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Abstract 5 

The majority of competency and performance modeling methods available in the literature are 6 

deterministic conceptual, statistical, and/or regression models that cannot capture the subjective 7 

uncertainty, complex, and nonlinear relationships inherent in construction, which makes accurate 8 

prediction difficult. Past studies utilized neuro-fuzzy system (NFS) models, such as adaptive 9 

neuro-fuzzy inference system (ANFIS), that combine the learning power of artificial neural 10 

networks and functionality of fuzzy systems to develop accurate predictive models. ANFIS is 11 

robust, fast, and effective in solving complex problems for a range of real-world construction 12 

engineering and management (CEM) applications. NFS models such as ANFIS have some 13 

limitations in handling multiple outputs common in construction industry problems, such as being 14 

prone to early convergence due to local minima entrapment. To address these limitations, this 15 

paper proposes a hybrid NFS combining the evolutionary optimization technique of genetic 16 

algorithm (GA) with multi-output adaptive neuro-fuzzy inference system (MANFIS) that can 17 

handle multi-input multi-output (MIMO) problems for CEM applications. The proposed modeling 18 

approach is demonstrated using a case study that showed good results in predicting multiple 19 
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organizational performance metrics using organizational competencies. The contributions of this 20 

paper are threefold: it (1) proposes a novel methodology of integrating different computing 21 

techniques for developing a GA-based multiple ANFIS (GA-MANFIS) model that can handle 22 

complex and nonlinear MIMO problems inherent in construction processes and practices, (2) 23 

relates organizational competencies to performance and predicts multiple organizational 24 

performance metrics, and (3) provides a GA-based feature selection approach that reduces data 25 

dimensionality, enabling identification of organizational competencies that significantly influence 26 

organizational performance. By uniquely integrating these techniques, this model enables 27 

construction organizations to evaluate their competencies and predict multiple organizational 28 

performance metrics simultaneously, and researchers can adapt it for a variety of construction 29 

contexts. 30 

Keywords: Artificial intelligence; Construction; Hybrid neuro-fuzzy systems; Organizational 31 

issues; Organizational competency; Performance. 32 

Introduction 33 

Construction engineering and management (CEM) is an experience-based discipline – knowledge 34 

acquired from previous work plays a key role for successful performance in executing projects and 35 

organizational operations within a construction environment that is frequently complex and fraught 36 

with uncertainty (Cheng and Roy 2010). Adopting effective strategies and performance 37 

measurement methods is critical to improving the performance of construction organizations 38 

(Tiruneh and Fayek 2021). Because an organization’s performance depends greatly on its people 39 

and their competencies, having competency-based performance measures is an important recourse 40 

for engendering the performance of CEM organizations (Altuncan and Tanyer 2018). However, 41 

the variables that capture CEM organizational competencies and performance are highly 42 
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dimensional and both quantitative and qualitative in nature. Implementing a dimensionality 43 

reduction technique such as feature selection (FS) is critical to developing a concise and 44 

interpretable model with low complexity and high accuracy. Therefore, an FS using evolutionary 45 

algorithms such as genetic algorithm (GA) can yield better results and be computationally feasible 46 

(Tiruneh and Fayek 2019). Thus, organizational competency and performance modeling 47 

techniques that can handle both quantitative and qualitative variable types, uncertainty, 48 

complexity, and nonlinear relationships are needed. 49 

Real-world CEM problems are characterized by their nonspecificity, uncertainty, 50 

complexity, dynamism, and nonlinearity, which creates challenges for construction management 51 

and makes accurate prediction difficult (Elbaz et al. 2020). Studies have indicated that lack of 52 

sufficient data (i.e., limitations in quantity and quality of data) and the subjective uncertainty 53 

associated with CEM problems make it difficult to explicitly represent such complex problems in 54 

a deterministic mathematical or statistical model (Cheng et al. 2015; Tokede et al. 2014). 55 

Therefore, one feasible approach to predicting performance is to use artificial intelligence (AI)-56 

based models, such as hybrid neuro-fuzzy system (NFS), that combine the learning power of 57 

artificial neural networks (ANNs) with the functionality of fuzzy systems (i.e., improving 58 

reasoning and inference as well as representing knowledge explicitly) that are suitable to solving 59 

complex problems with nonlinear relationships and subjective uncertainty and also offer high 60 

accuracy and low cost (Cheng et al. 2015; Tiruneh et al. 2020). ANFIS and other NFS have been 61 

widely used for modeling a variety of CEM applications. For instance, Jin (2010, 2011) employed 62 

ANFIS, the most commonly used NFS, for decision-making processes in efficient risk allocation. 63 

ANFIS possesses the capability to handle the unspecificity, uncertainty, nonlinearity, and 64 

complexity involved in most risk-allocation decision-making processes. Elmousalami (2020) 65 
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demonstrated the suitability of computational intelligence (CI) techniques – which combine fuzzy 66 

logic, neuro computing, and evolutionary computing – used for parametric cost prediction models. 67 

Bayram and Al-Jibouri (2016) demonstrated that radial basis function (RBF) is more suitable for 68 

detailed estimates compared to reference class forecasting and simple linear regression analysis. 69 

Their results showed that RBF performed better in forecasting estimated versus actual costs of 70 

building construction projects (Bayram and Al-Jibouri 2016). Rashidi et al. (2011) proposed a 71 

neuro-fuzzy genetic system to identify decision-making criteria for selecting qualified project 72 

managers in construction. Afshari (2017) combined a group fuzzy linguistic evaluation model with 73 

Delphi method for selecting the most suitable project managers in construction companies. Moon 74 

and Chowdhury (2021) demonstrated a prior information–based neural network (PI-NN) having a 75 

better prediction capability for the 28-day concrete compressive strength using a 3-day 76 

compressive strength as prior information compared to conventional ANN. Gunduz and 77 

Elsherbeny (2021) proposed a multidimensional fuzzy model to quantify the performance of 78 

construction contract administration processes at the project level where the practical 79 

implementations of the proposed model led to identification of the top strategies used to improve 80 

construction contract administration performance. Siraj et al. (2016) developed AI-based (i.e., 81 

ANN, ANFIS, and fuzzy rule-based) compressive strength predictive models for high-82 

performance concrete (HPC). Nazari and Sanjayan (2015) proposed a hybrid model based on 83 

ANFIS and imperialist competitive algorithm capable of predicting compressive strength. Tayfur 84 

et al. (2014) demonstrated that performance of fuzzy logic and ANN models were comparable for 85 

predicting strength of HPC. Shahhosseini and Sebt (2011) applied ANFIS for selecting 86 

construction project employees based on competency. Adeli and Jiang (2003) presented an 87 

adaptive neuro-fuzzy logic model that provided more accurate estimates of work zone capacity 88 
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compared to empirical equations, especially when data for factors impacting work zone capacity 89 

are only partially available. Shahtaheri et al. (2015) developed an ANFIS-based model for 90 

estimating baseline rates for on-site work categories in construction. Tokede et al. (2014) proposed 91 

a neuro-fuzzy hybrid cost model for predicting the final cost of small water infrastructure project. 92 

However, few past competency and performance studies used hybrid NFS (Georgy et al. 2005; 93 

Omar and Fayek 2016). Some hybrid fuzzy systems have limitations related to early convergence 94 

due to local minima entrapment and poor generalization (Elbaz et al. 2020; Yuan et al. 2014). 95 

Therefore, a combination of hybrid NFS and evolutionary optimization algorithms has been 96 

utilized to develop more accurate predictive models. 97 

Many real-world engineering problems, particularly in CEM, are complex and nonlinear 98 

MIMO systems in which the multiple output variables may each depend on all input variables 99 

(Acampora et al. 2014; Fattahi et al. 2018). This strong interdependence among variables leads to 100 

highly complex and dynamic systems that make MIMO models too imprecise and uncertain to be 101 

trained using conventional system modeling approaches (Acampora et al. 2014; Fattahi et al. 102 

2018). However, because conventional NFSs are configured as multi-inputs single-output (MISO) 103 

systems, such as ANFIS, and therefore have limitations in handling MIMO systems (Acampora et 104 

al. 2014; Cheng et al. 2002), various approaches have used improved ANFIS methods for learning 105 

the behavior of MIMO systems, such as MANFIS (Acampora et al. 2014; Das and Winter 2016). 106 

Because MANFIS is an extension and generalization of ANFIS for handling multiple outputs, 107 

ANFIS is the building block of MANFIS (Cheng et al. 2002), with several single-output neuro-108 

fuzzy system (ANFIS) blocks being required and combined to develop a MANFIS. Some 109 

challenges in developing an effective MANFIS model are the choice of appropriate type of 110 

membership function (MF) (e.g., triangular, trapezoidal, Gaussian), clustering method (e.g., grid 111 
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partition method, subtractive clustering, fuzzy c-means), and learning and/or optimization 112 

algorithm (e.g., gradient, hybrid, population-based) to be used for individual ANFIS. The type of 113 

MF selected must be suitable to the problem being modeled. The choice of clustering method for 114 

input data is critical, because it can impact the number of rules and generalization power of the 115 

model (Fattahi et al. 2018; Nayak et al. 2015). Researchers have recommended using fuzzy c-116 

means (FCM) to avoid exponential growth of rules due to the number of input variables (Fattahi 117 

et al. 2018). The selected learning/optimization algorithm needs to improve the effectiveness of 118 

MFs and fuzzy rules in the model (Abd Elaziz et al. 2019; Elbaz et al. 2019; Elbaz et al. 2020). 119 

Thus, the configuration of ANFIS within a MANFIS model is critical to developing an effective 120 

and efficient predictive model. 121 

NFS modeling techniques that can handle multiple outputs are common and widely used 122 

in non-construction research domains (Acampora et al. 2014; Das and Winter 2016). To date, a 123 

gap exists in addressing MIMO NFS modeling techniques for CEM problems, specifically for 124 

predicting multiple performance metrics. To address the need for developing modeling approaches 125 

that can handle complex, nonlinear MIMO performance prediction problems for construction 126 

applications, this paper proposes a novel methodology using a hybrid GA-MANFIS approach for 127 

modeling construction organizational competencies and simultaneously predicting multiple 128 

performance metrics. The objectives of this paper include (1) proposing a novel methodology for 129 

developing a hybrid GA-MANFIS modeling approach that can handle MIMO problems inherent 130 

in construction processes and practices, (2) relating organizational competencies to performance 131 

and predicting multiple organizational performance metrics, and (3) providing a GA-FS 132 

optimization approach that reduces dimensionality of data and enables identification of 133 
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organizational competencies that significantly influence organizational performance. The results 134 

of a case study applying the proposed GA-MANFIS model are also presented. 135 

The rest of this paper is structured as follows. First, an overview of past competency and 136 

performance modeling techniques, the application and limitations of ANFIS/MANFIS in 137 

construction problems and hybrid GA-based ANFIS and GA-MANFIS are discussed. Second, a 138 

novel methodology is presented for developing the proposed hybrid GA-MANFIS model for 139 

predicting organizational performance using organizational competencies. Third, the case study 140 

results are presented to illustrate the proposed methodology and show its application in CEM. 141 

Finally, conclusions and suggestions for future research are presented. 142 

Literature Review 143 

Overview of competency and performance modeling research 144 

Competency models realize specific combinations of knowledge, skills, and other personal 145 

characteristics necessary for efficient execution of tasks (i.e., effective performance) in an 146 

organization (Tiruneh and Fayek 2021). Past competency and performance modeling methods 147 

available in the literature can be categorized into six groups: conceptual, 148 

SEM/correlation/regression, ANN, fuzzy systems, hybrid fuzzy methods, and NFS (Tiruneh and 149 

Fayek 2018). These modeling methods are discussed below. 150 

Competency-based multidimensional conceptual models have been proposed to determine 151 

the performance of project managers. For instance, Suhairom et al. (2014) developed a conceptual 152 

competency model that relates personality and technical, non-technical, and career competency to 153 

superior work performance. Liu et al. (2010) proposed a model that showed a positive relationship 154 

between the levels of a project team’s general task completion competency and the project team’s 155 

performance. Moreover, conceptual models that link competencies to performance show the 156 
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positive impact of competencies on performance (Ahadzie et al. 2009; Ahadzie et al. 2014); 157 

however, these conceptual models are generic and limited to specific aspects and hence do not 158 

capture industry and organizational contexts. 159 

Structural equation models (SEM) and correlation/regression models have been used to 160 

analyze competencies and determine performance. Dainty et al. (2005) developed a statistical 161 

model to determine competencies defining superior management performance. Cheng et al. (2007) 162 

developed an empirical model using path analysis to examine the effects of competencies and job 163 

performance on overall project performance. Bolivar-Ramos et al. (2012) developed an SEM to 164 

determine organizational performance. Altuncan and Tanyer (2018) proposed a performance 165 

assessment methodology for conflict management based on competency theory; however, their 166 

model is limited in providing statistically generalizable results because of the unique 167 

characteristics of conflict in construction. Some studies employed regression models that correlate 168 

project managers’ behavior with final project outcomes (Ling 2002, 2004). A regression model 169 

developed in past studies confirmed the impact of organizational competency on organizational 170 

performance (Liang et al. 2013; Levenson et al 2006; Liu et al. 2010). Liang et al. (2013) indicated 171 

that the variables of core competences are positively correlated with organizational performance. 172 

However, the SEM, correlation, and regression models discussed do not capture the complex 173 

relationships or subjective uncertainty inherent in CEM problems. 174 

A few studies used ANN (Elwakil et al. 2009) and fuzzy expert systems (FES) (Poveda 175 

and Fayek 2009) to determine and predict performance. However, ANN models lack inference and 176 

explicit knowledge representation, and FES lacks learning capability. Fuzzy hybrid models and 177 

NFS that combine ANN and fuzzy systems have also been developed to remedy the drawbacks of 178 

fuzzy systems and ANN models (Georgy et al. 2005; Omar and Fayek 2016). 179 
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Modeling techniques that relate construction organizational competency to performance 180 

and enable organizations to determine and predict performance are essential in the construction 181 

industry (Tiruneh and Fayek 2021). Moreover, predicting organizational performance helps 182 

researchers and organizations identify weak organizational processes and practices in order to 183 

improve performance (Georgy et al. 2005; Elwakil et al. 2009). However, most modeling 184 

techniques used in previous studies lack the ability to capture overall organizational competency 185 

and performance. Table 1 presents a summary of advantages and limitations of past competency 186 

and performance modeling methods. 187 

The majority of competency and performance modeling methods presented in Table 1 are 188 

conceptual and/or correlation/regression models and thus subject to the limitations noted above. 189 

Although hybrid NFS that combine the learning power of ANN, functionality of fuzzy systems, 190 

and evolutionary optimization algorithms have been utilized previously to develop accurate 191 

predictive models, most hybrid NFS such as ANFIS cannot handle multiple outputs because of 192 

their MISO configuration. Thus, this paper proposes GA-MANFIS, a hybrid NFS modeling 193 

approach that can handle the multiple outputs inherent in real-world engineering problems. 194 

As discussed above, very few studies have utilized hybrid NFS and evolutionary 195 

optimization algorithms. To the authors’ knowledge, prediction of multiple performance metrics 196 

simultaneously using a hybrid GA-MANFIS has not been done in the construction domain. 197 

Therefore, this paper demonstrates the use of a hybrid GA-MANFIS model in CEM.  198 

The following section presents the applications and limitations of GA-MANFIS and its 199 

components with respect to modeling organizational competencies and performance in CEM. 200 

 201 

 202 
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Table 1. Advantages and limitations of past competency and performance modeling methods 203 

Method and References Advantages Limitations 

Conceptual:  

Ahadzie et al. (2009, 

2014); Liu et al. (2010); 

Suhairom et al. (2014)  

• Clear distinction between 

competency and 

performance  

• Map competencies to 

performance 

• Lack evidence-based relation; 

hence, needs validation 

SEM, correlation, and/or 

regression:  

Altuncan and Tanyer 

(2018); Bolivar-Ramos et 

al. (2012); Cheng et al. 

(2007); Dainty et al. 

(2005); Levenson (2006); 

Liang et al. (2013); Ling 

(2002, 2004); Liu et al. 

(2010);  

• Captures relationships 

between competency and 

performance 

• Establishes causal link 

between competencies and 

performance  

• Generic and developed with 

limited data; hence, difficult 

to generalization  

• Lacks context 

ANN: 

Adeli and Jiang (2003), 

Siraj et al. (2016), Tayfur 

et al. (2014) 

• Capture complex and linear 

relationships  

• Possess learning capability 

• Black box nature (lack 

transparency) 

• Do not capture subjective 

uncertainty  

• Lack interpretability 

Fuzzy systems: 

Poveda and Fayek (2009), 

Siraj et al. (2016), Tayfur 

et al. (2014) 

• Represent conditional 

relationships, i.e., rule-based 

knowledge  

• Use linguistic terms to 

assess the degree of 

interactions 

• Capture expert knowledge 

on casual factors 

• Capture subjective 

uncertainty 

• Inferencing ability 

• Curse of dimensionality 

• Lack learning capability 

 

Hybrid fuzzy systems: 

Omar and Fayek (2016) 
• Capture subjective 

uncertainty 

• Knowledge representation  

• Inferencing ability 

• Lack model flexibility for 

varying contexts 

• Need development of 

multiple models 

• Limited in handling high 

dimensional data attributes 

NFS (conventional and 

hybrid): 
• Model complex and non- • Lack handling of multiple 
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Method and References Advantages Limitations 

Chen et al. (2018), Chen 

et al. (2010), Georgy et al. 

(2005),  

linear relationships  

• Capture both subjective and 

objective measures 

• Possess learning capability  

• Inferencing ability 

outputs 

• May have high model 

complexity 

• High computational time 

 204 

Application and limitations of ANFIS/MANFIS in CEM 205 

ANFIS has been one of the most popular prediction models among NFS techniques capable of 206 

input-output mapping of complex and nonlinear relationships, and it has been widely and 207 

successfully used for various construction applications (Tiruneh et al. 2020); however, few uses 208 

of ANFIS in modeling competency and performance have been explored. Omar and Fayek (2016) 209 

proposed a fuzzy neural network to model construction project competencies and performance and 210 

showed that enhancing construction project competencies can improve project performance. 211 

Georgy et al. (2005) utilized neuro-fuzzy intelligent systems for predicting engineering 212 

performance in a construction project. Elbaz et al. (2019) proposed hybrid GA-ANFIS and Elbaz 213 

et al. (2019) proposed particle swarm optimization (PSO)-based ANFIS (PSO-ANFIS) models to 214 

predict performance for tunneling projects. Cheng et al. (2012) used an evolutionary fuzzy hybrid 215 

neural network for dynamic project success assessment in the construction industry. Most studies 216 

other than Omar and Fayek (2016) focus on performance prediction using various factors other 217 

than competency. Thus, a great potential still exists for using ANFIS in analyzing organizational 218 

competencies, relating them to performance, and predicting organizational performance. 219 

AI-based models such as ANFIS have good performance with desirable accuracy compared 220 

to the mathematical or regression models in real engineering practice (Elbaz et al. 2019; Yuan et 221 

al. 2014). However, ANFIS has two important limitations: slow computational convergence and a 222 

potential for being trapped in local minima (Elbaz et al. 2020). Therefore, ANFIS may provide 223 
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less accurate results and/or distorted or inadequate explanations for problems (Elbaz et al. 2019). 224 

To overcome these limitations, ANFIS needs to be optimized with a heuristic optimization 225 

technique such as GA, PSO, artificial bee colony (ABC), or ant colony optimization (ACO) (Elbaz 226 

et al. 2019; Elbaz et al. 2020). Furthermore, the application of ANFIS in construction research has 227 

limitations in handling multiple outputs. The configuration of the ANFIS architecture is only 228 

suitable for MISO problems. As such, a need exists for developing a modeling approach that can 229 

improve ANFIS so that it can handle complex and nonlinear MIMO problems in CEM. 230 

Despite its broad applicability, ANFIS fails to directly deal with MIMO systems because 231 

of its MISO structure (Acampora et al. 2014; Cheng et al. 2002). So, various approaches used 232 

improved ANFIS that can handle MIMO systems, such as MANFIS (Acampora et al. 2014; Cheng 233 

et al. 2002; Das and Winter 2016). MANFIS can be viewed as an aggregation of many independent 234 

ANFISs and capable of modeling highly nonlinear and complex systems (Cheng et al. 2002; Das 235 

and Winter 2016). The core of the proposed model is a processing layer of ANFIS modal blocks 236 

that each correspond to and predict a single output (Cheng et al. 2002; Das and Winter 2016; Malik 237 

and Arshad 2011). 238 

Past studies showed MANFIS’s good performance in approximating multiple outputs with 239 

the desired precision (Das and Winter 2016; Malik and Arshad 2011). Malik and Arshad (2011) 240 

demonstrated the performance of MANFIS in modeling a nuclear power plant’s multivariable 241 

primary pressure control system, which indicated excellent agreement between predicted and 242 

actual data, hence confirming the model’s effectiveness in a real-world situation. Das and Winter 243 

(2016) utilized a MANFIS model to predict multi-output urban transport modes (bus, train, tram, 244 

and walking) with high accuracy. Agah and Soleimanpourmoghadam (2020) proposed a MANFIS 245 

model to predict the existence of pollutant heavy metals in the environment and showed that 246 
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MANFIS predicts with high accuracy the concentration of four heavy metals in mine drainages. 247 

However, MANFIS has similar limitations to those of ANFIS – slow computational convergence 248 

and potential of being trapped in local minima – which result in low accuracy and poor 249 

generalization.  250 

A hybrid GA-MANFIS 251 

Studies have shown that evolutionary algorithms (e.g., GA, PSO, ABC, ACO) have significant 252 

capability to improve the performance and accuracy of ANFIS in prediction models and solving 253 

real-world engineering and/or CEM problems (Elbaz et al. 2019; Kaveh et al. 2018), although 254 

many studies indicated that GA-ANFIS models had the best performance with the highest accuracy 255 

compared to other hybrid approaches to modeling nonlinear and complex real-world engineering 256 

problems (Kaveh et al. 2018). GA has been used successfully in solving CEM problems, because 257 

it has robustness in determining a global optimal solution (Abd Elaziz et al. 2019; Kumar and 258 

Hynes 2020; Yuan et al. 2014). Furthermore, hybridizing a robust optimization algorithm such as 259 

GA with ANFIS as its training algorithm improves the effectiveness of MFs and fuzzy rules in the 260 

model (Abd Elaziz et al. 2019; Elbaz et al. 2019; Elbaz et al. 2020). A trend toward heuristic-based 261 

ANFIS training algorithms for better performance has been addressed in recent published studies 262 

(Elbaz et al. 2019; Elbaz et al. 2020; Tiruneh et al. 2020). Thus, optimization of ANFIS using GA 263 

can be extended to MANFIS models to improve model performance in predicting multiple outputs. 264 

Optimization of a multiple-output system is performed by integrating a MANFIS network 265 

and various evolutionary algorithms such as GA to improve prediction capacity (Cheng et al. 266 

2002). Cheng et al. (2002) proposed a hybrid MANFIS neuro-fuzzy network that uses GA to 267 

optimize multiple-objective decision-making problems. Tahmasebi and Hezarkhani (2012) 268 

investigated the performance of integrated neural-fuzzy and GA for MIMO problems to predict 269 
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the ore grade from boreholes of copper deposits and showed that their proposed approach has 270 

excellent performance for grade estimation. However, review of past studies shows that very few 271 

focused on MANFIS in general and incorporating evolutionary optimization methods, especially 272 

GA. Thus, the proposed GA-MANFIS model enables construction organizations to identify and 273 

evaluate their competencies that have significant impact on performance and to simultaneously 274 

predict multiple organizational performances. Additionally, the proposed GA-MANFIS model can 275 

serve as a reference to extend the scope of its application by researchers, practitioners, and different 276 

CEM organizations according to their context. 277 

GA-MANFIS Modeling Methodology 278 

Steps for developing the proposed hybrid GA-MANFIS model are: (1) identify organizational 279 

competencies and performance metrics, and collect data, (2) prepare the organizational 280 

competencies and performance metrics data, (3) select organizational competency features, (4) 281 

develop the GA-MANFIS model, and (5) verify and validate the GA-MANFIS model. The 282 

methodology is illustrated in Figure 1 and described below. 283 

Identify organizational competencies and performance metrics and collect data 284 

First, an initial list of organizational competencies and performance metrics was derived from 285 

existing research in both construction and non-construction domains. A total of 157 competencies 286 

were initially identified and grouped into two sets of organizational competencies: functional (how 287 

the organization operates and functions) and behavioral (individual/organizational attributes). The 288 

list of competencies was further refined to avoid redundancy and similarity. A total of 101 289 

competencies (i.e., 58 functional and 43 behavioral competencies) were selected, and a total of 44  290 

 291 
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 292 
Fig. 1. GA-MANFIS modeling methodology for construction organizational  293 

competencies and performance. 294 
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organizational performance metrics were classified as key performance indicators (KPIs), key 295 

performance outcomes (KPOs), and perception measures (PerMs). 296 

Next, a focus group was conducted to verify and validate the list and categorization of 297 

organizational competencies and performance metrics. Participants were experts who reviewed the 298 

list and proposed additional organization-level competencies and performance metrics they 299 

thought important. The initial list was updated to incorporate the experts’ feedback and include 300 

proposed additional competencies backed by the literature. The resulting comprehensive list of 301 

organizational competencies and performance metrics not only considers the literature in 302 

construction and non-construction domains, but also captures the opinions of construction experts 303 

practicing in the industry. More details about the focus group results can be found in Tiruneh and 304 

Fayek (2021). 305 

Then, data collection forms were based on the finalized list of organizational competencies 306 

and performance metrics from the focus group, and data was collected. The finalized list was pilot 307 

tested with a construction company to ensure that respondents could understand the forms and to 308 

check applicability of the evaluation and measurement scales and techniques of the data collection 309 

forms within CEM organizations. Final data collection forms consisted of 85 competencies and 42 310 

organizational performance metrics were then prepared incorporating feedback from the pilot 311 

survey. 312 

Two surveys – the senior management survey and the staff survey – were developed to 313 

collect data regarding organizational competencies influencing organizational performance. The 314 

surveys were distributed through Survey Monkey with a company’s office and project personnel. 315 

Participants holding senior management positions completed the senior management survey, 316 

which addressed 85 competencies (48 functional and 37 behavioral competencies). All other 317 
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participants, including project managers, field supervisors, and foremen, completed the staff 318 

survey, which addressed 63 competencies (34 functional and 29 behavioral competencies). The 319 

senior management survey addressed everything in the staff survey plus additional organizational 320 

competencies and performance metrics that can only be evaluated by senior management and were 321 

not known to the other respondent group. 322 

Survey respondents evaluated organizational functional competencies based on maturity 323 

(the extent to which a specific competency exists in the organization) and impact on performance 324 

(the level of impact of a specific competency on overall performance of the organization). 325 

Respondents evaluated organizational behavioral competencies based on agreement (the extent to 326 

which the respondent agrees that a specific competency exists in the organization) and impact on 327 

performance. Maturity of functional competencies is measured on a scale ranging from 1 328 

(“Informal”) to 5 (“Optimized”). Agreement is measured on a scale ranging from 1 (“Strongly 329 

Disagree”) to 7 (“Strongly Agree”). Impact on performance is measured on a scale ranging from 330 

1 (“Extremely Low”) to 7 (“Extremely High”). Actual company performance metrics data related 331 

to KPIs and KPOs were collected at the organizational (operational) and project levels using 332 

quantitative measures. Thus, performance data for KPIs and KPOs were extracted from relevant 333 

actual organizational/project documents. For performance, metrics related to PerMs were 334 

evaluated using a satisfaction scale ranging from 1 (“Extremely Unsatisfied”) to 5 (“Extremely 335 

Satisfied”). Subjective performance measures related to KPIs and KPOs were evaluated using a 336 

scale ranging from 1 (“Very Low”) to 5 (“Very High”). 337 

Prepare organizational competencies and performance metrics data 338 

Data preparation or preprocessing techniques for modeling include data cleaning and data 339 

normalization (i.e., data transformation), which are usually implemented prior to any data-driven 340 
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system modeling in order to eliminate responses or data instances that include outliers (i.e., noisy 341 

data), missing values, or bad data (Acampora et al. 2014; Cheng et al. 2015; Fattahi et al. 2018). 342 

These data preprocessing steps ensure that raw data collected or retrieved from the database and/or 343 

obtained from actual company and project documents are suitable for modeling. 344 

Data cleaning 345 

All online survey responses and performance data extracted from actual company and/or project 346 

documents were encoded to an Excel sheet. A total of 80 data instances were recorded and 347 

considered for model development. All survey responses and performance data were then checked 348 

for missing values, outliers, and inconsistencies. As part of the data cleaning step, survey responses 349 

and performance data with missing values and outliers were removed from the data. The data 350 

cleaning resulted in 62 data instances, which fell within the range of data instances used to develop 351 

MANFIS models in past studies (Agah and Soleimanpourmoghadam 2020; Cheng and Roy 2010; 352 

Cheng et al. 2015; Fattahi et al. 2018). Thus, the 62 data instances resulting from data cleaning for this 353 

study were considered sufficient, and were used to develop the proposed GA-MANFIS model. 354 

Data normalization  355 

Once cleaned, data are normalized using Equation (1), which transforms the dataset to the range 356 

of [0 1] in order to simplify and enhance training performance and improve prediction accuracy of 357 

the model. Normalizing the input-output data helps avoid domination of attributes in greater 358 

numeric ranges over smaller numeric ranges and to avoid numerical difficulties (Cheng and Roy 359 

2010). 360 

𝑥𝑁 =
𝑥𝑖−𝑥𝑚𝑖𝑛 

𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛
 (1) 361 

where, xi and xN are the original and normalized values, respectively, while xmin and xmax are the 362 

minimum and maximum values of x, respectively. 363 
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Select organizational competency features 364 

After data cleaning and normalization, the number of input variables are reduced. High 365 

dimensionality of data makes it difficult to build a concise and efficient predictive model. 366 

Reducing data dimensionality helps reduce computational time and removes redundant or noisy 367 

attributes, thus improving model performance through increased predictive accuracy and 368 

interpretability. FS techniques, such as GA-FS, reduce data dimensionality and identify the best 369 

subset of data for which the predictive model has the highest accuracy in terms of the lowest root 370 

mean square error (RMSE), as expressed in Equation (2). 371 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ (𝑥𝑡 − 𝑥𝑝)2𝑁

𝑖=1  (2) 372 

where, xt and xp are the actual/target and predicted values of x, respectively, while N is the number 373 

of data instances. 374 

FCM parameter optimization for GA-FS 375 

Prior to GA optimization, FCM parameters are optimized. FCM parameters include number of 376 

clusters, c, and fuzzification coefficient, m, which expresses the impact of the membership grades 377 

on the individual clusters. MATLAB programming language was used to develop a code that was 378 

run multiple times to find optimum values of c and m, with FCM performed on the cleaned and 379 

normalized input-output data. For FCM parameter optimization, c = 3 to 7 and m = 1.25 to 3.75 380 

with 0.05 step were used. A total of 60 different runs were implemented, and the minimum RMSE 381 

and the FCM parameters for which the RMSE was minimum were recorded for each run. Next, a 382 

fuzzy inference system (FIS) was developed using the optimized FCM parameters. FCM-based 383 

FIS maps inputs to outputs using fuzzy logic or fuzzy set theory. Finally, the FIS was used to 384 

conduct GA-FS (Tiruneh and Fayek 2019), implemented through the following steps, as depicted 385 

in Figure 2: 386 
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1. Randomly generate an initial subset of the population, or system variables/features (i.e., 387 

organizational competencies), represented by binary chromosomes. 388 

2. Evaluate the compatibility of each chromosome using RMSE as the fitness function. 389 

3. Use selection, crossover, and mutation to create new generation or population based on 390 

fittest individuals from the previous generation. 391 

4. New best offspring chromosomes partially or fully replace parents (i.e., old) chromosomes. 392 

5. Repeat steps 2–4 until termination condition is satisfied. The chromosome with the highest 393 

accuracy in the last generation (i.e., organizational competencies) represented by ones are 394 

selected as the best subset of system variables for model development. 395 

GA-FS to identify model input 396 

Applying the optimum FCM parameters, an FIS was developed using the genfisOptions of 397 

MATLAB 2020b. Then, FS was conducted using binary-coded GA optimization on the FIS using 398 

the RMSE as the fitness function. The crossover and mutation probabilities were set as 0.8 and 399 

0.1, respectively, while the number of generations was 100. The top five results were considered 400 

for the GA-FS step. For each result, a population of 50, 60, 80, and 100 was used, keeping the 401 

number of generations at 100. Therefore, 20 different combinations of GA-FS were conducted to 402 

identify the results with the best fitness (RMSE) values. After performing the FS using GA 403 

optimization, 19 competencies were selected out of the original 60. 404 

Develop GA-MANFIS model 405 

The proposed model development process has three steps: data splitting; model development and 406 

optimization; and model verification and validation. The model development steps depicted in 407 

Figure 3 are discussed below. 408 

 409 
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 410 

Fig. 2. FS using GA optimization. 411 
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 412 

Fig. 3. GA-MANFIS model training and optimization. 413 
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Data splitting 414 

To begin GA-MANFIS model development, all input variable data identified by GA-FS are 415 

shuffled in rows to ensure random arrangement before being divided into training and testing 416 

datasets. Past studies used different ratios of training to testing data depending on the availability 417 

of data. The most common ratio applied for model development (training dataset) to model 418 

validation (testing dataset) is 70/30. However, many studies that developed limited-data models 419 

used a ratio of 80/20 for training to testing data (Fattahi et al. 2018; Agah and 420 

Soleimanpourmoghadam 2020) or even 85/15 (Cheng and Roy 2010; Tahmasebi and Hezarkhani 421 

2012). In this study, a ratio of 80/20 was used for model development. 422 

Model development and optimization 423 

The hybrid GA-MANFIS model was programmed in MATLAB R2020b. A Takagi-Sugeno FIS 424 

with Gaussian MF was applied to create the initial FIS to develop the GA-MANFIS model. Model 425 

architecture, input and output variables, development, training, and optimization procedures are 426 

discussed below. 427 

The proposed GA-MANFIS model has three components, as shown in Figure 4. The input 428 

layer comprises the organizational competencies obtained from the GA-FS step. In the MIMO 429 

modal block layer, for K outputs, the model will have K number of ANFIS modal blocks (Cheng 430 

et al. 2002; Das and Winter 2016; Malik and Arshad 2011). So, each ANFIS block has a single 431 

input, is trained and optimized in parallel, and predicts a single output, ANFIS generates the 432 

number of MFs based on the FCM-based initial FIS, and the model predicts multiple outputs by 433 

using the same multiple inputs. Finally, the output layer comprises organizational performance 434 

metrics. 435 
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 436 

Fig. 4. GA-MANFIS model architecture for organizational competencies and performance. 437 

 438 

As shown in Figure 4, organizational competencies served as the input variables for the 439 

GA-MANFIS model. Six performance metrics that include Employee satisfaction (p2), Customer 440 

satisfaction (p3), Competitiveness (p4), Quality of work (p5), Safety performance (p6), and 441 

Effectiveness of planning (p7) were identified as model outputs. A seventh model output, Overall 442 

organizational performance (p1), was added by taking the average of the normalized values of the 443 

other six performance metrics to determine the overall organizational performance. Thus, the 444 

MIMO modal block of the MANFIS incorporated seven MISO ANFISs. 445 

FCM clustering results in the development of a partition matrix (U = [uik]) that includes the 446 

data points in each cluster (Pedrycz 2013). FCM clusters the input-output dataset into c numbers 447 

of clusters (V = [vj]) by determining a prototype (cluster center) for each cluster. Fuzzy partitioning 448 
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is carried out through an iterative optimization by updating the partition matrix uik and cluster 449 

centers vj using Equations (3) and (4), respectively (Pedrycz 2013). 450 

𝑢𝑖𝑘 =  
1

∑ (
‖𝒙𝑘−𝒗𝑖‖

‖𝒙𝑘−𝒗𝑗‖
)2 𝑚−1⁄𝑐

𝑗=1

, 𝑖 = 1, … , 𝑐,   𝑘 = 1, … , 𝑁 (3) 451 

𝑣𝑗 =  
∑ 𝑢𝑖𝑘

𝑚𝑥𝑘
𝑁
𝑘=1

∑ 𝑢𝑖𝑘
𝑚𝑁

𝑘=1
, 𝑖 = 1, … , 𝑐,   𝑘 = 1, … , 𝑁 (4) 452 

The FCM clustering algorithm maximizes the membership degree of each data point close 453 

to the cluster center, while minimizing the membership degrees of the data away from the cluster 454 

center (Elbaz et al. 2019). This method allows the development of data-driven FIS using rules for 455 

defining the relationships between input and output variables (Pedrycz 2013). Each cluster 456 

represents a fuzzy rule; thus, FCM clustering results in the development of c number of fuzzy rules 457 

in the form of “If X is Ai, then Y is Bi.” 458 

Two types of FIS (i.e., Mamdani and Takagi-Sugeno) have been widely used in various 459 

applications. Mamdani FIS are intuitive and have better interpretability (i.e., explicit knowledge 460 

representation). On the other hand, Takagi-Sugeno FIS have capability for numeric processing 461 

(i.e., accuracy of prediction). In this study, Takagi-Sugeno FIS was used because of its superior 462 

performance in terms of accuracy, and Gaussian MFs were used for representing model input 463 

variables. Studies have indicated that Gaussian MFs are a better option because they are efficient, 464 

with higher performance in prediction for their continuity and smoothness, simplicity in 465 

representation, ease of construction using a data-driven approach, faster convergence during MF 466 

optimization, and suitability for models that seek high-control accuracy (Elbaz et al. 2019; Siraj et 467 

al. 2016). 468 

GA optimization enables the MANFIS training to optimize the parameters of input-output 469 

in the system. At this stage, real-coded parameters are used to represent model input variables 470 
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instead of the binary coded strings used in the FS stage. Model input variables are further 471 

represented by a number of parameters or MFs and thus a real-code (i.e., real numbers) that 472 

encodes the MANFIS parameters with a corresponding range of input parameter values. The 473 

learning and parameter optimization process of the MANFIS network terminates when the fitness 474 

error measure, RMSE, between two sequential iterations or the maximum 100 iterations is reduced 475 

to a satisfied level, which is the set threshold of 10-5. 476 

In summary, the 62 data instances obtained from the data preprocessing stage were used 477 

for training and testing the GA-MANFIS model. As noted, 80% (50 instances) of the dataset were 478 

used for training and the remaining 20% (12 instances) were used for testing the model; an FCM-479 

based Takagi-Sugeno FIS was used to develop each ANFIS modal block in the MANFIS MIMO 480 

block; and real-coded GA was used to train and optimize the premise and consequent parameters. 481 

Crossover and mutation probabilities were set as 0.8 and 0.1, respectively, and a roulette wheel 482 

selection method was used.  483 

Model verification and validation 484 

Verification is conducted to ensure that model components work as expected (Lucko and Rojas 485 

2010). To verify the GA-MANFIS model, all mathematical equations and components of the 486 

model, such as MATLAB codes, are checked for their correctness. Further, the model is run 487 

multiple times to check for the replicability of its results, and tracing and plot graphs are used to 488 

track changes in model variables. 489 

Validation determines how well a model reflects a real-world system. Conceptual validity 490 

and data validity were conducted on the GA-MANFIS model. For conceptual validity, the model 491 

was based on factors identified in the literature as validated by construction experts and 492 

practitioners through a focus group. Data was validated through pilot testing a data collection 493 
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protocol, following a structured data collection methodology, testing for construct validity, and 494 

testing the reliability of the data-collection measures. The GA-MANFIS model performance was 495 

evaluated by comparing the model outputs (i.e., predicted results) against the testing dataset. 496 

RMSE was used as the fitness function to check the conformity of the predicted values with the 497 

actual observed or measured values with a minimum RMSE. Additionally, sensitivity analysis was 498 

conducted to determine whether the model behaves realistically, by changing model parameters 499 

and evaluating changes in the behavior of model output. 500 

Results and Discussion 501 

In this case study, the proposed hybrid GA-MANFIS model was used to analyze organizational 502 

competencies and simultaneously predict multiple organizational performance metrics for a 503 

company in the construction industry. 504 

Data preparation and feature selection 505 

Based on respondents’ replies, a total of 60 organizational competencies (32 functional and 28 506 

behavioral competencies) common to both the senior management and staff surveys were used for 507 

model development, as shown in Table 2. Six organizational performance metrics that had 508 

sufficient data variability were considered for modeling: Employee satisfaction, Customer 509 

satisfaction, Competitiveness, Quality of work, Safety performance, and Effectiveness of planning. 510 

As noted in the methodology, data cleaning resulted in 62 data instances. Organizational 511 

competencies and performance metrics data were characterized as having 60 input features (i.e., 512 

competencies), 6 output features (i.e., performance metrics), and 62 data instances (i.e., complete 513 

survey responses or data points). Thus, the input data matrix was 62×60, the output data matrix 514 

was 62×6, and the overall input-output MIMO system data matrix was 62×66. 515 

 516 



28 

Table 2. Organizational competencies. 517 

Group Competencies 

Functional  Commitment to safety; Communications management; Construction, production, 

and manufacturing; Construction technology and integration management; 

Cooperation and coordination; Customer/stakeholder focus; Delegation; 

Engagement; Goal orientation; Human resources management; Interdisciplinary 

alignment; Interface management; Management and support of diversity; 

Management experience and excellence; Materials management; Operations and 

maintenance; Planning and organizing of tasks/activities; Process engineering 

management; Project change management; Project cost management; Project 

finance management; Project integration management; Project quality 

management; Project risk management; Project safety management; Project 

schedule management; Project scope management; Quality of work; Resource 

management; Staff development; Technical innovation; Technical/job knowledge  

Behavioral  Ability to build trust; Achievement drive; Adaptability/flexibility; Analytical 

ability; Assertiveness; Attention to detail; Communication; Competitiveness; 

Conflict and crisis resolution / issue management; Effectiveness; Influence; 

Innovation; Interpersonal skills; Judgment; Leadership; Motivation/commitment; 

Organizational awareness and culture; Perseverance / self-regulation and control; 

Problem-solving; Professionalism; Reasoning; Reliability/dependability; 

Resourcefulness; Responsiveness; Results orientation; Strategic thinking; 

Teamwork; Values and ethics 

 518 

Given the size of the overall input-output matrix, the dimensionality of original raw data 519 

was very high and GA-FS was conducted. Table 3 shows the best results obtained from the FCM 520 

parameter optimization and the top five parameters used in GA-FS. The FCM results indicated 521 

that the RMSE tended to be minimum when the values of m were low, irrespective of the number 522 

of clusters, especially closer to 2. 523 

Table 4 shows the results of the GA-FS ranking based on average fitness values, which 524 

further indicate that the FCM parameters that provided the best five GA-FS results with minimum 525 

error were for c = 6, m = 1.45 and c = 3, m = 1.75, respectively, and that the best optimum 526 

parameters identified in Table 3 – for c = 6, m = 2.50 – showed poor results in terms of the GA-527 

FS fitness function. The poor performance results from the higher value of m = 2.50: as the m value  528 

  529 
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Table 3. FCM parameter optimization results 530 

Code* c m Minimum RMSE Rank 

Opt_S10 6 2.50 0.037141 1 

Opt_Sug7 6 1.45 0.038779 2 

Opt_Sug18 7 2.55 0.040223 3 

Opt_S25 3 1.75 0.042300 4 

Opt_Sug11 7 2.50 0.042737 5 

Opt_Sug2 7 1.90 0.047960 6 

Opt_Sug8 7 2.35 0.048160 7 

Opt_S2 7 1.75 0.065234 8 

Opt_S16 6 1.85 0.066222 9 

Opt_S6 6 2.25 0.077706 10 

* FCM parameter optimization run 531 

 532 

gets higher, the MFs will become “spiky,” meaning the membership grades are equal to 1 at the 533 

prototypes/cluster centers, and the values rapidly decline when moving away from the prototypes. 534 

With minimum overlap of adjacent MFs, the process therefore provides less accurate results. GA-535 

FS results further showed that the number of features selected was lower as values of m used for 536 

FS increased. Moreover, results with the best fitness values provided almost similar numbers of 537 

features. For instance, four of the top five ranked results in Table 4 selected 19 features as a 538 

representative subset of the original data, while the remaining result obtained 18 features. For 539 

model development, the result with lower value of c and m value closer to 2 was considered. 540 

Pedrycz and Gomide (2007) recommended that a value of m = 2.00 or closer is appropriate for the 541 

application of FCM clustering. Therefore, c = 3, m = 1.75 is the optimum FCM parameter selected 542 

for GA-MANFIS model development. 543 

GA-FS optimization selected 19 competencies out of the original 60: Staff development 544 

(c1); Goal orientation (c2); Interdisciplinary alignment (c3); Commitment to safety (c4); 545 

Construction, production, and manufacturing (c5); Project safety management (c6); Project cost 546 

management (c7); Project procurement management (c8); Engagement (c9); Ability to build trust 547 
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Table 4. GA-FS results for the optimized FCM parameters 548 

FCM parameter optimization values  GA-FS result values 

Code c m Min. RMSE  Population Selected features 

(no.) 

Average fitness 

(RMSE) 

Best fitness 

(RMSE) 

Rank based on 

average fitness 

Opt_S10 6 2.5 0.037141  50 18 0.047080 0.043382 14 

     60 18 0.046710 0.043402 11 

     80 16 0.046881 0.043083 12 

     100 15 0.046983 0.043477 13 

Opt_Sug7 6 1.45 0.038779  50 22 0.043843 0.040428 8 

     60 19 0.040227 0.037340 2 

     80 18 0.040837 0.036858 3 

     100 19 0.038646 0.035067 1 

Opt_Sug18 7 2.55 0.040223  50 15 0.045183 0.049491 9 

     60 16 0.047307 0.043375 15 

     80 17 0.046513 0.042393 10 

     100 16 0.048640 0.044637 19 

Opt_S25 3 1.75 0.042300  50 19 0.042157 0.040530 7 

     60 19 0.041731 0.039895 4 

     80 22 0.041968 0.039813 6 

     100 19 0.041967 0.040344 5 

Opt_Sug11 7 2.50 0.042737  50 15 0.048054 0.043580 17 

     60 16 0.049209 0.045792 20 

     80 16 0.048334 0.044543 18 

     100 15 0.047802 0.042622 16 

 549 

 550 
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(c10); Organizational culture (c11); Judgment (c12); Values and ethics (c13); Conflict resolution 551 

(c14); Results orientation (c15); Influence (c16); Communications (c17); Motivation (c18); and 552 

Perseverance (c19). These 19 organizational competencies were used as input variables for model 553 

development, being the best subset of the original organizational competencies, and thus enabling 554 

development of a model that provided high accuracy. 555 

GA-MANFIS model development 556 

The 19 organizational competencies and 7 organizational performance metrics were the 557 

model input and output variables, respectively. In this study, 36 GA-MANFIS models were 558 

implemented for different GA parameters, such as population size and number of generations 559 

(iterations). For population size, values of 50, 60, 80, and 100 were tested; the number of 560 

generations used to run the model were 25, 50, and 100. Similarly, different initial FIS with 3, 5, 561 

and 7 clusters for developing the model were tested. The best optimized model is defined as the 562 

one that predicts the results of the test data with highest accuracy (i.e., minimum RMSE). The GA-563 

MANFIS with a population size of 50, 100 generations, and 3 clusters was found to be the optimal 564 

model. The results indicate that increasing the number of clusters while developing a model with 565 

limited data reduces the model performance. Moreover, an investigation of the MFs obtained for 566 

models with c = 7 were very close to one another and could therefore be merged to obtain better 567 

model performance. Thus, models with fewer clusters provided the best result. Table 5 presents 568 

results of the most optimal GA-MANFIS model, which the values in Table 5 indicate can predict 569 

four of the seven organizational performance metrics with high accuracy. The highest prediction 570 

accuracy for the testing data with a minimum RMSE = 0.13784 was obtained for Overall 571 

organizational performance. The optimal GA-MANFIS model also predicted Customer 572 

satisfaction, Employee satisfaction, and Effectiveness of planning with a higher prediction 573 
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accuracy. The prediction performance of the model for Quality of work was low compared to the 574 

other metrics, with RMSE = 0.32253. However, the predictions for Competitiveness and Safety 575 

performance showed better accuracy than Quality of work, with RMSE values of 0.24507 and 576 

0.27596, respectively. 577 

Table 5. Results of optimal GA-MANFIS model outputs 578 

Organizational 

performance metrics 

Training data  Testing data 

RMSE Error mean Error st. d.  RMSE Error mean Error st. d. 

Overall organizational 

performance 

0.12413 3.22E-8 0.12539  0.13784 0.05751 0.13084 

Employee satisfaction 0.20037 3.52E-8 0.20240  0.18901 0.00251 0.19740 

Customer satisfaction  0.25376 0.09181 0.23896  0.18078 0.15063 0.10441 

Competitiveness  0.21282 3.00E-8 0.21498  0.24507 0.11347 0.22688 

Quality of work 0.41657 -0.27040 0.32010  0.32253 -0.12542 0.31037 

Safety performance 0.29406 0.19591 0.22151  0.27596 0.13158 0.25336 

Effectiveness of 

planning 

0.23141 2.75E-8 0.22376  0.19329 -0.06933 0.18845 

 579 

Comparison between the actual and predicted values of performance metrics by the best 580 

optimal GA-MANFIS model (i.e., with population = 50 and generations = 100) is depicted in 581 

Figure 5. As noted in the methodology, each ANFIS modal block (Figure 4) corresponds to the 582 

prediction of a single output. For instance, Figure 5 depicts the ANFIS 1 prediction of Overall 583 

organizational performance with RMSE = 0.26406, error mean = 0.057513, and standard 584 

deviation = 0.13084 for the training data. The prediction for testing data provided 585 

RMSE = 0.13784, error mean = 0.057513, and standard deviation = 0.13084. Figure 6 presents the 586 

prediction of ANFIS 2 for Employee satisfaction with RMSE = 0.18901, mean error = 0.0025, and 587 

error standard deviation = 0.1974 for the testing data. The plots of results showed a relatively good 588 

fit both for the training and testing data. Graphical methods such as residual analysis are 589 

advantageous for illustrating the relationship between model and data, and numerical or statistical 590 

methods (e.g., sum of square error, mean square error or residual mean square, and RMSE) for 591 
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model validation. As such, results with mean square error (MSE) or RMSE value closer to 0 (zero) 592 

indicate a good fit that is useful for prediction. For instance, Figure 6(b) indicates that the model 593 

output value for Employee satisfaction follows the behavior of the target or actual values of the 594 

testing data, which appears to have a better fit visually when compared to Figure 5(b). However, 595 

the residual analysis plot indicates that the plots of results presented in Figure 6(b) with a residual 596 

mean square error MSE = 0.035725 have higher variability compared to Figure 5(b) with MSE = 597 

0.019. Thus, the plots of results shown in Figure 5 have a good fit for prediction, and the GA-598 

MANFIS is able to predict new observations of Overall organizational performance with a 599 

relatively high certainty compared to Employee satisfaction. Prediction for the remaining 600 

performance metrics was implemented in the same manner where the results showed a good fit, 601 

that is, followed the pattern of the actual target values. 602 

In summary, the performance of the proposed GA-MANFIS was found to be excellent 603 

compared with the target goal. The performance curves, or graphical plots, for training and testing 604 

(Figures 5 and 6) are almost identical, which indicates that the model output shows a good fit that 605 

follows the patterns of the target results (actual values). Furthermore, the GA-MANFIS showed 606 

good performance in predicting four of the seven organizational performance metrics including 607 

Overall organizational performance, Employee satisfaction, Competitiveness, and Effectiveness of 608 

planning. The relatively poor fit for Customer satisfaction, Quality of work, and Safety 609 

performance results from the lack of adequate variability in the data. 610 



34 

 611 

(a) 612 
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 613 

(b) 614 

Fig. 5. Comparison of target, output, mean square error (MSE), root mean square error (RMSE), 615 

mean error, and standard deviation (st. d.) for Overall organizational performance – (a) training, 616 

(b) testing. 617 
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 618 

(a) 619 
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 620 

(b) 621 

Fig. 6. Comparison of target, output, MSE, RMSE, mean error, and st. d. for Employee 622 

satisfaction – (a) training, (b) testing. 623 

  624 
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GA-MANFIS model verification and validation 625 

The sensitivity analysis results showed that the number of generations insignificantly effects model 626 

output, but changes in GA optimization population size significantly affects model outputs. Table 627 

6 presents the sensitivity analysis of the optimal model with respect to changes in population size 628 

of the GA optimization. 629 

The values in Table 6 reveal that as the model’s population increases, prediction accuracy 630 

decreases and the search space for GA to find an optimal solution becomes large, which makes the 631 

optimization processes too complicated and much too time consuming. The model prediction 632 

patterns follow a similar trend to that of the optimal model, although with reduced prediction 633 

accuracy. Thus, population size is an important factor that needs to be chosen carefully in lieu of 634 

the data availability for model development. 635 

Comparison of the seven independent MISO GA-ANFIS models developed for each 636 

organizational performance metric and overall organizational performance are shown in Table 7 637 

and indicate that the GA-MANFIS performs better than the GA-ANFIS model in predicting five 638 

of the seven organizational performance metrics. For instance, GA-MANFIS showed a significant 639 

27.62% improvement in prediction accuracy for Effectiveness of planning and 22.38% 640 

improvement for Overall organizational performance. GA-MANFIS obtained a better 641 

performance with 7.25% improvement in prediction accuracy for Safety performance, 5.16% for 642 

Quality of work, and 5.06% for Employee satisfaction. According to Benmiloud (2010), the 643 

increase in the number of weights of the GA-MANFIS model allows improvement of the 644 

prediction accuracy, explained by smaller prediction errors (i.e., RMSE). For instance, the RMSE 645 

of predicting Overall organizational performance is reduced from 0.16855 (GA-ANFIS) to 646 

0.13784 (GA-MANFIS). Moreover, GA-MANFIS showed a significant prediction improvement 647 
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Table 6. Sensitivity analysis and comparison of best performing models 648 

Organizational 

performance metrics 

RMSE 

Pop = 50  Pop = 60  Pop = 80  Pop = 100 

Training Testing  Training Testing  Training Testing  Training Testing 

Overall organizational 

performance 

0.12413 0.13784  0.13035 0.11251  0.12925 0.09793  0.12947 0.09934 

Employee satisfaction 0.20037 0.18901  0.19356 0.23850  0.18572 0.23174  0.19707 0.21448 

Customer satisfaction  0.25376 0.18078  0.23836 0.25465  0.25457 0.25400  0.26481 0.26726 

Competitiveness  0.21282 0.24507  0.22140 0.16173  0.22610 0.16677  0.20713 0.23690 

Quality of work 0.41657 0.32253  0.40764 0.46990  0.37794 0.44287  0.39198 0.39410 

Safety performance 0.29406 0.27596  0.27086 0.31270  0.31124 0.25224  0.31774 0.30462 

Effectiveness of 

planning 

0.23141 0.19329  0.23868 0.37885  0.27113 0.28610  0.27108 0.20100 

 649 

 650 
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for Effectiveness of planning, with RMSE = 0.19329 compared to RMSE = 0.24667 for GA-651 

ANFIS. However, GA-ANFIS showed a better performance for Competitiveness with 16.07% 652 

improvement of prediction accuracy and 4.04% improvement for Customer satisfaction. The 653 

reason GA-ANFIS performs better in predicting Customer satisfaction and Competitiveness may 654 

be attributable to the nature of the data. The normalized values for Customer satisfaction and 655 

Competitiveness used for model training and testing have a greater numerical range compared to 656 

the remaining performance metrics. For example, most of the normalized values for 657 

Competitiveness include 0.00, 0.33, 0.67, and 1.00, compared to Overall organizational 658 

performance with better data variability (i.e., 0, 0.2, 0.25, 0.35, 0.45, 0.5, 0.55, 0.6, 07, 0.75, and 659 

1). NFS models with a complex network such as GA-MANFIS can produce random oscillations 660 

between the training points to comply with a great numerical range or fast data variations where 661 

the training/optimization algorithm tends to produce high variance between target and predicted 662 

values (Carrano et al. 2008). So, although it needs further investigation and verification, the 663 

possible explanation for a better performance of GA-ANFIS in predicting Customer satisfaction 664 

and Competitiveness is owing to its less complex network compared to GA-MANFIS. 665 

Table 7. Comparison of GA-ANFIS and GA-MANFIS model performance 666 

Organizational 

performance metrics 

RMSE for testing data  Prediction improvement (%) 

GA-ANFIS GA-MANFIS  GA-ANFIS GA-MANFIS 

Overall organizational 

performance 

0.16855 0.13784  - 22.28 

Employee satisfaction 0.19885 0.18901  - 5.06 

Customer satisfaction  0.17348 0.18078  4.04 - 

Competitiveness  0.20569 0.24507  16.07 - 

Quality of work 0.33917 0.32253  - 5.16 

Safety performance 0.29598 0.27596  - 7.25 

Effectiveness of planning 0.24667 0.19329  - 27.62 

 667 

 668 
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Overall, the GA-MANFIS model showed a better prediction performance than the 669 

corresponding GA-ANFIS model. The higher prediction accuracy obtained from GA-MANFIS in 670 

predicting multiple organizational performance metrics allows construction industry organizations 671 

to determine realistic organizational performance by analyzing their competencies. In addition, 672 

GA-MANFIS also had greater capability to analyze multiple inputs (competencies), relate them to 673 

organizational performance metrics, and predict multiple organizational performance. Moreover, 674 

the GA-MANFIS model provides organizations and construction practitioners with insight into 675 

targeted areas for future investment and expansion strategies for improving organizational 676 

performance, which further helps them to make the best decisions. Thus, the proposed GA-677 

MANFIS model has a great advantage over GA-ANFIS in that it can predict multiple 678 

organizational performance metrics at once rather than developing an independent model for each 679 

output. 680 

Conclusions and Recommendations for Future Work 681 

NFS models, specifically ANFIS, have previously been used to model real-world CEM problems 682 

because of their effective characteristics for solving nonlinear, dynamic, and complex problems. 683 

However, the application of ANFIS models have some limitations in handling multiple outputs. 684 

For example, the nonlinear multiple input-output relationships of real-world CEM problems 685 

inherently make them MIMO problems. To address this limitation and improve effectiveness in 686 

handling multiple outputs, this paper proposed a novel methodology to develop a hybrid GA-687 

MANFIS model for application in CEM problems that was then used multiple organizational 688 

competencies as input variables to predict multiple organizational performance metrics. The 689 

proposed model was validated based on data collected from a company active in various industrial 690 

projects. The results showed that the optimal model for predicting organizational performance 691 
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metrics with minimum RMSE is the GA-MANFIS model with 3 clusters, a population size of 50, 692 

and 100 generations. The proposed GA-MANFIS model showed a good performance with the 693 

highest accuracy in predicting multiple organizational performance metrics simultaneously. 694 

Sensitivity analysis identified the main parameters that affect model outputs. Accordingly, 695 

population size was found to have a significant impact on model outputs. Furthermore, Comparing 696 

GA-MANFIS and GA-ANFIS model outputs showed that the GA-MANFIS model performed 697 

better in predicting multiple organizational performance metrics simultaneously (Table 7) than 698 

individual, independent GA-ANFIS models for each performance metric. 699 

This paper makes three main contributions. First, it provides a novel methodology for 700 

developing GA-MANFIS models that can handle MIMO systems inherent in construction 701 

processes and practices, thus addressing the issue of handling multiple outputs common in real-702 

world CEM problems. Second, the proposed GA-MANFIS model has the capability to relate 703 

multiple construction organizational competencies to multiple organizational performance 704 

metrics, creating a more accurate prediction model than conceptual and regression models used in 705 

previous construction research. Third, this paper provides a GA-FS approach that is vital not only 706 

for dimensionality reduction, but also for identifying organizational competencies influencing 707 

performance by reducing model complexity and improving model prediction performance to 708 

obtain good results with high accuracy. By uniquely integrating these computing techniques, the 709 

proposed GA-MANFIS model enables CEM organizations to identify and evaluate competencies 710 

that have significant impact on performance as well as predict multiple organizational 711 

performances simultaneously. Moreover, the GA-MANFIS modeling approach does not require 712 

manual configuration; hence, it can serve as a reference for construction researchers for developing 713 

concise and accurate models that can predict multiple outputs, such as risk, cost, and schedule 714 
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management, for other CEM disciplines. Additionally, the proposed GA-MANFIS modeling 715 

methodology in this paper is generalizable and can be adapted to different construction contexts 716 

for different industry groups such as owners, consultants, and contractors. 717 

Future research will focus on exploring different evolutionary algorithms other than GA, 718 

such as PSO, ABC, and ACO, to train and optimize the GA-MANFIS model. The performance of 719 

the GA-MANFIS model optimized with various evolutionary algorithms will help researchers and 720 

practitioners compare performance of the model prediction accuracy and select the best performing 721 

model for a specific construction problem. Furthermore, the methodology will be extended to 722 

develop similar models applicable to other construction contexts. Data from more companies will 723 

be collected to expand the scope of applicability of the developed GA-MANFIS methodology, 724 

provide more insight into the most critical organizational competencies influencing performance, 725 

and analyze the relationship between competency and performance at the organization level. The 726 

GA-MANFIS model is developed at the organizational level; hence, it is a higher-level model. 727 

Therefore, it will be customized to other levels, such as business unit/department level, project 728 

level, and/or construction crew level. 729 
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