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ABSTRACT

Frequency deviation from its rated value and its rate
of change are indications of 1load imbalance in power
systems. Frequency relays which detect frequency deviation
and its rate of change and react accordingly are implanted
in power systems to ensure the safe and efficient operation
of power systems. This thesis describes a new algorithm for
measuring the frequency, its deviation and the rate of
change of frequency accurately even with the presence of bad
data contamination, which is based on a recently developed
least absolute value estimation technique. Compared with the
least error square technique, which has been used widely,
this new algorithm is shown to be a viable alternative.
Moreover, under certain circumstances, the new technique
proves to be superior to the existing least error squares

technique.
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CHAPTER 1
INTRODUCTION

In the steady state operation of a power system, the
total power generated is equal to the system locad plus the
losses, and the syster frequency is a constant value, 60 Hz,
which also is termed rated frequency. The huge rotating
masses of turbine-generator rotors act as repositories of
kinetic energy: when there is insufficient mechanical power
input to the system, the rotors slow down, supplying energy
to the system; conversely, when excess mechanical power is
input, they speed up, absorbing energy. Any change in speed
causes a proportional frequency change.

Under normal operating conditions, there is always a
continuous frequency dither as the load may vary slightly
from instant to instant, and the control of load sharing
between machines requires some frequency variation. That is
a change in load is always accompanied by a change in the
frequency, which is normally corrected by a load-frequency
controller. This dither is small, and to a great extent, is
determined by the sensitivity of the governors on the prime
movers and the load-frequency controllers [9].

Under abnormal conditions, such as a fault or loss of
transmission capability, different parts of the system will
experience a local generaiion-load imbalance. This leads to
abnormal currents and disconnection of parts of the system.

In extreme situations, transient instability may occur,



leading to the failures of the system ( often referred as
blackouts ). There have been cases where transient
instability, per se, has been avoided but failure has
occured. The Northeast Power Pool ( NEPP ) blackout of 1965
is a prime example. In this failure, some areas were left
with an excess of load over generation and the frequency
dropped. As the frequency drops, the performance of
motors, ..., etc is degraded and, in this c¢ase, critical
equipment, such as feed-water pumps for boilers was shut
down. This in turn caused the shutdown of more generators,
causing more severe deneration-load imbalance. This
eventually led to a nearly complete shutdown of generation
between Niagara Falls and New York City. The whole process
of failure took about 15 minutes, but the restoration took
several days. The cost, both monetary and social were
extremely high. This incident led directly to the im-
plementation of underfrequency relays, which selectively
shed load when an unacceptable frequency drop is experi-
enced, to prevent the risk of uncontrolled generation shut-

down [9].

1.l Freqguency Relays in Power Systems.

Frequency relays are classified into two Qroups, under-
frequency relays and overfrequency relays according to their
functions.

Underfrequency relays, as mentioned earlier in this

chapter, are used to detect the frequencies a certain amount



lower than the rated frequency and disconnect some loads au-
tomatically to maintain the generation-load balance. This is
called load shedding, in which discrete amounts of the
demanded power are dropped in a preplanned order upon a
detection of a power deficiency. In recent years, digitized
underfrequency relays, which sense not only frequency
deviation, but also its rate of change have been designed
and built [1,2,3,4,6,8]. The advantage of knowing the rate
of change of frequency is that it is then possible to
predict if a critical frequency drop will occur, before it
occurs, providing better selectivity.

Overfrequency relays, on the other hand, detect the
frequencies above the rated value at the generator
terminals, and decrease the generation or shut down some
generating units, if necessary, to keep the nominal
frequency to protect the generators from overspeeding during

start-ups or faults which often cause loss of load.

1.2 Estimation of F Deviati | Its Rate of Cl

As explained in the previous section, frequency relays
require accurate estimates of the frequency. Many techniques
have been developed in the past twenty years to measure the
voltage phasor parameters, including frequency, amplitude
and phase angle. Some of these are based on the Discrete
Fourier Transform ( DFT ), which tracks the local system
frequency and its rate of change ({3,4]. It is assumed that

the input signal is a pure sine wave of a fundamental



frequency and must be band-limited to avoid errors due to
aliasing. This technique may be affected by harmonics and
the presence of bad data and white noise.

Another algorithm, which measures the frequency and the
amplitude simultaneously from the sampled values of the
system voltage at the relay location, is based on the Least
Error Squares (LS) curve-fitting technique {[1]. The LS
technique finds the mean value of a set of measurements. It
is known that the mean value is the best estimate when the
set of measurements has a Gaussian error distribution, in
other words, the noise present is pure white noise. However,
for error distributions other than the Gaussian
distribution, the LS technique will not produce the best
estimate. This is especially true when the set of
measurements is contaminated with bad data [9].

Two techniques have been developed for the optimal
tracking of power system voltage amplitude and frequency
deviation [6]. The first one uses a two-state linear Kalman
Filter model (linear model) and the second one uses a three-
state extended Kalman Filter model (non-linear model). Since
the Kalman Filter was derived on the basis of LS
approximations, eventually these two techniques face the
same problem as the LS technique.

In this thesis, a newly developed technique for esti-
mating the frequency deviation and its rate of change is
presented. This algorithm is based upon the Least Absolute

Value Algorithm (LAV), which minimizes the sum of the



absolute values of the errors. Two models of the voltage
phasors are used, namely the Constant Frequency Model (CFM)

and the Variable Frequency Model (VFM).

1.3 Qutline of the Thesis.

In chapter II, the parameter estimation problem is in-
troduced. Different algorithms are then discussed and com-
pared. The advantages of the new LAV technique are shown
through a few examples. Chapter III discusses the two mathe-
matical models of the voltage phasors. Then, in chapter VI,
the new LAV and other algorithms are tested in an off-line
mode. Different factors which may affect the algorithms are
explored. Advantages and disadvantages of different
algorithms are compared. The LS and the LAV techniques use a
set of measurements, which may be considered as a static ap-
proach. In chapter V, the use of the Kalman Filter, a dynam-
ic approach, is presented as an alternative to the static
ones. And finally, the conclusions are drawn in the last

chapter.



CFAPTER II

PARAMETER ESTIMATION ALGORITHMS

Parameter estimation problem involves the estimation of
n unknown system parameters from m measurements and a knowl-
edge of the system structure. Equation (2.1) describes the
relationship between the measurements and the system parame-
ters.

z=HO0+ v (2.1)

where 2z is the m by 1 (m>n) vector of measurements, 0 is the

n by 1 vector of parameters to be estimated, H is the m by n
matrix which describes the mathematical relationship between
the measurement vector z and the parameter vector Oin the
absence of measurement error. Each element of v represents
the error in a measurement.

The parameter estimation problem is to estimate the el-
ements of the parameter vector 6, with the H matrix and the
measurement vector 2 given, and the elements of v unknown.
If m = n, an estimate of O can be obtained by using 0 =
(H] 'z, In this case, the parameter estimate fits exactly
the measurement vector, i.e.., 2 - HO = v = 0, and is of
poor quality, since this estimation process assumes that the
error vector v contains only 0's. Therefore the estimate
does not account for, or filter out measurement errors.

In most cases the number of measurements exceeds the
number of system parameters, and we can obtain a good quali-

ty estimate according to the standard used.



Define an m by 1 vector r of residuals as
r =2 - HA (2.2)

Three common estimates of the parameter vector 0 are

11, 1 and 1, estimates, which have cost functions to be

minimized as follows ([23]:

m m
For 1, estimation: J1(0) =X | z; - H;0 | = X lr;l (2.3)
i=1 i=1
- ¥ 2 _§ 2
For 1l estimation: J,(0) =£Zl( z; - H;j0 ) =;£1(ri) (2.4)

m
For l,, estimation: J, ()= 1lim (X lzy - I-Iielk)l/k
= maxlril (2.5)

where rye z4, H; are the rows of r, 2, and H, corresponding

to th2 ith measurement of m measurements.

The 1; estimate minimizes the sum of the absolute val-
ues of the residuals. The 1; estimate minimizes the sum of
the squares of the residuals. The leo estimate minimizes the
largest absolute value of the residuals. The 17 is called

the least absolute value (LAV) estimate, the ls is called

the least error squares (LS) estimate and lo is called

Chebyshev estimate.

For data z whose errors are normally distributed, ls is
a good choice. If the data z are plagued with outliers, 13

is a good choice because in 11, outliers tend to be com-

pletely ignored. Finally, if the errors in gz are negligible

( e.g., if the residuals are expected to be much larger than



the errors in z ), then 1, ,will produce the smallest maximum

deviation Iril [23].

2.1 Least Error Squares Estimatiop (LS).

The first application of LS estimation took place in
1795 according to J.M. Mendel [10]. LS estimation has been
applied to many estimaticon problems since then, and contin-

ues to be widely used.

It can be shown ([21] that the LS estimation is given by

*

0" = [u'H] 14"e (2.5)

In more general cases, weights are assigned to each
measurement so that the measurements assigned with larger
weights influence the least squares estimate more than those
assigned with smaller weights. The estimates are then called
the weighted least squares estimates. The cost function for

weighted least squares estimation is

o 2
Jy (9) =i§ilwi( zy - HiG ) (2.6)
where LA is the weight assigned to the ith measurement.

Equation(2.6) can be rewritten as

J2(0)=(z-H0)TW(z-HO) (2.7

where W is a diagonal m by m matrix that contains weights,

or W = diag.(w;, i=1,...m). It can be shown [10] that the

weighted least squares estimation is given by



0" = [ u™wn ;1 luTwe (2.8)

The LS estimate possesses a number of interesting
properties. First, the L, estimate gives the best estimation
(maximum likelihood) when the measurement errors follow a
Gaussian or normal distribution and the weighting matrix is
equal to the inverse of the covariance matrix. It has been
also stated [20] that, in cases where the measurement error
distribution is not Gaussian, but the number of measurements
greatly exceeds the number of unknown parameters, the method
of least squares yields very good estimates.

Another valuable feature of the LS estimation is the
ease with which the estimates can be calculated; equation
(2.5) and (2.8) can be easily implemented on a computer. In
contrast, no algorithm has yet been devised that makes the
calculation of the LAV estimates as easy as that of the LS
estimates.

There are many estimation problems for which the error
distribution is not Gaussian and the number of measurements
does not greatly exceed the number of unknown parameters. In
these cases, least squares estimates are adversely affected
by the presence of bad data. This problem has been recog-
nized and addressed by several authors [11] who have pro-

posed different ways of refining the least squares method so

that 1, estimates are less affected by bad data.

2.2 Least Absolute Value Estimation (LAV),



In contrast to the LS estimation technique, the LAV
estimation technique has not been widely used for parameter
estimation due to the foliowing reasons [11].

(1) Computational difficulties in producing the numeri-
cal values of the LAV estimates in regression (lack of a
closed form formula equivalent to that of the LS estimates).

(2) Lack of asymptotic theory for the LAV estimation in
the regression model, and, in general, ronexistence of
accompanying statistical inference procedures.

(3) Insufficient evidence to show the superiority of
the small sample properties of the LAV as coumpared to the LS
estimation when sampling from long tailed distributions.
2.2.1 Linear Programming Technique {[12].

The most common approach used to calculate the LAV
estimates is to first formulate the estimation problem as a
linear programming problem and then to solve for the 1; es-
timate using: the simplex method, the revised simplex method
or a related technique.

A linear programming problem contains a cost function,
which is to be maximized or minimized, and a set of con-
straints. The simplex method minimizes or maximizes the cost
function within the bounds impcsed by the constraints. The
calculating procedure begins with an initial feasible solu~
tion which does not violate any of the constraints. Then new
parameter values are selec.?d which decrease the cost func-

tion. This is repeated until no new parameter values can be

10



found which decrease the cost function, then the solution of
the linear programming problem is reached.

Following is a description of formulating LAV estima-
tion as a linear programming problem {12].

Given an m by 1 measurement vector Z, and an n by 1 pa-

rameter vector 0, the LAV estimation problem is to estimate

©® such that the cost function given by (2.9) is minimized

m n
J(0) =X | z;, - X H,.0, | (2.9)
where: zy is the ith element of =z.
Oj is the jth element of 0.
Hij is the element in the ith iow and the jth
column of the m by n matrix H, which defines
the relationship between z and 0.
n
Let ri = zi ‘jilﬂijej i=1' 2,.. oM (2.10)

The linear programming formulation «{ the LAV estima-

tion is as follows [12].

m
Minimize L ry (2.11)
i=1
n
Subject to ri +j21Hije_j > zi i= 1, 2, ceeyp I (2.12)

n
ri -jilﬂijej > —zi i = 1, 2, csep I (2.13)

All the r;'s in the formulation will be non-negative

because the minimum value that any ry can reach, without vi-

11



olating a constraint, is the larger of expressions (2.14)

and (2.15).
: n
ri > Zi - .ElHijej (2.14)
J—
n
r; > .ZlHijej - z3 (2.15)
J=

If one of the two expressions is negative, the other is

positive, and r; must be positive in order to satisfy both
constraint expressions. If one of the two expressions equals
zero, the ¢ther expression equals zero and therefore r; is
zerc. Consequently r;, when subject to the constraint ex-
pressions, represents the absolute value of the ith resid-
ual. Minimizing the sum of r;'s in the linear programming
problem produces the LAV estimate.

Despite its popularity linear programming based LAV es-
timation has the following drawbacks [21].

1) It requires excessive memory storage; a typical for-
mulation requires the manipulation of a matrix of size
2(mxn)xm [13], where m is the number of measurements and n
is the number of unknown parameters.

2) It is an iterative technique and thus may use a con-
siderable amount of CPU time and may be computational
inefficient [14].

3) It may fail to identify the measurements with gross
errors, leverage points [5].

4) The solution obtained may not be unique [15].

12



In the next section a new technique for LAV estimation
is presented.
2.2.2 New LAV Technique.

A great deal of research in LAV estimation has involved

attempts to prove the superiority of the l, estimate over

the 1; estimate and the development of more efficient linear

pProgramming based estimation algorithms. Very 1little re-
search effort has been expended in finding and developing a
relationship between the two types of estimates.

In 1973 Schlossmacher [13] presented an iterative tech-
nique which uses successive weighted least sSquares estimates
to find an LAV estimate. His algorithm has the following
steps [21]:

1) Obtain a weighted least squares estimate with all
the weighting factors equal to one, i.e. { wy =1, i =

1,2,...,m; m = the number of measurements }.

2) Use the generated weighted least squares solution to

calculate the residuals ry, i = 1,2,...,m.
3) Set wj = 1/Irjl, 1+ =1,2,...,m. If r{=0, set wy = 0.
4) Repeat step 2) and 3) until the changes in the r;'s
between successive iterations approaches zeroc.
Although Schlossmacher's technique gives approximate
estimates, it is an iterative technique and has been criti-
cized as being computational inefficient (le].

In 1976-77, Sposito, Hand and McCormick suggested that
the 1, estimate may be used as starting point for linear

programing based 1l; estimators [19]. Their research indi-

13



cates that starting a linear programming based 1l; estimator
at the 1, estimates saves many iteraticns. They found that
in general the total computing CPU time ( time to calculate
the 1, estimates to get the starting point + time to calcu-
late 1; estimates using linear programming formulation ) of

their technique is less than the time required to calculate

an 1; estimate from a flat start. The main drawback of their
technique is that it still requires a linear programming al-
gorithm to calculate the 1; estimate.

In 1987, Christensen and Soliman [5] developed a new 1,

estimation technique. Their technique, which does not use
linear programming, manipulates a simple relationship be-
tween the 1; and l; estimates. It is also non-iterative.

In the rest of this section the new LAV technique de-
veloped by Christensen and Soliman is given in detail.

The new estimation technique utilizes the interpolation

property that is stated in theorem 2.1,

Theorem 2.1 [181

If the column rank of the mxn matrix H is k ¢

k €n ), then the 1, estimate interpolates at least

k of the m measurements.

Since LAV estimates interpolate measurements, the esti-
mation problem reduces to selecting the k points that the
estimates should interpolate. The new technique assumes that

H has full rank and therefore k = n. Given the measurement

14



equation (2.16), the first step of the new LAV algorithm is
to calculate the least squares estimate of 0 which is given

*
by 6 in equation (2.17).

z = HO + v (2.16)

0% = [ uTy 17147 (2.17)

The residuals of the 12 estimate are calculated using

equation (2.18)
ri = Zi - Hie (2.18)

where ry is the ith residual, zy is the ith measurement, and

H; is the ith row of H.
Outlier measurements, assuming there are p of them and

m-p > n, whose residuals are greater than the standard devi-

ation of the LS solution residuals O, are then rejected. This

is based on the facts that the parameter G is a measure of

the amount of variability inherent in the regression model
and a large value of ¢ will lead to observed (x4,yi) 's which
are quite spread out about the true regression line, whereas
when O is small the observed points will tend to fall very

close to the true line ([23]. The standard deviation G is

given by

15



The introduction of rejecting outliers according to the
absolute values of the residuals is a improvement over the
old version of this technique as described in the reference
[21]. Some of the difficulties encountered in [21] now are
solved with ease. The readers may refer to example 2.2 for
details.

Recalculate the LS solution from the measurements of

*

the remaining measurements and a new LS estimate 0 is ob-

new
tained.Use this new LS estimate to calculate the correspond-
ing new residual vector £ ...

The residuals are then ranked by their absolute values
and then stored in the (m-p)xl vector r with the smallest

residual as r; and the largest one as rpy.p.

r - A -= ==
. nxl
Lnew = =§ """ - (m~-p) x1 (2.19)
% (m-p-n) x1
e rm-p - ST - —~—

The rows of the z vector and the H matrix are also re-
arranged so that all the z's and all the rows of H corre-
spond to the ranking of the absolute values of the residuals

(2.20) and (2.21)

zq R ———
. z nxl
Znew = | =] - -== (2.20)
* (m~-p-n) x1
z z
h— m-p- —— -

16



Hl A - —
. H nxn
Hpew = . =] --- - (2.21)
. * (m~p=-n) xn
H

A A

The sub-vectors r, z and the sub-matrix H correspond to
the n smallest residuals.
The final step of the algorithm is to calculate the LAV

estimate from equation (2.22) and (2.23)

A

zZ = é (2.22)

m> o>

171z (2.23)

D>

= [

Once the final estimate is calculated, the LAV measure-

ment residuals can be calculated using equation (2.24).
r =g - HO (2.24)

From equation (2.22) to (2.23), it can be easily seen
that the first n residuals of equation (2.24) will be equal
to zero. The n-m remaining residuals will either be zero or
non-zero. The five steps in the new LAV algorithm can be

summarized as follows.

1) Calculate the least squares estimate of 0 using

*
9 = [ un 17157,

2) Calculate the residuals of the 1, estimate using

*

* .
ri = Zi - Hie’ i=1,2,...,m

17



3) Reject the outliers whose residuals are greater than
the standard deviation of residual vector G.Recalculate the
LS solution and the associated residuals.

4) Select the n measurements that correspond to the

A

residuals with the smallest absolute values and form z and

A

H.
5) Solve for the LAV solution 6 using equation (2.23).

A useful property of the 1l; estimate is given by theo-

rem 2.2.

Theorem 2.2 [1¢1
For a least absolute value estimate of n para-
meters, if N; is the number of positive residuals
and N; is the number of negative residuals, then an
optimal least absolute value estimate 6 obeys the
following equation, provided that no set of n+l
points lies on an optimal hyperplane in n dimen-

sions

| N, - Ny | <n (2.25)

Theorem 2.2 gives necessary, but not sufficient condi-
tions for optimality. Thus 1, estimates produced by the new
LAV technique, or by any other technique, can be checked by
using theorem 2.2.

The following example illustrates the application of

the new technique.

18



Example 2.1. Fit the data points { (1,1), (4,5), 2,0),

2,2), (3,1.5), (3,2.5), (4,2), (5,3) )} with a straight line
in the form of y = ax + a, .

In this example, we have

1.0 i1
5.0 4 1
0.0 21
2.0 2 1 23
2=lys] B=| 3, | 9= [az]
2.5 31
2.0 4 1
-3.,0~ -5 1 =

Step 1. Calculate the LS sclution as

8 = [ u%H 1 1z

[0.75 ]
=
~0.215

Step 2. Calculate the LS residuals as

0.375 ]
2.125
-1.375
0.625
~0.625
0.375
-0.875
~~0.625~

"
]

with SD, ¢ = 1.11

Step 3. Measurement #2 and #3 have residuals whose absolute

values are greater than the standard deviation ¢ = 1.1. Re-

ject these two measurements. The new LS solution is obtained
* 0.4
Onew = 5.6
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and the new LS residuals are

[-0.2
0.4
-0.5
new 0.5
-0.4
0.2 -

"o
]

The rank of the matrix H is two, hence, the estimator
fits at least two measurements, and these two measurements
have the smallest residuals. They are #1 and #6 of the new

measurements set.

Step 4. Solve for the LAV solution.
ai-[sa] #-[}]
“lsald ®TL3b
which gives

~ 0.5
0 = [o.s]'

and the straight line equation is
y = 0.5x + 0.5

Step 5. The LAV residuals are:




8
with cost function J =.leri| = 6, Ny = 3, and N, = 3.

h
| N1 - N2 | = 0 <n =2, so theorem 2.2 is satisfied. We can

get the same solution by using linear programming ( IMSL
subroutine ).

For cases where the absolute values of two residuals
are equal, but there is only one place left in the to-be-in-
terpolated measurement set, a tie-breaking procedure is im-
plemented. Two LAV estimates, which correspond to the two
different interpolated sets of measurements are calculated.
Each interpolated set contains nearly the same elements,
with the only difference being that that each set contains a
different orie of the two measurements that was involved in
the tie. The estimate with the smaller cost function is the
unique LAV estimate.

The next example illustrates the tie-breaking proced-

ure.

Example 2.2. Fit the data points { (1,4.5), (2,7.0),
(3,5.0), (4,6.0) } with a straight line y = ax + b

In this example, we have

4.5 11
_ 7.0 3 2 1 0 = [ a ]
=] s.0 | H=1 31 [ b
6.0 4 1
Step 1. Calculate the LS solution.
* -
9 = [ H'H 1 1xT2
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_ [ 0.25 ]
"L s5.00

Step 2. Calculate the LS residuals.

-0.75
1.50
-0.75 |
0.00

Ly P

Step 3. Select the two measurements the correspond to the

~ ~

two smallest residuals and form 2 and H.

The smallest residual is r,. The absolute values of the

1st and the 3rd residuals are equal. Thus the tie-breaking

procedure must be implemented and two estimates must be cal-

culated.
The first

measurements.

The other

data points.

estimate interpolates the 4th and the 1st

T |

estimate interpolates the 4th and the 3rd

- _[41] ~ _[s.o]
2L 31 ) 22 = 5.0

Step 4. Solve for both LAV estimates.

and

a 0.5
9, = [4.0]

Jl = 2.5
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A 1.0
6, - [2.0]
J2 = 4.5

A
The cost function corresponding to 0, is less than that

corresponding to 6. Therefore 0; is the unique LAV estimate

produced by the new technique.

It may has been noticed that the standard deviation of
: is 6 = 1.061. Measurement #2 can be rejected as explained
earlier. The same optimal solution can be obtained without
going through the tie-breaking procedure. The only purpose
of this example is to show how to implement the tie-breaking

-zuation in case it happens. On the contrary, if measure-
ment #2 is not rejected according to the standard deviation
criteria, as done in [21], the tie-breaking procedure is in-
evitable.

The following is a summary of the features the LAV pos-
sesses that make it an attractive alternative to linear pro-
gramming approach.

1) It is non-iterative in nature.

2) It does not require an initial feasible solution
(for linear cases), whereas the linear programming approach
must first calculate an initial guess and then solve for the
1l; solution.
3) In most cases it produces a unique solution.

4) The new estimates are easily calculated and can of-

ten be carried out by hand for simple cases; whercas the
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linear programming estimation almost always rc wi.le 2 <O

puter.
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CHAPTER III

MATEEMATICAL MODELS FOR FREQUENCY ESTIMATION

In the previous chapter, three parameter estimation
techniques have been discussed, the LS approach, the linear
programming based LAV approach, and the new LAV approach.
This chapter presents the two models to be used to test the
three estimation algorithms. They are the Constant Frequency

Model ( CFM ) and the Variable frequency model ( VFM ).

3.1 Constant frequency model [1,21,

This model assumes that the voltage magnitude and
frequency do not change during the data window used for
measurement and it is sampled at the relay location. The

system signal voltage can be written as:

v(t) =Vsin (2nft+9) (3.1)

where V is the peak value of the voltage, @=2xnf, is the

radian frequency, t is the time in seconds and ¢ is an

arbitrary phase angle. Equation (2.1) can be rewritten as:

v(t)=(Vcosd)sin?nft+(Vsind)cos2nft (3.2)

Using the first four terms of the Taylor series sin2nft

and cos2nft can be expanded in the neighborhood of £, as

sin2mft=sin2nf,t+(2xt) Afcos2ntyt-2n2t (Af) 2sin2ne,t
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-§n3t3(Af)3cos2uf0t * Rgsin (3.3)

cosZuft=cosanot+(2nt)Afsin2ufot—2n2t2(Af)2c052ufot

4 3 3.,
+3n3t (Af)3sin2nf t + Rycos (3.4)

where Af is the frequency deviation = £-£,.

R4sin = %u4t4(Af) 4sin21t(fo+ 0Af)t, the remainder term

of the expansion of the sine function. 0<@a<1. (3.3a)

R4cos = "§'1t4t4(Af) 4Cos21t(fo+aAf)t, the remainder term

of the expansion of the cosine function. 0O<a<l. (3.4a)

Substituting the first four terms of equations (3.3)

and (3.4) in equation (3.2), we obtain
v(t) = a,;(t)xjtay(t) ptajz(t)xztas(t) xatag(t) xs (3.5)
+ajg(t) xg+ayy (t)xq+tajg(t) xg
where the following parameters are defined at time t as

ajy (t)=sin2rmfyt, a,,(t)=2ntcos2nf t
a3 {t) =00823Tf0t, ais (t) =27Ct8in21tfot (3.6)
ays(t)=-2n?t?sin2nfgt,  ajq(t)=-2nt2cos2nfyt

a17(t)=-§w3t3c052nfot, ala(t)=§w3t33in2nfot
and the state variables x, to Xg are defined as

X, = Vcos#, x, = AfVcosf

Xg = Vsin®, X, = ~AfVsiné 3.7
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Xg = (Af)ZVcose, Xg (Af)2%vsin®

X, = (Af)3Vcose, Xg (Af)3vsin®

If the voltage is sampled at a pre-selected rate, we
would obtain its samples at equal time interval, say At

seconds. A set of m samples designated as v(tl), v(tz),
...... r v(t )is obtained. These are the digitized samples of
the voltage, where t, = t; + At, t3 = t; + 2At,..... , t =

ty + (m-1) At and ty is an arbitrary time reference. Equation

(3.5) can then be written in matrix form as follows

z(t)=A(t)x+v(t) (3.8)

where z(t) is an mxl voltage samples vector, A(t) is an mx8
measurements matrix ( in chapter two we use H ), x is an 8xl
parameters vector to be estimated and v(t) is an mxl error
vector to be minimized.

The elements of the matrix A(t) depend on the time
reference t; and the sampling rate At and can be pre-
determined in an off-line mode. Also, all the x's of
equation (3.8) are unknowns, so at least eight equations
must be established. In other words, at least eight samples
of the voltage would be required.

As a general case, let us assume that m samples are
available, m>8, then equation (3.8) describes an over-
determined system of equations. As described in the previous

chapter, two techniques are used to solve this system. One
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is the least error squares (LS) technique. The second
technique, the new LAV technique, which is based on the
least absolute wvalue (LAV) approximations. uses some
information from the LS solution. This second technique was
developed in [5].

Having obtained the elements of the vector x, the
amplitude and frequency of the voltage signal can be derived
from the equations established. For example, the amplitude

of the sampled voltage can be estimated as

1
v o= (x,24x.2 )2 (3.9
The frequency deviations Af can be calculated as

X2
Af = ;1- (3.10)

Another possible approach is to estimate frequency

deviation by using variables X and x, as follows

Af = -— (3.11)

When the value Vcos® is small, the frequency deviation

estimated by equation (3.10) is not sufficiently accurate.

Similarly, when the value of Vsin@ is small, the frequency

deviation estimated by equation (3.11) is not sufficiently

accurate. However, sin@® is close to 1 p.u. when cosf® is
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small, and cos® is close to 1 p.u. when Vsin® is small .So

we can always use variables X)rXy,X jand Xato estimate
frequency deviations as follows
2 2
Xp *x4

(Af)2 = —— (3.12)
xl +X3

Oor use variables XgrXgpXq and Xg as

x72+xR2

(Af) 2 = (3. °3)

Xg“+xee
Note that the computation requirement for implementing
equation (3.12) or (3.13) is higher than that for
implementing equation (3.10) or (3.11).
Furthermore, the phase angle 0 can be obtained from one

of the following equations

X X X X
tanf= —> = -2 . 6 _ 8 (3.14)
X1 X2 X5 Xq

When developing the CFM in the previous section, the
frequency was assumed to be constant during a data sampling
window. In practice, however, it may change at a rate
depending on the situation the system may be in. If we use a
very small window size, say 2 cycles or 0.0167 seconds, then
the frequency change can be linearized on the starting point
of the measurement sampling period. Also we assume that the

amplitude of the voltage remains constant during each data
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sampling window. Using these two assumptions, a voltage at a

power system bus can be written as

v(t) = Vsin( ¢(t) + 0 ) (3.15)
Also
dé(t)
w(t) = 2rRf(t) = ¢dt (3.16)

which can be written as

t
o(t) =j 2rf (t)dt (3.17)
0

We assume that the frequency changes linearly with

time, and this can be expressed as

£f(t) = a + bt (3.18)

where a is the frequency in Hz at t = 0, b is the rate of
change of frequency in Hz/sec. Substituting equation (3.18)

into ecuation (3.17) for f(t), we obtain

d(t) = 2m ( at + %btz ) (3.19)

Substituting for ¢(t) from equation(3.19) into equation

(3.15), we obtain

v(t) = Vsin ( 2mat + 7mbt2 + 6) (3.20)

Note that if the frequency 1is constant during a data

sampling window, we have a = f and b = 0. In this case

30



equation(3.20) becomes equal to equation(3.1).

(3.20) can be written as

Equation

v(t)= (Vcos:' sin(2mat+bmt?) + (Vsin®)cos (2mat+bmt?) (3.21)

Using a Taylor series expansion, the above equation can
be expanded in the neighborhood of a = ag and b = bo as

vit) = sin(2naot)(Vcose+ 2ntcos(2uaot)((a - ag) Vcosh)

+ cos(2na9t)(Vsin9) - 2ntsin(2na0t)((a - ao)VsinO)

+ ntzsin(ZRaot)(—szinO- 2n(a - ao)ZVcose)

+ ntzcos(Znaot)(chose- 2nt(a - ao)ZVsinO)
- 2n2t3sin(2naot)(b(a - ao)Vcose)

2t3cos(2anot)(b(a - ay)Vsin®

- 21
- ?%Wntz)zsin(ZNaot)(b2Vcose)

- ?%Wntz)zcos(Znaot)(b2Vsin6)

(3.22)
Define the following state variables
Y, = Vcosé, Y, = (a-ag)Vcos
Y3 = Vsinf, Y4 = (a-ay)Vsin®
Y5 = -bVsin®- 2n(a - ao)Vcose
Yg = bVcos®- 2m(a - ag) Vsin®
Y7 = b(a - a5)Vsin®
Yg = b(a - ay)Vsin®
Yg = bVcosf
Y19 = bVsin® (3.23)
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Also define the following parameters:

b,,(t) = sin(2rayt) by, (t) = 2mtcos(2majt)

b,3(t) = cos(2mayt) byga(t) = -2Rtsin(2ragt)

b;g(t) = =tsin(2mayt) byg(t) = mtcos(2mayt)

b,4(t) = -2mtsin(2mayt) byg(t) = -2Rtcos(2rayt)

b g(t) = -1/2(mt)sin(2magt) " by,q(t)= - (mt)cos (2majyt) (3.24)

Then equation (3.22) can be written as
v(t) = bll(t)yl + blz(t)Y2 + ... + bllo(t)ylo (3.25)

In this equation, y's are the unknowns to be estimated
and they are functions of V, a,b, and O and b's are the
coefficients that can be evaluated by arbitrarily selecting

the time reference.

If the voltage is sampled at a pre-selected rate, we
would obtain its samples at equal time intervala, say At

seconds. A set of m samples may be designated as v(tl),
v(t2),...,...,v(tm) is obtained. These are the digitized
samples of the voltage. While t, = t, + At, ty = t; + 24t,

creser tpo=t; + (m - 1)At and t, is an arbitrary time

reference. Equation (3.25) can be written in a way similar

to equation (3.8) as

z2(t) = B(t) y + w(t) (3.26)
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The elements of the matrix B (t) depend on the time

reference and the sampling interval At. These elements can
be calculated in an off-line mode after the sampling rate
and time reference have been selected.

Having obtained the elements of the vector y, the

amplitude, frequency and rate of change of frequency of the

voltage can be calculated as follows

2, .2 ,1/2

V= (y©+y, (3.27)

The frequency deviations can be calculated by using the

following two alternative equations

(a -~ ao) = = and (3.28)

(a - ao) = - (3.29)
We can also use all variables Yir Y2r Y3 and Yq t>

estimate the frequency deviation as

Y%*Yq

(a - a,) =
0 yi+y3

(3.30)

If the value of Vcos® is very small (yy<<0), the

frequency deviations estimated from equation(3.28) will not
be accurate. Also , if the value of Vsin6 is very small

(y3<<0), the the frequency deviations estimated by using

equation (3.29) will not be accurate. However, when VcosO is

very small, sin® is close to 1 p.u.; when Vsin® is very
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small, cos® is close to 1 p.u.. So equation (3.30) can

always be used with satisfactory accuracy.
The rate of change of frequency can be estimated as
Y7

b = Y, and (3.31)

Yg
b = — 3.
Yg (3.32

In the above two equations, Yo and Y4 are very small

when frequency has its nominal value or is in the
neighborhood of its nominal value. Therefore, these two
equations are not suitable for estimating the rate of change
of frequency.

One can also use the following equations to estimate b

Yg L

b= (=2 and (3.33)
¥y
Yig &

b = (—132)2 (3.34)

which will run into similar difficulties when either of
Vsin® or VcosO® is very small.

All these problems can be solved by using variables

Y1:¥3:¥g and yg by using the following equation

Ye¥iYeY
b =-6-;-42§- (3.35)
Y17ty
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3.3. The Rate of Change of Frequency,

As explained earlier, the power deficiency in the power
systems is characterized by a drop in the frequency.
Therefore, it has been a common practice for many years to
shed the load with the assistance of frequency relays until
a balance is restored and frequency back to its nominal
value. In such cases, the load is disconnected in steps
[17). However, in cases of severe disturbances where
frequency drops rapidly, the use of frequency level alone to
decide when and how much of the load to be disconnected may
be inadequate in that, due to system time constants, the
action may be too late to be beneficial. Also, the use of
the rate of change of frequency allows prediction of the
frequency at a reasonable time in the future and allows
anticipatory action. In addition, it is possible to
recognize those situations where no shedding is required.

The VFM can be used to measure the rate of change of
frequency as explained earlier in the previous section. In
this section, we explain two alternative approaches using
the CFM algorithm to estimate the rate of change of
frequency. The first one is the direct approach, while the
second one is the linear regression approach.

3.3.1 The Direct Approach.
This approach uses the frequency estimated by tpe CFM
algorithm to determine the rate of change of frequency. If

the frequency of a voltage changes from f; to £, in AT, the

average value can be calculated as
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£1-1;
T AT

Hz/sec (3.36)
Using the CFM may produce an inaccurate estimation for
£f' for the reasons explained earlier when £, and f, are

estimated using different equations. Only equation (3.12) or

(3.13) are accurate for estimation of f; and £,.

3.3.2 Linear Regression Approach.
If the frequency of a signal is measured m times at

regular intervals AT second, and the frequency can be

expressed as a function of the time interval AT as follows

f = a + bkAT( k=1,2,..... .om ) (3.37)

where a is the estimate of the frequency at t = 0, and b is
the estimate of the rate of change of frequency. These
coefficients are to be estimated using the two proposed

techniques. The above equation can be written as

z = HO+ v (3.38)
where £ is an mxl measurement vector and is given by

z = CO].( fl, fz,-u-,-..’ fm )’ (mn) (3.39)

0 is an nxl ( n = 2 ) parameter vector to be estimated.

H is anmxn (m > n ) matrix.

v is an mxl error vector to be minimized.

36



CHAPTER IV

TESTING OF LS AND LAV ALGORITHMS FOR FREQUENCY
ESTIMATION IN AN OFF-LINE MODE.

In this chapter, the LS, the LP based LAV and the new
LAV are tested in the off-line mode for both CFM and VFM
models to study the effects of data window size, sampling
rate, time reference location and number of terms truncated
from the Taylor series expansion. For this purpose, the
voltage and frequency measurements were simulated in a
software program. For CFM, the program generates a voltage
having a constant frequency which is sampled at the pre-
selected rates; for VFM, the program generates a voltage
having a variable frequency, and we assume that this
variation is proportional to the time as given by equation
(3.18) and this voltage is sampled at a pre-selected rate.
These digitized voltage samples are then used to calculate
the steady state voltage phasor magnitude, the frequency
deviation from the nominal frequency and the rate of change
of frequency. The three algorithms, LS, LP based LAV and new
LAV, are tested both for voltage samples containing no bad
data, and for voltage samples containing bad data ( gross

error and/or gaussian noise ).

4.1 Effect of Data Window Size.

Table 4.1 gives the estimated voltage and frequency
deviation for different window sizes for the CFM model. It

can be noticed from this table that, if the voltage samples
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do not contain bad data the three algorithms give the same
estimate for the phasor magnitude ( = 1.4142 ) and the
frequency deviation ( Af = 0 ), also it can be noticed that
the sum of the absolute values of the residuals for the LAV
technique is equal to that of the LP technique, which is
supposed to generate the optimal estimate based on least
absolute value deviation. The optimal estimate using the
proposed technique is produced with no iterations, while it
takes 8 to 16 iterations using the LP technique. On the
other hand, when the voltage samples contain bad data ( the
location of bad data points are given in the table, bad data
points are obtained just by reversing the sign of sample
measurements marked in the table ( gross erior)), the new
LAV technique as well as the LP technique give better
estimates than the LS technique. The estimate obtained by
the LS technique is improved as the number of samples
increases ( data window size increases ). Also the new
proposed technique gives the optimal estimate with no
iterations, but the LP gives the optimal estimate in the
range of 8 to 17 iterations, which is time consuming.

Table 4.2 gives the estimated voltage, the steady state
frequency deviation and the rate of change of frequency for
a VFM model for different window sizes when the voltage sam-
ples do not contain.bad data and contain bad data. For no
bad data contamination, the three algorithms give almost the
same results. However, when the voltage samples are contami-

nated with the bad data, the new proposed algorithm as well
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as the LP give the same optimal estimate, while the LS algo-
rithm gives very poor estimates. Also, the new LAV algo-~
rithm gives the optimal estimate with no iterations, while
the LP gives the optimal estimate in the range of 15 to 32
iterations.

Studying Table 4.1 and 4.2 reveals that the new
proposed technique is superior to either the LS algorithm
which is adversely affected by the presence of bad data or
the LP algorithm which requires a 1large number of

iterations.
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Table 4.1, The estimated phasor voltage, and the frequency
deviation, Af = £ -~ £, f5 = 60 Hz, for sampling frequency =

720 Hz, with the time reference at the middle of the data

window and the number of parameters to be estimated; x = 8.

Constant frequency model CFM.

Case number 1 2 3 4 5 6

No. of samples 12 24 36 48 60 72

Window size (msec.) 16,67 33,33 50.00 66.67 83.33 100

LS \'4 1.414 1.4314 1.414 1.414 1.414 1.414

No Af 0.000 0.000 0.000 0.000 0.000 0,000

LAV ¥ 1.414 1.414 1.414 1.414 1.414 1.414

Bad Af 0.000 0,000 0.000 0,000 ©0.000 0.000

LP \'A 1.414 1.414 1.414  1.414 1.414 1.414

Data Af 0,000 0,000 Q.000 0,000 0,000 0.000

LS A4 1.360 0,914 1.464 1.351 1.375 1.349

With Af 137.0 14,18 1.590 2.110 1.150 1.103

LAV ¥ 1.416 1.414 1.414 1.414 1.414 1.414

Af 0,062 0,002 0,002 0.000 0,000 0.000

Bad ‘ZL;il 2.730 2,730 2.730 2.730 3,470 5,840

Lp \'4 1.414 1.414 1.414 1.414 1,414 1.414

Af 0,000 0.000 0,000 0,000 0.000 0.000

Data 2L;iL___2*l1Q__ZL11Q__ZLllQ..Z;liQ__lLilﬂ__iﬁiiﬂ
3 of iter. 10 8 17 11 12 13

Location of
Bad Lata (#) 10 10 i, 2 1.11 1,10 1,10,20
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Table 4.2a. The estimated phasor voltage, the frequency
deviation and the rate of change of frequency, with the time
reference shifted to the left of the middle of the data

window by 3At, x = 10, sampling frequency = 720 Hz. Variable

frequency model ( VFM ). No bad data.

Case # 1 2 3 4 5

No., of sample 24 36 48 60 12

Window size ( msec,) 33,33 50.00 66,67 83.33 100,00
+

LS v 1.414 1.414  1.414  1.414  1.414
Algorithm AfX 0.000 0.000  0.000  0.000 __ 0.000
p* 0,194 0,201  0.200  0.200 __ 0.200
LAV vt 1.414 1,414  1.414 1,414 1.414
Algorithm Af¥ 0.000 0,000 __0.000 0,000 _ 0.000
n 0,235 0,198  0.201  0.200 __ 0.201

* The actual value for b = 0.2

X The actual value for Af = 0.0

+ The actual value for V = 1.414
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Table 4.2b. Continued from Table 2a, the measurements set is

contaminated with gross error. (Bad data)
Case # 1 2 3 4 )
No, of Samples 24 36 48 60 12
Window Size (msec.) 33,33 50.00Q 66,67 83.33 100,00
LS A" 1.148 1.107 1.112 1.545 1.127
Af 6.601 2.380 3.960 0.726 1.317
Algorithm o] fail fail fail fail fail
LAV \'A 1.414 1.414 1.414 1.414 1.414
Af 0.000 0.000 0.000 0.000 0.000
Algorithm j o} 0.222 0,199 Q.199 0.200 0.199
ZL;il 2.732 1,465 6.927 8,926 12,931
LpP \'A 1.414 1.414 1.414 1.414 1.414
Af 0.000 0.000 Q.000 0.000 0.000
Algorithm b. 0.200 0.201 0,200 0,200 0.200
Zuxil 2.732 1.465 6.927 8.926 12,931
$ of iter. 14 18 28 22 27
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1.2 Effect of Sampling Rate

The aigorithm is examined at different sampling fre-
quencies or sampling rates. Table 4.3 gives the results
obtained for CFM when the sampling frequency is 180, 360,
540, 720 and 900 Hz when the set of measurements contains no
bad data and when it contains bad data. Studying Table 4.3
reveals that with no bad data the three algorithms give the
same results, and when the measurements are contaminated
with bad data the LAV algorithm and the LP algorithm give
good estimates for the variables, they are almost equal to
the true values, in contrast to the LS, which is adversely
affected by the presence of bad data ( it gives a bad
estimate for the variables ). We can also notice from Table
4.3 that the linear programming based LAV algorithm produces
the optimal estimate after a large number of iterations,
varyving Detween 11 to 16,

2lep it can be noticed that as the sampling frequency
increases, it does not affect the optimal estimate for ILP
algorithm and the new LAV algorithm, but it does affect the
LS algorithm.

Table 4.4 reports the same results obtained for a VFM.
The above discussion= .o0ld true for this table. In conclu-
sion, a suitable combination of data window size and sam-
pling rate must be selected for the LS algorithm, but it is

not necessary for the LP or LAV algorithms.
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Table 4.3a. The estimated phasor voltage, the frequency
deviation for a number of samples = 60, number of unknowns =
8 and the time reference is at the middle of the window.

CFM. No bad data.

Case # 1 2 3 4 5]
Sampling freguency (Hz) 180 360 240 120 200
Data window size (msec.) 333,3 166.6 111.1 83.33 66,60
LS ' 1.414 1.414 1.414 1.414 1.414
Algorithm Af 0.000 0,000 0.000 0,000 0,000
LAV v 1.428 1.414 1.415 1.414  1.414
Algorithm Af 0.000 0.000 0,000 0.000 0.000
LP v 1.414 1.414 1.414 1.414 1.414
Algorithm Af 0,000 0.000 0,000 0,000 0,000
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Tablie 4.3b. The estimated phasor voltage and the frequency
deviation for number of samples = 60, number of unknowns = 8

and the time reference is at the middle of the window for

CFM. Measurements are contaminated with gross error ( bad

data ).
Case §# 1 2 3 4 5
Sampling fregquencv 180 360 540 120 9040

Data Window (msec.) 333.3 166.6 111.1 83.33 66.66

LS v 1.467 1.425 1.476 1.375 1.380
Algorithm Af 0.069 0,080 0,281 1.54% 1.028
LAV Y 1.414 1.414 1.414 1.414 1.415
Af 0.000 0.000 0.000 0.000 0.000
Alggx_ii;hm_z_j_;il 4,901 2.829 5.571 3.500 4,029
LP \'4 1.414 1.414 1.414 1.414 1.414
Af 0.000 0.000 0.000 0.000 0.00¢
Algorithm lei}, 4.900 2.829 5.571 3.464 2.900
$# of iter, 11 13 11 15 16
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Table 4.4a. The estimated phasor voltage, the frequency
deviation and the rate of change of frequency. Number of
unknowns = 10, Number of samples = 60, time reference at he

middle of the window, VFM, and no bad data.

Case # 1 2 3 4 S
Sampling frequency (Hz) 180 360 540 120 200
Data Window Size (msec,)333.3 166.7 111.1 83.33 66.66
LS A4 1.414 1.414 1.414 1.414 1.414

AL 0.000 0,000 0.00C 0.000 0,000
Algorithm b 0.200 0,200 0,200 0.200 0,200
LAV, LP Y 1.414 1.414 1.414 1.414 1.414

Af 0.000 0,000 0,000 0,000 0.000
Algorithm b 0.200 0.200 0.200 0.200 0.200

46



Table

4.4b.

Continued from Table 4a. Measurements

contaminated with gross error ( bad data ).
sampling Frequency (Hz) 180 360 540 120 900
Data Window Size (msec.,) 333.3 166,7 111.1 83.33 66,66
LS v 1.389 1.413 1,400 1.514 1.487
Algorithm Af 0,069 0,078 0.316 1.267 0,848
LAV \'4 1.382 1.433 1.414 1.414 1.414
Af 0.076__0.000 0,000 0.000  0.000
Algorithm b 0,205 0.201 Q.199 0.202 0,204
Zl;il 6,948 2.856 5.573 3.469 2,693
LP A4 1.414 1.414 1.414 1.414 1.414
Af 0,000 0,000 0.000 0.0C0 0,000
Algorithm b 0,200 0.200 0.200 0,200 0,200
ZL;iJ 4,934 2.844 2.572 3.467 2.693
# of iter 26 19 26 17 23
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4.3, Effect of Taylor Series Expansion Truncation Approxi-
mation.

It can be noticed from equations 3.3a and 3.4a that if
the data widow size is small (t=m*At<<l) a few terms of
Taylor series expansion of sine and cosine functions would
be adequate for reasonable accuracy. But, if the measurement
window size is large, more terms are needed. Table 4.5
reports the results when the number of terms kept from the
Taylor series is 3, 4 and 5 of sine and cosine functions.
With no bad data, the three algorithms produce the same
optimal estimate for CFM, but when the measurements are
contaminated with gross error the LS algorithm produces bad
estimates, while the LAV and LP algorithms produce good
estimates ( optimal estimates ) and they are the same.
However, the LP Dbased LAV algorithm produces the optimal
estimate after a great number of iterations. It can be
noticed, from Table 4.5, that the number of terms truncated
from the Taylor series expression does not affect the
optimal estimate for the new LAV and LP based LAV

algorithms, but it does affect the LS algorithm.
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Table 4.5. The estimated phasor voltage and frequency devia-

tion for different truncated from Taylors series of sine and

cosine functions. Number of samples

= 60, sampling frequen-

cy = 720Hz, time reference at the middle of the window size,

CFM.
Case # 1 2 3
Number of variables 6 8 10
LS ¥ 1.414 1.414 1.414
No Af 0.000 0,000 0,000
LAV v 1.414 1.414 1.414
Bad Af 0.000 Q.000 0.000
LP A" A 1.414 1.414 1.414
Data Af Q.000 0.000 Q.0090
Ls Y 1.362 1.351 1.511
With Af 0.540Q 2.110 1.267
LAV Y 1.414 1.414 1.414
Af 0.000 0,000 0,000
Bad leiiA 3.460 3.470 3.470
LP Y 1.414 1.414 1.414
Af 0,000 0.Q00 0.000
Data Zl;il 3.460 3.460 3.460
$ of iter, 10 12 14
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4.4. Effect of Time Reference,

To reduce the computing time, the time reference may be
chosen at he middle of the data window size for the LS algo-
rithm utilizing the fact that by doing so the elements of
the rows of the matrix [ATA]'lAT will be symetrical.
However, the position of the time reference has no effect on
the results of the optimal estimate for the all three

algorithms.

The new LAV algorithm together with the LP based LAV
and LS algorithms are used to estimate the rate of change of
frequency. Table 4.6 gives the results obtained from a
computer simulation when the number of measurements, used to
estimate the coefficients a and b, are 3, 6, 9 and 12
measurements. With no bad data the three algorithms produce
the same optimal estimate, but with bad data both LAV and LP
algorithms produce the the optimal estimate, while the LS

algorithm fails to estimate the coefficients a and b.
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Table 4.6. The estimated nominal frequency and the rate of

change of frequency using linear regression. Sampling fre-

quency = 720 Hz.

Case Number 1 2 3 4
Number of samples used 3 6 . 12
No LS a €0.00 £0.00 60,00 60.00
0.2Q0 0.200 0.200 0.200

Bad Lav a 60,00 60.00 60.00Q 6€0.00
b 0.200 0.200 0.200 0.200

Data LP a 0,00 69,00 £0.00 60,00
) o) 0,200 0.200 0.200 0.200

With LS a 56,70 54,70 55.00 55.00
B o) 0,200 411.6 240.2 126.1

Lav a. 0,00 60.00 60,00 60.00

Bad b 0.200 0.200 0.200 0.200
eri}; 10.00 20,00 30,00 50,00

LP a 60,00 €0.00 60.00 60.00

Data b 0.200 0.200 Q.200 0.200
Zl;ii, 10.00 20,00 30,00 20,00

# of iter, 2 4 2 3
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CHAPTER V

KALMAN FI.ER - A DYNAMIC APPROACH

In Chapter II, III, and VI, tnh..: cu-~ve fitting tech-
niques, the least squares, the linear programming =:sed L./,
and the new LAV, and their application to freguency estima-
tions have been presented and explored. As the name suggest-
ed, these three algorithms use parameter estimation approach
to estimate states in power systems, frequency and amplitude
of voltage phasors. In order to carry out the estimation, a
set of digitized measurements are required. In this frequen-
cy estimation case, a certain number of digitized measure-
ments of the voltage phasors have to be taken and stored in
the microprocessor before each estimation is carried out,
which is often referred as the static approach. In other
words, we used a static approach to estimate a dynamic sys-
tem. Compared with dynamic approaches, where only one mea-
surement is needed to update the estimation, the curve fit-
ting techniques obviously take more time to carry out es-
timations. In this chapter, the application of Kalman filter

for tracking the voltage frequency is presented.

2.1 State model of the signal [61.

The noise-free voltage signal can be expressed as

v(t) = A cos( ot + ¢ ) (5.1)
where A is the amplitude and ¢ is the phase angle. Expand

(5.1) into (5.2)
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v(t) = A cosd coswt - A sing sinwyt (5.2)

= X3 costt - x; sinwyt

where x; = A cos, x5 = A sing.

Therefore we have the state equation and the measure-

ment equation of the voltage signal as follows

2y = Hxy + v

X3
= {cos(mokAt)-sin(a%kAt)][ :l+vk (5.4)
X2

where x, is the 2x1 process state vector at step k.

1.0 0.0
O = [ ], is the state transition matrix.
0.0 1.0

w, is the 2x1 plant noise vector uncorrelated se-
quence with known covariance structure Q-
2z, is the 1x1 measurement at step k.

H, is the 1x2 matrix giving the ideal relationship

between the measurement and the state vector.
Vi is the 1x1 measurement error-assumed to be uncor-

related with known covariance structure R,.

Having the two state variables estimated using the

equations described in the next section, the amplitude and
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the phase angle can be calculated simultaneously using (5.5)

and (5.6)

A =w/x§ + x% (5.5)
X
¢ = tan"1=2 (5.6)

And using the fact that the frequency deviation in Hz is
linearly related to the average rate of change of the phase

angle [6], we have the following equation

g%'(radians/sec) = 2RAf (5.7)

Frequency deviation can be calculated from (5.7).

5.2 Kal Filt al it]

A complete derivations of Kalman filter equations are
beyond the scope of this thesis. Orly the filter recursive
equations are presented with a brief description of their

use.

Having an apriori estimate Xx/x-1 and its error

covariance Py/x-1 the general recursive Kalman filter

equations are as follows [6]

(1) Compute Kalman filter gain Ky:

T T -1
Ky = Pyyk-1 Hxo ( Hye Ppyp g Heo + Ry ) (5.8)

(2) Update estimate with measurement Z):
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Xe/k = Fp/k-1 v K (2 - Hyxy ) ) (5.9)
(3) Update error covariance:
Pk = O T = Ky VP ey (5.10)
(4) Extrapolate the state vector and its covariance:

Xir1/k= Py (5.11)

Prsi/k = ¢kpk¢kT + Qx {(5.12)
where

Ry is the covariance matrix of observation errors at

instant k.
Qx is the covariance matrix of plant noise at instant k
It can be noticed that equations (5.8), (5.10),and
(5.12) are independent of measurement and the estimate.
Therefore only eguations (5.9) and (5.11) are to be computed

on-line.

The Kalman filter was first tested with different fre-
quency deviations to find out the range of accuracy. In the
test, a zero mean Gaussian white noise, with a standard
deviation of 0.01, was generated and imposed on the sinu-
soidal waveform to represent the noisy measurements. The
sampling frequency was 360 Hz. The test results are shohn in
Figure 5.1 and Figure 5.2. We can conclude from these tests

that the Kalman filter converges to the exact values quickly

55



( in about 20 sampling intervals, or 3.333 cycles ) and
accurately, and is hardly affected by the amplitude of fre-
quency deviations.

Then the effect of the noise level was studied. The
standard deviation of the noise was taken at three different
values, 0.05, 0.1 and 0.2. The results are shown in Figure
5.3, from which we can see that the estimates are slightly
affected by the noise level. It takes a little longer for
the higher level noisy data to converge than the lower level
noisy data ( about 5 sampling intervals, or 0.833 cycle ).
However, the Kalman filter is the least affected by the
noise level than other algorithms, provided that the noise
is white [6].

The Kalman filter was also tested with continuously
increcsing frequency deviations. The result of this test is
showm ia Figures 5.4, 5.5, 5.6, and 5.7. The rate itself has
little effect on the performance of the filter, and it can
be cowputed using curve fitting techniques, or simply aver-
age the change rate as the filter progresses.

Finally, the Kalman filter was tested with measurements
which were contaminated with bad data (gross error) to check
its capability of rejecting the bad data. In this test, the
signs of samples #21 and #41 were reversed. It can be seen
that Kalman filter can not reject the bad data (Figure 5.8).
Neither can it converge to the actual value fast enough so
that measures can be applied to avoid the wrong estimate.

For example, 3.3 cycles after #41 (bad data point) is
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introduced, there is still an error of approximately 0.5 Hz
present (Figure 5.8), which is not ucceptable for frequency
relays.

So, we can conclude that the Kalman filter gives the
best estimate on measurements with white noise, but fails on

measurements contaminated with gross errors.
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CHAPTER VI

CONCLUSIONS

This thesis deals with frequency measurements at a bus
for relaying purposes. In the first part of the thesis
(chapter II, III, and VI), three parameter estimation tech-
niques, least squares (LS), linear programming based LAV,
and the new LAV, have been applied to frequency estimations.
Two models were considered in this work, namely, a constant
frequency model (CFM) and a variable frequency model (VFM).
The frequency measurements are used to estimate the true
values of the frequency. These three different estimation
techniques are used and in each case the results are com-
pared for situations with no bad data present and situations
with bad data present (gross error). It was invariably found
that the three methods: LS, new LAV, and linear programming
based LAV all give the same results with no bad data pre-
sent, whereas when bad data is present the least squares es-
timation gives considerably poorer results than linear pro-
gramming based LAV and the new LAV. In addition, the linear
programming based LAV requires many iterations whereas the
new LAV is not iterative in nature. Hence from the results
presented in this thesis, the new LAV method is best suited
for problems in which most measurements are accurate with
only a few bad data.

In chapter V, the Kalman filter was used to estimate

the frequency changes and the rate of frequency change. As a
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dynamic filter, it is faster than the fixed window tech-
niques. Howev::, since the Kalman filter is based on the LS
standard, it is ai#fected by the presence of bad data.

Therefore, it is concluded that the new LAV estimator
is a better choice for situations where most of the measure-
ments are correct and only a few are bad data.

The new LAV is a static state estimator. It recalculate
the states after every sampling window. We are expecting to
develop a dynamic state estimator, like the Kalman filter,
which will have the same property as the static one, that is
it can reject the bad data as it progresses.

In this thesis, the models of the voltage phasors were
assumed as a pure sinusoidal wave, with constant frequency
or linearly changing frequency in the sampling data widow
size. Obviously this is not exactly the case in the power
system. Further research require more sophisticated models.
For example harmonics may exist in the measurements; the am-
plitude of the voltage phasors may also change as a result

of load change.
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