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Abstract

Real-time rendering of static volumetric data is generally known to be a memory

and computationally intensive process. With the advance of graphic hardware, es-

pecially GPU, it is now possible to do this using desktop computers. However, with

the evolution of real-time CT and MRI technologies, volumetric rendering is an

even bigger challenge. The first one is how to reduce the data transmission between

the main memory and the graphic memory. The second one is how to efficiently

take advantage of the time redundancy which exists in the time-varying volumetric

data. Most previous researches either focus on one problem or the other. In this the-

sis, we implemented a system which efficiently deals with both of the challenges.

We proposed an optimized compression scheme that explores the time redun-

dancy as well as space redundancy of time-varying volumetric data. The com-

pressed data is then transmitted to graphic memory and directly rendered by GPU,

so the data transfer between main memory and graphic memory is significantly re-

duced. With our implemented system, we successfully reduce more than half of the

time of transferring the whole data directly. We also compare our proposed com-

pression scheme with the one without exploiting time redundancy. The optimized

compression scheme shows a reduce compression distortion over time. With us-

ability, portability and extensibility in mind, the implemented system is also quite

flexible.
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Chapter 1

Introduction

Coronary heart disease is the single largest killer of people in Canada. Every 7

minutes, someone in Canada dies from heart disease or stroke. The average annual

mortality rate for congestive heart failure in Canada is 10%, with a 50% five-year

survival rate [57]. A study, which examined hospital discharges in the year 2000,

found that a total of 1.38 million hospital days were associated with congestive

heart failure. Approximately 15% of patients died while in hospital, and the average

hospital stay was slightly less than 13 days. These statistics highlight the strategic

importance of being able to diagnose this disease and to reduce the cost of health

care with early diagnosis using 3-D imaging technologies. The ability to image

the heart in real-time, to visualize it, and to plan for treatments is key to reducing

the cost and to improving treatments. All the heart disease treatments involve the

establishment of critical competency assessment and require planning, rehearsal

and predictive virtual tools. One advantage of high-resolution visualization is the

possibility of virtual surgical training and planning. One study by Gallagher et al.

[16] showed a six-fold improvement in avoiding vital structures after training with a

surgical simulator. For accurate training, advanced visualization of the heart is key,

given that it is a dynamic organ. Integration of technologies opens new possibilities

to improve competency and move away from the hands-on experience with live

patients - the so called Halstedian “see one, do one, teach one” method that has so

long underpinned many surgical training approaches.

The processing speed of today’s Central Processing Units (CPU) is not suffi-

cient to achieve interactive visualization of real-time volumetric data. Fortunately,
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the recent development of high-speed Graphics Processing Units (GPU), capable

of processing data at a rate of 1 Tera-flops per card, is changing the landscape of

today’s computing power. Often a surface-based approach is used to render these

data sets, but with the development of new graphics hardware, it is now possible to

visualize, in real-time, volumetric data using texture-mapping or ray-casting tech-

niques which are visually more accurate and do not require segmentation. This is

a significant improvement because intra-anatomical structures cannot be visualized

using surface techniques and many important details are lost. Volumetric visual-

ization techniques are computationally much more expensive, making high-quality

visualization of real-time dynamic cardiac data a challenge for current 3D render-

ing algorithms. Using a combination of tightly coupled scalar computing elements

CPUs with a Graphics Processing Unit (GPU), the goal of this thesis is to develop

GPU based algorithm capable of displaying large temporal volumetric data sets. As

demonstrated in [15], the GPU contains multiple graphics processors that work

in parallel, allowing the rendering of volumetric data set with high image quality

in real-time. Using new volume texture binding techniques, one can dynamically

bind volume data to the 3D rendering engine without degrading performance. The

main problem with dynamic data is the high-bandwidth communication between

the central memory and the GPU. The use of high-performance computers, such

as the Altix 4700, connected by a high-speed data bus (60 Gb/s), such as NUMA

II, solves these problems only partially because the connection between CPU and

GPU is still limited by a relatively low-speed PCI-e bus. In order to solve this prob-

lem, we present a novel algorithm to decompress the volumetric data within GPU in

real-time, hence reducing the traffic on PCI-e, to match the demands for real-time

display and collaboration. This includes the development of techniques similar to

video MPEG encoding, but for temporal volumetric data, as in [25].

1.1 Time-varying Volumetric Data

Volumetric data is typically a set of material property samples at different locations

in 3D space. The basic element of volumetric data can be generalized as (x, y, z, w),
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where (x, y, z) denotes the location in space and w denotes some material proper-

ties at this location. The value w can be a scalar (CT, MRI), vectorial (DTI), or

multi-valued properties obtained by sensors, simulation, or modeling techniques.

One good example of volumetric data is data obtained from Magnetic Resonance

Imaging (MRI) or Computed Tomography (CT). In this specific case the (x, y, z) is

the location of the sample in space and w is a scalar representing X-ray absorbtion

in Hounsfield units in the case of CT or spin decay time for MRI. A more de-

tailed introduction to volumetric data analysis can be found in [32]. In theory, the

sampling location (x, y, z) may be taken without any restrictions in a 3D volume;

however, in general, medical volumetric data is often sampled space at regularly

spaced intervals along xyz axes creating blocks of data called voxels.

As mentioned previously the size of volumetric data is large, which makes vi-

sualization of volumetric data computationally challenging. To get a better sense

of its size, let us assume that we have a volumetric data where w is a scalar value

between 0 to 255, and sampled at 10243. The corresponding representation of the

volumetric data in computer main memory is an array of 10243 elements of 8-bit

unsigned characters, which occupies 1GB of memory space. In many applications

this is not a very high resolution volumetric data and it already exceeds the video

memory capacity of most GPUs which is responsible for rendering this data in real-

time.

Time-varying volumetric data are even bigger in size. It is essentially a series

of stationary volumetric data at different time steps. Theoretically, the size of time-

varying volumetric data has no upper bound as it could contain an infinite amount

of time steps if we digitize a moving organ for a long-period of time. Although

it is limited by the data acquisition hardware, the time interval between two con-

tinuous time steps of a typical time-varying volumetric data should be very short.

Otherwise, some important information of the moving organ will be lost. The data

similarity between different time steps is called time redundancy.

The visualization of time-varying volumetric data is very difficult due to its un-

limited large data size. Visualizing this data helps end users to perceive the change

and understands the behavior of an organ like the heart in time and space, which
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stationary volumetric data can never provide. Numerous systems have focused on

visualizing stationary volumetric data in the past. Unlike these systems, the visual-

ization of time-varying data set should have its own techniques which take advan-

tage of the unique features of time-varying volumetric data.

1.2 Volumetric Data Rendering

Volumetric data rendering has been studied by researchers for decades. Generally,

it has several advantages over traditional polygon rendering techniques such as:

viewpoint independent and insensitivity to scene complexity. Its disadvantage is

that it needs large storage space and its rendering require to solve complex equations

which are very computationally intensive. Volume rendering allow both interior

and exterior information to be displayed by using complex density color look-up

functions and transparency.

The term real-time rendering means that the rendering speed (typically 10 to 30

Hz) should be sufficient to allow interactive feedback to end users allowing then to

zoom, change viewpoint, and move around the data set [3]. Many sophisticated

speed-up techniques have been proposed and tested in the past. Splating, shear-

wrap, texture mapping and ray casting are the most notable techniques and will be

reviewed in the following chapter. In essence, many real-time volumetric rendering

algorithms are striving to solve two issues. One is to deal with the heavy compu-

tational load of the rendering algorithm and the other one is how to deal with the

memory limitation imposed by hardware.

The first issue results from the need to solve the volumetric rendering integral.

The emission-absorption model is the most widely used optical model in volume

rendering. The integral is the following [27]:

I(D) = I0e
−
∫ D

s0
k(t) dt

+
∫ D

s0
q(s)e−

∫ D

s
k(t) dt ds

In order to be able to solve this integral numerically, a Riemann sum approximation

is used to transform the integral to this discrete approximation:

I(D) ≈ I0
n∏

i=0

e−k(s0+i∗∆t)∆t +
n∑

i=1

q(s0 + i ∗∆t)
n∏

j=i+1

e−k(s0+j∗∆t)∆t,
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The real-time solution of this integral on a commodity CPU is truly a challenging

task. The situation is even more complex if global illumination is used in the render-

ing. The advancement of GPU computational power significantly change the situa-

tion. A state-of-art NVIDIA Quadro FX5800 can compute at a rate of 933.12 Giga

Floating Point Operations Per Second (FLOPS), which is more than enough for

most volume rendering algorithm. At present, it is possible to interactively render

a gigabyte-scale volumetric data with reasonable fidelity on commodity graphics

hardware using a GPU [51] [25].

The second issue is caused by the huge size of time-varying volumetric data.

Most real-time rendering algorithms require the volumetric data to be stored before

hand on the GPU video memory as textures. When the size of volumetric data ex-

ceeds the capacity of the video memory, data exchange between video memory and

other storage devices such as main memory and hard drive, is unavoidable reducing

significantly the rendering speed as the data transmission between central memory

and the GPU memory is usually not fast enough. The computational units in the

GPU needs to wait for the data transmission to be done and then compute the ren-

dering results. Therefore, data transmission time gradually becomes the main limit

for real-time volume rendering. This is even more true in the case when visualizing

time-varying volumetric data set as each time steps is in the order of 1 GB. For

every individual time step, a complete copy of the volumetric data has to be trans-

ferred into graphic memory before rendering. The most advanced interface which

connects the GPU to main memory for a conventional computer is the PCI-e 2.0

bus, which has a maximum transmission rate of 2.0 Gb/s for ideal conditions. In

practice, this ideal rate can never be reached. We have tested a state-of-art NVIDIA

Quadro FX5800 GPU and in most cases it took 0.07 to 0.12 seconds to transfer 128

MB of data to the video memory, making it impossible to satisfy our constraints

of a minimum of 10Hz update. Our real-time constraints mean that the data trans-

mission time between two different time steps should be less than 50 ms. In other

words, the amount of data that is allowed to be transmitted between two time steps

should be less than 185 MB on a PCI-e 2.0 bus. If this constraint is not respected,

no matter how fast the GPU is, the rendering speed will not real-time.
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To tackle the data transmission delay problem, a simple way is to add more

video memory into the GPU. If all the time-steps could fit into the GPU memory,

no data will be transmitted during rendering stage, hence no transmission latency.

The increasing capacity and lowering price of memory justify this unsophisticated

approach in some sense. However, the size of volumetric data can possibly be infi-

nite. Data compression is a more complex yet feasible way to deal with this issue

as it has been used successfully in many video and audio applications over the In-

ternet. A good compression algorithm can greatly reduce the amount of data which

needs to be sent to the GPU. Many researchers [51] [17] [25] adopted data com-

pression in their attempt to visualize in real-time large volumetric data set. Octree-

structures, multi-resolution representation, wavelet-compression, run-length encod-

ing and vector quantization are the techniques applied in previous works. The trade-

off for this compression strategy is the time needed to perform decompression. Any

algorithm design should consider the cost of decompression in the rendering loop.

If not a compression approach would not be useful if the decompression time takes

longer than memory transfer time.

1.3 Proposed System

While the demands of visualizing time-varying volumetric data is growing, most

research in volumetric data rendering still focus on algorithms which deal with sta-

tionary volumetric data. In most cases, time-varying volumetric data visualization

is just a by-product of their research, by treating each time step individually as sta-

tionary volumetric data and visualizing them with their algorithms one by one. It

is the easiest way to make the transition from stationary volumetric data rendering

to time-varying data rendering; but it is definitely not the most efficient way. In

most work, only space redundancy is explored in stationary volumetric data render-

ing algorithms. Most work ignores time redundancy, hence the proposed system,

which deals with time-varying volumetric data, is more efficient than conventional

rendering techniques. Our proposed system not only explore the time redundancy

between two continuous stationary volumetric data, but also borrow an efficient
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algorithm which take advantage of the space redundancy as well.

Also, as we analyzed, the bottleneck of large time-varying volumetric data is

how to reduce the data transmission among different storage devices. Our proposed

system efficiently deals with the bottleneck by porting decompression of the GPU.

The system has four modules: encoder, decoder, render and interaction handler.

The encoder module reads the original data from the hard drive and produces com-

pressed data using temporal and space redundancy. We then save the compressed

data back onto hard drive. The format of the saved file is designed to contain only

minimal information which is needed for rendering. The decoder module reads the

compressed file from hard drive and transmits it from main memory to the GPU

memory. The GPU then decompresses the original data in GPU memory and then

renders the volume from the user specified viewpoint. This mechanism minimizes

the amount of data which is required to transmit from main memory to GPU mem-

ory for visualization. Texture-based volume rendering method is the volume ren-

dering algorithm we used in the rendering module. The interaction handler module

supports multiple useful interactions including: side-by-side stereo display, volume

clipping, and mouse triggered rotation and movement.

In Chapter 2 we will do a review of the pertinent literature, and in Chapter 3

describe the system design and implementation. Experimental results and perfor-

mance analysis will be presented in Chapter 4. We will then conclude and describe

future work.

1.4 Thesis Contributions

Along with the growing needs for real-time rendering of time-varying volumetric

data, a system specially designed for this task is both necessary and desirable. The

main contributions of this thesis are:

1. A cross-platform interactive system which is able to visualize large-time vary-

ing volumetric data is implemented. Several commonly used interactions are

supported. A side-by-side stereo mode is also available for immersive dis-

plays.
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2. We propose and experiment a modified GPU decompression mechanism.

This mechanism only requires the compressed data for volume rendering.

It reduces more than half of the data preparation time compared to not using

this mechanism.

3. Both space and time redundancy of time-varying volumetric data are used,

which yields a better compression performance. The proposed compression

distortion is less than an existing algorithms for stationary volumetric data.

4. The modular design concept makes it easy to customize or extend our system.

The portability is also taken into account when implementing our system.

Both NVIDIA and ATI graphic cards are supported in our framework.
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Chapter 2

Literature Review

In this chapter, we will start with a brief introduction of GPU (Graphic Processing

Unit) architecture. Then, we will review various volume rendering algorithms one

can find in the literature. We will also describe techniques which have been used

for large volumetric data rendering, such as bricking and volume compression.

2.1 GPU Architecture

GPUs are highly optimized data-parallel streaming processors which was originally

dedicated to floating point operations for 3D graphics applications. NVIDIA coined

the term GPU in the late 1990s. Since then, there have been an extraordinary evolu-

tion of GPU processing power and memory. Today, powerful yet cheap GPUs can

process data at double precision and at speed reaching one to two tera-flops. In the

history of GPU development there have been four generations according to [15].

Each new generation features a more flexible programable pipeline and a signifi-

cant performance improvement. In our system implementation a forth generation

or newer GPU is required in order to have the flexibility to perform all computation

of our algorithms.

Before the invention of GPU, only workstation, clusters or specially designed

hardware wre capable of performing real-time volume rendering [48]. Today, all

the state-of-art rendering algorithms are implemented on GPUs without exception.

To leverage the GPU computational power for real-time volume rendering, we need

to review the basic concepts of GPU.
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2.1.1 GPU Pipeline

Graphic pipeline is one of the most important ideas in modern computer graph-

ics. OpenGL and Direct3D are two notable graphics pipeline models as an indus-

try standards. While different GPUs may have different implementations of the

graphic pipelines, the essential components are universal and standardized. Fig-

ure 2.1 shows the common pipeline of a general GPU hardware. The input of this

pipeline is an ordered data stream of graphic primitives and graphics commands.

The output is a raster image which will be displayed on the screen. The graphics

commands are executed by the vertex and the fragment processors in the pipeline.

The programmability of GPU comes from these two processors; and they are con-

tinuously getting more and more flexible making GPU a more general purpose pro-

cessor.

Figure 2.1: The programmable graphics pipeline. Taken from [15]

To control the behavior of the GPU pipeline, several GPU programming lan-

guages are available. The most widely used ones are Cg, GLSL, OpenCL, and

CUDA. Vertex and fragment programmability are fully supported by these pro-

gramming languages. Cg and GLSL are quite similar languages and more oriented

towards graphics. It is not hard to migrate codes from one to the other. In our sys-

tem, we choose Cg as the language for our GPU programming. Cg is a high-level

shading language very similar to C. It is widely supported by most GPUs on the

market. To write an efficient Cg program, GPU Programmers need to balance the
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processing load between the vertex and the fragment shader.

In terms of computational power, GPU has exceeded the CPU for a long time.

The amount of transistors on a chip is the most common measure of computational

power. The top-of-the-line Intel Xeon 7400 has around 330 million transistors,

while NVIDIA’s GeForce 295 uses over 1400 million transistors [61] [60]. How-

ever, the programmability of GPU could not rival a general-purpose CPU, as most

of the programming capability of a GPU is for computation that can be defined

by Multi-Instruction Multiple-Data (MIMD) architecture. Not all features required

for general computing are supported by GPU programming. For instance, object-

oriented programming, pointer, file input/output, recursion, and even memory allo-

cation are not supported in Cg language. When programming for GPU, one should

always be aware of these limitations. CUDA and OpenCL have changed many of

those limitations but when we started the project Cg was the only available language

to program GPU and is still the most efficient computationally.

2.1.2 GPU Memory

As we mentioned in the previous section, GPU integrates several millions of tran-

sistors on a single chip. To fully harness the computational power of this hardware,

a fast memory access speed is necessary. For numerous computationally intensive

graphic tasks, fast memory access is vital in order to achieve real-time rendering

performance. Take real-time volume rendering as an example, it involves a tremen-

dous number of memory reads and writes. Millions or even billions of sample points

need to be interpolated for every frame. At each sample point, a trilinear interpola-

tion is performed. Trilinear interpolation is the primary interpolation method today;

because it provides a very smooth rendering of the volumetric data. Eight or even

more memory reads must be performed for a single trilinear interpolation. There-

fore, at least more than eight million memory reads are required for every frame. A

huge memory bandwidth must be available for real-time rendering; otherwise, the

memory latency will slow down the rendering speed severely.

The gap between computational power and memory access speed is a common

problem for hardware design. The cache memory hierarchy, which has been used

11



for years in CPU architecture, proves to be a cost-efficient solution to fill the gap

and reduce the latency of multiple memory access. GPU architecture also takes

advantage of cache hierarchy. Figure 2.2 shows the memory architecture of CPU

and GPU. They are very similar to each other. This hierarchial cache architecture

is usually composed of two levels of caches and one register. The register has

the fastest access speed. Instead of communicating with GPU memory directly, the

processors attempt to look up the required data in register. If the data already resides

in the register, it is called a cache hit, otherwise, a cache miss. The performance of

volume rendering could be greatly affected by the number of cache hits or misses.

This is due to the fact that a single cache miss may consume the same time as many

cache hits. Memory cache optimizations have been proposed by Kiefer et al. [33]

to optimize memory access speed. An average speed up of 3.4 units was observed

in their experiment. While cache mechanism alleviates multiple memory access

problem, the memory bandwidth inside GPU itself increases significantly. Today,

the most advanced NVIDIA Quadro Fx 5800 has a peak memory bandwidth of 102

GB/sec. The fast access speed, combined with cache mechanism, provides a very

fast and efficient memory access speed inside GPU. We call the memory access

speed inside GPU “local memory bandwidth”.

Other than local memory bandwidth issue, another problem with GPU mem-

ory is its relatively small capacity. Most GPUs have their own dedicated memory.

However, due to the high cost, it is usually smaller in capacity than most main CPU

memory. There is no problem if the input data can fit into GPU local memory,

however, it is not always the case. Real-time volumetric data of a beating heart

from a real-time CT could easily exceed the capacity of any existing GPU. Data

replacement strategies, which we will discuss later in this chapter, must be applied

in order to deal with such data. When the data replacement happens between main

memory and GPU memory, the PCI-e 1.0 and 2.0 bus are used for data exchange.

The latest 32-lane PCI-e 2.0 technology allows up to 16 GB/s memory access. This

is a theoretical speed as in reality, it is much lower.
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Figure 2.2: Memory hierarchy of GPU and CPU

2.2 Real-Time Volume Rendering

Volume rendering has been extensively studied for many years. Generally, there

are five different optical rendering models for volume rendering, which are Ab-

sorption Only [26] [8], Emission Only [27], Emission-Absorption Model [9] [2],

Single Scattering [59] [12], and Shadowing [45] [28] and Multiple Scattering.

Single Scattering and multiple scattering calculations are expensive in computer

time, hence not suitable for real time rendering yet. The most widely used is the

Emission-Absorption Model. Both light emission and absorbtion in the volume are

taken into account in this models. The physical model can be described by the

following integral:

I(D) = I0e
−
∫ D

s0
k(t) dt

+
∫ D

s0
q(s)e−

∫ D

s
k(t) dt ds

In this equation, I0 represents the background radiance at the start position s = s0,

while I(D) is the final radiance reaching the camera at the end position s = D. The

first part of the equation represents the background light contribution to the final im-

age after attenuation by the volume. The second part describes the total contribution

of the emitted light, which also is attenuated by the participating medium, between
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s0 and D. The integral cannot be solved analytically and a Riemann sum [44] is

usually used to approximate the integral. Hence, the approximation of the integral

is:

I(D) ≈ I0
n∏

i=0

e−k(s0+i∗∆t)∆t +
n∑

i=0

q(s0 + i ∗∆t)
n∏

j=i+1

e−k(s0+j∗∆t)∆t,

where ∆t = (D−s0)/n. Solving the equation of volume rendering is both a compu-

tational and memory intensive process. It is even getting more challenging with the

continuous trend towards higher and higher resolution data sets. Although many

efficient software optimization techniques exist, it is difficult for general-purpose

CPU, to deliver a real-time performance. Almost all existing real-time volume ren-

dering algorithms one can find in the literature are either performed in parallel using

multiple processors, GPU, or cluster.

2.2.1 Real-Time Volume Rendering on Clusters

In the early days of real-time volume rendering, the computing resources required

to achieve interactive rendering speed were far beyond those available for a single

CPU. To achieve real-time rendering speed, supercomputers and massive clusters

became the intuitive choice to circumvent the intensive computation.

An excellent survey of computer architectures dedicated to real-time volume

rendering can be found in [29]. The adoption of binary classification technique are

the most distinguishable feature of the algorithms discussed in the paper. A binary

classification classifies the input volume into two categories 0-voxels and 1-voxels

using a threshold. 0-voxels were then discarded directly to reduce the memory con-

sumption and to speed-up the rendering process. After careful examination of a

number of machines which optimized the binary classification , Kaufman propose a

CUBE(CUbic frame Buffer) architecture [30]. This architecture consisted of many

processors and a 3-D cubic frame buffer. The data in frame buffer was manipulated

by 3 processors. A unique skewed memory organization and a multiple-write bus

were also introduced into this architecture for huge volume data. This CUBE sys-

tem allowed image generation time of n3 voxels reduced to O(n2logn) from the

conventional O(n3). Real-time rendering speed is achievable through binary classi-
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fication. However, this technique also led to false positives or false negatives, which

severely affect the image quality.

To improve the image quality while not sacrificing speed, researchers in this

field widely use volumetric compositing. This technique basically assigned to ev-

ery voxel a color and an opacity. The final image, which was combined by several

images, was then generated by a 2D projection of the semi-transparent volume. Bi-

nary classification was no longer required, hence false positive and false negatives

disappeared. Drebin et al. [12] wrote a quite influential paper based on volumet-

ric compositing. Many concepts in the current pipeline of volume rendering first

appeared in this paper. They managed to produce better images than any previ-

ous algorithm through volumetric compositing. However, their algorithm was not

designed for real-time rendering by any means. It could take several seconds to

generate only one image. Later researchers in this field proposed various hardware

frameworks and optimization methods to improve the performance. Both hardware

and software solutions adopted parallel computing strategy to reduce the render-

ing time. Like any other graphic task, volume rendering is highly parallelizable by

nature.

Levoy [38] proposed a volume rendering framework based on his image-order

volumetric compositing algorithm [37]. Their system was implemented on the

PIXEL-PLANES 5 hardware. The workstation consisted of 32 independently pro-

grammable 20-MFLOPS graphics processors(GP’s), 16 independently programmable

renderers with 1/4 million pixel processors, a 512∗512 pixel color frame buffer, and

a 640 Mb/sec ring network. Empty space skipping and occlusion culling, which

have been discussed in [37], was used to further accelerate the rendering speed.

They were able to achieved real-time or near real-time performance.

Schroder et al. [55] explored the data parallel property of ray tracing based

volume rendering. For a single ray through the volume, they created an idiom

“line drawing” to enumerate the ray tracing steps. Only the rays between the front-

most face and the far face are taken into account in their algorithm. Lock step

applied when the ray entering the volume, and toroidal shift preformed after the ray

come out. As a result, the rotation angle selected reduced by 10% the runtime of
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the algorithm. They have implemented their algorithm on both Princeton Engine,

which consists of 64 to 2048 16-bit DSP processors arranged in a ring, and the

Connection Machine CM-2, which consists of of 4k to 64k bit-slice processors

with one floating point chip for every 32 processors. Arbitrary parallel projections

at interactive rendering rates for a 1283 voxels volume data set was achieved on

both of them.

Perhaps the most notable real-time volume rendering algorithm on clusters is

designed by Lacroute et al. [48]. It has been recognized as the fastest software

render algorithm. They managed to render a 2563 voxels medical data set at a speed

of 10fps and a 1283 voxels data set over 30fps on a Silicon Graphics machine with

16-processors. The most significant contribution of this paper is the adoption of

shear-wrap algorithm, which became a popular method in volume rendering later

on. The basic idea of shear-wrap is to shear the volume such that the rays are per-

pendicular to the volume slices. Bilinear interpolation applied within the traversed

volume slices, hence the image quality was not satisfactory.

The design of parallel architectures for real-time volume rendering naturally led

to the invention of a dedicated volume rendering hardware, Volume Pro. It is the

first single-chip hardware, which is compatible with consumer PCs, for real-time

volume rendering. Pfister et al. [19]’ development is based on their previous Cube-

4 framework. This hardware was specialized for shear-wrap algorithm describe

in [48]. Instead of linear interpolation, trilinear interpolation was performed to

achieve a better image quality. Other features, such as super-sampling and cropping

were also incorporated into the VolumePro’s architecture. Compare to cluster based

method, the VolumePro architecture offers an affordable alternative for real-time

volume rendering. However, not every user is willing to buy the hardware only

for volume rendering. Obviously, a more “general-purpose” yet powerful graphic

hardware is necessary.

2.2.2 GPU Accelerated Volume Rendering

As the demand for graphic computing grew, a separate hardware which dedicated

to graphic related tasks became more and more urgent. Chip manufacturer spent
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lots of effort on designing such a hardware to satisfy the growing needs. Graphic

Processing Unit (GPU) is the outcome of this effort. Ever since its introduction,

it got lots of attentions. At the beginning, the computation abilities of GPU were

not as powerful as CPU. However, GPU hardware speed manage to evolve faster

than Moore’s Law because of its true parallel nature. Now cheap yet powerful

graphic cards are available everywhere on the market. The widespread use of GPU

turned the demanding real-time volume rendering requirement is now possible to be

performed on a commodity computer. GPU-based volume rendering became quite

popular among researchers because of this reason. Although GPU is not specifically

designed for volume rendering like VolumePro, it proved to be very efficient. Data

parallelism and high local bandwidth of GPU contribute to its superior performance.

Two different types of real-time GPU volume rendering was developed: texture-

based rendering and ray-casting.

Texture-based volume rendering was implement on GPU first. One of the main

tasks of GPU is texture mapping. Texture mapping was first introduced by Catmull

[9] in his PhD thesis. It is a technique to add fine details to 3D geometric objects

by using images or texture. A large number of graphic applications rely on texture

mapping today. This situation motivates chip manufacturer to continuously improve

the efficiency of GPU texture mapping. The texture fill-rate grew from 480 Mega-

texels /s (GeForece 256, 1999) to 46.08 Giga-texels/s (GeForce GTX295, 2009).

This speed improvement of two order of magnitude happened within 10 years. Vol-

ume rendering algorithms based on texture mapping benefit tremendously from this

development.

Two dimensional texture mapping became available on GPU earlier than three-

dimensional texture mapping. As a result, real-time 2D texture-based volume ren-

dering on GPU were studied by researchers first. Engel et al. have written an

excellent introduction of 2D texture mapping volume rendering algorithms in [27].

The volumetric data were stored in several 2D texture images first. Then the object-

aligned slices of the data set got projected onto the image plane. These projections

were blended in a back-to-front order to form the final image. It is a very intuitive

method and easy to implement. A fast rendering speed at medium quality was de-
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veloped because of the bilinear interpolation when in reality trilinear interpolations

is really needed. The bilinear interpolations were natively supported by 2D texture

mapping hardware. In terms of subjective image quality, the mathematical accu-

racy, and the memory consumption, this algorithm had an enormous potential to be

optimized.

Bilinear interpolation is not ideal for volume rendering as it creates severe arti-

facts. Rezk-Salama et al. [49] introduced a multi-texture-based volume rendering

algorithm. The general idea of their algorithm is to substitute a trilinear interpola-

tion by two bilinear interpolations and one linear interpolation. A better and fast

estimation of the scalar at an arbitrary position along the chosen axis in the volume

space is achieved through this approach. Therefore, an improved image quality

compare to the first plain 2D texture-based rendering algorithm was achieved with-

out losing too much rendering speed. The deficiency of this algorithm is the high

storage requirements. Three copies of the volumetric data set in main memory were

required to eliminate the switching artifacts when users change the view direction

more than 45 degrees. The algorithm could only render very small data set.

Engel et al. [27] have examined the possibility of getting rid of the extra two

copies while not affecting the image quality. By on-the-fly reconstruction of volu-

metric data, which definitely introduced severe performance drop off, it is possible

to store only one stack of the original data for rendering. This approach is only

beneficial when the GPU texture memory is not enough to store three copies, but

enough for one copy. If the entire data is larger than the size of texture memory,

more sophisticated techniques, such as paging [52] and out-of-core rendering [13],

are needed.

Three-dimensional (3D) texture mapping is a more sophisticated algorithm com-

pare to 2D texture mapping. Cabral et al. [5] examined 3D texture-based volume

rendering on an SGI RealityEngine, the first hardware which implemented 3D tex-

ture mapping. The volume rendering integral was treated as generalized Radon

transforms in their method. In this paper, they present a detailed implementation

on how to perform the radon transform on a RealityEngine. Details about the ar-

chitecture of RealityEngine can be found in [2]. It was designed as a high-end
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workstation which has special abilities in image generation and image processing.

However the high cost of the RealityEngine or any other 3D texture mapping opti-

mized workstation at that time made the algorithm inaccessible for common usage.

As we have described previously, GPU is quite affordable and powerful. Con-

sidering the virtues of 3D texture-based volume rendering, it is quite reasonable that

it became the mainstream algorithm after the introduction of 3D texture mapping.

The 3D texture in GPU was defined as volumetric texture object, which could be

viewed as a solid 3D texture object. The users supplied several sets of 3D texture

coordinates to “cut out” the object. 3D texture-based volume rendering on GPU

used view-port aligned slices to cut out the texture object. The view-port aligned

slices were the polygons formed by the intersections between the 3D texture cube

and several arbitrarily oriented planes. They were traditionally computed by CPU.

Rezk-Salama et al. [50] proposed a vertex shader program to offload the com-

putation of view-port aligned polygons from CPU to GPU. This could balance the

workload between the vertex shader and the fragment shader. The vertex shader

program was based on the observation that all the 12 edges of a cube could be rec-

ognized as 6 different sets of edges. For each set, at most one coordinate, which

represents the intersecting point of the edge to an arbitrary plane, could be found.

A mathematic proof of this observation is not given in the paper and will be given

in Appendix A. Together with some optimization methods, such as empty space

skipping, Rezk-Salama et al. [50] achieved a significant performance improvement

compare to most of the previous algorithms, while maintain the same image quality.

After the view-port aligned slices computation, and maybe empty space skipping in

the vertex program, the next step is to execute the fragment program. The fragment

programs have permission to access 3D texture objects. Texture set-up and down-

loading should be done first before the start of fragment program. One can refer to

the OpenGL Red Book [11] on how to manipulate 3D texture objects in a GPU.

One must be careful when choosing the mag and min filters. These two parameters

will affect the interpolation preformed by the GPU texture mapping hardware. The

fragment programs mainly take care of the texture fetching and color table (transfer

function) look up. Some optimization techniques could also be used in the frag-
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ment programs. Occlusion clipping which origin from ray-casting methods [39] is

such an example. Li et al. [40] reported an average of 2.8 speedup by using those

techniques.

GPU-based ray casting method was developed after texture-based method. The

basic idea of volume ray casting is to cast rays from the virtual camera into the volu-

metric data and to calculate the volume integral along each ray. The volumetric data

in here is represented by a 3D texture in the GPU the same way as texture-based

algorithms. However, the view-port aligned polygons, which must be calculated

in texture-based algorithms, were replaced by entry positions of the rays into the

volume. The pseudo-code for the calculation of volume integral of a intersected

ray is shown at Algorithm 1. As each ray is independent, a parallel algorithm on

GPU which take advantage of the parallelism of the rays is quite intuitive. The first

implementation of ray-casting on GPU was published in 2003. Roettger et al. [53]

proposed the hardware-accelerated ray caster with early ray termination and empty

space skipping on NVIDIA GeForce FX or ATI Redeon 9700. This implementation

can be classified as a multi-pass GPU ray-casting technique. Some key features,

which are essential in the CPU ray-casting implementation, such as loops and con-

ditional breaks were not fully supported by GPUs at that time. As more fragment

shader functionalities became available on GPU, Stegmaier et al. [58] proposed a

single-pass GPU ray casting framework. They provided a assembler-level fragment

programs in their paper.

Algorithm 1 Volume integral calculation of a single ray, inspired by [27]
Calculate the entry position of the current ray
Get the ray direction
while rayisstillinthevolume do

Interpolate the value of current position
Compositing of the current value with previously accumulated value
Advance position along ray direction

end while

Compared to GPU-based ray casting volume rendering, GPU-base texture map-

ping algorithm still has several advantages. The rendering speed is faster and the

implementation is more portable among different hardware versions. As stated in
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[56], the perspective projections can be more easily implemented with texture-based

volume rendering, since only a proper scaling factor needs to be assigned to each

slice based on several viewing parameters while in ray casting the direction of each

ray needs to be determined individually. Hence, we only adopted texture-based

volume rendering algorithm into our system. Although, if the end users absolutely

require GPU-based rendering algorithm, it is not hard to integrate it into the render

module of our system.

2.3 Large Volumetric Data Rendering

The size of volumetric data is continuously increasing because of more advanced

data acquisition methods. The virtual address limit of 32-bit PC computers could

be easily surpassed by the data. Take Siemens Axiom scanner as an example, it is

capable of producing 2D slices with a resolution of 200 microns. One of its typical

scanning resulted is a 92 GB volumetric data. This is 23 times the maximum virtual

memory address of 32-bit computer. Using normal volumetric rendering algorithm

is impossible to visualize such data. Many methods have proposed to tackle this

issue.

2.3.1 Bricking

The simplest method to deal with the problem is bricking, which is essentially the

well-known divide-and-conquer approach in computer science. The original vol-

ume is divided into several smaller sub-volumes according to the criteria imposed

by individual hardware configurations, to ensure that each sub-volume can be fitted

into GPU memory. The final rendering result is composed of several images from

the individual volume rendering of all the sub-volumes. Through the whole ren-

dering process, sub-volumes have to be replaced by other remaining sub-volumes

to have access to all the volumetric data. The waiting time for block replacement

needs to be minimized to make full use of the GPU. Therefore, an efficient block

replacement strategy is crucial for efficiency.

Bricking is usually not the answer for real-time large volumetric data rendering
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on a single GPU. Even with the latest PCI-e 2.0 technology, the data needed to be

transferred can easily starve the bandwidth. The reason is because bricking does

not reduce the amount of memory required to represent the original data. On the

contrary, it even increases the amount of data. Extra layers for each sub-volume is

required to eliminate inconsistent interpolation due to bricking.

For multiple processors volume rendering, bricking is an inevitable step in the

rendering pipeline. Take the well-known parallel rendering software, ParaView [1],

as an example, it divides the original data into equal sized sub-volumes at first. This

step is essentially a bricking technique. Then, sub-volumes are distributed to several

data servers. Each data server has at least one rendering server connect to them. The

rendering sever is responsible for rendering the sub-volume in a data server. After

parallel rendering of every data server, IceT, which is a parallel rendering library

for image-compositing, is used to perform the compositing of every image from the

rendering servers. In this case, bricking is essentially a form of data parallelism.

Except for multiple parallel processors, a real-time rendering speed can hardly

be achieved by a simple bricking algorithm. The inter-connection speed between

CPU and GPU is not fast enough to satisfy the needs for real-time volumetric ren-

dering. Further improvements which could reduce the memory consumption could

improve this situation.

2.3.2 Hierarchical Volume Rendering

As many data intensive applications benefit from hierarchical data representation,

large volumetric data rendering algorithms also rely on hierarchical data structure

to improve processing. Most algorithms in this subfield process the volumetric data

into different resolutions in the spatial or the frequency domains. Octree or similar

spatial structures [6] [35] and wavelet transformation are the most popular methods

to transform the original data into a multi-resolution representation. Some low res-

olution data were selected to replace the original one during rendering to reduce the

size of volumetric data that have to reside in GPU memory. The rendering quality

is not severely affected by the reduced resolution of volumetric data. The reason

is that we only replace the data which is far away from the view plane with down-
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sampling . Many algorithms use different selection and replacement strategies to

perform this task.

The octree spatial hierarchy was first proposed by Chamberiain et al. [6] when

they were dealing with rendering of surface (polygonal) geometry. Their algorithm

started with an octree subdivision of the data in a preprocessing step. During ren-

dering, they recursively traversed the octree. A projection size of each octree was

also computed on the fly. When the size is smaller than a predefined threshold,

they considered the current node to be sufficiently accurate to approximate all the

nodes below it. More information can be used to determine the selection criteria.

LaMar et al. [35] developed a similar technique. Instead of using projected size as

the sole selection filter, they selected the hierarchy based on two criteria: distance

and filed-of-view. Distance criteria is similar to Chamberiain’s algorithm. Field-

of-view criteria discarded the nodes which did not intersect the view frustum and

selected nodes whose projected angle was less than half the field-of-view angle.

A considerable speed up was observed compare to Chamberiain’s algorithm. The

deficiency of this method, which also appeared in other similar algorithms, is the

substantial artifacts at the boundary of different level of details. The inconsistencies

of the view-plane at different level of details resulted in visual artifacts. Weiler et

al. [42] proposed an extension to smooth the discontinuity artifacts based on the

observation. A common problem of the above algorithms is the inability at reducing

the volumetric data size in main memory, which limits themselves from rendering

data set larger than the main memory size.

Octree and octree-like structures explored the spatial hierarchy of volumetric

data set. It is also worthwhile to examine the frequency domain analysis of volu-

metric data set. Wavelet transformation is one of the most famous methods in the

frequency domain. It has been thoroughly studied by researchers in recent years.

An overview of wavelet transform and compression can be found in Stollnitz et al.

[14].

The general steps of these methods are shown in Figure 2.3 and Figure 2.4.

For encoding stage, the original data is transformed to frequency domain through

wavelet transformation. The complete volumetric data is represented by wavelet

23



coefficients after the transformation. Some entropy reduction algorithms, such as

run-length, arithmetic or Huffman encoding, are followed to reduce the size of the

original data set. The decoding stage is illustrated in Figure 2.4. It consists of

decoding, invert transformation, and conditional reconstruction steps. Conditional

reconstruction selects the data representation which is sufficiently accurate for ren-

dering. Depending on user needs, a quantization may or may not be used in the

pipeline. A compression without quantization is usually called a lossless compres-

sion. Some applications, such as text compression, require lossless compression

because no information loss is allowed. Most lossless compression algorithms are

based on variable-length encoding, which maps most frequently used symbols to

smaller number of bits than the original. The decoding process of most lossless

coding requires previous information to make the next decoding decision. It also

means the decoding process is a quite serial. This makes it difficult to implement on

GPU. We will discuss about the issue in the next chapter. In the field of volume ren-

dering and many other graphic related fields, lossless compression is, however, not

very popular. There are basically two explanations. One is the relatively small com-

pression ratio of lossless compression; the other is that constrained data inaccuracy

might not be observed by users. Hence, as long as the compression of volumetric

data does not introduce obvious artifacts after rendering, the compression algorithm

is acceptable. Many researchers have developed numerous wavelet based lossless

and lossy compression algorithms.

Figure 2.3: Wavelet based hierarchy encoder

Figure 2.4: Wavelet based hierarchy decoder
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Ihm et al. [21] first generalized the traditional 2D Haar wavelet transforma-

tion to 3D. Haar wavelet is the simplest and computationally the cheapest wavelet,

resulting in a fast reconstruction speed. On the fly reconstruction was actually re-

ported in their paper. Guthe et al. analyzed different wavelets and encoding schemes

for 3D volume compression in [18]. They discovered that higher order wavelet is

more efficient than Haar wavelet. A very interesting extension for encoding time-

varying volumetric data was also proposed in their paper. The basic idea is bor-

rowed from motion compensation in video encoding. In this context, we will also

develop our own time-varying data compression scheme based on the same idea.

More details will be provided in the next chapter. As stated in their paper, the

problem for this method is that the whole volumetric data must be decompressed in

main memory to allow access for parts of the data. They solved the problem in a

later paper [51]. By integrating their previous method and the algorithm proposed

by Nguyen et al. [46], they got a nearly interactive rendering speed on a NVIDIA

GeForce Ti4600 GPU. Some frameworks of visualizing large time-varying data sets

for wavelet-based volume rendering over PC clusters or workstations also have been

proposed by researchers. Shen et al. [10] presented a rendering framework using

the wavelet-based time-space partitioning (WTSP) tree for large-scale time-varying

data visualization on PC clusters. Currently, we limit our system on a single PC. A

detail review of large volumetric data rendering on clusters or workstation is beyond

the scope of this thesis.

2.3.3 Vector Quantization

Besides hierarchical volume compression, another important algorithm for large

volumetric data compression is called vector quantization. Vector quantization

is a lossy data compression algorithm where the basic idea is to map a set of n-

dimensional vectors to one fixed-length index which reference to a n-dimensional

code-book. It is a fixed-to-fixed compression algorithm. The compression algo-

rithm which selected in our system is vector quantization.

N-dimensional vector quantization is not very intuitive for most people. For

illustrative purpose, we choose two dimensional vector quantization as an example.
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Let N be the number of two-dimension source vectors one want to quantize:

S = {(x1, y1), (x2, y2), ..., (xN , yN)}. (2.1)

Let r denotes the number of bits for each index, which also means that the number

of elements in a code-book is 2r. We then define C as the code-book:

C = {(cx1, cy1), (cx2, cy2), ..., (cxn, cyn)}, where n = 2r. (2.2)

Let P be the partition of the 2d plane:

P = {p1, p2, ..., pn} (2.3)

If (xi, yi) ∈ pj , we map (xi, yi) to a r bits index j. The index j will refer to (cxj, cyj)

in the codebook C. In the decompression process, (cxj, cyj) is decoded to approxi-

mate the original (xi, yi). In order to get a optimal code-book, an iteration is needed

to minimized compression distortion. The average distortion is usually selected to

measure the distortion, which is given by:

Davg =
1

Nr

N∑
m=1

∥ x⃗m − c⃗m ∥2 (2.4)

where x⃗m is the original vector and c⃗m is the corresponding approximation of x⃗m in

code-book C. Linde, Buzo and Gray [62] first developed an iterative algorithm to

minimize the average distortion. It is a premature algorithm though. The execution

speed is extremely slow and it sometimes results in empty cell problem. The empty

cell problem will greatly increase the distortion and execution time. The splitting

strategy used contributes to the problems significantly. Principal component analy-

sis (PCA), which is commonly used in data clustering, is a better alternative. The

splitting strategy which we use in our system is essentially the technique used in

[41] [25]. Not only it speeds up the compression process, but also avoids the empty

cell problem. We will have more discussion about it in the next chapter. For a more

detailed introduction or survey, please refer to [4] and [54]. Vector quantization

method works extremely well for data with many similar sub-blocks. A high com-

pression ratio, as well as a small distortion, could be achieved at the same time. The

high spatial and time redundancy is one characteristic of time-varying volumetric
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data, which make vector quantization an excellent choice for large time-varying

volumetric data compression.

For some highly sparse (more than 99%) volumetric data sets, Binotto et al.

[7] designed a lossless compression approach based on vector quantization. The

highly sparse character of volumetric data sets in their experiment contained a large

number of identical blocks. These identical blocks were then coded in a code book;

and a 8 bits index was used to store the position of the block in the code book. In the

reconstruction stage, the index was stored as a 3D texture in GPU and accessed by a

fragment program to look up the original value in the code book. The limitation of

this lossless compression is also obvious. Most of the volumetric data is not highly

spare. Thus, most of them can not be compressed by this algorithm.

Schneider et al. [25] propose a more general, however, lossy compression algo-

rithm based on vector quantization. They tested it on various volume data set. With-

out introducing any obvious artifact, around 20:1 compression ratio was obtained.

It is comparable to wavelet based compression algorithms in terms of compression

rates and fidelity. The advantage of this algorithm is the decompression happened

on GPU, while wavelet based compression had to decompress the original data in

main memory first. In this way, data transfer between the CPU and the GPU can

be minimized. This is desirable for large or time-varying volumetric data render-

ing. Larger data could introduce data access delay to rendering algorithm. In our

system, we choose Schneider et al.’s [25] algorithm as the compression algorithm

for our system. Some modifications are made to improve the performance for time-

varying volumetric data compression. Details about modifications and results will

be described in the next chapter.

2.4 Summary

Large time-varying volumetric data rendering became more and more popular be-

cause a requirement for higher volumetric data resolution. The advances of GPU

allow a number of efficient and high-quality rendering algorithms at low cost. How-

ever, the gap between large data size and limited computation resources is expand-
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ing not reducing as new medical imaging modalities get introduced.

In this chapter, we have reviewed several related papers on the issue. Accord-

ing to the literature, a typical large volumetric data rendering algorithm usually

adopted a compression step before rendering. Hierarchy compression is the most

important and efficient technique for such task. Most previous frameworks used

wavelet compression to reduce the volumetric data. However, the decompression

of wavelet-based algorithm can only be done on the CPU. The main reason is that

the decompression algorithm usually depends on information from previous de-

compressed data, hence it is a serial process and is very hard if not impossible to

implement on GPU. The same theory applies to other decoding algorithms, such as

huffman decoding and run-length decoding. To minimize the data transfer between

GPU and CPU, we examined vector quantization for time-varying data set render-

ing. The decompression of vector quantization is simple and parallel enough to

be implemented on GPU because of its fix-to-fix encoding mechanism. The com-

pression result is also comparable to hierarchical wavelet compression in terms of

compression ratio and image quality according to Schneider et al. [25]. Because of

those reasons, we decided to choose vector quantization as the main compression

algorithm for our large time-varying volumetric data rendering system. The render-

ing algorithm for our system could either be 3D texture-based volume rendering or

GPU ray-casting volume rendering. These two algorithms are the most widely used

volume rendering algorithms up to now. In the following chapters, we will discuss

the design and implementation of our system.
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Chapter 3

System Design and Implementation

We have discussed the importance and challenges of visualizing large time-varying

volumetric data in real-time. In the light of pervious works in stationary volumet-

ric data rendering, we proposed to implement a system designed for time-varying

volumetric data rendering. For a specified image quality and rendering speed, the

bandwidth problem need to be dealt with using real-time compression techniques.

3.1 System Overview

Our proposed system is designed to render large time-varying volumetric data in

real-time. In order to do so, we had to take flexibility and compatibility into account.

The flexibility allows user to customize our system with their own algorithm easily

and the compatibility makes our shader programs be able to run on most GPUs,

either NVIDIA or ATI.

Figure 3.1 shows the overview of our system. We generalize the process of

visualizing volumetric data into four different modules. Each module is decoupled

with each other, so that users have the flexibility to adopt their own algorithms into

any module. The four different modules are: encoder, decoder, render, interaction

handler. They are represented by white rectangles in Figure 3.1. The system’s

dataflow follows the order of encoder, decoder and render. The interaction hander

module provides parameters from input devices to the rendering module to generate

interactive feedback and manipulations.

The original volumetric data is usually obtained from CT or MRI scan. The
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Figure 3.1: The overview of our proposed system.

scanner generates a large set of raw data exported to DICOM format and saves

them into hard disk or other massive storage devices. The encoder module then

reads these DICOM files and processes them using the compression and encoding

algorithms. At this point, the compressed data resides in main memory. Before

proceeding to next module, our implementation saves the compressed data into hard

disk in a dedicated format described in next section. It can of course be used as the

input of decoder module directly; but it is recommended to save the result first.

The compression process in our system takes a long time due to the complexity

of compression algorithm. It is redundant and time-consuming to regenerate the

compressed data each time. The compressed file is on average 20 times smaller

than its DICOM version.

After preprocessing, the file reader reads the compressed data from hard disk

into main memory. The decoder module then upload the compressed data into

GPU video memory for one time step. The decoding process is performed in the

GPU after uploading. This is one of the most distinct features of our system. The

combination of GPU decompression and volumetric rendering is not usual as most

decompression algorithms are inherently serial, which makes an efficient decom-

pression algorithm hard if not possible to be implemented on GPU. However, vec-

tor quantization, which is the algorithm we adopted in our system, is almost perfect
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for GPU decompression because of its parallel nature. The decompression process

is easy to be parallelized, which makes it extremely fast to be calculated by GPU.

The decoder module reconstructs the original data from the compressed file as 3D

textures in the GPU video memory. This mechanism requires that the GPU supports

render to frame buffer object which can be directly read as 3D texture. It requires

GL ARB framebuffer object OpenGL extension. Please refer to [47] about the de-

tails. After the decoder module reconstructs the original data in GPU local memory

as a 3D texture, the render module uses it for 3D texture-based volume rendering.

The rendering algorithm slices and samples the texture memory to composite the fi-

nal image displayed on screen. The interaction module allows users to interact with

the system in real-time. In our implementation, users can switch between stereo

mode and normal rendering mode. The stereo mode requires a polarized glasses

and two polarized projectors. Users can also clip, move and rotate the volume data

being displayed. Our implementation allows clipping along all three axis of the

volume coordinates.

3.2 Encoder Module

The main function of the encoder module is to reduce the size of the original data

in order to reduce the traffic between the CPU and the GPU. This is very important

for our proposed system since we need to decompress the encoded data into GPU

local memory. The decompression algorithm can be executed on the GPU very

efficiently. The efficient decompression process saves us some precious time in

real-time rendering compare to the normal process of decompressing data on the

CPU and transferring it to GPU memory as it avoids the large transfer of each

volume using the PCI-e bus.

Before an in-depth discussion on our encoder module, let’s review the type of

data our system deals with. The data is a large time-varying volumetric data, more

specifically a sequence of DICOM data files, one for each time steps. The infor-

mation in a DICOM file usually includes data resolution, time stamp, sample rate,

coordinates, and other necessary parameters to characterize a DICOM frame. For

31



a full list of information available in the DICOM format, please refer to [23]. Not

all the information which is available in DICOM file is needed for our rendering

algorithm.

Original data from CT or MRI are usually not ready for vector quantization di-

rectly. There are a few preprocessing steps beforehand that need to be performed.

We call these steps Encoder Preprocessing. The main components of the encoder

preprocessing module are illustrated in Figure 3.2. In Figure 3.2, we define St as

the original data sample of the volume at time t. Depending on the resolution of the

sample data, the encoder module first decides if a re-sampling of the data is neces-

sary. Let us define Dx, Dy, Dz as the resolution of the original data. If Dx, DyorDz

is not a power of two, one can re-sample the volume to its closest power of two.

For instance our algorithm will re-sample a 60*120*79 data into 64*128*128. We

define Dx′, Dy′, Dz′ as the resolution of the re-sampled data, St′. Re-sampling does

not change the physical size of the original data. Trilinear interpolation is used to

interpolate the value of the intermediate point from the original sample points. The

reason for re-sampling is because our compression and rendering algorithm requires

volume data with a size which is a multiple of the power of two in every dimension.

Figure 3.2: The preprocessing steps in the encoder module.

After re-sampling, all the data is set to the desired dimension. The next step is

to exploit the time redundancy of the re-sampled data. In our case, we subtract the

re-sampled data of two consecutive samples, which is St+1′−St′. The time interval

between the two consecutive samples are usually very short and the differences

between them are usually small. Most of the difference values are actually 0, which

give us lots of opportunities to compress the signal. Vector quantization performs
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better on these sparse blocks. In our experiment, a higher signal-to-noise ratio

(SNR) 1 was observed when we quantized the sparse blocks instead of original

data.

Other than time redundancy, space redundancy is also used before final com-

pression. Hierarchical decomposition is a very efficient way to analyze the rela-

tionships of neighborhood sample points. Our system used the same decomposition

method as in Schneider’s paper [25]. St+1′ − St′ is first divided into small blocks

of size 43 as shown in figure 3.2. Next, these blocks are decomposed into a multi-

resolution representation. There are three steps to do the decomposition. Figure 3.3

illustrates the whole decomposition process. The first step is to divide the 43 block

into 8 disjoint 23 blocks. Then the mean value of each 23 block are computed and

stored in a new 23 block. We call this detail level 0. Essentially, detail level 0 is a

down-sampled version of the 43 block. All the differences between the samples in

43 block and the corresponding mean value are stored in an array of size 64. We use

difference level 0 to represent the differences between two consecutive volume. The

mapping from 43 block to the 64 array is given by idx = x+ 4 ∗ y + 16 ∗ z, where

idx is the corresponding index in the array for location (x, y, z) in 43 block. The

last step of decomposition is basically the same process as in the second step. But it

is applied to the detail level 0 block. The results are one value which is essentially

the mean value of the entire block and 8 values which are the subtraction of each

sample in detail 0 level block relative to the mean value. The overall mean value is

also a down-sampled version of the original 43 block. The 8 differences from the

last step will replace the values in detail level 0 to save memory space.

At this point, all the preprocessing of the quantization are finished. Let us take

a look at how the blocks are represented in main memory. From top to bottom,

the difference 1 level is represented by an array of size 64; the detail 0 level is

represented by an array of size 8 and the detail 1 level is represented by a single

variable in main memory. There are Dx′/4 ∗ Dy′/4 ∗ Dz′/4 array or variables

for each level. In most case, the element in the array is 8 bits. To give a rough

1The performance of VQ are typically given in terms of the signal-to-noise ratio (SNR). The
higher the SNR the better the performance
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Figure 3.3: Data decomposition and vector quantization in the encoder module.

sense of memory size, lets take an example where the original data has a resolution

of 128 ∗ 512 ∗ 512, which is 32MB. After decomposition, the memory size is

(128 ∗ 512 ∗ 512+128 ∗ 512 ∗ 512/8+128 ∗ 512 ∗ 512/64) ∗ 8 = 306184192bits =

36.5Mb. this correspond to an increase of memory size of (36.5 − 32)/32 = 14%

from the original data. Each vector will be represent by a 8-bits value at the end of

quantization, which means the length of code-book A and B is 256. The original 8

or 64 dimensional vectors are either in the code-book or approximated by it.

To quantize these blocks, we use a modified vector quantization algorithm. It

is a more advanced algorithm than the conventional vector quantization algorithms.

Figure 3.4 illustrates the difference between the normal LBG-algorithm and the

modified algorithm. The advantages of the modified version come from the way

it gets the initial code-book. Normal algorithm, also called LBG-algorithm, recur-

sively splits data set to get the code-book. Figure 3.4a shows the result of normal

LBG-algorithm. It selects the geometric center of the entire input vectors as a first

entry in the code-book, then split another entry by randomly setting an offset to the

first entry. The two entries are then passed to the LBG-algorithm and processed. It

stops until convergence is reached. The same splitting then apply to the 2 entries to

generate 4 entries. The whole algorithm ends until the desired bit-size is achieved,

where the bit-size determine the size of the code-book. A bit-size of 8 means that a

256 length code-book is used. The normal procedure involves the process of find-

ing nearest neighbors for n dimensional vector. It is very time consuming and the

recursive splitting technique requires repeating the process several times. Hence,
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the LBG-algorithm is extremely slow in terms of speed. Pauly et al. [41] proposed

a splitting technique when they addressed hierarchical clustering problems. The

modified algorithm uses the same technique to split the original data as illustrated

in Figure 3.4b. Like the normal splitting, it also starts with a single entry in the

code book. Instead of getting another entry by random offset, it divides the entry

into two entries roughly at the same distortions. The next splitting continues with

the entry with the largest distortion. Only the chosen entry splits into two smaller

entries and each small entry has a smaller distortion. Only one more entry is gen-

erated after each split. The splitting process will stop until the desired number of

entries are reached. The generated initial code-book is further refines by normal

LBG-algorithm to get the final code-book. This splitting technology avoids signif-

icant number of time-consuming nearest neighbors search operation. Moreover, it

also solve the empty cell problem which is common in the normal LBG-algorithm.

Empty cell is not desired as it significantly increases the compression distortion. A

more detailed description of the modified vector quantization algorithm used can

be found in Schneider’s paper [25].

After vector quantization, we now have two code-books and a group of RGB

color triplets. As shown in Figure 3.2, we denote the two code-books as code-book

A and code-book B. Code-book A is the code-book for difference at level 0, which

contains 64-dimensional arrays. Originally, there are Dx′/4 ∗Dy′/4 ∗Dz′/4 arrays

in total for the difference level 0. Those vectors are approximated by 256 different

vectors after vector quantization. The R element in the RGB color triplets records

the index in the code book of corresponding vector. The index is a 8-bits variable.

The code-book B is the code-book for detail level 0. The same vector quantization

applies to detail level 0 and results with 256 8-dimensional arrays. The index of

corresponding array is stored in the G element in the RGB color triplets. The last

element in the RGB color triplets stores the mean value of the corresponding 43

block. There are Dx′/4 ∗ Dy′/4 ∗ Dz′/4 such RGB color triplets in total. These

triplets, as well as the code-books A and B, are then saved to the hard drive for latter

use.

To save the results of the preprocessing step, we need to define an appropriate
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(a) LBG vector quantization

(b) Vector quantization using principal component analysis (PCA)

Figure 3.4: Procedures of two different vector quantization algorithms
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file format. The format must contain enough information for the visualization algo-

rithm. In our system, we use a file header to store the information which is required

later. As our visualization algorithm only needs information about the dimension

of the volumetric data, the file format which we use is defined in Figure 3.5. The

first component in the header is a 8-bits flag to indicate the endianness of the file.

The second component gives the size of an integer in bytes. Different computers

may have different integer size. By storing the size of integer into the file header,

the file is more machine-independent. Mode is a variable to indicate if the file is

compressed from the difference or is the original data. We define 1 as compressed

from the difference of two time steps and 0 as the original data. We will discuss

more about the reason for this variable later. The size of volumetric data on each

dimension is also very important. We save Dx′/4∗Dy′/4∗Dz′/4 into sizeX, sizeY

and sizeZ respectively. The scaleDiff0 and scaleDetl0 are the largest absolute val-

ues in difference level 0 and detail level 0. The code book contains code book A

and code book B, which consume 256 ∗ (64 + 8) bytes. The RGB color triplets, as

its name indicates, stores all the Dx′/4 ∗Dy′/4 ∗Dz′/4 triplets. We use l3vq as the

file extension for the compressed file, where ”l3” stands for 3 levels (difference 0,

detail 0 and detail 1 level) and ”vq” stands for vector quantization. As stated pre-

viously, even though the modified vector quantization speeds up the quantization

process significantly, it still takes a long time to calculate.

Figure 3.5: The definition of l3vq file format.
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3.3 Decoder Module

The encoder preprocessing ends after the resulting files are saved on the hard drive.

The first thing the decoder module needs to do is to read those saved files from the

hard drive to main memory. In our implementation the file reader parses the file

stream according to the file format definition. The code books and the RGB color

triplets are parsed and saved in main memory.

As mentioned previously, the bottleneck of real-time rendering of large time-

varying volumetric data is the data exchange between the main memory and the

GPU memory. Our solution is to move the decoding process to the GPU and then

minimize the transfer to the GPU by using the compression scheme. The next step

for the decoder module is to transfer the code-books and RGB triplets into GPU

memory. This step is harder than it looks. Because the GPU memory model is

not as flexible as the main memory model. There are certain data structures which

GPU memory model does not support. For a more detailed introduction of GPU

memory model, please refer to Lefohn et al’s course [36]. The most widely used

memory in GPU are texture memory. This memory is fast and optimized for related

texture operations. We use texture memory in GPU to store the code-books and

the triplets from main memory for a time-step. The decoder module generates 3D

and 2D textures in the GPU first. The code books and RGB color triplets in main

memory are then uploaded to these generated textures. Code book A and code book

B are stored in two different 2D textures Ca and Cb. RGB color triplets are stored

in a 3D texture I . The 2D textures Ca and Cb have 256 ∗ 64 and 256 ∗ 8 elements,

respectively. To access the element in 2D textures, 2-dimensional coordinates (s, t)

are required. The s coordinate of Ca and Cb are given by the R and G components

in RGB color triplets, which are now stored in the 3D texture I . Figure 3.6 shows

the overview of different textures for the decoder module.

Before we introduce how to implement the GPU decoding scheme, let us take

a look at the equation used by the GPU in order to decode the data. In its simplest

form, the equation is:

w(x,y,z) = I(x′,y′,z′).b+ Cb(s,w) + Ca(s,w). (3.1)
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Figure 3.6: The textures in GPU for decoder module.

In this equation, w(x,y,z) is the scalar value at location (x, y, z); I(x′,y′,z′).b is the

B component of the the RGB color triplets, which is also the mean value of the

corresponding 43 block. Each (x, y, z) must belong to one of these blocks when we

decomposed the volumetric data in the preprocessing step. The parameters Cb(s,w)

and Ca(s,w) are the values which are returned by the code book B and code book A,

respectively. To solve the equation, we need to somehow map all the coordinates on

the right side of equation 3.1 to a function of (x, y, z), because (x, y, z) are the only

coordinates we know during decoding. The main obstacle to implement a working

decoding module is how to relate the different coordinates for different textures.

The (x, y, z) coordinates are the actual coordinates in the re-sampled data. The

coordinates (x′, y′, z′) is for the texture I and needs to be calculated from (x, y, z).

The s coordinates can be directly calculated from the returned values of texture I .

The w coordinates of texture Ca and Cb are related to (x, y, z) as well.

The relationship of (x, y, z) and (x′, y′, z′) is not difficult to find. Texture I is

essentially a lower resolution of the original data. Each dimension of the original

data is divided by 4 to get the dimension of texture I . And only the integer part of

the quotient is used. So the transformation between (x, y, z) and (x′, y′, z′) can be

expressed by:
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x′ = ⌊x/4⌋, where 0 ≤ x′ ≤ (Dx′/4− 1) and 0 ≤ x ≤ (Dx′ − 1)
y′ = ⌊y/4⌋, where 0 ≤ y′ ≤ (Dy′/4− 1) and 0 ≤ y ≤ (Dy′ − 1)
z′ = ⌊z/4⌋, where 0 ≤ z′ ≤ (Dz′/4− 1) and 0 ≤ z ≤ (Dz′ − 1)

(3.2)

The previous equations only deal with integer numbers. In the implementation,

we need to use texture mapping coordinate. Normal texture coordinates are not

integers. We need to further transform the integer coordinates to float coordinates

between 0.0 and 1.0 in the actual implementation.

The relationship between (x, y, z) and the s, w coordinates of Ca and Cb are less

intuitive though. Let us examine the case for Ca first. The s coordinate is directly

given by the R component of the RGB color triplets as illustrated in Figure 3.6.

The w coordinate is an integer between 0 and 63. It is essentially the local index of

(x, y, z) in the corresponding 43 block. The reminder of (x, y, z) divided by 4 can

be used to calculate the local index. So the coordinate w and s can be computed by

the following equations:

(s, w) =

{
s = I(x′,y′,z′).r
w = x%4 + 4 ∗ (y%4) + 16 ∗ (z%4)

(3.3)

where I(x′,y′,z′).r represents the R component of the return value from the textureI

sampling. The same equations applies to Cb as well. The only difference is that one

needs to find the local index of corresponding 23 block instead of 43 block. The

equation for Cb is showed in Equation 3.4.

(s, w) =


s = I(x′,y′,z′).g

w = ⌊x%4

2
⌋+ 2 ∗ ⌊y%4

2
⌋+ 4 ∗ ⌊z%4

2
⌋

(3.4)

Now we have all the mapping equations. We need one equation to put them all

together. The generalized equation should only contains coordinates of (x, y, z).

Equations 3.2, 3.3 and 3.4 can be inserted into Equation 3.1 to get Equation 3.5.

w(x,y,z) = I(⌊x/4⌋,⌊y/4⌋,⌊z/4⌋).b
+C

b(I(⌊x/4⌋,⌊y/4⌋,⌊z/4⌋).g,⌊x%4
2

⌋+2∗⌊ y%4
2

⌋+4∗⌊ z%4
2

⌋)
+Ca(I(⌊x/4⌋,⌊y/4⌋,⌊z/4⌋).r,x%4+4∗(y%4)+16∗(z%4))

(3.5)

where (x, y, z) are integer values ranging from [0, Dx′−1], [0, Dy′−1] and [0, Dz′−

1] respectively.

40



Equation 3.5 is the final equation which represents the whole decoding process

related to the coordinates (x, y, z). Our decoder module needs a program in GPU to

solve the equation efficiently. The GPU programming language which we choose

to program the GPU is Cg from NVIDIA. One could have use CUDA instead but

our program would have been usable only on NVIDIA hardware. This restriction

would make our solution not portable to other GPU manufacturer such as ATI.

Unlike CUDA, Cg can compile to GLSL for ATI GPUs. It enables us to deploy our

proposed system on ATI machines as well. The decision to use Cg to implement the

decoding module gives our system a better portability. To implement Equation 3.5

in GPU with Cg, there are some limitations which we must bear in mind:

1. The shift operations are not supported by Cg. In general programming, it is

easy to get the results of ⌊x/4⌋ by shift operation x >> 2. Unfortunately,

one cannot use the operation in Cg.

2. The bitwise operations are not supported by Cg. One efficient way to cal-

culate x%4 is to use bitwise AND operation. It is essentially the same as

x&3.

3. The texture coordinates in Cg are not integer. All our equations are based on

an assumption that (x, y, z) are integers. We need to find a way to map the

integer to float.

In the following, we will introduce ways to deal with those limitations. At first,

let us take a look at the setup of viewing parameters for the decoding program. The

projection mode is an orthogonal projection; and the view port is of size Dx ∗Dy.

The volumetric data is reconstructed slice by slice. Either front-to-back or back-to-

front order is fine for reconstruction. The rendering results are saved in the frame

buffer for binding. Figure 3.7 is a pseudo-code to generate the coordinates (x, y, z).

Instead of integers, the coordinates are in the [−1.0, 1.0] range. To convert to the

new float coordinate, the integer is divided by Nx − 1, Ny − 1 or Nz − 1 and then

subtract by 1.0 as in x/(Nx − 1)− 1.0.

To use the (x, y, z) coordinates in the GPU, there are still two problems re-

maining for us to solve. The first problem is to figure out a way to get coordinates
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Figure 3.7: The coordinates which are used in the decoder implementation.

(x′, y′, z′) for texture I from (x, y, z) without a shift operation or a direct floor

function. The essence of the function ⌊x/4⌋ is to map four continuous integers

to the same value. In texture mapping, there is a GL NEAREST parameter for

GL TEXTURE MAG FILTER. When the pixel being textured maps to an area less

than or equal to one texel, texture mapping returns the value of the texture element

that is nearest (using the Manhattan distance) to the center of the pixel being tex-

tured. This way the nearest operation also maps different value to a single value.

This gives us a way to overcome the first problem. Say we want to calculate the

results of function ⌊x/4⌋ when x = 4, 5, 6, 7. If we can find a way to convert these

integers to texture coordinates in a specific range and use the GL NEAREST fea-

ture to texture map them, we are able to map all the texture coordinates to the same

texture element. Thus, the function ⌊x/4⌋ can be simulated by texture mapping op-

eration. Back to our application domain, one can prove that the following function

yields the correct coordinates for texture I:

x′ = (x ∗ 0.5 + 0.5) ∗ Dx − 1

Dx − 4
− 3

2 ∗Dx − 8

y′ = (y ∗ 0.5 + 0.5) ∗ Dy − 1

Dy − 4
− 3

2 ∗Dy − 8

z′ = (z ∗ 0.5 + 0.5) ∗ Dz − 1

Dz − 4
− 3

2 ∗Dz − 8

(3.6)

where D(x,y,z) = {2n | n >= 3}. When the coordinates are less than 0.0 or greater

than 1.0, we use GL CLAMP to clamps the texture coordinate into the [0.0, 1.0]

range. The clamping function handles the problem associated with texture border.

The second problem is to get the w coordinates for each small block. Address

texture, as proposed by Schneider et al. [25], is a good solution for this problem.

The basic idea is to use the address texture to hold the w coordinates of one single
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Figure 3.8: The structure and repeat pattern of address texture.

block and reuse it for other blocks. If we examine every block individually, the

w coordinates of Ca and Cb for these blocks have the same pattern. So a single

address texture which stores the pattern is enough for decoding all blocks. In our

application domain, the address texture is a 43 block. We denote it texture A. Figure

3.8 illustrates the structure of address texture. Each element in the address texture

has four components, RGBA. The R and B components store the w coordinates of

the code-books A and B. The G and A component are reserved for s coordinates

which come from the R and G component of texture I . To get the pattern for the

texture address, let us assume the size of original data is the same as address texture.

It is easy to calculate the w coordinates of Ca and Cb from equation 3.5. One can use

a progressively larger integer in every dimension to replace (x, y, z). The integer
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value should be between 0 and 3. It is easy to get the following results:
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Note that we have converted the coordinates into the legal range value of [0.0, 1.0]

in the equation. Now we need a mechanism to use the address texture repeatedly.

Fortunately, there is a GL REPEAT parameter in texture mapping. It creates a

repeating pattern by ignoring the integer portion of the texture coordinate. With

the help of GL REPEAT feature, the w coordinates calculations is reduced to a

simple texture sampling operation. For every dimension, we need to repeat the

texture coordinates Dx/4, Dy/4 and Dz/4 times respectively. It means that the

texture coordinates for the texture address should be ranging from 0 to Dx/4, Dy/4

and Dz/4. A multiplication of (x, y, z) with (Dx/4, Dy/4, Dz/4) will do the job.

Equation 3.7 describes the transformation:

xA = (x ∗ 0.5 + 0.5) ∗ (Dx/4)
yA = (y ∗ 0.5 + 0.5) ∗ (Dy/4)
zA = (z ∗ 0.5 + 0.5) ∗ (Dz/4)

. (3.7)

where xA, yA and zA represent the texture coordinates for accessing texture A.

Figure 3.8 illustrates the case where the texture address repeats itself with texture

coordinates ranging from [0.0, 2.0). Together with the R and G components of tex-

ture I , Equation 3.5 describes the decoding process mathematically as performed
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on the GPU. And the GPU customized version of Equation 3.5 is:

w(x,y,z) = I(x′,y′,z′).b
+Cb(I(x′,y′,z′).g,A((x∗0.5+0.5)∗(Dx/4),(y∗0.5+0.5)∗(Dy/4),(z∗0.5+0.5)∗(Dz/4)).b)

+Ca(I(x′,y′,z′).r,A((x∗0.5+0.5)∗(Dx/4),(y∗0.5+0.5)∗(Dy/4),(z∗0.5+0.5)∗(Dz/4)).r)

(3.8)

where x′ = (x ∗ 0.5 + 0.5) ∗ Dx−1
Dx−4

− 3
2∗Dx−8

, y′ = (y ∗ 0.5 + 0.5) ∗ Dy−1
Dy−4

− 3
2∗Dy−8

and z′ = (z ∗ 0.5 + 0.5) ∗ Dz−1
Dz−4

− 3
2∗Dz−8

.

With this equation, it is not hard to write its implementation in Cg. Because our

decompressed data is the difference between two continuous time-varying volumet-

ric data, there is one more step before rendering the volumetric data. We need to

add the decompressed data with previously reconstructed volumetric data to yield

the current reconstructed data. The addition of two volumetric data is also easy to

implement using Cg.

The vector quantization algorithm is not a lossless compression algorithm. The

bit-size of the index in the code-book affects the compression quality significantly.

The bigger bit-size the lower the compression distortion is but at the expense of

compression. It is possible to control the compression quality by setting up different

bit-size. In this thesis, we use a bit-size of 8.

The initial time step of the time-varying volumetric data is transferred directly

into GPU as a start point. Then for the subsequent time steps, we reconstruct the

difference and add them to the previous time step. One problem associated with this

scheme is the accumulated error. After several time steps, the error accumulated to

a larger value. As in video compression, we need to use the concept of an I frame

and P frame mechanism which is to reduce the accumulated errors. The I frames

do not require other frames to be decoded. In our application domain, we define the

original data as the the I frames. The P frames need previous data for decoding. We

define the reconstructed volume data as the P frames. After several time steps, we

transfer one copy of the original time step to GPU memory as an I frame to reset

the accumulated errors.
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3.4 Render Module

The render module is responsible for the real-time rendering of volumetric data.

Numerous rendering algorithms have been proposed by researchers in the past

decades. Generally speaking, they can be divided into two main categories: di-

rect volume rendering and indirect volume rendering. Indirect volume rendering is

also referred to as surface rendering. Surface rendering requires a set of iso-surfaces

to approximate the surface with polygons. The fidelity of the rendering result is not

very satisfactory in some cases. Direct volume rendering is more flexible and is

an accurate way as it does not suffer from the artifacts created by the segmentation

process. Kaufman et al. [31] give an excellent tutorial on this topic. Further more,

direct volume rendering algorithms have three different categories: object-order,

image-order, and domain methods. The concepts of object-order and image-order

are quite common in computer graphics. Image-order describes the action of iter-

ating over the pixels in the image to be produced; and object-order characterizes

the algorithms which iterate over the object elements in the scene to be rendered.

Object-order algorithms are generally more efficient than image-order algorithms

because the objects usually have fewer elements than image pixels.

We use 3D texture-based volume rendering in our system. It is an object-order

volume rendering algorithm because it uses geometry primitives to iterate over the

object. The whole rendering process is usually composed of the following steps:

1. Bind the volumetric data as 3D textures. The decoder module in our system

did this step for the render module already.

2. Setup intractable rendering parameters, such parameters include: camera po-

sition, view direction, view port, number of slices and rendering mode and so

on.

3. Calculate a series of slices which intersect with objects in the scene. All the

slices should be perpendicular to the viewing direction and have the same

distance between two neighbor slices.

4. Render each slice using a 3D texture mapping operation and blend them to
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one final image.

5. Respond to any change of interaction parameters and repeat step 2 to step 5.

The first and second steps set-up all parameters which are required for the render-

ing algorithm. The most time-consuming process in the rendering algorithm starts

from step 3. The calculation of cut-off slices are usually performed by CPU. Rezk-

Salama et al. [50] proposed a way to move the calculation to the GPU using vertex

shader. Vertex shader is designed to transform the 3D position of each vertex to

a 2D coordinate on the image plane. It can calculate the properties such as po-

sition, color and texture coordinates. The cut-off slice generation is essentially a

transformation of vertex. It is not surprising to have a vertex shader deals with

the calculation. The implementation is not as intuitive as it sounds though. The

intersection between the object and the slicing plane results in a polygon with 3

to 6 vertices. The vertex shader, however, can only modify existing vertices. No

inserting or removing of any vertex can be done by the vertex shader. As a result,

an algorithm which receives 6 vertices and outputs 6 vertices for every intersection

polygon must be designed. To represent polygons with less than 6 vertices, some

duplicate vertices must be generated in the algorithm. However, in order to feed

fragment shader with correct vertices, the algorithm must get rid of these duplicate

or invalid vertices when rendering. The fragment shader also requires the vertices

form a closed polygon. The vertices must be sorted before they can be transferred

to fragment shader. To achieve all these requirements, let us take a look at the

intersection algorithm from a mathematics perspective.

In essence, the problem is to find the intersection between a slicing plane and

the border of volumetric data. The border of volumetric data usually is a bounding

box which is a cube wrapping the whole object. The bounding box has 12 straight

edges. The edge Ei→j between two vertices Vi and Vj can be represented as:

−→x =
−→
V i + λ ∗ −→e i→j (3.9)

where λ in the range of [0, 1] and −→e i→j is the subtraction of −→
V j and −→

V i, also
−→
V j −

−→
V i. The clipping plane can be described in Hessian normal form as:

−→n p · −→x = d (3.10)
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where −→n p is the normal vector of the plane and d is the distance to the origin. The

3D texture based rendering algorithm usually uses view-port aligned slice planes.

In this case, −→n p is also the viewing direction. Using Equation 3.9 and Equation

3.10, one can calculate λ:

λ =


d−−→n p·

−→
V i−→n p·−→e i→j

, −→n p · −→e i→j ̸= 0

−1.0, otherwise
(3.11)

When λ is in the range [0, 1], the intersection point x is a valid intersection. An

invalid intersection denotes the intersection point is not on the edge of bounding

box. When the denominator is zero, this means that the edge −→e i→j is on the clipping

plane. We use −1.0 to denote this case.

Rezk-Salama et al. [50]’s implementation to calculate λ has a limitation, the

nearest vertex must correspond to the origin point of texture coordinate system. Ob-

viously, this is not always true. Rui [56] gives a more flexible coordinate translation

equation. It basically translates the coordinate in object space to texture space. We

adopted this more flexible algorithm in our system. The basic idea of forming a

valid polygon from intersections of these two algorithms is the same. By checking

the intersection point in an specific order, the vertex shader can output a valid poly-

gon without any further steps. The edges of the cube can be grouped to 6 groups

as showing in figure 3.9. We distinguish different groups by different colors. Ver-

tex 0 is the closest one near the view point(camera). And Vertex 7 is the most far

away one. The three edges connecting vertex 0 to vertex 7, which are E0→1, E1→4

and E4→7, has only one intersection point with any clipping plane. In the picture,

these edges are marked as red color. The same situation apply to blue edges group

(E0→3, E3→6 and E6→7) and green edges group (E0→2, E2→5 and E5→7). Each

of the remaining edges (E1→5, E2→6 and E3→4) has one or zero intersection point

with clipping plane. The correct order to form a valid polygon is red, yellow, green,

cyan, blue and purple. If the yellow, cyan and purple edges do not have an inter-

section, a duplicated red, green or blue intersection will be generated in this case.

For example, a clipping plane has 4 intersections. 3 out of 4 must be intersections

with red, green and blue edges respectively. Suppose the last intersection is on the

yellow edge. Then the cyan and purple edges have no valid intersection with this
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clipping plane. The algorithm duplicates the intersections of green and blue edges

for cyan and purple respectively. The 4 intersections are therefore represented by 6

intersections with 2 duplicated intersections. The output vertices still form a valid

quadrangle. In the implementation, the duplications are achieved by recalculation.

If the yellow edge does not have an intersection, all the red edges must be feedback

to the algorithm to duplicate the red intersection.

Figure 3.9: The traversal of edges for the intersection algorithm. Taken from [56]

These calculations are carried out in the object space. To translate the coordi-

nates to texture space, the equation given by Shen et al. [56] is the following:

P ′ · k⃗ =


Vi ·⃗k−min(B

k⃗
)

max(B
k⃗
)−min(B

k⃗
)

k⃗ · −→e i→j = 0

λ k⃗ · −→e i→j > 0

1− λ k⃗ · −→e i→j < 0

(3.12)

where P ′ is the corresponding coordinate in texture space; k⃗ is x, y or z unit vector

in texture space; Bk⃗ is the length of bounding box B in the k⃗ direction. The first case

in the equation represents the case when the edge −→e i→j is perpendicular to the unit

vector k⃗. The results are either 0 or 1 in this case. When k⃗ ·−→e i→j < 0 is less than 0,

it means that the direction of the edge −→e i→j is opposite to the direction of k⃗. Hence,

the correct coordinate in texture space should be 1− λ. Using vertex shader for the

calculation of slicing planes improves its performance significantly. Normally, the

vertex shader only passes the vertices to fragment shader. This implementation

balances the workload between the vertex shader and the fragment shader, which

contributes to the performance of the entire rendering phase.
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After the vertex finishes calculation, the results are passed to fragment shader,

which evokes step three executed by the GPU. The primary operations in step three

are two texture mapping operations. As showed in Figure 3.10, the first texture

mapping slices the 3D texture using texture coordinates from the vertex shader.

The resulting slice maps to the corresponding polygon in eye space. The second

texture mapping also uses a transfer function. As most volumetric data contain only

one scalar value at a specific position most of the rendering algorithms use a color

lookup table to define the color and transparency of the scalar value. In essence, the

color table is a transfer function. The corresponding implementation of a transfer

function in GPU use a 2D texture. During rendering, the scalar value returned from

the first texture mapping process is used as index to the look up function stores in

a 2D texture. The returned value from second texture mapping process is usually

a RGBA quadruplet. The transparency element A in the quadruplet will be used

when blending all the slice together.

Figure 3.10: Texture mapping in fragment shader.

The texture mapping operations generate many quadruplets. The final step is

to blend these quadruplets together. Each quadruplet has mapped to a position

on screen. The final pixel color on screen is produced by the blending of all the

corresponding quadruples at this pixel position. The transparency element in the

quadruplet is the blending factor. Depending on the order of polygons filling in the

fragment shader, the blending operation can be either in front-to-back or back-to-

front order.
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3.5 Interaction handler

Essentially, the interaction module takes the input from the keyboard or mouse, and

translates the input parameters to the rendering algorithm. Any change capturing by

interaction module will trigger the render module to update the rendering parame-

ters and render the object once again. The real-time rendering constraints requires

that the response time to the user input should be less than 100ms citeRTR3.

The type of interaction is only limited by imagination. It is impossible to include

every interaction which an end user would expect. To have a sense of what kind of

interaction is essential for our application, we refer to an open source software,

ParaView [34]. This software is designed for 3D data visualization. It is a very

famous software in the field of scientific visualization. Using interactions which

are supported by ParaView as a guide line for our application is reasonable. The

interactions for 3D volume data in ParaView include standard mouse interaction:

rotation, moving and scaling. The end user can rotate the object arbitrarily when

holding the left mouse button. Holding the middle button enables end user to move

around the object. The right button is for scaling the rendering object. The method

we choose for rotation is the Arc-ball. There are many different ways to allow user

manipulate the viewpoint. Arc-ball considers to be the most intuitive method for

end user. The Arc-ball model creates a sphere around the 3D object. End user can

choose a point on the sphere by clicking. Dragging the selected point to another

point on screen will do the rotation. The drawback of this method is the inability to

rotate the object more than 180 degree in one clicking and dragging operations.

Other than mouse interaction, the ability to change the color look-up table at

run time is also valuable. Figure 3.11 shows the rendering results of the same ob-

ject with two different color tables. The left side picture looks much more realistic

than the right side one. Especially for medical image data, a perceptually accurate

and realistically colorized color table enhances the rendered data significantly. Our

system uses a dedicated file to interactively change the color table. The interface is

not very visually intuitive. But it is quite flexible. In order to change the color table,

user needs to open the color map file and changes the value in the file manually. The
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file is composed of several two-tuples and four-tuples. The two-tuples are param-

eters for vtkPiecewiseFunction class in VTK SDK. Let us denote any two-tuples

as (x, a), where x represents the scalar value of volumetric data and a represents

the corresponding opacity value. The vtkPiecewiseFunction takes these two-tuples

and interprets the value between two sperate points linearly. The four-tuples are

provided to vtkColormapPoint class. One element in the four-tuples represents the

scalar value and the others represent a RGB color value. End users can add, edit or

remove any value in the file. After saving the modified color table file, the final step

is pressing ”u” or ”U” on keyboard to update the new file to render module.

(a) (b)

Figure 3.11: Rendering results of the same volumetric data with different color
tables.

Slicing the volumetric data is also a common need in volumetric data rendering,

especially for medical image analysis. Our system has a GPU slicing feature. End

user can slice the volumetric data along x, y or z axes. When slicing, all the mouse

interactions are still available. Figure 3.12 displays the clipping results of the same

object along x, y and z axes. By default, our system will render the volumetric data

step by step. Using the acquisition time stored in volumetric data, the rendering

algorithm can synchronize the time interval of rendering two different time step

with the actual acquisition time interval. Pressing ”p” or ”P” on keyboard can

pause the current rendering flow, which gives the end user enough time to look at

the details at one specific time step.

Human vision has the ability to determine relative depths using several clues.

One primary clue is called stereopsis. In visual perception, stereopsis describes the
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(a) (b) (c)

Figure 3.12: Volumetric data clipping along x, y and z axes.

process leading to the illusion of depth from two slightly different projections of

the world onto the retinas of the two eyes. In order to take the advantage of stereop-

sis, stereo rendering needs to generate two slightly different projections of the same

object for left eye and right eye. The horizontal distance of two eyes are called

binocular disparity. If we set up two cameras with appropriate horizontal distance

in the scene which we are rendering, the generated images could be used to trick

the human visual system. There are generally two different ways to deliver the 2D

images to the corresponding eyes, time parallel and time multiplexed. Hodges et

al. [20] give a good description of the two different methods. Most of the stereo

rendering require end users to wear glasses. Some of the new technology, such as

auto-stereoscopic displays, can create a 3D effect without having to rely on any

extra devices [24]. But they either require expensive hardware or the view angle

is very narrow. In our system, we implemented a side-by-side stereo mode. This

method displays two slightly different images side-by-side. In our lab environment,

we use two projectors to project each side of image onto the same silver screen.

Each projector has a polarizing filter in front of it and the two filters are perpendic-

ular to each other. The polarized filter only passes light which is similarly polarized

and gets rid of the orthogonally polarized light. Our end user needs to wear an

eyeglasses which also contain a pair of orthogonal polarizing filters. Each eye then

only sees one of the projected image, and the stereo effect perceived. We also have

a DTI 3D display in our lab. No glasses is required to view stereo effect. The left

and right eye images are interlaced across the LCD screen by a special illumination

plate which is placed behind it. Hence, the left eye and right eye zones are formed
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in front of the screen. The viewer needs to find the sweet point for the best stereo

effect. The drawback of this hardware is the narrow view zone. It is impossible to

have several people view it at the same time. The final images through polarized

filter or interlacing appear darker than normal, because only half of the light energy

reaches human eyes.

The extensibility of our system allows users to add their own data filters easily.

The separated interaction module allows to add independent filter with little work.

However, since the reconstructed volumetric data is only available in GPU memory,

any new data filter needs to be able to execute by GPU directly.

3.6 Implementation Details

Volumetric rendering is a well studied subject in computing science. There are nu-

merous open source SDK on the internet. Our implementation carefully customizes

some of them and puts them together to form a system. The software libraries which

we have used in our system include the following:

1. CMake

CMake [43] is a software build system which allows developers to develop

cross-platform software. It can generate native makefiles for different system

or workspaces for different integrated development environments(IDE). The

only requirement is a simple configuration file. Developer needs to specify

some build parameters in this file and CMake will take care of the rest. We

have tested it with Microsoft Visual Studio 2008, Scientific Linux and Eclipse

CDT(C/C++ Development Tooling). Our system compiled successfully for

Windows and Linux. In other word, the portability of our system is improved

by taking advantage of CMake.

2. The Insight Toolkit(ITK)

ITK is developed by National Library of Medicine. Its primary usage is med-

ical image segmentation and registration. A repository of fundament algo-

rithms in this field can be found in this toolkit. A more detailed introduction
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can be found in [22]. Our system uses ITK as a DICOM data reader. GDCM

library (part of ITK) is a quite powerful and flexible in terms of reading raw

DICOM data. The same series of DICOM files in a directory can be iden-

tified and stored in a ITK internal format for latter use. Besides the support

for reading DICOM-format images, the ITK pipeline can be seamlessly con-

nected to another toolkit which we selected for visualization.

3. The Visualization Toolkit(VTK)

Before we introduce VTK, an other software named ParaView, which is based

on VTK, is worthwhile to mention. Our initial idea of this project was to write

a plug-in which specialize in large time-varying data volume rendering for

ParaView. However, the plug-in mechanism is not as flexible as we thought.

To make matters worse, we needed to use GPU for decompression. We then

decided to implement a stand alone system with the help of VTK. VTK is

a well-known open source C++ class library for 3D graphics. Object facto-

ries and virtual functions are widely used in the VTK implementation, which

makes adding new class into the library easy. Our system uses some functions

like color look-up table and volume rendering from the VTK toolkit.

3.7 Summary

By using the temporal redundancy between volumetric frames and spatial redun-

dancy in each frame, we are able to reduce significantly the size of the data transfer

between the central memory and the GPU memory. Essential to this scheme is the

ability to perform decompression on the GPU as if the GPU was a client to a video

server on the Internet. By using a simple quantization scheme and the concept of

I frame and P frame borrowed from video compression, we were able to develop

a decompression algorithm that can be perform in parallel on a GPU and is fast

enough to not reduce the target frame rate of 10Hz. At the base of this implementa-

tion, we used a quantization algorithm proposed by Schneider [25]. As a courtesy,

we were able to get access to the source code of Schneider’s paper [25] allowing

us to compare our GPU implementation to its counterpart. We then modified the
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vector quantization and decompression algorithms to meet our needs and integrated

them into our system. To the best of our knowledge, there is no standard benchmark

for our proposed system. Schneider’s work is the closest one that we were able to

find. The volume rendering program is based on a trilinear interpolation scheme

introduced in [56], which take advantage of the vertex shader. In the following

section, we will analyze the speed and efficiency of the system. We will also show

numerous examples of real-time rendering using data from a University of Alberta

real-time CT machine.
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Chapter 4

Experiments and Results

In order to test of our system, we use a desktop running Windows XP with a 4G

memory Quadro FX 5800 graphics card. The interface between the GPU and main

memory is PCI Express 2.0. The volumetric data which we use in our system is

a series of chest CT scan slices. We thank Dr. Michelle Noga at department of

Radiology & Diagnostic Imaging, University of Alberta, Edmonton, Canada, for

providing us the data.

4.1 Data Preparation Time Measurement Results

The usefulness of our system relies on the assumption that the implemented GPU

decompression mechanism saves time compare to direct data transfer through the

PCI-e bus. Otherwise, there is no point to use our system when rendering large

time-varying data set. The first experiment which we did is to get measurements

of the data transmission time for direct transmission and our proposed method. As

our proposed method involves transmission of I frame and P frame, we present the

results in two tables. In both tables, t1 represents the transfer time between the

main memory and the GPU without compression and t2 is the total time to transfer

the compressed data from main memory to GPU and to decompress the data on the

GPU. Table 4.1 is the results for I frame. We define I frame as the original data in

this thesis. So t1 is the same as t2 and the compression ratio is 1. Table 4.2 shows

the results for P frame transmission. In this table, p is defined as (t2 − t2′)/t2′. It is

essentially the time spend on decompression versus the time spend on transmitting
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Data Dimension t1(ms) b(Gb/s) t2(ms) So(Mb) Sc(Mb) r
512x512x32 4.2 1.905 4.2 8 8 1
512x512x64 8.9 1.798 8.9 16 16 1

512x512x128 17.8 1.798 17.8 32 32 1
512x512x256 35.1 1.823 35.1 64 64 1
512x512x512 70.9 1.805 70.9 128 128 1

Table 4.1: The data preparation time and compression ratio for an I frame:t1 Trans-
fer time between the main memory and the GPU without compression of a I frame,
b(Gb/s) The effective bandwidth, t2 Total time to transfer the compressed data from
main memory to GPU and to decompress the data on the GPU, So(Mb) The origi-
nal size in byte of the volume time step, Sc(Mb) The compressed size in byte, and
r The compression rate So/Sc. As we use the original data as I frame, t1 = t2 and
the compression ratio is 1.

the compressed data. As the data size gets larger, more portion of time is dedicated

to GPU decompression. These two examples are sufficient to justify the assumption

which our system builds on. In essence, they are the amount of time it takes to get

volumetric data ready for the rendering module. We call them data preparation

time thereafter. If t2 is less than t1, it proves the GPU decompression mechanism is

effective in terms of reducing GPU data waiting time. The two tables also contains

the original data size(So), the compressed data size(Sc) and compression ratio(r).

The compression ratio is defined by So/Sc.

We used five different data size ranging from 512x512x32 to 512x512x512 for

the first test. They are actually the same data set. The original data dimension is

512x512x355. We performed up-sampling or down-sampling on the data to get dif-

ferent size. Trilinear interpolation is used on the data for different sampling rate.

The experiment results for different data size help us understand how the system

performs once we take into account the data transfer between the main memory

and the CPU and the decompression on the GPU. Figure 4.1a shows the curves

of data size versus data preparation time of P frame for the direct transfer without

compression (red line) and our GPU decompression method (blue line). The GPU

decompression method performs very well regardless of the data size. It saves more

than half of the direct transferring time. When data size is small, it might not nec-

essary to use GPU decompression method since the direct transfer time is already
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Data Dimension t1 b t2 t2′ p So Sc r
512x512x32 4.2 1.905 1.4 0.2 6.00 8 0.403 19.85
512x512x64 8.9 1.798 3.5 0.4 7.75 16 0.787 20.33

512x512x128 17.8 1.798 7.3 0.9 7.11 32 1.555 20.57
512x512x256 35.1 1.823 16.1 1.7 8.49 64 3.091 20.71
512x512x512 70.9 1.805 32.0 3.4 8.42 128 6.163 20.77

Table 4.2: The data preparation time and compression ratio for a P frame: t1(ms)
Transfer time between the main memory and the GPU without compression,
b(Gb/s) The effective bandwidth, t2(ms) The total time to transfer the compressed
data (P frame) from main memory to GPU and to decompress the data on the GPU,
t2′(ms) The compressed data (P frame) transmission time, p The time spend on
decompression verses the time spend on transmitting the compressed data, So(Mb)
The original size in byte of the volume time-step, Sc(Mb) The compressed size in
byte, and r The compression rate So/Sc.

short. Moreover, the GPU decompression algorithm is not a lossless decompres-

sion. The speedup is not worthwhile compared to the sacrifice of image quality.

However, when the data size is large, the speedup is a desired factor rather than

image quality for real-time rendering. From the experiment result, we conclude

that our assumption is correct and the GPU decompression mechanism is effective

in terms of reducing the data preparation time. The compression ratio is illustrated

in Figure 4.1b. The bit rate of the vector quantization in our test is 8. Hence, the

upper bound of the compression ratio is around 21.3, which is verified by Figure

4.1b.

(a) Data preparation time of uncompressed
data to the GPU vs and data preparation time
with GPU decompression. (P frame)

(b) Compression ratio for a P frame.

Figure 4.1: System performance for single time step with a P frame
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4.2 Volumetric Data Compression Experiment Results

As our system is optimized for time-varying data set, we also need to prove that our

proposed method deals with time-varying data set better than the conventional none

optimized method. The benchmark with which we selected to compare is based on

Schneider’s method. In their paper, they use mean square error(MSE), signal-to-

noise ratio(SNR) and peak signal-to-noise ratio(PSNR) as performance indicator.

They are defined as the following:

MSE =
n∑

i=1

(wi − ri)
2/n (4.1)

SNR = 10 ∗ log(
∑n

i=1 w
2
i − (

∑n
i=1 wi)

2/n

n ∗MSE
)/ log 10 (4.2)

PSNR = 10 ∗ log(max(wi)
2/MSE)/ log 10 (4.3)

where wi is the original scalar value and ri is the reconstructed value, n is the

amount of scalar values and max(wi) is the maximal scalar value in the original

data. We adopt the same performance measurements to evaluate our system. The

data we use is of size 512x512x256 and there are 6 different time steps in total.

Table 4.3, 4.4, 4.5 show results which we got from experiment. We did three dif-

ferent tests on these data. Table 4.3 is the benchmark test on Schneider’s method.

Their method treated different time steps individually and compressed them sep-

arately. Table 4.4 and table 4.5 are tests both based on our proposed idea of

exploring time redundancy. The difference lies in the way they calculate the differ-

ence between two different time steps. In table 4.4, we get the difference from two

original time steps; and in table 4.5 we subtract the current original time step with

the reconstructed previous time step. For example, suppose we have time step 2 and

3, the second method would compress the difference of time step 3 and time step

2, while the third method would reconstruct time step 2 at first, and then calculate

the difference of time step 3 and the reconstructed time step 2′. We call the second

method the naive scheme and third method the progressive scheme.

Figure 4.2 gives a visual overview of the performance for the three methods.

The green lines in the graph are the testing results for the benchmark method. As

the different time steps are separated from each other, the compression algorithm
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Time Step 1 2 3 4 5 6
MSE 15.6504 15.8601 15.1026 15.2743 15.4127 14.9541

SNR(dB) 24.06 24.11 24.20 24.22 24.21 24.21
PSNR(dB) 36.01 36.02 36.20 36.26 36.22 36.35

Table 4.3: Compression errors of our benchmark method. This method treated
different time steps individually and compressed them separately.

Time Step 1 2 3 4 5 6
MSE – 2.5064 12.4756 25.6068 44.2489 71.4553

SNR(dB) – 32.12 25.03 21.98 19.63 17.42
PSNR(dB) – 44.04 37.03 34.01 31.64 29.56

Table 4.4: Compression errors using the naive scheme. We compress the difference
of two original time steps in this schema. The error accumulates very fast.

Time Step 1 2 3 4 5 6
MSE – 2.5064 5.5752 5.7719 11.0158 20.5845

SNR(dB) – 32.12 28.52 28.45 25.67 22.82
PSNR(dB) – 44.04 40.53 40.48 37.68 34.96

Table 4.5: Compression errors using the progressive scheme. We compress the
difference of original time step with its previous reconstructed time step. The error
accumulates in a much slower pace than the naive scheme.
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performance is quite stable. The green lines are almost horizontal in the graph.

The naive scheme compression method is represented by the blue lines. As seen

in the graph, the blue lines increase or decrease dramatically compared to other

lines. The accumulated errors account for it. After reconstruction, the error due

to compression is added to all previous errors, which also explains the monotone

increase in MSE and monotone decreasing in SNR and PSNR. This is not the best

method to compress the time-varying data set. As shown in Figure 4.2, the bench-

mark algorithm outperformed this method in every aspect after time step 3. The red

lines, which represents the progressive scheme compression method, have much

smoother slopes than the blue curve. It indicates that the compression error rate is

smaller. At the sixth time step, the MSE for the progressive scheme compression

method (red lines) begins to exceed the benchmark algorithm. We describe it as the

turning point. The turning point is a good indicator to upload I-frame time step to

reset the accumulated error.

Figure 4.2: The error measurements of different methods

Figure 4.3 are screen shots of the rendering results of time step 6. We use 3D

texture-based volume rendering as described in the rendering module. On average,

we managed to get 15 to 20 frames per second with our experiment data. In this
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graph, the distortion of Schneider’s method is hardly noticable at the given resolu-

tion. However, when we zoom the volume in our program, the distortion is fairly

obvious. Both the naive scheme compression and progressive scheme compression

yields severe distortions.

(a) Original volumetric data (b) Volumetric data reconstructed from Schnei-
der’s compression method

(c) Volumetric data reconstructed from naive
scheme compression method

(d) Volumetric data reconstructed from progressive
scheme compression method

Figure 4.3: The rendering result of time step 6 with different compression methods

From those experiments, one can safely conclude that the progressive scheme

compression yields a reduced compression distortion compare to the benchmark

method. It efficiently exploits the time redundancy by encoding the difference of

continuous time steps.
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4.3 Influence of Quantization Parameters on Com-
pression

We briefly mentioned some parameters which we set for our tests. In this section,

we will discuss how these parameters affect the compression performance.

Bit-rate is the primary factor affecting the compression error. In our experiment,

we used a value of 8 as the vector quantization bit-rate. As the original voxel data

was also acquired in the format of 8 bits scalar values, the compression did not

introduce large distortion. One limitation of this vector quantization is that as soon

as the bit-rate is lower than 8, artifacts become very obvious. A higher bit-rate will

definitely reduce the compression distortion, however it also significantly reduce

the compression ratio. The size of index and code-books grow very fast with the

increased bit-rate. To avoid large distortion or inefficient compression, a rule of

thumb is to use the same bit-rate as the original voxel data. As the use of higher

bit-rate voxel data is more popular for the sake of accuracy nowadays, a 16 bit or

even higher bit-rate may be required. To implement a higher bit-rate decompression

in GPU, one can take advantage of α-channel component in the texture.

The space and time redundancy of the original data also have influence on com-

pression errors and ratio. Generally, encoding contiguous and homogeneous voxel

data can improve the compression ratio, yet result in even better quality. Our pro-

posed methods are proofs of this theory. The compression errors of our methods are

less than the error of benchmark method which only exploits the space redundancy.

Medical data usually has high time redundancy. This makes vector quantization

very appropriate for this kind of data.

The last but not the least influence factor is the turning point threshold. A turn-

ing point is the point we update I-frame to reset the accumulated error. The I-frame

is usually much larger than P-frame in terms of size. In this thesis, I-frame is the

uncompressed original data. If we select a smaller turning point threshold, it will

trigger the I-frame updating more often. Overall, it will give us a less compressed

data and a higher fidelity. On the contrary, a higher turning point threshold will give

us a more compressed data and a lower fidelity.
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These factors are the key factors of our compression method. Except for the

space and time redundancy factor, one can have control over the bit-rate and the

turning point threshold parameters. Essentially, changing parameters is changing

the trade off between compression distortion and compression ratio. One should

select these two parameters based on the precision needs of end users.

4.4 Summary

In a nutshell, our experiment results suggest that our proposed system preforms the

way we expected. The GPU decompression mechanism reduces almost by half the

data preparation time for rendering module. The progressive compression scheme

efficiently takes advantage of time redundancy, hence reducing the compression

error. To deal with different quality requirements, there are also two adjustable

parameters available for end users to balance compression error and compression

ratio. For volumetric data with high spacial and time redundancy, such as medical

data, we also expect a better performance than random volumetric data. In the

domain of real-time rendering of large time-varying volumetric data, our proposed

system proves useful and performs better than other existing system found in the

literature.
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Chapter 5

Conclusion

The goal of this thesis is to explore an efficient way to render large sequence of

volumetric data over time so that the end users can visually observe their evolution

in time and space at real-time performance (min rate of 10Hz). This type of ren-

dering is very memory and computationally intensive and is currently impossible

with standard GPU algorithms. Even with one of today’s fastest GPU, the transmis-

sion speed between main memory and GPU memory is still too slow for real-time

rendering as the bandwidth of the PCI-e bus is at best 2 Gb/s. One way to solve

this problem would be to transfer all the frames to the GPU and then render them

using the GPU hardware. The problem with this scheme is that the GPU memory is

limited to a few frames and will always be as volumetric time sequence continues

to grow in resolution/duration and could in theory have an infinite size.

In this thesis, we proposed and tested a new compression scheme to overcome

this bottleneck. This compression scheme decompresses the data in GPU memory

as if the GPU acted as a client in a video client-server configuration connected by

a band limited network. Similar to standard video compression technology like

MPEG, the proposed algorithm takes advantage of time and spatial redundancies to

reduce the data size to be transferred by the bandwidth limited PCI-e bus. Compare

to other method which does not utilize time redundancy information, our proposed

compression scheme manages to reduce compression distortion by a generaliza-

tion of the concept of P and I frames used in the MPEG 2 compression scheme.

Once one time step of the volume data is transferred and decompressed in the GPU

texture memory, it is immediately rendered using a fast GPU based 3D texture-
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based volume rendering algorithm. The interaction handler module allows the user

to interact in real-time with their data through different ways, such as: mouse in-

teraction, stereo rendering, clipping, and interactive manipulation of the color and

transparency look-up table.

We have demonstrated that the progressive compression scheme using the I and

P frames yields a reduce compression distortion compare to the benchmark method

found in the literature. It efficiently exploits time redundancy by encoding the dif-

ference of continuous time steps.

Our implementation is able to run on most commodity desktop computers. For

potential end users, such as radiologists, the system is easy to deploy without the

need to buy specialized hardware or software. We use CMake to compile the source

code, which give the system cross-platform capability; and the GPU programs in

our system can work both on NVIDIA and ATI graphic cards. For users who wants

to extend the system capabilities, our modular design makes it easy to incorporate

new algorithms. There is one restriction though. All new algorithms must be able

to run directly in GPU, since the reconstructed volumetric data is only available in

GPU memory.

5.1 Future Work

Before this work, we had a chance to work on Paraview software to visualize large

volumetric data. We tested the client/server mode of Paraview using MPI on dis-

tributed and shared memory systems. On the server side, volumetric data is broken

into pieces to be processed and rendered by different processors and composited

later using depth buffer. The client side provides end user an interface to interact

with the data. This mode provides scalable rendering for large data. As our com-

pression scheme is also parallel, one interesting future direction is to incorporate

this scheme into Paraview. This way, the compression scheme can take advantage

of the client/server mode and scale to even larger volumetric data.

Another future direction related to the exploitation of time redundancy. The

most straightforward way to exploit the temporal redundancy is storing the differ-
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ence between the current and the previous volume rather than the current volume.

Although this already reduces the compression distortion remarkably according to

our experiment, there are more advanced techniques, such as motion compensation.

Adopting these techniques will further improve the compression performance as it

does with MPEG video encoding.
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