of	𝛽; = 4.3	is	required.(Lawrence	and	Stewart	2009) 

Similar	 to	ACI	530-11,	AS	3700-2011	uses	 a	 global	 reduction	 factor	 for	 the	

structural	member;	while	 in	CSA-S304-2014,	 uncertainties	 are	 isolated	 and	

different	 reduction	 factors	 are	 applied	 to	 each,	 namely,	𝜙V	for	 masonry	

strength,	𝜙] 	for	 reinforcement	 steel	 and	𝜙Di 	(𝜙D )	 for	 effective	 flexural	

stiffness.	

2.4 BEHAVIOURAL	MODELS	FOR	LOAD	BEARING	
WALLS	

As	 noted	 earlier,	 in	 order	 to	 perform	 a	 comprehensive	 reliability	 analysis	

leading	 to	 development	 of	 practical	 probability-based	 resistance	 criteria,	

there	is	a	need	for	a	behavioural	model	that	predicts	the	strength	of	the	wall	

based	 on	mechanical	 and	 geometrical	 properties	 given.	 This	 section	 covers	

different	 types	 of	 behavioural	 models	 in	 the	 literature	 including	 both	

analytical	and	numerical	models.	

Bending	behaviour	of	load	bearing	masonry	walls	is	considerably	affected	by	

out	 of	 plane	 lateral	 loads.	 This	 behaviour	 is	 highly	 nonlinear	 due	 to	 two	
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aspects;	 (1)	 nonlinear	 material	 characteristics	 involving	 nonlinear	 stress-

strain	 relationship	 in	 compression	 and	 tensile	 cracking	 in	 masonry	 and	

yielding	in	steel	reinforcement,	(2)	second	order	effects	as	a	result	of	out-of-

plane	deflection	of	the	member	which	is	also	known	as	slenderness	effects.	

2.4.1 ANALYTICAL	MODELS	

To	obtain	an	estimate	of	the	safety	level	implied	in	any	design	procedure,	an	

unbiased	 theoretical	 formulation	 is	 of	 great	 advantage.	 There	 have	 been	

several	 studies	 on	 the	 analysis	 of	masonry	members	 subjected	 to	 eccentric	

compressive	 loads.	 The	major	 goal	 of	 these	 studies	 has	 been	 developing	 a	

technique	 for	 analysis	 of	 the	 stability	 of	 masonry	 members	 under	

simultaneous	axial	compression	and	out-of-plane	moment.	The	challenges	in	

coming	up	with	 an	 accurate	model	 that	 predicts	 the	 strength	of	 a	masonry	

wall	 include	 nonlinearities	 such	 as	 tensile	 cracking	 of	 masonry	 joints,	

compressive	 crushing	 of	 masonry,	 nonlinear	 stress-strain	 relationship	 of	

masonry	 under	 compression,	 and	 geometric	 nonlinearities	 in	 large	

deflections	(slenderness	effects).	

In	 most	 of	 the	 leading	 studies,	 significant	 simplifying	 assumptions	 were	

adopted	which	prevented	accurate	enough	results	(Yokel	and	Dikkers	1971;	

Sahlin	 1971;	 Tesfaye	 and	 Broome	 1977;	 Schultz	 and	 Mueffelman	 2003;	

Drysdale	 and	Hamid	2005).	 These	 assumptions	 include	 linear	behaviour	 of	

masonry	 material	 under	 compression,	 adopting	 stress-strain	 behaviour	

similar	 to	 concrete	 for	masonry	material,	 and	 selecting	 a	 constant	 reduced	

flexural	stiffness	(EI)	over	the	height	of	cracked	masonry	walls.	

In	 some	 other	 studies,	 differential	 equations	 were	 derived	 according	 to	

partially	cracked	members	(Chen	and	Atsuta	1973;	Frisch-Fay	1977;	Frisch-

Fay	1980;	Romano	et	 al.	 1993;	Ganduscio	and	Romano	1997;	De	Falco	and	
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Lucchesi	2002).	In	other	words,	the	presence	of	uncracked	regions	was	also	

considered	in	those	studies.	

In	 all	 the	 aforementioned	 cases,	 the	 equations	 were	 derived	 for	 particular	

combinations	 of	 loading	 or	 boundary	 conditions.	 For	 example,	 one	 of	 the	

widely	 studied	 cases	 is	 a	 cantilever	member	 subjected	only	 to	 an	 eccentric	

point	 load	 at	 the	 top	 (Yokel	 et	 al.	 1971;	 Chen	 and	Atsuta	 1973;	 Frisch-Fay	

1975;	 Frisch-Fay	 1977;	 De	 Falco	 and	 Lucchesi	 2002).	 Other	 cases	 include	

cantilever	members	under	 eccentric	 gravity	 loads	 (Sahlin	1971)	 or	 its	 own	

weight	 (Tesfaye	 and	 Broome	 1977;	 Frisch-Fay	 1980),	 cantilever	 members	

under	 simultaneously	 vertical	 and	 lateral	 loads	 (Romano	 et	 al.	 1993;	

Ganduscio	and	Romano	1997). 

(Turkstra	et	al.	1982)	used	an	“equivalent”	linear	analysis	and	acknowledged	

that	it	was	approximate.	Ultimate	prism	compression	strength,	𝑓Vp ,	was	used	

as	 a	 basic	 mechanical	 property	 representative	 of	 several	 factors	 such	 as	

shape	of	masonry	units,	mortar	type	and	mortar	bedding	arrangements.	The	

main	 assumption	 was	 that	 the	 flexural	 rigidity	𝐸𝐼	is	 given	 by	 the	 initial	

tangent	 modulus	 of	 elasticity	 and	 an	 effective	 moment	 of	 inertia.	 The	

effective	 moment	 of	 inertia	 was	 given	 by	 expressions	 for	 different	 end	

eccentricity	 ratios.	 It	 was	 stated	 that	 this	 model	 was	 not	 able	 to	 produce	

unbiased	 estimate	 of	 experimental	 results.	 Therefore,	 a	modelling	 variable	

was	introduced	to	alleviate	this	problem.	This	approach	was	also	utilized	in	a	

few	other	publications	e.g.	(Turkstra	1983;	Turkstra	1989).	

As	 another	 approach,	 moment	 magnifier	 method	 was	 used	 to	 account	 for	

slenderness	 effects	 by	 (Ellingwood	 and	 Tallin	 1985).	 It	 was	 stated	 that	

statistical	 data	 for	 Euler	 load,	𝑃q ,	 depends	 on	 the	 rigidity	𝐸𝐼	of	 the	 cracked	

section	and	on	 the	 fixity	of	 the	ends	of	 the	walls.	 It	was	acknowledged	 that	

statistical	 information	 for	𝐸𝐼	for	masonry	 is	 unavailable.	Moment	magnifier	
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method	 is	 a	 fast	 approach	 and	 more	 accurate	 expressions	 for	𝐸𝐼	revealed	

from	 recent	 studies	 make	 this	 method	 more	 reliable.	 However,	 numerical	

simulations,	 such	 as	 finite	 element	 method,	 are	 always	 the	 most	

comprehensive	yet	accurate	approach. 

2.4.2 NUMERICAL	SIMULATIONS	

The	 most	 practical	 yet	 comprehensive	 approach	 to	 account	 for	 material	

nonlinearity,	 uncracked	 regions,	 different	 load	 and	 restraint	 conditions,	

different	cross	sections	(grouted	or	partially	grouted)	or	even	non-prismatic	

members	 is	 to	 select	 an	 appropriate	 numerical	 simulation.	 Therefore,	 for	 a	

comprehensive	 reliability	 analysis,	 choice	 of	 numerical	 simulations	 is	more	

sensible.	

(Rots	1991)	 identified	 three	basic	approaches	 for	modeling	 the	mortar	bed	

joints:	macro-modeling	where	bed	joints	are	smeared	out,	simplified	micro-

modeling	 where	 bed	 joints	 are	 represented	 by	 masonry	 unit-mortar	

interface,	or	detailed	micro-modeling	where	mortar	bed	 joints	are	modeled	

by	 continuous	 elements.	 (Payne	 et	 al.	 1990)	 carried	 out	 a	 mixed	 finite	

element	and	finite	difference	analysis	considering	the	masonry	unit	and	the	

bed	mortar	 joint	separately.	The	unit-interface	approach,	where	 the	mortar	

properties	 are	 neglected	 and	 the	 joints	 are	 modelled	 as	 potential	 lines	 of	

cracking	 failure,	 is	 better	 suited	 for	 two-way	 dynamic	 analysis	where	 load	

reversals	may	 occur	 and	 is	mostly	 used	 to	 study	 the	 in-plane	 behaviour	 of	

unreinforced	masonry	 (Lotfi	 and	 Shing	 1994).	 However,	 the	 application	 of	

this	approach	is	extended	to	out-of-plane	analysis	recently	(Martini	1997).	In	

smeared	 joint	 approach,	 masonry	 composite	 is	 treated	 as	 a	 homogeneous	

material	with	mechanical	properties	representing	the	effect	of	both	masonry	

unit	 and	mortar	 bed	 joint.	 Therefore,	 the	whole	member	 is	 represented	by	

the	same	kind	of	element.	This	approach	is	desirable	because	of	its	simplicity	
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and	efficiency	and	is	suitable	for	modeling	the	overall	behaviour	of	masonry	

members	 (Romano	 et	 al.	 1993).	 This	 method	 has	 been	 widely	 used	 for	

simulating	 the	 out-of-plane	 behaviour	 of	 unreinforced	 masonry	 members	

under	compression. 

A	finite	element	model	was	developed	by	(Suwalski	and	Drysdale	1986)	that	

used	2-dimensional	triangular	elements	for	the	masonry	and	Goodman	Joint	

elements	 for	 bond	 between	 reinforcement	 and	 grout,	 and	 between	 the	

mortar	 and	 the	 blocks.	 The	 analysis	 was	 incremental	 and	 included	 large	

deformations	with	provisions	made	at	 each	 step	 for	 cracking,	 crushing	 and	

debonding	 to	 be	 identified	 and	 incorporated	 into	 the	 model.	 The	 smeared	

crack	 approach	was	 used	 to	model	 cracking	 and	 the	 stiffness	 of	 a	 cracked	

element	 was	 modified	 by	 reducing	 the	 stiffness	 of	 the	 element	 in	 the	

direction	of	the	largest	principal	tensile	stress. 

Masonry	 load-bearing	 walls	 are	 generally	 long	 enough	 to	 be	 analyzed	 or	

tested	 ideally	as	wide	columns	with	 free	side	edges	 that	are	under	uniform	

axial	 load	 and	 lateral	 loading.	 (Ganduscio	 and	Romano	1997)	 stated	 that	 if	

the	 effects	 of	 lateral	 edge	 restraints	 are	 negligible,	 the	 analysis	 of	masonry	

wall	can	be	advantageously	carried	out	by	idealizing	the	member	as	a	beam-

column.	This	fact	has	been	used	in	many	numerical	studies	afterwards. 

A	simplified	finite	element	analytical	technique	was	developed	to	predict	the	

capacity	 of	 reinforced	 load-bearing	 masonry	 walls	 under	 different	 loading	

conditions	(Liu	2002).	This	analytical	 technique	accounted	for	non-linearity	

of	 the	masonry	 stress-strain	 relationship,	 different	 eccentric	 axial	 loadings,	

point	applied	or	distributed	lateral	loads,	single	and	double	curvature	effects,	

fixed	 or	 simple	 end	 supports,	 various	 patterns	 of	 reinforcement,	 and	

nonlinear	 loading	and	unloading.	This	model	was	used	to	calculate	effective	

flexural	stiffness	(EI)	of	cracked	masonry	walls	more	accurately	 in	order	 to	
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assess	 slenderness	 effects.	 Bernoulli	 beam	 element	 was	 used	 and	 the	

behaviour	 of	 the	 wall	 was	 captured	 by	 gradually	 applying	 the	

load/displacement	by	performing	step-by-step	finite	element	model.	Element	

stiffness	 matrices	 at	 each	 step	 were	 constructed	 based	 on	 the	 flexural	

stiffness,	𝐸𝐼,	 read	 from	 the	 slope	 of	 the	 moment-curvature	 curve	 for	 the	

corresponding	 axial	 load.	 Therefore,	 at	 each	 single	 step	 the	 moment-

curvature	curve	for	the	corresponding	axial	load	had	to	be	constructed.	

(Vassilev	 et	 al.	 2002)	 presented	 a	 numerical	 model	 for	 the	 analysis	 of	

structural	 members	 under	 eccentric	 compression.	 The	 equilibrium	 was	

formulated	in	the	deformed	state	and	took	account	of	the	effect	of	deflections	

on	 the	bearing	capacity.	For	a	 realistic	modelling	of	 the	composite	material	

behaviour	in	compression	and	bending	a	parabolic	stress-strain	function	was	

assumed.	 The	 solution	 of	 the	 system	 was	 obtained	 within	 an	 iterative	

numeric	 procedure,	 based	 on	 the	 discretization	 of	 the	 structure	 into	 finite	

segments,	 the	 piecewise	 linearization	 of	 its	 parameters.	 The	 piecewise	

integration	 of	 the	 equilibrium	 differential	 equation	 led	 to	 a	 formulation	 in	

terms	of	the	transfer	matrix	method.	The	ultimate	state	is	recognized	either	

by	 equilibrium	 bifurcation	 and	 loss	 of	 stability	 or	 collapse	 due	 to	material	

failure.	 Similar	 to	 the	work	by	 (Liu	2002),	 at	 each	 step,	 the	 transfer	matrix	

was	 established	based	on	 the	 slope	 of	 the	moment-curvature	 curve	 for	 the	

corresponding	axial	load.	

(Lu	2003)	developed	a	comprehensive	two-dimensional	finite	element	model	

for	axially-compressed	and	transversely-loaded	unreinforced	masonry	walls	

assuming	one-way	bending.	The	model	is	capable	of	capturing	post-cracking	

and	post-buckling	behaviour	of	slender	URM	members	and	it	considers	both	

material	and	geometric	nonlinear	analysis	of	the	walls.	Similar	to	the	model	

by	 (Liu	 2002)	 for	 reinforced	 masonry	 walls,	 the	 wall	 was	 idealized	 as	 a	

beam–column	 and	 assuming	 that	 cross	 sections	 remain	 plane	 after	
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deformation,	 the	 finite	 element	model	 simulated	 the	 entire	 load–deflection	

behaviour	by	using	planar	beam-column	elements.	The	model	is	applicable	to	

a	large	variety	of	load	combinations	and	restraint	conditions,	as	well	as	solid	

or	 hollow	 cross-sections.	 Finite	 tensile	 strength	 of	 masonry	 was	 assumed,	

and	 a	 realistic	 stress–strain	 relationship	 for	 masonry	 in	 compression	 was	

employed.	 Masonry	 was	 treated	 as	 a	 homogeneous	 material	 with	 some	

tensile	strength.	The	displacement-control	method	and	the	arc-length	control	

method	were	implemented	and	used	to	trace	the	entire	equilibrium	path.	The	

major	difference	between	this	model	and	the	work	done	by	(Liu	2002)	was	in	

the	construction	of	the	stiffness	matrix.	Instead	of	constructing	the	moment-

curvature	curve	for	each	axial	load	level	and	reading	the	flexural	stiffness,	𝐸𝐼,	

from	the	graph	to	establish	the	stiffness	matrix,	the	stiffness	matrix	is	worked	

out	directly	 from	the	constitutive	stress-strain	 relationship	of	 the	materials	

and	the	corresponding	strain	state	for	each	element.	This	eliminates	solving	

involved	equations	which	include	integrations	over	the	cross	section.	

The	method	used	by	(Lu	2003)	for	unreinforced	masonry	walls	was	extended	

for	 investigating	 the	 mechanics	 and	 behaviour	 of	 slender	 post-tensioned	

masonry	walls	 (Popehn	 2007).	 Nevertheless,	 in	 both	 studies,	 there	were	 a	

few	 assumptions	 in	 formulation	 of	 the	 stiffness	 matrix	 for	 sake	 of	

simplification.	These	assumptions	lead	to	a	stiffness	matrix	corresponding	to	

Timoshenko	beam	element	which	does	not	perform	as	well	as	the	Bernoulli	

beam	 element	when	 the	 beam	 is	 thin.	 Timoshenko	 beam	model	 takes	 into	

account	shear	deformation,	making	it	suitable	for	describing	the	behaviour	of	

shorter	 beams.	 It	 does	 not	 perform	 as	well	 as	 Bernoulli	 beam	 formulation	

when	 the	 beam	 is	 typically	 dimensioned	 or	 thin	 because	 too	 much	 strain	

energy	is	taken	by	shear	(Felippa	2012).	(Lu	2003;	Popehn	2007)	used	these	

simplifications	 so	 that	 they	 can	 explicitly	 describe	 the	 stiffness	matrix	 and	

the	 vector	 of	 element	 nodal	 forces	 of	 the	 beam	 element	 in	 terms	 of	 nodal	
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displacements	 of	 the	 element	 and	 of	 course	 the	 material	 stress-strain	

characteristics.	

The	model	used	in	this	study	is	similar	to	the	model	by	Lu	(2003)	except	that	

the	material	behaviour	is	updated	according	to	recent	literature.	The	selected	

material	behaviour	is	explained	in	the	next	section.	This	model	is	capable	of	

capturing	material	nonlinearities,	i.e.	post-cracking	and	crushing	of	masonry	

and	 yielding	 of	 steel	 reinforcement.	 The	 masonry	 is	 presumed	 to	 be	 a	

homogeneous	 material	 with	 some	 tension	 strength.	 This	 model	 is	 2D	 and	

relatively	 simple	 to	 implement	 and	 yet,	 the	 prediction	 capability	 of	 this	

model	 has	 been	 verified	 to	 be	 adequate	 and	 consistent	 with	 experimental	

results.	The	behavioural	model	is	explained	and	verified	in	chapter	3.	These	

features	 make	 this	 model	 an	 appropriate	 option	 for	 a	 thorough	 reliability	

analysis.	 For	 non-slender	walls	 where	 secondary	 effects	 are	 negligible,	 the	

behavioural	model	is	used	to	construct	the	P-M	interaction	diagram	point	by	

point	 for	 different	 eccentricities	 starting	 from	 pure	 bending	 to	 the	 case	 of	

axial	load	only.	The	failure	criterion	which	is	used	is	crushing	of	the	masonry	

at	 the	extreme	compression	 fibre.	This	 criterion	 is	applied	by	assuring	 that	

the	compression	strain	at	the	extreme	compression	fibre	is	0.003	(Drysdale,	

Hamid	et	al.	1994).	MathematicaÒ	 is	used	as	the	coding	language.	A	sample	

code	for	generating	P-M	interaction	diagram	is	presented	in	the	Appendix.	

Although	 the	 results	 of	 this	 study	 are	 limited	 to	 non-slender	 walls,	 the	

algorithm	 and	 framework	 for	 the	 case	 of	 walls	 with	 slenderness	 effects	 is	

proposed	at	the	end.	The	behavioural	model	is	proposed	to	be	implemented	

to	 analyze	 the	 walls	 as	 beam-column	 members.	 As	 explained	 before,	 the	

formulation	 of	 the	 stiffness	 matrix	 is	 worked	 out	 directly	 from	 the	

constitutive	stress-strain	relationship	of	the	materials	and	the	corresponding	

strain	 state	 for	 each	 element.	 Bernoulli	 beam	 element	 formulation	 of	 the	

stiffness	matrix	 is	 recommended	which	gives	a	better	representation	of	 the	
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behaviour	 of	 load-bearing	 masonry	 walls	 under	 out-of-plane	 loading.	

Another	 approach	 suggested is	 to	 use	 the	 moment	 magnifier	 method	 to	

account	 for	 secondary	effects.	The	algorithm	and	 framework	 for	walls	with	

slenderness	effects	are	illustrated	in	Chapter	6.	

2.4.3 MATERIAL	BEHAVIOUR 

The	composite	nature	of	masonry	makes	it	practical	to	relate	the	strength	of	

structural	 masonry	 members	 to	 prism	 strength	 rather	 than	 to	 unit	 and	

mortar	 strengths.	 Nevertheless,	 it	 should	 be	 noted	 that	 full-size	 structural	

members	usually	behave	more	uniformly	than	prisms	and	are	less	affected	by	

variations	in	workmanship	and	materials	(Ellingwood	1981).	There	has	been	

a	common	assumption	that	masonry	material	behaviour	is	adequately	similar	

to	 concrete	 material	 behaviour.	 However,	 recent	 experimental	 data	 from	

researchers	who	also	investigated	the	post-peak	region	of	masonry	material	

behaviour,	 i.e.	 beyond	 the	 strain	 at	 maximum	 strength,	 suggest	 that	 this	

assumption	is	not	valid	and	different	equations	for	masonry	are	needed	Liu	

(2002).	Experimental	 results	have	shown	that	 the	stress-strain	relationship	

for	masonry	under	compression	is	a	nonlinear	relationship.	This	nonlinearity	

is	 principally	 attributed	 to	 mechanical	 characteristics	 of	 the	 mortar	 joints	

between	the	masonry	units	(McNary	and	Abrams	1985;	Ahmad	et	al.	1987)	

and	this	nonlinearity	increases	with	the	decrease	in	mortar	strength	(Ahmad	

et	al.	1987).	

Equivalent	rectangular	stress	block	 is	used	by	many	standards	to	represent	

the	ultimate	strength	and	its	coefficients	are	calibrated	for	the	case	when	the	

section	 is	under	dominant	bending.	Using	 the	 equivalent	 rectangular	 stress	

block	 for	 masonry	 (or	 concrete)	 in	 compression	 does	 not	 adequately	

represent	the	effect	of	stress	distribution	in	the	section	when	compression	is	

dominant	over	the	section	(Ellingwood	and	Tallin	1985).	
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Although	 it	 is	possible	 to	 take	 into	account	different	nonlinear	stress-strain	

relationship	for	bricks/concrete	blocks	and	mortar	(Payne	et	al.	1990),	it	has	

been	 verified	 by	 comparison	 with	 experimental	 results	 that	 acceptable	

accuracy	 can	 be	 achieved	 by	 considering	 the	 masonry	 material	 as	 a	

continuum	with	one	nonlinear	stress-strain	relationship	that	should	be	based	

on	numerous	prism	test	data	(Romano	et	al.	1993).	

In	 most	 prior	 studies,	 especially	 in	 the	 case	 of	 unreinforced	 members,	

masonry	 was	 assumed	 to	 have	 no	 tensile	 strength	 and	 a	 relatively	 simple	

stress-strain	 relationship	 in	 compression	 was	 used.	 Examples	 for	 those	

relationships	 are	 linear	 elastic	 (Yokel	 and	Dikkers	 1971;	 Yokel	 et	 al.	 1971;	

Tesfaye	 and	 Broome	 1977;	 Schultz	 and	 Mueffelman	 2003),	 nonlinear	

monomial	 elastic	 (Romano	 et	 al.	 1993;	 Ganduscio	 and	 Romano	 1997),	 or	

linear	 elastic	 with	 bounded	 compressive	 strength	 and	 deformability	 (De	

Falco	 and	 Lucchesi	 2002).	 Very	 few	 studies	 accounted	 for	masonry	 tensile	

strength	along	with	linear	elastic	relationship	in	the	compression	zone	(Chen	

and	Atsuta	1973;	Frisch-Fay	1975;	Frisch-Fay	1977;	Frisch-Fay	1980).	

Stress-strain	 curves	 of	 masonry	 vary	 from	 nearly	 linear	 for	 bricks	 with	

certain	 mortars	 to	 more	 nearly	 parabolic	 for	 concrete	 blocks	 with	 other	

mortars.	 The	 assumption	 of	 a	 linear	 stress	 block	 leads	 to	 increasingly	

conservative	predictions	as	load	eccentricity	increases	(Turkstra	1989).	

Another	 fact	 about	 masonry	 stress-strain	 behaviour	 is	 that	 depending	 on	

strain	gradient,	 the	 flexural	 compression	 strength	 is	 remarkably	more	 than	

the	axial	compressive	strength	from	prism	tests.	Therefore,	a	factor	equal	to	

or	 greater	 than	1.0	was	 applied	 to	 compressive	 strength	 of	 masonry,	𝑓V,	

depending	on	the	load	eccentricity.	This	factor	was	equal	to	unity	at	𝑒 𝑡 = 0	

to	about	1.4	at	𝑒 𝑡 = 1 3	(Ellingwood	1981).	
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Important	 parameters	 in	 stress-strain	 relationship	 for	 masonry	 are	 the	

masonry	compression	strength,	strain	at	maximum	stress,	slope	of	the	falling	

branch	 of	 the	 stress-strain	 curve	 after	maximum	 stress	 is	 reached	 and	 the	

ultimate	 compression	 strain.	These	parameters	are	 important	because	 they	

are	 needed	 for	 calculating	 the	 strains	 in	 reinforcement	 using	 the	

compatibility	approach	and	finally	working	out	the	ultimate	flexural	strength.	

Monomial	 nonlinear	 expressions	 which	 are	 normally	 obtained	 by	 least-

square	fitting,	e.g.	(Romano	et	al.	1993)	are	expressed	as	

	
	

𝜎 = 𝑆	𝜖s 	 (Eq.	2.2)	

	
	

where	𝑆	and	𝜇	are	 constant	 parameters.	 Two	 weak	 points	 for	 this	 stress-

strain	 relationship	 are	 exhibiting	 infinite	 rigidity	 at	𝜖 = 0	and	not	 including	

any	softening	branch. 

(Naraine	and	Sinha	1989)	obtained	an	exponential	stress-strain	relationship	

capable	 of	 predicting	 both	 hardening	 and	 softening	 behaviour	 in	

compression	without	any	singular	points.	

	
	

𝜎 = 𝐸	𝜖	exp	 −
𝜖
𝜖6

	 (Eq.	2.3)	
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This	expression	was	also	used	by	(Lu	2003)	and	(Popehn	2007)	for	stability	

analysis	of	unreinforced	masonry	members	under	simultaneous	vertical	and	

out-of-plane	lateral	loads.	

In	 this	 study,	 having	 masonry	 compressive	 strength,	 the	 stress-strain	

relationship	 is	constructed	using	a	model	similar	 to	 the	model	proposed	by	

(Priestley	 and	 Elder	 1983).	 This	 model	 has	 been	 shown	 to	 have	 good	

agreement	with	experimental	data	for	unconfined	masonry	and	for	masonry	

confined	 by	 3.1	 mm	 thick	 steel	 plates	 in	 the	 bed	 joints.	 However,	 for	 the	

study	herein,	it	is	assumed	that	the	maximum	stress	occurs	at	a	strain	equal	

to	 0.002	 compared	 to	 0.0015	 assumed	 by	 (Priestley	 and	 Elder	 1983).	 This	

was	 done	 because	 it	 has	 been	 shown	 more	 recently	 that	 the	 strain	 at	

maximum	 stress	 is	 around	 0.002	 for	 the	 currently	 used	 materials	 in	 the	

masonry	 industry	 (Drysdale	 and	Hamid	 2005).	 The	 curve	 consists	 of	 three	

portions:	 a	 parabolic	 rising	 curve,	 a	 linear	 falling	 branch,	 and	 a	 final	

horizontal	 plateau	 (constant	 stress)	 and	 is	 expressed	 in	 Equation	 2.4.	

Essentially,	compression	stress	increases	with	strain	(parabolic	rising	curve)	

and	arrives	at	a	maximum	right	after	 initiation	of	a	 failure	mode	which	 is	a	

combination	 of	 vertical	 splitting	 and	 shear/compression	 failure	 depending	

on	 the	 relative	 confinement	 of	 masonry	 prism	 (Priestley	 and	 Elder	 1983).	

The	 stress-strain	 curve	 takes	 zero	 slope	 around	maximum	 stress	 and	 falls	

rapidly	as	the	failure	mode	dominates	and	the	curve	flattens	afterwards.	

	
	

𝜎 =

𝑓Vp
2𝜖

0.002 −
𝜖

0.002
Q

	
,																							𝜖 < 0.002	

𝑓Vp 	 1 − 𝑍 𝜖 − 0.002 , 0.002 < 𝜖 < 𝜖6.Qy
	

0.2	𝑓Vp 																														,													𝜖Qzy < 𝜖												

	 (Eq.	2.4)	
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where	

	
	

𝑍 =
0.5

3 + 0.29	𝑓Vp
145	𝑓Vp − 1000

− 0.002
	 (Eq.	2.5)	

	
	

𝜖Qzy	is	also	shown	in	Figure	2-5.	

	

Figure	2-5:	stress-strain	relationship	for	masonry	

The	 flexural	 tensile	 strength	 normal	 to	 bed	 joints	 for	 solid	 and	 hollow	

masonry	depends	 on	 the	 tensile	 bond	between	unit	 and	mortar	 and	 varies	

from	0.2	to	1.75	MPa	(Drysdale	and	Hamid	2005).	In	the	research	presented	

here,	the	stress-strain	relationship	is	assumed	linear	up	to	the	flexural	tensile	

strength.	 The	 flexural	 tensile	 strength	 is	 considered	 0.4	 MPa	 for	 concrete	
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brick	and	block	and	0.65	MPa	for	grouted	hollow	block	and	brick	according	

Table	 5	 in	 CSA	 S304-2014.	 For	 enhanced	 numerical	 convergence,	 a	 post-

cracking	tensile	softening	branch	is	included	in	masonry	material	behaviour.	

The	 stress-strain	 relationship	 for	 reinforcement	 steel	 is	 assumed	 to	 be	

elastic-perfectly	 plastic	 as	 illustrated	 below.	 Statistical	 properties	 of	

reinforcement	steel	are	presented	in	Chapter	5.	

	

Figure	2-6:	stress-strain	relationship	for	reinforcement	steel	

	

2.5 EFFECT	OF	WORKMANSHIP	

Workmanship	 quality	 has	 a	 substantial	 effect	 on	 masonry	 strength	 and	

cannot	be	neglected.	Workmanship	relates	 to	construction	practices,	mason	

qualifications,	and	inspection.	When	the	quality	control	procedures	set	forth	

in	 the	 standards	 are	 followed,	 the	 member	 strength	 is	 close	 to	 what	 is	

observed	in	laboratory	tests;	however,	it	has	been	shown	when	the	masonry	

work	is	uninspected,	the	ultimate	strength	of	walls	is	much	less.	For	example,	
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research	has	shown	that	the	strength	of	uninspected	unreinforced	brick	walls	

tends	 to	be	on	 the	order	of	 two	 third	of	 the	 strength	of	 the	 inspected	ones	

(Brick	 Institute	 of	 America	 1969;	 Hendry	 1976).	 Some	 sources	 of	

workmanship	 and	 inspection	 uncertainty	 are:	 (a)	 the	 thickness	 and	

furrowing	 of	 mortar	 joints,	 (b)	 grouting	 procedures,	 (c)	 wall	 or	 column	

verticality	 (wall	 plumbness),	 (d)	 geometrical	 compliance	 of	 structural	

members	 with	 design	 values	 (fabrication	 tolerances),	 and	 (e)	 the	 level	 of	

quality	control	during	construction	(Brick	Institute	of	America	1969;	Hendry	

1976;	Turkstra	and	Ojinaga	1980).	

Also,	(Hendry	1990)	discussed	the	effect	of	different	site	factors	on	masonry	

performance	 and	 concluded	 that	 the	 following	 factors	 are	 the	 more	

important	ones	(in	order	of	relative	importance)	

• Incorrect	adjustment	of	suction	rate	of	masonry	units	

• Failure	to	fill	bed	joints	

• Bed	joints	of	excessive	thickness	

• Deviation	from	vertical	plane	alignment	

• Unfavourable	curing	conditions	

• Incorrect	proportioning	and	mixing	of	mortar	

• Disturbance	of	units	after	laying	

	

The	combined	effect	of	all	factors	could	result	in	a	wall	which	is	perhaps	half	

of	its	intended	strength	(Hendry	1990).	However,	site	provision	and	control	

procedures	will	result	in	strengths	close	to	those	built	in	the	laboratory	and	

therefore,	use	of	excessively	large	safety	factors	is	unnecessary.	

(Fyfe	et	al.	2000)	examined	and	quantified	the	effects	of	various	causes	of	the	

reduction	 in	 the	 strength	 of	masonry	 due	 to	workmanship	 quality	 through	

the	 application	 of	 a	 finite	 element	 model.	 They	 considered	 three	

workmanship	defects:	1)	misalignment	of	wall	panels.	2)	Excessive	thickness	
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of	 mortar	 joints.	 3)	 Excessive	 variations	 in	 mortar	 thickness.	 It	 was	

concluded	that	that	the	most	effective	defect	is	excessive	thickness	of	mortar	

joints	which	produces	a	safety	 factor	of	1.69	and	 if	all	 three	effects	were	to	

occur	together,	the	overall	value	of	the	specific	partial	factor	of	safety	will	be	

2.08.	

(Francis	 et	 al.	 1971)	 developed	 a	 quantitative	 mechanism	 for	 the	

compressive	 failure	 of	 brickwork	 and	 showed	 its	 capability	 to	 explain	 the	

influence	 of	 certain	 variables	 on	 compressive	 strength.	 It	 was	 shown	

experimentally	 and	 theoretically	 that	 the	 strength	 of	 four-brick	 prism	

declines	as	the	joint	thickness	increases	and	as	the	lateral	tensile	strength	of	

the	bricks	diminishes	in	relation	to	their	compression	strength.	The	effect	of	

some	other	well-known	parameters	 like	brick	 and	mortar	properties,	 bond	

strength,	and	joint	reinforcement	was	also	explained	in	quantitative	terms.	

As	 mentioned	 earlier,	 bed	 joint	 thickness	 affects	 the	 strength	 of	 masonry	

remarkably	 and	 directly	 reflects	 the	 level	 of	 workmanship.	 A	 study	 was	

performed	 at	 the	 University	 Texas,	 Austin	 (Grimm	1988)	 to	 determine	 the	

distribution	 of	 the	 coefficient	 of	 variation	 of	 bed	 joint	 thickness	 and	 head	

joint	 thickness,	 and	 also	 the	 deviation	 of	masonry	 head	 joint	 from	 vertical	

plumb	for	24	arbitrarily	selected	buildings.	The	ages	of	the	buildings	ranged	

from	1	 to	 92	 years.	 13	 of	 these	 buildings	were	 less	 than	17	 years	 old.	 The	

buildings	 were	 of	 different	 occupancy	 types,	 i.e.	 civic,	 residential,	

recreational,	 commercial,	 educational	 and	 religious.	 For	 each	 of	 the	 24	

buildings	the	thickness	of	30	bed	joints	and	30	head	joints	was	measured.	It	

was	observed	that	the	bed	joint	thickness	variation	is	better	controlled	than	

head	joint	thickness	variation.	As	shown	in	Figure	2-7,	the	33	percentiles	fell	

between	11.9%	and	15.5	%	for	coefficient	of	variation	of	bed	joint	thickness.	

Thus,	 it	 was	 concluded	 that	 if	 the	 coefficient	 of	 variation	 in	 bed	 joint	

thickness	was	less	than	12%,	that	aspect	of	masonry	workmanship	could	be	
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characterized	as	good,	above	16%	as	poor,	and	in	between	as	fair.	A	similar	

conclusion	was	made	about	head	joint	thickness	according	to	Figure	2-8,	i.e.	

if	 coefficient	 of	 variation	 was	 less	 than	 17%,	 that	 aspect	 of	 masonry	

workmanship	is	good,	greater	than	21%	as	poor,	and	between	17%	and	21%	

as	fair.	

	

Figure	2-7:	coefficient	of	variation	in	bed	joint	thickness	in	brick	masonry	

(Grimm	1988,	with	permission	from	ASCE)	
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Figure	2-8:	coefficient	of	variation	in	head	joint	thickness	in	brick	masonry	

(Grimm	1988,	with	permission	from	ASCE)	

Assuming	 a	 single	 level	 of	 workmanship	 (or	 inspection),	 as	 it	 is	 in	 S304,	

might	be	reasonable	only	if	appropriate	measures	were	taken	to	ensure	the	

assumed	workmanship	 quality;	 otherwise,	 in	 a	 relatively	weakly	 inspected	

construction	 practice,	 any	 well-inspected	 construction	 would	 be	 severely	

penalized.	Some	standards	and	authorities	for	masonry	construction,	e.g.	the	

British	code,	Eurocode	6,	or	the	Brick	Institute	of	America,	prescribe	different	

partial	 safety	 factors	 for	 different	 levels	 of	 quality	 controls	 (Turkstra	 and	

Ojinaga	 1980).	 Despite	 the	 fact	 that	 workmanship	 factor	 needs	 to	 be	

probabilistically	 identified	 and	 be	 applied	 accordingly	 to	 the	 reliability	

analysis,	this	factor	has	been	selected	based	on	engineering	judgement	in	all	

studies	 related	 to	 reliability	 of	 masonry	 construction	 in	 Canada	 (Turkstra	

1983;	Laird	et	al.	2005).	The	following	 is	some	of	 the	values	considered	for	

workmanship	effect	in	different	building	standards	and	guidelines.	
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Partial	factors	of	safety	for	material	strength	𝛾V	from	BS	5628	are	

𝛾V	 Category	of	construction	control	

Special		 Normal	

Category	of	

manufacturing	control	

Special	 2.5	 3.1	

Normal	 2.8	 3.5	

	

Partial	factors	of	safety	for	material	strength	𝛾V	from	EC6	are	

𝛾V	 Category	of	construction	control	

A		 B	 C	

Category	of	manufacturing	control	of	

masonry	units	

I	 1.7	 2.2	 2.7	

II	 2.0	 2.5	 3.0	

	

In	order	 to	 include	workmanship	effect	 in	 the	reliability	analysis,	 statistical	

characteristics	for	this	parameter	needs	to	be	known.	Based	on	experimental	

data,	three	sets	of	bias	coefficient	and	CoV	were	proposed	by	Turkstra	(1989)	

for	the	workmanship	factor:	1.0	and	0.1	for	well	 inspected,	0.8	and	0.15	for	

regularly	(moderately)	 inspected,	and	0.7	and	0.2	 for	uninspected	masonry.	

All	structural	work	in	Canada	is	required	by	the	provincial	building	codes	to	

have	periodic	review	during	construction.	The	level	of	review	has	to	be	such	

that	the	designer	is	satisfied	the	work	is	in	reasonable	conformance	with	the	

design.	 The	 structural	 engineer	 has	 to	 sign	 a	 form	 to	 that	 effect	 before	 the	

building	 can	 be	 occupied.	 This	 level	 of	 review	 would	 be	 referred	 to	 as	

“moderate	 work	 inspection”.	 The	 Canadian	 standard	 S304.1	 however	 does	

not	 recognize	 other	 levels	 of	 inspection.	 For	 the	 current	 study,	 a	 bias	

coefficient	 of	 0.85	 and	 a	 CoV	 of	 0.15	 and	 normal	 distribution,	 intended	 to	

represent	 regularly	 inspected	masonry,	were	used	 in	 the	analysis	based	on	
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the	values	proposed	by	Turkstra.	Since	mortar	furrowing	does	not	take	place	

in	block	masonry	construction	and	the	unit	height-to-mortar	thickness	ratio	

for	block	masonry	 is	 three	 times	 that	 for	brick	masonry,	 the	slightly	higher	

bias	 coefficient	 than	 that	 proposed	 by	 Turkstra	 is	 justified.	 In	 an	 earlier	

research,	 Ellingwood	 (1981)	 assumed	 a	 workmanship	 factor	 of	1.0	for	

inspected	 workmanship	 and	 “slightly	 conservatively”	0.6	for	 uninspected	

workmanship.	 Also,	 coefficients	 of	 variation	 of	0.11	and	0.15	were	 used	

respectively.	Nevertheless,	workmanship	factor	is	one	of	the	parameters	that	

needs	 to	 be	 investigated	 in	 detail	 to	 ensure	 the	 statistical	 information	 are	

representative	of	the	current	masonry	construction	practice	in	Canada.	

2.6 STATISTICAL	DATA	FOR	MASONRY	
CONSTRUCTION	

Resistance	 of	 a	 structural	member	 is	mainly	 a	 function	 of	 geometrical	 and	

material	properties	of	the	member.	Resistance	parameters	considered	in	this	

study	include	

• Masonry	compressive	strength	

• Wall	thickness	

• Reinforcement	location	and	yield	strength	

• Masonry	workmanship	factor	

• Rate-of-loading	factor	

Background	for	these	parameters	and	statistical	values	selected	for	them	are	

explained	in	Chapter	5.	
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2.7 STATISTICAL	DATA	FOR	LOADING	

The	most	comprehensive	recent	study	on	statistics	of	different	loading	types	

on	structures	in	Canada	was	reported	by	(Bartlett	et	al.	2003).	This	study	was	

done	 to	 support	 the	 adoption	 of	 companion-action	 format	 for	 load	

combinations	 in	 the	 2005	 edition	 of	 the	 National	 Building	 Code	 of	 Canada	

(NBCC)	and	also	the	fact	that	NBCC	was	going	to	specify	wind	and	snow	loads	

based	on	their	50	year	return	period	values.	The	study	summarized	statistics	

for	dead	load,	live	load	due	to	use	and	occupancy,	snow	load,	and	wind	load	

that	was	used	for	calibration,	and	a	following	paper	presented	the	calibration	

of	load	factors.	For	this	study	results	of	the	above-mentioned	paper	is	used	as	

it	will	be	seen	in	Chapter	5.	 	
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Chapter	3 	

Verification	of	the	Behavioural	Model	

GENERAL	

This	chapter	explains	the	basics	for	development	of	a	behavioural	model	for	

the	 analysis	 of	 non-slender	 load-bearing	 masonry	 walls;	 reinforced	 or	

unreinforced.	The	outcome	of	this	model	is	the	interaction	diagram	between	

axial	 compression	 and	 out-of-plane	 bending	 moment	 resisted	 by	 a	 given	

masonry	wall.	

This	model	 is	capable	of	capturing	material	nonlinearities,	 i.e.	post-cracking	

and	crushing	of	masonry	and	yielding	of	steel	reinforcement.	The	masonry	is	

presumed	 to	 be	 a	 homogeneous	material	with	 some	 tension	 strength.	 This	

model	is	then	verified	with	experimental	results	in	the	literature.	

3.1. STRESS-STRAIN	RELATIONSHIPS	

The	 masonry	 is	 treated	 as	 a	 homogeneous	 material	 whose	 mechanical	

characteristics	 such	 as	 compressive	 strength	 and	modulus	 of	 elasticity	 are	

obtained	 from	 tests	 on	 masonry	 prisms	 (assemblages	 of	 block	 units	 and	
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mortar).	 The	 stress-strain	 behaviour	 for	 masonry	 and	 reinforcement	 steel	

was	 presented	 in	 Chapter	 2.	 These	 relationships	 are	 both	 converted	 to	

MathematicaÒ	 language	 as	 functions	 and	 then	 embedded	 in	 the	main	 code	

for	 reliability	 analysis.	 The	 Mathematica	 code	 for	 steel	 reinforcement	

behaviour	 is	 written	 so	 that	 considering	 reinforcement	 in	 compression	 is	

optional.	 This	 is	 because	 CSA	 S304,	 allows	 compression	 in	 steel	

reinforcement	 only	 if	 it	 adequately	 tied.	 In	 this	 study,	 compression	 in	 steel	

reinforcement	is	ignored,	as	tying	reinforcement	is	not	the	normal	practice	in	

masonry	wall	construction.	

3.2. BEHAVIOURAL	MODEL	FOR	NON-SLENDER	
WALLS 

The	P-M	interaction	diagram	is	constructed	point	by	point	starting	from	pure	

bending.	The	failure	criterion	which	is	used	is	crushing	of	the	masonry	at	the	

extreme	compression	fibre	(Figure	3-1).	This	criterion	is	applied	by	assuring	

that	 the	 compression	 strain	 at	 the	 extreme	 compression	 fibre	 is	0.003	

(Drysdale,	Hamid	et	al.	1994).	

First,	 the	 corresponding	 neutral	 axis	 for	 pure	 bending	 is	 found	 by	

establishing	 the	 equilibrium	 of	 forces	 over	 the	 section.	 It	 is	 necessary	 to	

determine	whether	the	steel	reinforcement	yield	at	pure	bending.	

Then	the	other	points	of	 the	diagram	are	 found	by	gradually	 increasing	 the	

neutral	axis	distance	 from	 the	extreme	compression	 fibre	until	 the	point	of	

pure	 axial	 compression.	 At	 each	 step,	 the	 selected	 distance	 for	 the	 neutral	

axis	and	 the	selected	crushing	compression	strain	described	above	define	a	

strain	profile	over	the	section.	This	strain	profile	is	then	used	along	with	the	

stress-strain	relationships	to	work	out	 internal	stresses	and	 finally	external	

forces.	
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For	 the	 purpose	 of	 structural	 reliability	 analysis,	 another	 P-M	 interaction	

diagram	 has	 to	 be	 constructed	 based	 on	 expressions	 from	 the	 masonry	

standard,	 CSA	 S304.	 The	 procedure	 is	 basically	 the	 same;	 However,	

rectangular	stress	block	 is	used	 for	masonry	and	strength	reduction	 factors	

are	applied	on	masonry	and	reinforcement	steel.	Figure	3-1	briefly	illustrates	

the	 conversion	 of	 the	 real	 stress-strain	 behaviour	 to	 an	 equivalent	

rectangular	stress	block	with	the	same	resultant	force	vector.	Details	can	be	

found	in	the	literature	(Hatzinikolas,	Korany	2005).	

	
Figure	3-1:	Conversion	of	masonry	to	equivalent	rectangular	stress	block	

	

3.3. VERIFICATION	WITH	TEST	RESULTS 

Although	the	principle	of	this	behavioural	model	has	been	verified	elsewhere	

(e.g.	 Lu,	 M.	 2003)	 and	 only	 the	 masonry	 stress-strain	 behaviour	 has	 been	

improved	 in	 this	 study,	 the	 selected	 procedure	 was	 compared	 to	 some	

previously	 tested	 full-scale	 walls	 by	 constructing	 the	 corresponding	
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interaction	diagrams.	The	results	are	shown	in	Figures	3-2	to	3-7.	 In	all	 the	

following	figures	the	solid	line	represents	the	PM	interaction	diagram	based	

on	 the	 explained	 behavioural	 model.	 The	 dotted	 line	 represents	 the	 PM	

interaction	diagram	based	on	 S304	 expressions.	 Test	 results	 are	 illustrated	

by	points.	Specifications	for	the	test	specimens	are	given	in	the	figures.	

In	Figures	3-2,	3-3,	3-5	and	3-6,	the	difference	between	the	norms	(distance	

to	 origin)	 of	 experimental	 results	 and	 corresponding	 points	 on	 the	

interaction	 diagram	 with	 the	 same	 eccentricities	 are	 within	 5%.	

Experimental	 points	 in	 Figures	 3-2	 to	 3-4	 and	 3-7	 lie	 in	 the	 compression-

controlled	part	of	the	diagram	and	points	in	Figures	3-5	and	Figure	3-6	lie	in	

the	 tension-controlled	 part	 of	 the	 diagram.	 For	 Figures	 3-4	 and	 3-7,	 the	

prediction	errors	are	approximately	35%	and	50%	but	still	conservative.	

	

Figure	3-2:	Comparison	between	test	results	by	(Yokel,	Mathey	et	al.	1971)	
and	the	behavioural	model	used	in	this	study		
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Figure	3-3:	Comparison	between	test	results	by	(Aridru	1997)	and	the	
behavioural	model	used	in	this	study		

	

	

Figure	3-4:	Comparison	between	test	results	by	(Aridru	1997)	and	the	
behavioural	model	used	in	this	study		
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Figure	3-5:	Comparison	between	test	results	by	(Fereig,	Hamid	1987)	and	
the	behavioural	model	used	in	this	study		

	

	
Figure	3-6:	Comparison	between	test	results	by	Athey,	J.	(1982)	and	the	

behavioural	model	used	in	this	study		
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Figure	3-7:	Comparison	between	test	results	by	Hu	(2006)	and	the	

behavioural	model	used	in	this	study		

	

Figure	3-8	shows	the	norm	ratio	of	experimental	results	to	predicted	values	

from	Figure	3-2	to	Figure	3-7	along	with	some	other	experimental	results	for	

different	eccentricity	ratios	(Yokel,	Dikkers	1971,	Aridru	1997,	Hu	2006,	

Olatunji,	Warwaruk	et	al.	1986).	The	logarithmic	scale	is	chosen	for	

eccentricity	ratio	to	include	cases	with	large	eccentricities.	Ratios	for	cases	of	

pure	bending	are	also	included	(Fereig,	Hamid	1987,	Sasanian	2009).	The	

average	ratio	of	experimental	results	to	the	results	from	the	introduced	

model	is	1.17	with	a	coefficient	of	variation	of	0.215.	Taking	into	account	the	

variability	of	experimental	results	for	masonry	walls,	even	for	walls	with	

similar	material	and	geometrical	properties,	the	selected	behavioural	model	

demonstrates	adequate	consistency	and	has	been	used	in	several	studies.	In	

this	study,	this	model	is	embedded	into	reliability	analysis	algorithm.	

140mm	concrete	block	wall,	𝜌% = 0.0018,	

𝑓) = 17.8	MPa,	𝑓0 = 447,	

wall	breadth=790mm	
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Figure	3-8:	Comparison	between	test	results	by	several	investigations	and	
the	behavioural	model	used	in	this	study	

3.4. BEHAVIOURAL	MODEL	FOR	MASONRY	WALLS	
CONSIDERING	SLENDERNESS	EFFECTS	

Masonry	 load-bearing	walls	usually	transmit	concentric	or	eccentric	gravity	

loads	combined	with	lateral	loads	due	to	wind	or	earthquakes.	For	relatively	

slender	members,	strength	is	reduced	by	secondary	moment	caused	by	axial	

load	 acting	 through	 a	 deflected	 shape.	 For	 the	 case	 of	 masonry	 walls,	 low	

tensile	 strength	 of	 masonry	 causes	 tension	 cracking	 which	 results	 in	

variation	of	effective	sectional	properties,	like	flexural	rigidity	(𝐸𝐼),	over	the	

member	height.	

There	 have	 been	 many	 studies	 on	 the	 subject	 of	 stability	 of	 masonry	

members	 where	 usually	 specific	 loading	 conditions	 and	 particular	

mechanical	 properties	 for	 masonry	 were	 considered	 (Hatzinikolas,	

Longworth	 et	 al.	 1978,	 Frisch-Fay	 1975,	 Sahlin	 1971,	 Maksoud,	 Drysdale	
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1993).	With	complexities	related	to	the	interaction	of	geometric	and	material	

nonlinearities,	it	has	been	preferred	to	work	out	simplified	approaches	which	

have	 limited	 application.	Most	 analytical	 equations	 are	 for	 single	 curvature	

under	eccentric	compressive	load.	Although	finite	element	method	is	a	more	

comprehensive	 and	 still	 accurate	 method,	 there	 are	 approximate	 methods	

like	P-Delta	and	moment	magnifier	method	which	because	of	their	simplicity	

can	be	incorporated	more	suitably	in	a	reliability	analysis;	where	an	iterative	

method	 is	 used	 and	 a	 time-exhaustive	 behavioural	 model	 like	 FEM	 is	 not	

preferred.	

In	CSA	S304-2014,	a	moment-magnifier	method	is	introduced	to	account	for	

secondary	moment	effect	by	applying	a	magnification	factor	to	an	equivalent	

uniform	primary	moment.	

	 	

𝑀<=>= = 𝑀<?
𝐶)

1 −
𝑃<
𝑃BC

		but	not	less	than	𝑀<?	 (Eq.	3.1)	

	 	

where	

𝑀<?:	the	maximum	factored	primary	moment	of	the	member	due	to	the	end	

factored	moments	and	lateral	loads,	N.mm	

𝐶):	factor	relating	actual	moment	diagram	to	an	equivalent	uniform	moment	

diagram	and	calculated	as	follows	

𝐶) = 0.6 + 0.4
𝑀P

𝑀Q
		but	not	less	than	0.4	

(Eq.	3.2)	
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The	ratio	𝑀P/𝑀Q		shall	be	determined	

(a)	when	calculated	eccentricities	are	greater	than	0.1𝑡,	by	calculating	

end	moments;	or	

(b)	if	calculations	show	that	there	is	essentially	no	moment	at	both	ends	

of	a	compression	member,	by	taking	the	ratio	𝑀P/𝑀Q	equal	to	1.0.	

Also	where	lateral	loads	occur	between	the	ends	of	the	member	such	that	

they	contribute	more	than	50%	of	the	factored	moment	at	the	critical	

section,	the	ratio	of	𝑀P/𝑀Q	shall	be	taken	as	equal	to	1.0.	

𝑃BC =
𝜋Q𝜙(𝐸𝐼)Y<<

1 + 0.5𝛽[ 𝑘ℎ Q 	

This	 method	 accounts	 for	 masonry	 tensile	 cracking,	 by	 calculating	 an	

effective	flexural	rigidity,	𝐸𝐼Y<<	to	modify	the	critical	Euler	buckling	load.	This	

method	 has	 the	 advantage	 of	 simplicity	 and	 is	 preferable	 to	 use.	 However,	

there	 is	 some	uncertainty	 and	 conservatism	as	 to	how	 to	 include	 effects	 of	

slenderness,	 tensile	 cracking,	 reinforcement	 and	 loading	 conditions	 for	 the	

calculation	 of	 critical	 buckling	 load.	 According	 to	 CSA	 S304-2014,	𝐸𝐼Y<<	is	

calculated	as	follows.	

For	unreinforced	masonry	 	

(𝐸𝐼)Y<< = 0.4𝐸)𝐼>	
(Eq.	3.3)	

For	reinforced	masonry	
	

(𝐸𝐼)Y<< = 𝐸) 0.25𝐼> − (0.25𝐼> − 𝐼BC)(
𝑒 − 𝑒_
2𝑒_

) 	
	

and	𝐸)𝐼BC ≤ (𝐸𝐼)Y<< ≤ 0.25𝐸)𝐼>	 	
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𝜙:	resistance	factor	for	member	stiffness	used	in	the	determination	of	

slenderness	effects	on	the	capacity	of	the	masonry.	(𝜙Y = 0.65	for	

unreinforced	masonry	and	𝜙YC = 0.75	for	reinforced	masonry)	

𝛽[:	ratio	of	factored	dead	load	moment	to	total	factored	moment	

𝑘:	effective	length	factor	for	compression	member	

ℎ:	unsupported	height	of	a	wall	

𝐸):	modulus	of	elasticity	of	masonry	may	be	taken	as	850𝑓)	but	not	greater	

than	20000	MPa	

𝐼>:	moment	of	inertia	of	the	effective	cross-sectional	area	of	a	section	about	

its	centroidal	axis,	mma	

𝐼BC:	the	transformed	moment	of	inertia	of	the	cracked	section	calculated	

ignoring	the	effects	of	axial	load,	mma	

𝑒:	𝑀<? 𝑃< ,	mm	

𝑒_:	𝑆Y 𝐴Y ,	mm	

𝑆Y:	Section	modulus	of	the	effective	cross-sectional	area	(𝐴Y),	mmd	

For	sake	of	reliability	analysis	for	slender	walls,	a	reliable	behavioural	model	

is	 required.	 Moment	 magnifier	 method	 has	 been	 shown	 to	 reveal	 reliable	

results	 provided	 that	 an	 appropriate	 effective	 flexural	 rigidity	(𝐸𝐼)Y<<	is	

utilized	 (MacGregor	 et.	 al.	 1975).	With	 the	aim	of	proposing	more	accurate	

values	 for	 effective	 flexural	 rigidity	(𝐸𝐼)Y<< ,	 a	 computerized	 numerical	

method	 was	 developed	 by	 (Liu,	 Dawe	 2003)	 to	 study	 the	 behaviour	 of	

masonry	walls	with	a	wide	range	of	physical	characteristics	and	subjected	to	

various	loading	conditions.	The	model	was	verified	by	comparison	of	results	

with	test	data	obtained	from	the	same	research	and	other	research	reported	

in	 the	 literature.	 The	 computer	model	was	 then	 implemented	 to	 conduct	 a	

comprehensive	 parametric	 study	 to	 investigate	 the	 effects	 of	 various	
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parameters	on	the	strength	and	behaviour	of	masonry	walls.	Load–deflection	

histories,	 ultimate	 load	 and	 moment	 capacities,	 and	(𝐸𝐼)Y<<	values	 at	 the	

time	of	failure	were	obtained	using	the	analytical	method.	These	results	were	

compared	with	those	based	on	the	moment-magnifier	method	recommended	

by	 CSA-S304.1-M94	 which	 for	 calculation	 of	(𝐸𝐼)Y<<	are	 the	 same	 as	 those	

based	on	CSA-S304.1-2014.	 It	was	concluded	that	CSA-S304.1-M94	tends	to	

underestimate	(𝐸𝐼)Y<< 	values	 for	 reinforced	 walls	 and	 this	 leads	 to	 a	

conservative	design	over	a	range	of	parameters.	The	following	lower	bound	

bilinear	 limit	 for	 the	 effective	 rigidity	 of	 reinforced	 masonry	 walls	 was	

established	based	on	about	500	computer	model	tests.	

For	0.0 ≤ 𝑒 𝑡 ≤ 0.4	
	

(𝐸𝐼)Y<< 𝐸)𝐼> = 0.80 − 1.95 1.00 − 0.01 ℎ 𝑡 𝑒/𝑡 ,	
(Eq.	3.4)	

For	0.4 < 𝑒 𝑡	
	

(𝐸𝐼)Y<< = 0.022 1.00 + 0.35 ℎ 𝑡 	
(Eq.	3.5)	

	

For	structural	reliability	analysis	of	slender	masonry	walls	it	is	suggested	to	

use	moment	magnifier	method	and	using	the	expressions	Equations	3.4	and	

3.5	for	effective	flexural	rigidity.	

Alternative	to	using	moment-magnifier	method	with	modified	parameters	to	

yield	more	accurate	results,	is	using	finite	element	method,	e.g.	the	procedure	

used	by	Liu,	Dawe	(2003).	Using	a	numerical	method	such	as	finite	element	is	

assured	 to	 provide	 accurate	 results	 at	 the	 expense	 of	 more	 computation	

effort.	 In	 Chapter	 6,	 both	 moment	 magnifier	 method	 and	 finite	 element	
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method	 are	 suggested	 to	 extend	 reliability	 analysis	 of	 this	 investigation	 to	

walls	with	slenderness	effects.	

3.5. CONCLUSION	

The	selected	behavioural	model	was	presented	in	form	of	a	computer	code	in	

MathematicaÒ	 and	 was	 verified	 with	 experimental	 results	 in	 this	 Chapter	

and	two	methods	are	suggested	to	be	used	for	walls	with	slenderness	effects.	

The	expressions	proposed	by	(Liu,	Dawe	2003)	for	effective	flexural	rigidity	

utilized	 in	moment	magnifier	method	 provides	 a	working	 hypothesis	 for	 a	

behavioural	model	 for	masonry	walls.	 It	should	be	noted	that	 the	reliability	

analyses	will	 be	 performed	 for	walls	 constructed	with	 filled	masonry	 units	

where	 the	 limit	 state	 equations	 are	 relatively	 simple.	 The	 good	 agreement	

between	the	behaviour	of	 laboratory-	tested	partially	grouted	walls	and	the	

predictions	of	strength	suggests	that	the	conclusions	drawn	from	a	reliability	

analysis	 of	 partially	 grouted	 walls	 would	 be	 similar	 (Ellingwood,	 Tallin	

1985).	Extending	 the	analysis	 to	partially-grouted	walls	will	 strengthen	 the	

results.	 	
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Chapter	4 	

Sensitivity	Analysis	

GENERAL	

Sensitivity	of	the	P-M	interaction	diagram	to	different	parameters	is	studied	

in	this	chapter.	One	of	the	parameters	is	the	method	used	to	construct	the	P-

M	 interaction	 diagram;	 namely,	 equivalent	 rectangular	 stress	 block	 versus	

using	 the	 real	 stress-strain	 behaviour.	 Other	 parameters	 include	 steel	

reinforcement	 area,	 wall	 thickness,	 masonry	 compressive	 strength,	 steel	

yield	stress	and	maximum	usable	strain	in	masonry.	

4.1 P-M	INTERACTION	DIAGRAM	

4.1.1 Equivalent	Rectangular	Stress	Block	

According	to	CSA	S304-2014,	the	interaction	diagram	for	reinforced	masonry	

walls	 under	 axial	 compression	 and	 out-of-plane	 bending	 moment,	 may	 be	

based	on	any	masonry	stress-strain	relationship	that	results	in	prediction	of	

strength	 in	 substantial	 agreement	 with	 results	 of	 comprehensive	 tests	

(§10.2.5).	However,	CSA	S304-2014	also	presents	the	equivalent	rectangular	

66



~	4-2	~	

masonry	stress	block	as	a	satisfactory	tool	for	working	out	the	wall	strength	

(§10.2.6)	and	this	method	 is	generally	used	 in	design	approach.	Details	and	

examples	of	 this	method	can	be	 found	 in	CSA	S304-2014	and	(Hatzinikolas,	

Korany	2005).	Another	more	realistic	stress-strain	behaviour	for	masonry	is	

based	 on	 the	 relationship	 proposed	 by	 (Priestley,	 Elder	 1983)	 and	 the	

maximum	 usable	 compression	 strain	 for	 masonry	 defined	 by	 (Drysdale,	

Hamid	2005).	Details	for	this	model	were	illustrated	in	Chapter	3,	section	3.1.	

In	order	to	construct	the	interaction	diagram	for	a	given	section,	the	first	step	

is	 to	 find	 the	 neutral	 axis	 corresponding	 to	 pure	 bending	moment.	 This	 is	

done	by	equating	the	compression	force	in	masonry	and	the	tension	force	in	

the	 reinforcement	 in	 the	case	of	 reinforced	masonry	wall.	For	unreinforced	

masonry,	the	tension	force	results	from	tension	strength	of	the	masonry.	If	no	

tension	 strength	 was	 considered	 for	 masonry,	 the	 strength	 of	 the	

unreinforced	 wall	 under	 pure	 bending	 is	 considered	 to	 be	 zero.	 The	

compression	 and	 tension	 forces	 are	 calculated	based	on	 a	 presumed	 strain	

profile	at	failure	and	the	stress-strain	behaviour	of	the	materials.	The	strain	

profile	 at	 failure	 is	 usually	 established	 by	 assuming	 a	 maximum	 value	 for	

usable	strain	masonry	under	compression.	

After	finding	the	neutral	axis	corresponding	to	pure	bending	and	the	strength	

of	the	wall	under	pure	bending,	the	distance	between	the	neutral	axis	and	the	

compression	face	is	increased	step	by	step.	For	each	step,	the	corresponding	

axial	force	and	bending	moment	about	the	mid-section	can	be	found	by	using	

the	stress-strain	behaviour	of	the	materials.	Therefore,	for	each	step	a	pair	of	

axial	force	and	bending	moment	is	worked	out	and	by	plotting	these	points,	

P-M	interaction	diagram	is	constructed.	

Figures	 4-1	 and	 4-2	 provide	 a	 comparison	 between	 the	 P-M	 interaction	

diagrams	based	on	the	above	mentioned	stress-strain	behaviours.	The	solid	
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curves	correspond	to	the	equivalent	rectangular	stress	block	and	the	dotted	

curves	 correspond	 to	 the	 stress-strain	 behaviour	 proposed	 by	 (Priestley,	

Elder	1983).	Values	 for	axial	 force	and	bending	moment	are	normalized	by	

the	capacity	of	the	wall	under	axial	load	only	and	pure	bending	resistance	of	

the	 wall	 according	 to	 the	 equivalent	 rectangular	 stress	 block.	 No	 material	

strength	reduction	factor	is	used	for	masonry	and	reinforcement	steel	as	the	

goal	 is	 the	comparison	between	 these	behavioural	models.	The	comparison	

between	 two	 methods	 is	 done	 for	 different	 reinforcement	 ratios,	 wall	

thicknesses	 and	 masonry	 strengths.	 It	 is	 apparent	 that	 in	 compression	

controlled	zone,	the	strength	defined	by	CSA	S304	is	conservative	compared	

to	 the	 strength	predicted	by	 the	behavioural	model	proposed	 in	 this	 study;	

about	6	to	15	percent.	However,	in	tension	controlled	zone,	the	difference	is	

negligible.	 This	 is	 expected	 since	 in	 the	 tension-controlled	 zone,	

reinforcement	 has	 yielded	 and	 the	 tension	 force	 is	 equal	 for	 both	 cases	

regardless	 of	 the	 masonry	 behaviour.	 Also,	 because	 the	 compression	 zone	

becomes	smaller	as	we	approach	to	pure	bending	the	difference	in	moment	

arm	 becomes	 less	 for	 two	 methods	 and	 therefore,	 the	 effect	 of	 the	 stress	

block	shape	becomes	 less	 significant.	Moreover,	 it	 should	be	noted	 that	 the	

coefficients	 for	 equivalent	 rectangular	 stress	 block	 are	 calibrated	 for	 pure	

bending	and	the	difference	between	two	methods	vanishes	approaching	pure	

bending. 
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Figure	4-1:	Different	behavioural	models	(CSA	S304	and	proposed	model)	
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Figure	4-2:	Different	behavioural	models	(CSA	S304	and	proposed	model)	

cont’d	
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4.2 SENSITIVITY	ANALYSIS	

4.2.1 Steel	reinforcement	area	

Figure	4-3	shows	the	effect	of	10%	change	in	steel	reinforcement	area	on	the	

P-M	 interaction	 diagram.	 While	 this	 effect	 is	 only	 present	 in	 the	 tension-

controlled	portion	of	the	diagram,	since	rebar	are	factory	products,	not	much	

deviation	 is	 expected	 for	 this	 parameter	 in	 real	 world	 construction.	 The	

difference	 between	 the	 curves	 emerge	 at	 a	 point	 where	 the	 steel	

reinforcement	starts	 to	be	 in	 tension	at	 failure	which	 is	bit	before	balanced	

point. 

4.2.2 Wall	thickness	

As	 shown	 in	 Figure	 4-4,	 the	 effect	 of	 variation	 in	 wall	 thickness	 on	 wall	

strength	 is	 significant.	 However,	 in	 the	 case	 of	 concrete	 masonry	 walls,	

masonry	blocks	are	factory	made	and	10%	variation	is	not	expected.	As	will	

be	 discussed	 in	 Chapter	 5,	 the	 coefficient	 of	 variation	 for	wall	 thickness	 is	

about	0.01.	
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Figure	4-3:	Effect	of	10%	change	in	reinforcement	area	
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Figure	4-4:	Effect	of	10%	change	in	wall	thickness	
	

4.2.3 Steel	yield	stress	

Figure	4-5	shows	the	effect	of	variation	in	steel	yield	stress	on	the	interaction	

diagram.	As	expected,	there	are	no	effect	on	the	compression-controlled	part.	

Also,	 in	 the	 tension-controlled	part	 the	effect	 is	not	significant.	As	 it	will	be	

shown	in	Chapter	5,	reinforcement	steel	is	factory-made	and	the	variation	in	

steel	yield	stress	is	much	less	than	10%.	As	the	graphs	show	expectedly,	the	

curves	diverge	exactly	after	balanced	point;	where	steel	reinforcement	would	

have	yielded	at	failure	instance.	
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Figure	4-5:	steel	yield	stress	

	

4.2.4 Masonry	compressive	strength	

Masonry	 compressive	 strength,	𝑓",	 is	 an	 important	 parameter	 in	 masonry	

construction.	 As	 it	 is	 illustrated	 in	 Figure	 4-6,	 the	 strength	 of	 the	 wall	 for	

compression-controlled	 portion	 is	 directly	 related	 to	masonry	 compressive	

strength.	 However,	 in	 the	 tension-controlled	 portion	 of	 the	 interaction	

diagrams,	 variation	 in	𝑓"	has	 no	 effect	 on	 the	 strength	 as	 it	 is	 expected.	

Statistical	data	about	uncertainty	in	masonry	strength	is	given	in	Chapter	5.	 	
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Figure	4-6:	Effect	of	10%	change	in	masonry	compression	strength	
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4.3 CONCLUSION	

The	 effect	 of	 changes	 in	 important	 parameters	 on	 P-M	 interaction	 diagram	

was	 investigated	 in	 this	 chapter.	 These	 parameters	 include	 steel	

reinforcement	 area,	 wall	 thickness,	 steel	 yield	 stress	 and	 masonry	

compressive	strength.	Additionally,	 the	effect	of	 the	type	of	 the	behavioural	

model	 was	 examined.	 For	 each	 parameter	±10%	 of	 change	 was	 used.	

However,	 the	 real	 extent	 for	uncertainty	 for	 each	parameter	 is	 reviewed	 in	

chapter	5.	These	diagrams	also	serve	as	a	verifying	tool	 for	the	behavioural	

model	selected	in	terms	of	comparison	to	what	is	expected	in	response	to	a	

parameter	 change.	 Table	 4–1	 shows	 the	 summary	 of	 the	 effectiveness	 of	

different	parameters	on	different	part	of	the	interaction	diagram.	

Table	4–1		Summary	of	the	sensitivity	analysis		

Parameter	±10%	
Influence	Zone	

Compression-
Controlled	

Tension-
Controlled	

Steel	Reinforcement	area	(ϕ%)	 Partly	 ✓	
Wall	Thickness	(t)	 ✓	 ✓	
Masonry	Compressive	Strength	(f() )	 ✓	 Partly	
Steel	Yield	Stress	(f*)	 -----	 ✓	
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Chapter	5 	

Structural	Reliability	of	Non-Slender	Masonry	
Walls	under	Combined	Axial	&	Transverse	Loads	

GENERAL	

This	chapter	illustrates	the	approach	of	structural	reliability	analysis	and	its	findings.	First,	

the	 ultimate	 limit	 state	 functions	 are	 defined	 for	 different	 load	 combinations	 and	 the	

corresponding	 random	 parameters	 are	 introduced	 for	 both	 resistance	 and	 loading	

expressions.	 Statistical	 information	 for	 some	 random	 parameters,	 such	 as	 masonry	

compressive	 strength,	 are	derived	by	 establishing	databases	 and	working	out	probability	

density	distributions	and	 for	 the	 remaining	 random	parameters,	 statistical	 information	 is	

adopted	 from	 recent	 reliable	 literature.	 Consequently,	 results	 for	 structural	 reliability	

analysis	are	illustrated	for	different	cases.	

5.1 STRUCTURAL	RELIABILITY	APPROACH	

As	mentioned	in	Chapter	2,	the	first	order	reliability	method	(FORM)	(Madsen	et	al.	1986;	

Nowak	2000)	was	used	to	assess	the	safety	levels	of	non-slender	masonry	walls	designed	to	

the	current	Canadian	masonry	standard	S304.1-14	under	eccentric	axial	compression.	This	

method	 considers	 the	 distribution	 type	 for	 all	 involved	 parameters	 in	 addition	 to	 their	
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mean	 and	 coefficient	 of	 variation.	 Rackwitz-Fiessler	 procedure	 (Rackwitz	 and	 Fiessler	

1978)	was	applied	on	the	ultimate	limit	state	functions	described	in	the	following	section	to	

determine	 the	 Hasofer-Lind	 reliability	 index,	𝛽,	 (Nowak	 2000)	 which	 is	 a	 measure	 of	

probability	of	failure	for	the	considered	time	period.	Unlike	the	mean	value	reliability	index,	

the	 Hasofer-Lind	 reliability	 index	 is	 calculated	 at	 a	 point	 known	 as	 the	 “design	 point”	

instead	of	 the	mean	values	 and	 this	 guarantees	 that	 the	 evaluated	 reliability	 index	 is	 the	

lowest	 value	 possible	 for	 the	 limit	 state	 function.	 Since	 the	 design	 point	 is	 not	 known	 in	

advance,	 an	 iterative	 approach	 is	 required.	 As	 recommended	 by	 JCSS	 (2001),	 for	 using	

FORM/SORM,	 one	 should	 give	 attention	 to	 the	 selection	 of	 initial	 points	 for	 the	 iterative	

algorithm.	Therefore,	in	this	current	study,	a	grid	of	initial	points	covering	realistic	ranges	

for	 each	 variable	 was	 considered	 to	 make	 sure	 of	 attaining	 design	 point	 with	 minimum	

reliability	 index.	Realistic	 ranges	of	 load	 type	 ratios	are	considered;	 for	 live-to-dead	 from	

0.20	 to	4.00,	 for	 snow-to-dead	 from	0.25	 to	6.00	and	 for	wind-to-dead	 from	0.25	 to	2.50.	

Also	different	eccentricities	ranging	from	axial	force	only	to	pure	out-of-plane	bending	were	

considered.		

Calculated	reliability	indices	were	then	compared	to	the	target	reliability	index	(𝛽")	which	

is	a	function	of	a	range	of	factors	including	the	type	of	failure,	estimated	cost	of	failure	and	

existing	 levels	 of	 safety	 (Lawrence	 and	 Stewart	 2009)	 and	 serves	 as	 an	 approximate	

measure	of	the	acceptable	probability	of	failure	(CSA	S408-11	2011).	

It	was	mentioned	in	Chapter	2	that	Table	B.1	of	the	Canadian	standard	S408:	Guidelines	for	

the	Development	of	Limit	States	Design	(CSA	S408-11	2011)	suggests	that	𝛽" = 4.00	should	

be	used	 for	normal	 importance	buildings	with	a	sudden	(brittle)	 type	of	 failure,	and	𝛽" =

3.50	should	be	the	minimum	index	for	a	gradual	(ductile)	type	of	failure.	It	should	be	noted	

that	 these	values	are	 suggested	 for	a	30-year	 reliability	 analysis.	As	𝛽	is	 inversely	 related	

with	probability	of	 failure,	 lower	values	are	expected	 for	a	50-year	reliability	analysis.	By	

calculating	the	probability	of	failure	for	both	30-year	and	50-year	time	periods	in	terms	of	

the	 probability	 of	 failure	 in	 a	 given	 year,	 the	 equivalent	 values	 for	 50-year	 reliability	
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analysis	 were	 calculated	 as	𝛽" = 3.88 	and	𝛽" = 3.36 	for	 brittle	 and	 ductile	 failure,	

respectively.	

As	an	instance	for	using	target	reliability	indices,	Bartlett	(2007)	discussed	a	rationale	for	

increasing	the	material	resistance	factor	 for	concrete	 in	compression	from	0.60	to	0.65	 in	

the	 2004	 edition	 of	 the	 Canadian	 concrete	 design	 standard	 A23.3	 (CSA-A23.	 3-04	 2004).	

The	reliability	index	was	calculated	for	the	0.65	resistance	factor	and	found	to	be	in	the	3.9‒	

4.0	range	for	combinations	involving	dead	plus	live	or	dead	plus	wind	load.	It	is	of	note	that	

the	reliability	indices	associated	with	dead	load	plus	snow	load	combination	tend	to	be	less	

than	the	target	value,	as	low	as	3.2,	regardless	of	the	type	of	structural	material	used. 

5.2 ULTIMATE	LIMIT	STATE	FUNCTION	FOR	DEAD	LOAD	ONLY	

For	 any	 masonry	 wall	 cross	 section,	 an	 axial	 load	 versus	 out-of-plane	 bending	 (P-M)	

interaction	 diagram	 can	 be	 constructed	 to	 represent	 the	 section’s	 true	 strength	 under	

different	axial	 load	and	bending	moment	combinations,	 i.e.	different	virtual	eccentricities.	

This	interaction	diagram	is	based	on	the	geometric	dimensions	of	the	wall	section	and	the	

mechanical	 behaviour	 of	 the	materials	 (masonry	 and	 reinforcement	 if	 any)	 and	 does	 not	

include	any	second	order	effect.	

For	 a	 given	 load	 combination	 comprising	 of	 an	 axial	 load	 and	 a	 bending	 moment,	 both	

assumed	to	be	from	dead	load,	(𝑃, ,	𝑀,),	the	wall	design	would	be	safe	by	ascertaining	that	

(𝑃, ,	𝑀,)	is	within	the	true	interaction	diagram	as	shown	in	Figure	5-1.	

To	 assess	 the	 reliability	 level	 for	 this	 design,	 one	 can	 compare	 the	 norms	 (distances	 to	

origin)	 of	 the	 load	 combination	 point,	 (𝑃, ,	𝑀,),	 to	 the	 corresponding	 point	 on	 the	 true	

strength	interaction	diagram,	(𝑃. ,	𝑀.),	for	the	same	virtual	eccentricity,	i.e.	𝑀./𝑃. 	= 𝑀,/𝑃,	

as	expressed	in	Eq.	5-1.	
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𝐺 𝒙 = 	 𝑀.
3 + 𝑃.3 − 𝑀,

3 + 𝑃,3	 (Eq.	5-1)	

	
	

	

	
Figure	5-1:	Typical	interaction	diagram	showing	different	points	for	a	given	eccentricity	(𝑒),	true	
resistance	(point	A),	true	load	(point	B),	nominal	resistance	(point	C)	and	nominal	load	(point	D)	

which	is	derived	from	point	C	

S304	interaction	diagram	
(𝑃.,9,𝑀.,9)	

(𝑃,,9,𝑀,,9)	

(𝑃.,𝑀.)	

(𝑃,, 𝑀,)	

A	

B	

C	

D	
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Where,	𝐺(𝒙)	is	 the	 limit	 state	 function	 and	 is	 a	 function	 of	 all	 involved	 random	variables	

(𝑃.,𝑀., 𝑃,	𝑎𝑛𝑑	𝑀,)	 represented	 by	 the	 vector	𝒙.	 For	 this	 case,	𝑀. ,	𝑃. ,	𝑀,	and	𝑃,	are	 the	

random	variables.	 It	 is	 important	 to	note	 that	𝑃,	and	𝑀,	are	not	statistically	 independent.	

Dead	load	is	a	gravitational	load	and	any	present	bending	moment	would	be	the	axial	force	

(in	 full	 or	 in	 part)	 multiplied	 by	 an	 eccentricity.	 Therefore,	𝑃, 	and	𝑀, 	are	 linearly	

correlated.	Also,	 as	will	 be	discussed	 later,	 statistical	 information	 for	 different	 load	 types	

include	 bias	 mean,	 coefficient	 of	 variation	 and	 distribution	 type	 and	 therefore	 nominal	

values	for	loads	for	each	case	is	calculated	assuming	that	the	factored	nominal	load	effect	is	

exactly	equal	to	the	strength	of	the	wall	calculated	according	to	CSA	S304.	

5.3 ULTIMATE	LIMIT	STATE	FUNCTION	FOR	COMBINED	LOADS	

For	 load	 combinations	 such	 as	 dead	 load	 plus	 live	 load	 or	 dead	 load	 plus	 snow	 load,	 a	

similar	 approach	 can	 be	 taken.	 The	 case	 of	 dead	 load	 plus	 live	 load	 is	 explained	 in	 the	

following	section.	

For	the	load	combination	of	dead	load	plus	live	load,	the	limit	state	function	is	expressed	as	

	
	

𝐺 𝒙 = 𝑀.
3 + 𝑃.3 − (𝑀, +𝑀>)3 + (𝑃, + 𝑃>)3	 (Eq.	5-2)	

	
	

For	a	wall	section	with	known	material	properties	and	dimensions,	the	nominal	resistance	

(𝑃.,9,	𝑀.,9)	 can	 be	 worked	 out	 for	 any	 virtual	 eccentricity	 which	 represents	 the	 wall	

strength	capacity	according	to	the	design	standard.	Assuming	that	 the	wall	 is	designed	so	

that	 the	 factored	resistance	 is	equal	 to	 the	 factored	 loading	as	per	 (NBCC	2015)	 for	dead	
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load	and	live	load	with	load	factors	of	1.25	and	1.50,	respectively,	nominal	resistance	can	be	

expressed	as:	

	
	

𝑃.,9 = 1.25	𝑃,,9 + 1.50	𝑃>,9	

𝑀.,9 = 1.25	𝑀,,9 + 1.50	𝑀>,9	
(Eq.	5-3)	

	
	

Each	 of	 the	 dead	 and	 live	 load	 has	 its	 own	 statistical	 properties.	 Therefore,	 in	 order	 to	

calculate	the	nominal	load	values	on	the	right	hand	side	of	Eq.	5-3	in	terms	of	𝑃.,9	and	𝑀.,9,	

it	 is	 necessary	 to	 assume	 that	 the	 ratios	between	𝑃>,9	and	𝑃,,9	and	between	𝑀>,9	and	𝑀,,9	

are	known	as	expressed	below.	

	
	

𝑃>,9
𝑃,,9

= 𝛼B	

𝑀>,9

𝑀,,9
= 𝛼C 	

(Eq.	5-4)	

	
	

Substituting	in	Eq.	5-3	and	rearranging,	it	follows	that,	
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𝑃,,9 =
𝑃.,9

1.25 + 1.50𝛼B
	

𝑃>,9 =
𝛼B	𝑃.,9

1.25 + 1.50𝛼B
	

𝑀,,9 =
𝑀.,9

1.25 + 1.50𝛼C
	

𝑀>,9 =
𝛼C	𝑀.,9

1.25 + 1.50𝛼C
	

(Eq.	5-5)	

	
	

Similar	 to	 the	case	of	dead	 load	only,	 linear	correlations	are	assumed	between	𝑃,	and	𝑀,	

and	between	𝑃>	and	𝑀> . 

5.4 STATISTICAL	DATA	FOR	LOADING	

For	the	random	variables	corresponding	to	loading,	only	the	nominal	values	are	needed	

since	the	statistical	characteristics,	namely	bias,	coefficient	of	variation	and	distribution	

type,	can	be	found	in	the	literature	(Bartlett	et	al.	2003).	These	statistical	characteristics	

are	given	in	Table	5-1	for	different	loading	types.	For	example,	for	dead	load	the	average	

bias	factor	(𝐷/𝐷9)	is	1.050	with	a	coefficient	of	variation	(COV)	equal	to	0.1	and	follows	a	

normal	distribution	type.	The	COV	of	0.1	includes	a	COV	of	0.07	for	the	transformation	of	

dead	load	to	dead	load	effect	(Allen	1975;	Bartlett	et	al.	2003)	

Nominal	values	 for	 loading	parameters	(point	D	 in	Figure	5-1)	are	related	to	 the	nominal	

strength	 values	 of	 the	wall	 determined	 from	 the	design	 standard	 expressions	 (point	 C	 in	

Figure	5-1).	Assuming	that	the	wall	was	designed	to	have	a	resistance	exactly	equal	to	the	

factored	dead	load	with	a	load	factor	of	1.4	according	to	the	2014	version	of	CSA	S304,	the	

nominal	load	values	for	axial	force	and	bending	moment	can	then	be	expressed	as	
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𝑃,,9 =
𝑃.,9
1.4 					𝑎𝑛𝑑					𝑀,,9 =

𝑀.,9

1.4 	
(Eq.	5-6)	

	
	

	

Table	5–1	 Statistical	information	for	different	load	types	(Bartlett	et	al.	2003)	

Load	type	 Bias	 COV	 Distribution	type	

Dead	load	 1.050	 0.100	 Normal	

Use	and	occupancy	live	load	 	 	 	

	 50	year	maximum	load	 0.900	 0.170	 Gumbel	

	 Point-in-time	load	 0.273	 0.674	 Weibull	

	 Transformation	to	load	effect	 1.000	 0.206	 Normal	

Snow	load	 	 	 	

	 50	year	maximum	depth	 1.100	 0.200	 Gumbel	

	 Point-in-time	depth	 0.196	 0.882	 Weibull	

	 Density	 1.000	 0.170	 Normal	

	 Transformation	to	load	effect	 0.600	 0.420	 Log-normal	

Wind	Load	(Regina)	 	 	 	

	 50	year	maximum	velocity	 1.039	 0.081	 Gumbel	

	 Point-in-time	velocity	 0.156	 0.716	 Weibull	

	 Transformation	to	load	effect	 0.680	 0.220	 Log-normal	

	

For	 a	 given	 virtual	 eccentricity,	𝑃.,9,	𝑀.,9	can	 be	 found	 from	 the	 P-M	 interaction	 diagram	

constructed	 for	 the	 masonry	 wall	 section	 as	 per	 CSA	 S304-2014.	 Resistance	 factors	 for	

masonry	 and	 steel	 reinforcement,	 namely	𝜙F = 0.60	and	𝜙G = 0.85	are	 already	 embodied	

in	 this	 diagram.	 This	 interaction	 diagram	 is	 obviously	 different	 from	 the	 interaction	
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diagram	representing	the	true	strength	of	the	wall.	Realizing	that	reliability	levels	may	not	

be	 similar	 under	 different	 combinations	 of	 axial	 load	 and	 bending	moment	 (i.e.	 different	

load	eccentricities)	the	reliability	analysis	needs	to	consider	different	eccentricities.	

5.5 BEHAVIOURAL	MODEL	FOR	RESISTANCE	

The	 resistance	 part	 in	 Eq.	 5-1,	 consisting	 of	MI	and	PI,	 was	 worked	 out	 from	 a	 verified	

behavioural	model	explained	 in	Chapter	3.	This	behavioural	model	was	used	 to	construct	

the	P-M	 interaction	diagram	that	is	representative	of	the	true	strength	of	the	wall	section.	

This	is	an	efficient	model	that	has	been	verified	and	used	by	other	researchers	(Ellingwood	

and	 Tallin	 1985,	 Liu	 and	 Dawe	 2003)	 and	 was	 modified	 in	 this	 study.	 Instead	 of	 the	

idealized	 rectangular	 stress	 block,	 a	 more	 realistic	 parabolic	 masonry	 stress-strain	

relationship,	 introduced	 in	 Chapter	 2,	 was	 utilized	 and	 subsequently	 validated	 against	

experimental	results	as	shown	in	Chapter	3.	The	model	can	be	used	to	study	the	behaviour	

of	 concrete	masonry	 load-bearing	walls	 under	 various	 loading	 conditions.	 It	 accounts	 for	

several	 material	 nonlinearities,	 namely	 masonry	 tensile	 cracking,	 masonry	 compressive	

crushing	and	yielding	in	steel	reinforcement.	This	model	was	used	in	this	investigation	as	a	

basis	for	defining	the	limit	state	function	that	is	needed	to	assess	the	reliability	of	masonry	

walls.	Reliability	analyses	were	performed	on	hollow	and	fully-grouted	unreinforced	walls	

as	 well	 as	 fully	 grouted	 reinforced	 walls.	 The	 reported	 good	 agreement	 between	 the	

behaviour	 of	 experimentally	 tested	 partially	 grouted	 masonry	 walls	 and	 strength	

predictions	 suggests	 that	 the	 conclusions	 drawn	 from	 a	 reliability	 analysis	 on	 partially	

grouted	 walls	 would	 be	 similar	 to	 those	 drawn	 for	 fully	 grouted	 walls	 (Ellingwood	 and	

Tallin	1985).	

	 	

85



~	5-10	~	

5.6 STATISTICAL	INFORMATION	FOR	THE	RESISTANCE	
PARAMETERS	

In	addition	to	the	statistical	information	for	different	types	of	load	presented	in	Table	5-1	

the	statistical	information	for	the	mechanical	and	geometrical	parameters	involved	in	the	

behavioural	model	are	needed	carry	out	the	reliability	analysis.	The	statistical	

characteristics	of	such	parameters	are	summarized	in	Table	5–2	and	explained	in	the	

following	sections.	

Table	5–2	 Statistical	information	for	resistance	parameters	

parameter	 Mean	 COV	 Dist.	type	 Reference	

grouted	 masonry	 compressive	

strength	(𝒇𝒎)	

1.60	𝑓FN 	 0.236	 Gumbel	 Moosavi	&	Korany	2014	

hollow	 masonry	 compressive	

strength	(𝒇𝒎)	

1.46	𝑓FN 	 0.205	 Normal	 Moosavi	&	Korany	2014 

wall	thickness	(t)	 1.00	𝑡𝑛			 0.010	 Normal	 Moosavi	&	Korany	2014	

reinforcement	location	(𝒅)	 1.00	𝑑9	 4𝑚𝑚 𝑑9	Normal	 Ellingwood	1980	

reinforcement	yield	stress	(𝒇𝒚)	 1.14	𝑓S9	 0.070	 Normal	 Bournonville	et	al.	2004	

workmanship	factor	(𝝆𝒘)	 0.85	 0.150	 Normal	 Moosavi	&	Korany	2014	

rate	of	loading	(𝝆𝒓(𝑫X𝑳))	∗	 0.88	 	 	 Jones	and	Richart	1936	

rate	of	loading	(𝝆𝒓(𝑫X𝑺))	∗	 0.79	 	 	 Jones	and	Richart	1936	

rate	of	loading	(𝝆𝒓(𝑫X𝑾))	∗	 0.94	 	 	 Jones	and	Richart	1936	

	∗considered	as	a	reduction	factor	on	𝑓F	

Masonry	compressive	strength	

In	a	preceding	 study	by	 the	author,	860	 compressive	 strength	data	points	were	 collected	

from	concrete	masonry	prism	tests	under	axial	compression	(Moosavi	and	Korany	2014).	

These	 data	 points	 include	 neither	 units	 having	 compressive	 strength	 values	 outside	 the	

range	 of	 Table	 4	 in	 the	 Canadian	 masonry	 design	 standard	 CSA	 S304-2014	 nor	 grout	

strength	not	meeting	the	requirements	of	CSA	A179-14.	Prism	compressive	resistance	was	
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adjusted	 for	 the	height-to-thickness	 ratio	 effect	 according	 to	Table	D1	of	Annex	D	 in	CSA	

S304-2014.	

As	 shown	 in	 Figure	 5-2,	 the	 bias	 factor	 was	 determined	 for	 both	 hollow	 and	 grouted	

masonry	 by	 comparing	 the	 measured	 axial	 load	 resistance	 from	 prism	 testing	 to	 the	

nominal	resistance	based	on	unit	strength	and	mortar	type	according	to	Table	4	in	S304-14.	

In	previous	studies,	the	distribution	type	for	bias	factor	of	masonry	compressive	strength,	

𝑓F,	was	assumed	to	be	either	normal	(Turkstra	1989)	or	log-normal	(Ellingwood	and	Tallin	

1985).	 Also	 in	 an	 online	 publication	 from	 JCSS,	 (2001),	 log-normal	 distribution	with	 bias	

mean	 of	 1.0	 and	 CoV	 of	 0.2	 is	 suggested	 for	 compression	 strength	 of	 masonry	 made	 of	

regular	concrete	blocks	with	thin	mortar	layers.	In	this	current	investigation,	the	maximum	

likelihood	 method	 (Ang	 and	 Tang	 2007)	 was	 used	 to	 fit	 different	 distributions	 to	 the	

collected	 test	 data.	 Then,	 the	 Anderson-Darling	 test	 for	 goodness-of-fit	 (Ang	 and	 Tang	

2007)	was	used	to	select	the	best	fit.	Normal	and	Gumbel	distributions	were	found	to	be	the	

most	 appropriate	 for	 hollow	 and	 grouted	 masonry,	 respectively.	 As	 can	 be	 seen	 in	

Figure	5-3,	Gumbel	distribution	presents	a	good	fit	to	the	lower	tail	of	the	grouted	masonry	

data	which	is	important	from	a	reliability	analysis	point	of	view.	
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Figure	5-2:	Test-to-specified	compressive	force	ratios	for	grouted	prism	test	(Moosavi	and	

Korany	2014)	

	

Figure	5-3:	Gumbel	distribution	fit	for	𝑓F 𝑓FN 	for	grouted	masonry	
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It	 is	 well	 established	 (Stewart	 and	 Lawrence	 2006;	 Ellingwood	 1981)	 that	 the	 bias	

computed	from	different	test	results,	known	as	model	error,	includes	variations	in	the	test	

procedures,	𝑉 _G^ ,	 and	 specimen	 variability,	𝑉G`_a ,	 in	 addition	 to	 variations	 in	 the	 strength	

prediction	error	or	professional	factor.	Therefore,	the	variability	in	the	professional	factor	

can	be	expressed	as:	

	
	

𝑉B = 𝑉Fbc_d3 − 𝑉 _G^
3 − 𝑉G`_a3	 (Eq.	5-7)	

	
	

where,	𝑉B	is	the	coefficient	of	variation	(CoV)	of	the	professional	factor,	𝑉Fbc_d 	is	the	CoV	of	

the	 strength	 prediction	 model	 (Table	 4	 in	 CSA	 S304-2014),	 which	 was	 found	 from	 test	

results	 to	be	0.21	and	0.24	 for	hollow	and	grouted	masonry,	respectively.	𝑉 _G^	represents	

the	CoV	of	the	measured	capacity	due	to	inaccuracies	in	the	test	measurements	and/or	the	

definition	 of	 failure,	 and	𝑉G`_a 	represents	 CoV	 related	 to	 the	 differences	 between	 the	

measured	 and	 actual	 parameters	 of	 the	 test	 specimens.	 Ellingwood	 (1981)	 suggested	 a	

value	of	0.02	 for	𝑉 _G^	and	0.04	 for	𝑉G`_a .	These	values	were	used	 in	 this	study	 to	compute	

the	CoV	for	the	professional	factor	for	both	hollow	and	grouted	masonry.	Therefore,	

	
	

𝑉B = 0.243 − 0.023 − 0.043 = 0.236	 grouted	 	

𝑉B = 0.213 − 0.023 − 0.043 = 0.205	 hollow	 (Eq.	5-8)	
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Wall	thickness	

For	concrete	masonry	unit,	the	wall	thickness	is	typically	equal	to	concrete	unit	thickness.	

Therefore,	in	this	investigation,	the	variability	in	the	thickness	of	the	masonry	wall	section	

was	assumed	to	be	equal	to	the	variability	in	the	masonry	unit	thickness	and	the	statistical	

parameter	 for	 the	 unit	 geometry	 reported	 by	Moosavi	 and	 Korany	 (2014)	were	 used	 as	

shown	in	Table	5–2.	

Reinforcement	location	and	yield	strength	

Ellingwood	 (1980)	 summarized	 the	 statistical	 data	 for	 the	 location	 and	 strength	 of	 steel	

reinforcing	bars.	For	effective	reinforcement	depth,	d,	 a	normal	distribution	with	mean	of	

𝑑9and	 COV	 of	4	𝑚𝑚 𝑑9was	 estimated	 by	 Ellingwood.	 This	 implies	 that	 the	 standard	

deviation	 for	steel	rebar	 location	 is	 independent	 from	its	effective	depth.	These	statistical	

data	have	been	used	in	many	reliability	studies	(e.g.	Nowak	et	al.	2008;	Nowak	and	Szerszen	

2003)	and	were,	therefore,	adopted.	

MacGregor	(1976)	reported	a	mean	value	of	1.03	𝑓S9	for	grade	60	reinforcement	to	be	used	

in	reliability	analysis	for	reinforced	concrete.	The	coefficient	of	variation	was	assumed	to	be	

0.07	according	 to	 Allen	 (1972).	 For	 common	 Grade	 60	 steel	 reinforcement,	 Ellingwood	

(1980)	 reported	 a	 mean	 value	 of	1.12	𝑓S9	and	 a	 coefficient	 of	 variation	 of	 0.11	 for	 the	

reinforcement	 yield	 strength.	 Nowak	 and	 Szerszen	 (2003)	 did	 an	 investigation	 on	 steel	

reinforcing	bar	420	MPa	grade	with	bar	diameters	from	9.5	to	34.5	mm.	The	recommended	

bias	factor	for	𝑓S	was	1.145	with	a	coefficient	of	variation	of	0.05.	In	a	more	comprehensive	

study	(Bournonville	et	al.	2004),	the	variability	of	mechanical	properties	and	weight	of	steel	

reinforcing	 bars	 produced	 in	 the	 United	 States	 and	 Canada	 was	 evaluated.	 For	 grade	

428	MPa	reinforcement,	 a	 bias	 factor	 of	 1.14	 with	cov = 0.07	was	 concluded	 from	 this	

study.	 Both	 normal	 and	 beta	 distributions	 were	 reported	 as	 appropriate.	 In	 the	 current	

investigation,	a	normal	distribution	was	assumed	for	the	bias	of	the	reinforcing	steel	yield	

strength	and	the	bias	factor	and	COV	reported	by	Bournonville	et	al.	(2004)	were	adopted	

as	it	is	more	recent	and	comprehensive.	
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Masonry	Workmanship	Factor	

The	 effect	 of	workmanship	 on	 the	 reliability	 of	 structural	masonry	 is	well	 acknowledged	

and	 the	 documented	 in	 literature.	 The	 bias	 coefficient	 and	CoV	of	 0.85	 and	0.15	 (normal	

distribution)	for	workmanship	reported	by	Moosavi	and	Korany	(2014)	were	used	in	this	

study.	As	stated	before,	 it	 is	suggested	that	statistical	 information	for	workmanship	factor	

be	supported	with	more	test	results	to	represent	current	masonry	construction	practice	in	

Canada.	

Rate-of-Loading	Factor	

The	effect	of	loading	rate	on	the	mechanical	response	of	concrete	masonry	walls	cannot	be	

ignored.	 (Jones	 and	 Richart	 1936)	 suggested	 the	 following	 relation	 between	 concrete	

compressive	strength	and	the	rate	of	loading.	

	
	

𝑓a. = 𝑓am 1 + 𝐾	logmq(𝑟) 	 0.1	psi/sec < 𝑟 < 10,000	psi/sec	 (Eq.	5-9)	

	
	

Where,	

𝑓a. 	is	the	strength	at	a	given	rate	of	loading	𝑟	in	psi/sec;	

𝑓am	is	the	strength	at	a	rate	of	loading	of	1	psi/sec;	and	

𝐾	is	a	constant,	roughly	equal	to	0.08	for	28-day	compressive	strength		

	
It	 is	 desired	 to	 relate	 the	 28-day	 compressive	 strength	 of	 concrete	 masonry	 to	 the	

prescribed	 testing	 speed	 at	 which	 masonry	 prisms	 are	 generally	 tested,	 namely	

around	22	psi/sec.	Therefore,	for	28-day	masonry	compressive	strength,	the	rate	of	loading	

factor,	𝜌. ,	is	
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𝜌. =
𝑓a.
𝑓a33

= 0.90 1 + 0.08	logmq(𝑟) 	 (Eq.	5-10)	

	
	

Where,	

𝑟	is	the	rate	of	loading	in	psi/sec;	and	

𝑓a33	is	the	strength	at	a	rate	of	loading	of	22	psi/sec.	

	

In	 this	 analysis,	𝑟	values	were	 computed	 for	masonry	having	 compressive	 strength	 in	 the	

range	 from	5	MPa	 to	25	MPa	 (725– 3625	psi )	 to	 cover	 the	 spectrum	 of	 masonry	

compressive	 strength	 values	 in	 CSA	 S304-2014.	 The	 loading	 time	 to	 failure	was	 taken	 as	

one	hour	for	live	load,	10	minutes	for	wind	load	and	one	day	for	snow	load	(Bartlett	2007).	

The	 average	 values	 for	 dead	 plus	 live,	 dead	 plus	 snow	 and	 dead	 plus	 wind	 load 

combinations	were	0.88,	0.79	and	0.94,	respectively.	The	variability	in	the	rate	of	loading	is	

negligible	 compared	 to	 the	 large	 coefficients	 of	 variation	 for	 the	 other	 parameters	 and	

therefore	ignored	in	this	analysis.	

5.7 PROPERTIES	OF	ANALYZED	WALLS	

Wall	thickness	values	of	190mm	and	290mm	were	considered	to	 investigate	the	effect	on	

reliability	 levels.	For	masonry	strength,	𝑓F,	 the	upper	and	 lower	values	recognized	by	 the	

standard	(CSA	S304.1	2014)	in	Table	4,	namely	5MPa	and	17MPa,	were	selected	to	observe	

the	 corresponding	 effect.	 Reinforcement	 ratios	 of	 𝜌G =0.0013	 and	 𝜌G =0.0025	 were	

considered.	Reinforcement	 ratio	of	0.0013	 is	 the	minimum	ratio	 allowed	by	 the	 standard	

and	0.0025	is	a	value	very	close	to	the	balanced	reinforcement	ratio	in	pure	bending	for	the	

range	of	𝑓F	considered.	At	 larger	reinforcement	ratios,	 the	whole	 interaction	diagram	will	

involve	compression	 failure	mode	and	the	reliability	 levels	would	not	be	affected.	From	a	
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for	which	both	reinforcement	yielding	and	masonry	crushing	occur	at	the	same	time	in	case	

of	pure	bending,	directly	relates	to	masonry	strength;	i.e.	stronger	masonry	material	leads	

to	a	larger	balanced	reinforcement	ratio.	For	instance,	in	Figure	5-5(a)	𝜌G = 0.0013	is	closer	

to	𝜌|	for	𝑓F9 = 5MPa	than	 for	𝑓F9 = 17MPa	and	 similarly	 for	 Figure	 5-5(b)	 2)	 Balanced	

eccentricity,	 where	 failure	 mode	 moves	 from	 compression	 to	 tension,	 increases	 as	

reinforcement	 ratio	 moves	 closer	 to	 the	 balanced	 reinforcement	 ratio.	 Therefore,	 in	

Figure	 5-5(a)	 balanced	 eccentricity	 for	𝑓F9 = 5MPa	is	 much	 larger	 than	 that	 for	𝑓F9 =

17MPa.	 This	 means	 that	 the	 graphs	 for	𝑓F9 = 5MPa	mostly	 involve	 compression	 failure	

mode.	And	in	the	graphs	for	𝑓F9 = 17MPa	the	change	from	compression	to	tension	failure	

mode	is	apparent.	

It	 is	worth	mentioning	that	high	reliability	 levels	for	tension	failure	zones	in	Figure	5-5	is	

just	partly	because	of	less	uncertainty	in	steel	material	characteristics.	Another	reason	for	

this	observation	relates	to	the	fact	that	these	results	are	for	the	case	of	dead	load	only;	the	

axial	force	and	the	bending	moment	are	correlated.	Since	axial	force	improves	the	bending	

moment	capacity	of	the	wall	in	tension	failure	zone,	this	correlation	leads	to	high	reliability	

levels.	

5.8.2 RESULTS	FOR	REINFORCED	MASONRY	WALLS	FOR	
OTHER	LOAD	COMBINATIONS	

As	discussed	 in	derivation	of	 the	 limit	state	 function	 for	 the	combination	of	dead	and	 live	

loads,	 the	analyses	need	to	be	performed	for	different	 live	 load	to	dead	 load	ratios.	Since,	

bending	from	gravitational	load	types	are	actually	the	corresponding	axial	 load	multiplied	

by	eccentricity,	it	is	assumed	that	this	ratio	for	axial	load	and	bending	moment	are	the	same	

(Eq.	5-11).	
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𝑃>,9
𝑃,,9

= 𝛼B =
𝑀>,9

𝑀,,9
= 𝛼C 	 (Eq.	5-11)	

	
	

Different	types	of	flooring	and	roofing	systems	along	with	ranges	for	transient	loads	were	

considered.	 If	only	 loads	on	 floor	and	roof	are	considered,	 for	 the	combination	of	𝑑𝑒𝑎𝑑 +

𝑙𝑖𝑣𝑒,	𝛼B	(or	𝛼C)	may	range	to	around	4.00	for	 light	wood	flooring	and	for	the	combination	

of	𝑑𝑒𝑎𝑑 + 𝑠𝑛𝑜𝑤,	𝛼B	(or	𝛼C)	may	range	to	around	6.00	for	light-frame	wood	roof	and	metal	

roofing.	However,	self-weight	of	masonry	walls	affect	these	ratios	considerably.	Concurrent	

large	 values	 for	𝛼B	and	𝛼C 	only	 can	 happen	 for	 eccentricities	 less	 than	𝑒/𝑡 = 1.00.	 For	

eccentricities	more	 than	𝑒/𝑡 = 1.00,	𝛼B	barely	 exceeds	2.50	but	𝛼C 	might	 still	 range	 up	 to	

4.00	and	6.00	for	𝑑𝑒𝑎𝑑 + 𝑙𝑖𝑣𝑒	and	𝑑𝑒𝑎𝑑 + 𝑠𝑛𝑜𝑤	load	 combinations,	 respectively.	 For	 the	

combination	 of	𝑑𝑒𝑎𝑑 + 𝑤𝑖𝑛𝑑,	𝛼C 	might	 range	 to	 very	 large	 values	 for	 cantilever	masonry	

walls	 but	 as	will	 be	 seen	 in	 the	 reliability	 analysis	 results,	 changes	 in	 reliability	 index	 is	

negligible	 beyond	𝛼C = 2.50.	 Also,	 this	 load	 combination	 is	 not	 as	 detrimental	 as	 other	

combinations.	Lower	bound	ratio	of	0.25	was	considered	for	both	𝛼B	and	𝛼C .	Similar	ranges	

are	considered	in	other	studies	(Ellingwood	1980;	Bartlett	2007).		

The	same	approach	is	valid	for	dead	plus	snow	load	since	they	are	both	gravitational	load	

types.	However,	 for	 the	 combination	of	dead	and	wind	 load	 types,	𝛼B = 𝑃Ç,9/𝑃,,9	may	be	

presumed	negligible	as	wind	is	a	transverse	load	and	contributes	mostly	in	the	out-of-plane	

moment.	 Therefore,	 only	𝛼C = 𝑀Ç,9/𝑀,,9		was	 taken	 as	 a	 variable.	 The	 following	 figures	

show	the	reliability	analysis	results	 for	 load	combinations	 including	𝐷𝐿 + 𝐿𝐿,	𝐷𝐿 + 𝑆𝐿	and	

𝐷𝐿 +𝑊𝐿.	

Figure	 5-6	 illustrates	 the	 variation	 of	 reliability	 index	with	 respect	 to	 normalized	 virtual	

eccentricity	 for	𝐷𝐿 + 𝐿𝐿	combination	 for	 different	 values	 of	𝛼B	and	𝛼C .	 In	 general,	 the	

minimum	𝛽	for	all	cases	is	3.40.	However,	it	can	be	realized	that	for	all	cases	the	minimum	

𝛽	happens	when	the	wall	is	designed	for	eccentricities	in	compression	controlled	region.	In	

this	 region	 the	 strength	 relies	 merely	 on	masonry	 strength	 and	 this	 means	 that,	 from	 a	
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strength	 point	 of	 view,	𝜙F	establishes	 the	 reliability	 levels.	 For	 sake	 of	 comparison,	 it	 is	

worth	 mentioning	 that	 the	 minimum	 reliability	 level	 for	 reinforced	 concrete	 under	

combined	compression	and	bending	has	been	calculated	to	be	about	3.77	(Bartlett	2007).	

For	 the	case	of	𝛼B = 𝛼C = 0.25	in	Figure	5-6,	when	dead	 load	has	 the	 larger	contribution	

compared	 to	 live	 load,	 the	behaviour	of	 the	curves	 is	similar	 to	Figure	5-5	 for	 the	case	of	

dead	load	only.	Although,	the	smaller	dead	load	factor	of	1.25	compared	to	1.40	has	yielded	

lower	reliability	levels	in	Figure	5-6.	As	𝛼B	and	𝛼C 	ratios,	i.e.	live	load	contribution	increase,	

an	apparent	decrease	in	reliability	levels	is	observed	in	the	curves	mainly	in	the	tensioned	

controlled	 region.	 However,	 this	 decrease	 barely	 passes	 the	 minimum	 reliability	 levels	

already	 seen	 in	 compression	 controlled	 regions.	 The	 decrease	 can	 be	 attributed	 to	 the	

larger	 uncertainty	 in	 live	 load	 compared	 to	 dead	 load,	 nevertheless	 this	 decrease	 is	 only	

observed	in	the	tension	region.	It	 is	worth	mentioning	that	other	than	𝜙F,	 there	are	three	

other	safety	factors	in	this	analysis	which	have	been	calibrated	over	time	to	yield	relatively	

consistent	levels	of	safety.	Each	of	these	safety	factors	are	more	effective	for	different	cases	

but	 as	 it	 can	also	be	 seen	 in	Figure	5-6,	 for	 critical	 cases	 they	 tend	 to	 result	 in	 relatively	

consistent	reliability	indices.	

Figure	 5-7	 illustrates	 the	 variation	 of	 reliability	 index	with	 respect	 to	 normalized	 virtual	

eccentricity	for	𝐷𝐿 + 𝑆𝐿	combination	for	different	values	of	𝛼B	and	𝛼C .	The	minimum	𝛽	for	

all	 cases	 is	2.82.	 It	must	be	noted	 that	regardless	of	 the	structural	material,	 the	reliability	

levels	associated	with	snow	loading	tend	to	be	less	than	the	target	values.	For	example,	for	

reinforced	 concrete	 under	 combined	 compression	 and	 bending,	𝛽	falls	 as	 low	 as	3.20	

(Bartlett	 2007).	 Lower	 reliability	 indices	 for	 snow	 load	 combination	 corresponds	 to	 the	

larger	coefficient	of	variation	of	this	type	of	load	compared	to	other	loads	(Table	5–1).	

Figure	 5-8	 illustrates	 the	 variation	 of	 reliability	 index	with	 respect	 to	 normalized	 virtual	

eccentricity	for	𝐷𝐿 +𝑊𝐿	combination	for	different	values	of	𝛼B	and	𝛼C .	The	minimum	𝛽	for	

all	 cases	 is	3.45.	 As	 for	 comparison,	 the	minimum	reliability	 level	 for	 reinforced	 concrete	
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under	 combined	 compression	 and	 bending	 has	 been	 calculated	 to	 be	 about	3.88	(Bartlett	

2007).	
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The	minimum	reliability	 indices	 are	 improved	 from	3.47	to	3.79	for	𝐷𝐿,	 from	3.04	 to	3.33	

for	𝐷𝐿 + 𝐿𝐿	and	from	2.82	to	3.00	for	𝐷𝐿 + 𝑆𝐿.	

Reliability	analyses	were	also	performed	for	hollow	unreinforced	walls.	Figure	5-14	shows	

the	 results	 for	 DL	 only	 for	 both	 fully	 grouted	 and	 hollow	 unreinforced	 masonry	 walls.	

Figure	5-15and	Figure	5-16	contain	the	results	for	cases	of	𝐷𝐿 + 𝐿𝐿	and	𝐷𝐿 + 𝑆𝐿	for	hollow	

unreinforced	masonry	walls.	 It	 is	 observed	 that	 reliability	 levels	 are	 generally	 higher	 for	

hollow	masonry	than	for	fully	grouted	masonry.	This	can	be	partly	attributed	to	the	effect	of	

a	lower	CoV	for	hollow	masonry.	Also,	it	should	be	noticed	that	the	distribution	type	for	𝑓F	

in	 grouted	 masonry	 is	 Gumbel	 distribution,	 while	 for	 hollow	 masonry	 it	 is	 a	 normal	

distribution.	By	looking	at	a	Gumbel	distribution	formulation,	it	becomes	apparent	that	the	

median	of	the	distribution	is	less	than	the	mean.	This	implies	that	even	though	the	mean	for	

grouted	masonry	is	higher	than	hollow	masonry,	the	probability	for	values	less	than	mean	

is	 higher	 than	 for	 the	 values	 higher	 than	mean.	 In	 other	words,	 strength	 distribution	 for	

hollow	 masonry	 reveals	 more	 reliable	 behaviour	 than	 fully	 grouted	 masonry.	 This	

difference	 can	 be	 attributed	 to	 the	 fact	 that	 the	 strength	 measured	 for	 hollow	 masonry	

comes	 from	 face	shells	 spaced	by	mortars	 that	 is	a	very	clear	explanation	of	 the	material	

and	 that	 strength	 is	 used	 exactly	 at	 the	 same	 location	 for	 analysis.	However,	 for	 grouted	

masonry,	 the	 strength	 is	 measured	 for	 the	 whole assembly, which is face shell spaced by 

mortar at some region and only grout at some other region and variation in grout strength adds to 

the uncertainty.	
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time.	Therefore,	 the	distribution	 type	 for	dead	 load	 and	 transient	 loads	 are	different	 and	

thus	structural	reliability	analysis	should	include	dead-load	plus	transient	loads.	

Load	factors	for	companion	loads	(transient	loads	other	than	the	main	transient	load)	are	

selected	to	yield	reliability	levels	not	lower	than	the	combinations	with	only	one	transient	

load.	 Thus,	 although	 a	 comprehensive	 reliability	 analysis	 should	 include	 all	 possible	 load	

combinations,	 considering	 dead-plus-one-transient	 load	 still	 reveals	 the	 essential	

information	for	investigating	the	appropriateness	of	the	parameters	affecting	the	resistance	

part	of	 the	 limit	 state	 function;	 including	 the	 sufficiency	of	 the	 strength	 reduction	 factors	

and	 adequacy	of	 the	procedures	 for	member	 strength	 evaluation.	Accordingly,	 the	 recent	

changes	in	the	companion	load	factors	NBCC	2015	do	not	affect	the	results	of	this	analysis.	

5.10 APPENDIX:	P-M	INTERACTION	DIAGRAMS	FOR	THE	
WALLS	UNDER	STUDY	

The	following	are	the	P-M	interaction	diagrams	for	the	walls	studied	here.	Values	for	axial	

force	 and	 bending	moment	 are	 in	 kN	 and	 kN.m	 respectively.	 In	 all	 figures,	 the	 diagrams	

with	the	solid	 line	represent	the	verified	behavioural	model	used	in	this	research	and	the	

dotted	line	represents	the	interaction	diagram	according	to	CSA-S304.	
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Fig.	5-A1.	P-M	interaction	diagram	for	a	wall	with	𝑓F = 5	MPa,	𝑡 = 190	mm,	𝜌G = 0.0013	

	

Fig.	5-A2.	P-M	interaction	diagram	for	a	wall	with	𝑓F = 5	MPa,	𝑡 = 190	mm,	𝜌G = 0.0025	
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Fig.	5-A3.	P-M	interaction	diagram	for	a	wall	with	𝑓F = 17	MPa,	𝑡 = 190	mm,	𝜌G = 0.0013	

	

Fig.	5-A4.	P-M	interaction	diagram	for	a	wall	with	𝑓F = 17	MPa,	𝑡 = 190	mm,	𝜌G = 0.0025	
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Fig.	5-A5.	P-M	interaction	diagram	for	a	wall	with	𝑓F = 5	MPa,	𝑡 = 290	mm,	𝜌G = 0.0013	

	

Fig.	5-A6.	P-M	interaction	diagram	for	a	wall	with	𝑓F = 5	MPa,	𝑡 = 290	mm,	𝜌G = 0.0025	
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Fig.	5-A7.	P-M	interaction	diagram	for	a	wall	with	𝑓F = 17	MPa,	𝑡 = 290	mm,	𝜌G = 0.0013	

	

Fig.	5-A8.	P-M	interaction	diagram	for	a	wall	with	𝑓F = 17	MPa,	𝑡 = 290	mm,	𝜌G = 0.0025	
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Fig.	5-A9.	P-M	interaction	diagram	for	a	wall	with	𝑓F = 5	MPa,	𝑡 = 190	mm	

	

Fig.	5-A10.	P-M	interaction	diagram	for	a	wall	with	𝑓F = 5	MPa,	𝑡 = 290	mm	
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Fig.	5-A11.	P-M	interaction	diagram	for	a	wall	with	𝑓F = 17	MPa,	𝑡 = 190	mm	

	

Fig.	5-A12.	P-M	interaction	diagram	for	a	wall	with	𝑓F = 17	MPa,	𝑡 = 290	mm	
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Chapter	6 	

Steps	Towards	Reliability	Analysis	
Considering	Slenderness	Effects	

GENERAL	
This	 chapter	 introduces	 the	 steps	 for	 the	 structural	 reliability	 analysis	 of	

masonry	 walls	 for	 which	 slenderness	 effects	 are	 considerable.	 Two	

techniques	 are	 discussed	 in	 the	 following;	 an	 approximate	 and	 time-saving	

procedure	using	moment-magnifier	method	and	a	more	accurate	procedure	

which	 is	 more	 computation	 exhaustive.	 The	 framework	 and	 scope	 of	 the	

analysis	are	also	discussed.	

	

6.1 DEFINITION	OF	LIMIT	STATE	FUNCTION	FOR	
MASONRY	WALLS	WITH	SLENDERNESS	EFFECTS	
USING	MOMENT	MAGNIFIER	METHOD	
Moment	magnifier	method	is	a	time-saving	method	to	approximately	assess	

the	strength	of	columns	and	load-bearing	walls	considering	second-order	or	

slenderness	effects.	Steps	and	details	for	this	method	are	widely	available	in	

literature	and	design	handbooks	(e.g.	Drysdale	&	Hamid,	2005).	Basically,	for	

any	 masonry	 wall,	 ultimate	 strength	 of	 the	 wall	 under	 axial	 load	 with	 a	
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known	 virtual	 eccentricity	 can	 be	 calculated	 by	 intersecting	 equation	 for	

moment-magnifier	method	and	 the	𝑃 −𝑀	interaction	diagram	 for	 the	 cross	

section	of	 the	wall.	Figure	6-1	 illustrates	an	example	 for	a	given	axial	 force	

and	 out-of-plane	 bending	 moment	 caused	 by	 dead	 load	 (𝑃$%,𝑀$%).	 The	

accuracy	 of	 this	 method	 depends	 partly	 on	 what	 equations	 are	 used	 to	

construct	𝑃 −𝑀 	interaction	 and	 moment-magnifier	 curves.	 Figure	 6-1	

illustrates	two	sets	of	formulations	for	assessing	the	wall	strength	according	

to	 moment-magnifier	 principle.	 One	 set	 of	 formulations	 are	 based	 on	

expressions	 from	 CSA	 S304	 (𝑃'%,𝑀'%).	 and	 the	 other	 set	 includes	 a	𝑃 −𝑀	

interaction	 curve	 based	 on	 a	 realistic	 material	 behaviour,	 introduced	 in	

Chapter	3	and	a	moment	magnifier	curve	based	on	a	more	realistic	effective	

flexural	stiffness,	𝐸𝐼*++ ,	(𝑃',𝑀')	which	is	also	explained	in	Chapter	3	based	on	

a	study	by	(Liu,	Dawe	2003).	
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Figure	6-1:	Illustration	of	limit-state	function	for	slender	walls	
	

The	 case	 for	 dead	 load	 only	 for	 deriving	 the	 limit	 state	 function	 will	 be	

considered	as	an	example. 

Similar	to	what	we	had	for	non-slender	walls,	 limit	state	function	is	defined	

as	

	 	

𝐺 𝒙 = 	 𝑀'
0 + 𝑃'0 − 𝑀$

0 + 𝑃$0 (Eq.	6.1)	
	

S304	interaction	diagram	
moment	magnifier	with	

modified	𝐸𝐼*++	

(𝑃'% ,𝑀'%)	

(𝑃$%,𝑀$%)	

(𝑃',𝑀')	
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Since	nominal	values	for	loading	parameters	(𝑃$ ,	𝑀$)	are	related	to	nominal	

strength	 values	 of	 the	 wall	 by	 design	 expressions.	 Assuming	 that	 the	 wall	

under	study	 is	exactly	designed	for	 factored	dead	 load	with	a	 load	 factor	of	

1.4	according	to	(CSA	S304.1	2014),	nominal	 load	values	 for	axial	 force	and	

bending	moment	can	be	worked	out	as	

	 	

𝑃$,% =
𝑃',%
1.4 	

𝑀$,% =
𝑀',%

1.4 	
(Eq.	6.2)	

	 	

As	 shown	 in	 Figure	 6-1,	 for	 a	 given	 virtual	 eccentricity,	 (𝑃',%,	𝑀',%)	 can	 be	

calculated	in	two	steps	as	follows.	

1. Intersecting	the	moment-magnifier	equation	constructed	for	the	given	

eccentricity	and	the	P-M	interaction	diagram	constructed	for	the	given	

masonry	wall	as	per	(CSA	S304-2014).	

2. Projecting	 that	 intersection	 point	 on	 the	 line	 representing	 the	 given	

eccentricity	in	the	direction	parallel	to	moment	axis.	

Resistance	 factors	 for	 masonry,	 steel	 reinforcement	 and	 member	 stiffness,	

namely	𝜙8 = 0.60 ,	𝜙; = 0.85 	and	𝜙*' = 0.75 	(or	𝜙* = 0.65 )	 are	 already	

embodied	 in	 these	 steps.	 The	 corresponding	 formulations	 for	 these	 curves	

are	explained	elsewhere,	e.g.	Drysdale	&	Hamid,	(2005).	

Resistance	part	in	Eq.	6.1,	consisting	of	𝑀' 	and	𝑃' ,	might	be	worked	out	using	

the	 same	 two	 steps	 introduced	 above,	 except	 that	 equations	 for	𝑃 −𝑀	

interaction	 diagram	 and	 moment-magnifier	 are	 based	 on	 more	 realistic	

behavioural	 models	 and	 represent	 a	 more	 accurate	 model	 for	 the	 wall	

strength	 (Figure	 6-1).	 As	 a	 clarification,	 it	 should	 be	 noted	 that	 the	 point	

representing	 	𝑀' 	and	𝑃' 	in	 Figure	 6-1	 seems	 to	 also	 lie	 on	 S304	 interaction	
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diagram.	This	 is	only	a	coincidence.	The	corresponding	principles	for	𝑃 −𝑀	

interaction	 curve	 and	moment-magnifier	 curve	 are	 explained	 in	 Chapter	 3.	

The	 subsequent	 steps	 for	 reliability	 analyses	 are	 the	 same	 as	 what	 was	

explained	 in	 Chapter	 5.	 This	 method	 is	 essentially	 mapping	 the	 magnified	

moment	 to	 a	 straight	 line	 representing	 the	 eccentricity	 and	 using	 norm	

values	(distance	to	origin)	to	define	the	limit	state	function.	This	provides	a	

means	 for	 expanding	 the	 results	 of	 this	 research	 to	 cover	 a	wider	 range	of	

masonry	walls.	

Similar	 to	 non-slender	 masonry	 walls,	 the	 reliability	 levels	 might	 not	 be	

similar	 for	 different	 combinations	 of	 axial	 load	 and	 bending	 moment,	 i.e.	

different	 load	eccentricities.	Therefore,	 reliability	analysis	needs	 to	be	done	

for	different	eccentricities. 

6.2 DEFINITION	OF	LIMIT	STATE	FUNCTION	FOR	
MASONRY	WALLS	WITH	SLENDERNESS	EFFECTS	
USING	FINITE	ELEMENT	METHOD 

 

As	pointed	out	in	Chapter	3,	a	more	accurate	procedure	to	derive	resistance	

part	of	the	limit	state	function	in	Eq.	6-1	is	to	use	finite	element	method.	

Masonry	 load-bearing	 walls	 are	 generally	 long	 enough	 to	 be	 analyzed	 or	

tested	 ideally	as	wide	columns	with	 free	side	edges	 that	are	under	uniform	

axial	 load	 and	 lateral	 loading.	 (Ganduscio	 and	Romano	1997)	 stated	 that	 if	

the	 effects	 of	 lateral	 edge	 restraints	 are	 negligible,	 the	 analysis	 of	masonry	

wall	can	be	advantageously	carried	out	by	idealizing	the	member	as	a	beam-

column.	This	fact	has	been	used	in	many	numerical	studies	afterwards.	

Therefore,	 a	 two-dimensional	 finite	 element	 model	 with	 beam-column	

elements	can	be	used	for	the	purpose	of	reliability	analysis.	A	nonlinear	step-

by-step	 analysis	 (push-over	 analysis)	 must	 be	 used	 so	 that	 material	 and	

geometrical	nonlinearities	are	reflected	at	every	step	until	failure	of	the	wall.	

119



~	6-6	~	

6.3 FRAME	WORK	FOR	RELIABILITY	ANALYSIS	OF	
MASONRY	WALLS	WITH	SLENDERNESS	EFFECTS	
Scope	 of	 a	 comprehensive	 reliability	 analysis	 for	 masonry	 walls	 with	

slenderness	effects	will	include	the	following.	

• Reinforced	&	unreinforced	walls	

• Load	combinations:	DL,	DL+LL,	DL+	SL,	DL+WL	

• Single	curvature,	double	curvature	and	cantilever	case	

• Range	 of	 eccentricities	 from	 axial	 load	 only	 to	 dominant	 bending	

moment	

• Range	 of	 slenderness	 ratios	 from	(𝑘	ℎ)/𝑡	where	 slenderness	 effects	

are	negligible	to	maximum	(𝑘	ℎ)/𝑡	allowed	in	CSA	S304.	

• Current	 resistance	 factors	 are	𝜙8 = 0.60,	𝜙; = 0.85	and	𝜙*' = 0.75	

(for	 unreinforced	 masonry	ϕD = 0.65),	 the	 previous	 factors	 in	 CSA	

S304	 1994	 were	 𝜙8 = 0.55 ,	 𝜙; = 0.85 	and	 𝜙*' = 𝜙* = 0.65 .	

Reliability	 analysis	 for	 both	 of	 these	 set	 of	 factors	 needs	 to	 be	

performed	to	assess	the	change	in	reliability	levels.	

CSA	 S304	 standard	 uses	 the	 format	 of	 partial	 safety	 factors	 to	 isolate	 the	

main	 sources	 of	 uncertainty	 and	 deals	with	 them	 separately	with	 different	

safety	 factors.	Therefore,	 it	 is	 good	practice	 to	 calibrate	𝜙8	for	non-slender	

masonry	walls	to	a	target	reliability	defined	by	standard	authority,	assuming	

𝜙;	is	the	same	as	𝜙;	in	reinforced	concrete	standard	and	then	expanding	the	

analysis	 and	 calibration	 to	𝜙*' 	and	𝜙* 	for	 masonry	 walls	 with	 slenderness	

effects.	 The	 results	 from	 this	 study	provides	 a	means	 for	 calibration	 of	𝜙8.	

Although,	CSA	S408	recommends	values	for	target	reliability	levels,	the	final	

decision	for	target	values	is	made	by	standard	committees.	
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Chapter	7 	

Summary	of	Results	&	Discussions	

GENERAL	
This	 chapter	 contains	 summary	 of	 the	 results	 for	 this	 research	work	 along	

with	discussion	of	the	findings.	

7.1 STEPS	TAKEN	&	ACCOMPLISHED	OBJECTIVES		
The	objectives	defined	in	Chapter	1	were	addressed	as	followed.	

Objective	1:	After	selection	of	the	behavioural	model	in	Chapter	2,	this	model	

was	 coded	 in	 MathematicaÒ	 and	 compared	 with	 several	

experimental	 results	 for	 accuracy	 and	 consistency	 verification	

(Chapter	3).	Sensitivity	of	the	model	to	geometrical	and	material	

parameters	was	also	investigated	(Chapter	4). 

	

Objective	2:	A	new	 limit	 state	 function	was	proposed	 for	non-slender	walls	

under	 axial	 compression	 only	 and	 under	 axial	 compression	

combined	with	out-of-plane	bending	moment	 (Chapter	5).	 This	

limit-state	function	can	be	used	for	all	eccentricities.	
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Objective	3:	Statistical	data	for	load	and	resistance	parameters	are	inputs	for	

reliability	 analysis.	 Effort	 was	made	 to	 collect	 the	most	 recent	

statistical	 information	 for	 loads	 in	 Canada	 and	 for	 resistance	

parameters	 representing	 Canadian	 practice	 of	 masonry	

construction	(Chapter	5);	

	

Objective	4	&	5:	Reliability	analysis	was	performed	 for	both	reinforced	and	

unreinforced	 masonry	 walls	 under	 axial	 load	 and	 out-of-plane	

bending	moment.	 Effort	was	made	 to	 include	 all	 eccentricities,	

critical	load	combinations,	different	transient	to	dead	load	ratios	

and	 the	 effect	 of	 the	 recent	 change	 of	 masonry	 resistance	

reduction	 factor.	 (Chapter	 5).	 Results	 were	 presented	 and	

discussed.	

	

Objective	6:	The	 limit-state	 function	was	generalized	 so	 that	 it	 can	be	used	

for	reliability	analysis	of	masonry	walls	with	slenderness	effects	to	assess	the	

reliability	levels	provided	by	the	design	expressions	and	material	resistance	

factors	in	the	2014	edition	of	CSA	S304	for	this	category	of	walls	(Chapter	6).	

	

7.2 SUMMARY	OF	THE	CONCLUSIONS	
	

A	comprehensive	limit	state	function	is	proposed	for	calculation	of	reliability	

indices	 for	 non-slender	 masonry	 walls	 under	 axial	 load	 and	 out-of-plane	

bending	moment.	Both	unreinforced	and	 reinforced	walls	were	 considered.	

Analysis	 was	 done	 for	 different	 load	 combinations,	 namely,	𝐷𝐿,	𝐷𝐿 + 𝐿𝐿,	

𝐷𝐿 + 𝑆𝐿 	and	𝐷𝐿 +𝑊𝐿 .	 Wherever	 possible,	 results	 are	 compared	 with	

reliability	levels	for	reinforced	concrete.	
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It	 is	 noteworthy,	 that	 extending	 the	 analysis	 from	 dead-load-only	 to	 dead	

load	plus	a	 transient	 load	 is	 inevitable	because	 the	nature	of	 these	 loads	 is	

different.	For	example,	uncertainty	in	dead	load	is	practically	not	a	function	

of	 time	and	 relates	 to	uncertainties	 in	material	 and	geometrical	properties,	

construction	 procedures,	 etc.	 However,	 uncertainty	 in	 transient	 loads	 is	 a	

function	of	time	and	the	nominal	values	are	related	to	maximum	values	over	

periods	of	time.	Therefore,	the	distribution	type	for	dead	load	and	transient	

loads	 are	 different	 and	 thus	 structural	 reliability	 analysis	 should	 include	

dead-load	plus	transient	loads.	

	

On	 the	other	hand,	 load	 factors	 for	 companion	 loads	 (transient	 loads	other	

than	the	main	transient	load)	are	selected	to	yield	reliability	levels	not	lower	

than	 the	 combinations	 with	 only	 one	 transient	 load.	 Thus,	 although	 a	

comprehensive	 reliability	 analysis	 should	 include	 all	 possible	 load	

combinations,	 considering	 dead-plus-one-transient	 load	 still	 reveals	 the	

essential	information	for	investigating	the	appropriateness	of	the	parameters	

affecting	 the	 resistance	 part	 of	 the	 limit	 state	 function;	 including	 the	

sufficiency	of	the	strength	reduction	factors	and	adequacy	of	the	procedures	

for	 member	 strength	 evaluation.	 Accordingly,	 the	 recent	 changes	 in	 the	

companion	load	factors	NBCC	2015	do	not	affect	the	results	of	this	analysis.	
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Findings	of	this	investigation	reveals	that	reliability	levels	for	𝐷𝐿 + 𝑆𝐿	are	the	

most	critical.	For	both	reinforced	and	unreinforced	masonry	walls	reliability	

indices	fall	under	3.0	for	this	load	combination.	

Table	7–1	is	a	comparison	of	reliability	indices	between	reinforced	masonry	

and	 reinforced	 concrete	 for	 current	 resistance	 factors,	 i.e	𝜙* = 0.60.	 and	

𝜙- = 0.65.	 It	 is	 observed	 that	 reliability	 levels	 are	 noticeably	 less	 for	

reinforced	 masonry.	 Specifically,	β012=	 2.82 for	 DL+SL	combination	 is	 very	

low.	 Even	 though	 for	 this	 load	 combination	 relatively	 lower	𝛽	has	 been	

accepted	for	reinforced	concrete,	i.e.	𝛽*45=	3.20,	𝛽*45=	2.82	for	masonry	does	

not	look	acceptable.	

 

Table	7–1		Comparison	of	current	minimum	reliability	indices	(𝜷*45)	
between	reinforced	masonry	&	reinforced	concrete	

Transient	
Load	

Masonry	 Concrete		
(Bartlett	2007)	

Live	Load	 β012=	3.40	 β012=	3.77	

Snow	Load	 β012=	2.82	 β012=	3.20	

Wind	Load	 β012=	3.45	 β012=	3.88	

	

The	 effect	 of	 the	 change	 in	𝜙*	from	 0.55	 to	 0.60	 on	 reliability	 levels	 of	

unreinforced	masonry	is	also	presented	in	Table	7–2.	According	to	CSA	S408	

(2011)	for	normal	buildings	with	gradual	failure	the	target	reliability	index	is	

3.4  . It	can	be	seen	with	𝜙* = 0.60,	reliability	levels	are	not	even	close	to	this	

target	value.	
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Table	7–2		Effect	of	the	recent	change	in	𝜙*	on	β012	unreinforced	masonry	

Load	Comb.	 𝛟𝐦 = 𝟎. 𝟓𝟓	 𝛟𝐦 = 𝟎. 𝟔𝟎	
DL	 β012 = 	3.79	 β012 = 	3.47	

DL+LL	 β012 =	3.33	 β012 = 	3.04	
DL+SL	 β012 = 	3.00	 β012 = 	2.82	

	

The	results	show	that	the	recent	increase	in	𝜙*	from	0.55	to	0.60	has	caused	

relatively	lower	reliability	levels	for	masonry	construction	compared	to	other	

structural	 materials	 such	 as	 reinforced	 concrete	 and	 also	 less	 than	

recommended	values	in	CSA	S408.	The	findings	of	this	research	gives	a	tool	

to	 better	 understand	 the	 current	 reliability	 levels	 of	 the	 standard.	 It	 is	

apparent	that	this	study	has	to	be	extended	to	walls	for	which	slender	effects	

are	sizeable	to	investigate	also	the	recent	change	in	𝜙= 	in	CSA	S304	and	then	

decide	what	value	for	𝜙*	would	yield	the	desired	reliability	levels.	Proposing	

the	 algorithm	 and	 the	 framework	 for	 this	 analysis	 in	 Chapter	 6	 is	 a	 step	

toward	this	goal.	Any	further	change	to	resistance	factors	for	masonry	should	

be	done	after	comprehensive	reliability	analysis.	

The	following	is	a	list	of	recommendations	for	future	work:	(1)	To	revisit	the	

workmanship	factor	for	better	reflecting	the	current	practice;	(2)	To	extend	

the	 study	 to	 walls	 with	 slenderness	 effects;	 (3)	 To	 extend	 the	 study	 to	

partially	 grouted	 walls;	 (4)	 to	 verify	 results	 with	 using	 SORM	 (as	 an	

alternative	 reliability	 analysis	 approach)	 and	 FEM	 (as	 an	 alternative	

behavioural	model).	 	
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Steel	Stress-Strain	Behaviour	

	
	

Masonry	Stress-Strain	Behaviour	

	

	

	

	

H* STEEL STRESS-STRAIN FUNCTION *L
es = 2 ¥ 105; H* STEEL MODULUS OF ELASTICITY ASSUMED DETERMINISTIC *L
H* fy IS STEEL YIELD STRESS & ee IS A THE STRAIN AT WHICH STRESS IS NEEDED *L
tied = "False";

H* UNTIED *L
If Btied ä "False",

ss@ee_, fy_D := IfBee < 0, 0, IfBee <
fy
es

, es ee, fyFFF;

H* TIED *L
If Btied ä "True",

ss@ee_, fy_D := IfBee < -
fy
es

, -fy, IfBee <
fy
es

, es ee, fyFFF;

H* MASONRY STRESS-STRAIN FUNCTION *L
H* THIS MODEL IS BASED ON Priestly and Elder H1983L MODEL EXCEPT THAT

MAXIMUM STRESS HAPPENS AT EPSILON =

0.0020 INSTEAD OF 0.0015. THIS IS BECAUSE RECENT STUDIES SHOW THAT

0.002 IS MORE APPROPRIATE HDrysdale bookL,
NOTE: THIS MODEL HAS BEEN CHECKED FOR COMPRESSION STRAIN LESS

THAN 0.003. FOR LARGER COMPRESSION STRAINS, IT HAS TO BE VERIFIED *L
sm@e_, fm_D := IfBe >

65
100

1000 fm
H* BASED ON TABLE 5 IN S304,

0.65 MPa FOR GROUTED HOLLOW BLOCK AND BRICK & 0.40 MPa FOR CONCRETE

BRICK AND BLOCK , 1000fm = SLOPE OF THE GRAPH AT ORIGIN*L, 0,

IfBe > 0, 1000 fm e,

IfBe > -2 10-3, -fm 2
-e

2 ¥ 10-3
-

-e

2 ¥ 10-3
O2O,

MinB-fm 1 -
0.5

3+ 29
100

fm

145fm-1000
- 2

1000

IAbs@eD - 2 ¥ 10-3M , -0.2 fmFFFF
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P-M	Interaction	Diagram	According	to	CSA-S304	
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P-M	Interaction	Diagram	based	on	Selected	Behavioural	Model	

	

	 	

143



~A	7	~	

	

	 	

144



~A	8	~	

 

 	

145



~A	9	~	

Code	for	Reliability	Analysis	for	Dead	plus	Live	Load	Combination	
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