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Non-Newtonian fluids exist in nature, such as blood and egg white, and in man-made products,
such as toothpaste and ketchup. They exhibit more interesting and complex behaviors than
traditional Newtonian fluid such as water. In this paper, we propose a new particle-based model for
the animation of non-Newtonian fluids. The new model has two contributions. The first
contribution is a new particle dynamics method. It takes into account rotational frame indifference
in stress tensor computation while previous non-Newtonian fluid models in computer graphics do
not. Therefore, our model is more accurate in animating rotational non-Newtonian fluid motions. In
addition, the particle dynamics method includes a new SPH-based Poisson equation for pressure to
enforce fluid incompressibility. The second contribution is a new particle re-sampling method. It is
observed that irregular particle distribution causes inaccurate fluid modeling and consequently
particles may form unrealistic clusters. In previous Newtonian fluid models, some techniques have
been proposed to deal with the particle clustering problem. However, we show that they are not
effective for fluid stretching, which is a common motion involved in many non-Newtonian fluid
phenomena. To address this problem, in our particle re-sampling method, particles are down-
sampled and then up-sampled such that a well distribution of particles is attained. Overall, many
experimental animations are produced, including immiscible fluid-fluid interaction and fluid
interaction with rigid-body. These animations demonstrate our contributions and show that our
model is able to animate interesting non-Newtonian fluid behaviors.

Categories and Subject Descriptors: 1.3.5 [Computer Graphics]: Computational Geometry and
Object Modeling — Physically Based Modeling; 1.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism — Animation; 1.6.8 [Simulation and Modeling]: Types of Simulation —
Animation

General Terms: Algorithm

Additional Key Words and Phrases: particle-based model, viscoelastic fluid, non-Newtonian fluid,
Smoothed Particle Hydrodynamics (SPH), particle re-sampling, Delaunay triangulation, convex
hull.

1. INTRODUCTION

Non-Newtonian fluids are a rich class of fluids. In fluid mechanics, they are defined as
fluids for which the stress tensor cannot be expressed as a linear, isotropic function of the
velocity gradient [Owens and Phillips 2002]. In our daily lives, many fluids that we
encounter are non-Newtonian, e.g. blood, egg white, toothpaste, ketchup, and so on.
These fluids exhibit more interesting and complex behaviors than traditional Newtonian
fluids, such as water. In computer graphics, many proposed models are based on the
Newtonian fluid formulation, which can animate various Newtonian fluid behaviors and
produce very appealing results. Viscoelastic fluids are examples of non-Newtonian fluids.
One of the earliest viscoelastic models is proposed by Terzopoulos and Fleischer [1988].
More recently, two such models are proposed by Goktekin et al. [2004] and Clavet et al.
[2005]. For clarity, viscoelastic models are referred to as non-Newtonian models
hereafter.

In this paper, we propose a new particle-based fluid model for the animation of non-
Newtonian fluids. The dynamics formulation of the proposed model is based on



Smoothed Particle Hydrodynamics (SPH), which is a popular fluid modeling formulation
in Computational Fluid Dynamics (CFD) [Monaghan 1992 and Ellero et al. 2002] and is
also widely used in computer graphics [Desbrun and Cani 1996, Desbrun and Cani 1999,
Stora et al. 1999, Muller et al. 2003, Muller et al. 2004, and Clavet et al. 2005].

The new model has two contributions. The first contribution is a new particle
dynamics method for non-Newtonian fluids. The previous non-Newtonian models by
Terzopoulos and Fleischer [1988] and Clavet et al. [2005] are particle-based models and,
in their particle dynamics methods, the stress tensor for non-Newtonian fluids is based on
a linear combination of elastic spring, viscous dashpot, and plastic yield condition.
Meanwhile, the grid-based non-Newtonian model by Goktekin et al. [2004] computes the
stress tensor based on a linear Maxwell model and the von Mises plastic yield condition.
These models violate frame indifference when the fluids are in rotational motions. In
contrast, our particle dynamics method is based on a corotational Maxwell model [Ellero
et al. 2002], and takes into account frame indifference for arbitrary fluid motions. An
experimental result is presented later to demonstrate that our model is more accurate in
simulating rotational motions. In addition, our particle dynamics method includes a new
SPH-based Poisson equation for pressure to enforce fluid incompressibility. The Poisson
equation for pressure has been used in the grid-based fluid model [Foster and Fedkiw
2001] and the particle-based fluid model [Premoze et al. 2003]. It is more suitable to
enforce fluid incompressibility than the state equation of gas, which is used by the
previous SPH-based fluid models [Desbrun and Cani 1996, Stora et al. 1999, and Muller
et al. 2003]. We adopt the fluid incompressibility method from [Premoze et al. 2003]
completely except that we translate the Poisson equation into the SPH formulation and
propose a new SPH-based pressure Laplacian evaluation.

The second contribution is a new particle re-sampling method. In the particle-based
fluid models, particles are distributed in the fluid. The flowing and deformation of the
fluid can cluster particles in some regions and spread them in others. Since the fluid
attributes are computed according to the particle distribution in the neighborhood, the
computation is not accurate in the sparse-particle regions. Consequently, particles may
form unrealistic clusters in the animation results. To deal with the particle clustering
problem, Desbrun and Cani [1996] propose a repulsive pressure force between particles
such that particles do not get too close to each other. In our experiments, the repulsive
pressure force can not prevent the particle clustering problem in the animation of fluid
stretching which is a common motion of non-Newtonian fluids. Instead, noticeable
artifacts are observed in our experimental results, which are shown later in the paper.
They [Desbrun and Cani 1999] also propose a particle re-sampling method in which
particles are re-sampled according to the particle pressure variations. This method is
applicable for adaptive space discretization and is not able to solve the particle clustering
problem as discussed in this paper. Premoze et al. [2003] propose a particle position
reconfiguration method. In this method, particles that belong to a fixed boundary or inlet
or outlet boundary should go back to their original positions. Meanwhile, they make sure
that the particles on the surface of free moving boundary are at equal distance apart. For
other particles, the positions are arbitrarily determined. This method does not ensure
sufficient particle concentration in the sparse-particle regions and thus irregular particle
distribution still occurs. We cannot repeat their method because there is no information
on how to redistribute surface particles to be at equal distance apart and how to arbitrarily
determine other inside particle positions. The previous particle-based non-Newtonian
models [Terzopoulos and Fleischer 1988 and Clavet et al. 2005] do not demonstrate the
animations of non-Newtonian fluid stretching and thus the particle clustering problem is
not a concern in these two models. To address the particle clustering problem, we
propose a new particle re-sampling method, which consists of a down-sampling method
and an up-sampling method. The down-sampling method merges two particles if they are



too close to each other. The up-sampling method inserts new particles in the sparse-
particle regions, which are detected by the Delaunay triangulation [Watson 1981 and
Bowyer 1981]. As a result, the whole re-sampling method maintains a well distribution of
particles.

The paper is organized as follows. Related works are briefly discussed in Section 2.
An overview of the proposed model is given in Section 3. The particle dynamics method
and the particle re-sampling method are described in detail in Section 4 and 5,
respectively. The animation results are presented in Section 6. Finally, conclusion and
future work are given in Section 7.

2. RELATED WORKS

It is widely accepted in computer graphics that the three-dimensional Navier-Stokes (NS)
equation is the most comprehensive dynamics model for fluid animation. Here, we briefly
discuss previous fluid models that use the NS equation, because our model does too.
Those fluid models can be categorized as grid-based models and particle-based models.
The former uses the Eulerian version of the NS equation, and the latter the Lagrangian
version of the NS equation.

In grid-based models, a three-dimensional grid structure is initialized to cover the
animation space in which the fluid exists or may move into. The Eulerian version of the
NS equation is solved on the grid structure. Early work of Foster and Metaxas [1996]
demonstrates that various 3D fluid behaviors can be animated by solving the NS
equation. However, the animation becomes unstable when the time step is large. To
alleviate this problem, Stam [1999] introduces a semi-Largrangian method to obtain a
stable solution with large time steps. As a result, the animation efficiency is improved. In
order to track complex free fluid surface, a hybrid method of combining marker particles
and the level set method is introduced by Foster and Fedkiw [2001] and improved by
Enright et al. [2002]. The hybrid method can achieve appealing realism of fluid splashing
and swirling. Carlson et al. [2002] present a model to animate fluids by varying viscosity
in the NS equation. They propose an implicit integration method to deal with the stability
problem that stems from high viscosities, and produce nice melting and flowing
animations for highly viscous fluids. Interesting fluid animations are also produced by
other grid-based fluid models. The model in [Hong and Kim 2003] produces animations
of bubbles in fluid by embedding surface tension in the NS equation, while the model in
[Takahashi et al. 2003] animates fluid with splash and foam by incorporating SPLASH
and FOAM particles. For fluid-solid interactions, Genevaux et al. [2003] propose an
interface between the fluid and the solid, while Carlson et al. [2004] treat rigid solids as
special fluids with rigid motions. Goktekin et al. [2004] describe a model for animating
viscoelastic fluids, which are treated as materials intermediate between elastic solids and
viscous fluids. In their model, the stress tensor is embedded in the NS equation to account
for the viscoelastic effects, and its computation is based on a combination of the linear
Maxwell model and the von Mises plastic yield condition. By varying the yield value and
the elastic decay rate, their model produces a wide range of interesting fluid behaviors.

In particle-based fluid models, a particle represents a volume of the animated fluid.
The Lagrangian version of the NS equation is solved on the particles. Desbrun and Cani
[1996] use particles to animate highly deformable bodies based on SPH. In order to
improve the animation efficiency, an adaptive SPH model is proposed in [Desbrun and
Cani 1999]. Muller et al. [2003] propose a SPH-based model that can interactively
animate fluid splashing and swirling. In this model, the realism of the fluid motion is
traded for the interactive speed by using a limited number of particles. SPH is also
utilized to animate lava flows in [Stora et al. 1999], fluid-solid interaction in [Muller et
al. 2004], and fluid-fluid interaction in [Muller et al. 2005]. The Moving-Particle Semi-
implicit (MPS) is another particle-based model in CFD and is introduced into computer



graphics by Premoze et al. [2003]. This model can produce appealing animations of fluid
splashing and swirling which are comparable to the current best results by the grid-based
fluid models. One of the earliest viscoelastic fluid models in computer graphics is
proposed by Terzopoulos and Fleischer [1988], and it is a particle-based model. In this
model, the viscoelasticity is modeled as a linear combination of elastic spring, viscous
dashpot, and plastic yield condition. Recently, Clavet et al. [2005] model the
viscoelasticity with a similar linear combination as in [Terzopoulos and Fleischer 1988].
Their model is able to achieve interactive animation speed.

Non-Newtonian fluids have been extensively studied in CFD, and the study of them is
also known as Rheology. For more background information, we refer interested readers
to [Renardy 2000, and Owens and Phillips 2002].

3. MODEL OVERVIEW

During each time step in our model, the basic operations are shown in Figure 1. The
boundary constraints, if any, are enforced using the method in [Muller et al. 2004]. The
fluid-fluid interactions follow the model in [Muller et al. 2005]. The fluid rendering
follows the common practice as in [Muller et al. 2003 and Muller et al. 2004]. The fluid
surface is represented by an iso-surface which is triangulated using the Marching Cube
algorithm [Lorensen and Cline 1987]. And the triangular mesh is rendered using ray-

tracing software.

Particle re-sampling

|

Particle dynamics

|

Fluid rendering

End

Fig. 1. Basic operations during each time step.

4. PARTICLE DYNAMICS

The proposed model is a particle-based fluid model. The particle motions are governed
by the Lagrangian version of the NS equation as follows:

dv_ 1 1 Uoo 1,

E——;Dp+;D[T+;D v+;j (D
where v is the velocity, ¢ the time, p the density, p the pressure, T the stress tensor, u the
viscosity constant, and f'the summation of external forces such as gravity. In contrast, the
grid-based fluid models compute fluid motions using the Eulerian version of the NS
equation and they have to compute an extra advection term. More detailed comparison
between the Lagrangian and Eulerian NS equations can be found in [Muller et al. 2003].

Equation (1) is evaluated at each particle location using the SPH formulation. The
evaluation of the viscosity term is the same as that given in [Muller et al. 2003] and the
external force term can be computed trivially. The evaluations of the pressure and the
stress tensor terms are described in detail in Section 4.2 and 4.3, respectively.



4.1 SMOOTH PARTICLE HYDRODYNAMICS (SPH)

Smoothed Particle Hydrodynamics (SPH) is a particle-based formulation for modeling
fluids and is based on the interpolation theory. For completeness, a brief description of
the SPH formulation is given here. The interested reader is referred to [Monaghan 1992]
for a detailed introduction.

SPH divides the fluid into a set of elements called particles, which are used to carry
fluid attributes. A scalar attribute value A(r) at location r is interpolated by the values of
particles within a local neighborhood:

n m.
Ary= Y A, —LW(-r;,h) 2)
; " p; !
where n is the number of neighboring particles, j the particle index, 4; the particle
attribute value, m; the particle mass, p; the particle density, r; the particle location, / the
neighborhood radius, and W the interpolation weighting function called kernel. If not
specified otherwise, the traditional spline kernel [Monaghan 1992] is used in this paper:
1-1.5¢>+0.75¢> 0<g<l
W(r=ry.h) =L3 025(2-4) 1<g<2 3)
Th .
0 otherwise

where g = 2|r-r{/h.
Using Equation (2), the density p; of particle i is evaluated as:

p = Z;m,wm = r.h) @)
=

where r; is the location of particle i.

4.2 PRESSURE

The pressure term in the NS equation is evaluated at each particle i as in [Monaghan

1992]:
——Dpl Zrn [—+—]DW(r ruh) (5)

where p; and p; are the pressure of partlcle i and j, respectively. The spiky kernel in
[Desbrun and Cani 1996] is adopted in order to have a repulsive pressure force:

(h-R®  O0<R<h

0 otherwise

W(r=rjh)=—
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where R = |r-7].

In [Premoze et al. 2003], the Moving Particle Semi-implicit (MPS) method is
presented to enforce the fluid incompressibility. This method is adopted in our model
completely except the following two changes. The Poisson equation for pressure is
translated from the MPS formulation to the SPH formulation as follows:

1 2 _ porg _pf
%y =l T
Pi b pargAtz (7)
where p,, is the original fluid density to enforce. In addition, we propose a pressure
Laplacian evaluation on each particle i under the SPH formulation:

S0, = Zm Pt (®)
With these two changes, an equatlon system can be formed from Equation (7) evaluated
on all particles and the unknown variables are the particle pressures. With Equation (8),



the system coefficient matrix is symmetric and positive-definite, if there is at least one
surface particle, which can be trivially satisfied. The pressure for the surface particles is
set to be the constant air pressure, and thus the equations for the surface particles can be
removed from the system. The solution can be efficiently obtained using a
Preconditioned Conjugate Gradient method [Press et al. 1992].

4.3 STRESS TENSOR

For non-Newtonian fluids, the stress tensor is a nonlinear function of the velocity
gradient. A common method to compute the stress tensor is to integrate the tensor-rate as
in [Goktekin et al. 2004 and Owens and Phillips 2002]. The tensor-rate in our model is
based on a nonlinear corotational Maxwell model [Ellero et al. 2002]:

dr _ ., 1

—= Q+ D= T )
where T is the stress tensor, x, the elasticity constant, 1 the relaxation time. 2 is the
rotational tensor which is the coordinate transformation between the global inertial frame
and a coordinate frame rotating with the instantaneous fluid angular velocity at the
particle. Its expression is:

Qzé(T-aJ—aJ-T) (10)
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D’ is the traceless strain tensor:
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In Equation (12) and (15), the Greek indices o and f denote 3D spatial coordinates.
Under the SPH formulation, the partial velocity derivative on each particle is

N N a0 W) 16
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where a, b=, .

In Equation (9), the relaxation time A is a characteristic constant for a non-Newtonian
fluid. It characterizes the length of “memory” in which the non-Newtonian fluid has for
its previous shape. 1/4 has the similar physical meaning as the material’s decay rate in
[Goktekin et al. 2004]. Basically, the larger the 4, the more strongly a non-Newtonian
fluid tries to restore to its previous shape. In the normal room temperature, the relaxation
time of water is about 107'%s, practically no “memory” of its previous shape, and that of
glass is in excess of 28 hours. The elasticity constant . is a factor to characterize fluid
resistance to deformation. The higher the u., the stronger the resistance is. More
information about A and g, can be found in [Owens and Phillips 2002]. In Figure 2, six
fluid balls drop onto the floor and their motions are consistent with their respective 4 and

He-



(@) A=0.1and u, = 10° (b) 2=0.1 and g, = 10* (¢)2=0.1and g, = 10°

(d)A=1and .= 10° (e)A=1and g, =10* (H4=1andp =10’
Bounces higher than (c)

(g) Complete view of six fluid balls.

Fig. 2. Six fluid balls with different values of 1 and g, fall on floor. Shown are the pictures of the balls at
frame 87. The two balls in (c) and (f) with high elasticity x. = 10° even bounce up.

The tensor-rate proposed by Goktekin et al. [2004] is similar to the tensor-rate in
Equation (9). The major difference is that their tensor-rate does not have the rotational
tensor £2 which takes account of the rotational frame indifference. As explained in the
introduction, the other two particle-based models [Terzopoulos and Fleischer 1988 and
Clavet et al. 2005] do not account for the rotational tensor 2 either. The experimental
results in Figure 3 demonstrate that our model with the rotational tensor £ is more
accurate in simulating the rotational motions. The rod-climbing is one of the most
striking non-Newtonian fluid phenomena and involves intensive rotational motion
[Renardy 2000, and Owens and Phillips 2002]. In the experiment, a rotating rod is
inserted into a pool of non-Newtonian fluid. The rotating motion causes a tension along
the concentric streamlines, which leads to a force pushing the fluid inward.
Consequently, the free surface rises and the fluid climbs up the rod. The rod-climbing is
animated using our model. Two of the animation frames are shown in Figure 3(b) and (c).
A comparing animation without the rotational tensor £ in Equation (9) is also produced,
in which the rod-climbing can not be animated, and a frame is shown in Figure 3(a).



(a) Frame 400: no climbing without  (b) Frame 400: climbing with Q  (c) Frame 1500: climbing with Q

Fig. 3. Comparison of fluid rotations with and without rotational tensor Q. (b) and (¢) are in one animation

The second term in Equation (9) is the traceless strain tensor while, in [Goktekin et al.
20041, the trace is taken out from the stress tensor 7. Since the tensor-rate is continuously
integrated to compute the stress tensor, using either the traceless strain tensor or the
traceless stress tensor causes insignificant difference in the visual results. In addition, the
von Mises plastic yield condition used in [Goktekin et al. 2004] can be trivially
embedded into Equation (9) by replacing 7 with T

r =ﬁmax(o,||r|| -» (17)
where ||7]] is the Frobenius norm of the stress tensor 7, and y the plastic yield value. It is
noted that, if y=0, then 7=T". For the properties of the von Mises plastic yield condition
and its impact to a non-Newtonian fluid, the reader is referred to [Goktekin et al. 2004]
for detailed discussions.

5. PARTICLE RE-SAMPLING

| (3 |

(a) Frame 240: unrealistic
with jitter ratio =0

(b) Frame 240: unrealistic
with jitter ratio = 0.3

(c) Frame 240: unrealistic
Particle randomly initialized

(d) Frame 240: realistic
with re-sampling

(e) Frame 100: unrealistic ~ (f) Frame 100: unrealistic ~ (g) Frame 100: unrealistic ~ (h) Frame 280: realistic
with jitter ratio =0 with jitter ratio=0.3  Particle randomly initialized with re-sampling

Fig. 4. Comparison of unrealistic and realistic fluid stretching: eight example animations. Let d as the grid cell
size. The jitter ratio is the maximum jittered distance over d. (a), (b), and (c) are unrealistic stretching without
the particle re-sampling. (a) Particles initialized on grid; (b) Particles initialized on grid with jitter ratio = 0.3;
(c) Particle randomly initialized; (d) Particles initialized on grid and realistic stretching with the particle re-
sampling. (e), (f), and (g) are unrealistic stretching without the particle re-sampling. (¢) Particles initialized on
grid; (f) Particles initialized on grid with jitter ratio = 0.3; (g) Particle randomly initialized; (h) Particles
initialized on grid and realistic stretching with the particle re-sampling. No gravity in (a), (b), (c), and (d),
while gravity is enabled in (e), (f), (g), and (h).



As mentioned in the introduction, the irregular particle distribution causes inaccurate
fluid modeling in the sparse-particle regions. As a result, particles may form unrealistic
clusters. This particle clustering problem is tackled in the previous particle-based models
[Desbrun and Cani 1996 and Premoze et al. 2003]. Desbrun and Cani [1996] propose
using a repulsive pressure force and Premoze et al. [2003] propose random particle
positions. In our efforts to animate non-Newtonian fluids, we observe that the previous
approaches work well for the animations of violent fluid motions, such as splashing and
spraying, because the randomness in the motion appears to suppress the problem.
However, those approaches do not work well for the animations of fluid stretching, which
is a common motion involved in many non-Newtonian fluid phenomena. Figure 4 shows
eight examples of fluid stretching. In all the examples, the repulsive pressure force in
[Desbrun and Cani 1996] is used. In [Premoze et al. 2003], no detail was given on how to
update particle positions randomly at each time step. To capture the idea of particle
randomness, we initialize particle positions randomly in four of the examples. It can be
seen that fluid stretching is not realistic in the six examples without particle re-sampling
while it is realistic in the two examples with particle re-sampling.

The particle re-sampling method consists of a down-sampling method and an up-
sampling method. The major contribution lies in the up-sampling method. The down-
sampling method is trivial. When two particles are found closer than a threshold distance
&4 they are deleted. Meanwhile, a new particle is created at the center of mass of the two
deleted particles and inherits their total mass. The new particle’s velocity and stress
tensor are linearly interpolated from those of the two deleted particles. The down-
sampling ensures that particles are maintained at the minimum distance ¢;. At each re-
sampling step, the down-sampling method is executed before the up-sampling method.
This execution order is made because the up-sampling operation does not result in
particle distance less than ¢, which can be seen later in Section 5.1.

The up-sampling method is based on two well-known computational techniques:
Delaunay triangulation and convex hull. The basic idea of the method is very simple, and
consists of four operations: (1) Detect sparse-particle region using Delaunay
triangulation; (2) Insert a new particle into the sparse-particle region; (3) Detect fluid
boundary using the convex hull such that new particle is not inserted outside of the fluid;
(4) Interpolate particle attributes on the new particles. The operations (1) and (2) are
explained in detail in Section 5.1 since both are involved with the Delaunay triangulation,
and the operations (3) and (4) are in Section 5.2 and 5.3, respectively. For clarity, unless
as stated explicitly, the geometric concepts and operations are described and illustrated
only in 2D, but they can be easily applied to 3D.

Delaunay triangulation has been utilized to reconstruct surface from point cloud in
[Alexa et al. 2003]. In that application, 2D Delaunay triangulation is used to up-sample
points on a 2D projection plane for the reconstructed surface. To our best knowledge, we
are the first to combine Delaunay triangulation and convex hull in 3D for the particle up-
sampling in a fluid model.

5.1 DELAUNAY TRIANGULATION

Delaunay triangulation is an aggregate of space-filling disjoint triangles in 2D (or
tetrahedra in 3D) that are constructed from the given points. The most distinguished
concept in the Delaunay triangulation is the Delaunay condition that no given point falls
inside the circum-circles of any triangles in 2D (or circum-spheres of any tetrahedra in
3D). As a brief introduction, a simple example is illustrated in Figure 5, where two
Delaunay triangles are constructed from 4 points, 4, B, C, and D which are denoted by
black dots. Point 4 is not inside the circum-circle of triangle BCD and point D not inside
that of triangle ABC. The circum-circles are denoted by the dashed circles. The
construction of the Delaunay triangulation has been extensively studied in computational
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geometry. In our implementation, we follow the classical incremental construction
algorithm in [Bowyer 1981 and Watson 1981].

Fig. 5. Example of Delaunay triangulation.

If the Delaunay triangulation is constructed on the fluid particles, the sparse-particle
regions can be easily detected according to the Delaunay condition. In particular, if the
circum-circle of a Delaunay triangle is larger than the radius R,;,, then a sparse-particle
region is found because no particle is inside that circum-circle. To up-sample in this
region, a new particle is inserted at the center of the circum-circle. This Delaunay-based
up-sampling method guarantees minimum particle concentration that there exists at least
one particle in any region of radius larger than R,,;,. The smaller the R,,;, is, the higher the
particle concentration. The overall re-sampling method thus maintains a well distribution
of particles: the threshold distance &, in the down-sampling method specifies the
minimum particle separation while the threshold radius R,,;, the maximum separation. &,
must be less than R,,;, such that the up-sampling operation does not result in particle
distance less than or equal to ¢, otherwise, there would be unnecessary system oscillation
between particle insertion and deletion. After some trials, &, is chosen as 0.6*D, and R,,;,
as 0.95*D in our model, where D is the initial distance between particles, which are
uniformly distributed in a grid.

5.2 CONVEX HULL

Like Delaunay triangulation, convex hull is also a well-known computational geometric
concept. The convex hull of a set of points is the smallest convex set that encloses the
points. Usually, the convex hull is a closed series of line segments in 2D (a closed
triangular mesh in 3D). A simple example is illustrated in Figure 6, where a convex hull
is the closed series of line segments AB, BC, CD, DE, and EA, and encloses eight points,
three inside and five on the hull, which are denoted by black dots. The convex hull
construction is also well studied. In our implementation, we use the QuickHull algorithm
[Barber et al. 1996].

E D
Fig. 6. Example of convex hull.

If a new particle is inserted during the Delaunay-based up-sampling, it may fall
outside the fluid boundary. The up-sampling outside the fluid boundary must be detected
and prevented; otherwise, the fluid may unrealistically expand. The detection is based on
the convex hull of the neighboring particles to the new particle. If the new particle is
outside the convex hull, then it is outside the fluid boundary and is not inserted. An
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example is illustrated in Figure 7 (a), where the hollow dot D denotes the new particle,
the black dots the neighboring particles, the big dashed circle the local neighborhood, the
dashed small circle the circum-circle of 3 existing particles 4, B, and C that make a
Delaunay triangle, and the closed series of line segments the convex hull. In this
example, particle D is outside the convex hull and thus its insertion for up-sampling is
cancelled. If particle D is on or inside the convex hull as in Figure 7 (b), then it is
inserted.

(a) (b)

Fig. 7. (a) D (the new particle) outside of the convex hull. It is
not inserted. (b) D inside of the convex hull. It is inserted.

5.3 INTERPOLATION AT NEW PARTICLES

When a new particle is inserted, its attributes are interpolated from its neighboring
particles. Since SPH is based on the interpolation theory, the attributes can be easily
computed at the new particle locations using the classical SPH method, namely, Equation
(2). Even though the kernel is already normalized, the interpolated attributes are more
accurate if they are each divided by the total weight. Thus, the interpolation equation is:

1 n
A(r) = 7 ZAjo (18)

tal =

where A4 represents the attribute to be interpolated,

Wj:Z_;W(r_rjsh)s Wmtal:;Wja 19)
and 7 the new particle location. In the implementation, the density p, velocity v and stress
tensor 7 are substituted into Equation (18).

In the down-sampling method, the mass is conserved since the new particle inherits
the total mass of the two deleted particles. In the up-sampling method, the mass of the
new particle is computed using Equation (18). In order to conserve mass, the mass
contributed by each neighboring particle in Equation (18) is deducted from the
corresponding particle, that is,

W

m.-=m.—m: J
§Emy (20)

where m; is the mass of the jth neighboring particle.

In the up-sampling method, the mass of the new particle may be very small after the
computation of Equation (18). This usually occurs at the place where the fluid splits apart
and the mass concentration gets lower than inside the fluid. If the mass is close to zero,
the particle system may become unstable. To prevent this instability, the new particle is
not inserted if its mass is lower than a threshold value ¢,. In our model, ¢, = 0.01 m,,
where m, is the mass of the initialized particles.
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6. RESULTS

The proposed model has been implemented and several example animations are
produced. Most of the examples are selected to illustrate some interesting motions of
non-Newtonian fluids, including fluid-fluid interaction and fluid interaction with rigid-
body. Gravity is enabled; unless indicated otherwise explicitly. Some of the key frames in
the animations have been presented in the previous sections, and the others are shown at
the end of this paper. The accompanied video files of all the animations are also
submitted.

In Figure 8, three non-Newtonian fluids with different x, and 4 are pulled upward.
The two of the high elastic fluids are even pulled up off the ground. This behavior is quite
different from that of the Newtonian fluid behavior. In Figure 9, two or more non-
Newtonian fluid balls, mixable or immiscible, collide with each other. In Figure 10, two
immiscible fluids in the shape of long box run into each other. With different x4, and 4,
their behaviors range from fluid to solid. In Figure 11(a) and (b), immiscible fluids run
into each other. If the speed is fast enough, one fluid penetrates the other, which causes
drastic topological change, as in Figure 11(b); otherwise, they stick together as in Figure
11(a). In Figure 11(c), even though the speed is as fast as the penetration example in
Figure 11(b), there is no penetration for mixable fluids. In Figure 12, fluid interaction
with rigid-ball is demonstrated. The rigid ball shoots at a fluid tower at different positions
and with different sizes. In Figure 12(f) is an immiscible fluid ball shooting at the fluid
tower.

Animations in figures | Particle Time per | Up-sampling time | Sub-steps

number frame(s) per frame(s) per frame
Figure 2 4500 8.03 2.35 8
Figure 3 3100 5.65 1.63 8
Figure 4(a)-(c), (e)-(g) 1200 1.46 No up-sampling 8
Figure 4(d), (h) 1200 2.12 0.60 8
Figure 8 1200 2.09 0.60 8
Figure 9(a),(b) 1500 2.63 0.76 8
Figure 9(c) 3000 5.21 1.59 8
Figure 10 2000 3.54 1.08 8
Figure 11 1200 2.11 0.60 8
Figure 12(a)-(e) 1100 1.26 0.55 4
Figure 12(f) 1400 1.57 0.70 4

Table 1: Statistics of the example animations.

All the animations are produced on a 3.0 GHz Pentium 4 PC with 1 GB of memory.
By default, different animations in each figure have the same initial conditions except
those indicated explicitly. The statistics of the animations are summarized in Table 1. For
the animations with the re-sampling method, the actual particle numbers fluctuate around
the listed numbers. The initial particle number is chosen such that it is as small as
possible but still able to demonstrate interesting fluid motions with smooth fluid surface.
Because of the high elasticity constants, we have to divide each frame time step into
smaller sub-steps in order to maintain animation stability. The sub-step number is chosen
by trials. Irrespective of the sub-step number, the animation time per frame increases
linearly in proportion to the particle number. The re-sampling method is called once per
frame. About 90% of the re-sampling time is spent on the up-sampling method, in
particularly, on the Delaunay construction. The time complexity of the Delaunay
construction is O(N*?), where N is the number of particles [Bowyer 1981]. In the
example animations, the Delaunay construction time varies approximately linearly with
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the particle number. The fluid surface construction time and the rendering time are not
included in Table 1. The former is about the same as the time per frame in Table 1, and
the latter about 10 seconds per frame.

7. CONCLUSION AND FUTURE WORK

In this paper, a particle-based non-Newtonian fluid model is proposed. After combining
with the previous fluid-fluid interaction model [Muller et al. 2005], our model is able to
animate the repulsive interactions of immiscible non-Newtonian fluids, which is not
presented in the previous fluid models according to our best knowledge. The grid-based
Newtonian fluid-fluid interaction model proposed by [Hong and Kim 2003] only
accounts for the interfacial tension and cannot handle repulsive fluid interactions. Thus,
combining it with the grid-based non-Newtonian model [Goktekin et al. 2004] still can
not animate the repulsive interactions of immiscible non-Newtonian fluids.

At present, the example animations are produced offline. Since only a few thousands
of particles are used at most, it is promising for interactive animations in the future when
computer hardware improves in performance. Two possible efficiency improvements can
be made in the near future. In the current implementation, the up-sampling method is
called for every frame and the Delaunay triangulation is constructed over all the fluid
particles. In our experiments, we observe that the actual up-sampling, i.e. particle
insertion, takes place only at some of the frames and at parts of the fluid. Therefore, the
animation efficiency can be improved by an adaptive up-sampling method such that the
up-sampling including the Delaunay construction is called when and where needed or
most likely needed. Another possible efficiency improvement is to reduce the number of
the sub-steps for each frame. The current implementation uses explicit Euler integration,
and the high elasticity u, forces the smaller sub-steps for animation stability. This
limitation can be alleviated by an implicit integration scheme such that less or no sub-step
is necessary.

Our model can be used as the ground work for future non-Newtonian fluid modeling
and animation. One possible avenue to explore is to add a heating model such that the
elasticity constant y, and the relaxation time A are not uniform for a non-Newtonian fluid,
while they are in the current model. As well, it would be more interesting to animate a
non-Newtonian fluid which exhibits fluid and solid behaviors at the same time, but at
different parts of its body. It would also be interesting to animate one non-Newtonian
fluid to transmit heat to another high elastic non-Newtonian fluid, which behaves more
like solid and then is melting during the heat transmission. An application of such a
model for real phenomenon would be the animation of glass blowing, which we are
currently investigating.
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(a) e = 10° and A = 0.1, never pulled up off the ground.

(b) .= 10* and 2 = 0.1, pulled up off the ground a little (see the most left frame)

(¢) uo=10*and 1 = 1, pulled up off the ground higher than (b).
Fig. 8. Vertically stretch fluids of different u, and A. Frame order is from left to right.

==

(a) Two mixable fluid balls (b) Two immiscible fluid balls (c) Four immiscible fluid balls

Fig. 9. Multiple balls collide.

(@) u.=10*and 2 =0.1 () pte=10"and A= 1 (©) pte=10"and 1 =0.1
Fig. 10. Long fluids of different . and 1 collide.



(a) Immiscible fluids. Speed = 75.  (b) Immiscible fluids. Speed =150  (c) Mixable fluids. Speed = 150.
Too slow to penetrate. Mixed without penetration.
Fig. 11. Cylinder fluid runs into moving fluid wall.

(d) (
Fig. 12. Ball shoots fluid tower. (a)-(e) are rigid balls, and (f) is immiscible fluid ball.



